WO2020077246A1 - Methods, devices, and compositions for measuring and inducing cell-to-cell communication, and therapeutic uses thereof - Google Patents
Methods, devices, and compositions for measuring and inducing cell-to-cell communication, and therapeutic uses thereof Download PDFInfo
- Publication number
- WO2020077246A1 WO2020077246A1 PCT/US2019/055912 US2019055912W WO2020077246A1 WO 2020077246 A1 WO2020077246 A1 WO 2020077246A1 US 2019055912 W US2019055912 W US 2019055912W WO 2020077246 A1 WO2020077246 A1 WO 2020077246A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- region
- cell
- subject
- biophoton
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 210
- 230000001939 inductive effect Effects 0.000 title claims abstract description 31
- 230000001225 therapeutic effect Effects 0.000 title claims description 16
- 239000000203 mixture Substances 0.000 title description 37
- 230000008568 cell cell communication Effects 0.000 title description 14
- 230000008859 change Effects 0.000 claims abstract description 98
- 239000000126 substance Substances 0.000 claims abstract description 80
- 230000000694 effects Effects 0.000 claims abstract description 68
- 239000012620 biological material Substances 0.000 claims abstract description 67
- 230000001413 cellular effect Effects 0.000 claims abstract description 52
- 230000000977 initiatory effect Effects 0.000 claims abstract description 45
- 210000004027 cell Anatomy 0.000 claims description 605
- 108090000623 proteins and genes Proteins 0.000 claims description 140
- 230000005855 radiation Effects 0.000 claims description 134
- 102000004169 proteins and genes Human genes 0.000 claims description 121
- 239000000463 material Substances 0.000 claims description 111
- 238000011282 treatment Methods 0.000 claims description 103
- 210000000170 cell membrane Anatomy 0.000 claims description 61
- 210000000056 organ Anatomy 0.000 claims description 47
- 230000015572 biosynthetic process Effects 0.000 claims description 42
- 230000030833 cell death Effects 0.000 claims description 42
- 230000008878 coupling Effects 0.000 claims description 41
- 238000010168 coupling process Methods 0.000 claims description 41
- 238000005859 coupling reaction Methods 0.000 claims description 41
- 230000011664 signaling Effects 0.000 claims description 41
- 238000006243 chemical reaction Methods 0.000 claims description 40
- 238000001727 in vivo Methods 0.000 claims description 39
- 230000037361 pathway Effects 0.000 claims description 39
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 38
- 230000005540 biological transmission Effects 0.000 claims description 37
- 239000003795 chemical substances by application Substances 0.000 claims description 33
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 33
- 210000004204 blood vessel Anatomy 0.000 claims description 32
- 239000004020 conductor Substances 0.000 claims description 32
- 230000004913 activation Effects 0.000 claims description 30
- 210000002569 neuron Anatomy 0.000 claims description 29
- 230000005641 tunneling Effects 0.000 claims description 28
- 239000003814 drug Substances 0.000 claims description 26
- 230000000638 stimulation Effects 0.000 claims description 26
- 230000005284 excitation Effects 0.000 claims description 25
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 23
- 239000012237 artificial material Substances 0.000 claims description 21
- 230000032258 transport Effects 0.000 claims description 21
- 230000005684 electric field Effects 0.000 claims description 20
- 230000005670 electromagnetic radiation Effects 0.000 claims description 20
- 229940079593 drug Drugs 0.000 claims description 19
- 235000012000 cholesterol Nutrition 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 18
- 230000010261 cell growth Effects 0.000 claims description 17
- 230000008929 regeneration Effects 0.000 claims description 17
- 238000011069 regeneration method Methods 0.000 claims description 17
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 claims description 16
- 230000004907 flux Effects 0.000 claims description 16
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 claims description 15
- 239000003153 chemical reaction reagent Substances 0.000 claims description 15
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 claims description 14
- 230000002085 persistent effect Effects 0.000 claims description 14
- QYSXJUFSXHHAJI-YRZJJWOYSA-N vitamin D3 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-YRZJJWOYSA-N 0.000 claims description 14
- 235000005282 vitamin D3 Nutrition 0.000 claims description 14
- 239000011647 vitamin D3 Substances 0.000 claims description 14
- 229940021056 vitamin d3 Drugs 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 12
- 230000003993 interaction Effects 0.000 claims description 12
- 239000011148 porous material Substances 0.000 claims description 12
- 238000002347 injection Methods 0.000 claims description 11
- 239000007924 injection Substances 0.000 claims description 11
- 230000033115 angiogenesis Effects 0.000 claims description 10
- 239000008393 encapsulating agent Substances 0.000 claims description 10
- 239000000017 hydrogel Substances 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 9
- 238000005086 pumping Methods 0.000 claims description 9
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 claims description 8
- 230000003213 activating effect Effects 0.000 claims description 8
- 238000010276 construction Methods 0.000 claims description 7
- 231100000419 toxicity Toxicity 0.000 claims description 7
- 230000001988 toxicity Effects 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 6
- 150000002739 metals Chemical class 0.000 claims description 6
- 206010020843 Hyperthermia Diseases 0.000 claims description 5
- 230000036031 hyperthermia Effects 0.000 claims description 5
- 230000029553 photosynthesis Effects 0.000 claims description 5
- 238000010672 photosynthesis Methods 0.000 claims description 5
- 239000013043 chemical agent Substances 0.000 claims description 4
- 238000006911 enzymatic reaction Methods 0.000 claims description 4
- 230000001172 regenerating effect Effects 0.000 claims description 4
- 125000006850 spacer group Chemical group 0.000 claims description 4
- 238000006555 catalytic reaction Methods 0.000 claims description 3
- 230000009977 dual effect Effects 0.000 claims description 3
- 230000007604 neuronal communication Effects 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims description 3
- 230000035899 viability Effects 0.000 claims description 3
- 238000013270 controlled release Methods 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 235000018102 proteins Nutrition 0.000 description 118
- 206010028980 Neoplasm Diseases 0.000 description 109
- 210000001519 tissue Anatomy 0.000 description 79
- 201000011510 cancer Diseases 0.000 description 68
- 239000011575 calcium Substances 0.000 description 48
- 108020004414 DNA Proteins 0.000 description 43
- 229920000642 polymer Polymers 0.000 description 43
- 230000006907 apoptotic process Effects 0.000 description 41
- 239000010410 layer Substances 0.000 description 40
- 230000006870 function Effects 0.000 description 37
- 102000005962 receptors Human genes 0.000 description 36
- 108020003175 receptors Proteins 0.000 description 36
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 35
- 230000008569 process Effects 0.000 description 35
- 229910052984 zinc sulfide Inorganic materials 0.000 description 35
- -1 polyethylene Polymers 0.000 description 34
- 238000001994 activation Methods 0.000 description 30
- 210000004940 nucleus Anatomy 0.000 description 30
- 230000007246 mechanism Effects 0.000 description 28
- 210000004379 membrane Anatomy 0.000 description 27
- 239000012528 membrane Substances 0.000 description 27
- 150000002500 ions Chemical class 0.000 description 25
- 210000004556 brain Anatomy 0.000 description 24
- 210000000130 stem cell Anatomy 0.000 description 24
- 201000010099 disease Diseases 0.000 description 23
- 239000003446 ligand Substances 0.000 description 23
- 108090000862 Ion Channels Proteins 0.000 description 22
- 102000004310 Ion Channels Human genes 0.000 description 22
- 239000011777 magnesium Substances 0.000 description 22
- 230000027455 binding Effects 0.000 description 21
- 230000035882 stress Effects 0.000 description 21
- 230000006854 communication Effects 0.000 description 20
- 238000004891 communication Methods 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 20
- 230000003287 optical effect Effects 0.000 description 20
- 210000004881 tumor cell Anatomy 0.000 description 20
- 230000012010 growth Effects 0.000 description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 19
- 238000010521 absorption reaction Methods 0.000 description 18
- 229910052791 calcium Inorganic materials 0.000 description 18
- 210000004292 cytoskeleton Anatomy 0.000 description 18
- 229910052749 magnesium Inorganic materials 0.000 description 18
- 210000003463 organelle Anatomy 0.000 description 18
- 239000011701 zinc Substances 0.000 description 18
- 102000001301 EGF receptor Human genes 0.000 description 17
- 102000010175 Opsin Human genes 0.000 description 17
- 108050001704 Opsin Proteins 0.000 description 17
- 239000003642 reactive oxygen metabolite Substances 0.000 description 17
- 108091006146 Channels Proteins 0.000 description 16
- 108060006698 EGF receptor Proteins 0.000 description 16
- 229910019142 PO4 Inorganic materials 0.000 description 16
- 230000006378 damage Effects 0.000 description 16
- 210000000987 immune system Anatomy 0.000 description 16
- 230000003281 allosteric effect Effects 0.000 description 15
- 210000000805 cytoplasm Anatomy 0.000 description 15
- 210000003470 mitochondria Anatomy 0.000 description 15
- 229910052760 oxygen Inorganic materials 0.000 description 15
- 238000001228 spectrum Methods 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 14
- 239000010949 copper Substances 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 230000009471 action Effects 0.000 description 13
- 238000013459 approach Methods 0.000 description 13
- 230000001427 coherent effect Effects 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 13
- 239000002071 nanotube Substances 0.000 description 13
- 102000039446 nucleic acids Human genes 0.000 description 13
- 108020004707 nucleic acids Proteins 0.000 description 13
- 150000007523 nucleic acids Chemical class 0.000 description 13
- 238000002560 therapeutic procedure Methods 0.000 description 13
- 208000027418 Wounds and injury Diseases 0.000 description 12
- 238000000576 coating method Methods 0.000 description 12
- 238000013461 design Methods 0.000 description 12
- 208000035475 disorder Diseases 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 12
- 230000003211 malignant effect Effects 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 102000004196 processed proteins & peptides Human genes 0.000 description 12
- 230000004044 response Effects 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 229910001868 water Inorganic materials 0.000 description 12
- 239000012190 activator Substances 0.000 description 11
- 229910052788 barium Inorganic materials 0.000 description 11
- 210000004369 blood Anatomy 0.000 description 11
- 239000008280 blood Substances 0.000 description 11
- 239000003102 growth factor Substances 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 11
- 239000002609 medium Substances 0.000 description 11
- 230000003278 mimic effect Effects 0.000 description 11
- 230000001537 neural effect Effects 0.000 description 11
- 229910010271 silicon carbide Inorganic materials 0.000 description 11
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 10
- 241001465754 Metazoa Species 0.000 description 10
- 229910017623 MgSi2 Inorganic materials 0.000 description 10
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 229910052801 chlorine Inorganic materials 0.000 description 10
- 230000003511 endothelial effect Effects 0.000 description 10
- 230000002255 enzymatic effect Effects 0.000 description 10
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 10
- 238000000338 in vitro Methods 0.000 description 10
- 230000002503 metabolic effect Effects 0.000 description 10
- 239000010453 quartz Substances 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 10
- 210000003491 skin Anatomy 0.000 description 10
- 229910052712 strontium Inorganic materials 0.000 description 10
- 230000001960 triggered effect Effects 0.000 description 10
- 229910052844 willemite Inorganic materials 0.000 description 10
- 229910052725 zinc Inorganic materials 0.000 description 10
- 241000894006 Bacteria Species 0.000 description 9
- 102000004190 Enzymes Human genes 0.000 description 9
- 108090000790 Enzymes Proteins 0.000 description 9
- 229910001477 LaPO4 Inorganic materials 0.000 description 9
- 206010027476 Metastases Diseases 0.000 description 9
- 206010028851 Necrosis Diseases 0.000 description 9
- 229910052681 coesite Inorganic materials 0.000 description 9
- 229910052906 cristobalite Inorganic materials 0.000 description 9
- 229940088598 enzyme Drugs 0.000 description 9
- 239000012530 fluid Substances 0.000 description 9
- 208000014674 injury Diseases 0.000 description 9
- 210000002751 lymph Anatomy 0.000 description 9
- 229910052748 manganese Inorganic materials 0.000 description 9
- 230000009401 metastasis Effects 0.000 description 9
- 230000017074 necrotic cell death Effects 0.000 description 9
- 210000005036 nerve Anatomy 0.000 description 9
- 230000010287 polarization Effects 0.000 description 9
- 230000008439 repair process Effects 0.000 description 9
- 230000019491 signal transduction Effects 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 229910052682 stishovite Inorganic materials 0.000 description 9
- 229910052905 tridymite Inorganic materials 0.000 description 9
- 229910052684 Cerium Inorganic materials 0.000 description 8
- 102000003939 Membrane transport proteins Human genes 0.000 description 8
- 108090000301 Membrane transport proteins Proteins 0.000 description 8
- MCVAAHQLXUXWLC-UHFFFAOYSA-N [O-2].[O-2].[S-2].[Gd+3].[Gd+3] Chemical compound [O-2].[O-2].[S-2].[Gd+3].[Gd+3] MCVAAHQLXUXWLC-UHFFFAOYSA-N 0.000 description 8
- 235000001014 amino acid Nutrition 0.000 description 8
- 150000001413 amino acids Chemical group 0.000 description 8
- 229910001424 calcium ion Inorganic materials 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- 230000003834 intracellular effect Effects 0.000 description 8
- 235000015097 nutrients Nutrition 0.000 description 8
- 235000021317 phosphate Nutrition 0.000 description 8
- 230000035755 proliferation Effects 0.000 description 8
- 230000008685 targeting Effects 0.000 description 8
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 8
- ZKHQWZAMYRWXGA-KQYNXXCUSA-N Adenosine triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-N 0.000 description 7
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 7
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 7
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 7
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 7
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 7
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 7
- 229920002306 Glycocalyx Polymers 0.000 description 7
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 7
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 7
- 208000018737 Parkinson disease Diseases 0.000 description 7
- 239000005084 Strontium aluminate Substances 0.000 description 7
- 229960001456 adenosine triphosphate Drugs 0.000 description 7
- 230000004075 alteration Effects 0.000 description 7
- 230000004900 autophagic degradation Effects 0.000 description 7
- 239000002131 composite material Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 238000011161 development Methods 0.000 description 7
- 230000018109 developmental process Effects 0.000 description 7
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 7
- 210000002889 endothelial cell Anatomy 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 7
- 230000002068 genetic effect Effects 0.000 description 7
- 210000004517 glycocalyx Anatomy 0.000 description 7
- 230000004054 inflammatory process Effects 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 108010005417 melanopsin Proteins 0.000 description 7
- 210000003205 muscle Anatomy 0.000 description 7
- GFKJCVBFQRKZCJ-UHFFFAOYSA-N oxygen(2-);yttrium(3+);trisulfide Chemical compound [O-2].[O-2].[O-2].[S-2].[S-2].[S-2].[Y+3].[Y+3].[Y+3].[Y+3] GFKJCVBFQRKZCJ-UHFFFAOYSA-N 0.000 description 7
- 229920001184 polypeptide Polymers 0.000 description 7
- ZCCUUQDIBDJBTK-UHFFFAOYSA-N psoralen Chemical class C1=C2OC(=O)C=CC2=CC2=C1OC=C2 ZCCUUQDIBDJBTK-UHFFFAOYSA-N 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 7
- FNWBQFMGIFLWII-UHFFFAOYSA-N strontium aluminate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Sr+2].[Sr+2] FNWBQFMGIFLWII-UHFFFAOYSA-N 0.000 description 7
- 238000013518 transcription Methods 0.000 description 7
- 230000035897 transcription Effects 0.000 description 7
- 101100484243 Arabidopsis thaliana UVR8 gene Proteins 0.000 description 6
- 102000004127 Cytokines Human genes 0.000 description 6
- 108090000695 Cytokines Proteins 0.000 description 6
- 229910052691 Erbium Inorganic materials 0.000 description 6
- 241000282412 Homo Species 0.000 description 6
- 206010061218 Inflammation Diseases 0.000 description 6
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 6
- 102100025912 Melanopsin Human genes 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 208000002193 Pain Diseases 0.000 description 6
- 108091000080 Phosphotransferase Proteins 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 239000000370 acceptor Substances 0.000 description 6
- 150000004645 aluminates Chemical class 0.000 description 6
- 230000001640 apoptogenic effect Effects 0.000 description 6
- 230000006399 behavior Effects 0.000 description 6
- 230000017531 blood circulation Effects 0.000 description 6
- 210000001185 bone marrow Anatomy 0.000 description 6
- 230000003915 cell function Effects 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 6
- 238000003996 delayed luminescence Methods 0.000 description 6
- 210000004443 dendritic cell Anatomy 0.000 description 6
- 210000001047 desmosome Anatomy 0.000 description 6
- 210000002744 extracellular matrix Anatomy 0.000 description 6
- 210000001723 extracellular space Anatomy 0.000 description 6
- 230000013632 homeostatic process Effects 0.000 description 6
- 210000003963 intermediate filament Anatomy 0.000 description 6
- 238000002647 laser therapy Methods 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- 230000011278 mitosis Effects 0.000 description 6
- 210000001539 phagocyte Anatomy 0.000 description 6
- 239000008177 pharmaceutical agent Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 239000010452 phosphate Substances 0.000 description 6
- 102000020233 phosphotransferase Human genes 0.000 description 6
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 6
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 6
- 235000020945 retinal Nutrition 0.000 description 6
- 239000011604 retinal Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 6
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 6
- NCYCYZXNIZJOKI-UHFFFAOYSA-N vitamin A aldehyde Natural products O=CC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-UHFFFAOYSA-N 0.000 description 6
- 239000002699 waste material Substances 0.000 description 6
- 229910016064 BaSi2 Inorganic materials 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 5
- 229910052688 Gadolinium Inorganic materials 0.000 description 5
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 5
- 108091023040 Transcription factor Proteins 0.000 description 5
- 102000040945 Transcription factor Human genes 0.000 description 5
- 229910052769 Ytterbium Inorganic materials 0.000 description 5
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 5
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 229920000249 biocompatible polymer Polymers 0.000 description 5
- 229910052793 cadmium Inorganic materials 0.000 description 5
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 5
- 229910001634 calcium fluoride Inorganic materials 0.000 description 5
- 230000000747 cardiac effect Effects 0.000 description 5
- 230000032823 cell division Effects 0.000 description 5
- 230000010267 cellular communication Effects 0.000 description 5
- 210000003850 cellular structure Anatomy 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 239000003989 dielectric material Substances 0.000 description 5
- 230000005281 excited state Effects 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- FVTCRASFADXXNN-SCRDCRAPSA-N flavin mononucleotide Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O FVTCRASFADXXNN-SCRDCRAPSA-N 0.000 description 5
- 239000007850 fluorescent dye Substances 0.000 description 5
- 238000013467 fragmentation Methods 0.000 description 5
- 238000006062 fragmentation reaction Methods 0.000 description 5
- 230000002779 inactivation Effects 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 5
- 230000037353 metabolic pathway Effects 0.000 description 5
- 230000004060 metabolic process Effects 0.000 description 5
- 230000002297 mitogenic effect Effects 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 5
- 230000026731 phosphorylation Effects 0.000 description 5
- 238000006366 phosphorylation reaction Methods 0.000 description 5
- 230000001737 promoting effect Effects 0.000 description 5
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 230000002207 retinal effect Effects 0.000 description 5
- 230000028327 secretion Effects 0.000 description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 5
- 150000003384 small molecules Chemical class 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 210000004872 soft tissue Anatomy 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 229910052950 sphalerite Inorganic materials 0.000 description 5
- 230000004936 stimulating effect Effects 0.000 description 5
- 229910052882 wollastonite Inorganic materials 0.000 description 5
- 230000029663 wound healing Effects 0.000 description 5
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 5
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 4
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 206010057248 Cell death Diseases 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 102000009024 Epidermal Growth Factor Human genes 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 102000003945 NF-kappa B Human genes 0.000 description 4
- 108010057466 NF-kappa B Proteins 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 102000011779 Nitric Oxide Synthase Type II Human genes 0.000 description 4
- 108010076864 Nitric Oxide Synthase Type II Proteins 0.000 description 4
- 101100272680 Paracentrotus lividus BP10 gene Proteins 0.000 description 4
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 229910052771 Terbium Inorganic materials 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 229910009520 YbF3 Inorganic materials 0.000 description 4
- 206010000496 acne Diseases 0.000 description 4
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 4
- 230000008848 allosteric regulation Effects 0.000 description 4
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 4
- 230000003078 antioxidant effect Effects 0.000 description 4
- 230000003542 behavioural effect Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 210000000988 bone and bone Anatomy 0.000 description 4
- 210000004958 brain cell Anatomy 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 210000003855 cell nucleus Anatomy 0.000 description 4
- 230000004663 cell proliferation Effects 0.000 description 4
- 210000002421 cell wall Anatomy 0.000 description 4
- 230000019522 cellular metabolic process Effects 0.000 description 4
- 230000005754 cellular signaling Effects 0.000 description 4
- 238000001311 chemical methods and process Methods 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 230000034994 death Effects 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 150000001982 diacylglycerols Chemical class 0.000 description 4
- 230000004069 differentiation Effects 0.000 description 4
- 230000005672 electromagnetic field Effects 0.000 description 4
- 210000002919 epithelial cell Anatomy 0.000 description 4
- 210000003743 erythrocyte Anatomy 0.000 description 4
- 239000003925 fat Substances 0.000 description 4
- 235000019197 fats Nutrition 0.000 description 4
- 229910052587 fluorapatite Inorganic materials 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 210000003128 head Anatomy 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 230000009545 invasion Effects 0.000 description 4
- 230000000302 ischemic effect Effects 0.000 description 4
- 210000000265 leukocyte Anatomy 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 125000005647 linker group Chemical group 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- ZJTJUVIJVLLGSP-UHFFFAOYSA-N lumichrome Chemical compound N1C(=O)NC(=O)C2=C1N=C1C=C(C)C(C)=CC1=N2 ZJTJUVIJVLLGSP-UHFFFAOYSA-N 0.000 description 4
- KPDQZGKJTJRBGU-UHFFFAOYSA-N lumiflavin Chemical compound CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O KPDQZGKJTJRBGU-UHFFFAOYSA-N 0.000 description 4
- 238000004020 luminiscence type Methods 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 210000002540 macrophage Anatomy 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 206010061289 metastatic neoplasm Diseases 0.000 description 4
- 230000000813 microbial effect Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 230000001443 photoexcitation Effects 0.000 description 4
- 239000003504 photosensitizing agent Substances 0.000 description 4
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 230000035806 respiratory chain Effects 0.000 description 4
- 210000003705 ribosome Anatomy 0.000 description 4
- 230000003248 secreting effect Effects 0.000 description 4
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 229940124597 therapeutic agent Drugs 0.000 description 4
- 125000003396 thiol group Chemical group [H]S* 0.000 description 4
- 150000003573 thiols Chemical class 0.000 description 4
- PJANXHGTPQOBST-VAWYXSNFSA-N trans-stilbene Chemical compound C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 4
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- RBORBHYCVONNJH-UHFFFAOYSA-K yttrium(iii) fluoride Chemical compound F[Y](F)F RBORBHYCVONNJH-UHFFFAOYSA-K 0.000 description 4
- BHHYHSUAOQUXJK-UHFFFAOYSA-L zinc fluoride Chemical compound F[Zn]F BHHYHSUAOQUXJK-UHFFFAOYSA-L 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 description 3
- BUNGCZLFHHXKBX-UHFFFAOYSA-N 8-methoxypsoralen Natural products C1=CC(=O)OC2=C1C=C1CCOC1=C2OC BUNGCZLFHHXKBX-UHFFFAOYSA-N 0.000 description 3
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 3
- 229910016010 BaAl2 Inorganic materials 0.000 description 3
- 208000035143 Bacterial infection Diseases 0.000 description 3
- 239000005132 Calcium sulfide based phosphorescent agent Substances 0.000 description 3
- 208000000094 Chronic Pain Diseases 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 230000004568 DNA-binding Effects 0.000 description 3
- 229910052693 Europium Inorganic materials 0.000 description 3
- 102000001554 Hemoglobins Human genes 0.000 description 3
- 108010054147 Hemoglobins Proteins 0.000 description 3
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 3
- 206010021143 Hypoxia Diseases 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- 229910002249 LaCl3 Inorganic materials 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- QXKHYNVANLEOEG-UHFFFAOYSA-N Methoxsalen Chemical compound C1=CC(=O)OC2=C1C=C1C=COC1=C2OC QXKHYNVANLEOEG-UHFFFAOYSA-N 0.000 description 3
- 102000029749 Microtubule Human genes 0.000 description 3
- 108091022875 Microtubule Proteins 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 102000003923 Protein Kinase C Human genes 0.000 description 3
- 108090000315 Protein Kinase C Proteins 0.000 description 3
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 102000003566 TRPV1 Human genes 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 206010046996 Varicose vein Diseases 0.000 description 3
- 208000036142 Viral infection Diseases 0.000 description 3
- 206010052428 Wound Diseases 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000002870 angiogenesis inducing agent Substances 0.000 description 3
- 230000002424 anti-apoptotic effect Effects 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 235000006708 antioxidants Nutrition 0.000 description 3
- 238000003782 apoptosis assay Methods 0.000 description 3
- 208000022362 bacterial infectious disease Diseases 0.000 description 3
- 210000002469 basement membrane Anatomy 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 208000002352 blister Diseases 0.000 description 3
- 210000005013 brain tissue Anatomy 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 230000023402 cell communication Effects 0.000 description 3
- 150000004770 chalcogenides Chemical class 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 210000001072 colon Anatomy 0.000 description 3
- 229920000547 conjugated polymer Polymers 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000002354 daily effect Effects 0.000 description 3
- 206010012601 diabetes mellitus Diseases 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 230000003828 downregulation Effects 0.000 description 3
- 238000005401 electroluminescence Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 229910001676 gahnite Inorganic materials 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 210000004907 gland Anatomy 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 210000002216 heart Anatomy 0.000 description 3
- 230000001146 hypoxic effect Effects 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 3
- ICAKDTKJOYSXGC-UHFFFAOYSA-K lanthanum(iii) chloride Chemical compound Cl[La](Cl)Cl ICAKDTKJOYSXGC-UHFFFAOYSA-K 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 238000002595 magnetic resonance imaging Methods 0.000 description 3
- 230000036210 malignancy Effects 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 3
- 239000002207 metabolite Substances 0.000 description 3
- 230000001394 metastastic effect Effects 0.000 description 3
- 229960004469 methoxsalen Drugs 0.000 description 3
- SQBBOVROCFXYBN-UHFFFAOYSA-N methoxypsoralen Natural products C1=C2OC(=O)C(OC)=CC2=CC2=C1OC=C2 SQBBOVROCFXYBN-UHFFFAOYSA-N 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 210000004688 microtubule Anatomy 0.000 description 3
- 230000002438 mitochondrial effect Effects 0.000 description 3
- 210000004165 myocardium Anatomy 0.000 description 3
- 208000015122 neurodegenerative disease Diseases 0.000 description 3
- 230000003534 oscillatory effect Effects 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 3
- 230000002186 photoactivation Effects 0.000 description 3
- 108091008695 photoreceptors Proteins 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 230000005522 programmed cell death Effects 0.000 description 3
- 230000006577 protective pathway Effects 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000002468 redox effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 230000001953 sensory effect Effects 0.000 description 3
- 108091006024 signal transducing proteins Proteins 0.000 description 3
- 102000034285 signal transducing proteins Human genes 0.000 description 3
- 230000007727 signaling mechanism Effects 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 210000000952 spleen Anatomy 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000008093 supporting effect Effects 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 description 3
- 230000004614 tumor growth Effects 0.000 description 3
- 230000003827 upregulation Effects 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- NGQSLSMAEVWNPU-YTEMWHBBSA-N 1,2-bis[(e)-2-phenylethenyl]benzene Chemical compound C=1C=CC=CC=1/C=C/C1=CC=CC=C1\C=C\C1=CC=CC=C1 NGQSLSMAEVWNPU-YTEMWHBBSA-N 0.000 description 2
- KLCLIOISYBHYDZ-UHFFFAOYSA-N 1,4,4-triphenylbuta-1,3-dienylbenzene Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)=CC=C(C=1C=CC=CC=1)C1=CC=CC=C1 KLCLIOISYBHYDZ-UHFFFAOYSA-N 0.000 description 2
- XJKSTNDFUHDPQJ-UHFFFAOYSA-N 1,4-diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC=CC=2)C=C1 XJKSTNDFUHDPQJ-UHFFFAOYSA-N 0.000 description 2
- CNWINRVXAYPOMW-FCNJXWMTSA-N 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 4,5-biphosphate Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)O[C@H](COC(=O)CCCCCCCCCCCCCCCCC)COP(O)(=O)O[C@@H]1[C@H](O)[C@H](O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H]1O CNWINRVXAYPOMW-FCNJXWMTSA-N 0.000 description 2
- CNRNYORZJGVOSY-UHFFFAOYSA-N 2,5-diphenyl-1,3-oxazole Chemical compound C=1N=C(C=2C=CC=CC=2)OC=1C1=CC=CC=C1 CNRNYORZJGVOSY-UHFFFAOYSA-N 0.000 description 2
- VXGRJERITKFWPL-UHFFFAOYSA-N 4',5'-Dihydropsoralen Natural products C1=C2OC(=O)C=CC2=CC2=C1OCC2 VXGRJERITKFWPL-UHFFFAOYSA-N 0.000 description 2
- HRQSPGSEYDLAIM-UHFFFAOYSA-N 6-amino-2-phenylbenzo[de]isoquinoline-1,3-dione Chemical compound O=C1C(C2=3)=CC=CC=3C(N)=CC=C2C(=O)N1C1=CC=CC=C1 HRQSPGSEYDLAIM-UHFFFAOYSA-N 0.000 description 2
- 230000002407 ATP formation Effects 0.000 description 2
- 208000002874 Acne Vulgaris Diseases 0.000 description 2
- 102000007469 Actins Human genes 0.000 description 2
- 108010085238 Actins Proteins 0.000 description 2
- 208000009304 Acute Kidney Injury Diseases 0.000 description 2
- 108010005094 Advanced Glycation End Products Proteins 0.000 description 2
- 229910017115 AlSb Inorganic materials 0.000 description 2
- HAUGRYOERYOXHX-UHFFFAOYSA-N Alloxazine Chemical compound C1=CC=C2N=C(C(=O)NC(=O)N3)C3=NC2=C1 HAUGRYOERYOXHX-UHFFFAOYSA-N 0.000 description 2
- 102000001049 Amyloid Human genes 0.000 description 2
- 108010094108 Amyloid Proteins 0.000 description 2
- 108010063104 Apoptosis Regulatory Proteins Proteins 0.000 description 2
- 102000010565 Apoptosis Regulatory Proteins Human genes 0.000 description 2
- 206010003226 Arteriovenous fistula Diseases 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- 206010003658 Atrial Fibrillation Diseases 0.000 description 2
- 244000075850 Avena orientalis Species 0.000 description 2
- 235000007319 Avena orientalis Nutrition 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 210000001239 CD8-positive, alpha-beta cytotoxic T lymphocyte Anatomy 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 102000000844 Cell Surface Receptors Human genes 0.000 description 2
- 108010001857 Cell Surface Receptors Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- BHYOQNUELFTYRT-UHFFFAOYSA-N Cholesterol sulfate Natural products C1C=C2CC(OS(O)(=O)=O)CCC2(C)C2C1C1CCC(C(C)CCCC(C)C)C1(C)CC2 BHYOQNUELFTYRT-UHFFFAOYSA-N 0.000 description 2
- 102000000634 Cytochrome c oxidase subunit IV Human genes 0.000 description 2
- 108090000365 Cytochrome-c oxidases Proteins 0.000 description 2
- MMWCIQZXVOZEGG-XJTPDSDZSA-N D-myo-Inositol 1,4,5-trisphosphate Chemical compound O[C@@H]1[C@H](O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H](O)[C@@H]1OP(O)(O)=O MMWCIQZXVOZEGG-XJTPDSDZSA-N 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 206010011878 Deafness Diseases 0.000 description 2
- 101800003838 Epidermal growth factor Proteins 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 108010080379 Fibrin Tissue Adhesive Proteins 0.000 description 2
- VWWQXMAJTJZDQX-UHFFFAOYSA-N Flavine adenine dinucleotide Natural products C1=NC2=C(N)N=CN=C2N1C(C(O)C1O)OC1COP(O)(=O)OP(O)(=O)OCC(O)C(O)C(O)CN1C2=NC(=O)NC(=O)C2=NC2=C1C=C(C)C(C)=C2 VWWQXMAJTJZDQX-UHFFFAOYSA-N 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 2
- 229910005540 GaP Inorganic materials 0.000 description 2
- 229910005542 GaSb Inorganic materials 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000009465 Growth Factor Receptors Human genes 0.000 description 2
- 108010009202 Growth Factor Receptors Proteins 0.000 description 2
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 2
- 229910000673 Indium arsenide Inorganic materials 0.000 description 2
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- 102000006391 Ion Pumps Human genes 0.000 description 2
- 108010083687 Ion Pumps Proteins 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- 102000043136 MAP kinase family Human genes 0.000 description 2
- 108091054455 MAP kinase family Proteins 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 238000004497 NIR spectroscopy Methods 0.000 description 2
- 101000903581 Natronomonas pharaonis Halorhodopsin Proteins 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 208000022873 Ocular disease Diseases 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- 108091093037 Peptide nucleic acid Proteins 0.000 description 2
- 206010057249 Phagocytosis Diseases 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 241000070023 Phoenicopterus roseus Species 0.000 description 2
- 101710112185 Phototropin-1 Proteins 0.000 description 2
- 108010047161 Plant Photoreceptors Proteins 0.000 description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 2
- 229910052777 Praseodymium Inorganic materials 0.000 description 2
- 102000029797 Prion Human genes 0.000 description 2
- 108091000054 Prion Proteins 0.000 description 2
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 2
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 2
- 201000004681 Psoriasis Diseases 0.000 description 2
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 2
- 208000033626 Renal failure acute Diseases 0.000 description 2
- 206010057430 Retinal injury Diseases 0.000 description 2
- NCYCYZXNIZJOKI-OVSJKPMPSA-N Retinaldehyde Chemical compound O=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-OVSJKPMPSA-N 0.000 description 2
- 108090000820 Rhodopsin Proteins 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- 206010061363 Skeletal injury Diseases 0.000 description 2
- 208000026137 Soft tissue injury Diseases 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 229910052775 Thulium Inorganic materials 0.000 description 2
- 102400001320 Transforming growth factor alpha Human genes 0.000 description 2
- 101800004564 Transforming growth factor alpha Proteins 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- SFTAMTQEVDTZDK-UHFFFAOYSA-N [Ho].[Eu] Chemical compound [Ho].[Eu] SFTAMTQEVDTZDK-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 201000011040 acute kidney failure Diseases 0.000 description 2
- 208000012998 acute renal failure Diseases 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 230000003305 autocrine Effects 0.000 description 2
- 210000004957 autophagosome Anatomy 0.000 description 2
- 229940120638 avastin Drugs 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- 230000031018 biological processes and functions Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000007177 brain activity Effects 0.000 description 2
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 210000000845 cartilage Anatomy 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000006369 cell cycle progression Effects 0.000 description 2
- 230000005779 cell damage Effects 0.000 description 2
- 238000002659 cell therapy Methods 0.000 description 2
- 230000033077 cellular process Effects 0.000 description 2
- 230000036755 cellular response Effects 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- BHYOQNUELFTYRT-DPAQBDIFSA-N cholesterol sulfate Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 BHYOQNUELFTYRT-DPAQBDIFSA-N 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 208000020832 chronic kidney disease Diseases 0.000 description 2
- 208000022831 chronic renal failure syndrome Diseases 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 230000001332 colony forming effect Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 235000001671 coumarin Nutrition 0.000 description 2
- AFYCEAFSNDLKSX-UHFFFAOYSA-N coumarin 460 Chemical compound CC1=CC(=O)OC2=CC(N(CC)CC)=CC=C21 AFYCEAFSNDLKSX-UHFFFAOYSA-N 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 102000003675 cytokine receptors Human genes 0.000 description 2
- 108010057085 cytokine receptors Proteins 0.000 description 2
- 210000000172 cytosol Anatomy 0.000 description 2
- 230000000254 damaging effect Effects 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229910001650 dmitryivanovite Inorganic materials 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 210000002257 embryonic structure Anatomy 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 229910052634 enstatite Inorganic materials 0.000 description 2
- 229940116977 epidermal growth factor Drugs 0.000 description 2
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 230000001605 fetal effect Effects 0.000 description 2
- VWWQXMAJTJZDQX-UYBVJOGSSA-N flavin adenine dinucleotide Chemical compound C1=NC2=C(N)N=CN=C2N1[C@@H]([C@H](O)[C@@H]1O)O[C@@H]1CO[P@](O)(=O)O[P@@](O)(=O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C2=NC(=O)NC(=O)C2=NC2=C1C=C(C)C(C)=C2 VWWQXMAJTJZDQX-UYBVJOGSSA-N 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000003574 free electron Substances 0.000 description 2
- 238000002599 functional magnetic resonance imaging Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 2
- DQZARQCHJNPXQP-UHFFFAOYSA-N gadolinium;sulfur monoxide Chemical compound [Gd].S=O DQZARQCHJNPXQP-UHFFFAOYSA-N 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 208000005017 glioblastoma Diseases 0.000 description 2
- 210000002288 golgi apparatus Anatomy 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000010370 hearing loss Effects 0.000 description 2
- 231100000888 hearing loss Toxicity 0.000 description 2
- 208000016354 hearing loss disease Diseases 0.000 description 2
- 235000003642 hunger Nutrition 0.000 description 2
- 206010020718 hyperplasia Diseases 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 230000001506 immunosuppresive effect Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 2
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 2
- 108020004201 indoleamine 2,3-dioxygenase Proteins 0.000 description 2
- 102000006639 indoleamine 2,3-dioxygenase Human genes 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000010954 inorganic particle Substances 0.000 description 2
- 229910052909 inorganic silicate Inorganic materials 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 210000002490 intestinal epithelial cell Anatomy 0.000 description 2
- 238000006317 isomerization reaction Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 230000002147 killing effect Effects 0.000 description 2
- 229910001707 krotite Inorganic materials 0.000 description 2
- UPIZSELIQBYSMU-UHFFFAOYSA-N lanthanum;sulfur monoxide Chemical compound [La].S=O UPIZSELIQBYSMU-UHFFFAOYSA-N 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 238000007443 liposuction Methods 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 230000005923 long-lasting effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000009196 low level laser therapy Methods 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 230000001926 lymphatic effect Effects 0.000 description 2
- 210000003712 lysosome Anatomy 0.000 description 2
- 230000001868 lysosomic effect Effects 0.000 description 2
- 208000002780 macular degeneration Diseases 0.000 description 2
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 230000035800 maturation Effects 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000002493 microarray Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000004898 mitochondrial function Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 210000000337 motor cortex Anatomy 0.000 description 2
- 210000000066 myeloid cell Anatomy 0.000 description 2
- 230000000926 neurological effect Effects 0.000 description 2
- 230000008062 neuronal firing Effects 0.000 description 2
- 239000002858 neurotransmitter agent Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 210000000440 neutrophil Anatomy 0.000 description 2
- 230000009022 nonlinear effect Effects 0.000 description 2
- 210000000633 nuclear envelope Anatomy 0.000 description 2
- 230000036542 oxidative stress Effects 0.000 description 2
- 229930184652 p-Terphenyl Natural products 0.000 description 2
- 230000008186 parthenogenesis Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 2
- 230000008782 phagocytosis Effects 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 229940067631 phospholipid Drugs 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 230000000258 photobiological effect Effects 0.000 description 2
- 238000007699 photoisomerization reaction Methods 0.000 description 2
- 238000005424 photoluminescence Methods 0.000 description 2
- 230000016732 phototransduction Effects 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 230000035479 physiological effects, processes and functions Effects 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 150000004032 porphyrins Chemical class 0.000 description 2
- 235000020043 port wine Nutrition 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- 230000001023 pro-angiogenic effect Effects 0.000 description 2
- 230000000861 pro-apoptotic effect Effects 0.000 description 2
- 108060006633 protein kinase Proteins 0.000 description 2
- 239000012460 protein solution Substances 0.000 description 2
- 230000004850 protein–protein interaction Effects 0.000 description 2
- 238000006862 quantum yield reaction Methods 0.000 description 2
- 150000004053 quinones Chemical class 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- JAAGVIUFBAHDMA-UHFFFAOYSA-M rubidium bromide Chemical compound [Br-].[Rb+] JAAGVIUFBAHDMA-UHFFFAOYSA-M 0.000 description 2
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 210000001626 skin fibroblast Anatomy 0.000 description 2
- 210000003625 skull Anatomy 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000010374 somatic cell nuclear transfer Methods 0.000 description 2
- 208000020431 spinal cord injury Diseases 0.000 description 2
- 230000037351 starvation Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- 210000001578 tight junction Anatomy 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 230000017423 tissue regeneration Effects 0.000 description 2
- PJANXHGTPQOBST-UHFFFAOYSA-N trans-Stilbene Natural products C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 102000035160 transmembrane proteins Human genes 0.000 description 2
- 108091005703 transmembrane proteins Proteins 0.000 description 2
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 2
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 208000019553 vascular disease Diseases 0.000 description 2
- 210000005166 vasculature Anatomy 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- MMWCIQZXVOZEGG-UHFFFAOYSA-N 1,4,5-IP3 Natural products OC1C(O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(O)C1OP(O)(O)=O MMWCIQZXVOZEGG-UHFFFAOYSA-N 0.000 description 1
- NCYCYZXNIZJOKI-IOUUIBBYSA-N 11-cis-retinal Chemical compound O=C/C=C(\C)/C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-IOUUIBBYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- VEUMBMHMMCOFAG-UHFFFAOYSA-N 2,3-dihydrooxadiazole Chemical compound N1NC=CO1 VEUMBMHMMCOFAG-UHFFFAOYSA-N 0.000 description 1
- KMVWNDHKTPHDMT-UHFFFAOYSA-N 2,4,6-tripyridin-2-yl-1,3,5-triazine Chemical compound N1=CC=CC=C1C1=NC(C=2N=CC=CC=2)=NC(C=2N=CC=CC=2)=N1 KMVWNDHKTPHDMT-UHFFFAOYSA-N 0.000 description 1
- VVWRHPJZHGLPMJ-OBHZIMKNSA-N 2-[2-[2-[[(2s,3r)-2-[[(2s,3s,4r)-4-[[(2s,3r)-2-[[6-amino-2-[(1s)-3-amino-1-[[(2s)-2,3-diamino-3-oxopropyl]amino]-3-oxopropyl]-5-methylpyrimidine-4-carbonyl]amino]-3-hydroxy-3-(1h-imidazol-5-yl)propanoyl]amino]-3-hydroxy-2-methylpentanoyl]amino]-3-hydroxyb Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCCCN=C(N)N)[C@@H](O)C=1NC=NC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C VVWRHPJZHGLPMJ-OBHZIMKNSA-N 0.000 description 1
- GEQBRULPNIVQPP-UHFFFAOYSA-N 2-[3,5-bis(1-phenylbenzimidazol-2-yl)phenyl]-1-phenylbenzimidazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2N=C1C1=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=C1 GEQBRULPNIVQPP-UHFFFAOYSA-N 0.000 description 1
- KKAJSJJFBSOMGS-UHFFFAOYSA-N 3,6-diamino-10-methylacridinium chloride Chemical compound [Cl-].C1=C(N)C=C2[N+](C)=C(C=C(N)C=C3)C3=CC2=C1 KKAJSJJFBSOMGS-UHFFFAOYSA-N 0.000 description 1
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- NNMALANKTSRILL-ZUTFDUMMSA-N 3-[(2z,5z)-2-[[3-(2-carboxyethyl)-5-[(z)-[(3z,4r)-3-ethylidene-4-methyl-5-oxopyrrolidin-2-ylidene]methyl]-4-methyl-1h-pyrrol-2-yl]methylidene]-5-[(4-ethyl-3-methyl-5-oxopyrrol-2-yl)methylidene]-4-methylpyrrol-3-yl]propanoic acid Chemical compound O=C1C(CC)=C(C)C(\C=C/2C(=C(CCC(O)=O)C(=C/C3=C(C(C)=C(\C=C/4\C(\[C@@H](C)C(=O)N\4)=C/C)N3)CCC(O)=O)/N\2)C)=N1 NNMALANKTSRILL-ZUTFDUMMSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 101100067974 Arabidopsis thaliana POP2 gene Proteins 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 208000003950 B-cell lymphoma Diseases 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 108010082845 Bacteriorhodopsins Proteins 0.000 description 1
- 102000018720 Basic Helix-Loop-Helix Transcription Factors Human genes 0.000 description 1
- 108010027344 Basic Helix-Loop-Helix Transcription Factors Proteins 0.000 description 1
- 102000051485 Bcl-2 family Human genes 0.000 description 1
- 108700038897 Bcl-2 family Proteins 0.000 description 1
- 229910000952 Be alloy Inorganic materials 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 101710202024 Blue-light photoreceptor Proteins 0.000 description 1
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 description 1
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 description 1
- UJKPHYRXOLRVJJ-MLSVHJFASA-N CC(O)C1=C(C)/C2=C/C3=N/C(=C\C4=C(CCC(O)=O)C(C)=C(N4)/C=C4\N=C(\C=C\1/N\2)C(C)=C4C(C)O)/C(CCC(O)=O)=C3C Chemical compound CC(O)C1=C(C)/C2=C/C3=N/C(=C\C4=C(CCC(O)=O)C(C)=C(N4)/C=C4\N=C(\C=C\1/N\2)C(C)=C4C(C)O)/C(CCC(O)=O)=C3C UJKPHYRXOLRVJJ-MLSVHJFASA-N 0.000 description 1
- 108010029697 CD40 Ligand Proteins 0.000 description 1
- 102100032937 CD40 ligand Human genes 0.000 description 1
- 101150078024 CRY2 gene Proteins 0.000 description 1
- 229910014780 CaAl2 Inorganic materials 0.000 description 1
- 101100328884 Caenorhabditis elegans sqt-3 gene Proteins 0.000 description 1
- 102000011727 Caspases Human genes 0.000 description 1
- 108010076667 Caspases Proteins 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 108010031896 Cell Cycle Proteins Proteins 0.000 description 1
- 102000005483 Cell Cycle Proteins Human genes 0.000 description 1
- 108010035848 Channelrhodopsins Proteins 0.000 description 1
- 102000009410 Chemokine receptor Human genes 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- 241000195628 Chlorophyta Species 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 206010010144 Completed suicide Diseases 0.000 description 1
- 101710119765 Cryptochrome-1 Proteins 0.000 description 1
- 101710119767 Cryptochrome-2 Proteins 0.000 description 1
- 102100026280 Cryptochrome-2 Human genes 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 108010052832 Cytochromes Proteins 0.000 description 1
- 102000018832 Cytochromes Human genes 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical class OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 230000005778 DNA damage Effects 0.000 description 1
- 231100000277 DNA damage Toxicity 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000009058 Death Domain Receptors Human genes 0.000 description 1
- 108010049207 Death Domain Receptors Proteins 0.000 description 1
- 208000002699 Digestive System Neoplasms Diseases 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- QTANTQQOYSUMLC-UHFFFAOYSA-O Ethidium cation Chemical compound C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 QTANTQQOYSUMLC-UHFFFAOYSA-O 0.000 description 1
- 108050001049 Extracellular proteins Proteins 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 1
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 108010057573 Flavoproteins Proteins 0.000 description 1
- 102000003983 Flavoproteins Human genes 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 108091006027 G proteins Proteins 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- 206010017711 Gangrene Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 206010018852 Haematoma Diseases 0.000 description 1
- 241000208818 Helianthus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 206010019663 Hepatic failure Diseases 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 101100118549 Homo sapiens EGFR gene Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 208000012659 Joint disease Diseases 0.000 description 1
- 229910014323 Lanthanum(III) bromide Inorganic materials 0.000 description 1
- 108090000543 Ligand-Gated Ion Channels Proteins 0.000 description 1
- 102000004086 Ligand-Gated Ion Channels Human genes 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- VAYOSLLFUXYJDT-RDTXWAMCSA-N Lysergic acid diethylamide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N(CC)CC)C2)=C3C2=CNC3=C1 VAYOSLLFUXYJDT-RDTXWAMCSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 108020005196 Mitochondrial DNA Proteins 0.000 description 1
- 229910017231 MnTe Inorganic materials 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 102000003505 Myosin Human genes 0.000 description 1
- 108060008487 Myosin Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 241000204971 Natronomonas pharaonis Species 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 108091093105 Nuclear DNA Proteins 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 101150073601 OPN4 gene Proteins 0.000 description 1
- RJECHNNFRHZQKU-UHFFFAOYSA-N Oelsaeurecholesterylester Natural products C12CCC3(C)C(C(C)CCCC(C)C)CCC3C2CC=C2C1(C)CCC(OC(=O)CCCCCCCC=CCCCCCCCC)C2 RJECHNNFRHZQKU-UHFFFAOYSA-N 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 102000016979 Other receptors Human genes 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 108091008606 PDGF receptors Proteins 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 206010057521 Peripheral artery aneurysm Diseases 0.000 description 1
- INPDFIMLLXXDOQ-UHFFFAOYSA-N Phycocyanobilin Natural products CCC1=C(C)C(=CC2=NC(=C/c3[nH]c(C=C/4C(C(C(N4)=O)C)=CC)c(C)c3CCC(=O)O)C(=C2C)CCC(=O)O)NC1=O INPDFIMLLXXDOQ-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 102000011653 Platelet-Derived Growth Factor Receptors Human genes 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 102000004257 Potassium Channel Human genes 0.000 description 1
- 229910052773 Promethium Inorganic materials 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 206010051482 Prostatomegaly Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102000004245 Proteasome Endopeptidase Complex Human genes 0.000 description 1
- 108090000708 Proteasome Endopeptidase Complex Proteins 0.000 description 1
- 229940079156 Proteasome inhibitor Drugs 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 102000006270 Proton Pumps Human genes 0.000 description 1
- 108010083204 Proton Pumps Proteins 0.000 description 1
- 206010037180 Psychiatric symptoms Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 208000003782 Raynaud disease Diseases 0.000 description 1
- 208000012322 Raynaud phenomenon Diseases 0.000 description 1
- 108700005075 Regulator Genes Proteins 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 102100040756 Rhodopsin Human genes 0.000 description 1
- 102000004330 Rhodopsin Human genes 0.000 description 1
- 101100123851 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HER1 gene Proteins 0.000 description 1
- 108020004487 Satellite DNA Proteins 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 101100179903 Shigella flexneri ipaA gene Proteins 0.000 description 1
- 108010052164 Sodium Channels Proteins 0.000 description 1
- 102000018674 Sodium Channels Human genes 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 208000000102 Squamous Cell Carcinoma of Head and Neck Diseases 0.000 description 1
- 229910004412 SrSi2 Inorganic materials 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 102000013530 TOR Serine-Threonine Kinases Human genes 0.000 description 1
- 108010065917 TOR Serine-Threonine Kinases Proteins 0.000 description 1
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 108091032917 Transfer-messenger RNA Proteins 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 102100036860 Troponin T, slow skeletal muscle Human genes 0.000 description 1
- 108050004197 Trp repressor Proteins 0.000 description 1
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 108091008605 VEGF receptors Proteins 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 241000219977 Vigna Species 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 201000006083 Xeroderma Pigmentosum Diseases 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 210000000588 acetabulum Anatomy 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- QEUYATCJHJUQML-UHFFFAOYSA-N acridine-3,6-diamine;10-methylacridin-10-ium-3,6-diamine;chloride;hydrochloride Chemical compound Cl.[Cl-].C1=CC(N)=CC2=NC3=CC(N)=CC=C3C=C21.C1=C(N)C=C2[N+](C)=C(C=C(N)C=C3)C3=CC2=C1 QEUYATCJHJUQML-UHFFFAOYSA-N 0.000 description 1
- 229940002707 acriflavine hydrochloride Drugs 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 210000004504 adult stem cell Anatomy 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 229910052661 anorthite Inorganic materials 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 230000006909 anti-apoptosis Effects 0.000 description 1
- 230000000454 anti-cipatory effect Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000009246 art therapy Methods 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- MXWJVTOOROXGIU-UHFFFAOYSA-N atrazine Chemical compound CCNC1=NC(Cl)=NC(NC(C)C)=N1 MXWJVTOOROXGIU-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 210000003050 axon Anatomy 0.000 description 1
- DMLAVOWQYNRWNQ-UHFFFAOYSA-N azobenzene Chemical compound C1=CC=CC=C1N=NC1=CC=CC=C1 DMLAVOWQYNRWNQ-UHFFFAOYSA-N 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- DMFBEUCTHCSNKZ-UHFFFAOYSA-I barium(2+);yttrium(3+);pentafluoride Chemical compound [F-].[F-].[F-].[F-].[F-].[Y+3].[Ba+2] DMFBEUCTHCSNKZ-UHFFFAOYSA-I 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008238 biochemical pathway Effects 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 238000005415 bioluminescence Methods 0.000 description 1
- 230000029918 bioluminescence Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical class N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 230000008081 blood perfusion Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 230000008468 bone growth Effects 0.000 description 1
- 230000010478 bone regeneration Effects 0.000 description 1
- 229960001467 bortezomib Drugs 0.000 description 1
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 description 1
- 230000015916 branching morphogenesis of a tube Effects 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 201000008275 breast carcinoma Diseases 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 1
- 230000004094 calcium homeostasis Effects 0.000 description 1
- 230000009460 calcium influx Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000000768 catecholaminergic effect Effects 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000010001 cellular homeostasis Effects 0.000 description 1
- 230000007248 cellular mechanism Effects 0.000 description 1
- 230000004640 cellular pathway Effects 0.000 description 1
- 210000004718 centriole Anatomy 0.000 description 1
- 210000003793 centrosome Anatomy 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000005482 chemotactic factor Substances 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- RJECHNNFRHZQKU-RMUVNZEASA-N cholesteryl oleate Chemical compound C([C@@H]12)C[C@]3(C)[C@@H]([C@H](C)CCCC(C)C)CC[C@H]3[C@@H]1CC=C1[C@]2(C)CC[C@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)C1 RJECHNNFRHZQKU-RMUVNZEASA-N 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 230000010428 chromatin condensation Effects 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 230000006020 chronic inflammation Effects 0.000 description 1
- 230000027288 circadian rhythm Effects 0.000 description 1
- 230000007012 clinical effect Effects 0.000 description 1
- 230000003021 clonogenic effect Effects 0.000 description 1
- 230000008045 co-localization Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 208000010877 cognitive disease Diseases 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 230000005495 cold plasma Effects 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000005757 colony formation Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 150000004775 coumarins Chemical class 0.000 description 1
- 230000005574 cross-species transmission Effects 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 108010082025 cyan fluorescent protein Proteins 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N cystine group Chemical group C([C@@H](C(=O)O)N)SSC[C@@H](C(=O)O)N LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- 230000021040 cytoplasmic transport Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 108700016186 deglycobleomycin Proteins 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000003831 deregulation Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- XEYBRNLFEZDVAW-ARSRFYASSA-N dinoprostone Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O XEYBRNLFEZDVAW-ARSRFYASSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000026058 directional locomotion Effects 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 230000003291 dopaminomimetic effect Effects 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000001516 effect on protein Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005421 electrostatic potential Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 230000008519 endogenous mechanism Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- 229940082789 erbitux Drugs 0.000 description 1
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 102000015694 estrogen receptors Human genes 0.000 description 1
- 108010038795 estrogen receptors Proteins 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002964 excitative effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 230000006624 extrinsic pathway Effects 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 229940126864 fibroblast growth factor Drugs 0.000 description 1
- 230000007763 fibroblastic differentiation Effects 0.000 description 1
- 230000005057 finger movement Effects 0.000 description 1
- LIYGYAHYXQDGEP-UHFFFAOYSA-N firefly oxyluciferin Natural products Oc1csc(n1)-c1nc2ccc(O)cc2s1 LIYGYAHYXQDGEP-UHFFFAOYSA-N 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 1
- 210000003976 gap junction Anatomy 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 231100000118 genetic alteration Toxicity 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- 229960003569 hematoporphyrin Drugs 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 229940022353 herceptin Drugs 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 230000005745 host immune response Effects 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000007124 immune defense Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000012623 in vivo measurement Methods 0.000 description 1
- 231100000405 induce cancer Toxicity 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 230000035990 intercellular signaling Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 102000002467 interleukin receptors Human genes 0.000 description 1
- 108010093036 interleukin receptors Proteins 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 210000003093 intracellular space Anatomy 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000006623 intrinsic pathway Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- XKUYOJZZLGFZTC-UHFFFAOYSA-K lanthanum(iii) bromide Chemical compound Br[La](Br)Br XKUYOJZZLGFZTC-UHFFFAOYSA-K 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 108020001756 ligand binding domains Proteins 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000001795 light effect Effects 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 208000007903 liver failure Diseases 0.000 description 1
- 231100000835 liver failure Toxicity 0.000 description 1
- 229940052961 longrange Drugs 0.000 description 1
- 239000013627 low molecular weight specie Substances 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 230000032630 lymph circulation Effects 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 230000004142 macroautophagy Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000006680 metabolic alteration Effects 0.000 description 1
- QLNWXBAGRTUKKI-UHFFFAOYSA-N metacetamol Chemical compound CC(=O)NC1=CC=CC(O)=C1 QLNWXBAGRTUKKI-UHFFFAOYSA-N 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 208000037819 metastatic cancer Diseases 0.000 description 1
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 210000003632 microfilament Anatomy 0.000 description 1
- 238000002044 microwave spectrum Methods 0.000 description 1
- 230000001617 migratory effect Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004065 mitochondrial dysfunction Effects 0.000 description 1
- 230000006667 mitochondrial pathway Effects 0.000 description 1
- 230000008811 mitochondrial respiratory chain Effects 0.000 description 1
- 230000002073 mitogenetic effect Effects 0.000 description 1
- 238000000302 molecular modelling Methods 0.000 description 1
- 230000003990 molecular pathway Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 210000002161 motor neuron Anatomy 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 230000004118 muscle contraction Effects 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- 210000001087 myotubule Anatomy 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 150000004780 naphthols Chemical class 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 230000031990 negative regulation of inflammatory response Effects 0.000 description 1
- 230000003957 neurotransmitter release Effects 0.000 description 1
- PGSADBUBUOPOJS-UHFFFAOYSA-N neutral red Chemical compound Cl.C1=C(C)C(N)=CC2=NC3=CC(N(C)C)=CC=C3N=C21 PGSADBUBUOPOJS-UHFFFAOYSA-N 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 231100001160 nonlethal Toxicity 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 231100000862 numbness Toxicity 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 201000002740 oral squamous cell carcinoma Diseases 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 210000002997 osteoclast Anatomy 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 230000010627 oxidative phosphorylation Effects 0.000 description 1
- JJVOROULKOMTKG-UHFFFAOYSA-N oxidized Photinus luciferin Chemical compound S1C2=CC(O)=CC=C2N=C1C1=NC(=O)CS1 JJVOROULKOMTKG-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-O oxonium Chemical compound [OH3+] XLYOFNOQVPJJNP-UHFFFAOYSA-O 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- GPRIERYVMZVKTC-UHFFFAOYSA-N p-quaterphenyl Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC(=CC=2)C=2C=CC=CC=2)C=C1 GPRIERYVMZVKTC-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 210000004923 pancreatic tissue Anatomy 0.000 description 1
- 230000003076 paracrine Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 201000001245 periodontitis Diseases 0.000 description 1
- 208000030613 peripheral artery disease Diseases 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 125000001484 phenothiazinyl group Chemical class C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 208000028591 pheochromocytoma Diseases 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 239000000906 photoactive agent Substances 0.000 description 1
- 230000000886 photobiology Effects 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 210000000608 photoreceptor cell Anatomy 0.000 description 1
- 230000029264 phototaxis Effects 0.000 description 1
- 238000001126 phototherapy Methods 0.000 description 1
- 108010072011 phycocyanobilin Proteins 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000000554 physical therapy Methods 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000008288 physiological mechanism Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 108020001213 potassium channel Proteins 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 210000002243 primary neuron Anatomy 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- VQMWBBYLQSCNPO-UHFFFAOYSA-N promethium atom Chemical compound [Pm] VQMWBBYLQSCNPO-UHFFFAOYSA-N 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 239000003207 proteasome inhibitor Substances 0.000 description 1
- 230000018883 protein targeting Effects 0.000 description 1
- 230000001696 purinergic effect Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 150000007660 quinolones Chemical class 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 108010054624 red fluorescent protein Proteins 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 230000025053 regulation of cell proliferation Effects 0.000 description 1
- 230000008672 reprogramming Effects 0.000 description 1
- 238000002165 resonance energy transfer Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000032554 response to blue light Effects 0.000 description 1
- 210000001995 reticulocyte Anatomy 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229960002477 riboflavin Drugs 0.000 description 1
- 235000019192 riboflavin Nutrition 0.000 description 1
- 239000002151 riboflavin Substances 0.000 description 1
- 238000011808 rodent model Methods 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 210000004683 skeletal myoblast Anatomy 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 201000002859 sleep apnea Diseases 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- HQHVZNOWXQGXIX-UHFFFAOYSA-J sodium;yttrium(3+);tetrafluoride Chemical compound [F-].[F-].[F-].[F-].[Na+].[Y+3] HQHVZNOWXQGXIX-UHFFFAOYSA-J 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 210000000603 stem cell niche Anatomy 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 229910001631 strontium chloride Inorganic materials 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000003956 synaptic plasticity Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 229940066767 systemic antihistamines phenothiazine derivative Drugs 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 230000030968 tissue homeostasis Effects 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 210000003371 toe Anatomy 0.000 description 1
- 150000004992 toluidines Chemical class 0.000 description 1
- 210000000515 tooth Anatomy 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 229960000575 trastuzumab Drugs 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 1
- TYIZUJNEZNBXRS-UHFFFAOYSA-K trifluorogadolinium Chemical compound F[Gd](F)F TYIZUJNEZNBXRS-UHFFFAOYSA-K 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 1
- 230000006663 ubiquitin-proteasome pathway Effects 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 230000004222 uncontrolled growth Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 102000009816 urokinase plasminogen activator receptor activity proteins Human genes 0.000 description 1
- 108040001269 urokinase plasminogen activator receptor activity proteins Proteins 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 208000027185 varicose disease Diseases 0.000 description 1
- 230000001196 vasorelaxation Effects 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
- 230000037314 wound repair Effects 0.000 description 1
- 229940105963 yttrium fluoride Drugs 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/0622—Optical stimulation for exciting neural tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0057—Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0013—Luminescence
- A61K49/0015—Phosphorescence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/40—Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
- A61N1/403—Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N2/00—Magnetotherapy
- A61N2/02—Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/02—Radiation therapy using microwaves
- A61N5/022—Apparatus adapted for a specific treatment
- A61N5/025—Warming the body, e.g. hyperthermia treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M2037/0007—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin having means for enhancing the permeation of substances through the epidermis, e.g. using suction or depression, electric or magnetic fields, sound waves or chemical agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0658—Radiation therapy using light characterised by the wavelength of light used
- A61N2005/0659—Radiation therapy using light characterised by the wavelength of light used infrared
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0658—Radiation therapy using light characterised by the wavelength of light used
- A61N2005/0661—Radiation therapy using light characterised by the wavelength of light used ultraviolet
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/062—Photodynamic therapy, i.e. excitation of an agent
Definitions
- the invention pertains to ways to induce a biological change in a medium not necessarily directly treated with an agent which can cause the biological change.
- Light modulation from a deeply penetrating radiation like X-ray to a photo-catalytic radiation like UV or IR opens the possibility for activating bio-therapeutic agents of various kinds within mammalian bodies.
- Other possibilities include the activation of photo-catalysts in mediums for cross-linking reactions in polymeric chains and polymer based adhesives. These examples are but two examples of a number of possibilities that can be more generally described as the use of a conversion material to convert an initiating radiation that is deeply penetrating to another useful radiation possessing the capability of promoting photo-based chemical reactions.
- the photo-chemistry is driven inside media of far ranging types including organic, inorganic or composited from organic and inorganic materials.
- Photo-activation with no line of site required can be done in-vivo and ex-vivo such as those carried out in cell cultures.
- the photo activation of a select bio-therapeutic agent and conceivably more than one agent at a time, can lead to the onset of a desirable chemical reaction, or a cascade of reactions, that in turn lead to a beneficial therapeutic outcome.
- the binding of psoralen compounds to DNA through the formation of monoadducts and/or crosslinked adducts is well known to engender an immune response if done properly.
- FIG. 1 is a schematic illustrating various cellular components of an example cell 100.
- FIG. 1 illustrates, for example, cellular components such as mitochondria, ribosomes, centrosome, centrioles, the nucleus, and so on.
- FIG. 2 illustrates a schematic drawing of the structure of a plasma membrane 100 of the cell 100 shown in FIG. 1.
- Cells are known to have a complex cellular wall referred to in the art as a plasma membrane, an example of which is shown in FIG. 2.
- a portion 200 of the plasma membrane is shown in FIG. 2 with respect to the cell 100.
- the plasma membrane separates the internal structures and operating organelles from the cell’s external environment. It houses and protects the contents of the cell. It is made of a bi-layer of phospholipids and various proteins, which are attached or embedded.
- the plasma membrane is a semi permeable structure that allows passage of nutrients, ions, water, and other materials into the cell. It also allows an exit pathway for waste products and for functional two-way passage of many kinds of molecules to adjust cell chemistry.
- the principal purpose of the cell membrane is to provide a barrier that contains all of the processes and components within the living cell and to simultaneously repel unwanted substances from invading or entering the cell.
- the plasma membrane may have from a relatively small number of ion channels up to approximately 200 to 400 molecular channels or more and of different dimension through which the passage of nutriments and electrolytic ions can enter the cell.
- the thickness of a plasma membrane is estimated to be about 7-8 nanometers.
- selected ion channels can rid the individual cells of waste products in a process called autophagy to transport, excrete or see to the expulsion of waste products from the cellular interior into the
- the molecular channels within the plasma membrane have molecular sized openings for the different molecules of extracellular ions and other nutriments or materials required by the cell.
- An example of the materials desired by the cell to transport through these channels include, but is not limited to, sodium, potassium, magnesium, calcium ions, and water.
- the openings are provided for example by specifically sized pores through which ions can travel between extracellular space and cell interior.
- the channels are typically specific (selective) for one ion; for example, most potassium channels are characterized by 1000:1 selectivity ratio for potassium over sodium, though potassium and sodium ions have the same charge and differ only slightly in their radius.
- the channel pores are typically so small that ions must pass through in a single-file order.
- a channel may have several different states (corresponding to different conformations of a protein), with each state considered to be either open or closed.
- closed states correspond either to a contraction of the pore— making it impassable to the ion— or to a separate part of the protein, stoppering the pore.
- the voltage-dependent sodium channel undergoes inactivation, in which a portion of the protein swings into the pore, sealing it. This inactivation shuts off the sodium current.
- Ion channels can also be classified by how the channels respond to their environment.
- the ion channels involved in an action potential are voltage-sensitive channels; they open and close in response to the voltage across the membrane.
- Ligand-gated channels form another important class; these ion channels open and close in response to the binding of a ligand molecule, such as a neurotransmitter.
- Other ion channels open and close with mechanical forces.
- Light an electromagnetic radiation
- microfilaments are attached to the plasma membranes, those points allow“signals” to gain entry onto the cytoskeleton so as to be able to serve as a pathway to transport the signals around the cell. Such signals may travel to trigger or adjust chemical reaction areas and to various organelles and the nucleus to trigger reactions and pass along cellular communication instructions, at a minimum. Cells were therefore demonstrated to be equipped with an enabling infrastructure to sense and react to stimuli including electrical and electromagnetic stimuli.
- the plasma membrane is the site for generating the cells electrical signals for metabolic and other operations and to serve as a means to communicate, relay and receive signals with other cells, especially those of similar type.
- the nucleus and plasma membrane communicate with electrical signals.
- the nucleus determines how the cell functions and also determines the architecture of the cell and its contents.
- the plasma membrane uses electrical signaling to open passageways and ion channels to allow the intake of chemicals as well as the outflow of cellular waste products.
- the electric signaling exists by virtue of potential gradients and the establishment of currents that exist within cells and between cells within biological bodies.
- the displacement of charged species encompasses electrons, ions, anions, low, mid and high molecular weight biological polymers, which in turn includes, but is not limited to, proteins. It is well known that the displacement of charged species (current) is almost always accompanied by the establishment of magnetic fields during the transient states associated with motion.
- the outside of the cell membrane is coated with a defensive glycocalyx, which is designed and produced by the cell to protect it and allow it to be recognized.
- the nucleus has input into the crafting of membrane defensive characteristics.
- the glycocalyx can produce a negative electric surface charge in cancer cells so as to repel the body's immune system.
- the cell membrane regulates the flow of materials into and out of the cell. Also, it can detect external signals and mediate interactions between other cells.
- Membrane carbohydrates installed on the outer surface function as cell markers to distinguish itself from other cells.
- This plasma membrane contains the sites where the electrical energy is created and the cellular communication signals are formed. These signals are transmitted over the cytoskeleton, which acts like wires, to regulate and trigger metabolic and functional processes within the cell.
- the cell nucleus communicates with all organelles and operating structures located within the cell.
- FIG. 4 illustrates a pictorial drawing of the internal framework 400 of a cell, such as the cell 100 shown in FIG. 1.
- the cytoskeleton in a cell maintains the shape of all cells from the inside. It is like a geodesic structure that provides strength and internal areas for electro -chemical timed reactions. Noteworthy is that the cytoskeleton extends into other cells and links up with their cytoskeleton to maintain and form communication links into adjacent cells. This structure is made up of a network of hollow-microtubules, solid-microfilaments, and solid-intermediate filaments. The cytoskeleton is anchored to the plasma membrane and serves as the‘wiring’ to transmit the cellular communication signals. The cellular environment is highly networked and the transmission of chemical and electrical information is made more efficient as a result if this interconnectivity.
- the cytoskeleton is made up of actin and myosin, which are also found in muscle structures.
- the cytoskeleton also controls the circulation of the cytosol, which is the fluid and semi-fluid that suspends the organelles.
- Organelles are the functioning entities of the cell that manufacture and distribute cellular products and processes necessary for the cell to live.
- the cytoplasm in a cell is a fluid, that can be rather gel-like, which surrounds the nucleus, which is considered an organelle.
- the nucleus contains the DNA genetic information and hence, controls both the activity of the cell and its structural nature.
- the nucleus is spherical and is surrounded by a double membrane, the nuclear membrane and envelope, which is perforated by a significant number of pores that allow the exchange of materials and substances with the cell's cytoplasm and the extra moist environment outside which contains the ionic minerals and chemicals that feed the cells and provides the necessary water.
- the nucleus in the cell is an electrical body which contains the cell's DNA and carries programs to operate its electrical signals and the opening and closing of channels in the wall of the cell's plasma membrane.
- the nucleus also contains the apoptosis program for cell suicide.
- Ion pumps and ion channels are electrically equivalent to a set of batteries and resistors inserted in the membrane wall, and thus create voltage differences between the inner and outer sides of the membrane. Such differences in the electrical values range from -40 mV to -80 mV.
- the cell acts as a battery, it provides the power to operate molecular devices that are embedded in the plasma membrane.
- the electrical activity sends signals that communicate with adjoining cells of the tumor to regulate the cancer as an intra grail living body.
- Mitochondria are rod or oval shaped structures functioning as respiration for the cell.
- a number of mitochondria are distributed within the cytoplasm and move in accordance with its flow.
- the product produced as a biological fuel is called adenosine tri phosphate (ATP).
- ATP adenosine tri phosphate
- the manufacture of ATP results from the processing of proteins, fats, and carbohydrates through the Krebs cycle. The ATP once produced is distributed to other organelles that require this bio-fuel to provide processing energy as needed.
- the mechanism of energy production is known as oxidative phosphorylation.
- the membrane of the live biological cell and the membrane of the mitochondria are analogous to plate-like condensers with defined capacitance related to the surface area, the permittivity of the biological media and is inversely proportional to the distance between the surfaces.
- the pumping of ions into the intermembrane space leads to a voltage build up and the process is analogous to a metabolic pump with a defined voltage gradient and hence a power supply to drive an electromotive force.
- the endoplasmic reticulum (ER) in a cell is a network of membranes that form channels that crisscross the cytoplasm utilizing its tubular and vesicular structures to manufacture various molecules.
- the network of membranes is dotted with small granular structures called ribosomes for the synthesis of proteins.
- Ribosomes are tiny spherical organelles distributed around the cell in large numbers to synthesize cell proteins. They also create amino acid chains for protein manufacture. Ribosomes are created within the nucleoli at the level of the nucleolus and then released into the cytoplasm.
- Smooth ER makes fat compounds and deactivates certain chemicals like alcohol or detected undesirable chemicals such as pesticides.
- Rough ER makes and modifies proteins and stores them until notified by the cell communication system to send them to organelles that require the substances.
- Cells in humans, except erythrocytes (red blood cells), are equipped with endoplasmic reticulum.
- the Golgi apparatus is made of Golgi bodies, which are located close to the nucleus and are made of flattened membranes stacked atop one another like a stack of plates.
- the Golgi apparatus sorts and modifies proteins and fats made by the ER, after which it surrounds and packs them in a membranous vesicle so they can be moved around the cell as needed. Similarly, there is a process to pack up cell waste products for expulsion from the cell via ports in the plasma membrane into the extra cellular spaces.
- Lysosomes are the digestive system for the cell. They contain copious quantities of acids, enzymes, and phosphates to break down microbes and other undesirable substances that have entered the cell. They also digest and recycle worn-out organelles to make new cellular structures or parts.
- the cytoskeleton is composed and constructed of intermediate sized filaments, which actually serve as the internal structure to maintain cellular shape.
- the filamentous structure serves to provide a highway for electrical signals to travel to sites of chemical process that reside on shelves constructed by the cytoskeleton assembly within the cell.
- the intermediate filaments are composed of compounds that are similar to the structures of muscles, which have their own electrical properties.
- the electrical signals traveling through or on the cytoskeleton most likely initiate and stop the chemical reactions, as required.
- the electrical signals may skip and travel along the surface of the filamentous network rather than within the central framework, again on some sort of scheduled or timed basis or in response to some event or instruction. Access to all systems within the cell by nucleus operations is made possible by electrical signals residing within the individual cells.
- This piercing of the cell wall within the desmosome is considered to one way explaining how signals are sent and received from adjoining cells.
- other types of cellular attachment for signal transduction or transmission are likely.
- Normal cells reproduce by going through a cell cycle that leads to reproduction of similar cells by a process of mitosis which is where a single cell divides and then splits into two daughter cells that are exact replications of the mother cell. Normal cells are limited as to how many times they can reproduce by mitosis, which is probably no more than 70 times.
- Cancer occurs in normal cells in which birth-defected distorted chromosomes and abnormal genes can lead to the formation of a defective cell which exhibits a severe disorder of mitosis (cell division).
- the thrust of a cancerized cell is to continuously reproduce by splitting into similar daughter cells uncontrollably for its entire life. Some species of cancer cells can reproduce continuously every 30 minutes while others can take 24 hours or longer to multiply.
- Cancer cells continue to reproduce by splitting (including the nucleus) into two daughter cells which themselves split and grow into adult cancer cells and then split again, on and on continually for the life of the malignancy.
- This process of cell splitting called mitosis, only produces daughter cells, which enlarges into a massive collection of cells, which is referred to as a tumor.
- Designated cancer cells on the outer edges of the tumor can be released and travel to other distant sites by a process called metastasis. Once this metastatic process proceeds, the cancer spreads to critical body parts and usually heralds a poor overall outcome for the patient.
- Cancer cells are typically unregulated, disorganized, and engage in extremely rapid rates of mitosis. When enough cancer cells are made, they form larger tumors, which interfere with the duties and nutrition of nearby normal cells.
- Cancer does its damage in complex ways that include strangling or distorting organs, blood vessels, and nerves as well as working its way into bones, brain, and muscles. Cancer cells perform no function that contributes to the homeostasis (life equilibrium) of the body in any way. As described in the‘835 patent, cancer cells have developed ways to repel or block the human body immune system by several means including erecting an electrical shield on the outer surface of the plasma membrane, which is produced by the cancer cell itself. Such a thin electrical shield is called the glycocalyx and generates a negative charge to oppose the animal or human immune system, which is also negatively charged. Two negative bodies repel each other, which in the case of cancer mean that the immune system cannot engage the tumor to destroy it.
- the body's natural immune system is not effective in attacking cancer as it does in attacking invading bacteria or viruses or even malfunctioning cells that have been injured, which are usually positively charged. Positively charged microbes or ill cells are susceptible to killer T-cell and other immune system attacks because the negatively charged immune defenses can approach its target successfully.
- Apoptosis as a bio medical term that indicates that there is a state of natural or induced reprogramming of a cell to enter a suicide mode whereby the cell dies without any inflammatory process. Thereafter, the lifeless cell is phagocytized and removed by macrophages of the immune system.
- Apoptosis can occur in many kinds of cells such as erythrocytes as a method to rid the body of non-performing or defective cells.
- cancer cells are thought to not have much opportunity to have preprogrammed cell death because those cells have an immortal ability to continue to reproduce and reorganize their cellular electrochemical system in a way that suits the purpose of the cancerized cell.
- Some 200 ion channels or more populate all sides of the cell plasma membrane which encompasses and shelters the interior operations of the cancer cell.
- Cells including malignant ones, are considered to have an internal signaling mechanism in order for them to operate the cell and remain alive as well as participating in tumor life processes of continuous reproduction of more cancer cells.
- An initiating cancer cell starts out as a normal cell, but develops a chromosomal and/or a genetic chaos that drives a transformation to malignancy.
- Prevailing cancer theory blames mutations in important regulatory genes for disturbing the normal controls on cells that are destined to become malignant. Such theory does not give credit to the damaging changes to actual chromosomes that are seen in all cancer cells.
- the distorted, broken or bent chromosomes can unbalance thousands of genes and are believed to be sufficient to trigger cellular instability that can lead to serious genetic disruption, transforming so-called normal cells into malignant ones.
- the cancer cells may retain their electrochemical signaling and operating systems which existed when it was a normal cell, changes seemingly occur to rearrange its cellular mechanisms in new ways to eventually disconnect its communication ability from adjacent normal cells and to start rapid reproduction of more cancerous cells.
- the first cancer cells that are adjacent to normal unaffected cells are sometimes not“wired” into the rest of the tumor. Perhaps these first cells are only a demarcation line from malignant to normal and do not have to participate in the cellular communication system. Later cells do develop the desmosome interconnection communication system that allows a way for each cell to speak to its adjacent neighbor cells.
- Other means of communicating between cancer cells beside desmosomes are gap junctions, direct cell connections, and tight junctions. The various junctions are connected with the intermediate filaments so as to provide the pathway to transmit messages between the various cancer cells.
- the cytoskeleton is the framework within the cell that provides a somewhat flexible geodesic-like framework to maintain cell shape, provide shelves for chemical or electrochemical process, and allow space for the organelles, nucleus, and protein manufacturing elements within the cell.
- the liquid within the cell is called cytoplasm.
- this allows these floating structures some sort of communication between the cellular membrane and the nucleus as they come into close proximity.
- Cancer cells are considered to have different electrical signals than normal cells. Cells generate their electrical energy and communication signals within the plasma membrane. The plasma membrane may also have electrical connections to adjacent cells of the same type. The nucleus is considered in communication with activities occurring in the plasma membrane, for that matter all other activities of the cell.
- Cell signaling may be accomplished by a combination of electrical and chemical interactions. Different types of cells should require a varied level of signaling qualities.
- the creation or generation of a given cell signal is believed to begin in the plasma membrane where raw material and chemical ions are taken in from the extracellular matrix to both generate electricity and establish the signal format.
- the plasma membrane is a sort-of cell wall that takes in the required raw material via its ion channels. Ion channels open and close to allow passage into and from the cell interior. Electrical signals are likely generated in the plasma membrane before they are sent via the cytoskeleton, all about the cell to go and participate and contribute to cell operations.
- the cytoskeleton also serves as a geodesic-style dome providing a framework to shape and support the cell.
- the cytoskeleton serves as the pathway by which cell signals generated in their plasma membrane travel within and around the cell to do its work.
- communication to adjacent cancer cells could happen through connections such as desmosomes, which are extensions that bridge and allow communication between adjacent cells of a tumor.
- Human bodies have complex daily cellular maintenance duties to dispose of some 50 million worn out cells every day. Average adult humans operate an ever-busy apoptosis and repair system. Key elements are briefed below.
- Necrosis is a form of traumatic cell death that results from acute cellular injury.
- necrosis death of cells can happen because of infection or fever that result in the premature death of cells in living tissue. Untreated necrosis results in a buildup of dead and
- Apoptosis is the original programmed cell death technology that helps repair and model the body beginning with birth and continuing on throughout life. Some 50 billion cells die every day due to apoptosis. For example, the lining of the digestive tract from the stomach lining on to the colon undergoes apoptosis every 3 to 5 days to replace the entire inner lining of the digestive tubular structures. Red blood cells are programmed to replace themselves every 90 days by undergoing killing by the spleen and the bone marrow manufacturing new blood cells and releasing them back into the blood vessels to do their work of carrying oxygen and carbon dioxide.
- Technical events that appear during an apoptosis event include characteristic changes that include cell shrinkage, generating heat, hypoxic events and an increase in calcium concentration which causes snappy signaling in the nucleus that triggers and orchestrates the imminent apoptotic event.
- Autophagy is from the Greek definition as“self-eating.” Inside a living cell's cytoplasm are organelles identified as autophagosomes which move around the cell to sweep up viruses, bacteria, and worn out materials from the cell itself. The autophagosomes bag up or concentrates the cell sludge and worn out protein and other debris to be handled by recycling organelles that float in the cytoplasm. Some of the unusable waste is forced out of designated cell ion ports by pumping it through the plasma membrane into the extra-cellular fluid surrounding the cells. Since some neurons live as long as the body they have to use autophagy to maintain the quality of the overall cell health.
- Autophagy and mitochondrion can work together to cause apoptosis to trigger programmed cell death to rid the cell of unwanted cell component that can't be rehabilitated.
- apoptosis produces cell fragments called apoptotic bodies that phagocytic cells are able to engulf, eat, digest, and then dispose of in league with the autophagy process in a well-established method to keep the overall cellular system in order.
- Pyknosis is the irreversible concentration of chromatin in the nucleus of a cell involved in necrosis or apoptosis. This is followed by condensing its nucleus before expelling it to become a reticulocyte. The maturing neutrophil will be involved in forming blebs that stay in the cell until the end of its life. Blebs are distortion of the nucleus and the cancer cell shape. It is the formation of protrusion or pimple structures of what was previously a symmetrical nucleus and overall cell shape. It is followed by fragmentation of the changing nucleus on its way to experiencing karyorrhexis. During bleb formation of the nucleus, a sort of pimple formation gives the nucleus an unhealthy appearance, which does not improve.
- Karyorrhexis is the ultimate bursting of the cellular nucleus into multiple pieces that cannot be repaired.
- the nucleus of a cell represents and is equivalent to the brain of any creature, once it is broken into pieces it is finished.
- Karyorrhexis is an important cancer killing skill, which is accomplished by fragmentation of the cancer cell nucleus into apoptotic bodies, which are then engulfed and ingested by phagocyte(s).
- a phagocyte is a special cell that locates and surrounds broken cellular components and then eats them.
- leukocytes white blood cells
- the job of the nucleus is to control all cellular operations and to participate in communication and coordination with nearby cells. If a nucleus is fragmented, it is like fragmenting the brain of a human or animal, life cannot go on with such as injury.
- Electrical signaling can function to control and regulate chemical activities, autophagy, regulates the mitochondrial production of ATP which serves as an energy source for the cell, and controls the ribosome's protein manufacturing operations.
- the electrical codes can serve as communication means with the adjoining cells including when to release cells for metastasis operations among other duties.
- Electrical signal flow traveling throughout the many cells of the tumor may allow for the generation of instructions to select cells that are destined to metastasize to distant sites to spread colonies for the malignancy. Such cells become soft and slightly puffy as they are released into the lymph or blood circulation system to travel to distant sites to start a new metastatic colony.
- Electrical signals from the plasma membrane may travel on the surface of the intermediate filaments and reach chemical processes and likely ignite or stimulate a reaction that contributes to reproduction, protein manufacture or metabolic operations. Without electrical activity and the molecular devices that operate the cell plasma membrane, the cell could not function properly.
- the charge of the outer wall takes on a protective negative charge, especially on the very thin outermost cell coating which is called the glycocalyx.
- This glycocalyx in cancers is considered to have a continuous negative charge protecting the malignant structure from the immune system which is also electrically charged in a negative format to repel the immune system from attacking the cancer, while non-cancerous glycocalyx coatings are positive in their protective electrical charge. All of this allows the positive protective charge to permit the negative charged immune system to embrace the positive cell protective elements and engage undesirable invaders like viruses or bacteria. Not so for the cancer glycocalyx with its negative shield which may repel the immune killer T-cells as they approach.
- the membrane of biological cells and organelles act like platelike capacitors with the capacitance:
- c is the portion of the plate-like capacitor
- e and e 0 are the permittivity of the biological media and the permittivity of free space
- d the distance or space in the inter membrane
- p is the radius of curvature of the platelet.
- the energy stored is related to the established voltage gradient divided by the distance.
- m is the Permeability of the biological media.
- a constant electric field as established in the metabolic pump and as exemplified by the mitochondria ions build up in the interlayer, which therefore represents a power supply condition with a well-established voltage gradient
- oscillatory conditions do take into account the inter-connectivity of the biological media with many constituents each sharing boundary conditions and contributing to an overall energy continuum of the collective.
- These biological oscillatory systems are complex, and many fundamental electromagnetic laws and thermodynamic principles need to be applied, simulated, verified gaged for their predictive effectiveness. This aside, the establishment of conditions intrinsic to the biological system leading to the charge up and storage of electrical energy and subsequently discharge and decay of the stored energy under the form of electro-magnetic energy is empirically well established.
- Figure 4A-1 is a depiction of on the left a) a conventional LRC circuit capable of resonating and releasing stored energy E in the electromagnetic energy emission at well defined frequencies and on the right (b) an equivalent type biological circuit with a metabolic pump (MP), coiled molecules (CM) with a representative inductance (L), a capacitive layer (CL) from a phospho-lipid bi-layer, and the highly interconnected biological media (BM) completing the electrical circuit.
- MP metabolic pump
- CM coiled molecules
- L representative inductance
- CL capacitive layer
- BM highly interconnected biological media
- Receptors consist of three domains and extracellular Ligand binding domain a transmembrane domain and an intracellular domain as illustrated in the figure:
- Binding of a ligand to the extracellular domain activates the receptor tyrosine kinase which activates other proteins by phosphorylation of adding a phosphate to the amino acid tyrosine on a protein inside the cell.
- the binding of the ligand to the extracellular domain could be accompanied by the emission of light in view of the Gibbs free energy reduction that accompany a favorable chemical reaction.
- a signal goes to the intracellular domain activating the associated enzyme and initiating a cascade of signals to the nucleus that tells the cell to grow and divide or to stop growing.
- These signals can in fact be electromagnetic in nature.
- a protein kinase is a kinase enzyme that modifies other proteins by chemically adding phosphate groups to them (phosphorylation). Phosphorylation usually results in a functional change of the target protein (substrate) by changing enzyme activity, cellular location, or association with other proteins.
- the human genome contains about 560 protein kinase genes and they constitute about 2% of all human genes. Up to 30% of all human proteins may be modified by kinase activity, and kinases are known to regulate the majority of cellular pathways, especially those involved in signal transduction.
- Malignant cells generate many of their own growth signals which allows them to divide with reduced external growth stimulation some cells are able to produce their own growth factors and stimulate their own growth. These growth factors are then driven or diffused to the cell membrane and release to the environment outside of the cell which stimulates certain ligand.
- the autocrine process is the results of electromagnetic radiation that results from within the cell or group of cells when under stress.
- the stress signal stimulates biophotons which favor the over production of certain molecules (growth factors in this case) and keeling the system off balance.
- Glioblastomas express platelet derived growth factor or PDGF and sarcomas express tumor growth factor alpha or TGF-alpha & epidermal growth factor receptors or E-GFR.
- the present invention can interfere with the transmission of information related to proliferation by having energy modulators that get excited by X-Ray energy and emit UV energy tuned to denature such growth factors as EGFR and PDGF described in sarcomas and glioblastomas.
- the growth factors are targeted by UV energy to halt the growth factor inside and outside the cell. It is conceivable to have energy modulators (of small enough size) to migrate into the cytoplasm and emit UV radiation selective to the full or partial denaturization of the growth factor.
- EGF-Receptor (such as HER1 or ErB-l) is a member of a sub family of type one receptor tyrosine kinases. These receptors are found primarily in the membranes of normal epithelial cells from: skin, breast, colon and lungs (amongst others). EGF-Receptor and its ligand play a central role in the regulation of cell proliferation differentiation & survival. EGFR is overexpressed in tumors arising from the colon, rectum and head and neck to name a few.
- Activation of a signal transduction pathway creates a complex chain of events in the cytoplasm or fluid intracellular space that eventually leads into the cell nucleus where the transcription of genes regulating cell cycle progression are stimulated resulting in cell proliferation.
- One of the major cascades implicated in cancers is the Ras Raf Activated Protein
- MAP kinase pathway Another interesting pathway is the phosphor type 3 kinase or PI 3K/Akt/mTOR pathway. These pathways are linked to each other and other signal transduction pathways in the cell de-regulation or loss of normal controls in any of these pathways is thought to be present in all human tumors.
- transcription factors are activated. These factors transcribe the genes that are translated into proteins, such as growth factors, that are necessary to allow the cell to continue to proliferate.
- Therapies can target factors responsible for tumor growth include the ligand receptors, intracellular second messengers and nuclear transcription factors.
- Ligands can be neutralized before they bind to the receptors:
- Avastin which is a humanized monoclonal antibody that targets circulating vascular- endothelial growth factor or VEGF.
- Platelet derived growth factor or PDGF, fibroblast growth factor or FGF, and other examples of ligands can be targeted for different cells in the body.
- Light based therapies can target the denaturization of these chemistries as exemplified before.
- the receptors on the surface of normal and tumor cells can be inhibited directly.
- Erbitux is an example of this. It is a chimeric antibody that binds directly to the epidermal growth factor receptor and competitively inhibits the binding of EGF and other ligands such as TGF-alpha.
- Another way to block the receptors function is through small molecule inhibitors of receptor phosphorylation associated with them.
- EGF receptors have a tyrosine kinase that can be blocked by molecules such as Gefitinib (Iressa) or Erlotinib (Tarceva).
- Apoptosis is a mechanism by which organisms limit the growth and replication of cells. If apoptosis did not occur it would be hard to control growth and tissue homeostasis would be lost (in fact this is one of the key mechanisms behind cancer).
- the genetic alterations in the cancer cell not only lead to increased cellular proliferation and growth they also lead to loss of apoptosis (i.e., excessive cell growth and little cell death in malignant tissue).
- Apoptosis occurs in normal cells to allow for removal of damaged cells and maintaining a constant number of cells in regenerating tissues and is an important part of embryogenesis. In an average human adult 50 to 70 billion cells undergo apoptosis per day.
- Apoptosis is characterized by changes such as: cell shrinkage, mitochondrial cytochrome C release, and fragmentation of cell DNA into multiples of 180 base pairs. In the end, cells are broken into small apoptotic bodies which will be cleared through phagocytosis. Phagocytosis is a process where cells take in the cell fragments or microorganisms in membrane-bound vesicles. The vesicles fuse with lysosome containing proteases and the engulfed material is processed for recycling.
- the first is the death receptor or extrinsic pathway. It is triggered by activation of members of the tumor necrosis factor receptor superfamily.
- the second is through the mitochondrial or intrinsic pathway. This is set in motion by DNA damage.
- caspases which interact with inhibitors of apoptosis proteins or IAP and a Bcl-2 family of proteins (which
- Bcl-2 is overexpressed in B-cell lymphoma as a result of the translocation of its gene.
- deactivating mutations having a pro-apoptotic molecule like backs is seen in some gastrointestinal tumors and leukemias.
- Anticancer agents have been developed targeting anti-apoptotic molecules. For instance, short segments of DNA complementary to the RNA of Bcl-2 or antisense oligonucleotides have been designed to reduce the translation of this anti- Apoptosis protein.
- Activation of transcription factors can lead to apoptotic resistance. This occurs for example when members of the nuclear factor kappa B or (NF-kB) family of transcription factors are over expressed in certain tumors which lead to increased transcription anti- Apoptotic members of the IAP and Bcl-2 families.
- Ubiquitin proteasome pathway regulates the expression of transcription factors and other cell cycle proteins. Certain molecules can suppress or reduce NF-kB and IAP one activation and inhibit tumor promotion.
- Bortezomib is a proteasome inhibitor that has shown promising results in multiple myeloma. It inhibits the proteasome which leads to increased levels of the NF-kB inhibitor and therefore less anti- apoptotic proteins.
- Malignant cells grow in a controlled manner that form tissues that form organs with specific functions.
- Malignant cells are defined by their ability to invade adjacent structures and be disseminated or metastasize. Malignant tumors can metastasize at any point. They do so by having cells break off from the main to enter the bloodstream and/or lymphatic channels and travel to other parts of the body to initiate a new tumor. Their ability to invade eventually affects the function of the normal tissue into which they are growing. Metastasis is a multi-factorial process involving complex interactions between tumor cells. The EGFR pathway activates and modulates metastasis. When the appropriate signals enter the cell, a complex chain of events within the cytoplasm is set in motion.
- MMP matrix metalloproteinase
- the MMPs When the MMPs reach the vessel they break down the basement membrane surrounding the vessel through enzymatic action opening access to the epithelial cells lining the vessel. Tumor cells can then migrate into the blood and lymph by entering through the tight junctions of the epithelial cells. The tumor cells are then transported through the blood and lymph to other tissues. It is known that metastatic tumor cells tend to target some organs more than others although the reason why is poorly understood. The migration of tumor cells into the organs is very much like the recruitment of white blood cells to tissues after injury.
- angiogenesis vascular endothelial growth factor
- YGEF vascular endothelial growth factor
- VEGF vascular endothelial growth factor
- VGEF affects the endothelial cells that line the blood vessels in a number of ways. It can cause them to proliferate by activating the extracellular kinases and MAP kinase signal transduction pathways.
- MMPs matrix metalloproteinases
- EuPA euro kinase plasminogen activator
- uPA tissue type plasminogen activator
- uPAR tissue type plasminogen activator
- VGEF also helps the new endothelial cells survive by up regulating inhibitors of apoptosis.
- VEGF also activates the endothelial cells to express the proteins necessary to allow the new blood vessels to form. The end result is the growth of new blood vessels into the tumor. With this growth of new vessels into the tumor, additional nourishment can be delivered to the tumor. New blood vessels in the tumor thus facilitate further tumor growth.
- Strategies targeting VEGF and its receptors have been used successfully in clinical practice.
- Avastin is an antibody that binds VEGF and prevents its binding to its receptor.
- Sutint is a small molecule inhibitor with high binding affinity for VEGF and PDGF receptors.
- VEGF and PDGF binding the affinity of VEGF and PDGF.
- Another strategy is to target the exact frequency (derived from a UV-VIS) to cause ionization or denaturization of the VEGF and PDGF.
- one object of the present invention is to provide a method for treatment of a condition, disorder or disease in a subject which induces a change in a targeted region that is not directly exposed to an agent which can cause a biological, chemical, physical or therapeutic change.
- the induced change occurs in situ to treat a condition, disorder or disease.
- a further object of the present invention is to provide a method for treatment of a condition, disorder or disease in a subject using transmission of signals from a first or control region into a second or target region of the subject to effect a predetermined change in the target region.
- a further object of the present invention is to provide a method for treatment of a condition, disorder or disease using cell to cell communication to effect a predetermined change in the target region.
- a further object of the present invention is to provide various biophoton collectors and biophoton bypasses useful for implementing a variety of the method embodiments.
- Figure 1 is a schematic illustrating various cellular components of an example cell
- Figure 1 A is a schematic showing the cellular components of Figure 1 along with the presence of biophotons and phosphors for emitting light to stimulate or mimic biophoton radiation.
- Figure 2 illustrates a schematic drawing of the structure of a plasma membrane 100 of the cell 100 shown in FIG. 1.
- Figure 3 illustrates a junction view 300 of the attachments between tumor cells.
- Figure 3 A is a schematic showing the junction view of Figure 3 along with the presence of biophotons and phosphors for emitting light to stimulate or mimic biophoton radiation.
- Figure 4 illustrates a pictorial drawing of the internal framework 400 of a cell, such as the cell 100 shown in FIG. 1.
- Figure 4A is a schematic showing the internal framework of Figure 4 along with the presence of biophotons and phosphors for emitting light to stimulate or mimic biophoton radiation.
- Figure 4A-1 is a depiction of a conventional LRC circuit and an equivalent type biological circuit.
- Figure 5 is a depiction of a biophoton collector 500 according to one embodiment of the present invention.
- Figures 6A-6C are a depiction of an electromagnetic biophoton collector 600 according to one embodiment of the present invention.
- Figure 7 is a depiction of a fractal antenna according to one embodiment of the present invention.
- Figure 7-1 is a schematic showing a section of waveguide 710 according to one embodiment of the present invention, having a high-k dielectric material 712, a low-k dielectric material 714 and a central metal 716.
- Figure 7-2 is a schematic showing the antenna pickup area of one embodiment of the present invention having an open concentric polarization construction 720a.
- Figure 7-3 depicts an array 730 of antennae 732 according to one embodiment of the present invention.
- Figure 7-4 depicts a cross section of the stub configuration 730 shown in Figure 7-3 with antennae 732 interconnected together according to one embodiment of the present invention.
- Figure 7-5 is a schematic of a multi-up arrayed antenna 750 according to one embodiment of the present invention.
- Figure 7-6 is another schematic of the multi-up arrayed antenna 750 shown in Figure 7-5 showing a top-level interconnection network 762 under the top surface of multi-up arrayed antenna 750, according to one embodiment of the present invention.
- Figure 7-7 is a further schematic of the multi-up arrayed antenna 750 shown in Figure 7-5 showing the full interconnection network including top-level interconnection network 762 and bottom-level interconnection network 764, according to a further embodiment of the present invention.
- Figure 7-8 is a depiction of antennae that can be arrayed in different manners including a square antenna 780a, a rectangular antenna 780b, and a diamond shaped antenna 780c, according to embodiments of the present invention.
- Figure 7-9 is a depiction of a spiral-type packing antenna arrangement 790 according to one embodiment of the present invention.
- Figure 7-10 is a depiction of a window chamber according to one embodiment of the present invention.
- Figure 7-11 is a depiction of a window 795 made of a quartz wafer that has different sections that are independent of each other, according to one embodiment of the present invention.
- Figure 8 is a depiction of a hollow optic biophoton bypass 800 according to one embodiment of the present invention.
- Figure 9 is a depiction of an electrically conducting biophoton bypass 900 according to one embodiment of the present invention.
- Figure 10 is a depiction of another electrically conducting biophoton bypass 1000 according to one embodiment of the present invention.
- Figure 11 is a depiction of a magnetic biophoton bypass 1100 according to one embodiment of the present invention.
- Figure 12 is a depiction of a DNA-based biophoton bypass 1200 according to one embodiment of the present invention.
- Figure 13 is a depiction of a living-cell biophoton radiator 1300 according to one embodiment of the present invention.
- Figure 14 is a depiction of a system 1400 of the present invention for application of microwave energy to a target region to locally heat the cells in the target region and thereby induce biophoton emission.
- Figure 15 is a depiction of an in vivo biophoton source 1500 according to one embodiment of the present invention.
- Figure 16 shows the spectral emission of the BP3, BP10, and BP6 phosphors.
- Figure 17 is a chart showing that photonic energy from BP3 tends to produce more MA than BP6 or BP 10.
- Figure 18 is a chart showing MA formation under BP3 photonic energy as a function of distance from the X-ray source and time.
- Figure 19 is a chart showing XL under BP3 photonic energy as a function of distance from the X-ray source and time.
- Figures 20-24 show results from other experiments corroborating MA formation and/or XL under photonic energy exposure.
- Figure 25 is a chart showing a non-linear effect on MA seen by mixing two phosphors.
- Figure 26 is a depiction of a helical“allosteric lever arm” as considered by Strickland et al. to be a mechanism for coupling the function of two proteins.
- Figure 27 is a depiction of a design of an allosteric, light activated repressor.
- Figure 28 is a depiction of the light-triggered dissociation of UVR8-tagged proteins.
- Figure 29 is a flowchart of one method for treating a subject according to an embodiment of the present invention.
- Figure 30 is a flowchart of another method for treating a subject according to a further embodiment of the present invention.
- the present invention with its natural sources of biophoton radiation and its artificial sources of biophoton radiation can alter the structures of the cells or the functions described above including the electrical signaling, can alter the chemical pumping and ion transport processes promoting cell growth (reproduction) or cell death, and can alter the“communication” or“coupling” between various cells to thereby provide a method for treatment of a condition, disorder or disease in a subject.
- biophoton radiation encompasses mitogenic radiation to any degree that the art considers these“radiations” or ultra weak emissions to be different.
- the phenomenon of ultra weak emission from cellular systems has been a topic of various inquiries since the l900s. This topic can be traced back to the early investigations of the Russian biologist Gurwitsch Alexander G. Gurwitsch more than seventy years ago, who speculated that ultraweak photon emission transmit information in cells [A. G. Gurwitsch, S. S. Grabje, and S. Salkind,“Die Treatment des spezifischen Erregers der Zellotti,” Arch. Rheinsmech. Org. 100, 11-40, 1923].
- an“induction length” that is a distance from cell emitting biophoton radiation and the cell reacting to the biophoton radiation
- an“induction length” that is a distance from cell emitting biophoton radiation and the cell reacting to the biophoton radiation
- the invention in various embodiments encompasses methods and techniques for identifying bio-photonic electromagnetic energy and stimulating the production of such naturally produced and transmitted electromagnetic energy inside a cell (intracellular) and amongst a group of short ranged neighboring cells (intercellular) and finally between two distinct group of cells as in the case between a group of diseased cells inside a tumor and a group of non-diseased cells in the Tumor Micro Environment (TME) .
- TEE Tumor Micro Environment
- the invention relates to the stimulation or interruption of the transmission of naturally occurring bio-photonic electromagnetic energy.
- UV excitation can further enhance the ultra-weak emission and a method for detecting UV-A-laser-induced ultra- weak photon emission was used to evaluate differences between cancer and normal cells.
- a method for detecting UV-A-laser-induced ultra- weak photon emission was used to evaluate differences between cancer and normal cells.
- Frohlich notes that there are coherent electric vibrations in the frequency range 100 GHz to 1 THz, excited in cells by metabolic processes (see Frohlich H. Coherent electric vibrations in biological systems and the cancer problem, IEEE Transactions on Microwave Theory and Techniques, Vol. MTT- 26, No. 8, August, 1978, pp 613-617). This idea is based on observation of the inhibition or stimulation of the growth of yeast and bacterias functions of the applied frequency, showing very stable and repetitive resonances. If such vibrational states are indeed metabolically excited, then they should be manifested in Raman spectroscopy.
- Farhardi et al in“Evidence for non-chemical, non-electrical intercellular signaling in intestinal epithelial cells” in Biochemistry 71 (2007) 142-148 in Science Direct (the entire contents of which are incorporated herein by reference) reported on a synchrony in which mechanically separated neighboring cells (which were not able to communicate via chemical or electrical mechanisms) nevertheless showed responses in the neighboring cells (untreated) to a treated cell undergoing apoptosis.
- Farhardi et al found that“detector cells” as far as 4 cm away from the control cell (where H 2 0 2 was added to induce cell death in an intestinal epithelial cell line) also showed cell death although not exposed to the hydrogen peroxide.
- Microbiol. 42, 315-323 (1996) (the entire contents of which are incorporated herein by reference) reported that bacteria cells alone can emit signals that stimulate colony formation in neighboring cells as far away as 30 cm and even those separated by an iron plate.
- Shanei et al. In the experiments conducted by Shanei et al., they used 9235B as a 51mm (2”) diameter, end window Photomultiplier (ET Enterprises Limited, United Kingdom) to measure photons emitted from HT-29 cells (a common cancer of digestive tract). Their detector had its maximum response at 350 nm with the quantum efficiency of 30% in detection range of 250 nm to 600 nm. Shanei et al. showed that the application of H 2 C) 2 to the HT-29 cells caused their death and a corresponding increase in the ultra- weak photon emission (UPE).
- UEE ultra- weak photon emission
- FIG. 1 A illustrates the coupling of one region (not shown) into the region shown in FIG. 1A by way of for example“natural” biophoton radiation 102 (that is radiation from nearby living cells).
- a biological change in a second region inside the subject will be induced.
- Coupling refers to a number of ways that cells in one region induce a biological change in another region.
- This coupling can utilize mitogenic radiation, biophotonic radiation, electromagnetic radiation, ultraviolet radiation, visible radiation, and near infrared radiation.
- This coupling between different regions can be via the quantum entanglement of associated states, magnetic coupling, coupling via electric field propagation, coupling via bioplasma states, coupling via sonic waves, coupling via single-photon-type non-classical optics, coupling via coherent light emissions, coupling through tunneling nanotubes, coupling through satellite DNA, coupling through biological waveguides, coupling via a biophoton bypass, coupling via stimulation or simulation of biophotonic radiation, and combinations of any of these mechanisms described above and in more detail below.
- a method of treating a subject comprising: providing a first region of biological material coupled to the subject; initiating a change in a cellular environment of the cells in the first region; and due to a change in biological or chemical activity of the cells in the first region, inducing a biological change in a second region inside the subject.
- the phosphors 104 shown in Figures 1A, 3 A, and 4A can mimic a “natural” biophoton radiation 102 and induce the same or similar changes that would have been induced by the natural biophoton radiation.
- Light emission from phosphors 104 can also be used to stimulate the“natural” biophoton radiation 102.
- the radiation collector of the present invention is a collector (or a series of different kinds of collectors) that can collect radiation from various spectra ranging from ultraviolet light through visible, infrared, and far infrared bands. Furthermore, in one embodiment, the radiation collector is designed to collect electric and/or magnetic field radiation emitted from the live biological cells. Moreover, in one embodiment, the radiation collector is designed to collect acoustic or sonic waves emitted from the live biological cells and to redirect and/or amplify those collected signals to a treatment region.
- FIG. 5 is a depiction of a biophoton collector 500 according to one embodiment of the invention.
- the biophoton collector 500 includes an integrating sphere 502 with a highly reflective inner surface as described below.
- the biophoton collector 500 includes living cell container 504 shown in Figure 5 at the base of the sphere 502.
- the biophoton collector 500 includes an output window 506 for transmitting the biophotons from the sphere 502.
- the biophoton collector 500 includes optionally a stimulation window 508 which can be used to expose cells in container 504 to radiation which can stimulate biophoton radiation.
- the biophoton collector 500 includes nozzle 510 for supply cells or nutrients or effluent to the container 504. Channel 512 can be used for supply and removal of the effluents.
- the biophoton collector 500 would likely be disposed outside a patient with a transmission optic (not shown) for transmission of the light from window 506 into a patient.
- the integrating sphere 502 would have its interior surfaces made of and/or coated with a highly reflective material.
- the integrating sphere 502 can be formed from a hollow sphere, with an inner wall of the sphere is coated with a material coating layer (e.g., a barium sulfate layer or titanium dioxide, etc.). Biophoton light emitted from container 504 would be reflected on the interior surfaces and directed to an output window 506.
- nozzle 502 provides a way to add effluent to container 504 such as hydrogen peroxide to induce controlled cell death or nutrients to promote cell growth.
- FIGS 6A-6C are depictions of an electromagnetic biophoton collector 600 of one embodiment of the present invention.
- Biophoton collector 600 is similar to that described in US Pat. Application Publ. No. 20010/0032437 (the entire contents of which are incorporated herein by reference).
- Biophoton collector 600 includes a container 602 for storing substances.
- the container 602 is provided with a radio frequency antenna 604.
- Circuitry 606 can include a chip 610, circuit paths 612 forming a coil of the antennae and wires 614 for connecting the circuit paths with chip 610.
- the circuitry is disposed on an exterior surface 620 of container 602 and in the embodiment shown encircles the container 602. Inside container 602 would be live cells.
- an effluent can be added to container 602 such as hydrogen peroxide to induce controlled cell death or nutrients to promote cell growth.
- biphoton emission as
- electromagnetic radiation would be collected and transmitted from circuitry 606 to a target treatment region.
- biphoton emission as electromagnetic radiation would be detected and its waveform characteristics would be stored by chip 610.
- a radio wave or microwave generator or another
- electromagnetic radiation broadcaster could use the stored waveform characteristics to generate/simulate biphoton for transmission to a target treatment region.
- Figure 7 is a depiction of a fractal antenna that can be used in one embodiment of the invention as the antenna for electromagnetic biophoton collector 600.
- a fractal antenna uses a self-repeating design such as self-repeating design 702, or other fractal patterns. It can maximize the length of an antennae material in a total surface area.
- fractal antennas are compact and have a wide band of operation because a fractal antenna resonates at many different resonances, meaning it can act as an antenna for many different electromagnetic frequencies. The different resonances arise because the fractal nature of the antenna acts as a virtual network of capacitors and inductors.
- a fractal antenna could be printed (or otherwise formed) onto the external surface 620 of container 602.
- a fractal antemia could be printed (or otherwise formed) on a Petri dish.
- a fractal antenna could be printed onto a biocompatible polymer supporting living cells. These fractal antennae would be used to collect biophoton electromagnetic radiation.
- the antenna could be connected to a spectrum analyzer to evaluate the frequency characteristics of the electromagnetic radiation captured from the biological cells. Once measured, a rf or microwave generator could be used to replicate the measured spectrum.
- the circular polarization of the electric field of non-polarized light is best captured by an optical waveguide having metallized stubs of different orientations.
- a stub would be dimensioned about 1 ⁇ 4 wavelength wide by 3 ⁇ 4 wavelength long, and the stubs would be oriented in all possible concentric and spherical radiated orientations.
- the biophotonic activity taking place is measured either in-vivo through a window chamber (described below) or in-vitro in a well plate or in a container.
- a planar array, multiple stub configuration provides a unique antenna for other purposes and one that is suited for collection of biophoton radiation.
- the collection of biophoton radiation including light can use a fractal antenna design, similar to that described above for collection of electromagnetic radiation collection at radio or microwave frequencies, but in this embodiment designed for the visible light range or frequencies about the visible light range and much shorter that the radio or microwave frequencies.
- the repetitive patterns do not have stubs with lengths shorter than l/8.
- the antennae stubs have lengths that range from near l/4 to near 3l/4. Accordingly, if the intended light measurements are centered around 300 nm, for example, then the stub length of interest would be between 75 nm and 225 nm.
- the fabrication of the antenna can be performed using well known semiconductor processes for build-up of small metallic features, including, but not limited to, low-k Si0 2 dielectric, and high-k Si0 2 dielectric.
- the growth of various layers could be done through a sequential build-up process.
- the metallized features can be achieved through metal atomic layer deposition (ALD) or through other metal deposition processes known in the art such as sputtering or evaporation, with photo-resist processing used to pattern the deposited metal layer(s) leaving the appropriate metallized patterns of interest.
- the metallic pattern in one embodiment would be surrounded by a high-k dielectric in contact with the metal, and that structure embedded inside a low k dielectric to a form a sensitive optical waveguide that is capable of detecting the stimulus of a weak electric field from the bio-photonic activity.
- FIG. 7-1 is a schematic showing a section of waveguide 710 with a high-k dielectric material 712, a low-k dielectric material 714, and a central metal 716
- the patterning can be done on a quartz wafer of appropriate dimensions.
- the antenna pickup area is preferably of an open concentric polarization construction 720a as shown in Figure 7-2.
- Metal stubs 722 extend radially from a common center. Other patterns are possible and can be used, including the simpler representation of the open concentric polarization construction 720b also shown in Figure 7-2.
- Figure 7-3 depicts an array 730 of antennae 732 configured on a quartz wafer (not shown).
- the arrayed antennae each have pick up stubs that are concentric and planar as shown in Figure 7- 3.
- the antenna stubs connect with an internal column (see internal column 766 shown in Figure 7-7) made of the same materials design as Figure 7-1 having a configuration with a metal core, surrounded by a high k Si0 2 dielectric and a low k Si0 2 dielectric that forms the optical waveguide.
- the metal can be, but is not necessarily, made of a metal enabling a photoelectric effect.
- FIG. 7-4 A cross section of the stub configuration 730 shown in Figure 7-3 with antennae 732 interconnected together is shown in Figure 7-4.
- Figure 7-5 is a schematic of multi-up arrayed antenna 750.
- Figure 7-6 is another schematic of the multi-up arrayed antenna 750 shown in Figure 7-5 showing a top-level interconnection network 762 under the top surface of multi-up arrayed antenna 750.
- Figure 7-7 is another schematic of the multi -up arrayed antenna 750 shown in Figure 7-5 showing the full interconnection network including top-level interconnection network 762 and bottom-level interconnection network 764.
- Figure 7-8 is a depiction of antennae that can be arrayed in different manners including a square antenna 780a, a rectangular antenna 780b, and a diamond shaped antenna 780c.
- Figure 7-9 is a depiction of a spiral-type packing arrangement 790 where each antenna petal 792 is placed at 0.618034 per turn (out of a 360° circle) allowing for the best possible exposure to cellular-light. This desirable spiral arrangement follows from what is commonly referred to as the Fibonacci sequence.
- the resulting multi-up pattern has a high density and a spiral configuration similar to the one found in pine cones and sunflowers. This spiral pattern is desirable for the packing it enables.
- This patterned antenna can be built on a quartz wafer of any size that can fit within semiconductor equipment capability.
- a quartz wafer hosting thousands of antennae (2,000 to 100,000 antennae) can be built.
- This quartz wafer can be used in accordance to the window chamber model.
- the quartz wafer equipped with fractal antennae can be used inside a polycarbonate well plate.
- the cell plating can be performed on top of the quartz wafer with embedded fractal antennae.
- Various experiments can be envisaged to elucidate the light-based communication inside of a single cell or amongst multiple cells.
- the ability to conduct photonic measurement in-vivo using fractal antennae permits one to measure biophoton radiation from living tissue in vivo or in vitro.
- these signals can be transmitted from their source to a treatment site or could be duplicated to mimic biophoton radiation.
- Figure 7-10 is a depiction of a window chamber according to one embodiment of the invention, where the window area 795 is constructed for transmission of biophoton radiation therethrough.
- window chamber 793 could be equipped with fractal antennae (of the same or different designs) to permit measurements of photonic activity as well as having the ability for direct observation and monitoring.
- the antenna patterning in at least one portion of the window 795 can be made with antenna elements dimensioned at subwavelengths of visible light so that observation of the biological region underneath window chamber 793 is possible.
- the fractal antenna can be as described herein above, or can be any desired fractal antenna configuration.
- Figure 7-11 is a depiction of a window 795 made of a quartz wafer that has different sections that are independent of each other. This design permits the photonic activity to be measured from different sectors of the subject.
- the wavelength or spectral information could be collected and stored regardless of whether the antenna was sectioned or not.
- FIG. 7-11 also illustrates one embodiment of the invention where the antennae are sectioned such that photonic activity (or the absence thereof) can be monitored from each section.
- Each fractal antenna in window 795 could be connected to separate fiber optic columns 766, or all the fractal antennae in each section could be connected together to one common fiber optic column 766.
- the biophoton bypass might have physical characteristics of a fiber or fiber bundle if the bio-photons needed to be transmitted over significant distances, as from outside the body into the body or from one region of the body more accessible for the control than the target region.
- the biophoton bypass might have physical characteristics of an optical sheet with evanescent waves from the sheet penetrating a shallow depth into a diseased organ.
- the biophoton bypass might be a simple polymeric window separating a control region from the diseased organ made along the ways described in the Yevgeny patent application U.S. Pat. Appl. Publ. No. 2009 (discussed in more detail below).
- the biophoton bypass might be capillary filled with a protein solution.
- a narrow capillary was filled with a dilute protein solution and exposed to MGR (another name for biophoton radiation) on one end. No radiation was detected at the other end until the protein filed capillary was aligned with an electric field.
- the biophoton bypass of the invention could be a protein-filled conduit wherein an applied electric field which can“gate” to either turn on or turn off the transmission of biophotons along the protein-filled conduit.
- the biophotons emitted from one cell induce photo-assisted reactions in a nearby or proximate cell that itself produces its own biophotonic emission, thereby leading to biophoton emission from one cell to another cell, appearing as a “communication” across many cells.
- the biophotons are emitted from excited states of luminescing species.
- the set of excited states can be considered a“bioplasma.”
- bioplasma is a term derived from bioelectronics , molecular biology and solid state plasma physics and refers to a state in which biomolecules in vivo are predominantly in a stable, collective, excited state. It is considered a“cold plasma” that forms an energetic and informational network throughout the organism involving a colloid of semi-conducting proteins as the main constituent in a redox (oxidation-reduction) chemical oscillator displaying complex dynamics. This is analogous to a low-power laser that uses chemical, electrical or magnetic energy to pump it into an excited metastable state.
- the collective state of this bioplasma can be influenced by localized changes.
- One candidate to influence local changes would be the application of an electric field, to change the polarization of the cells and turn off (or on) chemical reactions.
- Other candidates are described in more detail elsewhere but include providing ultrasonic, microwave, or localized cooling to selected portions of cells in an organ.
- an energy transmitting structure (as the biophoton bypass) could carry the biophotons to a target site.
- An optical fiber could be used if the biophoton light were in the UV to near IR range.
- vacuum/air would be the most reliable medium for the biophoton bypass.
- a hollow optic could be used for a biophoton bypass of the invention for transmitting biophotons in the UV to near IR range inside the hollow optic while bypassing media of the subject to be treated.
- Figure 8 is a depiction of a hollow optic biophoton bypass 800 according to one embodiment of the invention.
- U.S. Pat. No, 8,454,669 (the entire contents of which are incorporated herein by reference) describes a similar device for UV phototherapy.
- the hollow optic biophoton bypass 800 of the invention there are walls 802 which define a hollow cavity 804 filled with air, a gas, or possibly under a vacuum for transmitting UV light into a subject could be utilized in this invention.
- the interior surfaces 806 would be highly reflective surface.
- FIG. 9 is a depiction of an electrically conducting biophoton bypass 900 according to one embodiment of the invention where low frequency electric signals are transmitted therein while bypassing media of the subject to be treated.
- the conductors 902 shown in Figure 9 are similar to those described in U.S. Pat. No. 7,272,427 (the entire contents of which are incorporated herein by reference) where the conductors in the‘427 patent were used to measure bio-electric signals from the heart muscle while a patient was in an MRI environment.
- the electrically conducting biophoton bypass 900 has an electrically conductive part 902 and a sheath part 904 arranged over conductive part 902.
- the conductive part 902 and sheath part 904 are separated by a dielectric 906.
- the electrically conducting biophoton bypass 900 can include multiple conductors 902 terminating on connectors 910 for attachment to a subject to be treated.
- Connectors 910 conductors can be attached to the living cells noted above and/or to a target region if the wire or conductive trace is being used as a biophoton bypass to deliver the low frequency electric signals from a source of the low frequency electric signals to a target site for treatment.
- the multiple conductors 902 with multiple sheaths are twisted together to reduce high frequency noise.
- FIG 10 is a depiction of another electrically conducting biophoton bypass 1000 according to one embodiment of the invention where the biophotons as high frequency electrical waves are transmitted therein while bypassing media of the subject to be treated.
- a coaxial cable 1002 is used.
- Waveguides as biophoton bypasses
- These devices are highly selective for delivery of specific frequencies of radiation.
- the electrically conducting biophoton bypass 1000 includes a coaxial cable 1002 having an outer plastic sheath 1010, a woven copper shield 1012, an inner dielectric insulator 1014, and a copper core 1016.
- FIG 11 is a depiction of a magnetic biophoton bypass 1100 according to one embodiment of the invention where the biophotons as time-varying or static magnetic fields are transmitted therein while bypassing media of the subject to be treated.
- magnetically permeable materials form a magnetic circuit (as the biophoton bypass) carrying the time-varying or static magnetic field from a source to a target.
- the magnetic biophoton bypass 1100 utilizes a dual gap design.
- a source of the magnetic fields there is a source of the magnetic fields.
- a cell containing living tissue that is living cell biophoton emitter 1102 which is a source of magnetic biophotons.
- the magnetic yokes 1104 and 1108 form a“circuit” carrying the magnetic field in the circuit from the living cell biophoton emitter 1102 through magnetic yoke 1104 to a target or treatment region 1 106, and back by magnetic yoke 1108 to the living cell biophoton emitter 1102.
- the biophoton radiation applied to a first region is capable of triggering an altered metabolic activity in one or more cells, preferably in the 100 GHz to 10 THz region, which triggers the cell(s) to undergo altered metabolic activity, and optionally, to further trigger subsequent biophoton emissions from the cell(s).
- Microwave broadcasters or microwave waveguide structures can be used to apply these frequencies to a target structure.
- the spiral chains of DNA naturally present in biological materials are used to transmit radiation in the frequency range of 100 GHz to 5 THz or are used for charge transport or signaling along DNA traditionally thought to be“satellite” or “junk” DNA (hereinafter referred to as“signaling DNA”).
- This signaling DNA corresponds to approximately 98.5% of the DNA strand, with only about 1.5% of the DNA strand functioning genetically to code for proteins or RNA, etc.
- this signaling DNA actually can (and does) function as one of the components of cell-to-cell communication or signaling within humans, as well as other animals.
- Figure 12 is a depiction of a DNA-based biophoton bypass 1200 according to one embodiment of the invention where the biophotons in the frequency range of 100 GHz to 5 THz are transmitted therein while bypassing media of the subject to be treated.
- the signaling DNA 1202 is included in a waveguide type outer structure
- the length and diameter of the outer structure 1204 is sized according to the frequency range to be transmitted.
- Lithographic and printing processes can be used to generate trenches in silicon substrates that could both hold the signaling DNA and form a waveguide structure for propagation of biophotons in the frequency range of 100 GHz to 5 THz across the surface of the silicon substrate and to a treatment site.
- Wafer thinning processes known in the art could be used to thin the silicon wafer making the DNA-based biophoton bypass 1200 potentially a flexible biophoton bypass.
- the application of biophoton radiation to a target structure may directly affect a diseased region or it may enhance biophoton emissions from a first region (where cell death is being artificially induced) to a second or treatment region)
- This biophoton emission may act as a way of“communicating changes” in the first or control region which induce changes in the second or target region.
- This artificial biophoton emission may also act to enhance naturally occurring biophoton emission.
- This biophoton emission may also result in quantum coupling between the control and the target regions.
- the first and second regions are“coupled” to each other with a medium (whether artificial or natural or that intrinsically present in the biological materials of the first and second region) that transmits bio-photons to the target region as a way of“communicating changes” in the first or control region which induce changes in the second or target region.
- live biological cells in a container could be used as a source of biophoton radiation.
- a Petri dish or container outside the subject could contain the live biological cells. See Figures 5 and 6.
- the base of the Petri dish would contain a radiation collector in near direct contact with the living cells.
- the radiation collector would have (if needed) a thin passivation layer to insure that the materials of the radiation collector do not interact with the solutions in the petri dish.
- Biophoton radiation emitted from the biological cells would be captured by the optical collector and then transmitted to a treatment site, for example inside the subject.
- a cancer strain (the same or similar to that of a patient) could be treated in a container with hydrogen peroxide to induce cell death.
- the biophoton radiation would be collected from the container and transmitted in a biophoton bypass (bypassing intervening tissue of the patient) into the diseased region promoting cell death.
- non-biological polymers e.g., polymers other than DNA, RNA, or protein
- PNA peptide nucleic acid
- polycarbamates polyureas, polyesters, polyacrylate, polyalkylene (e.g., polyethylene, polypropylene), polycarbonates, polypeptides with unnatural stereochemistry, polypeptides with unnatural amino acids, and combination thereof.
- the polymers comprise at least 10, 25, 75, 100, 125, 150 monomer units or more. These polymers could be used to encapsulate the biological cells of the living-cell biophoton radiator.
- a living-cell biophoton radiator could exist outside the patient or be surgically disposed inside the patient at the diseased site.
- U.S. Pat. No. 8,999,376 (the entire contents of which are incorporated herein by reference) describes tissue patches comprising fibrinogen (and/or fibrin).
- fibrinogen and/or fibrin
- This type of fibrin glue has been approved by the FDA and can be used to impart topical hemostasis, provide sealant properties that are suitable is some clinical applications, and promote tissue approximation. Fibrin glue mimics the final steps of the coagulation cascade.
- Figure 13 is a depiction of a living-cell biophoton radiator 1300 according to one embodiment of the invention where living cells are added as a part of living cell layer 1320.
- the matrix 1310 shown in Figure 13 can be in the form of a cylindrical disc 1350 with a substantially circular cross-sectional geometry.
- the matrix 1310 (or the entire tissue patch) can have other cross-sectional geometries such as, for example, substantially elliptical, polygonal (e.g., including any number of sides such as in the form of a triangle, a quadrilateral (e.g., rectangular or substantially square), etc.), irregularly-shaped, or any other suitable shape.
- these types of patches 1310 can be applied to organ tissue.
- matrix 1310 would be attached to an organ (not shown).
- Living cells of a kind similar to that to be treated using biophoton radiation would be contained in living cell layer 1320.
- An encapsulant layer 1330 would be applied over the living cell layer 1320.
- encapsulant layer 1330 would contain either a substance to promote cell growth or a substance to promote cell death which would be controllably released into the living cell layer 1320.
- the matrix 1310 would be a porous or semi- porous structure having pores 1350 in a membrane 1355 permitting biological and fluid comiections from living cell layer 1320 and the organ to be made.
- encapsulant layer 1330 could contain phosphors or other elements such as metals significantly heavier than carbon for preferential absorption of x-rays (with the phosphors producing ultraviolet or visible light) or for preferential absorption of microwaves (with the metals locally heating).
- the UV or visible light or the local heating would“stress” the cells in living cell layer 1320 to thereby produce biophoton radiation.
- n is 1 or 2; wherein x and y are each individually integers of from about 1 to about 500; wherein Z is an optional linker group comprising from about zero to about 20 carbon atoms, from about zero to about 5 oxygen atoms, from about zero to about five nitrogen atoms, from about zero to about 5 sulfur atoms, and from about zero to about five phosphorous atoms; and wherein each W is individually selected from the group consisting of biotin, a fatty acid, a fluorescent dye, an antibody, a peptide, a targeting ligand, a
- polysaccharide and a negatively charged group, the polymer being non-covalently attached to at least a portion of the exterior of the living cell.
- The‘117 publication further describes a method for coating a living cell, comprising intermixing the living cell with a polymer which includes at least one recurring unit represented by a formula selected from formulas (I), (II), and (III) as described above, wherein the polymer is intermixed with the living cell in an amount effective to at least partially coat the exterior of the living cell.
- a variety of diseased cells may be contained or carried by the polymer-coated cell construction noted above. These diseased cells may include cells exhibiting neurologic diseases (e.g.
- Parkinson's disease multiple sclerosis
- cardiovascular disease myocardial ischemia, repair and regeneration of infarcted myocardium
- hepatic disease liver failure
- cancer tissues cancer tissues.
- the target tissue to be treated with the living-cell biophoton radiator of this invention may be an organ such as heart, brain, kidney, skin, liver, muscle, spleen, lung, spinal cord and bone marrow. Tissues of this type or from these organs can be biopsied, cultured, and returned to the patient at the site of the disease. These cells may contain therapeutic agents to promote cell death or cell growth depending on the treatment under consideration. As these therapeutic agents work, biophoton emission radiates adjacent cells not contained in the polymeric coating, thereby inducing a change in the adjacent cells.
- the polymer coatings assist integration of cells of the living-cell biophoton radiator into native tissue and survival of implanted cells at least until biophoton radiation from the polymer encased cells can be used.
- the cells may be protected in the blood for several hours.
- the polymer coated cells may also be protected from the immune response of the host. These coatings may protect the cell therapeutic while allowing passage of vital nutrients including oxygen.
- the selection of cell type is a function of the disease which is being treated, the cell type being coated and forming part of the living-cell biophoton radiator.
- skeletal myocytes would be injected into post-myocardial infarction scar tissue; neuronal cells would be administered to the brain of patients with Parkinson's Disease.
- Cell sources which may be used for the living-cell biophoton radiator of this invention include embryonic stem (ES) cells, adult stem cells, progenitor cells such as skeletal myoblasts, fetal and neonatal cariomyocytes, and chord blood.
- ES embryonic stem
- progenitor cells such as skeletal myoblasts, fetal and neonatal cariomyocytes, and chord blood.
- cardiovascular and lung tissues may also contain progenitor or stem cells that under the correct conditions could be induced to proliferate and repair cellular damage.
- progenitor or stem cells that under the correct conditions could be induced to proliferate and repair cellular damage.
- stem cells that under the correct conditions could be induced to proliferate and repair cellular damage.
- recent findings suggest that a sub-population of fetal proliferative alveolar epithelial stem cells is present in adult lung.
- other tissues such as skin, liver, brain, and muscle have progenitor or stem cell populations that may provide additional sources of cells for cellular therapies.
- endothelial progenitor cells for the living-cell biophoton radiator of this invention may be injected into the target area to promote new vessel growth.
- the cells are isolated from the mononuclear cell fraction of bone marrow or peripheral blood.
- the cells may be whole isolated cells or the cells may first be expanded in culture.
- Other examples for the living-cell biophoton radiator of this invention include treatment of skin disease with replacement grafts.
- Skeletal stem cell implantation may be used for bone regeneration.
- Chondrocytes may be used to repair joint cartilage. Acute and chronic renal failure may be treated with stem/progenitor cells using the living-cell biophoton radiator of this invention.
- the cell source for the living-cell biophoton radiator of this invention may be either an autologous source or a non-autologous source.
- the cells may be genetically modified.
- non-autologous sources may be used.
- Non- autologous cells include allogeneic and xenogeneic cells.
- Non-autologous sources must overcome the natural host immunologic rejection processes.
- the polymer coating according to the embodiments provides protection from the host immune response.
- autologous cells generally involves obtaining the patient's own cells, expanding the cells in vitro in large quantities over several weeks, and reintroducing the cells in a site-specific manner.
- Such methods include injection of the cells into a target site in a subject.
- Cells may be inserted into a delivery device which facilitates introduction by injection or implantation into the subjects.
- delivery devices may include tubes, e.g., catheters, for injecting cells and fluids into the body of a recipient subject.
- the tubes additionally have a needle, e.g., a syringe, through which the cells of the embodiments can be introduced into the subject at a desired location.
- cells are formulated for administration into a blood vessel via a catheter (where the term“catheter” is intended to include any of the various tube like systems for delivery of substances to a blood vessel).
- the cells may be prepared for delivery in a variety of different forms.
- the cells may be suspended in a solution or gel.
- Cells may be mixed with a pharmaceutically acceptable carrier or diluent in which the cells of the embodiments remain viable.
- Pharmaceutically acceptable carriers and diluents include saline, aqueous buffer solutions, solvents and/or dispersion media. The use of such carriers and diluents is well known in the art.
- the solution is preferably sterile and fluid, and will often be isotonic.
- the solution is stable under the conditions of manufacture and storage and preserved against the contaminating action of microorganisms such as bacteria and fungi through the use of, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like.
- Modes of administration of the polymer coated cells include but are not limited to systemic intracardiac, intracoronary, intravenous or intra-arterial injection and injection directly into the tissue at the intended site of activity.
- the preparation can be administered by any convenient route, for example by infusion or bolus injection and can be administered together with other biologically active agents. Administration is preferably systemic. Most preferably, the site of administration is close to or nearest the intended site of activity.
- the polymer coated cells will migrate or home to the tissue or organ in need of treatment in response to chemotactic factors produced due to the injury without specific modification of the polymer coated cells for targeting.
- Modifications of the polymer coating can provide for homing of the cells for the living-cell biophoton radiators of this invention to the target site.
- Protein targeting agents such as antibodies or proteins that bind to specific membrane sites may be used to target the polymer coated cells to the target organ or tissue.
- the polymer coated cells are modified prior to implantation into the individual so as to promote their targeting to tissue or organ in need of treatment.
- the polymer may include an antibody which binds an antigen that is abundant at the target site, that is, at the site of the tissue or organ which is diseased or in need of treatment.
- monoclonal antibodies are known that specifically target cancer cells. Many of these are antibodies to growth factor receptors which are preferentially expressed on the surface of cancer cells. These include the humanized monoclonal antibody trastuzumab (Herceptin) which targets the HER-2/neu oncogene (Sato, et al. (2005) Int. J. Radiation Oncology Biol. Phys. vol. 61 (1): 203-211). The HER-2/neu oncogene is found in ovarian cancer, lung cancer, gastric cancer, oral squamous cell carcinoma, breast cancer, and esophageal cancer. BLCA-38 monoclonal antibody has been shown to target prostate and bladder cancer (Russell, et al. (2004) Cancer Immunol Immunother. vol. 53:995-1004). Other monoclonal antibodies are known and it is within the level of skill in the art to select a monoclonal antibody appropriate to the cancer or other disease or injury to be treated.
- Migration of polymer coated cells for the living-cell biophoton radiators of this invention to target tissues may be enhanced by genetic modification, e.g., introduction of an exogenous nucleic acid encoding a homing molecule into the cells.
- homing molecules include receptors specific to the target tissue such as chemokine receptors, interleukin receptors, estrogen receptors, and integrin receptors.
- a receptor ligand such as transferrin or epidermal growth factor can be included in the polymer for homing to cancer cells.
- These ligands provide specific targeting to receptors on tumor cells. Thus, delivery of the coated cells is localized to the area in need of treatment for maximum effectiveness.
- Another method of homing a cell such as a stem cell to an injured tissue is carried out by increasing the amount of an injury-associated polypeptide, e.g., a cytokine or adhesion protein, in the injured tissue.
- the method increases the number of stem cells in an area of injured tissue compared to the number of stem cells in the area in the absence of an exogenous injury-associated polypeptide or nucleic acid encoding such a polypeptide.
- identification of injury-associated polypeptides e.g., growth factors, activate endogenous mechanisms of repair in the heart such as proliferation and differentiation of cardiac progenitor cells. These effects can give rise to biophoton radiation supplementing healing in adjacent cells.
- the injured tissue is contacted with a nucleic acid encoding a protein such as a cytokine or adhesion protein.
- a nucleic acid encoding a protein such as a cytokine or adhesion protein.
- cells such as fibroblast cells expressing exogenous nucleic acid molecules encoding the cytokine or adhesion protein are introduced to the site of injury.
- the cells optionally can contain an exogenous nucleic acid encoding a gene product, which increases endocrine action of the cell, e.g., a gene encoding a hormone, or a paracrine action of the cell.
- stem cells are genetically modified to contain an exogenous nucleic acid encoding a bone morphogenetic factor and engrafted into bone, cartilage, or tooth tissue, e.g., to treat periodontitis.
- the cells for the living-cell biophoton radiator of this invention optionally also include nucleic acids encoding other biologically active or therapeutic proteins or
- polypeptides e.g., angiogenic factors, extracellular matrix proteins, cytokines or growth factors.
- cells to be engrafted into pancreatic tissue contain a nucleic acid(s) encoding insulin or insulin precursor molecules.
- the cells also optionally include nucleic acids encoding gene products that decrease transplant rejection, e.g., CTLA4Ig CD40 ligand, or decrease development of transplant arteriosclerosis, e.g., inducible nitric oxide synthase (iNOS).
- transplant rejection e.g., CTLA4Ig CD40 ligand
- iNOS inducible nitric oxide synthase
- Tissue specificity is a fundamental problem for gene therapy as proteins that are therapeutic in target cells also may be harmful to normal tissue.
- non cell-specific expression of a transgene has the potential for inducing metabolic and physiologic mechanisms that could result in pathology over the long term.
- Localized injections can provide certain degree of localized expression of the targeting vector, however, there may still be a spill over into the circulation which will affect other cells and organs.
- transcriptionally targeted vectors may be used that can restrict the expression of the therapeutic proteins primarily to the target cells by the use of tissue-specific promoters.
- the polymer cell coating according to the embodiments can allow for entry of oxygen and other nutrients into the coated cell.
- a selected portion of cells in an organ can ne be subjected to stress.
- a number of sources of stress can be used to introduce at least one of chemical and physical stresses on the selected portion of cells in the organ.
- ultrasonic waves concentrated on a particular region of the organ could induce mechanical stresses (e.g., compression and/or elongation of the cell membranes) changing the transport of nutrients across the membrane, thereby stressing those cells to induce biophoton emission.
- localized cooling of tissues in one part of an organ would produce stress in the cells to induce biophoton emission.
- localized heating of tissues in one part of an organ would produce stress in the cells undergoing the local heating to induce biophoton emission.
- microwave hyperthermia treatment systems such as those described in U.S. Pat. No. 9,079,011 (the entire contents of which are incorporated herein by reference) could be used to locally heat tissues in one part of an organ, producing stress in those cells to induce biophoton emission.
- hyperthermia has been used to elevate the temperature of tissues for a variety of purposes including: (i) destroying tissues such as tumors by the application of heat, (ii) increasing the susceptibility of heated tissue to chemical or radiation therapy, and (iii) triggering heat activated or released drugs. It is generally known to use microwave electromagnetic radiation for hyperthermia treatment.
- Figure 14 is a depiction of a system 1400 of the present invention for application of microwave energy to a target region to locally heat the cells in the target region and thereby induce biophoton emission.
- System 1400 of the present invention can have an antenna fixture 1412 supporting a plurality of antennas 1414 about a treatment volume 1415.
- the treatment volume may be defined by a substantially hemispherical shell 1416 whose inner surface may contain a collar 1418 receiving and supporting the top of the patient's head.
- the collar may be filled with de-ionized water that may be circulated through connecting hoses 1420 with a cooler/pump 1421 providing skin cooling of at approximately 15 degrees centigrade of the patient's head to minimize surface heating of the skin by microwave energy from the antennas
- the antennas 1414 preferably direct microwave energy inward toward the treatment volume 1415 and may, for example, be microwave horns or patch antennas or other antennas of a type known in the art and are spaced to provide for substantially uniform separation of less than six centimeters.
- Each antenna 1414 may be connected to a radiofrequency power source 1422 providing independent phase (phi) and amplitude (A) control of the radiofrequency power applied to the antenna.
- the radiofrequency power source 1422 may provide a separate radiofrequency amplifier/synthesizer 1424 for each antenna 1414 or may use a single radiofrequency power source with separate amplitude and phase shifters. In one embodiment, a set of discrete phases and amplitudes may be implemented in a switching fashion.
- the radiofrequency power source 1422 may be controlled by a treatment controller 1428 via an interface board 1426, for example, providing a multiplexed A/D converter outputting phase and amplitude values from the treatment controller 1428.
- the treatment controller 1428 may include a processor 1430 communicating with a memory 1432 holding a stored program 1434 and treatment plan data 1436 describing a treatment schedule of changing phases and amplitudes of microwave frequency to be applied to the antennas 14 during treatment.
- the treatment plan data 1436 may be developed on the treatment controller 1428 but also can be developed off-line on a separate workstation 1440 having a display 1442 for displaying treatment maps for physician input, as will be described, generated by a communicating standard desktop computer 1444 also having a processor 1446, a stored memory 1448 holding a treatment planning program 1451 and the treatment plan data 1436, the latter which may be transferred to treatment controller 1428.
- the desktop computer 1444 may also communicate with input devices 1450 by interface 1452 according to well understood techniques for physician input as will be described. It will be appreciated that the processing and data storage required by the present invention may be freely distributed among one or more processors and different types of computers according to well-understood techniques.
- Microwaves provide a number of advantages including an ability to pass though some body structures such as the skull for treatment of the brain, and an ability to be focused to permit, for example, localized treatment of a tumor surrounded by tissue with reduced damage to the surrounding tissue.
- localized and focused heating of selected portion of cells in an organ preferentially stops short of cell death, as dead cells would not emit biophoton radiation. Rather, the treatment plan stresses living cells in the targeted region to emit biophoton radiation.
- stress could be applied by UV light at a non-lethal dose level using external sources of UV light“piped” into the subject (using for example the hollow cavity waveguide described above), or using phosphors under high energy or x-ray irradiation to produce internally within an organ localized stress.
- the BEP-AN 15 made by Biolight, a Korean company.
- the Biolight source is reported to radiate ultra-weak photon emission, generating energy through modulation of visible light, and delivers the energy at a frequency similar to“biophotons by voluntary absorption.”
- an artificial ex vivo (or in vivo) biophoton generator is used to produce biophoton radiation or to affect ultraweak photon emissions and cell-to-cell communication.
- One possible artificial source for biophoton radiation includes the device(s) described in U.S. Pat. No. 5,800,479 (the entire contents of which are incorporated herein by reference) owned by Biolight Patent Holding AB (Danderyd, SE).
- The‘479 patent describes a device for an external medical treatment with the aid of light, including a light emitting element which is intended to lie against or be held close to a wound or sore on the body of an individual.
- the light emitting element included light emitting diodes or like devices and was constructed to (1) to emit infrared light in a first stage for a first predetermined length of time and thereafter to emit visible light in a second stage for a second predetermined length of time.
- Another possible artificial source for biophoton radiation includes the device(s) described in U.S. Pat. No. 6,238,424 (the entire contents of which are incorporated herein by reference) owned by Biolight Patent Holding AB (Danderyd, SE).
- The‘424 patent describes an apparatus for external medical treatment with light.
- a light-emitting device in the‘424 patent is provided in close proximity to the body of an individual and that includes light- emitting diodes or corresponding elements that are adapted to emit monochromatic light of a first wavelength.
- the light emitting device is driven by a drive arrangement for causing the light-emitting device to emit the monochromatic light over a first predetermined time period in a first state, and thereafter emit selectively monochromatic light of a different wavelength than the first wavelength and over a second predetermined time period in a possible second state.
- the drive arrangement causes the light-emitting device to pulsate the emitted light in accordance with a predetermined pulse frequency or series of pulse frequencies over the respective time periods, and causes the light-emitting device to emit the pulsating light with a pulse length that lies within an interval of about 60% to about 90% of the time between respective start edges of two mutually sequential pulse.
- Another possible artificial source for biophoton radiation includes the device(s) described in U.S. Pat. No. 6,537,303 (the entire contents of which are incorporated herein by reference) owned by Biolight Patent Holding AB (Danderyd, SE).
- The‘303 patent describes a method for treatment of mammals by draining lymph along a lymph pathway within a mammal's body.
- an infrared-light-emitting device is used to emit pulsating infrared light at a low pulse repetition frequency. The light-emitting device is brought into contact with the body and is moved along a lymph pathway in a direction toward the lymphatic gland to which the pathway of the lymph vessel in question leads.
- these artificial sources would be attenuated to produce weak or ultraweak light emissions with duty cycles and wavelengths that mimic natural biophoton radiators.
- UY emitting light emitting diodes could be used along with the visible and infrared light emitting diodes described above. UV light emitting diode are described in U.S. Pat. No.
- a target cell to be treated is analyzed first to ascertain its biophoton emission characteristics. If the target cell is a known cancer strain, representative cancer lines could be analyzed. Alternatively, biopsies could remove small regions of the cancerous tumor. These representative or biopsied samples could be subject to cell death and the natural biophoton radiation could be observed. Once characteristics (e.g., wavelengths, duty cycle, total emittance) are known or inferred or estimated, the target cell to be treated is analyzed first to ascertain its biophoton emission characteristics. If the target cell is a known cancer strain, representative cancer lines could be analyzed. Alternatively, biopsies could remove small regions of the cancerous tumor. These representative or biopsied samples could be subject to cell death and the natural biophoton radiation could be observed. Once characteristics (e.g., wavelengths, duty cycle, total emittance) are known or inferred or estimated, the target cell is analyzed.
- configuration and driving of the LED array elements can be used to mimic the natural biophoton spectra.
- the mimic spectra could have one or more of the following characteristics:
- the present invention can use any desired energy converter, including, but not limited to, organic fluorescent molecules or inorganic particles capable of fluorescence and/or phosphorescence having crystalline, polycrystalline or amorphous micro-structures.
- Organic fluorescent compounds with high quantum yield include, but are not limited to:
- Inorganic fluorescent and/or phosphorescent materials span a wide variety of materials. Furthermore, these materials can be doped with specific ions (activators or a combination of activators) that occupy a site in the lattice structure in the case of crystalline or polycrystalline materials and could occupy a network forming site or a bridging and/or non-bridging site in amorphous materials. These compounds include, but are not limited to, (not ranked by order of preference or utility):
- Examples further include the alkali earth chalcogenide phosphors which are in turn exemplified by the following non-inclusive list: MgS:Eu 3+ , CaS:Mn 2+ , CaS:Cu, CaS:Sb, CaS:Ce 3+ , CaS:Eu 2+ , CaS:Eu 2+ Ce 3+ , CaS:Sm 3+ , CaS:Pb 2+ , CaO:Mn 2+ , CaO:Pb 2+ .
- alkali earth chalcogenide phosphors which are in turn exemplified by the following non-inclusive list: MgS:Eu 3+ , CaS:Mn 2+ , CaS:Cu, CaS:Sb, CaS:Ce 3+ , CaS:Eu 2+ , CaS:Eu 2+ Ce 3+ , CaS:Sm 3+ , CaS:Pb 2+ , CaO:Mn 2+ , CaO:
- ZnS type phosphors that encompass various derivatives: ZnS:Cu,Al(Cl), ZnS:Cl(Al), ZnS:Cu,I(Cl), ZnS:Cu, ZnS:Cu,In.
- the compound Illb-Vb phosphors which include the group Illb and Vb elements of the periodic table.
- These semiconductors include BN, BP, BSb, AIN, A1P, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb and these materials may include donors and acceptors that work together to induce light emission diodes.
- donors include, but are not limited to, Li, Sn, Si, Li, Te, Se, S, O and acceptors include, but are not limited to, C, Be, Mg, Zn, Cd, Si, Ge.
- the major GaP light emitting diodes which include, but are not limited to, GaP:Zn,0, GaP:NN, Gap:N and GaP, which emit colors Red, Yellow, Green and Pure Green respectively.
- the materials can further include such materials as GaAs with compositional variation of the following sort: Ini -y (Gai -x Al x ) y P.
- silicon carbide SiC which has commercial relevancy as a
- luminescent platform in blue light emitting diodes include the polytypes 3C-SiC, 6H- SiC, 4H-SiC with donors such as N and A1 and acceptors such as Ga and B.
- multiband luminescent materials include, but not limited to, the following compositions (Sr, Ca, Ba) 5 (P0 4 ) 3 Cl:Eu 2+ , BaMg 2 Ali 6 0 27 :Eu 2+ ,
- halophosphates include, but are not limited to: 3Ca 3 (P0 4 ) 2 .Ca(F,Cl) 2 :Sb 3+ , 3Ca 3 (P0 4 ) 2 .Ca(F,Cl) 2 :Sb 3+ /Mn 2+ ,
- the phosphate phosphors include, but are not limited to:
- the aluminate phosphors include, but are not limited to: LiA10 2 :Fe , BaAl 8 0i 3 :Eu , B aMg 2 A1 16 0 27 : Eu 2+ , BaMg 2 Al I6 0 27 :Eu 2+ /Mn 2+ , Sr 4 Al 14 0 25 :Eu 2+ , CeMgAlnOi 9 :Ce 3+ /Tb 3+ .
- the borate phosphors include: Cd 2 B 2 0 5 :Mn 2+ , SrB 4 0 7 F:Eu 2+ , GdMgB 5 Oio:Ce 3+ /Tb 3+ , GdMgB 5 0 1 o : Ce 3+ /Mn 3+ , GdMgB 5 O 10 :Ce 3+ /Tb 3+ /Mn 2+ .
- the tungstate phosphors include, but are not limited to: CaW0 4 , (Ca,Pb)W0 4 , MgW0 4 .
- the activators to the various doped phosphors include, but are not limited to: Tl + , Pb 2+ , Ce 3+ , Eu 2+ , W0 4 2 , Sn 2+ , Sb 3+ , Mn 2+ , Tb 3+ , Eu 3+ , Mn 4+ , Fe 3+ .
- the luminescence center Tl + is used with a chemical composition such as: (Ca,Zn) 3 (P0 4 ) 2 :Tl + , Ca 3 (P0 4 ) 2 :Tl + .
- the luminescence center Mn is used with chemical compositions such as MgGa 2 0 4 :Mn ,
- the luminescence center Sn2+ is used with chemical compositions such as: Sr 2 P 2 0 7 :Sn 2+ , (Sr,Mg) 3 (P0 4 ) 2 :Sn 2+ .
- the luminescence center Eu 2+ is used with chemical compositions such as: SrB 4 0 7 F:Eu 2+ , (Sr,Ba)Al 2 Si 2 0 8 :Eu 2+ ,
- BaMg 2 Ali 6 0 27 :Eu 2+ /Mn 2+ , (Sr,Ca)i 0 (P0 4 ) 6 Cl 2 :Eu 2+ .
- the luminescence center Pb 2+ is used with chemical compositions such as: (Ba,Mg,Zn) 3 Si 2 0 7 :Pb 2+ , BaSFCAPb”, (Ba,Sr) 3 Si 2 0 7 :Pb 2+ .
- the luminescence center Sb is used with chemical compositions such as:
- the luminescence center Tb 3+ is used with chemical compositions such as:
- CeMgAl n O ] 9 Ce 3+ /Tb 3+ , LaP0 4 :Ce 3+ /Tb 3+ , Y 2 Si0 5 :Ce 3+ /Tb 3+ , GdMgB 5 0 10 :Ce 3+ /Tb 3+ .
- the luminescence center Eu 3+ is used with chemical compositions such as: Y 2 0 3 :Eu 3+ ,
- the luminescence center Dy 3+ is used with chemical compositions such as: YV0 4 :Dy 3+ .
- the luminescence center Fe 3+ is used with chemical compositions such as: LiA10 2 :Fe 3+ .
- the luminescence center Mn 4+ is used with chemical compositions such as: 6Mg0.As 2 0 5 :Mn 4+ , 3.5MgO0.5MgF 2 .GeO 2 :Mn 4+ .
- the luminescence center Ce 3+ is used with chemical compositions such as: Ca 2 MgSi 2 0 7 :Ce and Y 2 Si0 5 :Ce .
- the luminescence center W0 4 is used with chemical compositions such as: CaW0 4 , (Ca,Pb)W0 4 , MgW0 4 .
- the luminescence center Ti0 4 4 is used with chemical compositions such as: Ba0.Ti0 2 .P 2 0 5 .
- Additional phosphor chemistries of interest using X-Ray excitations include, but are not limited to, the k-edge of these phosphors. Low energy excitation can lead to intense luminescence in materials with low k-edge. Some of these chemistries and the
- compositions can be prepared to obtain the desired output wavelength or spectrum of wavelengths.
- the phosphor selection could be chosen such that under x-ray or other high energy source irradiation, the light emitted from the phosphors would mimic the natural biophoton spectra of a target cell to be treated, similar to that described above where exemplary characteristics could include:
- ultraviolet and visible emissions can be used for the inventive in vivo biophoton source.
- Figure 15 is a depiction of an in vivo biophoton source 1500 where phosphors 1510 in proximity to the cells are excited by high energy such as x-rays or e-beams to generate biophoton radiation 1530 mimicking the characteristics known or measured from the target cells for their biophoton radiation.
- the biophotons 1530 can penetrate the cell and interact with the interior components of the cell such as the mitochondria and bacteria in the cell.
- the biophotons 1530 can be transmitted to the donor cell by transmission through the tunneling nanotube joining the cells. A more thorough discussion of tunneling nanotubes is given later.
- the biophoton radiation may change the chemical and charge transport along the tunneling nanotubes by photoionization events which place charge on the interior walls of the tunneling nanotubes.
- the photon flux from the inventive biophoton sources can be, but is not necessarily, a low photon flux source (in the range of single photons and therefore not operating as a classical light wavefront subject to scattering and absorption). Higher flux may be used with the expectation that beneficial results would still follow, especially under conditions where the natural absorption/scatter in the subject would result in appropriate photon fluxes within the treatment region.
- the duty cycle of the x-ray unit would determine the duty cycle of the biophoton radiation produced
- the phosphor selection or combination of phosphors would determine the wavelength emission characteristics
- external coatings on the phosphors would serve to attenuate the level of light emitted at the target site.
- the x-ray dose to the patient for a biophoton radiation treatment can be significantly lower than that for other radiation treatments.
- a downconverting energy modulation agent e.g., a down converting phosphor
- a downconverting energy modulation agent can comprise inorganic particulates selected from the group consisting of: metal oxides; metal sulfides; doped metal oxides; and mixed metal chalcogenides.
- the downconverting material can comprise at least one of Y 2 0 3 , Y 2 0 2 S, NaYF 4 , NaYbF 4 , YAG, YAP, Nd 2 0 3 , LaF 3 , LaCl 3 , La 2 0 3 , Ti0 2 , LuP0 4 , YV0 4 ,
- the downconverting material can include a dopant including at least one of Er, Eu, Yb, Tm, Nd, Mn Tb, Ce, Y, U, Pr, La, Gd and other rare-earth species or a combination thereof
- the dopant can be included at a concentration of 0.01%-50% by mol concentration.
- the downconverting energy modulation agent can comprise materials such as ZnSeS:Cu, Ag, Ce, Tb; CaS: Ce,Sm; La 2 0 2 S:Tb; Y 2 0 2 S:Tb; Gd 2 0 2 S:Pr, Ce, F; LaP0 4 .
- the downconverting material can comprise phosphors such as ZnS:Ag and ZnS:Cu, Pb.
- the downconverting material can be alloys of the ZnSeS family doped with other metals.
- suitable materials include ZnSe x S y :Cu, Ag, Ce, Tb, where the following x, y values and intermediate values are acceptable: x:y; respectively 0:1; 0.1 :0.9; 0.2:0.8; 0.3:0.7;
- the downconverting energy modulation agent can be materials such as sodium yttrium fluoride (NaYF 4 ), lanthanum fluoride (LaF 3 ), lanthanum oxysulfide (La 2 0 2 S), yttrium oxysulfide (Y 2 0 2 S), yttrium fluoride (YF 3 ), yttrium gallate, yttrium aluminum garnet (YAG), gadolinium fluoride (GdF 3 ), barium yttrium fluoride (BaYF 5 , BaY 2 F 8 ), gadolinium oxysulfide (Gd 2 0 2 S), calcium tungstate (CaW0 4 ), yttrium oxideherbium (Yt 2 0 3 Tb), gadolinium oxysulphide: europium (Gd 2 0 2 S:Eu), lanthanum oxysulphide: europium (La 2 0 2 S:Eu), lanthan
- the downconverting energy modulation agent can be near-infrared (NIR) downconversion (DC) phosphors such as KSrP0 4 :Eu 2+ , Pr 3+ , or
- an up converting energy modulation agent can also be used such as at least one of Y 2 0 3 , Y 2 0 2 S, NaYF 4 , NaYbF 4 , YAG, YAP, Nd 2 0 3 , LaF 3 , LaCl 3 , La 2 0 3 , Ti0 2 , LuP0 4 , YV0 4 , YbF 3 , YF 3 , Na-doped YbF 3 , or Si0 2 or alloys or layers thereof.
- the energy modulation agents can be used singly or in combination with other down converting or up converting materials.
- other energy modulation agents can include phosphors were obtained from the following sources.“Ruby Red” obtained from Voltarc, Masonlite & Kulka, Orange, Conn., and referred to as“Neo Ruby”;“Flamingo Red” obtained from EGL Lighting. Berkeley Heights, N.J, and referred to as“Flamingo”;“Green” obtained from EGL Lighting, Berkeley Heights, N.J. and referred to as“Tropic Green”;“Orange” obtained from Voltarc, Masonlite & Kulka. Orange, Conn, and referred to as“Majestic Orange”;“Yellow” obtained from Voltarc. Masonlite & Kulka, Orange. Conn., and referred to as“Clear Bright Yellow.”
- The“BP” phosphors are shown in detail below in TABLE 2:
- The“BP” phosphors are available from PhosphorTech Corporation of Kennesaw, Ga., from BASF Corporation, or from Phosphor Technology Ltd, Norton Park, Norton Road Stevenage, Herts, SGI 2BB, England.
- useful energy modulation agents include semiconductor materials including for example Ti0 2 , ZnO, and Fe 2 0 3 which are biocompatible, and CdTe and CdSe which would preferably be encapsulated because of their expected toxicity.
- semiconductor materials including for example Ti0 2 , ZnO, and Fe 2 0 3 which are biocompatible, and CdTe and CdSe which would preferably be encapsulated because of their expected toxicity.
- CdTe and CdSe which would preferably be encapsulated because of their expected toxicity.
- modulation agents include ZnS, CaS, BaS, SrS and Y 2 0 3 which are less toxic.
- Other suitable energy modulation agents which would seem the most biocompatible are zinc sulfide, ZnS:Mn , feme oxide, titanium oxide, zinc oxide, zinc oxide containing small amounts of A1 2 0 3 and Agl nanoclusters encapsulated in zeolite.
- the following materials are considered suitable: lanthanum and gadolinium oxyhalides activated with thulium; Er 3+ doped BaTi0 3 nanoparticles.
- the following luminescent polymers are also suitable as energy modulation agents: poly(phenylene ethynylene), poly(phenylene vinylene), poly(p-phenylene), poly(thiophene), poly(pyridyl vinylene), poly(pyrrole), poly(acetylene), poly(vinyl carbazole), poly(fluorenes), and the like, as well as copolymers and/or derivatives thereof.
- phosphors used in the invention as energy modulation agents can include phosphor particles, ionic doped phosphor particles, single crystal or poly-crystalline powders, single crystal or poly-crystalline monoliths, scintillator particles, a metallic shell encapsulating at least a fraction of a surface of the phosphors, a semiconductor shell encapsulating at least a fraction of a surface of the phosphors, and an insulator shell encapsulating at least a fraction of a surface of the phosphors, and phosphors of a distributed particle size.
- the phosphors for the in vivo point of use biophoton generator can be coated with the‘ 117 publication polymers noted above for homing of the phosphors for the in vivo point of use biophoton generator to the target site.
- the present invention may utilize a hybrid process in which both biophoton radiation and“activation” radiation are available for treatment.
- An activation radiation would be radiation of a specific wavelength to activate a photoactivatable drug such as psoralen or coumarin.
- activatable pharmaceutical agents depends on a number of factors such as the desired cellular change, the desired form of activation, as well as the physical and biochemical constraints that may apply.
- exemplary activatable pharmaceutical agents may include, but are not limited to, agents that may be activated by photonic energy,
- An activatable agent may be a small molecule; a biological molecule such as a protein, a nucleic acid or lipid; a supramolecular assembly; a nanoparticle; or any other molecular entity having a pharmaceutical activity once activated.
- the activatable pharmaceutical agent When activated, may effect cellular changes that include, but are not limited to, apoptosis, redirection of metabolic pathways, up-regulation of certain genes, down-regulation of certain genes, secretion of cytokines, alteration of cytokine receptor responses, or combinations thereof.
- an activatable pharmaceutical agent may achieve its desired effect are not particularly limited. Such mechanisms may include direct action on a predetermined target as well as indirect actions via alterations to the biochemical pathways.
- a preferred direct action mechanism is by binding the agent to a critical cellular structure such as nuclear DNA, mRNA, rRNA, ribosome, mitochondrial DNA, or any other functionally important structures.
- Indirect mechanisms may include releasing metabolites upon activation to interfere with normal metabolic pathways, releasing chemical signals (e.g. agonists or antagonists) upon activation to alter the targeted cellular response, and other suitable biochemical or metabolic alterations.
- the activatable pharmaceutical agent is capable of chemically binding to the DNA or mitochondria at a therapeutically effective amount.
- the activatable pharmaceutical agent preferably a photoactivatable agent, is exposed to an activating energy emitted from an energy modulation agent (e.g. a phosphor), which, in turn receives energy from an initiation energy source (e.g. an x-ray source).
- an energy modulation agent e.g. a phosphor
- an initiation energy source e.g. an x-ray source
- the activatable agent may be derived from a natural or synthetic origin. Any such molecular entity that may be activated by a suitable activation signal source to effect a predetermined cellular change may be advantageously employed in the present invention.
- Suitable photoactive agents include, but are not limited to: psoralens and psoralen derivatives, pyrene cholesteryloleate, acridine, porphyrin, fluorescein, rhodamine, 16- diazorcortisone, ethidium, transition metal complexes of bleomycin, transition metal complexes of deglycobleomycin, organoplatinum complexes, alloxazines such as 7,8- dimethyl- lO-ribityl isoalloxazine (riboflavin), 7,8,10-trimethylisoalloxazine (lumiflavin), 7,8- dimethylalloxazine (lumichrome), isoalloxazine-adenine dinucleotide (flavine adenine dinucleotide [FAD]), alloxazine mononucleotide (also known as flavine mononucleotide [FMN] and riboflavine-5-
- alloxazine includes isoalloxazines.
- Endogenously-based derivatives include synthetically derived analogs and homologs of endogenous photoactivated molecules, which may have or lack lower (1 to 5 carbons) alkyl or halogen substituents of the photosensitizers from which they are derived, and which preserve the function and substantial non-toxicity. Endogenous molecules are inherently non toxic and may not yield toxic photoproducts after photoradiation.
- a hybrid treatment is used.
- a control region inside a patient containing phosphors is exposed to x-rays, from which ultraviolet light and visible light of a spectrum to activate one of the activatable agents noted above.
- the photoactivated agents induce apoptosis, causing the cancer cells to emit naturally biophoton radiation.
- phosphors mimicking the natural biophoton radiation are exposed with the same x-rays and emit also biophoton radiation.
- the simultaneous generation in situ of the biophoton radiation can be viewed as“signaling” adjacent cells not affected by the photoactivated agent of the cell death event.
- the photoactivated x-ray treatment can proceed the generation of biophotons in vivo by first dosing the diseased site with the phosphors for photoactivation and then later dosing the diseased site with phosphors for biophoton generation. Since the level of light for biophotons is low, the x-ray dose to the patient for biophoton radiation can be significantly lower than that for activation of the photoactivated agents.
- a light source is used, not to mimic the natural biophoton spectra of a target cell to be treated, but rather to stimulate natural biophoton radiation. It is known that the entire range of visible light can stimulate a living system to emit a biophoton signal. It is also known that non-damaging ultraviolet radiation also stimulates living systems to emit biophoton signals. For example, it has been observed that light in the 300 to 450 nm wavelength range can induce ultraweak photon emission. The strongest emission observed occurred when the living cells were stimulated at 350 nm. In another example,“white light” also induced biophoton emission.
- the phosphors and combinations noted above for the in vivo biphoton generator embodiment can be remixed/reselected such the phosphor selection under x-ray or other high energy source irradiation, would emit light from the phosphors which would stimulate living tissue in a subject to generate its own natural biphoton radiation.
- stimulated emission coherence is achieved because the living cells themselves (under stimulation) as in nature will generate coherent emissions.
- cancer cells without chemical toxins or high energy radiation, one can induce cancer cells (by exposure to“white light” or 350 nm light) to emit biophotons as if they themselves are undergoing apoptosis.
- the neighboring cancer cells would then respond to this“signaling” and die, and during the stress leading to death rebroadcast actual biophoton signals associated with cell death to their neighbors. Since the“rebroadcast” is from living cells, natural coherence would be obtained.
- Coherence is considered advantageous if, at a distance from the coherent emission, constructive interference could promote a biological, physical, or chemical reaction.
- Coherence is considered advantageous if, at a distance from the coherent emission, long- range dynamic order is to be promoted and/or controlled.
- electrically polar structures of biomolecules that contain electric charges can generate electromagnetic fields when they vibrate, thereby producing an endogenous electromagnetic field of the organism with coherent modes.
- the majority of proteins are electrically polar structures typically immersed in water, a highly polar liquid.
- metabolic energy exceeds a critical level, these polar structures engage in a steady state of nonlinear vibration, and energy is stored in a highly ordered manner, as a coherent excitation.
- This order expresses itself as a long range phase correlation.
- the order in biological systems is considered not just spatial, but dynamic, and can include long-range coherence within the entire organism.
- the cytoskeleton of living cells include microtubules, tree-like structures, throughout the cytoplasm. These microtubules are electrically polar structures that can be excited and are expected to generate an endogenous coherent electric field that could have a dominant effect directing the transport of molecules and electrons throughout the cell. Moreover, connective tissue with an extracellular matrix composed of collagen that interconnects cells throughout the body is another possible network for the collective bioplasma state.
- the biophoton stimulator of the invention is a microwave source operating in this frequency range to“drive resonance” or otherwise influence the behavior of this bioplasma collective system.
- Exemplary conditions, disorders or diseases which may be treated with the present invention can include, but are not limited to, cancer, autoimmune diseases, cardiac ablasion (e.g., cardiac arrhythmiand atrial fibrillation), photoangioplastic conditions (e.g., de novo atherosclerosis, restinosis), intimal hyperplasia, arteriovenous fistula, macular degeneration, psoriasis, acne, hopeciareata, portwine spots, hair removal, rheumatoid and inflammatory arthrisis, joint conditions, lymph node conditions, and cognitive and behavioral conditions.
- cardiac ablasion e.g., cardiac arrhythmiand atrial fibrillation
- photoangioplastic conditions e.g., de novo atherosclerosis, restinosis
- intimal hyperplasia arteriovenous fistula, macular degeneration, psoriasis, acne, hopeciareata, portwine spots
- hair removal rheumato
- the term“subject” is not intended to be limited to humans, but may also include animals, plants, or any suitable biological organism.
- a disease or condition refers to a condition, disorder or disease that may include, but are not limited to, cancer, soft and bone tissue injury, chronic pain, wound healing, nerve regeneration, viral and bacterial infections, fat deposits
- Exemplary conditions also may include nerve (brain) imaging and stimulation, a direct control of brain cell activity with light, control of cell death (apoptosis), and alteration of cell growth and division.
- nerve nerve
- exemplary a condition, disorder or disease may include, but are not limited to, cardiac ablasion (e.g., cardiac arrhythmiand atrial fibrillation), photoangioplastic conditions (e.g., de novo atherosclerosis, restinosis), intimal hyperplasia, arteriovenous fistula, macular degeneration, psoriasis, acne, hopeciareata, portwine spots, hair removal, rheumatoid and inflammatory arthritis, joint conditions, and lymph node conditions.
- cardiac ablasion e.g., cardiac arrhythmiand atrial fibrillation
- photoangioplastic conditions e.g., de novo atherosclerosis, restinosis
- intimal hyperplasia arteriovenous fistula
- macular degeneration e.g., psoriasis
- psoriasis e.g., psoriasis
- acne e.g., hopeciareata,
- predetermined cellular change will depend on the desired pharmaceutical outcome.
- exemplary cellular changes may include, but are not limited to, apoptosis, necrosis, up-regulation of certain genes, down-regulation of certain genes, secretion of cytokines, alteration of cytokine receptor responses, regulation of cytochrome c oxidase and flavoproteins, activation of mitochondria, stimulation antioxidant protective pathway, modulation of cell growth and division, alteration of firing pattern of nerves, alteration of redox properties, generation of reactive oxygen species, modulation of the activity, quantity, or number of intracellular components in a cell, modulation of the activity, quantity, or number of extracellular components produced by, excreted by, or associated with a cell, or a combination thereof.
- Predetermined cellular changes may or may not result in destruction or inactivation of the target structure.
- inventive treatments may be used in one embodiment to induce an auto vaccine effect for malignant cells, including those in solid tumors.
- any rapidly dividing cells or stem cells may be damaged by a systemic treatment, then it may be preferable to direct any signals, chemical agents, biological agents, or blocking agents directly into the first region, preventing damage directly to normal, healthy cells or stem cells in the second (or treatment) region can be induced by activating a chemiluminescent, phosphorescent or bioluminescent compound with an appropriate activation energy, either outside the subject or inside the subject.
- Candidates might be 1) in vivo stimulated regrowth of organ tissue, 2) generation of alternative pathways for nerve cell to nerve cell communication perhaps by promotion of TNTs, and 3) anti-inflammatory responses.
- LLLT cold laser therapy
- laser biostimulation is an emerging medical and veterinary technique in which exposure to low-level laser light can stimulate or inhibit cellular function leading to beneficial clinical effects.
- the "best" combination of wavelength, intensity, duration and treatment interval is complex and sometimes controversial with different diseases, injuries and dysfunctions needing different treatment parameters and techniques.
- wavelengths of biophoton radiation can be applied to or emitted from within a first region can for example, aid tissue regeneration, resolve inflammation, relieve pain and boost the immune system.
- Observed biological and physiological effects to be expected include changes in cell membrane permeability, and up- regulation and down-regulation of adenosine triphosphate and nitric oxide. All of these changes in the biological material of the first region can, according to one embodiment of the invention, be responsible for inducing corresponding changes in a second or treatment region.
- Clinical applications of photobiomodulation suitable for causing or initiating changes in the biological material of the first or target region of this invention include, for example, treating soft tissue and bone injuries, chronic pain, wound healing and nerve and sensory regeneration/restoration, and possibly even resolving viral and bacterial infections, treating neurological and phychiatric diseases (e.g., epilepsy and Parkinson’s disease) (e.g., Zhang F., et al., Nature, 446:617-9 (April 5, 2007; Han X., et ah, PloS ONE, 2(3):e299 (March 21, 2007); Arany PR, et al., Wound Repair Regen., 15(6):866-74 (2007); Lopes CB, et a , Photomed.
- neurological and phychiatric diseases e.g., epilepsy and Parkinson’s disease
- biophoton irradiation from the biophoton radiation sources noted above can be applied to the biological material of the first or target region, and thereby inducing changes in the second or target region which may treat in the second region soft tissue and bone injuries, chronic pain, wound healing and nerve and sensory
- NIR light treatment has been shown to prevent cell death (apoptosis) in cultured neurons (brain) cells (Wong-Reiley MT, et al confuse JBC, 280(6):4761-71 (2005)).
- Specific wavelengths of light can promote cellular proliferation to the activation of mitochondria, the energy -producing organelles within the cell via cytochrome c oxidase.
- An NIR treatment can augment mitochondrial function and stimulate antioxidant protective pathways.
- the evidence that the NIR treatment can augment mitochondrial function and stimulate antioxidant protective pathways comes from photobiomodulation experiments carried out using a laboratory model of Parkinson's disease (PD) (cultures of human dopaminergic neuronal cells) (Whelan H., et. ah, SPIE, Newsroom, pages 1-3 (2008)).
- PD Parkinson's disease
- biophoton radiation from the biophoton sources noted above and NIR light can be applied or internally generated in the biological material of the first or target region, and thereby inducing changes in the second or target region to address the disorders noted above.
- the excitable cells e.g., neurons, cardiomyocites
- the photoacceptors are also believed to be components of respiratory chain. It is clear from experimental data (Kara, T.I., (2002). Low-power laser therapy. In: CRC Biomedical Photonics Handbook, T. Vo-Dinh, Editor- in-Chief, CRC Press, Boca Raton (USA)) that irradiation can cause physiological and morphological changes in nonpigmental excitable cells viabsorption in mitochondria. Later, similar irradiation experiments were performed with neurons in connection with low-power laser therapy.
- low power laser therapy along with biophoton radiation from the biophoton sources noted above can be applied or internally generated in the biological material of the first or target region, and thereby inducing changes in the second or target region to address the disorders noted above.
- the absorption of photons in the biological material of the first or target region can contribute to changes in the first region, thereby inducing changes in the second or target region to alter the pathways noted above.
- Photobiological action via activation of respiratory chain is believed to be a general mechanism occurring in cells.
- Crucial events of this type of cell metabolism activation are occurring due to a shift of cellular redox potential into more oxidized direction as well as due to ATP extrasynthesis.
- Susceptibility to irradiation and capability for activation depend on physiological status of irradiated cells: the cells, which overall redox potential is shifted to more reduced state (example: some pathological conditions) are more sensitive to the irradiation.
- the specificity of final photobiological response is determined not at the level of primary reactions in the respiratory chain but at the transcription level during cellular signaling cascades.
- the absorpti on of photons in the biological material of the first or target region can induce changes in the first region, thereby inducing changes in the second or target region to afect the respiratory chain as noted above
- Red- to-NIR radiation have been shown to promote wound healing, e.g., infected, ischemic, and hypoxic wounds (Wong-Reley, WTT, JBC, 280(6):4761-4771 (2005)). Red- to-NIR radiation also protects the retina against the toxic actions of methanol-derived formic acid in a rodent model of methanol toxicity and may enhance recovery from retinal injury and other ocular diseases in which mitochondrial dysfunction is postulated to play a role (Eells JT., PNAS, 100(6):3439-44 (2003)). Another clinical application of photobiomodulation is repair of soft and bone tissues by IR laser irradiation (Martinez ME, et al., Laser in Med. Sci., 2007).
- Invasive laser assisted liposuction is a recently developed method, wherein a laser fiber is introduced through a tube into the skin and directly to the fat cells causing the cells to rapture and drain away as liquid (Kim KH, Dermatol. Surg., 32(2):241-48 (2006)). Tissue around the area is coagulated.
- another application of photobiomodulation is a non- surgical varicose vein treatment (an endovenous laser therapy), wherein a laser is threaded through an incision and the full length of the varicose vein (Kim HS, J. Vase. Interv. Radiol.,
- the absorption of red and IR photons in the biological material of the first or target region along with biophoton radiation can cause changes in the first region, thereby inducing changes in the second or target region to promote wound healing, e.g., infected, ischemic, and hypoxic wounds and/or help repair soft tissue, noted above.
- photobiomodulation is a direct control of brain cell activity with light.
- the technique is based upon NIR spectroscopy and is simpler to use and less expensive than other methods such as functional magnetic resonance imaging and positron emission tomography. Whenever a region of the brain is activated, that part of the brain uses more oxygen.
- This technique works by measuring the blood flow and oxygen consumption in the brain.
- the light emitted by NIR laser diodes is carried through optical fibers to a person’s head.
- the light penetrates the skull where it assesses the brain’s oxygen level and blood volume.
- the scattered light is then collected by optical fibers, sent to detectors and analyzed by a computer.
- By examining how much of the light is scattered and how much is absorbed portions of the brain and extract information about brain activity can be mapped.
- By measuring the scattering it is determined where the neurons are firing. This means that scientists can simultaneously detect both blood profusion and neural activity.
- the technique could be used in many diagnostic, prognostic and clinical applications.
- hemoglobin oxygen concentrations in the brain obtained simultaneously by NIR spectroscopy and by functional MRI, the current "gold standard" in brain studies, was compared. Both methods were used to generate functional maps of the brain’s motor cortex during a periodic sequence of stimulation by finger motion and rest. Spatial congruence between the hemoglobin signal and the MRI signal in the motor cortex related to finger movement was demonstrated. The researchers also demonstrated collocation between hemoglobin oxygen levels and changes in scattering due to brain activities.
- the changes in scattering associated with fast neuron signals came from exactly the same locations. Accordingly, in one embodiment of the present invention, the absorption of NIR in the biological material of the first or target region coupled to brain tissue along with biophoton radiation the biophoton sources noted above can directly cause changes in the first region, thereby inducing changes in the second or target region in the actual brain tissue for control of brain cell activity, as noted above.
- a low-intensity laser light-oxygen cancer therapy is another application of photobiomodulation.
- the light-oxygen effect (LOE), which involves activation of or damage to biosystems by optical radiation at low optical doses by direct photoexcitation of molecular oxygen dissolved in a biosystem so that it is converted to the singlet state, i.e., by
- the absorption of He-Ne laser radiation in the biological material of the first or target region coupled to cancerous tissue along with biophoton radiation the biophoton sources noted above can cause changes in the first region, thereby inducing changes in the second or target region in the actual cancerous tissue.
- One photo stimulation technique involves chemical modification of ion channels and receptors to render them light-responsive. Some of the most fundamental signaling mechanisms in a cell involve the release and uptake of Ca 2+ ions. Ca 2+ is involved in controlling fertilization, differentiation, proliferation, apoptosis, synaptic plasticity, memory, and developing axons.
- Ca 2+ waves can be induced by UV irradiation (single-photon absorption) and NIR irradiation (two-photon absoiption) by releasing caged Ca 2+ , an extracellular purinergic messenger InsP3 (Braet K., et al., Cell Calcium, 33:37-48 (2003)), or ion channel ligands (Zhang F., et al., 2006).
- Directly controlling a brain cell activity with light is a novel means for experimenting with neural circuits and could lead to therapies for some disorders. This accomplishment is a step toward the goal of mapping neural circuit dynamics on a millisecond timescale to see if impairments in these dynamics underlie severe psychiatric symptoms. Knowing the effects that different neurons have could ultimately help researchers figure out the workings of healthy and unhealthy brain circuits. If use of the technique can show that altered activity in a particular kind of neuron underlies symptoms, for example, this insight will allow development of targeted genetic or pharmaceutical treatments to fix those neurons.
- the phosphor configurations of the invention can be programmed or instructed or configured to deliver light for direct control of neuronal activity.
- mice were able to use the technique to cause neurons to signal or stop on the millisecond timescale, just as they do naturally. Other experiments showed that cells appear to suffer no ill effects from exposure to the light. The mice resume their normal function once the exposure ends. The most direct application of an optical neuron control is experimenting with neural circuits to determine why unhealthy ones fail and how healthy ones work.
- the present invention can be used to test and tune sophisticated neuron behaviors.
- the ability to artificially stimulate neural signals, such as movement instructions using the present invention may allow doctors to bridge blockages in damaged spinal columns, perhaps restoring some function to the limbs of paralyzed patients.
- the absorption of photons designed for photostimulation in the biological material of the first or target region along with biophoton radiation from one of the biophoton sources noted above can cause or induce changes in the first region via photostimulation, thereby inducing changes in the second or target region for stimulation and/or control of neural communication and other neuron activities.
- sources of internal light can be used in this invention to stimulate bioactivity (as discussed above and elsewhere) and or to simulate natural biophoton sources.
- the sources of internal light for use in this invention can include persistent after-glow phosphor materials emitting light in the visible to near ultraviolet and ultraviolet range.
- These sources of internal light can be either sources inside a patient or inside an artificial construct containing biological material to be exposed to the light where the sources comprise up converting or down converting phosphors or fluorescent agents, and preferably down converting phosphors or fluorescent agents which, upon exposure to x-rays (or other high energy waves or particles) emit ultraviolet and/or visible light at the known emission bands of these phosphors and fluorescent agents.
- These sources of internal light can be those described above for the in vivo point of use biophoton generator and the biophoton stimulator.
- Eu-doped strontium aluminate is used as an internal light source in which deep UV light or x-ray or electron beams“charge” the photoluminescence such that these phosphors can, for example, be charged outside a patient and then injected into a target or diseased site where UV photons would be emitted.
- gadolinium strontium magnesium aluminate is used as an internal light source in which deep UV light or x-ray or electron beams“charge” the photoluminescence such that these phosphors can, for example, be charged outside a patient and then injected into a target or diseased site where UV photons would be emitted.
- 20070221883 (the entire contents of which are incorporated herein by reference) describes specifically gadolinium-activated strontium magnesium aluminate having an excitation maximum at about 172 nm, and which emits in a narrow-band UV emission at about 310 nm.
- The‘883 publication also describes other useful internal light sources for this invention, making note of emission spectra between 300 nm and 320 nm for a Sr(Al,Mg)i 2 0i 9 :Gd phosphor and two 312 nm line emitting phosphors, YMgBsO ⁇ Gd, Ce and YMgBsOi 0 :Gd, Ce, Pr.
- W02016200349 (the entire contents of which are incorporated herein by reference) describes long lasting yellowish- green emitting phosphorescent pigments in the strontium aluminate (SrA1204) system, which could serve as internal light sources in the present invention.
- WO 2016200348 (the entire contents of which are incorporated herein by reference) describes long lasting bluish-green emitting phosphorescent pigments in the strontium aluminate (Sr4A114025) system, which could serve as internal light sources in the present invention.
- the phosphor described by Xiong et al as CaAl 2 0 4 :Ce 3+ havmg an emission peak of 400 nm and a persistent time of more than 10 h could be used, where it would be charged by x-ray irradiation outside a patient and then injected at a diseased site to provide internally generated UV light.
- the persistent phosphors noted could be activated ex vivo and introduced along with psoralen (or other photoactivatable drug) into the patient by exchange of a bodily fluid or for example by supplying the persistent phosphors and the
- the persistent phosphors noted could be activated in vivo by injection of the phosphors into a diseased site (or at a site to be treated) and then exposed to x-rays producing a persistent internal light source.
- a combined electromagnetic energy harvester molecule could be used as an internal light source, such as the combined light harvester disclosed in J. Am. Chem. Soc. 2005, 127, 9760-9768, the entire contents of which are hereby incorporated by reference.
- a resonance energy transfer cascade may be used to harvest a wide band of electromagnetic radiation resulting in emission of a narrow band of fluorescent energy.
- a Stokes shift of an emitting source or a series of emitting sources arranged in a cascade is selected to convert a shorter wavelength energy, such as X-rays, to a longer wavelength fluorescence emission such an optical or UV-A.
- a lanthanide chelate capable of intense luminescence is used as an internal light source.
- a biocompatible, endogenous fluorophore emitter can be used as an internal light source.
- the internal light source of this invention can include visible and UV-light emitting bioluminescent materials.
- bioluminescent materials such as coelenterate-type luciferin analogues could be used including amide monoanion known to emit at 480 nm and oxyluciferin known to emit at 395 nm.
- mechano-luminescent materials can be used as internal light sources.
- Mechano-luminescent materials convert ultrasonic or mechanical energy (such as vibrations naturally existing on an article such as motor or vibrations from driven by transducers) into visible light.
- the mechano-luminescent materials would be placed in a vicinity of a diseased site or at a site or sites to be treated with internally generated light.
- the phrase“in a vicinity of’ includes near, adjacent, or within/inside a diseased site or site or sites to be treated.
- a europium-holmium co-doped strontium aluminate can be used as a mechano-luminescent material (i.e., an internal light source).
- the europium-holmium co-doped strontium aluminate and the other mechano-luminescent materials convert sonic or acoustic energy into photon emissions which may be placed in a vicinity of a diseased site or at a site or sites to be treated with internally generated light.
- Yanim Jia in“Novel Mechano-Luminescent Sensors Based on
- Piezoelectric/Electroluminescent Composites Sensors (Basel). 2011; 11(4): 3962-396, the entire contents of which are incorporated by reference, describes a mechanoluminescent composite made of a piezoelectric material and an electroluminescent material.
- this composite device when a stress is applied to the piezoelectric layer, electrical charges will be induced at both the top and bottom faces of piezoelectric layer due to the piezoelectric effect. These induced electrical charges will result in a light output from the electroluminescent layer due to the electroluminescent effect.
- such composites made of a piezoelectric material and an electroluminescent material hereinafter“composite mechano luminescent emitters,” provides a structure that, upon stimulation with mechanical or vibrational energy such as from an acoustic or ultrasonic transducer, emit light to a diseased site or at a site or sites to be treated with internally generated light.
- the present invention in various embodiments can utilize organic fluorescent molecules or inorganic particles capable or fluorescence and phosphorescence having crystalline, polycrystalline or amorphous micro-structures for the internal light sources of this invention generating light at a diseased site or at a site or sites to be treated with internally generated light.
- inorganic molecules that can be used for the electroluminescence and phosphorescent materials described below include but is not limited to the following inorganic electroluminescent phosphor materials:
- Organic molecules that can phosphoresce under the influence of an electric field are also of interest in the present application.
- the organic fluorescent compounds with high quantum yield include by way of illustration:
- inorganic fluorescent and phosphorescent materials detailed here are numerous, and various examples are given by way of illustration rather than limitation and can be used for the internal light sources of this invention generating light at a diseased site or at a site or sites to be treated with internally generated light.
- these materials can be doped with specific ions (activators or a combination of activators) that occupy a site in the lattice structure in the case of crystalline or polycrystalline materials and could occupy a network forming site or a bridging and/or non-bridging site in amorphous materials.
- activators or a combination of activators that occupy a site in the lattice structure in the case of crystalline or polycrystalline materials and could occupy a network forming site or a bridging and/or non-bridging site in amorphous materials.
- These compounds could include (not ranked by order of preference or utility) the following material examples: CaF 2 , ZnF 2 , KMgF 3 , ZnGa 2 0 4 , ZnAl 2 0 4 , Zn 2 Si0 4 , Zn 2 Ge0 4 , Ca 5 (P0 4 ) 3 F,
- alkali earth chalcogenide phosphors which are in turn
- the examples include the ZnS type phosphors that encompass various derivatives:
- Compound Illb-Vb phosphors which include the group Illb and Vb elements of the periodic table are suitable phosphors.
- These semiconductors include BN, BP, BSb, AIN, A1P, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb and these materials have donors and acceptors that work in together to induce light emission diodes.
- the donors include Li, Sn, Si, Li, Te, Se, S, O, and acceptors include C, Be, Mg, Zn, Cd, Si, Ge.
- acceptors include C, Be, Mg, Zn, Cd, Si, Ge.
- GaP light emitting diodes include GaP:Zn,O, GaP:NN, Gap:N and GaP which emit colors Red, Yellow, Green and Pure Green respectively.
- the compounded materials further include such materials as GaAs with compositional variation of the following sort: Inl-y(Gal-xAlx)yP (provides a simple example).
- SiC Silicon Carbide SiC as a luminescent platform has commercial relevancy for blue light emitting diodes and could be used as an internal light source if appropriately powered from the outside.
- the SiC luminescent platform could include the polytypes 3C-SiC, 6El-SiC, 4H-SiC with donors such as N and A1 and acceptors such as Ga and B.
- Multiband luminescent materials suitable for converter materials include for example the following compositions:
- Another grouping of materials suitable for converter materials for the internal light source include chemical compositions in the Halophosphates phosphors, Phosphate phosphors, Silicate phosphors, Aluminate phosphors, Borate phosphors, Tungstate phosphors, and other phosphors.
- halophosphates include by way of illustration:
- the phosphate phosphors include by way of illustration Sr 2 P 2 0 7 :Sn 2+ , (Sr,Mg) 3 (P0 4 ) 2 :Sn 2+ , Ca 3 (P0 4 ) 2 .Sn 2+ , Ca 3 (P0 4 ) 2 :Tl + , (Ca,Zn) 3 (P0 4 ) 2 :Tl + , Sr 2 P 2 0 7 :Eu 2+ , SrMgP 2 0 7 :Eu 2+ , Sr 3 (P0 4 ) 2 :Eu 2+ ,
- the aluminate phosphors include:
- the borate phosphors include: Cd 2 B 2 0 5 :Mn 2+ , SrB 4 0 7 F:Eu 2+ , GdMgB 5 Oi 0 :Ce 3+ /Tb 3+ ,
- the tungstate phosphors include:
- Activators of relevance to the various doped phosphors include the following list:
- the luminescence center T1+ can be used with a chemical composition such as:
- the luminescence center Mn2+ can be used with chemical compositions such as
- the luminescence center Sn 2+ can be used with chemical compositions such as:
- the luminescence center Eu 2+ can also be used with chemical compositions such as:
- the luminescence center Pb 2+ can be used with chemical compositions such as:
- the luminescence center Sb 2+ can be used with chemical compositions such as: 3Ca 3 (P0 4 ) 2 Ca(F,Cl) 2 :Sb 3+ , 3Ca 3 (P0 4 ) 2 Ca(F,Cl) 2 :Sb 3+ /Mn 2+ .
- the luminescence center Tb3+ can be used with chemical compositions such as:
- the luminescence center Eu 3+ can be used with chemical compositions such as: Y 2 0 3 :Eu 3+ , Y(V,P)0 4 :EU 3+ .
- the luminescence center Dy 3+ can be used with chemical compositions such as: YV0 4 :Dy 3+ .
- the luminescence center Fe 3+ can be used with chemical compositions such as: LiA10 2 :Fe 3+ .
- the luminescence center Mn 4+ can be used with chemical compositions such as: 6Mg0 As 2 0 5 :Mn 4+ , 3.5Mg0O.5MgF 2 Ge0 2 :Mn 4+ .
- the luminescence center Ce 3+ can be used with chemical compositions such as: Ca 2 MgSi 2 0 7 :Ce 3+ and Y 2 Si0 5 :Ce 3+ .
- the luminescence center W0 4 can be used with chemical compositions such as:
- the luminescence center Ti0 4 4 can be used with chemical compositions such as:
- the phosphor chemistry utilized in x-ray excitations can be used for the internal light sources of this invention generating light at a diseased site or at a site or sites to be treated with internally generated light.
- light from these materials can have their emissions act as the internal light sources of this invention generating light at a diseased site or at a site or sites to be treated with internally generated light.
- electro-luminescence materials can be used for the internal light sources of this invention generating light at a diseased site or at a site or sites to be treated with internally generated light.
- the electro-luminescence materials can include but are not limited to:
- the photon radiation generated by the sources described above such as the in vivo point of use biophoton generator, the biophoton stimulator, and the in vivo and in vitro internal light sources described above (and the fluorescing materials and phosphors described herein ) can be used as a source of light to stimulate bioactivity (as discussed above and elsewhere) and/or to simulate natural biophoton sources.
- EPCs endothelial progenitor cells
- ECFCs endothelial colony-forming cells
- polymer thin films approximately thickness, 150 nm
- Both polymer-coated and glass substrates have been thermally sterilized (120°C, 2 hours), coated with fibronectin, and, lastly, used as light-sensitive and control cell culturing substrates, respectively.
- ECFCs were seeded on top of polymer coated glass substrates.
- PSs photosensitizers
- ROS reactive oxygen species
- CALI chromophore-assisted light inactivation
- the stimulated activity generated by the light internally generated in the medium to be treated promotes the formation of new blood vessels using at least one of ultraviolet and/or visible light emission into the medium to be treated.
- the internal light sources generate the ultraviolet and/or the visible light which exposes a photosensitive material (for example the P3HT polymer noted above) contained within or in a vicinity of natural or artificial tissue cells containing endothelial progenitor cells.
- the ultraviolet and/or the visible light generated within the photosensitive material generates reactive oxygen species which can promote an angiogenesis process within the natural or artificial tissue cells containing the endothelial progenitor cells.
- the light internally generated in the medium is generated by phosphorescence or fluorescence of light emitting materials disposed within the photosensitive material (for example the P3HT polymer noted above) when the light emitting materials are exposed to x- rays.
- the phosphorescence or fluorescence light emitting materials are disposed in a biocompatible polymer that is not necessarily photosensitive.
- biocompatible material is coated or else is to be located in vicinity to endothelial progenitor cells.
- X-ray exposure of this composite biocompatible polymer generates UV light emission from the phosphorescence or fluorescence light emitting materials which exits the composite biocompatible polymer and generates ROS in the medium about the endothelial progenitor cells, thereby stimulating blood vessel growth.
- a water-based gel, or hydrogel is impregnated with a RGB peptide and a material of one of the internal light sources described above such that activation for example by x-ray exposure generates within the hydrogel the ultraviolet and/or the visible light.
- UV light from the internal light source in the hydrogel is generated, the UV light causes the blocker to be released, and the RGB peptide to become active.
- the hydrogel with the impregnated RGB peptide, the blocker, and the internal light source material is implanted into a patient and exposed to x-ray flux which generates within the hydrogel UV light which causes the blocker to be released, and the RGB peptide to become active within the patient.
- the hydrogel with the impregnated RGB peptide, the blocker, the internal light source material, and a vascular endothelial growth factor protein that stimulates the growth of new blood vessels is implanted into a patient and exposed to x-ray flux which generates within the hydrogel UV light which causes the blocker to be released, and the RGB peptide and the vascular endothelial growth factor protein to become active.
- blood vessel regrowth occurs as an example due to geenration of reactive oxygen species or for example the removal of blocking proteins preventing endothelial progenitor cells from generating new cells.
- opsin describes a light-responsive protein, independent of its chromophore type (e.g., retinal, flavin), mode of action (e.g., phosphorylation, ion conductance’s), or function (e.g., phototaxis, vision).
- chromophore type e.g., retinal, flavin
- mode of action e.g., phosphorylation, ion conductance’s
- function e.g., phototaxis, vision
- microbial opsins type I
- opsins from prokaryotes including opsins from prokaryotes, fungi, and algae
- animal opsins type II
- opsin types are transmembrane proteins and may share a common origin, they differ significantly from each other.
- Microbial opsins are mainly light-activated ion pumps or channels, which directly transduce electromagnetic signals into electrical currents.
- all type II opsins belong to the family of G protein-coupled receptors (GPCRs), which initiates protein-protein interaction and subsequent intracellular signaling cascades.
- GPCRs G protein-coupled receptors
- Microbial opsins of type I, utilize all-trans as a chromophor, which stays covalently bound to the opsins after photoisomerization, whereas type II opsins use cis to t reins isomerization of retinal (retinaldehyde) to transmit light stimuli.
- retinal retinal
- channelrhodopsin 2 (ChR2), a blue light-gated cation- selective ion channel from green algae ChR2, as an excitatory optogenetic tool
- NpHR a chloride pump from Natronomonas pharaonis
- opsins that control outward proton pumps i.e., bacteriorhodopsins, such as eBR, Arch, and Mac
- optogenetic therapies can treat degenerative diseases of the eyes, hearing loss, and spinal cord injuries, as well as play a role in deep brain stimulation therapies.
- light-gated actuators have been known to control neuronal activity.
- rhodopsins membrane-embedded photopigments
- opsin membrane-embedded photopigments
- chromophore a vitamin A-related compound called retinal or one of its derivatives
- the bound retinal molecule undergoes isomerization, which induces conformational changes in the opsin backbone and activates a G-protein signaling pathway.
- the first light-actuated control systems were designed to modulate neuronal firing.
- the light from the internal light source materials noted above can be used to treat different types of diseases and disorders such as those described above.
- the light from the internal light source materials noted above could be used to treat degenerative diseases of the eyes, hearing loss, and spinal cord injuries, as well as play a role in deep brain stimulation therapies.
- the light from the internal light source materials noted above could be used to treat vascular disease including peripheral artery disease, aneurysms and Raynaud’s disease (a condition causing people to feel numbness and cold in their fingers and toes due to the narrowing of the small arteries that supply blood to the skin) by emission of characteristic wavelengths of light which triggers the light receptors in blood vessels.
- vascular disease including peripheral artery disease, aneurysms and Raynaud’s disease (a condition causing people to feel numbness and cold in their fingers and toes due to the narrowing of the small arteries that supply blood to the skin) by emission of characteristic wavelengths of light which triggers the light receptors in blood vessels.
- the endothelial cells that line blood vessels can be exposed to blue light (380-
- a phosphorescent or fluorescent or light emitting material such as those described above (e.g., x-ray induced persistent phosphors) would be encased with a biocompatible coating transparent to blue light and introduced into the blood stream or into the body of the blood vessel or nearby a blood vessel. Upon exposure to x- rays, the phosphorescent or fluorescent or light emitting material would emit blue light which would be absorbed in the walls of the blood vessel to affect a change in blood flow for example by way of triggering a response in melanopsin (opsin 4) in the blood vessel walls.
- opsin 4 melanopsin
- Ca acts as a messenger to regulate a myriad of cellular activities, ranging from short-term reactions occur- ring within seconds (e.g., muscle contraction and neurotransmitter release) to long-term processes that last for hours or even days (e.g., gene transcription).
- the location, amplitude and frequency of Ca 2+ signals in mammalian cells undergo constant changes to maintain Ca 2+ homeostasis while meeting the diverse requirements of different Ca -modulated events.
- Activation of cell-surface receptors such as G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) results in mobilization of Ca 2+ release from internal Ca 2+ stores.
- GPCRs G protein-coupled receptors
- RTKs receptor tyrosine kinases
- DAG is an activator of protein kinase C (PKC) and may directly activate certain types of transient release potential (TRP) channels, resulting in Ca 2+ influx from the extracellular space.
- PKC protein kinase C
- TRP transient release potential
- the examples given above are but illustrative of the present invention’s capability for use in optogenetics. More specifically, the present invention provides the capability to provide light to opsins and other light-driven actuator proteins in order to impact a number of physiological parameters ranging from membrane voltage and calcium concentration to metabolism.
- Tunneling nanotubes TNTs have been found to exist between adjacent cells.
- TNTs are considered to play a role in intercellular exchanges of signals, molecules, organelles, and pathogens. TNTs can from in a number so cell types, including neuronal cells, epithelial cells, and almost all immune cells.
- myeloid cells e.g., macrophages, dendritic cells, and osteoclasts
- myeloid cells e.g., macrophages, dendritic cells, and osteoclasts
- TNT TNT communication via TNTis believed to contribute to their differentiation and immune functions.
- TNTs are believed to be one way for myeloid cells to communicate with a targeted neighboring or distant cell, as well as with other cell types, therefore creating a complex variety of cellular exchanges.
- TNTs may also contribute to pathogen spread as they are believed to serve as“corridors” from a cell to another.
- TNTs tunneling nanotubes
- TNTS pheochromocytoma- (PCI 2-) derived cells and in immune cells.
- PCI 2- pheochromocytoma-
- TNTs dendritic cells
- DCs dendritic cells
- NK NK
- B cells B cells
- TNTs TNTs to communicate.
- the transfer of antigenic information from migratory DCs to lymph node-residing DCs through TNTs has been shown to be critical for the induction of immune responses.
- TNT formation was also described in neural CAD cells (mouse cell line of catecholaminergic origin) and from bone marrow-derived dendritic cells to primary neurons.
- oxidative stress is defined as an imbalance between the production of free radicals and reactive metabolites, such as H 2 0 2 or superoxide anions, and their elimination by the antioxidative cell defense system.
- reactive oxygen species ROS
- the biophotonic sources described above and/or the biophotoic bypasses could be used to stimulate formation of TNT growth.
- the live biophotonic sources described above could be stressed (in a number of conventional ways) or selected portions of organs could be stressed as noted elsewhere.
- the stressed cells would then emit“call-for-help signals” (which regardless of their origin and nature would stimulate formation of TNTs.
- the artificial biophotonic sources or the above-noted biophoton stimulator would emit light at a frequency and dose level which could stimulate formation of TNTs.
- Wang et al in “Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC 12 cells,” in Cell Death Differ. 2015 Jul; 22(7): 1181-1191 show that UV light induced TNT formation presumably through the stress induced on the cells by the UV light.
- the network of TNTs induced by the cell communication would permit healthy cells to strengthen their interconnection with other healthy cells, thus providing resistance to infection from other diseased cells.
- the network of TNTs induced would permit cancerous cells undergoing apoptosis to experience cell death at a higher rate, thus controlling tumor growth.
- the network of TNTs induced would permit organs subject to inflammation to buld ther interconnection to other nearby cells, thus providing a mechanism for the inflammation to be reduced by permitting mesenchymal stem cells (MSCs) to be transferred.
- MSCs mesenchymal stem cells
- Such cells are known to contributes to tissue repair and immunosuppressive properties. Once at the inflammation site, MSCs prevent cellular destruction and damage to surrounding tissues.
- MSC immuno-suppression is mediated by the secretion of soluble factors like indoleamine 2,3-dioxygenase (IDO), IL-10, TSG-6 (TNF-a- stimulated gene/protein 6), prostaglandin E2 (PGE2), TGF-b-I, inducible nitric oxide synthase (iNOS) and human leukocyte antigen (HLA-G).
- IDO indoleamine 2,3-dioxygenase
- IL-10 TSG-6 (TNF-a- stimulated gene/protein 6)
- PGE2 prostaglandin E2
- TGF-b-I inducible nitric oxide synthase
- HLA-G human leukocyte antigen
- the present invention takes advantage of several fundamental building blocks by which it can affect a physical, chemical, and/or therapeutic change or a treatment area.
- One building block involves the phenomenon of cell-to-cell communication discussed above in which different cells in different regions“communicate” with each other even without necessarily being in physical or fluid contact with one another.
- One mechanism discussed above and utilized in the present invention is by omission of a biophoton also known as mitogenic radiation.
- Other mechanisms discussed above and utilized in the present invention is by emission of electromagnetic radiation or sonic radiation.
- Another mechanism discussed above and utilized in the present invention is by coupling through coherent quantum states, where the change in the state at one location produces a concomitant change in the quantum state at another location.
- Another mechanism discussed above and utilized in the present invention is by coupling of excited states in a cellular bioplasma.
- cellular processes associated with membranes in a cell are controlled by factors such as pore size, the thickness of the membrane, and the polarity of the membrane.
- pore sizes and thicknesses are on the nanometer scales, and therefore are susceptible to being influenced by applied radiation, by applied electromagnetic fields, and/or by applied localized electric fields which the physics of diffusion and transport even at the quantum scale can influence the transport of materials through the membranes or the attachment of antibodies to the cell membrane.
- Another building block used by the present invention is the realization that photosynthesis-type reactions (occurring in the realm of plants) are also a mechanism at play inside living cells of animals.
- light can induce not only the generation of biophotons as discussed above but also can promote reactions in the cells such as increased metabolism of a cell, cell division, or cell death
- Another building block used by the present invention is the realization that there are many pathways before communication between cells including those of physically connected pathways such as the tunneling nanotubes (TNTs) discussed above. These pathways can be used for both productive and detrimental uses.
- mechanisms to shut down selected pathways can be used to control/restrict the spread of viruses, bacteria, or cancer from one region of the body to another.
- mechanisms to promote certain pathways can be used to promote cell regeneration, for example, in the regrowth of healthy heart tissue inside a diseased heart.
- Yet another building block used by the present invention is the realization of the impact of outside stimulus, such as a biophoton, on the epigenome.
- outside stimulus such as a biophoton
- identical twins having identical DNA at birth can have their DNA changed by environmental factors.
- in vivo light or light delivered in situ such as for example biophotons can be used to interact directly with the DNA encoded in the cells to implement a therapeutic change.
- photonic energy can participate and control the various metabolic processes in an individual cell or a group of cells. Control of the metabolic processes in one region (a control region) may be coupled to another region (e.g., a treatment site inside the patient, where the coupling can induce a biological, chemical, physical, or therapeutic change in the subject at the other- region or the treatment site).
- the photonic energy (as described for example in the following) can directly cause a biological, chemical, physical, or therapeutic change at a treatment site
- hvj is a photonic energy that is ionizing and can therefore be responsible for catalyzing a chemical reaction.
- Other energies (hv j ) generated thro ugh energy converters could create a free radical hence inducing a charge-build up in a protein of low molecular weight or on a side group of a long molecular weight protein.
- hvj or hv j induced ionization of an epidermal growth factor receptor (EGFR) protein can denature or render the EGFR protein
- EGFR is considered a transmembrane protein that is a receptor for members of the epidermal growth factor family (EGF family) of extracellular protein ligands.
- EGF family epidermal growth factor family
- Deficient signaling of the EGFR and other receptor tyrosine kinases in humans is associated with diseases such as Alzheimer's, while over-expression is associated with the development of a wide variety of tumors.
- Interruption of EGFR signaling either by blocking EGFR binding sites on the extracellular domain of the receptor or by inhibiting intracellular tyrosine kinase activity, may prevent the growth of EGFR-expressing tumors and might improve a patient's condition.
- hv k is a photonic energy responsible for signaling an aspect of a protein conformation. This photonic energy hv would typically not be ionizing.
- hv z is a photonic energy responsible for signaling an aspect of a protein conformation that closes an ion channel or multiple ion channels.
- hv x is a photonic energy responsible for signaling an aspect of a protein conformation that opens an ion channel or multiple ion channels.
- photonic energy can be used to promote reactions in some cases (hvj), promote ionization and denaturing of certain proteins (hv j ), change protein conformation (1h3 ⁇ 4), and/or signal the closure and the opening of ion channels (hv z , hv x ).
- Energy converters in one embodiment can be used to convert high energy incident radiation such as x-ray into one or more of hvj, hv j , hv k , hv z , and/or hv x which can interact within the cell environment to promote or prohibit the functions of those cells.
- high energy incident radiation such as x-ray
- poly-dAdT poly(deoxyadenylic-deoxythymidylic) acid sodium salt
- 8-MOP 8-methoxypsoralen
- the energy promoters i.e., the phosphors designated below as BP3, BP 10, and BP6
- Figure 16 shows the spectral emission of the BP3, BP10, and BP6 phosphors
- Phosphors BP3, BP6, and BP 10 were added to a solution of 8-MOP and Poly-dAdT, and exposed to various X-ray conditions.
- the plates were placed at the following distances from the X-ray source: 100 mm and 200 mm. This had the effect of changing the dose rate.
- the X-Ray parameters included 320 kV and 10 mA for a fixed time period. This example shows that monoadduct (MA) formation can be promoted for example by UV light with the higher energy light promoting more MA formation even at a lower flux or intensity.
- the observed MA formation tends to follow the photonic energy ranking rather than the intensity of the energy conversion from X-Ray to UV or visible light.
- Measurements of the MA and di-adduct formation (XL) were performed using high performance liquid chromatography (HPLC) to identify the presence of these compounds after exposure to photonic energy.
- Figure 17 is a chart showing that photonic energy from BP3 tends to produce more MA than BP6 or BP10.
- Figure 18 is a chart showing MA formation under BP3 photonic energy as a function of distance from the X-ray source and time. Somewhat surprisingly, MA formation increases as the distance from the X-ray source increases. This points out that the right reaction is sensitive to dose rate. Lower dose rates in this case could be more beneficial. Regardless, the results show MA formation under BP3 photonic energy.
- Figure 19 is a chart showing XL under BP3 photonic energy as a function of distance from the X-ray source and time. Here, XL decreases as the distance from the X-ray source increases and increases with time. It is worth noting that the XL reaction is reversible.
- Figures 20-24 show results from other experiments corroborating MA formation and/or XL under photonic energy exposure.
- Figure 25 is a chart showing a non-linear effect on MA seen by mixing two phosphors. Indeed, the mixtures of BP7 from at least 33% to
- Living cells possess sophisticated molecular machinery and control systems. Living cells convert food into energy, such as ATP, which drives the millions of biochemical processes necessary for keeping us alive.
- the pathways used to convert substrates such as glucose into products are collectively referred to as metabolic pathways.
- the drivers of these metabolic pathways are enzymes that work to assist chemical reactions by building or breaking down molecules.
- the enzymatic protein does not drive reactions at a constant rate. The reaction rate can in fact speed up or slow down or even stop completely according to the cell's needs.
- the cell is considered to be self-regulated, and the supply of products does not exceed demand. If products are being created at a rate that is faster than they can be used, a slower rate or complete stoppage can take place through a process called feedback inhibition, which is part of Allosteric regulation. Allosteric regulation plays a role in many metabolic pathways and is considered to keep everything running smoothly and efficiently while maintaining homeostasis.
- Enzymatic and non-enzymatic proteins There are enzymatic and non-enzymatic proteins. Enzymes catalyze reactions, for example, such as in the case of DNA polymerase and Amylase. Non- enzymatic proteins play a large number of functions and roles, including, but not limited to, receptors/ion channels, transport, motor and antibodies.
- Enzymes have active sites where substrates combine as well as allosteric sites where enzyme regulator can bind.
- a feedback loop gets established whereby the downstream products regulate upstream reactions. An increase or decrease of enzymatic activity is therefore tailored to the specific needs of the cell.
- Mutated enzymes that do not respond to allosteric regulation have been linked to disease states, such as cancer. Many processes in our bodies rely on molecular feedback inhibition to maintain homeostasis.
- photonic energy can be used to promote allosteric activators which increase enzymatic activity and/or promote allosteric inhibitors which decrease enzymatic activity, therefore targeting diseased cells to curtail runaway growth conditions
- a signaling protein can be activated and deactivated using photonic energy.
- an energy converter such as BP3, BP6, and/or BP 10 would be located nearby or inside a cell to generate photonic energy, such as UV or visible light, to promote the function or the suppression of a signaling protein.
- Light-activated DNA binding in a designed allosteric protein has been reported by Devin Strickland, Keith Moffat, and Tobin R. Sosnick, Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, University of Chicago, 929 East 57th Street, Chicago, IL 60637, edited by David Baker, University of Washington, Seattle, WA, and approved May 12, 2008 (received for review October 9, 2007) in“Light-activated DNA binding in a designed allosteric protein,” the entire contents of which are incorporated herein by reference.
- the LOY domain (containing the three dots representing the three ring FMN chromophore), the TrpR domain in orange, and the operator DNA are depicted above in various states.
- the shared helix, H is shown contacting the LOV domain in (A) and contacting the TrpR domain in (B)-(D).
- the three-ring FMN chromophore is in the ground state in (A) and (D) above and when photoexcited in (B) and (C).
- Figure 27 provides a depiction of a design of an allosteric, light activated repressor.
- (A) represents a conceptual model of an allosteric lever arm. Joining two domains across terminal a -helices creates a bi-stable system in which steric overlap (star) is relieved by the disruption of contacts between the shared helix and one or the other of the domains.
- a perturbation (D) such as ligand binding or photo-excitation alters the energy surface of the system (blackline) to favor a new conformational ensemble (dashed line) with different functional properties.
- photonic energy for example from the energy converters noted above, can be used to photoexcite these types of reactions to promote light- activated DNA binding.
- photonic energy can be used to activate a repressor.
- peptides can regulate a variety of biological processes by acting as competitive inhibitors, allosteric regulators and localization signals. Photo-control of peptide activity represents a tool for precise spatial and temporal control of cellular functions.
- Lungu et al. showed that genetically encoded light-oxygen-voltage-sensing domain LOV2 domain of Avena Sativa phototropin 1 (AsLOV2) can be used to reversibly photo- modulate the affinity of peptides for their binding partners.
- Sequence analysis and molecular modeling were used to embed tow peptides into the Ja helix of the AsLOV2 domain while maintaining AsLOV2 structure in the dark but allowing for binding to effector proteins when the Ja helix unfolds in the light.
- Caged versions of the ipaA and SsrA peptides, LOV-ipaA and LOV-SsrA bind their targets with 49- and 8-fold enhanced affinity in the light, respectively.
- UVR8 a plant photoreceptor protein that forms photolabile homodimers, to engineer the first light-triggered protein secretion system.
- UVR8 fusion proteins were conditionally sequestered in the endoplasmic reticulum, and a brief pulse of light triggered robust forward trafficking through the secretory pathway to the plasma membrane.
- UVR8 was not responsive to excitation light used to image cyan, green, or red fluorescent protein variants, allowing multicolor visualization of cellular markers and secreted protein cargo as it traverses the cellular secretory pathway. Chen et al. showed that this could be used, as a tool in neurons, to demonstrate restricted, local trafficking of secretory cargo near dendritic branch points.
- PhyB binds to members of the phytochrome-interacting family (PIF) of basic helix-loop-helix transcription factors when photoexcited with red (660 rnn) light. Remarkably, PhyB/PIF interactions can be reversed by near-infrared (730 nm) excitation, allowing fast and local toggling of PIF binding.
- PIF phytochrome-interacting family
- PhyB-based systems require addition of an exogenous phycocyanobilin chromophore that is not normally present in yeast, flies, worms, or mammals, making it more difficult to implement than more recently developed systems that are entirely genetically encoded.
- UVR8 can be used to conditionally sequester secretory cargo in the ER.
- FIG 28 shows the light-triggered dissociation of UVR8-tagged proteins.
- UVR8 fused to prenylated GFP UVR8-memGFP
- UVR8-memGFP prenylated GFP
- Dissociation of the UYR8 dimer by UV-B light releases UVR8-mCh to the cytosol
- photonic energy from for example the energy converters noted above can be used to photoexcite these types of reactions.
- the various units constituting a given protein enter into an energetically favorable and stable configuration.
- the presence of water is reported to enable the correct folding through the influence of the various water molecules in the vicinity of the amino-acids to be stacked.
- the proper staking and folding yields biologically compatible and functional molecules. If a solvent other than water is used the folding of proteins is derailed to biologically incompatible molecules.
- the energetically favorable stacking and folding is accompanied by remitting of any excess energy to the microenvironment hosting the staking process (the cell in this case).
- the excess energy release can be in various forms including electromagnetic radiation. This could in fact explain the presence of some of the low intensity photons in the cell environment.
- photoinitiated processes in human cells include (1) the vision process, which is initiated when photoreceptor cells are activated by light (photoisomerization); and (2) near UV (290nm) exposed prion protein fails to form amyloid fibrils (Thakur, A. K. & Mohan Rao Ch. (2008).“UV-Light Exposed Prion Protein Fails to Form
- Sunlight can activate the formation of vitamin D3.
- the precursor to vitamin D3 is cholesterol.
- Cells also produce an abundance of cholesterol sulfate the important precursor to vitamin D3. Due to the lack of depth of penetration of sunlight into the human body, the photo-induced bio-synthesis of vitamin D3 is confined to the skin area.
- vitamin D3 The benefits of vitamin D3 are actually stemming from cholesterol sulfate and lead to protection against diabetes, cardiovascular disease and certain cancers.
- photonic energy from the energy converters noted above can be used to photo-excite these types of reactions to promote light- activated bio-synthesis.
- This can be used as a method of increasing vitamin D3 levels in a subject, lowering total cholesterol levels in a subject, or both simultaneously.
- the level of vitamin D3 production could be controlled by controlling the amount of incident high energy radiation (such as x-ray) which in turn would control the amount of UV production in vivo.
- the photonic energy need not come from down-converting phosphors.
- Other means for generating ultraviolet or visible light in vivo may be used by injecting into the body in target regions upconverting phosphors, UV or visible light emitting diodes, light-emitting plasma capsules, etc. to photo-excite reactions promoting vitamin D3 production and/or other light-activated bio-synthesis.
- Nucleic acids in living cells are associated with a large variety of proteins.
- Ultraviolet (UV) irradiation of cells is thought to lead to reactions between DNA and the proteins that are in contact with it, such as cross-linking between the amino acids in these associated proteins and the bases in DNA, which appears to be an important process that photoexcited DNA and proteins undergo in vivo, as well as in DNA-protein complexes in vitro.
- Twenty two (22) common amino acids are known to bind photochemically (upon 254nm excitation) to uracil, with the most reactive being phenylalanine, tyrosine and cysteine.
- the three amino acid residues having side chains that absorb in the UV range are the aromatic residues tryptophan (Tip), tyrosine (Tyr) and phenylalanine (Phe).
- Neves-Petersen et al (2012) report that the solvated electron average lifetime is shorter at acidic pH values, which is correlated with the fact that H30+ captures the solvated electron. Furthermore, the solvated electron lifetime is significantly shorter in protein systems as compared to from Trp alone in solution, thus indicating that a protein offers other pathways involving capture of the solvated electron. Neves-Petersen et al (2012) also report that data has shown that the higher the pH the longer time it takes for the solvated electron to recombine with the parent molecule (geminate recombination) or another electron scavenger molecule, such as H30+.
- the simplest type of protein immobilization uses the high inherent binding affinity of surfaces to proteins in general, such as through the use of numerous weak contacts, including van der Waals and hydrogen bonding interactions. Molecules can also be immobilized on a carrier or solid surface passively through hydrophobic or ionic interactions, or covalently by attachment to surface groups. Due to the importance of immobilization for solid phase chemistry and biological screening, the analytical uses of the technology have been widely explored. The technology has found particularly broad application in different areas of biotechnology, including, but not limited to, diagnostics, biosensors, affinity chromatography and immobilization of molecules in assays such as ELISA assays.
- thermochemical/chemical steps sometimes with hazardous chemicals, some of which are likely to have a deleterious effect on the structure and/or function of the bound protein.
- the available methods are often invasive, whereby foreign groups are introduced into a protein to act as functional groups, which can cause protein denaturation, as well as lower its biological activity and substrate specificity.
- Neves-Petersen et al (2012) have suggested this can be addressed by Light Assisted Molecular Immobilization technology (LAMI).
- LAMI Light Assisted Molecular Immobilization technology
- LAMI technology uses an inherent natural property of proteins and peptides, whereby a disulphide bridge in a protein or peptide, located in close proximity to an aromatic amino acid residue, is disrupted following excitation of aromatic amino acids.
- the thiol groups created by light induced disulphide bridge breakage in a protein or peptide are then used to immobilise the protein or peptide to a carrier.
- the formed free thiol groups in the protein can then attach the protein onto a thiol reactive surface, such as gold, thiol derivatized glass and quartz, or even plastics.
- the new protein immobilization technology has led to the development of microarrays of active biosensors and biofunctionalization of thiol reactive nanoparticles, aiming at engineering drug delivery systems.
- Figure 29 is a flowchart of one method of the invention for treating a subject.
- this method provides a first region of biological material coupled to the subject.
- this method initiates a change in a cellular environment of the cells in the first region.
- this method due to a change in biological or chemical activity of the cells in the first region, this method induces a biological change in a second region inside the subject.
- the first region can be a region inside the subject proximate the second region or it can be a region inside the subject remote from the second region. In one embodiment, the first region can be a region outside the subject coupled physically to the second region or it can be a region inside the subject overlapping the second region.
- the biological material of the first region can be segregated from the second region by an artificial material.
- the artificial material may comprise a permeable material capable of transmission of chemical agents produced by the biological material from the first region into the second region.
- the artificial material may comprise a material capable of transmission of biophotons therethrough.
- the artificial material may comprise a material capable of transmission of sonic waves therethrough.
- the artificial material may comprise a material capable of transmission of ultraviolet light or visible light therethrough.
- the artificial material may comprise a material capable of transmission of infrared light therethrough.
- the artificial material may comprise a material capable of transmission of electrical signals therethrough.
- the first region and the second region can be quantum entangled regions, permitting the coupling to occur.
- initiating a change can cause cell death of the biological material of the first region or initiating a change can cause cell growth of the biological material of the first region.
- the changes initialed can be caused by imposing an electric field in the first region to promote ion pumping through cells in the biological material of the first region, or by imposing an electric field in the first region to retard ion pumping through cells in the biological material of the first region.
- the changes initialed can be caused by changing a rate of transport of reagents through cell membranes cells in the biological material of the first region, for example by changing a probability of tunneling of the reagents through cell membranes.
- the probability of tunneling is changed by applying an electric field to promote or retard transmission of the reagents through the cell membranes in the biological material of the first region.
- the probability of tunneling is changed by applying a photon flux to the reagents to increase an energy of the reagents.
- the probability of tunneling is changed by applying a drug which thickens the cell membranes.
- the probability of tunneling is changed by applying a drug which dilates or constricts pores in the cell membranes.
- the drugs affecting the cell membranes can be isolated only to the first region so that toxicity of the drug does not affect the subject.
- initiating a change can change a rate of enzymatic reactions occurring in the biological material or can change a rate of catalysis reactions occurring in the biological material.
- initiating a change can change a rate of photosynthesis occurring in the biological material.
- initiating a change can change the genomics of the biological material in the first region. This change in genomics in the first region can induce a therapeutic change in the second region.
- inducing a biological change in a second region inside the subject occurs by coupling to the second region via interactions of DNA molecules along a pathway from the first region to the second region.
- the pathway may comprise as part or all the pathway signaling DNA.
- coupling is provided by transporting charge along the signaling DNA.
- inducing a biological change occurs by removing a protein that normally binds to signaling DNA in the biological material of the first region.
- biophotonic or mitogenic radiation from the first regions is transmitted (or otherwise coupled) to the second regions to thereby induce the change in the second region.
- this coupling is via ultraviolet or visible light
- the photon flux in a specialized case is that of a single photon emission and transmission, and possibly emitted and transmitted coherently with other sources of the biophoton radiation.
- biophoton emission is stimulated by artificial sources such that living tissues in the first region produce biophoton radiation.
- artificial or simulated biophoton emission is produced and coupled to the second or treatment region.
- a change in the viability of the cells in the first region produces a similar change in the second region of the subject.
- the biological material of the first region is surgically defined (isolated, separated, partially removed) from a diseased organ in the subject, a treatment is applied to the first region that had been surgically defined to promote cell death (or alternatively cell growth), thereby inducing cell death (or cell growth) as the biological change in the second region (or treatment region) of the subject.
- the surgically defined first region can be selectively treated to induce cell death for example by chemically inducing cell death in the surgically defined first region or by chemically inducing cell death in the surgically defined first region by radiation.
- radiation can include ultraviolet light.
- Other examples include x-rays, gamma rays, protons, or other high energy sources.
- Figure 30 is a flowchart of another method of the invention for treating a subject.
- this method provides a source of biophoton or mitogenic radiation.
- this method couples the source of the biophoton radiation to a treatment site inside the patient.
- the coupling induces a biological, chemical, physical, or therapeutic change in the subject at the treatment site.
- Another strategy is referred to as the photonically constructive approach and comprises stimulating the biological circuitry to generate healthy bio-photonic signatures that in-turn communicate with the tumor micro environment (TME) to stay on a healthy course rather than to engage in undesirable mutations leading to cancer propagation.
- TEE tumor micro environment
- the ability to collect the bio-photonic signature from the healthy tissue and to compare it with a cancerous tissue would thus provide a feedback loop necessary to activate the biological circuitry to promote the right photonic signature.
- the biological circuitry can be stimulated by having an increase in the metabolic pump function.
- a regimen of photonic stimulus can be implemented periodically until the diseased cells go back to normal behavior and subsequently become regulated by the immune system.
- This constructive approach should be done first to limit the evasion of mutated cells from the surveillance of the immune system. Once the cells no longer have countermeasures to evade the immune system, then the disease is corrected quickly and efficiently by the existing (and complex) chain of events enabled by the immune system.
- the biological circuitry can be stimulated by having an increase in the metabolic pump function, this makes it possible to stimulate the proteins gating the doorways to ion channels and to cause an increase in the uptake of ions ever so slightly to build up more voltage (hence more energy storage) which results in the decay and dissipation of said stored energy via photonic energy.
- photonic energy at the cellular level coupled with the ability to measure ultraweak photons is one preferred embodiment of the present invention. It is also recognized that photonic signatures can carry information of types not described herein. However, the ability to interact at the cellular level using photons opens a myriad of medical possibilities and novel therapies based on cellular light communication.
- Embodiment 1 A method of treating a subject comprising:
- Embodiment 2 The method of Embodiment 1, further comprising defining for the first region a region inside the subject proximate the second region.
- Embodiment 3. The method of Embodiment 2, wherein the region inside the subject is formed of the subject’s own tissue.
- Embodiment 4 The method of Embodiment 2, wherein the region inside the subject is biological material implanted inside the subject.
- Embodiment 5 The method of Embodiment 1, further comprising defining for the first region a region inside the subject remote from the second region.
- Embodiment 6 The method of Embodiment 5, wherein the region inside the subject is formed of the subject’s own tissue.
- Embodiment 7 The method of Embodiment 5, wherein the region inside the subject is biological material implanted inside the subject.
- Embodiment 8 The method of Embodiment 1, further comprising defining for the first region a region outside the subject coupled physically to the second region.
- Embodiment 9 The method of Embodiment 1, farther comprising defining for the first region a region inside the subject overlapping the second region.
- Embodiment 10 The method of any one of Embodiments 1 to 9, wherein providing comprises segregating the biological material of the first region from the second region by an artificial material.
- Embodiment 11 The method of Embodiment 10, wherein the artificial material comprises a permeable material capable of transmission of chemical agents produced by the biological material from the first region into the second region.
- Embodiment 12 The method of Embodiment 10, wherein the artificial material comprises a material capable of transmission of biophotons therethrough.
- Embodiment 13 The method of Embodiment 10, wherein the artificial material comprises a material capable of transmission of sonic waves therethrough.
- Embodiment 14 The method of Embodiment 10, wherein the artificial material comprises a material capable of transmission of ultraviolet light therethrough.
- Embodiment 15 The method of Embodiment 10, wherein the artificial material comprises a material capable of transmission of infrared light therethrough.
- Embodiment 16 The method of Embodiment 10, wherein the artificial material comprises a material capable of transmission of electrical signals therethrough.
- Embodiment 17 The method of any one of Embodiments 1 to 16, wherein the first region and the second region are quantum entangled regions.
- Embodiment 18 The method of any one of Embodiments 1 to 17, wherein initiating a change comprises causing cell death of the biological material of the first region.
- Embodiment 19 The method of any one of Embodiments 1 to 17, wherein initiating a change comprises causing cell growth of the biological material of the first region.
- Embodiment 20 The method of any one of Embodiments 1 to 19, wherein initiating a change comprises imposing an electric field in the first region to promote ion pumping through cells in the biological material of the first region.
- Embodiment 21 The method of any one of Embodiments 1 to 19, wherein initiating a change comprises imposing an electric field in the first region to retard ion pumping through cells in the biological material of the first region.
- Embodiment 22 The method of any one of Embodiments 1 to 19, wherein initiating a change comprises changing a rate of transport of reagents through cell membranes cells in the biological material of the first region.
- Embodiment 23 The method of Embodiment 22, wherein changing a rate of transport comprises changing a probability of tunneling of the reagents through cell membranes.
- Embodiment 24 The method of Embodiment 23, wherein changing a probability of tunneling comprises applying an electric field to promote or retard transmission of the reagents through the cell membranes in the biological material of the first region.
- Embodiment 25 The method of Embodiment 23, wherein changing a probability of tunneling comprises applying a photon flux to the reagents to increase an energy of the reagents.
- Embodiment 26 The method of Embodiment 23, wherein changing a probability of tunneling comprises applying a drug which thickens the cell membranes.
- Embodiment 27 The method of Embodiment 23, wherein changing a probability of tunneling comprises applying a drug which dilates or constricts pores in the cell membranes.
- Embodiment 28 The method of Embodiment 26 or Embodiment 27, wherein the drug is isolated only to the first region so that toxicity of the drug does not affect the subject.
- Embodiment 29 The method of any one of Embodiments 1 to 19, wherein initiating a change comprises changing a rate of enzymatic reactions occurring in the biological material.
- Embodiment 30 The method of any one of Embodiments 1 to 19, wherein initiating a change comprises changing a rate of catalysis reactions occurring in the biological material.
- Embodiment 31 The method of any one of Embodiments 1 to 19, wherein initiating a change comprises changing a rate of photosynthesis occurring in the biological material.
- Embodiment 32 The method of any one of Embodiments 1 to 19, wherein initiating a change comprises changing genomics of the biological material in the first region.
- Embodiment 33 The method of Embodiment 32, wherein the changing genomics in the first region induces the therapeutic change in the second region.
- Embodiment 34 The method of any one of Embodiments 1 to 33, further comprising coupling to the second region via interactions of DNA molecules along a pathway from the first region to the second region.
- Embodiment 35 The method of Embodiment 34, where coupling comprises having the pathway comprise signaling DNA.
- Embodiment 36 The method of one of Embodiments 34 or 35, where coupling comprises transporting charge along the signaling DNA.
- Embodiment 37 The method of any one of Embodiments 1 to 36 , wherein initiating a change comprises removing a protein that normally binds to signaling DNA in the biological material of the first region.
- Embodiment 38 The method of any one of Embodiments 1 to 37, wherein the change in the viability of the cells in the first region produces a similar change in the second region of the subject.
- Embodiment 39 The method of any one of Embodiments 1-18 or 20-38, wherein providing comprises:
- Embodiment 40 The method of Embodiment 39, wherein applying a treatment comprises:
- Embodiment 41 The method of Embodiment 40, wherein the selectively treating comprises chemically inducing cell death in the surgically defined first region.
- Embodiment 42 The method of Embodiment 40, wherein the selectively treating comprises inducing cell death in the surgically defined first region by radiation.
- Embodiment 43 The method of Embodiment 42, wherein the radiation is ultraviolet light.
- Embodiment 44 The method of Embodiment 42, wherein the radiation is x-rays, gamma rays, protons, or other high energy sources.
- a biophoton collector comprising:
- a living cell container for holding live cells which are capable of emitting biophotons; an integrating sphere surrounding the living cell container for collection of the biophotons; and
- Embodiment 46 The collector of Embodiment 45, further comprising a stimulation window for providing radiation to the live cells for stimulation of biophotonic radiation of the biophotons.
- Embodiment 47 The collector of Embodiment 45, further comprising a nozzle for supply of an effluent to the living cell container.
- a biophoton collector comprising:
- a living cell container for holding live cells which are capable of emitting biophotons; an antenna surrounding the living cell container for collection of electromagnetic radiation as the emitted biophotons.
- Embodiment 49 The collector of Embodiment 48, further comprising a
- microprocessor for storing waveform characteristics of the electromagnetic radiation.
- Embodiment 50 The collector of Embodiment 48, wherein the antenna comprises a fractal antenna.
- a biophoton bypass comprising:
- a hollow cavity optic for transmitting biophotons from a source of the biophotons to a treatment site while bypassing media of the subject to be treated;
- an exit optic attached to an end of the hollow cavity optic, the exit optic dispersing the biophotons from the hollow cavity optic Into the media of the subject to be treated.
- Embodiment 52 The bypass of Embodiment 51, wherein the hollow cavity optic is filled with a gas or is under a vacuum.
- Embodiment 53 The bypass of Embodiment 51 , wherein the hollow cavity optic comprises reflective interior walls.
- Embodiment 54 An electrically conducting biophoton bypass comprising:
- a conductor for transmitting low frequency electric signals from a source of the biophotons to a treatment site while bypassing media of the subject to be treated;
- a connector attached to the conductor for connecting the conductor to the media of the subject to be treated.
- Embodiment 55 The bypass of Embodiment 54, wherein the conductor comprises multiple conductors each having respective sheaths.
- Embodiment 56 The bypass of Embodiment 55, wherein the multiple conductors with the respective sheaths are twisted together to reduce high frequency noise.
- Embodiment 57 An electrically conducting biophoton bypass comprising: a conductor for transmitting high frequency electrical signals from a source of the biophotons to a treatment site while bypassing media of the subject to be treated;
- a connector attached to the conductor for connecting the conductor to the media of the subject to be treated.
- Embodiment 58 A magnetic yoke biophoton bypass comprising:
- a magnetic yoke for transmitting magnetic signals from a source of the biophotons to a treatment site while bypassing media of the subject to be treated;
- a dual gap construction comprising a first gap for introduction of the magnetic signals into the magnetic yoke and a second gap for exposing the treatment site to the magnetic signals.
- Embodiment 59 An in vivo biophoton generator comprising:
- a controller configured to control high energy excitation of the phosphors to produce light emission from the phosphors mimicking biophoton emission from cells in the organ or at the treatment site.
- Embodiment 60 The generator of Embodiment 59, wherein the controller controls e-beam or x-ray flux to the phosphors.
- a living cell biophoton generator comprising:
- a living cell layer comprising live cells
- Embodiment 62 The generator of Embodiment 61, wherein the encapsulant layer is configured to provide a controlled release substance to the living cell layer.
- Embodiment 63 The generator of Embodiment 61 , wherein the encapsulant layer comprises phosphors or metals.
- Embodiment 64 A DNA-based biophoton bypass comprising:
- a signaling DNA capable of transmitting electromagnetic signals as biophotons from a source of the biophotons to a treatment site while bypassing media of the subject to be treated;
- the signaling DNA and the waveguide structure transmit the electromagnetic signals a treatment site.
- Embodiment 65 A living cell biophoton generator comprising: a system for locally heating cells in an organ or treatment site;
- a controller configured to control the local heating to an amount that induces stress in the cells and thereby induces biophoton emission from the cells in stress.
- Embodiment 66 The generator of Embodiment 65, wherein the system comprises a microwave hyperthermia treatment system.
- Embodiment 67 A method for in vivo biosynthesis of Vitamin D3 in a subject, comprising:
- the applied initiation energy is at least one member selected from the group consisting of x-rays, gamma rays, and particle beams; wherein the applied initiation energy is converted by the one or more energy converters into UV energy, which interacts with cholesterol in the cholesterol rich region, thereby converting the cholesterol into Vitamin D3.
- Embodiment 68 The method of Embodiment 67, wherein the contacting is performed by injection of the one or more energy converters into the cholesterol rich region of the subject.
- Embodiment 69 The method of Embodiment 67, wherein the contacting is performed by systemically infusing the one or more energy converters into a blood vessel of the subject, wherein the cholesterol rich region of the subject is the bloodstream of the subject.
- Embodiment 70 The method of any one of Embodiments 1 to 29 or Embodiments 35 to 46, wherein the biological change in the second region comprises a change in neuron activity.
- Embodiment 71 The method of Embodiment 70, wherein the change in neuron activity is stimulation and/or control of neural communication.
- Embodiment 72 A method for regenerative medicine, comprising:
- Embodiment 73 The method of Embodiment 72, wherein the light is internally generated by administration of at least one energy modulation agent in a vicinity of the area for regrowth/regeneration of cells or tissue, and applying an initiation energy to the subject which is converted internally within the subject by the at least one energy modulation agent into the one or more wavelengths.
- Embodiment 74 The method of Embodiment 72, wherein the light is internally generated by activation of a long-lived persistent phosphor external to the subject, and administering the activated long-lived persistent phosphor to the subject in a vicinity of the area for regrowth/regeneration of cells or tissue.
- Embodiment 75 The method of any one of Embodiments 72 to 74, wherein the regrowth/regeneration of cells or tissue comprises angiogenesis.
- Embodiment 76 The method of any one of Embodiments 72 to 75, further comprising administering to the subject a hydrogel impregnated with a RGB peptide coupled with a photo-responsive blocker, such that upon internally generating light in the subject, the photo-responsive blocker is released by the internally generated light, thus activating the RGB peptide to cause regrowth/regeneration of cells or tissue.
- Embodiment 77 The method of Embodiment 76, wherein the RGB peptide coupled with a photo-responsive blocker further comprises a vascular endothelial growth factor protein complexed thereto, such that upon release of the photo-responsive blocker, each of the RGB peptide and vascular endothelial growth factor protein are activated within the subject.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Epidemiology (AREA)
- Chemical & Material Sciences (AREA)
- Neurosurgery (AREA)
- Biochemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Dermatology (AREA)
- Medical Informatics (AREA)
- Anesthesiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3115947A CA3115947A1 (en) | 2018-10-12 | 2019-10-11 | Methods, devices, and compositions for measuring and inducing cell-to-cell communication, and therapeutic uses thereof |
CN202410800866.4A CN118615596A (en) | 2018-10-12 | 2019-10-11 | Methods, devices and compositions for measuring and inducing intercellular communication and therapeutic uses thereof |
CN201980081711.7A CN113272011B (en) | 2018-10-12 | 2019-10-11 | Methods, devices and compositions for measuring and inducing intercellular communication and therapeutic uses thereof |
KR1020217014036A KR20210090630A (en) | 2018-10-12 | 2019-10-11 | Methods, devices and compositions for measuring and inducing cell-to-cell communication, and therapeutic uses thereof |
AU2019359469A AU2019359469B2 (en) | 2018-10-12 | 2019-10-11 | Methods, devices, and compositions for measuring and inducing cell-to-cell communication, and therapeutic uses thereof |
EP19870333.2A EP3863550A4 (en) | 2018-10-12 | 2019-10-11 | Methods, devices, and compositions for measuring and inducing cell-to-cell communication, and therapeutic uses thereof |
AU2024200182A AU2024200182A1 (en) | 2018-10-12 | 2024-01-11 | Methods, devices, and compositions for measuring and inducing cell-to-cell communication, and therapeutic uses thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862745057P | 2018-10-12 | 2018-10-12 | |
US62/745,057 | 2018-10-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020077246A1 true WO2020077246A1 (en) | 2020-04-16 |
Family
ID=70162290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2019/055912 WO2020077246A1 (en) | 2018-10-12 | 2019-10-11 | Methods, devices, and compositions for measuring and inducing cell-to-cell communication, and therapeutic uses thereof |
Country Status (7)
Country | Link |
---|---|
US (2) | US11833367B2 (en) |
EP (1) | EP3863550A4 (en) |
KR (1) | KR20210090630A (en) |
CN (2) | CN113272011B (en) |
AU (2) | AU2019359469B2 (en) |
CA (1) | CA3115947A1 (en) |
WO (1) | WO2020077246A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12089930B2 (en) | 2018-03-05 | 2024-09-17 | Marquette University | Method and apparatus for non-invasive hemoglobin level prediction |
EP3935132A4 (en) | 2019-03-04 | 2023-05-10 | Immunolight, Llc. | Energy augment structures for use with energy emitters and collectors |
CN110292359B (en) * | 2019-07-09 | 2021-01-08 | 浙江大学 | Method and device for label-free all-optical nerve regulation and imaging |
US11464997B2 (en) * | 2020-07-18 | 2022-10-11 | Konrad Jarausch | Systems and methods for light generation and use thereof |
CN111781159B (en) * | 2020-07-30 | 2021-07-13 | 浙江大学 | In-situ detection method and system for plant cadmium chelate |
US20220161047A1 (en) * | 2020-11-23 | 2022-05-26 | RayBalance, Inc. | Systems and methods for photobiomodulation |
CN113812928B (en) * | 2021-11-22 | 2022-04-08 | 北京航空航天大学 | Multimode imaging device based on Raman spectrum and optical coherence tomography |
CN114848922B (en) * | 2022-04-19 | 2023-01-10 | 浙江大学 | Composite conduit material doped with mechanoluminescence material and preparation method thereof |
WO2024118961A1 (en) * | 2022-11-30 | 2024-06-06 | The Trustees Of Boston College | Bioelectric control of macrophages using excited nanostructures |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6036923A (en) * | 1995-03-07 | 2000-03-14 | Bioseq, Inc | Pressure cycling reactor and methods of controlling reactions using pressure |
US6173202B1 (en) * | 1998-03-06 | 2001-01-09 | Spectrx, Inc. | Method and apparatus for enhancing flux rates of a fluid in a microporated biological tissue |
US6245967B1 (en) * | 1995-01-13 | 2001-06-12 | Hoechst Schering Agrevo Gmbh | Process and DNA molecules for increasing the photosynthesis rate in plants |
US20030233122A1 (en) * | 2002-06-14 | 2003-12-18 | Healing Machines, Inc. | Apparatus and method for physiological treatment with electromagnetic energy |
US20040068284A1 (en) * | 2002-01-29 | 2004-04-08 | Barrows Thomas H. | Method for stimulating hair growth and kit for carrying out said method |
US20070203655A1 (en) * | 2006-02-27 | 2007-08-30 | Huping Hu | Method and apparatus for producing quantum entanglement and non-local effects of substances |
US20090099503A1 (en) * | 2007-10-15 | 2009-04-16 | Kunihiko Mitsuda | Ozone treatment apparatus for acne |
US20110236325A1 (en) * | 2010-01-21 | 2011-09-29 | NellOne Therapeutics, Inc. | Methods to treat or prevent a skin condition using a nell1 peptide |
US20130041206A1 (en) * | 2010-02-10 | 2013-02-14 | Marcus ANDERSSON | Epidermal down-growth barrier |
US8630704B2 (en) * | 2007-06-25 | 2014-01-14 | Cardiac Pacemakers, Inc. | Neural stimulation with respiratory rhythm management |
US20150231557A1 (en) * | 2012-01-27 | 2015-08-20 | Empire Technology Development Llc | Accelerating transport through graphene membranes |
US20170157418A1 (en) * | 2007-04-08 | 2017-06-08 | Immunolight, Llc | X-ray psoralen activated cancer therapy (x-pact) |
WO2017189506A1 (en) * | 2016-04-25 | 2017-11-02 | Immunolight, Llc | Insertion devices and systems for production of emitted light internal to a medium and methods for their use |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050143791A1 (en) * | 2001-07-09 | 2005-06-30 | Stuart Hameroff | Process of treating a cell |
US20040034388A1 (en) * | 2002-06-14 | 2004-02-19 | Healing Machines, Inc. | Apparatus and method for physiological treatment with electromagnetic energy |
US20050249667A1 (en) * | 2004-03-24 | 2005-11-10 | Tuszynski Jack A | Process for treating a biological organism |
BRPI0615986A2 (en) * | 2005-07-28 | 2012-04-10 | Pasquale Mosaico | method for manufacturing media for improving the condition of systems and substances, means for improving the condition of systems and use of media |
US20150182756A1 (en) * | 2005-08-05 | 2015-07-02 | Gholam A. Peyman | Methods to regulate polarization and enhance function of cells |
KR20070080042A (en) * | 2006-02-06 | 2007-08-09 | 주식회사 포토메디 | A reproductive method of photoelectrons the waves of which resonate in syntony with the waves of photoelectrons released from cells, speeding the activity of cell |
JP2009539403A (en) * | 2006-06-13 | 2009-11-19 | オンコメッド ファーマシューティカルズ インコーポレイテッド | Compositions and methods for diagnosing and treating cancer |
CA2720513C (en) * | 2008-04-04 | 2018-09-25 | Immunolight, Llc | Non-invasive systems and methods for in-situ photobiomodulation |
US20140276354A1 (en) | 2013-03-14 | 2014-09-18 | Klox Technologies Inc. | Biophotonic materials and uses thereof |
US11534622B2 (en) * | 2014-08-18 | 2022-12-27 | Immunolight, Llc | Non-invasive systems and methods for selective activation of photoreactive responses |
US9919162B2 (en) | 2015-09-22 | 2018-03-20 | Blu Room Enterprises, LLC | Apparatus for providing light therapy |
-
2019
- 2019-10-11 CN CN201980081711.7A patent/CN113272011B/en active Active
- 2019-10-11 EP EP19870333.2A patent/EP3863550A4/en active Pending
- 2019-10-11 US US16/599,732 patent/US11833367B2/en active Active
- 2019-10-11 CA CA3115947A patent/CA3115947A1/en active Pending
- 2019-10-11 KR KR1020217014036A patent/KR20210090630A/en not_active Application Discontinuation
- 2019-10-11 WO PCT/US2019/055912 patent/WO2020077246A1/en unknown
- 2019-10-11 AU AU2019359469A patent/AU2019359469B2/en active Active
- 2019-10-11 CN CN202410800866.4A patent/CN118615596A/en active Pending
-
2023
- 2023-10-27 US US18/496,405 patent/US20240091555A1/en active Pending
-
2024
- 2024-01-11 AU AU2024200182A patent/AU2024200182A1/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6245967B1 (en) * | 1995-01-13 | 2001-06-12 | Hoechst Schering Agrevo Gmbh | Process and DNA molecules for increasing the photosynthesis rate in plants |
US6036923A (en) * | 1995-03-07 | 2000-03-14 | Bioseq, Inc | Pressure cycling reactor and methods of controlling reactions using pressure |
US6173202B1 (en) * | 1998-03-06 | 2001-01-09 | Spectrx, Inc. | Method and apparatus for enhancing flux rates of a fluid in a microporated biological tissue |
US20040068284A1 (en) * | 2002-01-29 | 2004-04-08 | Barrows Thomas H. | Method for stimulating hair growth and kit for carrying out said method |
US20030233122A1 (en) * | 2002-06-14 | 2003-12-18 | Healing Machines, Inc. | Apparatus and method for physiological treatment with electromagnetic energy |
US20070203655A1 (en) * | 2006-02-27 | 2007-08-30 | Huping Hu | Method and apparatus for producing quantum entanglement and non-local effects of substances |
US20170157418A1 (en) * | 2007-04-08 | 2017-06-08 | Immunolight, Llc | X-ray psoralen activated cancer therapy (x-pact) |
US8630704B2 (en) * | 2007-06-25 | 2014-01-14 | Cardiac Pacemakers, Inc. | Neural stimulation with respiratory rhythm management |
US20090099503A1 (en) * | 2007-10-15 | 2009-04-16 | Kunihiko Mitsuda | Ozone treatment apparatus for acne |
US20110236325A1 (en) * | 2010-01-21 | 2011-09-29 | NellOne Therapeutics, Inc. | Methods to treat or prevent a skin condition using a nell1 peptide |
US20130041206A1 (en) * | 2010-02-10 | 2013-02-14 | Marcus ANDERSSON | Epidermal down-growth barrier |
US20150231557A1 (en) * | 2012-01-27 | 2015-08-20 | Empire Technology Development Llc | Accelerating transport through graphene membranes |
WO2017189506A1 (en) * | 2016-04-25 | 2017-11-02 | Immunolight, Llc | Insertion devices and systems for production of emitted light internal to a medium and methods for their use |
Non-Patent Citations (1)
Title |
---|
See also references of EP3863550A4 * |
Also Published As
Publication number | Publication date |
---|---|
CA3115947A1 (en) | 2020-04-16 |
CN113272011A (en) | 2021-08-17 |
AU2019359469B2 (en) | 2023-11-30 |
CN113272011B (en) | 2024-07-12 |
US11833367B2 (en) | 2023-12-05 |
AU2019359469A1 (en) | 2021-05-13 |
CN118615596A (en) | 2024-09-10 |
EP3863550A1 (en) | 2021-08-18 |
US20200114164A1 (en) | 2020-04-16 |
EP3863550A4 (en) | 2022-09-28 |
KR20210090630A (en) | 2021-07-20 |
AU2024200182A1 (en) | 2024-02-01 |
US20240091555A1 (en) | 2024-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220134131A1 (en) | Energy augmentation structures for measuring and therapeutic uses | |
AU2019359469B2 (en) | Methods, devices, and compositions for measuring and inducing cell-to-cell communication, and therapeutic uses thereof | |
US10272262B2 (en) | Method for modulating a biological activity of a target structure by energy generation in-situ within a medium | |
JP7053574B2 (en) | Insertion devices and systems that generate light emission inside the medium and how to use them. | |
US20230109074A1 (en) | Non-invasive systems and methods for selective activation of photoreactive responses | |
US10596387B2 (en) | Tumor imaging with X-rays and other high energy sources using as contrast agents photon-emitting phosphors having therapeutic properties | |
EP3134122B1 (en) | Tumor imaging using photon-emitting phosphors having therapeutic properties | |
Lin et al. | Applications of upconversion nanoparticles in cellular optogenetics | |
CN102870235A (en) | Up and down coversion systems for production of emitted light from various energy sources including radio frequency, microwave energy and magnetic induction sources for upconversion | |
Chen et al. | Recent advances in cellular optogenetics for photomedicine | |
WO2024044619A9 (en) | Methods of and devices/apparatus for detecting, triggering, and using cell-to-cell communication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19870333 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3115947 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019359469 Country of ref document: AU Date of ref document: 20191011 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019870333 Country of ref document: EP Effective date: 20210512 |