WO2020078083A1 - 内燃机及其设计制造方法 - Google Patents

内燃机及其设计制造方法 Download PDF

Info

Publication number
WO2020078083A1
WO2020078083A1 PCT/CN2019/100321 CN2019100321W WO2020078083A1 WO 2020078083 A1 WO2020078083 A1 WO 2020078083A1 CN 2019100321 W CN2019100321 W CN 2019100321W WO 2020078083 A1 WO2020078083 A1 WO 2020078083A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic
pressure
combustion chamber
combustion
energy
Prior art date
Application number
PCT/CN2019/100321
Other languages
English (en)
French (fr)
Inventor
刘金宏
Original Assignee
广州宏大动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州宏大动力科技有限公司 filed Critical 广州宏大动力科技有限公司
Publication of WO2020078083A1 publication Critical patent/WO2020078083A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/26Pistons  having combustion chamber in piston head
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the invention relates to an internal combustion engine, and in particular to a reciprocating piston internal combustion engine.
  • the internal combustion engine is a heat engine in which the fuel is burned inside the machine to convert energy into power for external work. According to the structural classification, it can be divided into jet engines and piston engines. Jet engines can be divided into rocket engines with oxidants and air without oxidants. Jet engines, air jet engines include ramjet engines, pulse engines, turbine engines; turbine engines include turbojet engines (or turbojet engines), turbofan engines (or turbofan engines), variable cycle jet engines, Gas turbines, etc .; piston engines can be divided into reciprocating piston engines, rotating piston engines (rotor engines) and free piston engines. The most common application of the internal combustion engine is the reciprocating piston engine. The solution of the present invention mainly discusses and explains the reciprocating piston engine.
  • the internal combustion engine described below generally refers to the reciprocating piston engine, and it is also explained when other engines are involved.
  • Reciprocating piston engines can be divided into gasoline engines, diesel engines, natural gas engines, LPG engines, ethanol engines, and dual-fuel engines according to the ignition method.
  • gasoline engines and diesel engines are commonly used; according to the ignition method, they can be divided into ignition and compression ignition
  • gas fuel and gasoline have poor anti-knock resistance and are prone to deflagration. Therefore, ignition ignition methods are generally used, such as gasoline engines; diesel anti-knock resistance is good, so diesel engines use compression ignition.
  • the emissions of internal combustion engines will cause environmental pollution.
  • the harmful substances emitted are: sulfur oxides (mainly sulfur dioxide SO 2 ), carbon monoxide (CO), nitrogen oxides (NO x ), hydrocarbons (HC), particulate matter (PM ), Odors (mainly products of incomplete combustion, such as various aldehydes), carbon dioxide (CO 2 ), etc., as well as noise pollution, early gasoline also contains lead compounds for anti-explosion, now all All lead-free gasoline is used, and there are very few lead-containing substances; most countries have implemented environmental protection and set their own emission standards, and the requirements of emission standards are becoming more and more strict.
  • Theoretical heating cycle is a simplified model for studying the thermal efficiency of internal combustion engines and has a theoretical guiding role.
  • the theoretical cycle assumes that the working fluid is an ideal gas, and the closed circulation is performed in a closed system.
  • the working fluid is subjected to adiabatic compression and adiabatic expansion.
  • Combustion is the heating of a constant volume or constant pressure working fluid.
  • the cyclic process is a reversible process.
  • the theoretical heating cycle internal combustion engine can derive the formula for calculating the engine efficiency:
  • the adiabatic index k of monoatomic gas is 1.66, and the adiabatic index of diatomic gas k is 1.41, the adiabatic index k of the polyatomic gas is 1.33, and the ideal adiabatic index of the dry air is about 1.4;
  • is the initial volume expansion ratio (pre-expansion ratio or pre-expansion ratio) of the isobaric heating process;
  • is the isometric heating Process pressure increase ratio.
  • gasoline engines are generally regarded as isovolumic heating cycles
  • gas turbines are regarded as isobaric heating cycles
  • diesel engines are regarded as hybrid heating cycles.
  • the methods for improving the thermal efficiency of internal combustion engines include increasing the compression ratio (and expansion ratio), supercharging technology, Miller cycle technology, direct injection technology in the fuel tank, exhaust gas recirculation technology, optimizing the combustion process, optimizing the intake and exhaust system, and reducing friction Loss, reduce heat loss, etc., but the most important means is to increase the compression ratio.
  • the compression ratio of gasoline engines is generally between 9--12, and the highest Mazda engine compression ratio even reaches 14; the compression ratio of diesel engines is generally between 12--22, and the maximum can even reach 25.
  • the reduction can indeed increase the cylinder pressure and reduce the production of nitrogen oxides, but due to the lack of oxygen combustion, it is easy to generate carbon monoxide and add new harmful emissions. Therefore, with the increasingly strict emission regulations, the existing technology Under conditions, a proper reduction of the compression ratio is more conducive to reducing the production of nitrogen oxides and carbon monoxide, and a proper reduction of efficiency can effectively reduce harmful emissions. Therefore, many diesel engines are now designed to have a compression ratio between 14--16. In the past, it has been reduced to reduce the thermal efficiency of internal combustion engines to achieve the purpose of reducing harmful emissions.
  • the present invention provides a new solution for internal combustion engines, with new developments in the theoretical principles of internal combustion engines, greatly improving the thermal efficiency of internal combustion engines from theory and design and manufacturing. At the same time, it can effectively reduce the emission of harmful substances, and it can also greatly improve the power performance and power increase of the internal combustion engine, effectively reduce the body mass of the unit displacement, and improve the power-mass ratio (power-to-weight ratio).
  • the working process of a four-stroke reciprocating piston engine is that the piston movement forms four sequential steps of intake, compression, combustion and expansion work, and exhaust to form a working process, and the working process repeats the cycle continuously. Only expansion in these processes Work is the process of doing work externally, and all other processes are needed to better achieve work.
  • the process of engine expansion work is that the working gas pressure pushes the piston to move linearly to do work.
  • the piston is converted into rotary motion of the crankshaft through the connecting rod, and the power is output from the crankshaft to do work.
  • the internal combustion engine As a machine that converts thermal energy (or internal energy) into mechanical energy. The inventor believes that this statement is incorrect. From the perspective of energy, first of all, the so-called mechanical energy refers to the sum of kinetic energy and potential energy. Potential energy is divided into gravitational potential energy and elastic potential energy. Therefore, kinetic energy, gravitational potential energy, and elastic potential energy can be collectively referred to as mechanical energy.
  • the combustion of fuel in the internal combustion engine converts the chemical energy into the internal energy of the combustion medium. A part of the internal energy of the working medium is consumed by the heat dissipation of the cylinder temperature. Some of the internal working medium can promote the piston to do work, and part of the function energy is consumed as friction.
  • the energy conversion method is different.
  • the internal combustion engine drives the generator to generate electricity, and the load is the generator, and its running speed is fixed, so its kinetic energy remains unchanged.
  • the mechanical energy is also the same, but the internal combustion engine drives the generator to rotate through the power transmission.
  • the internal combustion engine uses the mechanical transmission power to make the generator overcome the electromagnetic resistance to do work.
  • the internal combustion engine working medium can be indirectly converted into electrical energy through the power transmission; for the energy conversion of the car,
  • the car engine transfers power to the wheels mechanically to overcome the frictional resistance of the wheels to do work. Part of the energy for the work is converted into frictional heat energy, part of the work is to overcome the air resistance, and part of the work energy is converted into the kinetic energy of the car when accelerating.
  • the internal working energy of the engine working fluid is converted into multiple energy through mechanical power transmission; therefore, the load is not necessarily mechanical energy, but can be converted into various forms of energy. For convenience and clarity, the load consumption is defined here.
  • the function quantity is load work, or called Load energy.
  • the friction resistance, kinetic energy resistance and load resistance of the internal combustion engine are all the consumption resistance of the internal combustion engine except temperature heat dissipation and exhaust internal energy. They all belong to the mechanical resistance of the internal combustion engine. Here, they are defined as the load of the internal combustion engine, and the work of the load consumption is defined as the load work. Or load energy, which is the energy consumed by resistance. In this way, the energy process of the internal combustion engine can be simplified simply and simply as:
  • Load energy (or load work) frictional energy consumption + engine kinetic energy increment + tail aerodynamic energy + load energy (load work)
  • the solution of the present invention adopts a new way different from the energy conversion of the existing (referring to the current or traditional, prior to the solution of the present invention) internal combustion engine and introduces a new energy conversion process.
  • the internal combustion engine is different.
  • this description compares the unique and related resistance, energy and process of the present invention with the resistance of the existing internal combustion engine. To distinguish between loads, only the resistance mode of the existing internal combustion engine is defined as the load, and the energy consumed by the existing internal combustion engine resistance is defined as the load energy (or load work), and the resistance and energy added by the new scheme are not attributed to the load and load energy.
  • the internal combustion engine contains an elastic energy storage structure, which is an elastic structure, whose function is to store energy and quickly convert elastic potential energy; when the working fluid expands to do work, the force or torque is greater than When the elastic energy or elastic moment of the elastic energy storage structure is elastically deformed, the internal energy of the working medium is transformed into the elastic potential energy of the elastic energy storage structure.
  • an elastic energy storage structure which is an elastic structure, whose function is to store energy and quickly convert elastic potential energy
  • the stored elastic potential energy Converted into load energy that is, in the process of internal combustion engine combustion working fluid expansion work, in addition to the internal energy of the working fluid is converted into load energy, the internal energy of the working fluid can also be converted into elastic potential energy, and then the saved elastic potential energy is then converted into load energy , That is, the process of adding the internal energy of the working medium into elastic potential energy and then into load energy.
  • the elastic energy storage structure is composed of elastic materials, which can undergo elastic deformation and store energy as elastic potential energy.
  • the elastic energy storage structure can be designed into a functional shape and structure according to actual needs; the function of the elastic energy storage structure is mainly to quickly convert energy , Store energy, ensure the smooth operation of the engine, it can not consume energy itself.
  • the energy conversion process of the internal combustion engine in the solution of the present invention can be expressed as follows:
  • the elastic energy storage structure of the internal combustion engine is different from the load of the internal combustion engine.
  • the elastic energy storage structure of the internal combustion engine is an integral part of the internal combustion engine, which participates in the external energy output process of the internal combustion engine; the load is independent of the burden resistance of the internal combustion engine, and it does not participate in the operation process of the internal combustion engine. Even if the load is an elastic device, it is not the so-called elastic energy storage structure of the internal combustion engine.
  • the internal combustion engine drives a compressor to work to prepare compressed air.
  • the compressor compresses the air, it converts the mechanical work into internal energy of the air ( Including the elastic potential energy of air), but even if the two machines are made into a whole machine, the compressor is not part of the elastic energy storage structure of the internal combustion engine, because the compressor is not part of the internal combustion engine, the obvious difference is that the compressor does not Participating in the operation of the internal combustion engine, it does not have any other effect on the internal combustion engine except the load resistance, and the elastic energy storage structure is different. It itself is part of the internal combustion engine and participates in the operation process of the internal combustion engine, and part of its elastic potential energy acts on the internal combustion engine. The friction or kinetic energy is consumed.
  • the combustion process of the internal combustion engine is very rapid.
  • the internal energy of the existing internal combustion engine is converted into load energy for a long time.
  • the solution of the present invention increases the process of converting the internal energy of the working medium into elastic potential energy and then into load energy.
  • the conversion process of elastic potential energy can be very rapid, so that the internal energy of the working fluid can be quickly converted into elastic potential energy and stored, and then slowly converted into load energy (or load work), which greatly accelerates the internal energy of the working fluid.
  • Energy conversion process The energy of the internal energy of the working fluid can be rapidly converted, which can quickly reduce the energy of the internal energy of the working fluid, which can quickly reduce the temperature and pressure of the gas of the working fluid, which can reduce the loss of heat energy consumption caused by the temperature heat transfer.
  • nitric oxide (NO) is an exponential function that changes with temperature.
  • the temperature is lower than 1800K, the production rate of nitric oxide (NO) is extremely low, while the production of nitrogen dioxide (NO 2) ) Is also produced by nitric oxide (NO), the ratio of nitrogen dioxide (NO 2 ) content to nitric oxide (NO) content is generally not more than 2%, so as long as the working gas temperature is kept below 1800K, it can greatly Reduce the production of nitrogen oxides (NO x ), especially nitric oxide (NO), to achieve a significant reduction in the content of exhaust gas nitrogen oxides (NO x ).
  • an internal combustion engine elastic energy storage structure is constructed.
  • One internal combustion engine construction, design and manufacturing method is to construct an elastic combustion chamber in specific design and manufacturing Or a semi-rigid and semi-elastic combustion chamber.
  • the elastic combustion chamber serves as an elastic energy storage structure of the internal combustion engine.
  • the energy conversion process of the internal combustion engine adds the process of converting the internal energy of the working medium into elastic potential energy of the combustion chamber and then into load energy.
  • the combustion chamber exhibits rigid compression or limited elastic compression; in the process of internal combustion engine fuel combustion and working medium work, the combustion chamber exhibits semi-rigid semi-elasticity, when the pressure of the combustion chamber is equal to or lower than the preset value When the pressure of the combustion chamber increases to be greater than the preset value, the combustion chamber behaves elastically and undergoes elastic deformation.
  • the working medium can be quickly converted into elastic potential energy.
  • the pressure of the combustion chamber decreases, save The elastic potential energy of the combustion chamber is converted into load energy. In fact, all objects will be deformed or elastically deformed under pressure.
  • the so-called rigidity means that the shape or shape of the solid or solid component does not change, and it has nothing to do with extremely weak elastic deformation;
  • the so-called finite elastic compression means that the compression of the combustion chamber can produce Small elastic deformation, but does not affect the effect of gas compression in the combustion chamber;
  • elastic deformation is the change of the relative position between the points of the object after the solid is usually defined by external force. When the external force is removed, the solid returns to its original state;
  • semi-rigid semi-rigid Elasticity means that it behaves rigidly under certain conditions and elasticity under another specific conditions.
  • the elastic combustion chamber can effectively reduce or even avoid the rough combustion of the combustion chamber, effectively reduce or even avoid the occurrence of deflagration, and effectively reduce the vibration and damage of the body. At the same time, it can greatly reduce combustion noise and mechanical noise.
  • a design and manufacturing method of the elastic combustion chamber as an elastic energy storage structure is that the combustion chamber is opened with a hole directly connected to an elastic cylinder.
  • the elastic cylinder and the combustion chamber form a semi-rigid semi-elastic space to form an elastic combustion chamber.
  • the elastic combustion chamber is Elastic energy storage structure.
  • the characteristic of the elastic cylinder is that the elastic cylinder can be a gas pressure cylinder, an elastic pressure cylinder composed of a spring, or another elastic cylinder, and the cylinder is constrained to a certain pre-pressure pressure cylinder, so it can show semi-rigid and semi-elastic
  • the elastic cylinder is not elastically deformed, the volume of the combustion chamber is not different from that of the elastic cylinder, so the elastic cylinder does not affect the compression ratio of the internal combustion engine; when the pressure of the elastic cylinder piston is greater than the elastic force, the elastic cylinder The piston will move and the gas in the combustion chamber will enter the elastic cylinder. When the pressure decreases, the elastic cylinder piston will reset.
  • the elastic cylinder When the pressure of the combustion chamber is less than or equal to the preset value, the elastic cylinder appears rigid, and the combustion chamber also exhibits rigidity; when the pressure of the combustion chamber is higher than the preset value, the elastic cylinder is compressed, and the gas enters the elastic cylinder space, The entire combustion chamber undergoes elastic deformation, and the working fluid expands to do work, and the internal energy of the working fluid is converted into the elastic potential energy of the elastic cylinder; when the pressure of the combustion chamber decreases, the elastic cylinder recovers, and the elastic potential energy is converted into load energy.
  • the elastic combustion chamber composed of elastic cylinders has the above-mentioned advantages of the elastic energy storage structure, especially the protection of the body is obvious. For example, it is applied to the combustion chamber of the jet engine, so that the jet engine has an elastic combustion chamber, elastic combustion The chamber can effectively reduce and avoid the occurrence of knocking, can avoid damage to the body and greatly improve the compression ratio to greatly improve the efficiency of the engine.
  • a design and manufacturing method of the elastic combustion chamber as an elastic energy storage structure is that the reciprocating piston engine can move between the cylinder and the cylinder head to change the size of the combustion chamber, and between the engine cylinder and the cylinder head It is a semi-rigid and semi-elastic connection to form an elastic combustion chamber.
  • This elastic combustion chamber is an elastic energy storage structure; when the pressure of the combustion chamber is equal to or lower than a preset value, the cylinder and the cylinder head are rigid and inactive , The combustion chamber space remains unchanged; when the pressure of the combustion chamber is greater than the preset value, the cylinder and cylinder head move elastically, the combustion chamber space increases, and the internal energy of the working medium is converted into elastic potential energy between the cylinder and cylinder head When the pressure of the combustion chamber is reduced, the position between the cylinder and the cylinder head is elastically restored, and the elastic potential energy is converted into load energy.
  • the mass (weight) of the cylinder head and the cylinder is relatively large, and it is difficult to perform high-speed movements, so this structure can only be suitable for engines with lower speeds.
  • an elastic variable-length piston For a reciprocating piston engine, another design and manufacturing method of an elastic combustion chamber as an elastic energy storage structure is to construct an elastic variable-length piston.
  • the piston uses a semi-rigid semi-elastic variable-length piston, and the length of the piston is elastically variable.
  • This piston is an elastic variable-length piston and is an elastic energy storage structure; the engine cylinder, cylinder head, and piston together form a semi-rigid and semi-elastic combustion chamber.
  • This elastic combustion chamber is an elastic energy storage structure; when the pressure of the combustion chamber is equal to or When it is lower than the preset value, the piston behaves rigidly, and the combustion chamber also behaves rigidly; when the pressure of the combustion chamber is higher than the preset value, the piston behaves elastically, the combustion chamber also behaves elastically, and the piston is elastically compressed. As the length of the piston decreases, the internal energy of the working medium is converted into elastic potential energy in the piston. When the pressure of the combustion chamber decreases, the length of the piston recovers elastically, and the elastic potential energy is converted into load energy.
  • the multi-stage piston length can be elastically variable to form a multi-stage elastic variable-length piston to achieve the characteristics of semi-elastic and semi-rigid under different multi-stage pressures and corresponding
  • Different multi-stage lengths are elastically variable, can realize more functions, and can increase the compression ratio. For example, a larger elasticity elasticity will only decrease in length when the gas pressure in the combustion chamber is high. On this basis, another level of smaller elasticity elasticity can be set. At higher loads and pressures, The elastic length of this stage is completely compressed, and the compression performance is exactly the same as that of single-stage elasticity. However, when the load and pressure are relatively low, the cylinder sucks less gas.
  • the realization of a multi-stage elastic variable-length piston can increase the compression ratio, increase the initial compression temperature and pressure of a small amount of gas, realize a small amount of gas easier to burn, start more easily, exhaust more thoroughly, realize the Miller cycle, and achieve more mechanical efficiency high.
  • FIG. 1 is a structural diagram of an inner core type elastic variable length piston constituting an elastic combustion chamber. .Cylinder head, 2. Combustion chamber, 3. Cylinder, 4. Piston jacket, 5. Elastic layer (spring group), 6. Piston core, 7. Piston pin, 8. Piston connecting rod.
  • the inner core type elastic variable length piston is divided into a casing, an inner core and an elastic layer, etc .; the piston crown of the outer casing forms a combustion chamber together with the cylinder and the cylinder head.
  • the casing contacts the cylinder and moves linearly along the cylinder;
  • the inner core includes the piston pin seat and Connecting rod connection, the connection between the inner core and the connecting rod is similar to that of a conventional piston.
  • the inner core does not contact the cylinder wall.
  • the inner core can slide in the outer casing, so that the distance between the piston pin seat and the top of the piston can be changed to change the length of the piston;
  • Between the inner bottom and the top of the inner core is an elastic layer, which is a semi-compressed spring group or a partition layer of elastic material. The elasticity is constrained between the two ends of the elastic layer, so that the piston has semi-rigid and semi-elasticity in the length direction Characteristics, which constitutes an inner core type elastic variable length piston.
  • the piston When the pressure on the top of the piston is equal to or less than the elastic force, the piston appears rigid; when the pressure on the top of the piston is greater than the elastic force, the elastic layer in the piston is compressed, the relative position of the top of the piston casing and the inner core moves and the distance decreases, and the piston
  • the length of the piston When the length of the piston is reduced, part of the internal energy of the working fluid of the combustion chamber is converted into the elastic potential energy of the elastic layer of the piston; when the force on the piston top and the connecting rod is reduced, the length of the piston is elastically reset, the elastic force of the piston pushes the connecting rod, and the elastic potential energy of the piston is converted For load energy.
  • the friction between the inner core and the outer sleeve is immersion lubrication, which can effectively reduce the friction force.
  • the fuel in the combustion chamber is burning, when the gas pressure of the working medium is greater than the elastic force of the piston, the length of the piston is rapidly elastically compressed. At this time, the side pressure is almost zero, and the piston jacket and the inner core are immersed in lubricating friction, so the friction force is extremely small at this time. , That is, the piston moves a certain distance in the cylinder when the friction force is extremely small, which can effectively reduce the friction loss greatly.
  • the elastic layer is constructed as a series of multiple elastic layers with different constrained elastic forces and corresponding different compression lengths, to construct the inner core type multi-stage elastic variable length piston, which has the foregoing The advantages and characteristics of the multi-stage elastic variable length piston.
  • FIG. 2 is a structural diagram of a separate elastic variable length piston constituting an elastic combustion chamber, marked in the figure: 1. Cylinder head, 2. Combustion chamber, 3. Cylinder, 5. Elastic layer (spring group), 7. Piston pin, 8. Piston connecting rod, 9. Piston top cover, 10. Guide column, 11. Pin seat, 12. Piston skirt.
  • the split elastic variable length piston is divided into a top cover, a pin seat portion and an elastic layer; the top cover is the top of the piston sealing combustion chamber; the pin seat portion includes a pin seat, a piston skirt and a guide column, and the pin seat is connected with the connecting rod
  • the piston skirt refers to the structure where the piston contacts the cylinder and bears the side stress.
  • the guide column guides and restricts the linear movement of the piston top cover and the elastic layer (for example, the relative angular position of the top of the piston and the cylinder head cannot be changed, which requires guidance
  • the column is fixed in direction); the elastic layer is between the top cover and the pin seat, and is composed of a spring group or elastic material that is constrained to be semi-compressed.
  • the elasticity is constrained between the ends of the elastic layer, so that the piston has a length direction Semi-rigid and semi-elastic properties.
  • the so-called separation means that the piston pin seat (especially including the piston skirt in contact with the cylinder) is separated from the piston top cover, which makes it difficult for the heat of the piston top cover to be transferred to the piston skirt, so that the general piston will not occur due to heat
  • the friction force caused by excessive side stress caused by the expansion of the piston skirt is greatly increased, and even the phenomenon of pulling or patting the cylinder, and due to the separation of the piston skirt, the piston skirt and the cylinder wall can be completely immersed in lubrication Sliding friction, these two can greatly reduce the frictional resistance of the piston.
  • the piston When the pressure on the piston cap is equal to or less than the elastic force, the piston appears rigid; when the pressure on the piston cap is greater than the elastic force, the elastic layer in the piston is compressed, and the relative position of the piston cap and the pin seat portion moves and distance Shrinkage, the length of the piston is reduced, part of the internal energy of the combustion chamber is converted into the elastic potential energy of the elastic layer of the piston; when the force of the piston top cover and the connecting rod is reduced, the length of the piston is elastically reset, the elastic force of the piston pushes the connecting rod, the piston The elastic potential energy is converted into load energy.
  • the split elastic variable length piston can also be constructed as a multi-stage elastic variable length piston, and the elastic layer is constructed as a series of multiple elastic layers with different constrained elastic forces and correspondingly different compression lengths, to construct a split multi-stage elastic variable length piston, It also has the advantages and benefits of the multi-stage elastic variable length piston described above.
  • an elastic variable length piston connecting rod is the part that connects the piston and the crankshaft in the engine.
  • the piston makes a linear reciprocating motion.
  • the piston connecting rod transmits the power of the piston to the crankshaft, which transforms the reciprocating motion of the piston into the rotational motion of the crankshaft.
  • the solution of the present invention is to construct an elastic variable length piston connecting rod.
  • the length of the engine piston connecting rod is elastically variable. It is a semi-rigid and semi-elastic piston connecting rod.
  • This piston connecting rod is an elastic energy storage structure, which makes the cylinder and cylinder of the engine
  • the cover, the piston and the piston connecting rod together form a semi-rigid and semi-elastic combustion chamber.
  • This elastic combustion chamber is an elastic energy storage structure; when the pressure of the combustion chamber is equal to or lower than the preset value, the piston connecting rod behaves as a rigid, combustion chamber It also exhibits rigidity; when the pressure of the combustion chamber is higher than the preset value, the piston connecting rod behaves elastically, and the combustion chamber also behaves elastically.
  • the piston connecting rod is elastically compressed, and the working energy can be converted into elasticity in the piston connecting rod Potential energy, when the pressure of the combustion chamber is reduced, the length of the piston connecting rod is elastically restored, and the elastic potential energy is converted into load energy.
  • the elastic variable-length piston connecting rod has similar advantages as the elastic variable-length piston, and because the length is reduced when the connecting rod is compressed, the crank arm increases, and the work torque is greater under the same pressure, which can be enhanced The dynamic performance and mechanical efficiency of the engine.
  • the elastic variable-length piston connecting rod also has a disadvantage, that is, its structure is more complicated than the general connecting rod, and the mass is also larger. Since the piston connecting rod generally performs irregular rocking motion, its increased mass will cause vibration of the engine. influences.
  • FIG. 3 is a structural diagram of a retractable elastic variable-length piston connecting rod to constitute an elastic combustion chamber , Mark in the figure: 1. Cylinder head, 2. Combustion chamber, 3. Cylinder, 5. Elastic layer (spring group), 7. Piston pin, 13. Piston, 14. Guide restraint rod, 15. Small connecting rod head , 16. Connecting rod big head, 17. Connecting rod cover, 18. Elastic shaft.
  • the retractable elastic variable length piston connecting rod is mainly divided into small connecting rod end, large connecting rod end, elastic shaft, connecting rod cover, connecting rod bolt and other parts.
  • the piston connecting rod The shaft is changed from a rigid shaft to an elastic shaft.
  • the elastic shaft is composed of a guide restraint rod and an elastic layer (spring group or other elastic material).
  • the guide restraint rod ensures that the connecting rod of the piston connecting rod is large and connected The small end of the rod moves in a linear fixed direction.
  • the elastic layer is constrained to be in a semi-compressed state, so that the entire piston connecting rod becomes a semi-rigid semi-elastic piston connecting rod.
  • the elastic layer of the elastic shaft is constructed as a series of multiple elastic layers (multi-stage elastic spring groups) with different constrained elastic forces and correspondingly different compression lengths to construct a
  • the retractable multi-stage elastic variable-length piston connecting rod has the advantages and characteristics of the multi-stage elastic variable-length piston connecting rod described above.
  • FIG. 4 is a structural diagram of an arch-shaped elastic variable-length piston connecting rod to constitute an elastic combustion chamber. Markings: 1. Cylinder head, 2. Combustion chamber, 3. Cylinder, 7. Piston pin, 13. Piston, 14. Guide restraint rod, 15. Small connecting rod end, 16. Large connecting rod head, 17. Connecting rod cover , 19. Elastic bow shaft, 20. Elastic bow body (spring leaf).
  • the arch-shaped elastic variable-length piston connecting rod is mainly composed of small-end connecting rod, large-end connecting rod, arch-shaped elastic shaft, connecting rod cover, connecting rod bolt and other parts.
  • the elastic shaft is changed into an arch-shaped elastic shaft.
  • the arch of the elastic shaft is an elastic spring or other elastic material, which is an elastic body.
  • the curved arms of the elastic body are respectively connected to the connecting rod of the piston connecting rod.
  • the big head and the small end of the connecting rod, the bowstring is an active guide restraint rod that constrains the elastic bow body, so that the elastic shaft constitutes a semi-rigid semi-elastic structure, and the entire piston connecting rod also becomes a semi-rigid semi-elastic piston connecting rod of an elastic energy storage structure.
  • the piston connecting rod behaves rigidly, and the combustion chamber also shows rigidity; when the pressure on both ends of the piston connecting rod is greater than the elastic force, the piston
  • the elastic bow body of the connecting rod is compressed and elastically bent, the relative position of the large end of the connecting rod and the small end of the connecting rod of the piston connecting rod moves and the distance is reduced, the length of the piston connecting rod is reduced, and part of the working fluid in the combustion chamber can be converted into a piston
  • the elastic potential energy of the rod when the force on both ends of the piston connecting rod is reduced, the length of the piston connecting rod is elastically reset, the elastic force of the piston connecting rod pushes the crankshaft, and the elastic potential energy of the piston connecting rod is converted into load energy.
  • the arc-shaped elastic variable-length piston connecting rod can also be constructed as a multi-stage elastic variable-length piston connecting rod.
  • the elastic rod is constructed as a series of multiple arch-shaped elastic rods with different constrained elastic forces and correspondingly different compression lengths.
  • the multi-stage elastically variable piston connecting rod also has the advantages and benefits of the multi-stage elastically variable piston connecting rod described above.
  • the elastic combustion chamber has a very important role and significance for the reciprocating piston internal combustion engine.
  • the elastic combustion chamber makes the reciprocating piston engine have all the advantages and functions of the elastic energy storage structure discussed above, the most important of which is that it can greatly improve the engine's compression ratio and thermal efficiency, and can also achieve low-cost dynamic variable
  • the compression ratio greatly improves the engine's power performance and power increase, and is beneficial to reduce or even eliminate the occurrence of deflagration and knocking phenomena during combustion, and realize an ultra-high starting pressure fuel integrated reciprocating piston internal combustion engine that can use a variety of different fuels.
  • the compression ratio marked for reciprocating piston internal combustion engines is actually the expansion ratio of the engine.
  • the expansion ratio has a reference to the actual compression ratio, it cannot be accurately reflected as the actual The compression ratio, such as the gasoline engine using the Miller cycle technology, no matter how large the compression ratio (actually the expansion ratio) is made, it is difficult to effectively improve the thermal efficiency of the gasoline engine.
  • the engine usually uses a fixed compression ratio. At different powers and different speeds, the engine's intake air volume and the actual compression ratio are not the same, so it is difficult for the engine to achieve its optimal thermal efficiency under normal circumstances. mode.
  • the pre-ignition pressure (or initial combustion pressure) and expansion ratio of the engine should be used as a more accurate and simple factor to determine the thermal efficiency of the engine.
  • the excessive expansion ratio mainly affects the mechanical efficiency and power, and the other restrictions have little effect, so the main deciding factor is the pressure before ignition (initial ignition pressure).
  • the design of the dynamic compression ratio engine is very complicated, which increases the manufacturing and maintenance costs, making it difficult to achieve, so at present, the engine is usually a fixed compression ratio, and the engine is limitedly adjusted by the intake air amount, and it is generally difficult to achieve the ideal operating state of the engine It is also difficult to achieve high thermal efficiency.
  • the solution of the present invention constructs a combustion chamber with elasticity or a semi-rigid and semi-elastic combustion chamber.
  • This elastic combustion chamber is the elastic energy storage structure of the internal combustion engine; by setting up enough elastic space, and designing the combustion chamber The maximum elastic pressure of the combustion can be controlled under the maximum elastic pressure of the combustion chamber.
  • the pressure of the elastic deformation of the combustion chamber can be set; At the end of the period, the pressure of the combustion chamber before the fuel gas mixture ignited, that is, the initial combustion pressure, greatly exceeded the existing internal combustion engine's initial combustion pressure, reaching a pressure of more than 10MPa, and making the initial combustion pressure approach or reach, or even reach, in the most efficient way.
  • the so-called "setting this initial combustion pressure tends to be close to the maximum combustion pressure" and "the initial combustion pressure should be as close as possible to the maximum combustion pressure” means that in the engine design process, the pressure that should cause the combustion chamber to elastically deform should be as close as possible to the maximum Combustion pressure and maximum elastic pressure, that is to say, the elasticity coefficient (or stubbornness coefficient and stiffness coefficient) of the combustion chamber should be as small as possible, so that the pressure between the elastic deformation of the combustion chamber, the maximum combustion pressure and the maximum elastic pressure should be as close as possible Reduce to achieve the mode closest to the isobaric heating cycle; of course, due to the nature of elasticity, these three pressures cannot be the same, so it is impossible to achieve a completely ideal isobaric heating cycle mode.
  • the elastic combustion chamber of the present invention can reduce and control the maximum temperature and maximum pressure of the gas through elastic expansion, the gas compression pressure (starting pressure) of the combustion chamber before ignition can be greatly improved.
  • Theoretically, before ignition The gas pressure pressure can reach or exceed the initial pressure of the deformation of the elastic combustion chamber, so that the compression ratio can be greatly improved, or even increased several times! This can greatly improve the compression ratio and thermal efficiency.
  • the starting pressure of the gasoline engine is generally small, and the maximum is usually about 2MPa.
  • the gasoline engine generally uses an aluminum alloy body, and its maximum pressure is 3-8.5MPa, and the supercharged gasoline engine can reach 6-11MPa.
  • the compression ratio is generally between 9-12 (the current maximum is 14); the starting pressure of the diesel engine is relatively large, generally the non-supercharged diesel engine is between 3--5MPa, and the supercharged diesel engine is between 5--10MPa
  • the diesel engine generally uses a cast iron alloy body. Its maximum pressure is generally 7-14 MPa, and the maximum can even reach 20 MPa.
  • the compression ratio is generally between 12-22 (the current maximum is around 25).
  • the solution of the present invention is that the pressure of the gas after compression can be close to the highest pressure.
  • the compression ratio of the solution of the present invention can theoretically reach more than 19-23 If the maximum pressure of the diesel engine's cast iron body is 15-20MPa and the initial ignition pressure is 11-16MPa, the maximum compression ratio of the solution of the present invention can reach 29-38 or more. If the maximum pressure is 25MPa, the initial ignition pressure is 20MPa Calculated, the highest compression ratio can reach 44. Assuming that the compression process is an ideal adiabatic process, the specific theoretical calculation is as follows:
  • k is the adiabatic index of adiabatic compression and adiabatic expansion, that is, the specific heat ratio.
  • the adiabatic index k of monoatomic gas is 1.66
  • the adiabatic index k of diatomic gas is 1.41
  • the adiabatic index k of polyatomic gas is 1.33
  • the ideal adiabatic index of dry air is about 1.4.
  • ⁇ P1 / P0 ⁇ * ⁇ ⁇ (k-1)
  • the current gasoline engine's combustion method is similar to the isometric heating cycle model; the current diesel engine's combustion method is similar to the mixed heating cycle model; whether it is a gasoline engine or a diesel engine, the pressure increase ratio is large, when the initial combustion pressure is too large At this time, its combustion pressure and temperature can easily exceed the maximum pressure and temperature that the engine can withstand, causing the engine to be damaged or generating excessive amounts of harmful pollutants. Since the solution of the present invention uses an elastic combustion chamber, a high compression ratio can be used, and the engine starting pressure can be above 10 MPa, and as close to the maximum combustion pressure as possible.
  • the constant pressure specific heat capacity is generally much larger than the constant volume specific heat capacity, so under the same heating conditions, the volume increase rate of the isobaric mode is lower than the pressure increase rate of the isobaric mode , And the maximum temperature in the isobaric mode is much lower, which is very beneficial to reduce the generation of harmful substances in the exhaust gas, because the temperature is the main factor for the formation of nitrogen oxides (NO x ).
  • NO x nitrogen oxides
  • the generation rate of NO x is extremely low.
  • the solution of the present invention can be regarded as a similar isobaric heating cycle mode, which can effectively reduce the maximum combustion temperature, which can effectively reduce and control the production of nitrogen oxides (NO x ), making exhaust emissions more Environmental protection.
  • the elastic combustion chamber structure of the solution of the present invention can control and ensure that the maximum pressure of combustion is below the set pressure, and can ensure that the combustion process of the engine is burned under a state similar to isobaric heating to ensure the safety of the engine structure and ensure the engine
  • the high compression ratio makes the intake air highly compressed, and it is easy to achieve the ultra-high initial ignition pressure of the solution of the present invention.
  • the solution of the present invention can adjust the intake air volume to achieve dynamic variable adjustment of the compression ratio (expansion ratio) to meet the needs of different loads: when the load is small, the air intake air volume is also small, and the initial combustion pressure is generally related to the combustion
  • the pressure at which the chamber begins to elastically deform is basically the same, and the compression ratio (expansion ratio) is large; when the load is large, the air intake volume is also large, and when the pressure of the compressed air is greater than the pressure at which the combustion chamber begins to elastically deform, The elastic deformation increases, and the initial combustion pressure will be stronger than the pressure at which the combustion chamber begins to elastically deform, and the compression ratio (expansion ratio) will become smaller. There can be more air intake to support more fuel combustion to achieve Greater load.
  • the dynamic variable adjustment of the compression ratio (expansion ratio) is achieved by adjusting the intake air amount. Compared with the existing mechanical adjustment of the compression ratio, it is a very low-cost method of dynamically variable compression ratio.
  • the current reciprocating piston internal combustion engine basically adopts a fixed compression ratio.
  • the limiting factors for its lifting power are the maximum pressure, maximum temperature, compression ratio and engine speed of the body. The most important factor is the compression ratio.
  • the fixed compression ratio determines the maximum air intake, so the maximum lift power of the engine is basically determined. Since the solution of the present invention adopts ultra-high initial ignition pressure, the initial ignition pressure is greatly improved compared with the diesel engine, and it is several times higher than that of the gasoline engine. At the same air intake amount, the actual compression ratio is Compared with the current engine, there is a multiple or even several times increase.
  • the air intake of the solution of the present invention is much more than that of the traditional engine, and may even be several times (compared with the gasoline engine).
  • the scheme of the present invention can also dynamically adjust the compression ratio through the intake air amount as needed, so that the maximum intake air amount can be increased by more than 3 times or more than that of the existing engine, and the air intake amount determines
  • the amount of fuel that the engine can burn per cycle is basically determined by the power of the engine when the maximum speed is unchanged. From the above analysis, it can be seen that the air intake amount of the solution of the present invention can be increased to more than several times of the current engine, and its lifting power can also be increased to more than several times.
  • the initial ignition pressure is maintained at a level equivalent to the ultra-high initial ignition pressure of the solution of the present invention.
  • One way to maintain the initial ignition pressure to the ultra-high initial ignition pressure level of the solution of the present invention is to use a high-compression ratio Miller cycle to adjust the air intake and initial ignition pressure; when the load is small or the engine speed is small, The amount of air intake required is also small.
  • the actual compression ratio of the engine is much smaller than the expansion ratio under the Miller cycle, but it ensures that the engine's initial combustion pressure reaches the ultra-high initial combustion pressure of the solution of the present invention; when the load is large Or when the engine speed is large, the required air intake is also large.
  • the actual compression ratio of the engine must also be dynamically increased accordingly to ensure that the engine maintains the same level of ultra-high starting pressure. Maintain the same level of combustion thermal efficiency; this allows the internal combustion engine to achieve Miller cycle adjustment under different loads or different speeds to ensure that the same level of ultra-high starting pressure is maintained to maintain the same level of combustion thermal efficiency.
  • Another way to maintain the initial ignition pressure to the ultra-high initial ignition pressure of the present invention is to use high-compression intake air boost to adjust the air intake and initial ignition pressure when the load is small or the engine speed is small ,
  • the required amount of air intake is also small, you can not use intake supercharging or relatively small intake supercharging, but ensure that the engine starting pressure reaches the ultra-high starting pressure of the solution of the present invention; when the load is large or When the engine speed is large, the required air intake is also large.
  • the pressure before ignition initial ignition pressure
  • the temperature before ignition are relatively high, which provides sufficient conditions for compression ignition and can make the combustion
  • the process is very rapid; on the other hand, the solution of the present invention is beneficial to suppress and prevent the occurrence of knocking; due to the poor anti-knock performance of gasoline fuel, knocking is easy to occur, but the occurrence of knocking is closely related to the rate of pressure increase during combustion, and knocking occurs Determined by the explosion concentration limit; the scheme of the present invention is theoretically similar to the isobaric heating cycle model, so that the combustion chamber pressure rise rate is low during combustion, which can effectively suppress and prevent the factors of deflagration and knocking, as long as the fuel is ensured When the mixed gas is outside the explosion concentration limit, it can effectively control and prevent the occurrence of deflagration.
  • Explosion concentration limit means that flammable substances and air (or oxygen, or other oxidants) must be mixed evenly within a certain concentration range to form a mixed gas, which will explode on fire. This concentration range is called the explosion concentration limit, referred to as the explosion limit. Therefore, in the solution of the present invention, when using a fuel with poor anti-knock performance, such as gasoline, the concentration of the mixed gas must be lower than the explosion concentration limit, which requires that the fuel supply must be like a diesel engine, and the high pressure should be uniform at the end of the compressed air Injection into the combustion chamber to achieve compression ignition combustion, and by controlling the amount of fuel injected each time, so that the mixture is burned at a concentration below the explosion concentration limit, to achieve lean combustion, to prevent the occurrence of knocking.
  • the amount of fuel injected in one time may not meet the load requirements.
  • Multiple pulse fuel injections can be used to burn in stages to meet each cycle of combustion
  • the amount of fuel required to meet the needs of each cycle load in the solution of the present invention, because the pressure before ignition (starting pressure) and the temperature before ignition are very high, the formation of mixed gas and stagnation period will be very It is short, so the combustion process will be very short, making the combustion very fast, which can meet the needs of multiple pulsed fuel injection combustion;
  • the pulsed fuel injection combustion can be adjusted according to the characteristics of each different fuel, for each fuel injection
  • the amount and time interval of pulse injection can be adjusted appropriately according to different characteristics of fuel combustion; for example, gasoline with poor anti-knock performance, the amount of each injection is reduced according to its explosion concentration limit, but its combustion speed is faster ,
  • the time interval of each pulse injection can also be reduced accordingly; for diesel with better anti-knock performance, according to its explosion concentration limit
  • the amount of fuel injection should be increased, but
  • the time interval of each pulse injection can also be increased accordingly.
  • the amount of fuel injection should be adjusted accordingly according to its characteristics and experimental or actual test data.
  • pulse injection interval in order to achieve complete smooth combustion of fuel; in addition, for different fuels and fuels, it is necessary to control and adjust the maximum speed of the engine according to its combustion characteristics. Therefore, in the solution of the present invention, it is no longer necessary to distinguish between a gasoline engine and a diesel engine. According to needs, gasoline or diesel can be used separately, and even various other mixed fuels can be used. This realizes the integration of reciprocating piston fuel oil that can use various different fuels. engine.
  • multiple pulse fuel injection combustion can be adjusted according to the volume of the combustion chamber.
  • the combustion at this time is equivalent to isometric heating, but the solution of the present invention is similar to the isobaric heating cycle model At this time, it is equivalent to isobaric heating, and the volume of the combustion chamber will expand elastically with combustion.
  • each pulse The amount of fuel injected and the pulse injection interval should be relatively small. As the elasticity of the combustion chamber volume expands, the amount of fuel and pulse injection interval per pulse injection can also be increased accordingly, so that the fuel mixture can be burned more quickly and smoothly .
  • the solution of the present invention achieves an ultra-high initial ignition pressure, so that it has a high temperature and high pressure before ignition, which is beneficial to the rapid and full combustion of the fuel mixture, and the fuel combustion is fully beneficial to reduce the generation of harmful substances in the exhaust gas.
  • the scheme of the present invention adopts the mixed air pressure ignition method as the diesel engine, and adopts the lean combustion with a low mixed gas concentration, and inevitably adopts a larger air-fuel ratio as the diesel engine, so that the carbon monoxide emission is almost zero, which also greatly reduces and Control the emission of harmful substances in exhaust gas.
  • the solution of the present invention has the beneficial effects of storing more, and the beneficial effects have made significant progress, and even some of the beneficial effects are leaps and bounds.
  • the maximum temperature is greatly reduced, effectively reducing the loss of heat transfer loss and effectively improving the thermal efficiency.
  • the initial combustion pressure (initial ignition pressure) and initial combustion temperature can be greatly increased, which can greatly increase the combustion speed, increase the engine speed, and increase the engine power.
  • the reciprocating piston internal combustion engine is theoretically similar to the isobaric heating cycle mode, and has all the advantages of this theoretical cycle mode.
  • the reciprocating piston fuel integrated engine can be realized, and various fuel fuels can be used.
  • FIG. 1 is a structural diagram of an elastic combustion chamber formed by an inner core type elastic variable length piston.
  • ⁇ Fig. 2 is a structural view of a split elastic variable length piston constituting an elastic combustion chamber.
  • Fig. 3 is a structural diagram of an elastic combustion chamber constituted by a retractable elastic variable length piston connecting rod.
  • ⁇ 4 is a structural view of an elastic combustion chamber formed by an arc-shaped elastically variable piston connecting rod.
  • Piston pin 8. Piston connecting rod, 9. Piston top cover, 10. Guide column, 11. Pin seat, 12. Piston skirt,
  • the implementation example of the scheme of the present invention is an ultra-high starting fuel pressure fuel integrated reciprocating piston internal combustion engine, that is, a reciprocating piston engine with an initial fuel pressure of more than 10 MPa and using various fuels respectively.
  • the specific design and manufacturing method of this example is that on the basis of the existing supercharged diesel engine, the piston, intake air and fuel injection are designed and modified accordingly, so that the piston becomes an elastic variable-length piston, and the combustion chamber has elasticity and becomes an elastic reservoir.
  • the structure can make the engine achieve the various functions of the solution of the present invention.
  • the engine adopts cast iron alloy body, which can withstand the pressure of more than 25MPa; the piston uses semi-rigid and semi-elastic elastic variable length piston; set the initial elastic pressure of the piston to 20MPa, the maximum pressure to 25MPa, and the maximum expansion ratio (compression ratio) to 60 , The actual expansion ratio (compression ratio) can be adjusted as needed by the intake volume in the range of 8-60; the valve uses an electronically controlled valve, and uses the Miller cycle to ensure the required precise intake volume; turbocharging is used for supercharging
  • the engine is a four-cylinder engine with a displacement of 1.6 liters and a displacement of 0.4 liters per cylinder.
  • the cylinder diameter should be shorter and the piston stroke should be longer.
  • the cylinder volume diameter to length ratio is 0.8, and the calculation is:
  • is the compression ratio
  • P0 is the pressure before compression
  • P0 is the atmospheric pressure
  • P0 0.1 MPa
  • P1 is the pressure at the end of compression or the pressure before ignition (starting pressure), that is, the elastic starting pressure of the combustion chamber
  • P1 20MPa
  • k is the adiabatic index, which is conservatively calculated as the adiabatic index of the air
  • k 1.4
  • the actual static compression ratio is:
  • This compression ratio is the static compression ratio used in the Miller cycle.
  • the actual compression ratio should be adjusted accordingly to the standard of the starting pressure of 20 MPa. If the intake air volume and load need to be increased, the intake air should be adjusted as required.
  • Piston stroke S (calculated according to the compression ratio or expansion ratio of 60, the piston stroke is also the length of the crankshaft rotation diameter, which is twice the crank radius):
  • Piston connecting rod length l (generally 3 times the radius of the crank):
  • the elastic compressible length of the piston (set to the minimum compression ratio or expansion ratio of 8, according to this example, the pre-expansion ratio should not exceed 2 times when it meets environmental protection standards, set to 3 times here):
  • the fuel quantity can be dynamically adjusted from [0-1] to 7.5 at least; in theory, the expansion ratio can be smaller, and the maximum power and power can also be larger, but the corresponding thermal efficiency will also be reduced.
  • ⁇ P2 (F1 + K * ( ⁇ -1) * (L / 60)) / s
  • the pre-expansion ratio ⁇ value should not exceed 1.32, and it is not easy to generate nitrogen oxides when working in this state.
  • the maximum value of the pre-expansion ratio ⁇ is 1.26, other analogy should be between these two. If the exhaust gas treatment is strengthened, including exhaust gas reuse and exhaust gas purification treatment, the maximum temperature can be increased, the pre-expansion ratio ⁇ value can be increased, a larger mixture gas concentration can be used and the amount of fuel injection can be increased, thereby greatly increasing Engine power and power performance.
  • the fuel injection system can use a high-pressure electronically controlled common rail injection system similar to the existing diesel engine, and the fuel injection pressure should be consistent with the existing diesel engine.
  • the injection pressure can reach 80-160MPa, multiple nozzles can be used to disperse the injection, and the pulse injection is divided into multiple intervals, according to the characteristics of the fuel to control the amount of fuel injected each time, interval combustion in order to control the combustion process, reduce coarse Explosive combustion to avoid the occurrence of deflagration. Since the maximum temperature and pressure of the combustion chamber are maintained for a long time, the sealing of the piston must also be strengthened. For different fuels, because of the different combustion speeds of fuels, they may even be very different. For example, the combustion speeds of gasoline and diesel are quite different. You must set different injection times and intervals for different fuels. The method, specific and precise injection and time interval need to be determined after testing; for different fuels, different maximum speed limits must also be set.
  • the running process of the engine in this example also has four working cycle processes of intake, compression, combustion and expansion work and exhaust for a common reciprocating piston engine.
  • intake When the engine is started, the intake of a small amount of air is controlled by the electronic valve during intake, but it must reach the pressure and temperature of compression ignition (the specific requirements of different fuels are different). It requires relatively little energy.
  • the electronically controlled valve When the engine is running normally, in the intake and compression strokes, when the load is small, due to the use of the Miller cycle, the electronically controlled valve is closed during the compression process, so that the actual compression ratio is less than the expansion ratio, but ensure that the initial combustion pressure reaches Designed 20MPa, at the end of air compression, high-pressure fuel is injected at the ignition advance angle (the optimal ignition advance angle needs to be actually measured).
  • the injection method must be multiple interval injections, and the amount of fuel injected each time is limited to form a lean Mixed gas to prevent deflagration. Due to the high temperature and pressure, the fuel burns very quickly. At this time, the combustion chamber is equivalent to or similar to isobaric combustion during the combustion process.
  • the elastic expansion of the combustion chamber does work, and the internal energy of the working medium is also It is converted into the elastic potential energy of the piston.
  • the conversion of the engine energy is that the internal energy of the working medium is simultaneously converted into elastic potential energy and work on the load.
  • the crankshaft rotates at a certain angle, the internal transfer of the working medium can be partially completed.
  • the internal energy of the working medium and the elastic potential energy are simultaneously converted to work on the load; during the work, when the piston is close to bottom dead center Electrically controlled valve opens, the exhaust gases; This completes the four working of the engine start.
  • the Miller cycle When the load is large, you can use the Miller cycle to control the amount of intake air through the electronically controlled valve and supercharger, increase the actual compression ratio and increase the intake air boost to meet the requirements of the load, when the amount of incoming air is large At this time, the piston may be partially compressed before ignition, the actual expansion ratio will be reduced, the initial ignition pressure will also be increased, and the amount of fuel per cycle of the engine will also increase, but the engine power and power performance will be improved According to the design of this example, the expansion ratio of the engine can be dynamically adjusted between 8-60, and the amount of air intake and the amount of fuel per cycle can be dynamically adjusted at least 1-7.5 times.
  • the compression ratio of gasoline engines is generally between 9--12, and the pressure before ignition (starting pressure) is generally about 1-2MPa; the compression ratio of diesel engines is generally 12-22, and the pressure before ignition (starting pressure) can be Up to 3-10MPa (including the case of pressurization); and the compression ratio (expansion ratio) of the case of the present invention is 8-60, usually 60, and the pressure before ignition (starting pressure) is at least 20 MPa; it can be clearly seen that Compared with the current fuel engine, both the actual compression ratio and the pre-ignition pressure (starting pressure) have been greatly improved, and even increased by several times. The thermal efficiency and power of the invention must be large.
  • the maximum intake of the case of the present invention is more than 6.5 times of the same displacement gasoline engine (maximum starting pressure is about 2MPa, compression ratio is 10), is a general diesel engine (maximum starting pressure is about 3-5MPa) , Compression ratio is more than 6 times 18), is supercharged diesel
  • the engine (the maximum starting pressure is 5--10MPa, the compression ratio is 16) is more than 3.2 times; that is to say, the air intake of the engine in the case of the present invention is several times more than that of the gasoline engine, general diesel engine or supercharged diesel engine, Even if the case of the present invention uses a lean burn method, the power increase is still more than doubled; this is still estimated at the same engine speed, but in fact because of the initial combustion pressure and the
  • the maximum theoretical thermal efficiency of the case of the present invention is about 73
  • the maximum actual thermal efficiency of the case of the present invention is about 61%.
  • the invention conforms to the basic theory of the internal combustion engine, introduces a new energy conversion method, realizes the rapid conversion of energy within the working medium, can effectively reduce and control the maximum temperature and pressure of combustion, and the material requirements do not exceed existing standards.
  • the design and process are relatively simple and the manufacturing cost is relatively low, but the beneficial effects can greatly exceed the existing level, which can greatly improve the compression ratio, thermal efficiency, power performance and power increase of the internal combustion engine, and realize low-cost dynamic variable compression It can effectively improve the power-to-mass ratio and greatly reduce the emission of harmful substances. It can realize the ultra-high starting pressure fuel integrated reciprocating piston internal combustion engine that can use a variety of different fuels. It is suitable for large-scale manufacturing and application, and has strong practicality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

内燃机及其设计制造方法,内燃机包含有弹性储能结构,弹性储能结构是一个具有弹性的结构,其功能作用是可以存储能量和迅速转换弹性势能;当燃烧工质膨胀做功所引起的力或力矩大于弹性储能结构的弹力或弹力力矩时,弹性储能结构发生弹性形变,工质内能转化为弹性储能结构的弹性势能;当弹性储能结构的外部应力小于其弹力时,储存的弹性势能转化为负荷能。通过工质内能转化为弹性势能再转化为做功能量的过程,实现了工质内能的能量迅速转化,可以有效降低和控制燃烧的最高温度和最高压力。

Description

内燃机及其设计制造方法 技术领域
本发明涉及一种内燃机,并且特别是涉及一种往复活塞式内燃机。
背景技术
内燃机是一种燃料在机器内部燃烧释放能量转换为动力对外做功的热力发动机,根据结构分类可以分为喷气发动机、活塞式发动机等;喷气发动机可以分为带氧化剂的火箭发动机和不带氧化剂的空气喷气发动机,空气喷气发动机包括冲压发动机、脉冲发动机、涡轮发动机;涡轮发动机又包括涡轮喷气发动机(或称作涡喷发动机)、涡轮风扇发动机(或称作涡扇发动机)、可变循环喷气发动机、燃气轮机等;活塞式发动机又可以分为往复活塞式发动机、旋转活塞式发动机(转子发动机)和自由活塞式发动机等。内燃机应用最普遍的是往复活塞式发动机,本发明方案主要就往复活塞式发动机进行论述说明,以下说明的内燃机一般指往复活塞式发动机,当涉及到其他发动机的地方时也一并说明。往复活塞式发动机按着火方式按燃料可以分为汽油机、柴油机、天然气发动机、LPG发动机、乙醇发动机和双燃料发动机等,通常普遍使用的是汽油机和柴油机;按着火方式可以分为点燃式和压燃式两类,气体燃料和汽油抗爆性差,容易产生爆燃,故一般使用点燃着火方式,比如汽油发动机;柴油抗爆性好,所以柴油机都使用压燃着火方式。
从内燃机的历史来看,1860年法国的莱诺依尔(Lenoir)发明了第一台实用煤气机,其热效率低于5%;1876年奥托(Nikolaus August Otto)发明了四冲程内燃机,热效率达到14%,到1884年,热效率已达到20%;1892年德国的狄塞尔(Diesel)发明压燃式柴油机,热效率达到26%;此后一百多年直到现在,内燃机经过不断的改进,出现了很多新的技术,比如增压技术、可变气门技术等等,内燃机热效率有了较大的提高,现在的汽油机热效率一般为35%左右,最高达到40%,柴油机热效率一般为40%左右,最高达到46%左右;但要进一步提高内燃机热效率变得极为困难。
内燃机的排放物会造成环境污染,排放的有害物质主要有:硫氧化物(主要为二氧化硫SO 2)、一氧化碳(CO)、氮氧化物(NO x)、碳氢化合物(HC)、颗粒物(PM)、臭气(主要为各种不完全燃烧的产物,如各种醛类)、二氧化碳(CO 2)等,还有噪音污染,早期的汽油中还含有用于抗爆的铅化物,现在都全部采用无铅汽油,含铅物已极少;大部分国家都实施环境保护制定了各自的排放标准,并且排放标准的要求越来越严格。欧洲从1992年开始实施欧Ⅰ标准,1996年实施欧Ⅱ标准,2000年实施欧Ⅲ标准,2005年实施欧Ⅳ标准,2008年实施欧Ⅴ标准,2014年实施欧Ⅵ标准,而欧Ⅵ标准与之前的标准相比,各项排放物都有了极大的降低;中国从2001年4月开始实施国Ⅰ(相当于欧Ⅰ)标准,从2004年7月开始实施国Ⅱ标准,2007年7月实施国Ⅲ标准,2010年至2014年逐步实施国Ⅳ标准,2018年实施国Ⅴ标准,在2019年至2020年将实施国Ⅵ标准。排放标准的实施对发动机的热效率和设计等有所限制。
理论加热循环是研究内燃机热效率的简化模式,具有理论指导作用。理论循环假设工质是理想气体,在闭口系统中作封闭循环,工质作绝热压缩和绝热膨胀过程,燃烧是定容或定压的工质加热,工质放热为定容放热,并且循环过程是可逆过程。理论加热循环内燃机可以推导出发动机效率计算公式:
等容加热循环:
   
Figure 836117dest_path_image001
等压加热循环:
   
Figure 753257dest_path_image002
混合加热循环:
   
Figure 985524dest_path_image003
以上公式中,η为热效率;ε为压缩比;k是绝热压缩和绝热膨胀过程的绝热指数,即比热比,一般地说,单原子气体的绝热指数k为1.66,双原子气体的绝热指数k为1.41,多原子气体的绝热指数k为1.33,理想干燥空气的绝热指数约为1.4;ρ为等压加热过程的容积初始膨胀比(预胀比或预膨胀比);λ为等容加热过程的压力升高比。
从理论循环公式可以看出,压缩比越大,热效率越大,当压缩比较小时,热效率随压缩比增加较快,当压缩比较大时,热效率随压缩比增加较慢。等容加热循环的热效率只与压缩比有关。等压加热循环的情况,在压缩比不变的情形下,随着预膨胀比的增加,热效率会逐渐下降。混合加热循环,在加热相同的情况,在压缩比不变的情形下,压力升高比越大,预膨胀比则越小,热效率会增加,反之热效率会减小;在最高压力不变的情形下,压缩比越大,则压力升高比越小,并且预膨胀比则越大,结果是热效率越大。总的分析结果就是,压缩比是影响热效率的主要因素,压缩比越大,热效率就越大。
目前理论与实际结合的研究模型是,一般地把汽油机看作是等容加热循环,燃气轮机看作是等压加热循环,柴油机看作是混合加热循环。
提高内燃机热效率的方法有增大压缩比(和膨胀比)、增压技术、米勒循环技术、燃油缸内直喷技术、排气再循环技术、优化燃烧过程、优化进排气系统、减少摩擦损耗、减少散热损失等等,但最主要手段是增大压缩比。目前汽油机的压缩比普遍在9--12之间,最高的马自达发动机压缩比甚至达到14;柴油机的压缩比目前普遍为12--22之间,最大甚至可达到25。
要增大压缩比受到多方面的限制。首先,是机体材料的限制;特别是汽油机,较大的压缩比会导致汽油燃烧更加剧烈,并产生高温高压,容易产生爆燃,引起发动机爆震,从而损害发动机的机体。第二,是在高温高压环境下,容易产生有害污染物;高温更容易产生氮氧化物(NO x),有研究表明,当温度低于1800K时,氮氧化物(NO x)的生成速率极低,因此有的设计为了能达到更高的气缸压力,使用了排气后处理的催化还原技术(SCR),甚至使用了降低空燃比和排气再循环技术(EGR),随着燃烧氧气量的减少,确实可以提高气缸压力和减少氮氧化物的产生,但由于缺氧燃烧却又容易生成一氧化碳,增加了新的有害排放物,所以,随着排放法规的日益严格,在现有的技术条件下,压缩比适当下调才更有利于降低氮氧化物和一氧化碳的生成,适当降低效率才能有效减少有害排放,故而现在有很多柴油机设计其压缩比在14--16之间,其压缩比与以前比较有所下降,以降低内燃机热效率来达到减少有害排放的目的。第三,是升功率和动力需求的限制;当前,往复活塞式内燃机一般设计为固定压缩比的方式,可调节压缩比发动机由于结构复杂而较少得到应用;在固定压缩比方式下,压缩比通常要以最大负载情况下进行设计,过高的压缩比会导致进气时压缩的空气量较少,从而限制发动机的负载量和每次燃油量,负载过低就很难达到设计的要求,所以一般带有增压的汽油机和柴油机的压缩比通常都较低一些,以满足发动机较大功率和较大动力的要求。
在实际发动机的设计中,主要是受限于最高温度和最高压强的限制,以符合越来越严格的排放标准,同时对发动机的升功率和动力也存在较大的要求,这些限制和需求使得内燃机热效率的提高变得极为困难。特别是往复活塞式发动机技术相对成熟,很多新技术都得到了应用,在符合越来越严格排放标准的情况下,即使想要内燃机热效率作一点点的提高也变得极为艰难。
提高内燃机热效率和减少有害排放虽然取得了较大的进步,汽油机热效率最高达到40%,柴油机热效率最高达到46%左右,但总体上来说还是十分不理想,内燃机热效率距离一半都相差甚远,也就是说燃油的一大半都没被利用而浪费掉了,进一步提高内燃机热效率和有效减少有害排放成为当前内燃机难以解决的难题。
参考文献:
    1.《内燃机学》 ,机械工业出版社,主编:刘圣华,周龙保,副主编:韩永强,王忠。
    2.《内燃机原理》 ,华中科技大学出版社,主编:刘永长。
    3.《内燃机先进技术与原理》 ,天津大学出版社,编著:姚春德。
    4.《内燃机设计》 ,机械工业出版社,编著:袁兆成。
技术问题
如何提高内燃机热效率和有效减少有害排放是当前内燃机设计和制造难以解决的难题。
技术解决方案
为了解决内燃机热效率低下和降低有害排放的难题,本发明提供了一种内燃机的新方案,在内燃机的理论原理上有了新的发展,从理论和设计制造上大幅度提升了内燃机热效率,并且能够同时有效地大幅度降低有害物的排放,还能大幅度提高内燃机的动力性能和升功率,有效减小单位排量机身质量,提高功率质量比(功重比)。
    为了更清楚地说明本发明的内燃机新方案,以现在的四冲程往复活塞式发动机为例,先分析内燃机的工作过程和能量转换过程。四冲程往复活塞式发动机的工作过程是,由活塞运动形成进气、压缩、燃烧和膨胀做功、排气四个有序步骤过程形成一个工作过程,并且工作过程不断重复循环,这些过程中只有膨胀做功是对外做功的过程,其他过程都是为了更好地实现做功而需要的过程。发动机膨胀做功过程是工质燃气压力推动活塞直线运动做功,活塞通过连杆转换成曲轴的旋转运动,并从曲轴对外输出动力做功。很多书籍资料把内燃机定义为热能(或内能)转化为机械能的机器,本发明人认为这种说法是不正确的。从能量的角度来分析,首先所谓机械能是指动能和势能的总和,势能又分为重力势能和弹性势能,所以可以把动能、重力势能、弹性势能统称为机械能。内燃机通过燃料的燃烧,化学能转化为燃烧工质的内能,工质内能的一部分通过气缸温度散热消耗掉了,一部分工质内能推动活塞做功,部分做功能量作为摩擦消耗了,部分转化为机械动能(比如发动机加速),部分做功能量克服发动机的负载做功,还有一部分内能随尾气消耗了,成为尾气内能和尾气动能。负载是指发动机对外承受的阻力负担,对于不同的负载,其能量的转换方式是不同的,比如内燃机带动发电机发电,负载是发电机,其运行速度是固定的,所以其动能不变,其机械能也不变,只是内燃机通过动力传动,带动发电机转动,内燃机通过机械传动动力使得发电机克服电磁阻力做功,内燃机工质内能通过动力传动间接转化为电能;对于汽车的能量转换来说,汽车发动机通过机械将动力传递到车轮,克服车轮的摩擦阻力做功,其做功的能量一部分转化为摩擦热能,一部分克服空气阻力做功,加速时一部分做功能量转化为汽车的动能,从整体上看,发动机工质内能通过机械的动力传动做功,消耗转化成了多种能量;所以负载并不一定是机械能,可以是转化各种的多种能量形式,为方便清晰起见,这里定义负载消耗的做功能量为负载功,或者称作负载能。内燃机的摩擦阻力、动能阻力和负载阻力等,都是内燃机除温度散热和尾气内能之外的消耗阻力,都属于内燃机的机械阻力,这里定义为内燃机的负荷,定义负荷消耗的做功为负荷功或负荷能,也就是阻力耗费的能量。这样内燃机的能量过程就可以清楚简单地简化为:
    工质内能 = 散热热能+尾气内能+负荷能(或负荷功)
    负荷能(或负荷功)= 摩擦消耗能量+发动机动能增量+尾气动能+负载能(负载功)
    从以上可以看出,内燃机工质膨胀做功的过程就是工质内能转化为负荷能(负荷功)的过程,内燃机对外做功的过程就是工质内能转化为负载能(负载功)的过程。以上能量转化过程对所有内燃机都可以适用。
    本发明方案采用与现有(指当前或传统的、在本发明方案之前的)内燃机能量转换不同的新方式,引入了新的能量转换过程,本发明方案在理论原理上能量的转化与现有内燃机有所不同,为了区分本发明方案与现有内燃机的能量转换方式的不同,以及更容易简单清楚说明,本说明把本发明方案独有和相关的阻力、能量和过程与现有内燃机的阻力负荷区别开来,只把现有内燃机的阻力方式定义为负荷,现有内燃机阻力消耗的能量定义为负荷能(或负荷功),而新方案增加的阻力和能量不归属于负荷和负荷能。这新方案就是:内燃机包含有弹性储能结构,弹性储能结构是一个具有弹性的结构,其功能作用是可以存储能量和迅速转换弹性势能;当燃烧工质膨胀做功所引起的力或力矩大于弹性储能结构的弹力或弹力力矩时,弹性储能结构发生弹性形变,工质内能转化为弹性储能结构的弹性势能,当弹性储能结构的外部应力小于其弹力时,储存的弹性势能转化为负荷能;也就是,内燃机燃烧工质膨胀做功过程中,其工质内能除转化为负荷能外,工质内能也可以转化为弹性势能,然后保存的弹性势能再转化为负荷能,即是附加了工质内能转化为弹性势能再转化为负荷能的过程。弹性储能结构由弹性材料组成,能够发生弹性形变,并储存能量为弹性势能,可以根据实际需要将弹性储能结构设计成需要功能的形状和结构;弹性储能结构的作用主要就是迅速转化能量、存储能量、确保发动机的顺畅运行,它本身可以不消耗能量。本发明方案内燃机能量转化过程可以表示如下:
    内能与弹性势能转化:
       工质内能 ——→ 散热热能+弹性储能结构弹性势能+负荷能(或负荷功)
    弹性势能与负荷能转化:
       工质内能+弹性储能结构弹性势能 ——→ 散热热能+尾气内能+负荷能(或负荷功)
    以上附加的弹性势能转化的能量转化过程对所有内燃机都可以适用。
这里要特别说明的是内燃机的弹性储能结构要与内燃机的负载相区别。内燃机的弹性储能结构是内燃机的一个组成部分,其参与内燃机对外的能量输出过程;负载是独立于内燃机的负担阻力,其不参与到内燃机的运作过程。即使负载是一个弹性装置也不是所谓的内燃机的弹性储能结构,一个明显的例子是内燃机带动一个压气机工作来制备压缩空气,压气机将空气压缩时是将机械做功转化为空气的内能(包括空气的弹性势能),但即使将两机器制作成为一个整体的机器,其中的压气机也不属于内燃机的弹性储能结构,因为压气机不是属于内燃机的一部分,其明显的区别是压气机没有参与到内燃机的运行,除了负载阻力外其没有任何其他作用于内燃机,而弹性储能结构则不同,其本身作为内燃机的一部分并参与内燃机的运作过程,并且其弹性势能的一部分能量作用于内燃机中的摩擦或动能消耗掉了。
    一般来说内燃机燃烧过程十分迅速,相对地来说,现有内燃机的内能转化为负荷能的过程时间较长,本发明方案增加了工质内能转化为弹性势能再转化为负荷能的过程,弹性势能的转化过程可以十分迅速,使得工质内能可以迅速地转化为弹性势能并存储起来,然后再慢慢地转化为负荷能(或负荷功),极大地加速了工质内能的能量转化过程。工质内能的能量能够实现迅速转化,就可以使得工质内能的能量迅速减少,从而可以迅速降低工质燃气的温度和压力,这样既可以减少温度传热所引起的工质热能消耗散失,又可以减少高温高压对机体的损害和降低机体材料的使用标准,以节省内燃机制造成本和减轻单位排量机体质量,提高功率质量比(功重比),还可以达到实现减少生成尾气有害物的目的,尤其重要的是,由于实现工质内能的迅速转化,就可以降低和控制燃烧的最高温度和最高压力,这样就可以大幅度地提高内燃机的压缩比,也就能够极大幅度地提高内燃机的热效率。提高功率质量比(功重比)不但对普通发动机有很大的益处,特别是对航空发动机的应用具有十分重要的影响。减少尾气有害物的排放对保护环境和符合越来越严格的发动机排放标准也有重大的意义。根据现有的研究表明,一氧化氮(NO)的生成是随温度呈指数函数变化关系,当温度低于1800K时,一氧化氮(NO)的生成速率极低,而二氧化氮(NO 2)又由一氧化氮(NO)生成,二氧化氮(NO 2)含量与一氧化氮(NO)含量的比值一般不超过2%,所以只要保持工质燃气温度低于1800K,就可以极大地降低氮氧化物(NO x)特别是一氧化氮(NO)的产生,以实现大幅度地降低尾气氮氧化物(NO x)的含量。在无需考虑氮氧化物(NO x)生成的情况下,就可以采用比较大的空燃比,可以实现燃料的稀薄燃烧,过量的空气更容易实现充分的燃烧,还可以达到减少一氧化碳(CO)和颗粒物(PM)排放的目的。
    要实现内燃机增加工质内能转化为弹性势能再转化为负荷能的过程,构造内燃机弹性储能结构,一种内燃机构造和设计制造方法就是,在具体设计制造中,构造带有弹性的燃烧室或者是半刚性半弹性的燃烧室,此弹性燃烧室作为内燃机的弹性储能结构,内燃机的能量转化过程附加了工质内能转化为燃烧室的弹性势能再转化为负荷能的过程。在气体压缩过程中,燃烧室表现为刚性压缩或有限弹性压缩;在内燃机燃料燃烧和燃烧工质做功过程中,燃烧室表现为半刚性半弹性,当燃烧室压强等于或低于预设定值时,燃烧室体现为刚性,当燃烧室压强增加到大于预设定值时,燃烧室表现为弹性,并发生弹性形变,工质内能迅速转化为弹性势能,当燃烧室压强减小时,保存的燃烧室弹性势能转化为负荷能。其实所有物体受到压力都会产生形变或弹性形变,所谓刚性是指固体或固体组成组件的形状和形态不发生改变,与极其微弱的弹性形变无关;所谓有限弹性压缩,是指燃烧室的压缩可以产生较小的弹性形变,但并不影响燃烧室气体压缩的效果;弹性形变就是通常定义的固体受外力作用后物体各点间相对位置的改变,当外力撤消后,固体又恢复原状;半刚性半弹性是指某种特定条件下表现为刚性,在另一种特定条件下表现为弹性。除了前面所述的弹性储能结构的各项优点益处之外,弹性燃烧室能够有效地减小甚至避免燃烧室的粗暴燃烧,有效地减小甚至避免爆燃的发生,有效减轻机体振动和损害,同时能大幅度地减小燃烧噪音和机械噪音。
    作为弹性储能结构的弹性燃烧室的一种设计制造方法是,燃烧室开有孔洞直接连接一个弹性气缸,弹性气缸与燃烧室共同组成半刚性半弹性空间形成弹性燃烧室,此弹性燃烧室为弹性储能结构。弹性气缸的特性是,弹性气缸可以是气体压力气缸,也可以是弹簧组成的弹性压力气缸,或者是其他弹性气缸,并且气缸被约束为一定预压力的压力气缸,所以能表现出半刚性半弹性的特性;在弹性气缸没有发生弹性形变时,燃烧室的体积与没有弹性气缸相比并没有差别,所以弹性气缸并不影响内燃机的压缩比;当弹性气缸活塞受到的压力大于弹力时,弹性气缸活塞就会移动,燃烧室的气体进入弹性气缸,压力减小时,弹性气缸活塞复位。当燃烧室的压强小于或等于预设定值时,弹性气缸表现为刚性,燃烧室也表现为刚性;当燃烧室的压强大于预设定值时,弹性气缸被压缩,燃气进入弹性气缸空间,整个燃烧室发生弹性形变,燃烧工质膨胀做功,工质内能转化为弹性气缸的弹性势能;当燃烧室的压强减小时,弹性气缸恢复,弹性势能转化为负荷能。由弹性气缸所组成的弹性燃烧室具备前面所述的弹性储能结构的各项优点,特别是保护机体的作用明显,比如应用于喷气发动机的燃烧室,使得喷气发动机具有弹性燃烧室,弹性燃烧室可以有效地减小和避免爆燃的发生,可以避免损害机体和大幅度提高压缩比以大幅度提高发动机效率。
    对于往复活塞式发动机,作为弹性储能结构的弹性燃烧室的一种设计制造方法是,往复活塞式发动机气缸与气缸盖之间可以活动以改变燃烧室的空间大小,发动机气缸与气缸盖之间是半刚性半弹性的连接,形成弹性燃烧室,此弹性燃烧室为弹性储能结构;当燃烧室的压强等于或低于预设定值时,其气缸与气缸盖之间为刚性不活动的,燃烧室空间不变;当燃烧室的压强大于预设定值时,其气缸与气缸盖之间作弹性移动,燃烧室空间增大,工质内能转化为气缸与气缸盖之间的弹性势能,当燃烧室的压强减小时,气缸与气缸盖之间位置弹性恢复,弹性势能转化为负荷能。一般来说气缸盖和气缸的质量(重量)都比较大,难以进行高速运动,所以此种结构也只能适合于较低转速的发动机。
    对于往复活塞式发动机,作为弹性储能结构的弹性燃烧室的另一种设计制造方法是,构造弹性可变长度活塞,其活塞使用半刚性半弹性可变长度活塞,活塞的长度弹性可变,此活塞是弹性可变长度活塞,是一个弹性储能结构;发动机气缸、气缸盖、活塞一起构成半刚性半弹性的燃烧室,此弹性燃烧室为弹性储能结构;当燃烧室的压强等于或低于预设定值时,其活塞表现为刚性,燃烧室也表现为刚性;当燃烧室的压强大于预设定值时,活塞表现为弹性,燃烧室也表现为弹性,活塞被弹性压缩,活塞长度缩小,工质内能转化为活塞中的弹性势能,当燃烧室的压强减小时,活塞长度弹性恢复,弹性势能转化为负荷能。
    通过设计构造多级的不同弹性压力和相应可压缩长度就可以实现多级的活塞长度弹性可变,构成多级弹性变长活塞,以实现不同的多级压力下半弹性半刚性的特性和相应不同的多级长度弹性可变,可以实现更多的功能,并可以提高压缩比。例如,较大的弹力弹性只在燃烧室工质燃气压力较大时才发生长度缩小的弹性形变,在此基础上还可以再设置另一级较小弹力弹性,在较高负载和压力时,此级弹性长度完全被压缩,压缩表现与单级弹性完全一致,但当负载和压力相对比较低时,气缸吸入气体较少,在气体压缩时,此级弹力弹性只被部分压缩,活塞长度也只缩小一部分,使得在很少气体时压缩仍能保持较大的压力和较高的温度,相对地压缩比也动态地变得更高,很少的气体在压缩时也具备较高的温度和压力,也就更能容易燃烧,特别是对于压燃式发动机来说更容易压燃,在启动时更容易着火运行,在零负载怠速运行时可以更省油;在排气时,此较小级弹力长度完全申展为最大长度,使得排气更干净彻底;在进气时,此较小级弹力长度也完全申展为最大长度,使得气缸容积长度和容积变小,这就实现了米勒循环,使得压缩比小于膨胀比,进气时能有效减小进气能量消耗,而在膨胀做功时燃气又可以做更多的功,可以更好地改善提高机械效率。所以实现多级弹性变长活塞,可以提高压缩比,可以提高少量气体的初始压缩温度和压力,实现少量气体更容易燃烧,更容易启动,排气也更彻底,实现米勒循环,机械效率更高。
    弹性可变长度活塞的一种设计制造方法是,构造内芯式弹性变长活塞,如图1所示,图1是内芯式弹性变长活塞构成弹性燃烧室结构图,图中标记:1.气缸盖,2.燃烧室,3.气缸,4.活塞外套,5.弹性层(弹簧组),6.活塞内芯,7.活塞销,8.活塞连杆。内芯式弹性变长活塞分为外套、内芯和弹性层等组成;外套的活塞顶与气缸、气缸盖一起组成燃烧室,外套与气缸接触并沿气缸直线运动;内芯包括活塞销座与连杆连接,内芯与连杆的连接与常规活塞类似,内芯不与气缸壁接触,内芯可以在外套内滑动,使得活塞销座与活塞顶部的距离可以变动以改变活塞的长度;外套内底部与内芯的顶部之间为弹性层,是受约束为半压缩的弹簧组或弹性材料的分隔层,弹性约束在弹性层两端之间,使得活塞在长度方向上具有半刚性半弹性的特性,这就构成内芯式弹性变长活塞。当活塞顶受到的压力等于或小于弹力时,活塞表现为刚性;当活塞顶受到的压力大于弹力时,活塞内的弹性层被压缩,活塞外套顶部与内芯的相对位置移动并且距离缩小,活塞的长度缩小,燃烧室的工质内能一部分转化为活塞弹性层的弹性势能;当活塞顶和连杆的受力减小时,活塞长度弹性复位,活塞的弹力推动连杆,活塞的弹性势能转化为负荷能。由于内芯可以一直全部浸润在润滑油中,所以内芯与外套之间为浸润式润滑摩擦,可以有效减小摩擦力。在燃烧室燃料燃烧时,当工质燃气压力大于活塞弹力时,活塞长度被迅速弹性压缩,此时侧压力几乎为零,并且活塞外套与内芯是浸润式润滑摩擦,故此时摩擦力极小,也就是活塞在摩擦力极小的情况下在气缸内移动了一段距离,可以有效大幅度减少摩擦损耗。
    在内芯式弹性变长活塞中,把弹性层构造为串连的、不同约束弹力和相应不同压缩长度的多个弹性层,以构造内芯式多级弹性变长活塞,其具备前面所述的多级弹性变长活塞的各项优点和特性。
    弹性可变长度活塞的另一种设计制造方法是,构造分离式弹性变长活塞,如图2所示,图2是分离式弹性变长活塞构成弹性燃烧室结构图,图中标记:1.气缸盖,2.燃烧室,3.气缸,5.弹性层(弹簧组),7.活塞销,8.活塞连杆,9.活塞顶盖,10.导行柱,11.销座部,12.活塞裙。分离式弹性变长活塞分为顶盖、销座部和弹性层等组成;顶盖为活塞密封燃烧室的顶部;销座部包括销座、活塞裙和导行柱,销座与连杆连接,活塞裙是指活塞与气缸接触并承受侧应力的结构,导行柱引导和约束活塞顶盖和弹性层的直线运动(比如有的活塞顶部与气缸盖相对角度位置不能改变,这就需要导行柱来固定方向);弹性层在顶盖和销座部之间,由受约束为半压缩的弹簧组或弹性材料组成,弹性约束在弹性层两端之间,使得活塞在长度方向上具有半刚性半弹性的特性。所谓分离式是指活塞销座部(特别是包括与气缸接触的活塞裙)与活塞顶盖分开,这就使得活塞顶盖的受热很难传递到活塞裙,这样就不会发生一般活塞由于热传递使得活塞裙膨胀而导致的侧应力过大而引起的摩擦力大增,甚至导致拉缸或拍缸的现象,并且由于活塞裙的分离,可以实现活塞裙与气缸壁处于完全浸润式润滑的滑动摩擦,这两者可以使得活塞的摩擦阻力大幅度减小。当活塞顶盖受到的压力等于或小于弹力时,活塞表现为刚性;当活塞顶盖受到的压力大于弹力时,活塞内的弹性层被压缩,活塞顶盖与销座部的相对位置移动并且距离缩小,活塞的长度缩小,燃烧室的工质内能一部分转化为活塞弹性层的弹性势能;当活塞顶盖和连杆的受力减小时,活塞长度弹性复位,活塞的弹力推动连杆,活塞的弹性势能转化为负荷能。
    分离式弹性变长活塞也可以构造多级弹性变长活塞,将弹性层构造为串连的、不同约束弹力和相应不同压缩长度的多个弹性层,以构造分离式多级弹性变长活塞,也同样具有前面所述的多级弹性变长活塞的优点益处。
    对于往复活塞式发动机,作为弹性储能结构的弹性燃烧室的另一种设计制造方法是,构造弹性可变长度活塞连杆。活塞连杆是发动机中连接活塞和曲轴的部件,活塞作直线往复运动,活塞连杆将活塞的动力传递到曲轴,将活塞的往复运动转变为曲轴的旋转运动。本发明方案是,构造弹性可变长度活塞连杆,发动机活塞连杆长度弹性可变,是半刚性半弹性的活塞连杆,此活塞连杆是一个弹性储能结构,使得发动机的气缸、气缸盖、活塞和活塞连杆一起构成半刚性半弹性的燃烧室,此弹性燃烧室为弹性储能结构;当燃烧室压强等于或低于预设定值时,活塞连杆表现为刚性,燃烧室也表现为刚性;当燃烧室的压强大于预设定值时,活塞连杆表现为弹性,燃烧室也表现为弹性,活塞连杆被弹性压缩,工质内能转化为活塞连杆中的弹性势能,当燃烧室的压强减小时,活塞连杆长度弹性恢复,弹性势能转化为负荷能。弹性可变长度活塞连杆具备与弹性可变长度活塞类似的优点,并且由于在连杆被压缩时长度缩小,曲轴的力臂增大,在相同的压力下其做功的力矩更大,可以增强发动机的动力性能和机械效率。弹性可变长度活塞连杆也有不好的缺点,就是其构造比一般连杆更复杂、质量也更大,由于活塞连杆一般做不规则的摇摆运动,故其增加质量会对发动机的振动造成影响。
    弹性可变长度活塞连杆的一种设计制造方法是,构造申缩式弹性变长活塞连杆,如图3所示,图3是申缩式弹性变长活塞连杆构成弹性燃烧室结构图,图中标记:1.气缸盖,2.燃烧室,3.气缸,5.弹性层(弹簧组),7.活塞销,13.活塞,14.导行约束杆,15.连杆小头,16.连杆大头,17.连杆盖,18.弹性杆身。申缩式弹性变长活塞连杆主要分为连杆小头、连杆大头、弹性杆身、连杆盖、连杆螺栓等部分组成,与现有活塞连杆不同的是,活塞连杆的杆身由刚性杆身改变成了弹性杆身,弹性杆身由导行约束杆和弹性层(弹簧组或其他弹性材料)组成,导行约束杆一方面确保活塞连杆的连杆大头和连杆小头在直线固定方向上运动,另一方面约束弹性层为半压缩状态,使得整个活塞连杆成为半刚性半弹性活塞连杆。当活塞连杆的连杆大头和连杆小头受到的压力等于或小于弹力时,活塞连杆表现为刚性,燃烧室也表现为刚性;燃烧室的燃气膨胀做功,活塞顶受到的压力通过活塞销座传递到活塞连杆,当活塞连杆受到的压力大于活塞连杆弹力时,活塞连杆弹性压缩,活塞连杆的长度缩小,燃烧室的工质内能一部分转化为连杆的弹性势能;当活塞连杆的受力减小时,活塞连杆长度弹性复位,活塞连杆的弹性势能转化为负荷能。在燃烧室燃料燃烧时,当燃烧气体压力大于活塞连杆弹力时,活塞连杆长度被迅速弹性压缩,此时活塞侧压力几乎为零,故此时摩擦力极小,也就是活塞在摩擦力极小的情况下在气缸内移动了一段距离,可以有效大幅度减轻摩擦;另一方面,当活塞连杆长度被压缩后推动曲轴做功时,由于活塞连杆长度变小,力矩的力臂就会增大,在相同压力的情况下,活塞连杆对曲轴的力矩会变得更大,这就有效地增强了发动机的动力性能,可以大幅度提高机械效率和燃油效率。
    在申缩式弹性变长活塞连杆中,把弹性杆身的弹性层构造为串连的、不同约束弹力和相应不同压缩长度的多个弹性层(多级弹力的弹簧组),以构造申缩式多级弹性变长活塞连杆,其具备前面所述的多级弹性变长活塞连杆的各项优点和特性。
    弹性可变长度活塞连杆的另一种设计制造方法是,构造弓形弹性变长活塞连杆,如图4所示,图4是弓形弹性变长活塞连杆构成弹性燃烧室结构图,图中标记:1.气缸盖,2.燃烧室,3.气缸,7.活塞销,13.活塞,14.导行约束杆,15.连杆小头,16.连杆大头,17.连杆盖,19.弓形弹性杆身,20.弹性弓身(弹簧片)。弓形弹性变长活塞连杆主要分为连杆小头、连杆大头、弓形弹性杆身、连杆盖、连杆螺栓等部分组成,其结构与申缩式弹性变长活塞连杆基本相同,只是弹性杆身改变成弓形弹性杆身,弓形弹性杆身的弓身是具有弹性的弹簧片或其他弹性材料,是弹性弓身,弹性弓身的弧形两臂分别连接活塞连杆的连杆大头和连杆小头,弓弦是约束弹性弓身的活动导行约束杆,使得弹性杆身构成半刚性半弹性结构,整个活塞连杆也成为弹性储能结构的半刚性半弹性活塞连杆,其优缺点与申缩式弹性变长活塞连杆类似,但它构造更加简单。当活塞连杆的连杆大头和连杆小头受到的压力等于或小于弹力时,活塞连杆表现为刚性,燃烧室也表现为刚性;当活塞连杆两端受到的压力大于弹力时,活塞连杆的弹性弓身被压缩弹性弯曲,活塞连杆的连杆大头和连杆小头的相对位置移动并且距离缩小,活塞连杆的长度缩小,燃烧室的工质内能一部分转化为活塞连杆的弹性势能;当活塞连杆两端的受力减小时,活塞连杆长度弹性复位,活塞连杆的弹力推动曲轴,活塞连杆的弹性势能转化为负荷能。
    弓形弹性变长活塞连杆也可以构造多级弹性变长活塞连杆,将弹性杆身构造为串连的、不同约束弹力和相应不同压缩长度的多个弓形的弹性杆身,以构造弓形多级弹性变长活塞连杆,也同样具有前面所述的多级弹性变长活塞连杆的优点益处。
    弹性燃烧室对于往复活塞式内燃机具有十分重要的作用和意义。弹性燃烧室使得往复活塞式发动机具备前面所论述的弹性储能结构所具备的全部优点和作用,其中最重要的就是可以大幅度提高发动机的压缩比和热效率,还可以实现低成本的动态可变压缩比,大幅度提高发动机的动力性能和升功率,并且有利于减少甚至消除燃烧时爆燃爆震现象的发生,实现可以使用各种不同燃料的超高始燃压燃油一体往复活塞式内燃机。
   由于米勒循环技术和进气增压技术的应用,往复活塞式内燃机标记的压缩比实际上是发动机的膨胀比,膨胀比虽然对实际的压缩比有参照作用,但并不能准确地反映为实际的压缩比,比如应用米勒循环技术的汽油机,无论其压缩比(实际为膨胀比)做得有多大,都难以有效提高汽油机的热效率。另一方面,发动机通常使用固定的压缩比方式,其在不同功率和不同转速下,发动机的进气量和实际的压缩比并不相同,故发动机在一般情况下也难以达到其最佳的热效率模式。所以要简单而相对更准确地衡量发动机的热效率,应该以发动机的着火前压强(或称作始燃压)和膨胀比这两者一起作为判断发动机热效率因素更加准确和简单方便。对于过大的膨胀比主要影响机械效率和动力,其他的限制影响并不多,所以主要的决定因素就是着火前压强(始燃压)了。理论上压缩比是越大越好,但实际上最高温度和最高压强受到材料和环保要求的限制,并且需求上也受升功率和动力的要求限制,所以从理论和实际的结合情况来看,最佳的方案应该是实现动态压缩比,在小负载的情况下实现高压缩比,以实现较高的着火前压强(始燃压)和高膨胀比,在大负载情况下,实现相对小些的压缩比,以满足大进气量和大喷油量的要求。但动态压缩比的发动机设计很复杂,增加制造和维护成本,使得难以实现,所以目前通常是固定压缩比的发动机,以进气量对发动机实施有限的调节,一般都难以达到发动机的理想运行状态,也难以达到较高的热效率。
    对于往复活塞式内燃机,本发明方案构造带有弹性的燃烧室或者是半刚性半弹性的燃烧室,此弹性燃烧室是内燃机的弹性储能结构;通过设置足够的弹性空间,并设计制定燃烧室的最高弹性压强,可以控制燃烧最大压强在燃烧室最高弹性压强之下,通过设定半刚性半弹性燃烧室的起始弹性强度,可以设定燃烧室的开始弹性变形的压强;在内燃机气体压缩末期,在燃料混合气体着火前的燃烧室压强,即始燃压,大幅超越了现有内燃机的始燃压,达到10MPa压强以上,并使得始燃压以最有效率的方式接近或达到、甚至超过燃烧室开始弹性变形的压强,设定此始燃压趋向于接近燃烧最大压强,使得内燃机趋向和接近于理论上的等压加热循环模式;燃烧室弹性变形前的压强越大,越接近燃烧最大压强,则内燃机越接近于等压加热循环模式,内燃机的燃烧热效率也就越大;也就是说,始燃压应当尽可能接近燃烧最大压强。这里所谓“设定此始燃压趋向于接近燃烧最大压强”和“始燃压应当尽可能接近燃烧最大压强”是指,在发动机设计过程中,应当使得燃烧室开始弹性变形的压强尽量接近最大燃烧压强和最大弹性压强,也就是说,燃烧室的弹性系数(或倔强系数、劲度系数)应当尽量小,以至使得燃烧室开始弹性变形的压强、最大燃烧压强和最大弹性压强的差距尽量的减小,以达到最接近等压加热循环的模式;当然,由于弹性的本质,这三个压强是不可能相同的,所以也不可能实现完全理想的等压加热循环模式。
    本发明方案由于弹性燃烧室可以通过弹性膨胀来降低和控制燃气的最高温度和最高压力,使得燃烧室在着火前的气体压缩压强(始燃压)可以得到极大幅度的提升,理论上着火前的气体压强压力可以达到甚至超过弹性燃烧室的发生形变的起始压强压力,这样就可以使得压缩比可以大幅度地提高,甚至可以提高数倍!这样就可以大幅提高压缩比和热效率。当前的往复活塞式内燃机,汽油发动机的始燃压一般都较小,最大通常在2MPa左右,汽油机一般使用铝合金机体,其最大压强为3—8.5MPa,增压汽油机可达6—11MPa,汽油机的压缩比一般为9—12之间(现有最大为14);柴油发动机的始燃压较大,一般非增压柴油机在3--5MPa之间,增压柴油机在5--10MPa之间,柴油机一般使用铸铁合金机体,其最大压强一般为7—14MPa,最大甚至可达20MPa,压缩比一般为12—22之间(现有最大为25左右)。本发明方案是压缩后气体压强可接近最高压强,按铝合金机体的最高可承受压强为9—11MPa,始燃压为6—8MPa计算,理论上本发明方案的压缩比可达19—23以上,如果按柴油机的铸铁机体的最高压强为15—20MPa,始燃压为11—16MPa计算,本发明方案的最高压缩比可达29—38以上,如果按最高压强为25MPa,始燃压为20MPa计算,则最高压缩比可达44。假设压缩过程是理想绝热过程,具体理论计算如下:
    理想气体状态方程: PV/T = nR (常数)
根据理想气体状态方程和绝热过程方程,联立求解可得各状态参数关系为:
       T1/T0=(V0/V1)^(k-1) 和 T1/T0=(P1/P0)^(1-1/k)
    其中k为绝热压缩和绝热膨胀过程的绝热指数,即比热比,一般地说,单原子气体的绝热指数k为1.66,双原子气体的绝热指数k为1.41,多原子气体的绝热指数k为1.33,理想干燥空气的绝热指数约为1.4 。
    压缩比为ε,设压缩前气体压强为标准大气压P0=0.1MPa,体积为V0,温度为T0=300K,压缩后气体压强为P1,体积为V1,温度为T1,为保守起见,绝热指数取k=1.4,则可得:
    压缩末期温度T1(始燃温度):
       T1/T0=(V0/V1)^(k-1) , ε = V0/V1
       T1 = T0*ε^ (k-1)
    压缩末期压强P1(始燃压)和压缩比ε:
       P1*V1/T1 = P0*V0/T0 , ε = V0/V1
       P1/P0 = V0/V1 * (T1/T0)
       P1/P0 =ε*ε^ (k-1)
       P1/P0 =ε^k
       P1 = P0*ε^k
       ε = (P1/P0)^(1/k)
    计算压缩比ε和始燃温度T1:
        当始燃压为6MPa时,P1=6,可得:
           ε= (P1/P0)^(1/k) = (6/0.1)^(1/1.4) ≈ 18.63 ≈ 19
           T1 = T0*ε^ (k-1) = 300*18.63^(1.4-1) ≈ 966.51 K
       当始燃压为8MPa时,P1=8,可得:
           ε= (P1/P0)^(1/k) = (8/0.1)^(1/1.4) ≈ 22.87 ≈ 23
           T1 = T0*ε^ (k-1) = 300*22.87^(1.4-1) ≈ 1049.13 K
       当始燃压为10MPa时,P1=10,可得:
           ε= (P1/P0)^(1/k) = (10/0.1)^(1/1.4) ≈ 26.83 ≈ 27
           T1 = T0*ε^ (k-1) = 300*26.83^(1.4-1) ≈ 1118.33 K
       当始燃压为11MPa时,P1=11,可得:
           ε= (P1/P0)^(1/k) = (11/0.1)^(1/1.4) ≈ 28.72 ≈ 29
           T1 = T0*ε^ (k-1) = 300*28.72^(1.4-1) ≈ 1149.20 K
       当始燃压为16MPa时,P1=16,可得:
           ε= (P1/P0)^(1/k) = (16/0.1)^(1/1.4) ≈ 37.53 ≈ 38
           T1 = T0*ε^ (k-1) = 300*37.53^(1.4-1) ≈ 1279.01 K
       当始燃压为20MPa时,P1=20,可得:
           ε= (P1/P0)^(1/k) = (20/0.1)^(1/1.4) ≈ 44.01 ≈ 44
           T1 = T0*ε^ (k-1) = 300*44.01^(1.4-1) ≈ 1363.14 K
    以上都是估算的数值,不可能十分准确,但也可以充分地说明,与现有的发动机相比较,本发明方案可以大幅度地、成倍地提高压缩比,这仅仅是理论计算值,如果应用米勒循环或可变气门技术,实际压缩比可以更加大,从而可以大幅度地提升热效率。另外,从上也可以看出,由于使用空气进行压缩,所以其绝热指数过大,以致于压缩末期的始燃温度过高,如果使用尾气循环复用可以降低绝热指数,从而可以相对降低压缩末期的温度。
当前的汽油机,其燃烧方式类似为等容加热循环模型;当前的柴油机,其燃烧方式类似为混合加热循环模型;无论是汽油机还是柴油机,其压力升高比都较大,当始燃压过大时,其燃烧压力和温度都很容易就超过发动机所能承受的最高压力和最高温度,使得发动机受到破坏或者生成超量的有害污染物。而本发明方案由于使用了弹性燃烧室,可以使用高压缩比,发动机始燃压可以在10MPa以上,并尽可能接近最大燃烧压强,这超高始燃压是现有往复活塞式内燃机都不可能达到的始燃压高度,本发明方案发动机的燃烧方式接近或类似于等压加热循环模型,其模式与现有的往复活塞式内燃机模式完全不同,在最高压强受限(相当于最大压强不变)的情况下,从理论上就可以判断出本发明方案具有更高的热效率。对于同种气体工质,其定压比热容一般要比定容比热容大得多,所以在同样的加热情况下,等压模式的容积升高率要比等容模式下的压力升高率要低,并且等压模式的最高温度要低得多,这十分有利于减少废气有害物的产生,因为温度是生成氮氧化物(NO x)的主要因素,当温度低于1800K时,氮氧化物(NO x)的生成速率极低,本发明方案可以看作类似的等压加热循环模式,可以有效降低最高燃烧温度,从而能够有效减少和控制氮氧化物(NO x)的产生,使得废气排放更加环保。
本发明方案的弹性燃烧室构造,可以控制和确保燃烧最高压强在设定的压强之下,可以确保发动机燃烧过程在类似于等压加热的状态下燃烧,以保障发动机结构的安全,在确保发动机结构的安全的前提下,通过高压缩比,使得进气空气进行高度的压缩,很容易实现本发明方案的超高始燃压。
本发明方案可以通过调节进气量以实现压缩比(膨胀比)的动态可变调节,以满足不同负载的需要:在负载较小时,空气进气量也较小,始燃压一般会与燃烧室开始弹性变形的压强基本相同,压缩比(膨胀比)较大;在负载较大时,空气进气量也较大,当压缩空气的压强大于燃烧室开始弹性变形的压强时,燃烧室会弹性变形增大,而始燃压也会比燃烧室开始弹性变形的压强大,压缩比(膨胀比)会变小,可以有更多的空气进气量以支持更多的燃料燃烧,以实现更大的负载。通过调节进气量实现压缩比(膨胀比)的动态可变调节,相对于现有的机械调节压缩比,是极低成本的动态可变压缩比方法。
当前的往复活塞式内燃机基本上都是采用固定压缩比的方式,其升功率受限因素是机体最高压强、最高温度、压缩比、发动机转速等,最主要的因素是压缩比,当压缩比确定后,固定的压缩比也就确定了最大的空气进气量,所以发动机的最大升功率也就基本确定了。本发明方案由于采用了超高始燃压,始燃压与柴油机相比有较大的提高,与汽油机相比更是有数倍的提高,在相同空气进气量时,其实际压缩比与目前的发动机相比有成倍甚至数倍的提高,在相同压缩比情况下,本发明方案的空气进气量要比传统发动机的多得多,甚至可能是数倍之多(与汽油机相比较),并且本发明方案还可以根据需要通过进气量对压缩比进行动态调节,使得最大进气量可以比现有的发动机提高达到3倍甚至更多的数倍以上,而空气进气量决定了发动机每循环所能够燃烧的燃料数量,在最高转速不变的情况下,也就基本决定了发动机的升功率。以上分析可以看得出,本发明方案的空气进气量可以提升到当前发动机的数倍以上,其升功率也可以提升到数倍以上。
    在内燃机的运行过程中,其工作状况会经常发生变化,比如负载大小的变化、内燃机转速变化等等,但为了确保其热效率能够维持在相当的水平,不管其工况如何不同,必须要确保内燃机的始燃压维持在本发明方案超高始燃压相当的水平。将始燃压维持到本发明方案的超高始燃压水平的一个方法是,使用高压缩比的米勒循环以调节空气进气量和始燃压;当负载较小或发动机转速较小时,所需要的空气进气量也较小,在米勒循环下发动机的实际压缩比要比膨胀比小得多,但确保发动机始燃压达到本发明方案的超高始燃压;当负载较大或发动机转速较大时,所需要的空气进气量也较大,实现米勒循环调节,发动机的实际压缩比也要相应地动态提高,以保证发动机维持同样水平的超高始燃压,以保持同样水平的燃烧热效率;这就使得内燃机在不同负载或者不同转速情况下,实现米勒循环调节,确保维持同样水平的超高始燃压,以保持同样水平的燃烧热效率。将始燃压维持到本发明方案的超高始燃压水平的另一个方法是,使用高压缩的进气增压以调节空气进气量和始燃压,当负载较小或发动机转速较小时,所需要的空气进气量也较小,可以不使用进气增压或者比较小的进气增压,但确保发动机始燃压达到本发明方案的超高始燃压;当负载较大或发动机转速较大时,所需要的空气进气量也较大,使用较大的进气增压进行调节,以保证发动机维持同样水平的超高始燃压,以保持同样水平的燃烧热效率;这就使得内燃机在不同负载或者不同转速情况下,通过使用高压缩的进气增压调节,确保维持同样水平的超高始燃压,以保持同样水平的燃烧热效率。
    在本发明方案中,由于始燃压很高,着火前的温度也很高,对于汽油燃料,如果采用和汽油发动机一样预喷油的混合燃料方式,必定会导致混合气体在压缩过程中就发生自燃,发生过早着火的情况,这也就不可能达到预期的效果。在本发明方案,汽油或者其他燃料都必须使用压燃着火的方式,一方面着火前压强(始燃压)和着火前温度都比较高,这为压燃着火提供了充分条件,并且可以使得燃烧过程十分迅速;另一方面,本发明方案有利于抑制和防止爆燃的发生;由于汽油燃料抗爆性能差,容易发生爆燃,但爆燃的发生与燃烧时的压力升高率密切相关,并且爆燃发生由爆炸浓度极限所决定;本发明方案是理论上类似于等压加热循环模型,使得燃烧时燃烧室压力升高率较低,可以有效地抑制和防止爆燃和爆振发生的因素,只要确保燃料混合气体在爆炸浓度极限之外,就可以有效地控制和防止爆燃的发生。爆炸浓度极限是指可燃性物质与空气(或氧气,或其他氧化剂)必须在一定浓度范围内均匀混合,形成混合气体,着火就会发生爆炸,这个浓度范围称为爆炸浓度极限,简称爆炸极限。因此,本发明方案中,在使用抗爆性能差的燃料时,比如汽油,必须使得混合气的浓度低于爆炸浓度极限,这就要求燃料供给必须像柴油机一样,在压缩空气的末期高压均匀地喷射进燃烧室,以实现压燃式燃烧,并且通过控制每次喷射燃料的量,使得混合气燃烧时其浓度低于爆炸浓度极限,以实现稀薄燃烧,以防止爆燃的发生。在混合气体进行稀薄燃烧时,由于控制每次喷射的燃料量较少,一次喷射燃料量可能达不到负载的要求,可以通过多次脉冲式燃料喷射,分阶段燃烧,以满足每次循环燃烧所需要的燃料燃烧的量,来达到满足每次循环负载的需要;在本发明方案中,由于着火前压强(始燃压)和着火前温度都很高,形成混合气和滞燃期会十分短暂,所以燃烧过程也会很短,使得燃烧十分迅速,也就可以满足多次脉冲式燃料喷射燃烧的需要;可根据每种不同燃料的特性来调节脉冲式燃料喷射燃烧,对每次燃料喷射的量以及脉冲喷射的时间间隔,可以根据燃料燃烧的不同特性进行适当的调节;比如抗爆性能较差的汽油,则按其爆炸浓度极限相应减少每次喷油量,但其燃烧速度较快,每次脉冲喷射的时间间隔也可以相应缩小;对于抗爆性能较好的柴油,则按其爆炸浓度极限相应增加每次喷油量,但其燃烧速度相对较慢,每次脉冲喷射的时间间隔也可以相应增加;对于混合燃料则根据其特性和实验或实际检测数据,相应调节每次的喷油量和脉冲喷射间隔,以实现燃料的完全畅顺燃烧;此外,对于不同的燃油燃料,还要根据其燃烧特性控制调节发动机的最大转速。因此,在本发明方案,不再需要区分汽油机和柴油机,根据需要,可以分别使用汽油或柴油,甚至可以使用其他各种混合燃料,这就实现了可以使用各种不同燃料的往复活塞式燃油一体发动机。
    本发明方案也可以根据燃烧室容积对多次脉冲式燃料喷射燃烧进行调节。在活塞运行到上顶点时,活塞和连杆的速度很慢,对于现有的往复活塞式内燃机来说,此时的燃烧相当于等容加热,但本发明方案是近似于等压加热循环模型,此时则相当于等压加热,燃烧室容积会随着燃烧而弹性扩张,为了确保混合气燃烧时其浓度低于爆炸浓度极限,以实现稀薄燃烧,当燃烧室容积较小时,每次脉冲喷射的燃料量和脉冲喷射间隔都应当比较小,随着燃烧室容积的弹性扩大,每次脉冲喷射的燃料量和脉冲喷射间隔也可以相应增大,使得燃料混合气可以更加迅速、畅顺燃烧。
    本发明方案实现了超高始燃压,使得着火前具备高温高压,有利于燃料混合气的迅速和充分燃烧,燃料燃烧充分有利于减少废气有害物的产生。本发明方案与柴油机一样采用混合气压燃着火方式,并且采用混合气浓度较低的稀薄燃烧,也必然与柴油机一样采用较大的空燃比,使得一氧化碳的排放几乎为零,这也极大地减少和控制废气有害物的排放。
 
有益效果
本发明方案有储多的有益效果,有益效果都取得了显著的进步,甚至部分有益效果是飞跃式的进步,现将前面所述的有益效果归纳如下:
1、大幅度提高压缩比,从而大幅度地提升热效率。
2、最高温度大幅度降低,有效减少传热散失消耗,有效提高热效率。
3、大幅度降低和限制最高温度和最高压力,保护机体以免损害。
4、大幅度减少有害物的排放。
5、大幅度提高发动机的活塞平均压力和平均力矩,从而大幅度地提高发动机的动力性能、功率和升功率。
6、有效减少和避免粗爆燃烧和爆燃的发生,促进发动机平稳燃烧,有效减小燃烧噪声。
7、有效减小摩擦以提高机械效率。
8、大幅度提高初始燃烧压力(始燃压)和初始燃烧温度,可以大幅度提高燃烧速度,提高发动机转速,得以提高发动机升功率。
9、有效减轻机体质量,提高发动机的功率质量比(功重比)。
10、使得往复活塞式内燃机理论上近似于等压加热循环模式,并具备此理论循环模式的各项优点。
11、实现往复活塞式内燃机的低成本动态可变压缩比。
12、可以实现往复活塞式燃油一体发动机,可以使用各种燃油燃料。
附图说明
下面对附图及其标记进行说明:
       图1是内芯式弹性变长活塞构成弹性燃烧室结构图。
       图2是分离式弹性变长活塞构成弹性燃烧室结构图。
       图3是申缩式弹性变长活塞连杆构成弹性燃烧室结构图。
       图4是弓形弹性变长活塞连杆构成弹性燃烧室结构图。
    图中标记说明:
1.气缸盖,2.燃烧室,3.气缸,4.活塞外套,5.弹性层(弹簧组),6.活塞内芯,
7.活塞销,8.活塞连杆,9.活塞顶盖,10.导行柱,11.销座部,12.活塞裙,
13.活塞,14.导行约束杆,15.连杆小头,16.连杆大头,17.连杆盖,
18.弹性杆身,19.弓形弹性杆身,20.弹性弓身(弹簧片)。
本发明的最佳实施方式
超高始燃压燃油一体往复活塞式内燃机
 
    本发明方案实施实例为超高始燃压燃油一体往复活塞式内燃机,这就是,始燃压在10MPa以上,并且可以分别使用各种燃油的往复活塞式发动机。本实例具体设计制造方法是,在现有的增压柴油机的基础上,对活塞、进气和喷油等作相应的设计改造,使得活塞成为弹性可变长活塞,燃烧室具备弹性成为弹性储能结构,使得发动机达到本发明方案的各项功能。发动机采用铸铁合金机体,可承受25MPa以上的压强压力;活塞使用半刚性半弹性的弹性变长活塞;设定活塞弹性起始压强为20MPa,最大压强为25MPa,最大膨胀比(压缩比)为60,实际膨胀比(压缩比)可以通过进气量在8—60的范围内按需进行调节;气门采用电控气门,使用米勒循环,确保需要的精确进气量;增压采用涡轮增压器;发动机为1.6升排量的四缸发动机,每气缸0.4升排量;在本发明方案中,为提高机械效率和减轻活塞连杆的压力,气缸直径应短些,活塞行程应该较长些,为简单起见采用气缸容积直径与长度比为0.8,计算可得:
    实际的静态压缩比(根据理想气体绝热过程计算):
       ε = (P1/P0)^(1/k)
    以上公式中,ε为压缩比,P0为压缩前压强,取P0为大气压,P0=0.1 MPa,P1为压缩末期压强或者是着火前压强(始燃压),即燃烧室弹性起始压强,P1=20MPa,k为绝热指数,按保守计取为空气的绝热指数,k=1.4,则实际的静态压缩比为:
    ε = (P1/P0)^(1/k)
    ε = (20/0.1)^(1/1.4)
    ε ≈ 44
    此压缩比就是应用米勒循环所使用的静态压缩比,实际压缩比应以始燃压为20MPa标准进行相应调节,需要加大进气量和增加负载的,按需要进气进行调节。
气缸或活塞直径D,气缸容积长度L:
    V = πD^2L/4 ,V = 0.4 * 10e(-3) * 10e9, D = 0.8*L
    D^3 = 0.8*4*V/π = 1.28 * 10e6 / π = 407436.65
    D ≈ 74.13 mm
    L = D / 0.8 = 74.13 / 0.8 ≈ 92.66 mm
活塞行程S(按压缩比或膨胀比60计算,活塞行程也是曲轴旋转直径长度,是曲柄半径的2倍):
    S = L - L / 60 = 92.66 - 92.66 / 60 ≈ 91.12 mm
活塞连杆长度l(一般为曲柄半径的3倍):
    l = S / 2 * 3 = 91.12 / 2 * 3 = 136.68 ≈ 137 mm
活塞弹性可压缩长度(设定为最小压缩比或膨胀比为8,按本例在符合环保标准情况下预膨胀比应不超过2倍,在此设定为3倍):
    L1 = L / 8 * 3 - L / 60 = 92.66/8*3 - 92.66/60 ≈ 33.20 ≈ 34  mm
(据此可以得出:活塞到上顶点时燃烧室最大与最小容积之比为60/8=7.5,也就是说每循环空气进气量最少可以在1—7.5倍之间动态调节,每循环燃料量最少可以在[0-1]—7.5之间动态调节;理论上膨胀比可以更小些,同时最大功率和动力也可以更大,但相应的热效率也会降低。)
活塞弹性起始弹力:
    F1 = P1 * πD^2/4 = 20 * π * 74.13^2 / 4 ≈ 86319.29 N ≈ 8808.09 kg
活塞弹性最大弹力:
    F2 = P2 * πD^2/4 = 25 * π * 74.13^2 / 4 ≈ 107899.12 N ≈ 11010.11 kg
活塞弹性倔强系数(弹性系数)K:
    F2 = K*x + F1
    K = (F2-F1)/x = (11010.11-8808.09)/ 34 ≈ 64.77
在膨胀比为60,没有使用尾气处理,并且在环保标准下工作状态时(最高温度不超过1800K),最大预膨胀比ρ值:
    设压缩末期(开始燃烧时)的状态分别为P1、V1、T1,预膨胀后状态分别为P2、V2、T2,为符合环保标准要求T2=1800K,则有:
    P1*V1/T1 = P2*V2/T2 ,V2/V1=ρ ,V1 = L / 60
    P1 = F1 / s
    P2 = (F1 + K*(ρ-1)*( L / 60))/s
    T1 = T0*ε^(k-1) , T0 = 300 K , ε = 44 , k = 1.4(压缩时值)
   可得:
     ρ = 1.32
也就是说,在膨胀比为60时,环保标准状态下工作,预膨胀比ρ值不应超过1.32,在此状态下工作才不容易生成氮氧化物。同样计算可得,当膨胀比为8时,预膨胀比ρ的最大值为1.26,其他类推,应在这两者之间。如果加强尾气处理,包括尾气复用和尾气净化处理等,使最高温度可以得到提高,可以使得预膨胀比ρ值提高,可以使用更大的混合气浓度和加大喷油量,从而大幅度提高发动机的升功率和动力性能。
    分别按以上计算结果确定活塞弹簧弹力和弹性系数,活塞所受的压力和对弹性的约束拉力也必须能承受以上计算的结果,活塞弹性可压缩长度是燃烧室的弹性空间,以此来设计制造弹性变长活塞。本发明方案燃油一体发动机的一个很重要和关键的设计是喷油方式,燃油喷射系统可以采用与现有柴油机类似的高压电控共轨式喷油系统,燃油的喷射压力应与现有柴油机一致,喷射压力可达80-160MPa,可采用多个喷嘴分散喷射,并且分多次间隔脉冲式喷射,根据燃油特性控制每次喷射燃油量,间隔分段燃烧,以此来控制燃烧过程,减少粗爆燃烧,避免爆燃的发生。由于燃烧室最高温度和压力保持时间较长,所以对活塞的密封也必须加强。对于不同的燃油,因为燃油燃烧速度不同,甚至可能会相差很大,比如汽油和柴油的燃烧速度就有比较大的差异,必须对不同的燃油设定相应的喷射时间和间隔时间的不同喷油方式,具体精确的喷射和时间间隔需要经测试后确定;对于不同的燃油,还必须设定不同的最大转速限制。
    本实例发动机的运行过程。本实例发动机同样具备普通往复活塞式发动机的进气、压缩、燃烧和膨胀做功、排气四个工作循环过程。在发动机启动的时候,进气时通过电控气门控制吸进较少量的空气量,但必须达到压燃着火的压强和温度(不同的燃料具体要求不同),由于进气量较少,压缩时需要消耗的能量相对较少。在发动机正常运行时,在进气和压缩行程中,当负载较小时,由于使用米勒循环,电控气门在压缩过程中才关闭,使得实际压缩比要小于膨胀比,但确保始燃压达到设计的20MPa,在空气压缩末期,在点火提前角(最佳点火提前角需实际测定)喷射高压燃油,喷油方式必须是多次间隔喷射,并且限制每次喷射的燃油量,以形成稀薄的混合燃气,以防止爆燃发生,由于处于较高的温度和压强下,燃油的燃烧十分迅速,此时燃烧室在燃烧过程相当或类似于等压燃烧,燃烧室弹性膨胀做功,工质内能也转化为活塞的弹性势能,随着曲轴的转动,发动机能量的转化是工质内能同时转化为弹性势能和对负载做功,在曲轴转动一定角度后,工质内能完成部分转移,当压力小于弹力时,工质内能和弹性势能同时转化为对负载做功;在做功过程,当活塞接近下止点时,电控气门打开,将废气排出;这就完成了发动机启动的四个工作过程。当负载较大时,可以使用米勒循环通过电控气门和增压器控制进气的空气量,增加实际压缩比和增加进气增压,以适应负载的要求,当进入的空气量较大时,在着火前活塞可能被部分压缩,实际膨胀比会有所减小,始燃压也会有所提高,发动机每次循环的燃油量也会增加,但发动机的功率和动力性能会得到提高;按本例设计,发动机的膨胀比可以在8—60之间动态调节,空气进气量和每循环燃料量最少可以在1—7.5倍之间进行动态调节。
    对本发明实例的性能估算。目前汽油机的压缩比普遍在9--12之间,其着火前压强(始燃压)一般为1—2MPa左右;柴油机的压缩比一般为12—22,其着火前压强(始燃压)可达3—10MPa(包括增压的情况);而本发明案例的压缩比(膨胀比)为8—60,通常为60,着火前压强(始燃压)最低为20 MPa;可以清楚看到,本发明案例与目前的燃油发动机相比,无论是实际压缩比还是着火前压强(始燃压)都有很大幅度的提高,甚至是数倍的提升,其热效率和升功率也必定会有大幅度的提高;如果按进气量对功率和动力进行估算(以始燃压和压缩比为已知条件,按理论绝热压缩的逆过程可计算出相对空气进气量的比例),对于同等气缸排量的发动机,本发明案例的最大进气量是同等排量汽油机(最高始燃压为2MPa左右,压缩比为10)的6.5倍以上,是一般柴油机(最高始燃压为3-5MPa左右,压缩比为18)的6倍以上,是增压柴油机(最高始燃压为5--10MPa,压缩比为16)的3.2倍以上;也就是说,本发明案例发动机的空气进气量是汽油机或一般柴油机或是增压柴油机的数倍以上,即使本发明案例使用稀燃方式,升功率仍有成倍以上的提高;这还是以发动机相同转速的情况下的估算,但实际上由于本发明方案始燃压和着火前温度都有大幅度提高,所以其燃料的燃烧过程也必定更加迅速,发动机的转速也必定可以有较大的提高,实际的升功率和动力应该还会更大。按理想模型进行估算(按照理论等压加热循环模型进行计算,按简单模型计算,没计算涡轮增压部分效率,但计算了部分米勒循环影响),本发明案例的理论热效率最大值大约为73%左右,参照现有的实际发动机热效率与理论值对比,可以估算得出的本发明案例的实际热效率最大值大约为61%左右。
工业实用性
本发明符合内燃机的基本理论,引入了新的能量转换方式,实现了工质内能的能量迅速转化,可以有效降低和控制燃烧的最高温度和最高压力,材料要求也没有超出现有的标准,设计及工艺相对简单,制造成本相对也比较低,但有益效果却可以大幅超越现有的水平,可以大幅度提高内燃机的压缩比、热效率、动力性能和升功率,实现低成本的动态可变压缩比,有效提高功率质量比,并且大幅度降低有害物的排放,实现可以使用各种不同燃料的超高始燃压燃油一体往复活塞式内燃机,适合大规模制造和应用,实用性强。

Claims (12)

  1. 一种内燃机,其特征是:内燃机包含有弹性储能结构,弹性储能结构是一个具有弹性的结构,其功能作用是可以存储能量和迅速转换弹性势能;当燃烧工质膨胀做功所引起的力或力矩大于弹性储能结构的弹力或弹力力矩时,弹性储能结构发生弹性形变,工质内能转化为弹性储能结构的弹性势能,当弹性储能结构的外部应力小于其弹力时,储存的弹性势能转化为负荷能;也就是,内燃机燃烧工质膨胀做功过程中,其工质内能除转化为负荷能外,工质内能也可以转化为弹性势能,然后保存的弹性势能再转化为负荷能,即是附加了工质内能转化为弹性势能再转化为负荷能的过程。
  2. 根据权利要求1所述的内燃机,其特征是:燃烧室构造是带有弹性的燃烧室或者是半刚性半弹性的燃烧室,此弹性燃烧室作为内燃机的弹性储能结构,内燃机的能量转化过程附加了工质内能转化为燃烧室的弹性势能再转化为负荷能的过程。
  3. 根据权利要求2所述的内燃机的一种设计制造方法,其特征是:构造带有弹性的燃烧室或者是半刚性半弹性的燃烧室,此弹性燃烧室作为内燃机的弹性储能结构,内燃机的能量转化过程附加了工质内能转化为燃烧室的弹性势能再转化为负荷能的过程;在气体压缩过程中,燃烧室表现为刚性压缩或有限弹性压缩;在内燃机燃料燃烧和燃烧工质做功过程中,燃烧室表现为半刚性半弹性,当燃烧室压强等于或低于预设定值时,燃烧室体现为刚性,当燃烧室压强增加到大于预设定值时,燃烧室表现为弹性,并发生弹性形变,工质内能迅速转化为燃烧室弹性势能,当燃烧室压强减小时,保存的燃烧室弹性势能转化为负荷能。
  4. 根据权利要求3所述的内燃机设计制造方法,其特征是:燃烧室开有孔洞直接连接一个弹性气缸,弹性气缸与燃烧室共同组成半刚性半弹性空间形成弹性燃烧室,此弹性燃烧室为弹性储能结构;当燃烧室的压强小于或等于预设定值时,弹性气缸表现为刚性,燃烧室也表现为刚性;当燃烧室的压强大于预设定值时,弹性气缸被压缩,燃气进入弹性气缸空间,整个燃烧室发生弹性形变,燃烧工质膨胀做功,工质内能转化为弹性气缸的弹性势能;当燃烧室的压强减小时,弹性气缸恢复,弹性势能转化为负荷能。
  5. 根据权利要求3所述的往复活塞式发动机设计制造方法,其特征是:其活塞使用半刚性半弹性可变长度活塞,活塞的长度弹性可变,此活塞是弹性可变长度活塞,是一个弹性储能结构;发动机气缸、气缸盖、活塞一起构成半刚性半弹性的燃烧室,此弹性燃烧室为弹性储能结构;当燃烧室的压强等于或低于预设定值时,其活塞表现为刚性,燃烧室也表现为刚性;当燃烧室的压强大于预设定值时,活塞表现为弹性,燃烧室也表现为弹性,活塞被弹性压缩,活塞长度缩小,工质内能转化为活塞中的弹性势能,当燃烧室的压强减小时,活塞长度弹性恢复,弹性势能转化为负荷能。
  6. 根据权利要求3所述的往复活塞式发动机设计制造方法,其特征是:构造弹性可变长度活塞连杆,其活塞连杆长度弹性可变,是半刚性半弹性的活塞连杆,此活塞连杆是一个弹性储能结构,使得发动机的气缸、气缸盖、活塞和活塞连杆一起构成半刚性半弹性的燃烧室,此弹性燃烧室为弹性储能结构;当燃烧室压强等于或低于预设定值时,活塞连杆表现为刚性,燃烧室也表现为刚性;当燃烧室的压强大于预设定值时,活塞连杆表现为弹性,燃烧室也表现为弹性,活塞连杆被弹性压缩,工质内能转化为活塞连杆中的弹性势能,当燃烧室的压强减小时,活塞连杆长度弹性恢复,弹性势能转化为负荷能。
  7. 根据权利要求3所述的往复活塞式发动机设计制造方法,其特征是:活塞式发动机气缸与气缸盖之间可以活动以改变燃烧室的空间大小,内燃机气缸与气缸盖之间是半刚性半弹性的连接,形成弹性燃烧室,此弹性燃烧室为弹性储能结构;当燃烧室的压强等于或低于预设定值时,其气缸与气缸盖之间为刚性不活动的,燃烧室空间不变;当燃烧室的压强大于预设定值时,其气缸与气缸盖之间作弹性移动,燃烧室空间增大,工质内能转化为气缸与气缸盖之间的弹性势能,当燃烧室的压强减小时,气缸与气缸盖弹性恢复,弹性势能转化为负荷能。
  8. 根据权利要求2所述的往复活塞式内燃机,其特征是:构造带有弹性的燃烧室或者是半刚性半弹性的燃烧室,此弹性燃烧室是内燃机的弹性储能结构;通过设置足够的弹性空间,并设计制定燃烧室的最高弹性压强,可以控制燃烧最大压强在燃烧室最高弹性压强之下,通过设定半刚性半弹性燃烧室的起始弹性强度,可以设定燃烧室的开始弹性变形的压强;在内燃机气体压缩末期,在燃料混合气体着火前的燃烧室压强,即始燃压,大幅超越了现有内燃机的始燃压,达到10MPa压强以上,并使得始燃压以最有效率的方式接近或达到、甚至超过燃烧室开始弹性变形的压强,设定此始燃压趋向于接近燃烧最大压强,使得内燃机趋向和接近于理论上的等压加热循环模式;燃烧室弹性变形前的压强越大,越接近燃烧最大压强,则内燃机越接近于等压加热循环模式,内燃机的燃烧热效率也就越大;也就是说,始燃压应当尽可能接近燃烧最大压强。
  9. 根据权利要求8所述的往复活塞式内燃机的一种设计制造方法,其特征是:通过调节进气量以实现压缩比(膨胀比)的动态可变调节,以满足不同负载的需要:在负载较小时,空气进气量也较小,始燃压与燃烧室开始弹性变形的压强基本相同,压缩比(膨胀比)较大;在负载较大时,空气进气量也较大,当压缩空气的压强大于燃烧室开始弹性变形的压强时,燃烧室会弹性变形增大,而始燃压也会比燃烧室开始弹性变形的压强大,压缩比(膨胀比)会变小,可以有更多的空气进气量以支持更多的燃料燃烧,以实现更大的负载。
  10. 根据权利要求8所述的往复活塞式内燃机的一种设计制造方法,其特征是:在内燃机气体压缩过程中,使用高压缩比的米勒循环以调节空气进气量和始燃压,使得燃烧室始燃压维持达到权利要求8所述的燃烧室始燃压;当负载较小或发动机转速较小时,所需要的空气进气量也较小,在米勒循环下发动机的实际压缩比要比膨胀比小得多,但确保发动机始燃压达到本发明方案的超高始燃压;当负载较大或发动机转速较大时,所需要的空气进气量也较大,实现米勒循环调节,发动机的实际压缩比也要相应地动态提高,以保证发动机维持同样水平的超高始燃压,以保持同样水平的燃烧热效率。
  11. 根据权利要求8所述的往复活塞式内燃机的一种设计制造方法,其特征是:在内燃机气体压缩过程中,使用高压缩的进气增压以调节空气进气量和始燃压,使得燃烧室始燃压达到权利要求8所述的燃烧室始燃压;当负载较小或发动机转速较小时,所需要的空气进气量也较小,可以不使用进气增压或者比较小的进气增压,但确保发动机始燃压达到本发明方案的超高始燃压;当负载较大或发动机转速较大时,所需要的空气进气量也较大,使用较大的进气增压进行调节,以保证发动机维持同样水平的超高始燃压,以保持同样水平的燃烧热效率。
  12. 根据权利要求8所述的往复活塞式内燃机的一种设计制造方法,其特征是:通过控制每次喷射燃料的量,使得混合气燃烧时其浓度低于爆炸浓度极限,以实现稀薄燃烧,以防止爆燃的发生;通过多次脉冲式燃料喷射,分阶段燃烧,以满足每次循环燃烧所需要的燃料燃烧的量,来达到满足每次循环负载的需要;根据每种不同燃料的特性来调节脉冲式燃料喷射燃烧,对每次燃料喷射的量以及脉冲喷射的时间间隔,根据燃料燃烧的不同特性进行适当的调节;对于不同的燃油燃料,还要根据其燃烧特性控制调节发动机的最大转速;以此实现可以使用各种不同燃料的往复活塞式燃油一体发动机。
PCT/CN2019/100321 2018-10-19 2019-08-13 内燃机及其设计制造方法 WO2020078083A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910370596.7 2018-10-19
CN201910370596.7A CN110344940A (zh) 2018-10-19 2018-10-19 超高始燃压往复活塞式内燃机及其设计制造方法
CN201811219095.0A CN110344939A (zh) 2018-10-19 2018-10-19 内燃机及其设计制造方法
CN201811219095.0 2018-10-19

Publications (1)

Publication Number Publication Date
WO2020078083A1 true WO2020078083A1 (zh) 2020-04-23

Family

ID=68173793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100321 WO2020078083A1 (zh) 2018-10-19 2019-08-13 内燃机及其设计制造方法

Country Status (3)

Country Link
CN (2) CN110344940A (zh)
TW (1) TW202043612A (zh)
WO (1) WO2020078083A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114738231A (zh) * 2022-05-13 2022-07-12 耐力股份有限公司 一种新能源全无油二级活塞式空压机
CN115234387A (zh) * 2022-07-14 2022-10-25 北京理工大学 一种对置活塞发动机全工况功率和热效率双元调控方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111425313A (zh) * 2020-03-20 2020-07-17 唐为民 一种可变压缩比的组合活塞

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1037011A (zh) * 1988-04-15 1989-11-08 郭景坤 内燃机变连杆长度可变压缩比装置
EP0488431A2 (en) * 1990-11-08 1992-06-03 Giuseppe Mignone Internal combustion engine with variable combustion chamber
US20060005793A1 (en) * 2004-04-02 2006-01-12 Combustion Electromagnetics, Inc. High efficiency high power internal combustion engine operating in a high compression conversion exchange cycle
CN101042069A (zh) * 2007-04-27 2007-09-26 靳宇男 高效发动机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2323742A (en) * 1942-03-19 1943-07-06 Philip S Webster Internal combustion engine piston
CN1104715A (zh) * 1994-07-29 1995-07-05 徐文辉 弹性节能降污增力延寿内燃机
US5769042A (en) * 1995-04-26 1998-06-23 Popadiuc; Ovidiu Petru Method of operating an internal combustion engine during a combustion process
CN1188845A (zh) * 1997-01-21 1998-07-29 株式会社五十铃硅酸盐研究所 发动机的燃烧室构造
US6935299B2 (en) * 2003-03-26 2005-08-30 Siegfried Meyer Spring-supported crankshaft coupling structure for engine
CN2828338Y (zh) * 2005-06-01 2006-10-18 胡在权 一种内燃机可伸缩连杆
CN100464063C (zh) * 2005-06-18 2009-02-25 秦强 蓄能式发动机
CN102606301A (zh) * 2012-04-17 2012-07-25 李德杰 具有储能弹簧的往复活塞式内燃发动机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1037011A (zh) * 1988-04-15 1989-11-08 郭景坤 内燃机变连杆长度可变压缩比装置
EP0488431A2 (en) * 1990-11-08 1992-06-03 Giuseppe Mignone Internal combustion engine with variable combustion chamber
US20060005793A1 (en) * 2004-04-02 2006-01-12 Combustion Electromagnetics, Inc. High efficiency high power internal combustion engine operating in a high compression conversion exchange cycle
CN101042069A (zh) * 2007-04-27 2007-09-26 靳宇男 高效发动机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114738231A (zh) * 2022-05-13 2022-07-12 耐力股份有限公司 一种新能源全无油二级活塞式空压机
CN115234387A (zh) * 2022-07-14 2022-10-25 北京理工大学 一种对置活塞发动机全工况功率和热效率双元调控方法
CN115234387B (zh) * 2022-07-14 2023-10-10 北京理工大学 一种对置活塞发动机全工况功率和热效率双元调控方法

Also Published As

Publication number Publication date
TW202043612A (zh) 2020-12-01
CN110344939A (zh) 2019-10-18
CN110344940A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
WO2020078083A1 (zh) 内燃机及其设计制造方法
US7975485B2 (en) High efficiency integrated heat engine (HEIHE)
CN104213976B (zh) 天然气发动机燃烧方法及使用该方法的增压天然气发动机
Zheng et al. Effect of the compression ratio on the performance and combustion of a natural-gas direct-injection engine
Furuhama et al. High output power hydrogen engine with high pressure fuel injection, hot surface ignition and turbocharging
Wang et al. The development trend of internal combustion engine
CN110939506A (zh) 一种分置式大膨胀比发动机
WO2011125976A1 (ja) 熱機関および該熱機関を用いた発電システム
WO2020078088A1 (zh) 弹性变长活塞及其设计制造方法
US20170184061A1 (en) Efficient thermal energy power engine and work-doing method therefor
Zhang et al. Investigation of the combustion deterioration of an automotive diesel engine under transient operation
CN202325851U (zh) 一种可变压缩比对置活塞均质压燃发动机
CN114017178B (zh) 一种稀薄燃烧控制方法、控制装置及氢气发动机系统
CN111396199B (zh) 活塞式发动机稳压储能方法及该方法使用的活塞
WO2020078089A1 (zh) 弹性变长活塞连杆及其设计制造方法
Bakar et al. The internal combustion engine diversification technology and fuel research for the future: A Review
Leu et al. Effect of different fuels (methane, methanol, and hydrogen) on rotary engine operation
CN207278355U (zh) 一种带有可控制转速压气机的自供电增压汽油机
US20170159620A1 (en) Thermal energy power device and work-doing method therefor
Isshiki et al. Experimental Study of Spark-Assisted Auto-Ignition Gasoline Engine with Octagonal Colliding Pulsed Supermulti-Jets and Asymmetric Double Piston Unit
CN111648878A (zh) 一种超临界水燃烧环境往复活塞式内燃机及其燃烧方法
JP2005163686A (ja) 混合気を圧縮自着火させる自着火運転が可能な内燃機関
Sinyavski et al. Simulation of Parameters of Locomotive Diesel, Gas Diesel and Gas Engines Using Multi-Zone and One-Zone Models
CN204082319U (zh) 一种高压储能热能动力机器
RU118690U1 (ru) Двигатель внутреннего сгорания

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19872614

Country of ref document: EP

Kind code of ref document: A1