WO2020075806A1 - Locking structure - Google Patents

Locking structure Download PDF

Info

Publication number
WO2020075806A1
WO2020075806A1 PCT/JP2019/040027 JP2019040027W WO2020075806A1 WO 2020075806 A1 WO2020075806 A1 WO 2020075806A1 JP 2019040027 W JP2019040027 W JP 2019040027W WO 2020075806 A1 WO2020075806 A1 WO 2020075806A1
Authority
WO
WIPO (PCT)
Prior art keywords
cuvette
reagent
unit
measurement
sample
Prior art date
Application number
PCT/JP2019/040027
Other languages
French (fr)
Japanese (ja)
Inventor
美幸 東
正道 森谷
Original Assignee
株式会社Lsiメディエンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Lsiメディエンス filed Critical 株式会社Lsiメディエンス
Priority to JP2020551223A priority Critical patent/JP7321179B2/en
Publication of WO2020075806A1 publication Critical patent/WO2020075806A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system

Definitions

  • the present invention relates to a locking structure for holding a cuvette on a table.
  • Patent Document 1 a device that can perform a plurality of types of analysis with different measurement methods, such as biochemical analysis and immunological analysis, has been proposed (for example, Patent Document 1).
  • the apparatus is capable of (1) a sample supply unit including a sample rack capable of mounting a plurality of biological samples, (2) a plurality of reaction cuvettes independent of each other, and detachably held independently of each other.
  • a first measurement unit having a first optical system measurement means (3) sample transfer means capable of transferring a biological sample from a sample supply unit to a reaction cuvette on the first measurement unit, (4) independent of each other
  • a plurality of reaction cuvettes can be detachably held independently of each other, and a second measurement unit having a second optical system measurement means, and (5) a reaction cuvette on the first measurement unit, to the second measurement unit.
  • a cuvette transfer means capable of transferring, (6) a sample provided with reagents used for the measurement in the first measurement unit and the measurement in the second measurement unit A supply unit, and (7) a reagent supply unit capable of independently transferring the reaction reagents from the reagent supply unit to the reaction cuvette on the first measurement unit and / or the second measurement unit, the second measurement unit
  • the upper reaction cuvette is to be loaded with the biological sample on the first measurement unit, and then transferred from the first measurement unit to the second measurement unit by the cuvette transfer means to be carried, and the first measurement unit. Different measurement can be performed with the second measurement unit.
  • the locking structure according to the present invention holds the cuvette on a table having a holding portion for inserting and holding the cuvette.
  • a locking member is provided on the peripheral edge of the holding portion, and one end side of the locking member is fixed to the table, and the other end side of the cuvette is provided with a protrusion for mounting on the surface of the table.
  • the piece is locked by being sandwiched between the surface and the surface of the table, and the other end side of the locking member has a rounded outer shape in a sectional view.
  • a pair of locking members may be provided on the periphery of the holding portion, the locking members being provided at positions facing each other with the holding portion as a reference.
  • the locking member may be a leaf spring, and the other end of the locking member may face the direction in which the cuvette is inserted or the direction forming an acute angle with the direction. For example, with such a configuration, even if there is an error in the position at which the cuvette or the like is inserted, the possibility of the end being caught is reduced.
  • FIG. 3 is a plan view showing an example of an internal configuration of a measurement unit housing section of the combined analyzer. It is a figure which shows an example of a sample rack. It is a figure which shows an example of a sample rack. It is a figure which shows an example of a cuvette supply unit. It is a figure which shows an example of a sample nozzle unit. It is a figure which shows an example of a partial reagent table. It is a figure which shows an example of a reagent lid opening / closing unit. It is a figure which shows an example of a reagent nozzle unit. It is a figure which shows an example of a coagulation table.
  • FIG. 1 is a diagram showing an example of the external appearance of the composite analyzer 1000.
  • the composite analyzer 1000 is an analyzer that performs a plurality of types of analysis with different measurement accuracy, such as biochemical analysis and immunological analysis.
  • the composite analyzer 1000 can perform, for example, LPIA (Latex Photometric Immunoassay: latex near infrared turbidimetry), blood coagulation time measurement, and the like.
  • the composite analyzer 1000 includes a measurement unit housing unit 1, a tank housing unit 2, a monitor 3, and a status output unit 4.
  • the measurement unit housing unit 1 houses a plurality of measurement units and the like according to the embodiment.
  • the storage unit 2 for storing the tank and the like stores a tank for storing pure water, cleaning water, and waste water, a disposal box for accumulating cuvettes to be discarded, a computer for controlling the processing performed by the measurement unit storage unit 1, and the like.
  • the monitor 3 is connected to a computer and outputs the progress status and results of measurement. Further, the monitor 3 may be an input / output device that allows a user to perform an input operation, such as a touch panel.
  • the status output unit 4 is connected to a computer or the like, and blinks or lights a warning light to notify the user when an abnormality occurs in the process executed by the measurement unit housing unit 1.
  • FIG. 2 is a plan view showing an example of the internal configuration of the measurement unit housing section 1 of the composite analyzer 1000.
  • the measurement unit accommodating section 1 includes a sample rack transport space 101, a cuvette supply unit 102, a sample nozzle unit 103, a reagent table 104, a reagent lid opening / closing unit 105, a reagent nozzle unit 106, and a coagulation table 107.
  • An LPIA table 108, a cuvette chuck unit 109, a rail 110, and a cuvette disposal port 111 are provided.
  • a sample rack 1011 is placed in the transport space 101, and is transported on the table by a mechanism in which the protruding piece moves along a predetermined groove.
  • the sample rack 1011 holds a plurality of sample containers that store biological samples such as blood samples.
  • the cuvette supply unit 102 supplies a cuvette having a predetermined shape for use in the composite analyzer 1000.
  • the cuvettes are sequentially supplied one by one from the cuvette supply port 1021.
  • the sample nozzle unit 103 is a unit that includes a nozzle connected to a pump, moves within a predetermined movable range under the control of a computer, collects a sample from the sample container, and discharges the sample into the cuvette of the LPIA table 108.
  • the sample nozzle unit 103 rotates about a predetermined rotation axis in an arc shape in a plan view.
  • a dispensing position 1031 is provided at an intersection point in a plan view of an arcuate orbit along which the sample nozzle unit 103 moves and a circular orbit along which a cuvette circularly arranged on the LPIA table 108 is rotated and moves.
  • a nozzle cleaning tank 1032 is also provided on the track along which the sample nozzle unit 103 moves.
  • the reagent table 104 is a disc-shaped holding unit that holds a plurality of reagent containers that contain reagents and that rotates under the control of a computer. The held reagent container is sampled by the reagent nozzle unit 106 at a predetermined sampling position 1041.
  • the reagent lid opening / closing unit 105 is a unit for moving a predetermined movable range and opening / closing the lid of the reagent container under the control of the computer.
  • the reagent nozzle unit 106 is a unit that includes a nozzle connected to a pump, moves within a predetermined operating range under the control of a computer, collects a reagent from a reagent container, and discharges the reagent into a cuvette.
  • a cleaning tank 1061 for the reagent nozzle is provided on the path along which the reagent nozzle unit 106 moves linearly.
  • the coagulation table 107 is a holding unit having a plurality of holes for holding a plurality of cuvettes side by side in order to measure the degree of coagulation of the contents of the cuvette.
  • a light source and a light receiving unit are arranged with the cuvette held therebetween, and the degree of coagulation is measured based on the absorbance or transmittance of the contents.
  • the attachment / detachment position 1071 is provided at an intersection with the trajectory of the cuvette chuck unit 109 in plan view.
  • the LPIA table 108 is a disc-shaped holding unit that holds a plurality of cuvettes arranged in a circle in plan view and rotates under the control of a computer in order to measure the amount of antigen in a sample by the LPIA.
  • the held cuvette is attached / detached by the cuvette chuck unit 109 at a predetermined attachment / detachment position 1081, and a reagent is dispensed at a predetermined dispensing position 1082.
  • the cuvette chuck unit 109 moves within a predetermined movable range under the control of the computer to grip and move the cuvette.
  • the rail 110 is a linear rail.
  • the reagent nozzle unit 106 and the cuvette chuck unit 109 are each connected to the rail 110, and move substantially parallel to the rail 110 along the direction in which the rail 110 extends.
  • the cuvette discarding port 111 is an opening that communicates with a discarding box stored in the storage unit 2 such as a tank, and the cuvettes and the like can be discarded in the cuvette discarding port 111.
  • the sample rack 1011 includes a plurality of holders for holding a sample container 1012 that stores a sample. Further, the sample rack 1011 is transported under the control of the computer, and the desired sample container 1012 can be placed at a predetermined sampling position. The sampling position is located on the orbit along which the sample nozzle unit 103 moves in an arc shape in plan view, and the sample is dispensed by the sample nozzle unit 103 into the cuvette held in the holding hole of the LPIA table 108.
  • the composite analyzer 1000 may be provided with a reading device that optically reads identification information such as a barcode or a two-dimensional code attached to the label of the sample container 1012 so that a desired sample container can be specified.
  • a sample cup may be arranged on the sample container so that a sample diluted in the sample cup or a mixed sample is prepared.
  • FIG. 4 is a diagram showing an example of the cuvette supply unit.
  • the cuvette supply unit 102 supplies the cuvettes loaded into the hopper 1022 one by one in a predetermined direction from the cuvette supply port 1021 which is the end of the sloped outlet by a predetermined mechanism.
  • FIG. 5 is a diagram showing an example of the sample nozzle unit.
  • the nozzle 1034 moves in an arcuate trajectory in a plan view around a predetermined rotation shaft 1033. Then, the sample nozzle unit 103 dispenses the sample from the sample container 1012 of the sample rack 1011 moved to the sampling position to the cuvette of the LPIA table 108 moved to the injection position.
  • the sample nozzle unit 103 is also referred to as the "dispensing mechanism" according to the present invention.
  • FIG. 6 is a plan view showing an example of a partial reagent table.
  • Reagents are, for example, latex and coagulation time reagents, but are not limited to these.
  • the configuration of the reagent table can be appropriately changed according to the type of measurement principle.
  • the reagent table 104 is a disk-shaped table that rotates around a predetermined rotation axis, and the table is provided with a plurality of installation portions 1042 for holding the reagent containers in a ring shape.
  • the installation portions 1042 are provided in a double ring shape, but the number of installation portions 1042 and the number of rings are not particularly limited.
  • the reagent table 104 includes a rod-shaped convex portion 1043 that projects vertically upward around the installation portion 1042.
  • the convex portion 1043 is provided on the rotation shaft side of each installation portion 1042.
  • the reagent container according to the present embodiment has a substantially columnar shape, and the side surface thereof is provided with an engaging portion into which the above-mentioned convex portion 1043 can be inserted.
  • the engaging part is a through hole penetrating in the vertical direction or a concave part opened vertically downward, and the convex part 1043 can be inserted into the engaging part to fix the reagent container.
  • the table rotates clockwise or counterclockwise and stops at a predetermined position under the control of the computer.
  • the reagent collection position which is the intersection with the trajectory of the nozzle of the reagent nozzle unit 106 in plan view
  • the lid opening / closing position under the reagent lid opening / closing unit 105 and the user attaches / detaches the reagent container. Stop at the attachment / detachment position etc.
  • the composite analyzer 1000 includes a reading device that optically reads identification information such as a barcode or a two-dimensional code attached to the label of the reagent container so that the desired reagent container can be specified. Good.
  • the reading device is provided from the outside of the reagent table 104 toward the rotation axis in a plan view.
  • the plurality of installation parts 1042 provided in a double ring shape can be viewed from the reading device by, for example, arranging the installation part 1042 on the inner circumference side and the installation part 1042 on the outer circumference side in a staggered manner along the circumference.
  • the reagent containers do not overlap with each other, and the labels of all the reagent containers can be read by rotating the reagent table 104.
  • the installation unit 1042 may be provided in three or more concentric circles.
  • the table may be a single disc that rotates integrally, or the plurality of concentric circles may be formed by a plurality of ring-shaped discs that can rotate independently of each other. You may do it.
  • each ring independently rotates clockwise or counterclockwise and stops independently of each other under the control of a computer.
  • the installation section 1042 in which a desired reagent container is arranged can be moved to the sampling position 1041 and used depending on the measurement. can do.
  • the composite analyzer 1000 reads the identification information attached to the reagent container and automatically stores the arrangement of the reagent container on the reagent table 104, the user can perform the measurement without worrying about the installation location.
  • the preparation can be completed simply by installing the necessary reagent container, and convenience is improved.
  • the reagent table 104 includes the plurality of installation parts 1042, it is possible to increase the number of items that can be measured without replacing the reagent container, which is highly convenient.
  • FIG. 7 is a diagram showing an example of the reagent lid opening / closing unit.
  • the reagent lid opening / closing unit 105 opens / closes the lid of the reagent container at its tip portion 1051.
  • the lid of the reagent container according to the present embodiment is connected by a hinge, and is opened / closed by applying a moment in a predetermined opening / closing direction to the lid.
  • the lid of the reagent container is provided with a convex portion that projects in a direction substantially perpendicular to the lid and that has a tip portion 1051 for exerting a force.
  • the tip portion 1051 of the reagent lid opening / closing unit 105 moves along the radial direction of the reagent table 104 in a plan view, and is displaced along the orbit along which the reagent container moves by the rotation of the reagent table 104, and a convex portion protruding from the lid. Contact with and open the lid. Further, the tip portion 1051 of the reagent lid opening / closing unit 105 is also displaced in the vertical direction by a predetermined driving mechanism. The tip portion 1051 can close the reagent container by applying a force to the lid in a closing direction which is a direction opposite to the opening direction and pressing the lid vertically downward.
  • FIG. 8 is a diagram showing an example of the reagent nozzle unit.
  • the reagent nozzle unit 106 includes two nozzles 1062 for collecting and discharging a reagent.
  • the two nozzles 1062 vertically move up and down independently of each other to collect and discharge the reagent. Further, the reagent nozzle unit 106 moves along the rail 110 under the control of the computer, collects the reagent from the reagent container at the collection position of the reagent container on the reagent table 104, and dispenses the cuvette on the LPIA table 108. Dispense the reagent into the cuvette at position 1082.
  • the reagent nozzle unit 106 is linearly movable along the rail 110 between a predetermined position on the reagent table 104 and a predetermined position on the LPIA table 108.
  • the collection position 1041 is defined by the path along which one nozzle 1062 of the reagent nozzle unit 106 according to the present embodiment moves linearly and the cuvette arranged in the double ring shape of the reagent table 104. It is provided at the intersection with the track on the outer peripheral side. Further, it is also provided at the intersection of the path along which the other nozzle 1062 of the two reagent nozzle units 106 according to the present embodiment moves linearly and the track on the inner peripheral side.
  • the dispensing position 1082 is a path along which each of the two reagent nozzle units 106 described above linearly moves in plan view, and a cuvette arranged in one ring on the LPIA table 108 rotates. It is provided at each intersection with the orbit.
  • the number of nozzles 1062 is not limited to two. The number of nozzles 1062 is preferably set by the number of reagents used for one measurement. Coagulation measurement and latex measurement include measurement using one reagent and measurement using two reagents. Also, three or more nozzles 1062 may be provided.
  • FIG. 9 is a diagram showing an example of the coagulation table.
  • the coagulation table 107 is, for example, a table on which a cuvette is placed when performing blood coagulation time measurement.
  • the solidification table 107 is provided with a plurality of holding holes 1072 for holding the cuvette in a linear shape in a direction substantially perpendicular to the direction in which the rail 110 extends.
  • a light source 1073 is arranged on one side of the cuvette held in the holding hole 1072, and a light receiving section 1074 is arranged on the other side. Then, the degree of coagulation of the contents of the cuvette is measured by the absorbance or the transmittance of light having a predetermined wavelength.
  • the solidification table 107 includes a drive unit 1075 that slides the table in a direction substantially perpendicular to the direction in which the rail 110 extends. Then, the desired holding hole 1072 can be moved to the attachment / detachment position 1071 which is the intersection point with the track on which the cuvette chuck unit 109 moves. Further, the cuvette chuck unit 109 can hold the cuvette in the holding hole 1072 or remove the cuvette from the holding hole 1072 at a predetermined attaching / detaching position 1071. The cuvette in which the sample is dispensed in the holding hole of the LPIA table 108 is conveyed to the holding hole 1072 of the solidification table 107 by the cuvette chuck unit 109.
  • the light sources 1073 and the light receiving units 1074 are provided by the number of the holding holes 1072, and the holding holes 1072, the light sources 1073, and the light receiving units 1074 move as a unit. Therefore, the absorbance and the like can be continuously measured for each cuvette even while the table moves.
  • FIG. 10 is a diagram showing an example of the LPIA table.
  • the LPIA table 108 is a table on which a cuvette is placed when the antigen amount is measured by the latex agglutination method, for example.
  • the LPIA table 108 is a disk-shaped table that rotates around a predetermined rotation shaft 1083, and is provided with a plurality of holding holes 1084 for holding the cuvette in a ring shape along the circumference.
  • the table rotates clockwise or counterclockwise and stops at a predetermined position under the control of the computer.
  • each holding hole 1084 is provided with a spring 1085 for pressing the cuvette.
  • FIG. 11 is a diagram showing an example of the cuvette chuck unit.
  • the cuvette chuck unit 109 is a unit that has a two-finger gripper 1091 at its tip and holds and transports the cuvette. Further, the cuvette chuck unit 109 linearly moves in the horizontal direction along the rail 110, and holds or drops the cuvette at the attachment / detachment position of the reagent table 104 or the LPIA table 108, the cuvette supply port 1021, the cuvette disposal port 111, and the like.
  • the cuvette chuck unit 109 linearly moves in the horizontal direction along the rail 110, and holds or drops the cuvette at the attachment / detachment position of the reagent table 104 or the LPIA table 108, the cuvette supply port 1021, the cuvette disposal port 111, and the like.
  • FIG. 12A is a plan view showing an example of a rail including a cuvette chuck unit and a reagent nozzle unit.
  • FIG. 12B is a front view showing an example of a rail including a cuvette chuck unit and a reagent nozzle unit.
  • the rail 110 is a rail-shaped member that is connected to the reagent nozzle unit 106 and the cuvette chuck unit 109 and serves as a guide when the reagent nozzle unit 106 and the cuvette chuck unit 109 move.
  • the attachment / detachment positions of the reagent table 104, the coagulation table 107, and the LPIA table 108, the cuvette supply port 1021, and the cuvette disposal port 111 are arranged on a straight line substantially parallel to the rail 110.
  • the sampling position of the reagent table 104, the reagent dispensing position of the coagulation table 107, and the reagent dispensing position 1082 of the LPIA table 108 are also arranged on a straight line substantially parallel to the rail 110.
  • the nozzle 1062 of the reagent nozzle unit 106 and the two-finger gripper 1091 of the cuvette chuck unit 109 move up and down in the vertical direction.
  • the reagent nozzle unit 106 and the cuvette chuck unit 109 are connected to the front side of the rail 110 and move by sharing the rail 110. For example, by retracting the cuvette chuck unit 109 to the left in plan view and front view, the nozzle 1062 of the reagent nozzle unit 106 can be moved to the dispensing position 1082 of the LPIA table 108. Further, for example, by retracting the reagent nozzle unit 106 to the right side in plan view and front view, the two-finger gripper 1091 of the cuvette chuck unit 109 can be moved to the cuvette supply port 1021 of the cuvette supply unit 102.
  • the rail 110 is not limited to a linear rail, but may be one in which at least a part thereof is provided in a curved shape, or one having two or more linear sections or a curved section.
  • the rail 110 is also referred to as a “guide rail” according to the present invention.
  • the existing structure can be used for the connection structure of the reagent nozzle unit 106 and the cuvette chuck unit 109 to the rail 110.
  • the cuvette discarding port 111 is a loading port through which the cuvette chuck unit 109 releases the cuvette in order to collect the cuvettes in the discarding box stored in the storage part 2 such as the tank.
  • a tube for guiding the discarded cuvettes may be provided in the tank or the like accommodation portion 2 from the cuvette disposal port 111 toward the upper side of the disposal box.
  • the coagulation table 107 and a sensor or the like for measuring the contents of the cuvette installed therein, and the LPIA table 108 and the sensor or the like for measuring the contents of the cuvette installed therein are examples of measurement units that perform predetermined measurements. is there. In the present invention, one is also called a “first measuring unit” and the other is also called a “second measuring unit”. Further, the cuvette chuck unit 109 is also referred to as a “conveyance unit”.
  • the cuvette chuck unit 109 and the reagent nozzle unit 106 are By making the movement a simple linear movement, the mechanism for transferring can be downsized and the cost of the entire apparatus can be suppressed. Further, the rail 110 can be shared by the cuvette chuck unit 109 and the reagent nozzle unit 106, and the increase in size of the entire apparatus can be suppressed. Furthermore, the limited measurement time and space can be efficiently used, and the measurement processing capacity can be improved.
  • the LPIA table 108 rotates and a predetermined holding hole moves to the attachment / detachment position and stops. Further, the cuvette chuck unit 109 holds one cuvette from the cuvette supply port 1021 and moves it to the holding hole at the attachment / detachment position of the LPIA table 108, and holds it in the holding hole. After that, the holding hole holding the cuvette moves to a predetermined dispensing position 1082.
  • the attachment / detachment position and the dispensing position may be the same. Further, the sample rack 1011 is transported so that a desired sample container moves to a predetermined sampling position.
  • the sample nozzle unit 103 collects a sample from the sample container previously held in the sample rack 1011 at the sampling position, and discharges the sample into the cuvette at the dispensing position 1082 of the LPIA table 108. Further, as the reagent table 104 rotates, the reagent lid opening / closing unit 105 moves at a predetermined timing so that the tip of the reagent lid opening / closing unit 105 comes into contact with the lid of the reagent container, and the predetermined reagent container held in advance on the reagent table 104 is opened. Cover. Then, the opened reagent container moves to a predetermined sampling position.
  • the reagent nozzle unit 106 also collects the reagent at a predetermined collection position, and discharges the reagent into the cuvette at the dispensing position 1082 of the LPIA table 108. Thereafter, the reagent table 104 rotates and the lid of the reagent container is closed by the tip of the reagent lid opening / closing unit 105. The reagent lid opening / closing unit 105 can be closed by pressing the lid downward from above the reagent container to the bottom. Further, the LPIA table 108 rotates and the cuvette moves to a predetermined stirring position.
  • a stirring rod is inserted vertically downward from a recess provided on the bottom surface of the cuvette, and the tip of the stirring rod is displaced so as to draw a circle on a horizontal plane, whereby the contents of the cuvette are stirred.
  • a plurality of reagents may be dispensed.
  • the cuvette passes through the optical measuring unit formed by the light source and the light receiving unit, and the reaction of the contents based on the transmittance of the specific wavelength, the absorbance, the scattered light, etc. in the optical measuring unit. The change based on is measured.
  • the cuvette is removed from the holding hole by the cuvette chuck unit 109 at the attachment / detachment position of the LPIA table 108. Further, the cuvette chuck unit 109 conveys the removed cuvette to the cuvette discarding port 111 and discards it. Such processing can be performed in parallel on a plurality of cuvettes held in the LPIA table 108.
  • the coagulation table 107 slides and a predetermined holding hole moves to the attachment / detachment position and stops.
  • the cuvette chuck unit 109 holds one cuvette from the cuvette supply port 1021 and moves it to the holding hole at the attachment / detachment position of the LPIA table 108, and holds it in the holding hole.
  • the holding hole holding the cuvette moves to a predetermined dispensing position 1082.
  • the attachment / detachment position and the dispensing position may be the same.
  • the sample rack 1011 is transported so that a desired sample container moves to a predetermined sampling position.
  • the sample nozzle unit 103 collects a sample from the sample container previously held in the sample rack 1011 at the sampling position, and discharges the sample into the cuvette at the dispensing position 1082 of the LPIA table 108. Then, the holding hole in which the cuvette is held moves to the attachment / detachment position of the LPIA table 108, and the cuvette is gripped by the cuvette chuck unit 109 and transferred to the attachment / detachment position of the coagulation table 107.
  • the reagent lid opening / closing unit 105 moves at a predetermined timing so that the tip of the reagent lid opening / closing unit 105 comes into contact with the lid of the reagent container, and the predetermined reagent container held in advance on the reagent table 104 is opened. Cover. Then, the opened reagent container moves to a predetermined sampling position. Further, the reagent nozzle unit 106 collects the reagent at a predetermined collection position and discharges the reagent into the cuvette at the dispensing position of the coagulation table 107.
  • the reagent table 104 rotates and the lid of the reagent container is closed by the tip of the reagent lid opening / closing unit 105.
  • the reagent lid opening / closing unit 105 can be closed by pressing the lid downward from above the reagent container in the vertical direction.
  • the coagulation table 107 slides and the cuvette moves to a predetermined stirring position.
  • a stirring rod is inserted vertically downward from a recess provided on the bottom surface of the cuvette, and the tip of the stirring rod is displaced so as to draw a circle on a horizontal plane, whereby the contents of the cuvette are stirred.
  • a plurality of reagents may be dispensed.
  • each holding hole of the coagulation table 107 is provided with an optical measuring section formed by a light source and a light receiving section so as to sandwich the cuvette, and based on the transmittance or the absorbance of a specific wavelength in the optical measuring section. Changes due to the solidification of the contents are measured.
  • the cuvette is removed from the holding hole by the cuvette chuck unit 109 at the attachment / detachment position of the solidification table 107. Further, the cuvette chuck unit 109 conveys the removed cuvette to the cuvette discarding port 111 and discards it. Such processing can be performed in parallel on a plurality of cuvettes held on the coagulation table 107.
  • the reagent may be dispensed at the dispensing position 1082 of the LPIA table 108 and then transported to the coagulation table 107.
  • ⁇ Scheduling> in an analyzer capable of performing a plurality of types of analysis, if measurements of different measurement principles are mixed, it is generally difficult to set a measurement schedule between a series of measurement processes, and the measurement processing capability is reduced.
  • the operation of a predetermined unit of each unit is designed to be completed within a certain time. The time required for the operation of a predetermined unit of each unit may be different, but the same time is preferable for the computer to schedule the measurement process.
  • the sample nozzle unit 103 performs each step such as a step of collecting a sample from a sample container, a step of discharging a sample into a cuvette, and a step of cleaning a sample nozzle at regular intervals (seconds).
  • the interval is, for example, 30 seconds, preferably 20 seconds, more preferably 15 seconds, even more preferably 10 seconds.
  • the reagent nozzle unit 106 performs each step such as a step of collecting the reagent from the reagent container, a step of heating the reagent, a step of discharging the reagent into a cuvette, a step of cleaning the reagent nozzle, etc. at regular intervals (seconds). .
  • the interval is, for example, 30 seconds, preferably 20 seconds, more preferably 15 seconds, even more preferably 10 seconds.
  • the cuvette chuck unit 109 includes a step of moving and holding the cuvette from the cuvette supply port to the holding hole for measurement, a step of removing the cuvette after measurement from the holding hole, transporting it to the cuvette discarding port, and discarding it. Each step is performed at regular intervals (seconds).
  • the interval is, for example, 30 seconds, preferably 20 seconds, more preferably 15 seconds, even more preferably 10 seconds. For example, by performing these at 15 second intervals, a high measurement throughput of 240 tests / hour can be achieved.
  • FIG. 13 is a perspective view showing an example of a cuvette.
  • FIG. 14 is a sectional view showing an example of a cuvette.
  • the cuvette 113 according to the present embodiment includes a pair of protrusion pieces 1133 for pickup near the upper end 1132 of a cuvette body 1131 having a substantially rectangular prism shape, and a pair of protrusion pieces 1134 for placement below the protrusion pieces 1133. Further, the lower part of the cuvette 113 is tapered and tapered. The cuvette 113 is placed by inserting it into the holding hole 1084 provided in the LPIA table 108 from below the cuvette body 1131.
  • the pickup projection piece 1133 is, for example, a portion held by the two-finger gripper 1091 of the cuvette chuck unit 109.
  • the mounting projection piece 1134 is provided above the cuvette body 1131 and below the pickup projection side 133, and the spring 1085 provided in the LPIA table 108 when the cuvette 113 is mounted in the holding hole 1084 of the LPIA table. And the cuvette 113 is pressed against the LPIA table 108 so as not to come off easily.
  • the cuvette 113 is provided with, for example, a hemispherical recess 1136 on the bottom surface 1135 of the cuvette body 1131 and has an insertion opening 1137 into which the tip of the stirring rod 115 can be inserted.
  • the number and shape of the mounting projection pieces can appropriately design and use the number and shape of the mounting projection pieces according to the shape of the cuvette and the mounting structure on the device. For example, one or two or more may be used, but two are particularly preferable because the shape is easy and stable mounting is possible.
  • FIG. 15 is a sectional view showing an example near one holding hole of the LPIA table.
  • FIG. 16 is a perspective view showing an example of a spring.
  • a pair of springs 1085 are attached so as to sandwich the holding hole 1084 substantially along the surface (upper surface) of the LPIA table 108.
  • the spring 1085 is a locking member that is formed by bending a leaf spring into a predetermined shape and loosely presses the cuvette 113 inserted into the holding hole 1084 so as not to come off easily.
  • each spring 1085 has a fixing member 1086 such as a screw inserted through a fixing portion 10851 such as a through hole provided at one end side in the longitudinal direction of the spring 1085. Fix in the hole.
  • reference numeral 114 shown in FIG. 15 indicates an example of a jig for adjusting the attachment position and the interval of the pair of springs 1085.
  • one spring 1085 may be provided on the peripheral edge of the holding hole 1084, and the cuvette 113 may be biased and held so as to be pressed against the inner wall of the holding hole 1084, and three or more springs may be provided on the peripheral edge of the holding hole 1084.
  • the spring 1085 may be provided.
  • the spring 1085 is provided with a convex portion 10852 that protrudes and returns in an inverted U-shape in a cross-sectional view (side view) at the central portion in the longitudinal direction.
  • the convex portion 10852 allows not only elastic deformation in which the other end in the longitudinal direction of the spring 1085 has an arcuate trajectory with the fixed portion 10851 as an axis in sectional view, but also elastic deformation in which the length of the spring 1085 contracts in the longitudinal direction. It is a buffer section.
  • a bent portion 10853 which is bent above the LPIA table 108 in a sectional view so as to be curved with a slightly acute angle.
  • a rounded portion 10854 that is bent to have a radius on the LPIA table 108 side (that is, the direction in which the cuvette 113 is inserted into the holding hole 1084) in a cross-sectional view is provided on the other end side in the longitudinal direction of the spring 1085.
  • the other end side of the spring 1085 in the longitudinal direction has a chamfered shape with a radius by bending so as to be wound in a sectional view.
  • the other end of the spring 1085 in the longitudinal direction is present at a position which is closer to the fixing portion 10851 side of the spring 1085 than the edge of the holding hole 1084, and faces in the direction along which the cuvette 113 is inserted into the holding hole 1084.
  • the shape of the radius is not limited as long as it can suppress the interference between the cuvette and the locking structure when the cuvette is attached and detached, and those skilled in the art can appropriately design and use it.
  • FIG. 17 is a sectional view showing a process of inserting the cuvette into the holding hole of the LPIA table.
  • FIG. 18 is a cross-sectional view showing an example of a state in which the cuvette is held in the holding hole of the LPIA table.
  • the mounting projection piece 1134 is sandwiched between the upper surface of the LPIA table 108 and the spring 1085 and is gently pressed (biased), and the cuvette 113 is held in the holding hole 1084 of the LPIA table 108. It is held so that it does not come off easily. Since the outer shape of the other end of the spring 1085 is rounded in a cross-sectional view (specifically, the other end of the spring 1085 faces a direction forming an acute angle with respect to the insertion direction of the cuvette 113.
  • FIG. 19 is a cross-sectional view showing an example of a state in which the cuvette placed on the LPIA table is agitated.
  • a stirring device (not shown) is provided vertically below the LPIA table 108 at a predetermined stirring position.
  • the stirring device inserts the tip of the stirring rod 115 into the hemispherical recess 1136 and rotates the tip on a horizontal plane to stir the cuvette 113.
  • the spring 1085 allows the mounting projection piece 1134 to leave the surface of the LPIA table 108 when the cuvette 113 is eccentrically moved around, and also prevents the cuvette 113 from coming off the holding hole 1084. .
  • the cuvette 113 can stir the sample without inserting the stir bar 115 into the sample.
  • the holding hole 1084 may be a recess that does not penetrate, but a through hole is preferable for stirring without inserting a stirring rod into the sample.
  • the through holes and the recesses that do not penetrate are also referred to as "holding portions" according to the present invention.
  • FIG. 20 is a schematic diagram showing an example of a composite analyzer 1000 including three measurement units.
  • the number of measurement units described above is not limited to two.
  • the third measurement unit 112 is added to the left side of the LPIA table 108 in plan view. Even when three or more measurement units are provided, the cuvette chuck unit 109 and the reagent nozzle unit 106 linearly move along the rail 110, and the three measurement units are arranged on a straight line substantially parallel to the rail. By doing so, the movement of the cuvette chuck unit 109 and the reagent nozzle unit 106 can be made a simple linear operation to save power. Further, the rail 110 can be shared by the cuvette chuck unit 109 and the reagent nozzle unit 106, and the entire apparatus can be downsized.
  • the present invention also includes a method for executing the above-described processing, a computer program, and a computer-readable recording medium recording the program.
  • the recording medium on which the program is recorded enables the above processing by causing the computer to execute the program.
  • the computer-readable recording medium refers to a recording medium that can store information such as data and programs by electrical, magnetic, optical, mechanical, or chemical action and can be read by a computer.
  • recording media those removable from the computer include flexible disks, magneto-optical disks, optical disks, magnetic tapes, memory cards and the like.
  • a recording medium fixed to the computer there are an HDD, an SSD (Solid State Drive), a ROM and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

Through the present invention, the possibility of interference of a cuvette locking structure during detachment of a cuvette is reduced. This locking structure causes a cuvette to be retained by a table provided with a retaining part for retaining a cuvette inserted therein. Specifically, a locking member is provided to the peripheral edge of the retaining part, one end side of the locking member is fixed to a table, and a protruding piece for mounting provided to the cuvette, for mounting on the surface of the table, is locked between the surface of the table and the locking member on the other end side of the locking member, and the outer shape of the other-end side of the locking member is provided with a curve as viewed in cross section.

Description

係止構造Locking structure
 本発明は、テーブルにキュベットを保持させるための係止構造に関する。 The present invention relates to a locking structure for holding a cuvette on a table.
 従来、生化学的分析と免疫学的分析のように、測定方法の異なる複数種の分析を行うことができる装置が提案されている(例えば特許文献1)。当該装置は、(1)複数の生体サンプルを搭載することができるサンプルラックを備えるサンプル供給ユニット、(2)相互に独立した複数の反応キュベットを相互に独立して着脱可能に保持することができ、第1光学系測定手段を備える第1測定ユニット、(3)サンプル供給ユニットから、第1測定ユニット上の反応キュベットに生体サンプルを搬送することのできるサンプル搬送手段、(4)相互に独立した複数の反応キュベットを相互に独立して着脱可能に保持することができ、第2光学系測定手段を備える第2測定ユニット、(5)第1測定ユニット上の反応キュベットを、第2測定ユニットに移送させることのできるキュベット移送手段、(6)第1測定ユニットでの測定及び第2測定ユニットでの測定に用いる試薬を備える試薬供給ユニット、及び(7)試薬供給ユニットから第1測定ユニット及び/又は第2測定ユニット上の反応キュベットに相互に独立して反応試薬を搬送することのできる試薬搬送手段を含み、第2測定ユニット上の反応キュベットは、第1測定ユニット上で生体サンプルを分注された後、キュベット移送手段によって第1測定ユニットから第2測定ユニットに移送されて担持されるものとし、そして第1測定ユニットと第2測定ユニットとで別異の測定を実施することができる。 Conventionally, a device that can perform a plurality of types of analysis with different measurement methods, such as biochemical analysis and immunological analysis, has been proposed (for example, Patent Document 1). The apparatus is capable of (1) a sample supply unit including a sample rack capable of mounting a plurality of biological samples, (2) a plurality of reaction cuvettes independent of each other, and detachably held independently of each other. A first measurement unit having a first optical system measurement means, (3) sample transfer means capable of transferring a biological sample from a sample supply unit to a reaction cuvette on the first measurement unit, (4) independent of each other A plurality of reaction cuvettes can be detachably held independently of each other, and a second measurement unit having a second optical system measurement means, and (5) a reaction cuvette on the first measurement unit, to the second measurement unit. A cuvette transfer means capable of transferring, (6) a sample provided with reagents used for the measurement in the first measurement unit and the measurement in the second measurement unit A supply unit, and (7) a reagent supply unit capable of independently transferring the reaction reagents from the reagent supply unit to the reaction cuvette on the first measurement unit and / or the second measurement unit, the second measurement unit The upper reaction cuvette is to be loaded with the biological sample on the first measurement unit, and then transferred from the first measurement unit to the second measurement unit by the cuvette transfer means to be carried, and the first measurement unit. Different measurement can be performed with the second measurement unit.
国際公開第2006/107016号International Publication No. 2006/107016
 キュベットを分析装置に載置する場合、特にキュベットが変位する場合には基台にある程度固定されていることが好ましい。しかしながら、何らかの係止構造を採用する場合、例えばキュベットの着脱時に、挿入位置の誤差等が原因で係止構造とキュベットとが干渉するおそれがある。そこで、本発明は、キュベットの係止構造について、キュベットの脱着時に干渉する可能性を低減させることを目的とする。 When mounting the cuvette on the analyzer, it is preferable that it is fixed to the base to some extent, especially when the cuvette is displaced. However, when some kind of locking structure is adopted, there is a risk that the locking structure and the cuvette interfere with each other due to, for example, an error in the insertion position when the cuvette is attached or detached. Therefore, it is an object of the present invention to reduce the possibility of interference with the cuvette locking structure when the cuvette is attached and detached.
 本発明に係る係止構造は、キュベットを挿入して保持するための保持部を備えるテーブルにキュベットを保持させる。具体的には、保持部の周縁に係止部材を備え、係止部材は、一端側がテーブルに固定され、他端側で、キュベットが備える、テーブルの表面に載置するための載置用突出片を、テーブルの表面との間に挟んで係止し、係止部材の他端側は、断面視においてその外形にアールがつけられている。 The locking structure according to the present invention holds the cuvette on a table having a holding portion for inserting and holding the cuvette. Specifically, a locking member is provided on the peripheral edge of the holding portion, and one end side of the locking member is fixed to the table, and the other end side of the cuvette is provided with a protrusion for mounting on the surface of the table. The piece is locked by being sandwiched between the surface and the surface of the table, and the other end side of the locking member has a rounded outer shape in a sectional view.
 断面視においてその外形にアールがつけられているため、キュベット等を挿入する位置に誤差があっても端部が干渉する可能性を低減させることができる。 ▽ Because the outer shape is rounded in cross section, it is possible to reduce the possibility that the ends will interfere even if there is an error in the position where the cuvette etc. is inserted.
 また、保持部の周縁に、前記保持部を基準として対向する位置に設けられる一対の係止部材を備えるようにしてもよい。 Also, a pair of locking members may be provided on the periphery of the holding portion, the locking members being provided at positions facing each other with the holding portion as a reference.
 また、係止部材は板バネであり、係止部材の他端は、キュベットを挿入する方向または当該方向と鋭角をなす方向を向くようにしてもよい。例えばこのような構成により、キュベット等を挿入する位置に誤差があっても端部が引っかかる可能性が低減される。 The locking member may be a leaf spring, and the other end of the locking member may face the direction in which the cuvette is inserted or the direction forming an acute angle with the direction. For example, with such a configuration, even if there is an error in the position at which the cuvette or the like is inserted, the possibility of the end being caught is reduced.
 なお、課題を解決するための手段に記載の内容は、本発明の課題や技術的思想を逸脱しない範囲で可能な限り組み合わせることができる。 The contents described in the means for solving the problems can be combined as much as possible without departing from the problems and technical ideas of the present invention.
 キュベットの係止構造について、キュベットの脱着時に干渉する可能性を低減させることができる。 ㆍ It is possible to reduce the possibility of interference with the cuvette locking structure when attaching and detaching the cuvette.
複合分析装置の一例を示す図である。It is a figure which shows an example of a composite analyzer. 複合分析装置の測定ユニット収容部の内部の構成の一例を示す平面図である。FIG. 3 is a plan view showing an example of an internal configuration of a measurement unit housing section of the combined analyzer. サンプルラックの一例を示す図である。It is a figure which shows an example of a sample rack. サンプルラックの一例を示す図である。It is a figure which shows an example of a sample rack. キュベット供給ユニットの一例を示す図である。It is a figure which shows an example of a cuvette supply unit. サンプルノズルユニットの一例を示す図である。It is a figure which shows an example of a sample nozzle unit. 部分的な試薬テーブルの一例を示す図である。It is a figure which shows an example of a partial reagent table. 試薬蓋開閉ユニットの一例を示す図である。It is a figure which shows an example of a reagent lid opening / closing unit. 試薬ノズルユニットの一例を示す図である。It is a figure which shows an example of a reagent nozzle unit. 凝固テーブルの一例を示す図である。It is a figure which shows an example of a coagulation table. LPIAテーブルの一例を示す図である。It is a figure which shows an example of an LPIA table. キュベットチャックユニットの一例を示す図である。It is a figure which shows an example of a cuvette chuck unit. レールの一例を示す平面図である。It is a top view which shows an example of a rail. レールの一例を示す正面図である。It is a front view which shows an example of a rail. キュベットの一例を示す斜視図である。It is a perspective view which shows an example of a cuvette. キュベットの一例を示す断面図である。It is sectional drawing which shows an example of a cuvette. LPIAテーブルの1つの保持孔付近の一例を表す断面図である。It is sectional drawing showing an example of one holding hole vicinity of an LPIA table. バネの一例を示す斜視図である。It is a perspective view showing an example of a spring. キュベットをLPIAテーブルの保持孔に挿入する過程を示す断面図である。It is sectional drawing which shows the process of inserting a cuvette into the holding hole of an LPIA table. キュベットがLPIAテーブルの保持孔に保持された状態の一例を示す断面図である。It is sectional drawing which shows an example of the state by which the cuvette was hold | maintained at the holding hole of the LPIA table. LPIAテーブルに載置されたキュベットが攪拌された状態の一例を示す断面図である。It is sectional drawing which shows an example of the state where the cuvette mounted on the LPIA table was stirred. 3つの測定ユニットを備える複合分析装置の一例を示す模式的な図である。It is a schematic diagram which shows an example of the composite analyzer provided with three measuring units.
 以下、実施形態に係る複合分析装置について、図面を用いて説明する。 Hereinafter, the composite analyzer according to the embodiment will be described with reference to the drawings.
<装置構成>
 図1は、複合分析装置1000の外観の一例を示す図である。複合分析装置1000は、生化学的分析や免疫学的分析のように、測定精度の異なる複数種類の分析を行う分析装置である。複合分析装置1000は、例えば、LPIA(Latex Photometric Immunoassay:ラテックス近赤外比濁法)や、血液の凝固時間測定等を行うことができる。また、複合分析装置1000は、測定ユニット収容部1と、タンク等収容部2と、モニタ3と、ステータス出力部4とを備える。測定ユニット収容部1は、実施形態に係る複数の測定ユニット等を収容する。タンク等収容部2には、純水、洗浄水及び廃水をそれぞれ貯留するタンクや、廃棄されるキュベットを集積する廃棄ボックス、測定ユニット収容部1が行う処理を制御するコンピュータ等を収容する。モニタ3は、コンピュータと接続され、測定の進捗状況や結果等を出力する。また、モニタ3は、例えばタッチパネルのように、使用者による入力操作が可能な入出力装置であってもよい。ステータス出力部4は、コンピュータ等と接続され、測定ユニット収容部1が実行する処理において異常が発生した場合に使用者に通知するため警告灯を点滅させたり点灯させたりする。
<Device configuration>
FIG. 1 is a diagram showing an example of the external appearance of the composite analyzer 1000. The composite analyzer 1000 is an analyzer that performs a plurality of types of analysis with different measurement accuracy, such as biochemical analysis and immunological analysis. The composite analyzer 1000 can perform, for example, LPIA (Latex Photometric Immunoassay: latex near infrared turbidimetry), blood coagulation time measurement, and the like. Further, the composite analyzer 1000 includes a measurement unit housing unit 1, a tank housing unit 2, a monitor 3, and a status output unit 4. The measurement unit housing unit 1 houses a plurality of measurement units and the like according to the embodiment. The storage unit 2 for storing the tank and the like stores a tank for storing pure water, cleaning water, and waste water, a disposal box for accumulating cuvettes to be discarded, a computer for controlling the processing performed by the measurement unit storage unit 1, and the like. The monitor 3 is connected to a computer and outputs the progress status and results of measurement. Further, the monitor 3 may be an input / output device that allows a user to perform an input operation, such as a touch panel. The status output unit 4 is connected to a computer or the like, and blinks or lights a warning light to notify the user when an abnormality occurs in the process executed by the measurement unit housing unit 1.
 図2は、複合分析装置1000の測定ユニット収容部1の内部の構成の一例を示す平面図である。測定ユニット収容部1は、サンプルラックの搬送スペース101と、キュベット供給ユニット102と、サンプルノズルユニット103と、試薬テーブル104と、試薬蓋開閉ユニット105と、試薬ノズルユニット106と、凝固テーブル107と、LPIAテーブル108と、キュベットチャックユニット109と、レール110と、キュベット廃棄口111とを備える。搬送スペース101には、サンプルラック1011が載置され、所定の溝に沿って突出片が移動する機構によってテーブル上を搬送される。サンプルラック1011は、血液検体等の生体サンプルを収容するサンプル容器を複数保持する。キュベット供給ユニット102は、所定形状のキュベットを、複合分析装置1000で使用するために供給する。なお、キュベットは、順に1つずつキュベット供給口1021から供給される。サンプルノズルユニット103は、ポンプと接続されたノズルを備え、コンピュータによる制御に基づいて、所定の可動範囲を移動し、サンプル容器からサンプルを採取すると共にLPIAテーブル108のキュベットへ吐出するユニットである。サンプルノズルユニット103は、所定の回動軸を中心にして平面視において円弧状に回動する。また、サンプルノズルユニット103が移動する円弧状の軌道と、LPIAテーブル108に円形に配置されるキュベットが回転させられて移動する円状の軌道との平面視における交点に、分注位置1031が設けられる。また、平面視において、サンプルノズルユニット103が移動する軌道上には、ノズル洗浄槽1032も設けられる。試薬テーブル104は、試薬を収容する試薬容器を複数保持し、コンピュータによる制御に基づいて回転するディスク状の保持部である。保持される試薬容器は、所定の採取位置1041において試薬ノズルユニット106で採取される。試薬蓋開閉ユニット105は、コンピュータによる制御に基づいて、所定の可動範囲を移動し、試薬容器の蓋を開閉するためのユニットである。試薬ノズルユニット106は、ポンプと接続されたノズルを備え、コンピュータによる制御に基づいて所定の稼働範囲を移動し、試薬容器から試薬を採取すると共にキュベットへ吐出するユニットである。平面視において、上述の試薬ノズルユニット106が直線的に移動する経路上には、試薬ノズルの洗浄槽1061が設けられている。凝固テーブル107は、キュベットの内容物の凝固の程度を測定するため、複数のキュベットを並べて保持するための複数の孔を備える保持部である。なお、保持されるキュベットを挟んで光源と受光部とが配置され、内容物の吸光度又は透過率に基づいて凝固の程度を測定する。また、キュベットチャックユニット109が移動する軌道との平面視における交点に着脱位置1071が設けられている。LPIAテーブル108は、LPIAにより検体中の抗原量を測定するため、複数のキュベットを平面視において円形に並べて保持すると共に、コンピュータによる制御に基づいて回転する、ディスク状の保持部である。保持されるキュベットは、所定の着脱位置1081においてキュベットチャックユニット109によって着脱されると共に、所定の分注位置1082において試薬が分注される。キュベットチャックユニット109は、コンピュータによる制御に基づいて、所定の可動範囲を移動し、キュベットを把持して移動させる。レール110は、直線状のレールである。試薬ノズルユニット106及びキュベットチャックユニット109はそれぞれレール110に接続され、レール110が延在する方向に沿ってレール110とほぼ平行に移動する。キュベット廃棄口111は、タンク等収容部2に格納される廃棄ボックスに連通する開口部であり、キュベット廃棄口111内にキュベット等を廃棄することができる。 FIG. 2 is a plan view showing an example of the internal configuration of the measurement unit housing section 1 of the composite analyzer 1000. The measurement unit accommodating section 1 includes a sample rack transport space 101, a cuvette supply unit 102, a sample nozzle unit 103, a reagent table 104, a reagent lid opening / closing unit 105, a reagent nozzle unit 106, and a coagulation table 107. An LPIA table 108, a cuvette chuck unit 109, a rail 110, and a cuvette disposal port 111 are provided. A sample rack 1011 is placed in the transport space 101, and is transported on the table by a mechanism in which the protruding piece moves along a predetermined groove. The sample rack 1011 holds a plurality of sample containers that store biological samples such as blood samples. The cuvette supply unit 102 supplies a cuvette having a predetermined shape for use in the composite analyzer 1000. The cuvettes are sequentially supplied one by one from the cuvette supply port 1021. The sample nozzle unit 103 is a unit that includes a nozzle connected to a pump, moves within a predetermined movable range under the control of a computer, collects a sample from the sample container, and discharges the sample into the cuvette of the LPIA table 108. The sample nozzle unit 103 rotates about a predetermined rotation axis in an arc shape in a plan view. Further, a dispensing position 1031 is provided at an intersection point in a plan view of an arcuate orbit along which the sample nozzle unit 103 moves and a circular orbit along which a cuvette circularly arranged on the LPIA table 108 is rotated and moves. To be Further, in plan view, a nozzle cleaning tank 1032 is also provided on the track along which the sample nozzle unit 103 moves. The reagent table 104 is a disc-shaped holding unit that holds a plurality of reagent containers that contain reagents and that rotates under the control of a computer. The held reagent container is sampled by the reagent nozzle unit 106 at a predetermined sampling position 1041. The reagent lid opening / closing unit 105 is a unit for moving a predetermined movable range and opening / closing the lid of the reagent container under the control of the computer. The reagent nozzle unit 106 is a unit that includes a nozzle connected to a pump, moves within a predetermined operating range under the control of a computer, collects a reagent from a reagent container, and discharges the reagent into a cuvette. In plan view, a cleaning tank 1061 for the reagent nozzle is provided on the path along which the reagent nozzle unit 106 moves linearly. The coagulation table 107 is a holding unit having a plurality of holes for holding a plurality of cuvettes side by side in order to measure the degree of coagulation of the contents of the cuvette. A light source and a light receiving unit are arranged with the cuvette held therebetween, and the degree of coagulation is measured based on the absorbance or transmittance of the contents. In addition, the attachment / detachment position 1071 is provided at an intersection with the trajectory of the cuvette chuck unit 109 in plan view. The LPIA table 108 is a disc-shaped holding unit that holds a plurality of cuvettes arranged in a circle in plan view and rotates under the control of a computer in order to measure the amount of antigen in a sample by the LPIA. The held cuvette is attached / detached by the cuvette chuck unit 109 at a predetermined attachment / detachment position 1081, and a reagent is dispensed at a predetermined dispensing position 1082. The cuvette chuck unit 109 moves within a predetermined movable range under the control of the computer to grip and move the cuvette. The rail 110 is a linear rail. The reagent nozzle unit 106 and the cuvette chuck unit 109 are each connected to the rail 110, and move substantially parallel to the rail 110 along the direction in which the rail 110 extends. The cuvette discarding port 111 is an opening that communicates with a discarding box stored in the storage unit 2 such as a tank, and the cuvettes and the like can be discarded in the cuvette discarding port 111.
 図3A、図3Bは、サンプルラックの一例を示す図である。サンプルラック1011は、サンプルを収容するサンプル容器1012を保持するためのホルダを複数備えている。また、サンプルラック1011は、コンピュータによる制御に基づいて搬送され、所望のサンプル容器1012を、所定の採取位置に配置することができる。採取位置は、サンプルノズルユニット103が平面視において円弧状に移動する軌道上に存在し、サンプルはサンプルノズルユニット103によってLPIAテーブル108の保持孔に保持されたキュベットに分注される。なお、複合分析装置1000は、サンプル容器1012のラベルに付されたバーコード又は二次元コード等の識別情報を光学的に読み取る読取装置を備え、所望のサンプル容器を特定できるようにしてもよい。また、サンプル容器の上にサンプルカップを配置し、サンプルカップに希釈されたサンプルや混合されたサンプル等が調製されるようにしても良い。 3A and 3B are diagrams showing an example of a sample rack. The sample rack 1011 includes a plurality of holders for holding a sample container 1012 that stores a sample. Further, the sample rack 1011 is transported under the control of the computer, and the desired sample container 1012 can be placed at a predetermined sampling position. The sampling position is located on the orbit along which the sample nozzle unit 103 moves in an arc shape in plan view, and the sample is dispensed by the sample nozzle unit 103 into the cuvette held in the holding hole of the LPIA table 108. The composite analyzer 1000 may be provided with a reading device that optically reads identification information such as a barcode or a two-dimensional code attached to the label of the sample container 1012 so that a desired sample container can be specified. Alternatively, a sample cup may be arranged on the sample container so that a sample diluted in the sample cup or a mixed sample is prepared.
 図4は、キュベット供給ユニットの一例を示す図である。キュベット供給ユニット102は、ホッパ1022に投入されるキュベットを、所定の機構により、スロープ状の出口の端部であるキュベット供給口1021から1つずつ所定の向きで供給する。 FIG. 4 is a diagram showing an example of the cuvette supply unit. The cuvette supply unit 102 supplies the cuvettes loaded into the hopper 1022 one by one in a predetermined direction from the cuvette supply port 1021 which is the end of the sloped outlet by a predetermined mechanism.
 図5は、サンプルノズルユニットの一例を示す図である。サンプルノズルユニット103は、所定の回転軸1033を中心として、平面視上で円弧状の軌道を描いてノズル1034が移動する。そして、サンプルノズルユニット103は、採取位置に移動させたサンプルラック1011のサンプル容器1012から、注入位置に移動させたLPIAテーブル108のキュベットへ、サンプルを分注する。サンプルノズルユニット103を、本発明に係る「分注機構」とも呼ぶ。 FIG. 5 is a diagram showing an example of the sample nozzle unit. In the sample nozzle unit 103, the nozzle 1034 moves in an arcuate trajectory in a plan view around a predetermined rotation shaft 1033. Then, the sample nozzle unit 103 dispenses the sample from the sample container 1012 of the sample rack 1011 moved to the sampling position to the cuvette of the LPIA table 108 moved to the injection position. The sample nozzle unit 103 is also referred to as the "dispensing mechanism" according to the present invention.
 図6は、部分的な試薬テーブルの一例を示す平面図である。試薬は、例えばラテックスや、凝固時間試薬であるが、これらには限定されない。測定原理の種類に応じて、試薬テーブルの構成は、適宜変更することができる。試薬テーブル104は、所定の回転軸を中心に回転するディスク状のテーブルであり、テーブルには、試薬容器を保持するための複数の設置部1042がリング状に設けられている。なお、本実施形態では二重のリング状に設置部1042が設けられているが、設置部1042の数やリングの数は特に限定されない。また、試薬テーブル104は、設置部1042の周囲に、鉛直上向きに突出する棒状の凸部1043を備える。本実施形態では、各設置部1042について回転軸側に凸部1043が設けられている。また、本実施形態に係る試薬容器は、ほぼ円柱形状であり、その側面には上述した凸部1043を挿入することができる係合部を備える。係合部は、鉛直方向に貫通した貫通孔又は鉛直下方に開いた凹部であり、係合部に凸部1043を挿入して試薬容器を固定することができる。また、テーブルは、コンピュータによる制御に基づいて、時計回り又は反時計回りに回転すると共に、所定の位置で停止する。例えば、各設置部1042は、平面視において試薬ノズルユニット106のノズルが移動する軌道との交点である試薬採取位置、試薬蓋開閉ユニット105の下の蓋開閉位置、使用者が試薬容器を着脱するための着脱位置等で停止する。なお、複合分析装置1000は、試薬容器のラベルに付されたバーコード又は二次元コード等の識別情報を光学的に読み取る読取装置を備え、所望の試薬容器を特定することができるようにしてもよい。例えば、読取装置は、平面視において、試薬テーブル104の外側から回転軸の方向に向けて設けられる。また、二重のリング状に設けられる複数の設置部1042は、例えば内周側の設置部1042と外周側の設置部1042とを円周に沿った千鳥配置にすることで、読取装置から見て試薬容器が重ならず、試薬テーブル104を回転させることですべての試薬容器のラベルを読み取ることができる。なお、設置部1042は、3つ以上の同心円状に設けられていてもよい。保持孔が複数の同心円状に設けられる場合は、テーブルは、一体として回転する1つのディスクであってもよいし、複数の同心円が互いに独立して回転可能な複数のリング状のディスクによって形成されるようにしてもよい。複数のリング状のディスクが独立して回転する構造の場合には、コンピュータによる制御に基づいて、個々のリングが独立して時計回り又は半時計回りに回転すると共に、互いに独立に停止する。測定方法によって使用する試薬の種類や数は異なるが、試薬テーブル104を回転させることにより、所望の試薬容器が配置された設置部1042を採取位置1041に移動させることができ、測定に応じて使用することができる。また、複合分析装置1000が試薬容器に貼付された識別情報を読み取り、試薬テーブル104上の試薬容器の配置を自動的に記憶するようにすれば、使用者は設置場所を気にすることなく測定に必要な試薬容器を設置するだけで準備を完了することができ、利便性が向上する。また、試薬テーブル104は、複数の設置部1042を備えているため、試薬容器を入れ替えることなく測定できる項目を増やすことができ、利便性が高い。 FIG. 6 is a plan view showing an example of a partial reagent table. Reagents are, for example, latex and coagulation time reagents, but are not limited to these. The configuration of the reagent table can be appropriately changed according to the type of measurement principle. The reagent table 104 is a disk-shaped table that rotates around a predetermined rotation axis, and the table is provided with a plurality of installation portions 1042 for holding the reagent containers in a ring shape. In addition, in this embodiment, the installation portions 1042 are provided in a double ring shape, but the number of installation portions 1042 and the number of rings are not particularly limited. Further, the reagent table 104 includes a rod-shaped convex portion 1043 that projects vertically upward around the installation portion 1042. In the present embodiment, the convex portion 1043 is provided on the rotation shaft side of each installation portion 1042. In addition, the reagent container according to the present embodiment has a substantially columnar shape, and the side surface thereof is provided with an engaging portion into which the above-mentioned convex portion 1043 can be inserted. The engaging part is a through hole penetrating in the vertical direction or a concave part opened vertically downward, and the convex part 1043 can be inserted into the engaging part to fix the reagent container. The table rotates clockwise or counterclockwise and stops at a predetermined position under the control of the computer. For example, in each of the installation parts 1042, the reagent collection position, which is the intersection with the trajectory of the nozzle of the reagent nozzle unit 106 in plan view, the lid opening / closing position under the reagent lid opening / closing unit 105, and the user attaches / detaches the reagent container. Stop at the attachment / detachment position etc. Note that the composite analyzer 1000 includes a reading device that optically reads identification information such as a barcode or a two-dimensional code attached to the label of the reagent container so that the desired reagent container can be specified. Good. For example, the reading device is provided from the outside of the reagent table 104 toward the rotation axis in a plan view. Further, the plurality of installation parts 1042 provided in a double ring shape can be viewed from the reading device by, for example, arranging the installation part 1042 on the inner circumference side and the installation part 1042 on the outer circumference side in a staggered manner along the circumference. The reagent containers do not overlap with each other, and the labels of all the reagent containers can be read by rotating the reagent table 104. The installation unit 1042 may be provided in three or more concentric circles. When the holding holes are provided in a plurality of concentric circles, the table may be a single disc that rotates integrally, or the plurality of concentric circles may be formed by a plurality of ring-shaped discs that can rotate independently of each other. You may do it. In the case of a structure in which a plurality of ring-shaped discs rotate independently, each ring independently rotates clockwise or counterclockwise and stops independently of each other under the control of a computer. Although the type and number of reagents to be used differ depending on the measuring method, by rotating the reagent table 104, the installation section 1042 in which a desired reagent container is arranged can be moved to the sampling position 1041 and used depending on the measurement. can do. Further, if the composite analyzer 1000 reads the identification information attached to the reagent container and automatically stores the arrangement of the reagent container on the reagent table 104, the user can perform the measurement without worrying about the installation location. The preparation can be completed simply by installing the necessary reagent container, and convenience is improved. Further, since the reagent table 104 includes the plurality of installation parts 1042, it is possible to increase the number of items that can be measured without replacing the reagent container, which is highly convenient.
 図7は、試薬蓋開閉ユニットの一例を示す図である。試薬蓋開閉ユニット105は、その先端部1051で試薬容器の蓋を開閉する。本実施形態に係る試薬容器の蓋はヒンジで接続され、蓋に所定の開閉方向のモーメントを加えることにより開閉する。試薬容器の蓋には、蓋に対してほぼ垂直な方向に突出し、先端部1051によって力を作用させるための凸部が設けられている。凸部に対して所定の開蓋方向に力を加えると、ヒンジを支点として開蓋する方向に蓋を回転させるモーメントがヒンジに作用する。試薬蓋開閉ユニット105の先端部1051は、平面視において試薬テーブル104の径方向に沿って移動し、試薬テーブル104の回転により試薬容器が移動する軌道上に変位すると共に、蓋から突出する凸部と接触して蓋を開ける。また、試薬蓋開閉ユニット105の先端部1051は、所定の駆動機構により、鉛直方向にも変位する。先端部1051は、蓋に対して、開蓋方向とは逆方向である閉蓋方向に力を作用させると共に、蓋を鉛直下方に押圧することにより、試薬容器を閉蓋することができる。 FIG. 7 is a diagram showing an example of the reagent lid opening / closing unit. The reagent lid opening / closing unit 105 opens / closes the lid of the reagent container at its tip portion 1051. The lid of the reagent container according to the present embodiment is connected by a hinge, and is opened / closed by applying a moment in a predetermined opening / closing direction to the lid. The lid of the reagent container is provided with a convex portion that projects in a direction substantially perpendicular to the lid and that has a tip portion 1051 for exerting a force. When a force is applied to the convex portion in a predetermined opening direction, a moment that rotates the lid in the opening direction with the hinge as a fulcrum acts on the hinge. The tip portion 1051 of the reagent lid opening / closing unit 105 moves along the radial direction of the reagent table 104 in a plan view, and is displaced along the orbit along which the reagent container moves by the rotation of the reagent table 104, and a convex portion protruding from the lid. Contact with and open the lid. Further, the tip portion 1051 of the reagent lid opening / closing unit 105 is also displaced in the vertical direction by a predetermined driving mechanism. The tip portion 1051 can close the reagent container by applying a force to the lid in a closing direction which is a direction opposite to the opening direction and pressing the lid vertically downward.
 図8は、試薬ノズルユニットの一例を示す図である。本実施形態に係る試薬ノズルユニット106は、試薬を採取及び吐出するためのノズル1062を2本備えている。2本のノズル1062は、互いに独立して鉛直方向に上下し、試薬を採取及び吐出することができる。また、試薬ノズルユニット106は、コンピュータによる制御に基づいてレール110に沿って移動し、試薬テーブル104上の試薬容器の採取位置において試薬容器から試薬を採取し、LPIAテーブル108上のキュベットの分注位置1082においてキュベットへ試薬を吐出する。このように、試薬ノズルユニット106は、試薬テーブル104上の所定位置とLPIAテーブル108上の所定位置との間を、レール110に沿って直線的に移動可能になっている。また、平面視において、採取位置1041は、本実施形態に係る試薬ノズルユニット106の一方のノズル1062が直線的に移動する経路と、試薬テーブル104の二重のリング状に配置されたキュベットのうち外周側の軌道との交点に設けられる。また、本実施形態に係る2本の試薬ノズルユニット106の他方のノズル1062が直線的に移動する経路と、内周側の軌道との交点にも設けられる。また、分注位置1082は、平面視において、上述の2本の試薬ノズルユニット106の各々が直線的に移動する経路と、LPIAテーブル108において1つのリング状に配置されたキュベットが回転する際の軌道との交点にそれぞれ設けられる。なお、ノズル1062の数は2本には限定されない。また、ノズル1062の数は、1つの測定に使用する試薬の数で設定するのが好ましい。凝固測定やラテックス測定においては、1つの試薬を用いる測定及び2つの試薬を用いる測定がある。また、3本以上のノズル1062を設けるようにしてもよい。 FIG. 8 is a diagram showing an example of the reagent nozzle unit. The reagent nozzle unit 106 according to this embodiment includes two nozzles 1062 for collecting and discharging a reagent. The two nozzles 1062 vertically move up and down independently of each other to collect and discharge the reagent. Further, the reagent nozzle unit 106 moves along the rail 110 under the control of the computer, collects the reagent from the reagent container at the collection position of the reagent container on the reagent table 104, and dispenses the cuvette on the LPIA table 108. Dispense the reagent into the cuvette at position 1082. As described above, the reagent nozzle unit 106 is linearly movable along the rail 110 between a predetermined position on the reagent table 104 and a predetermined position on the LPIA table 108. Further, in plan view, the collection position 1041 is defined by the path along which one nozzle 1062 of the reagent nozzle unit 106 according to the present embodiment moves linearly and the cuvette arranged in the double ring shape of the reagent table 104. It is provided at the intersection with the track on the outer peripheral side. Further, it is also provided at the intersection of the path along which the other nozzle 1062 of the two reagent nozzle units 106 according to the present embodiment moves linearly and the track on the inner peripheral side. Further, the dispensing position 1082 is a path along which each of the two reagent nozzle units 106 described above linearly moves in plan view, and a cuvette arranged in one ring on the LPIA table 108 rotates. It is provided at each intersection with the orbit. The number of nozzles 1062 is not limited to two. The number of nozzles 1062 is preferably set by the number of reagents used for one measurement. Coagulation measurement and latex measurement include measurement using one reagent and measurement using two reagents. Also, three or more nozzles 1062 may be provided.
 図9は凝固テーブルの一例を示す図である。凝固テーブル107は、例えば、血液凝固時間測定を実施する際にキュベットを載置するテーブルである。凝固テーブル107は、キュベットを保持するための保持孔1072を、レール110が延在する方向に対してほぼ垂直な方向に直線状に複数備える。また、保持孔1072に保持されるキュベットを挟んで一方には光源1073が配置され、他方には受光部1074が配置されている。そして、キュベットの内容物の、所定の波長の光の吸光度又は透過率によって、内容物の凝固の程度を測定する。また、凝固テーブル107は、レール110が延在する方向とはほぼ垂直な方向にテーブルをスライドさせる駆動部1075を備える。そして、所望の保持孔1072をキュベットチャックユニット109が移動する軌道との交点である着脱位置1071に移動させることができる。また、キュベットチャックユニット109は、所定の着脱位置1071において、保持孔1072にキュベットを保持させたり、保持孔1072からキュベットを取り外したりすることができる。凝固テーブル107の保持孔1072へは、LPIAテーブル108の保持孔においてサンプルが分注されたキュベットが、キュベットチャックユニット109によって搬送される。なお、光源1073及び受光部1074は保持孔1072の数だけ設けられ、保持孔1072、光源1073及び受光部1074は一体として移動する。したがって、テーブルが移動する間であっても各キュベットについて吸光度等を測定し続けることができる。 FIG. 9 is a diagram showing an example of the coagulation table. The coagulation table 107 is, for example, a table on which a cuvette is placed when performing blood coagulation time measurement. The solidification table 107 is provided with a plurality of holding holes 1072 for holding the cuvette in a linear shape in a direction substantially perpendicular to the direction in which the rail 110 extends. A light source 1073 is arranged on one side of the cuvette held in the holding hole 1072, and a light receiving section 1074 is arranged on the other side. Then, the degree of coagulation of the contents of the cuvette is measured by the absorbance or the transmittance of light having a predetermined wavelength. Further, the solidification table 107 includes a drive unit 1075 that slides the table in a direction substantially perpendicular to the direction in which the rail 110 extends. Then, the desired holding hole 1072 can be moved to the attachment / detachment position 1071 which is the intersection point with the track on which the cuvette chuck unit 109 moves. Further, the cuvette chuck unit 109 can hold the cuvette in the holding hole 1072 or remove the cuvette from the holding hole 1072 at a predetermined attaching / detaching position 1071. The cuvette in which the sample is dispensed in the holding hole of the LPIA table 108 is conveyed to the holding hole 1072 of the solidification table 107 by the cuvette chuck unit 109. The light sources 1073 and the light receiving units 1074 are provided by the number of the holding holes 1072, and the holding holes 1072, the light sources 1073, and the light receiving units 1074 move as a unit. Therefore, the absorbance and the like can be continuously measured for each cuvette even while the table moves.
 図10はLPIAテーブルの一例を示す図である。LPIAテーブル108は、例えばラテックス凝集法による抗原量の測定を実施する際にキュベットを載置するテーブルである。LPIAテーブル108は、所定の回転軸1083を中心に回転するディスク状のテーブルであり、円周に沿ってリング状に、キュベットを保持するための保持孔1084が複数設けられている。テーブルは、コンピュータによる制御に基づいて、時計回り又は反時計回りに回転すると共に、所定の位置で停止する。また、各保持孔1084には、キュベットを押さえるためのバネ1085が設けられている。 FIG. 10 is a diagram showing an example of the LPIA table. The LPIA table 108 is a table on which a cuvette is placed when the antigen amount is measured by the latex agglutination method, for example. The LPIA table 108 is a disk-shaped table that rotates around a predetermined rotation shaft 1083, and is provided with a plurality of holding holes 1084 for holding the cuvette in a ring shape along the circumference. The table rotates clockwise or counterclockwise and stops at a predetermined position under the control of the computer. Further, each holding hole 1084 is provided with a spring 1085 for pressing the cuvette.
 図11はキュベットチャックユニットの一例を示す図である。キュベットチャックユニット109は、その先端に二指グリッパ1091を備え、キュベットを把持して搬送するユニットである。また、キュベットチャックユニット109は、レール110に沿って水平方向に直線的に移動し、試薬テーブル104やLPIAテーブル108の着脱位置、キュベット供給口1021、キュベット廃棄口111等でキュベットを把持したり投下したりする。 FIG. 11 is a diagram showing an example of the cuvette chuck unit. The cuvette chuck unit 109 is a unit that has a two-finger gripper 1091 at its tip and holds and transports the cuvette. Further, the cuvette chuck unit 109 linearly moves in the horizontal direction along the rail 110, and holds or drops the cuvette at the attachment / detachment position of the reagent table 104 or the LPIA table 108, the cuvette supply port 1021, the cuvette disposal port 111, and the like. To do
 図12Aは、キュベットチャックユニット及び試薬ノズルユニットを備えるレールの一例を示す平面図である。図12Bは、キュベットチャックユニット及び試薬ノズルユニットを備えるレールの一例を示す正面図である。レール110は、試薬ノズルユニット106やキュベットチャックユニット109と接続され、試薬ノズルユニット106やキュベットチャックユニット109が移動する際のガイドとなるレール状の部材である。すなわち、複合分析装置1000においては、試薬テーブル104や凝固テーブル107、LPIAテーブル108の着脱位置、キュベット供給口1021、キュベット廃棄口111は、レール110とほぼ平行な直線上に配置されている。また、試薬テーブル104の採取位置や凝固テーブル107の試薬の分注位置、LPIAテーブル108の試薬の分注位置1082も、レール110とほぼ平行な直線上に配置されている。なお、試薬ノズルユニット106のノズル1062や、キュベットチャックユニット109の二指グリッパ1091は、鉛直方向には上下する。ただし、前後(正面又は奥行き)方向には移動しないようにしてもよい。試薬ノズルユニット106及びキュベットチャックユニット109は、レール110の正面側に接続され、レール110を共用して移動する。例えばキュベットチャックユニット109を平面視及び正面視における左側に退避させることで、試薬ノズルユニット106のノズル1062をLPIAテーブル108の分注位置1082まで移動させることができる。また、例えば試薬ノズルユニット106を平面視及び正面視における右側に退避させることで、キュベットチャックユニット109の二指グリッパ1091をキュベット供給ユニット102のキュベット供給口1021まで移動させることができる。なお、レール110は、直線的なものに限らず、少なくとも一部が曲線的に設けられるものや、2以上の直線的な区間又は曲線的な区間を有するものであってもよい。また、レール110を、本発明に係る「ガイドレール」とも呼ぶ。試薬ノズルユニット106やキュベットチャックユニット109のレール110への接続構造は、既存の技術を採用することができる。 FIG. 12A is a plan view showing an example of a rail including a cuvette chuck unit and a reagent nozzle unit. FIG. 12B is a front view showing an example of a rail including a cuvette chuck unit and a reagent nozzle unit. The rail 110 is a rail-shaped member that is connected to the reagent nozzle unit 106 and the cuvette chuck unit 109 and serves as a guide when the reagent nozzle unit 106 and the cuvette chuck unit 109 move. That is, in the composite analyzer 1000, the attachment / detachment positions of the reagent table 104, the coagulation table 107, and the LPIA table 108, the cuvette supply port 1021, and the cuvette disposal port 111 are arranged on a straight line substantially parallel to the rail 110. The sampling position of the reagent table 104, the reagent dispensing position of the coagulation table 107, and the reagent dispensing position 1082 of the LPIA table 108 are also arranged on a straight line substantially parallel to the rail 110. The nozzle 1062 of the reagent nozzle unit 106 and the two-finger gripper 1091 of the cuvette chuck unit 109 move up and down in the vertical direction. However, it may not move in the front-back direction (front or depth). The reagent nozzle unit 106 and the cuvette chuck unit 109 are connected to the front side of the rail 110 and move by sharing the rail 110. For example, by retracting the cuvette chuck unit 109 to the left in plan view and front view, the nozzle 1062 of the reagent nozzle unit 106 can be moved to the dispensing position 1082 of the LPIA table 108. Further, for example, by retracting the reagent nozzle unit 106 to the right side in plan view and front view, the two-finger gripper 1091 of the cuvette chuck unit 109 can be moved to the cuvette supply port 1021 of the cuvette supply unit 102. The rail 110 is not limited to a linear rail, but may be one in which at least a part thereof is provided in a curved shape, or one having two or more linear sections or a curved section. The rail 110 is also referred to as a “guide rail” according to the present invention. The existing structure can be used for the connection structure of the reagent nozzle unit 106 and the cuvette chuck unit 109 to the rail 110.
 また、キュベット廃棄口111は、タンク等収容部2内に格納された廃棄ボックスにキュベットを集積するために、キュベットチャックユニット109がキュベットを放下する投入口である。タンク等収容部2内には、キュベット廃棄口111から廃棄ボックスの上方へ向けて、廃棄されたキュベットを案内する管を設けるようにしてもよい。 The cuvette discarding port 111 is a loading port through which the cuvette chuck unit 109 releases the cuvette in order to collect the cuvettes in the discarding box stored in the storage part 2 such as the tank. A tube for guiding the discarded cuvettes may be provided in the tank or the like accommodation portion 2 from the cuvette disposal port 111 toward the upper side of the disposal box.
 凝固テーブル107及びここに設置されるキュベットの内容物を測定するセンサ等、LPIAテーブル108及びここに設置されるキュベットの内容物を測定するセンサ等は、それぞれ所定の測定を行う測定ユニットの一例である。本発明においては、一方を「第1の測定ユニット」と呼び、他方を「第2の測定ユニット」とも呼ぶ。また、キュベットチャックユニット109を「搬送ユニット」とも呼ぶ。 The coagulation table 107 and a sensor or the like for measuring the contents of the cuvette installed therein, and the LPIA table 108 and the sensor or the like for measuring the contents of the cuvette installed therein are examples of measurement units that perform predetermined measurements. is there. In the present invention, one is also called a "first measuring unit" and the other is also called a "second measuring unit". Further, the cuvette chuck unit 109 is also referred to as a “conveyance unit”.
<効果>
 本実施形態によれば、複数の測定ユニットを備える複合分析装置が、測定する検査項目の順序を使用者が自由に指定できるランダム測定を実施する場合において、キュベットチャックユニット109や試薬ノズルユニット106の移動を単純な直線的動作にすることで、移送する機構を小型化して装置全体のコストを抑制できる。さらに、レール110をキュベットチャックユニット109及び試薬ノズルユニット106で共用することができ、装置全体の大型化を抑制できる。さらに、限られた測定時間や空間を効率良く利用することが可能となり、測定処理能力を向上させることができる。
<Effect>
According to the present embodiment, in the case where the composite analyzer including a plurality of measurement units performs random measurement in which the user can freely specify the order of the inspection items to be measured, the cuvette chuck unit 109 and the reagent nozzle unit 106 are By making the movement a simple linear movement, the mechanism for transferring can be downsized and the cost of the entire apparatus can be suppressed. Further, the rail 110 can be shared by the cuvette chuck unit 109 and the reagent nozzle unit 106, and the increase in size of the entire apparatus can be suppressed. Furthermore, the limited measurement time and space can be efficiently used, and the measurement processing capacity can be improved.
<分析処理>
 例えばラテックス凝集測定を実施する場合、LPIAテーブル108が回転し、所定の保持孔が着脱位置に移動して停止する。また、キュベットチャックユニット109はキュベット供給口1021からキュベットを1つ把持してLPIAテーブル108の着脱位置にある保持孔まで移動させ、保持孔に保持させる。その後、キュベットを保持した保持孔は、所定の分注位置1082へ移動する。なお、着脱位置と分注位置は同じであってもよい。また、サンプルラック1011は、所望のサンプル容器が所定の採取位置へ移動するように搬送される。そして、サンプルノズルユニット103は、採取位置において、予めサンプルラック1011に保持されているサンプル容器からサンプルを採取し、LPIAテーブル108の分注位置1082でキュベット内へ吐出する。また、試薬テーブル104が回転すると共に、試薬蓋開閉ユニット105の先端部が試薬容器の蓋と接触するように所定のタイミングで移動し、予め試薬テーブル104に保持されている所定の試薬容器を開蓋する。そして、開蓋された試薬容器は、所定の採取位置へ移動する。この時、また、試薬ノズルユニット106は所定の採取位置において試薬を採取し、LPIAテーブル108の分注位置1082においてキュベット内へ試薬を吐出する。その後、試薬テーブル104が回転すると共に試薬蓋開閉ユニット105の先端部によって試薬容器の蓋が閉じられる。なお、試薬蓋開閉ユニット105は、試試薬容器の鉛直上方から下方に向けて蓋を押圧して、閉蓋することができる。また、LPIAテーブル108が回転し、キュベットは、所定の攪拌位置に移動する。攪拌位置においては、キュベットの底面に設けられた凹部に鉛直下方から攪拌棒を挿入し、攪拌棒の先端が水平面上に円を描くように変位することによりキュベットの内容物を攪拌する。なお、複数の試薬を分注するようにしてもよい。また、LPIAテーブル108の回転により、キュベットは、光源と受光部とによって形成される光学測定部を通過し、光学測定部において特定波長の透過率や吸光度、散乱光等に基づいて内容物の反応に基づく変化が測定される。所定の測定が完了した場合、キュベットはLPIAテーブル108の着脱位置においてキュベットチャックユニット109によって保持孔から取り外される。また、キュベットチャックユニット109は、取り外したキュベットをキュベット廃棄口111へ搬送し、廃棄する。このような処理を、LPIAテーブル108に保持される複数のキュベットに対して並列に行うことができる。
<Analysis process>
For example, when performing latex agglutination measurement, the LPIA table 108 rotates and a predetermined holding hole moves to the attachment / detachment position and stops. Further, the cuvette chuck unit 109 holds one cuvette from the cuvette supply port 1021 and moves it to the holding hole at the attachment / detachment position of the LPIA table 108, and holds it in the holding hole. After that, the holding hole holding the cuvette moves to a predetermined dispensing position 1082. The attachment / detachment position and the dispensing position may be the same. Further, the sample rack 1011 is transported so that a desired sample container moves to a predetermined sampling position. Then, the sample nozzle unit 103 collects a sample from the sample container previously held in the sample rack 1011 at the sampling position, and discharges the sample into the cuvette at the dispensing position 1082 of the LPIA table 108. Further, as the reagent table 104 rotates, the reagent lid opening / closing unit 105 moves at a predetermined timing so that the tip of the reagent lid opening / closing unit 105 comes into contact with the lid of the reagent container, and the predetermined reagent container held in advance on the reagent table 104 is opened. Cover. Then, the opened reagent container moves to a predetermined sampling position. At this time, the reagent nozzle unit 106 also collects the reagent at a predetermined collection position, and discharges the reagent into the cuvette at the dispensing position 1082 of the LPIA table 108. Thereafter, the reagent table 104 rotates and the lid of the reagent container is closed by the tip of the reagent lid opening / closing unit 105. The reagent lid opening / closing unit 105 can be closed by pressing the lid downward from above the reagent container to the bottom. Further, the LPIA table 108 rotates and the cuvette moves to a predetermined stirring position. At the stirring position, a stirring rod is inserted vertically downward from a recess provided on the bottom surface of the cuvette, and the tip of the stirring rod is displaced so as to draw a circle on a horizontal plane, whereby the contents of the cuvette are stirred. A plurality of reagents may be dispensed. Further, due to the rotation of the LPIA table 108, the cuvette passes through the optical measuring unit formed by the light source and the light receiving unit, and the reaction of the contents based on the transmittance of the specific wavelength, the absorbance, the scattered light, etc. in the optical measuring unit. The change based on is measured. When the predetermined measurement is completed, the cuvette is removed from the holding hole by the cuvette chuck unit 109 at the attachment / detachment position of the LPIA table 108. Further, the cuvette chuck unit 109 conveys the removed cuvette to the cuvette discarding port 111 and discards it. Such processing can be performed in parallel on a plurality of cuvettes held in the LPIA table 108.
 また、例えば凝固時間測定を実施する場合、凝固テーブル107がスライドし、所定の保持孔が着脱位置に移動して停止する。また、キュベットチャックユニット109はキュベット供給口1021からキュベットを1つ把持してLPIAテーブル108の着脱位置にある保持孔まで移動させ、保持孔に保持させる。その後、キュベットを保持した保持孔は、所定の分注位置1082へ移動する。なお、着脱位置と分注位置は同じであってもよい。また、サンプルラック1011は、所望のサンプル容器が所定の採取位置へ移動するように搬送される。そして、サンプルノズルユニット103は、採取位置において、予めサンプルラック1011に保持されているサンプル容器からサンプルを採取し、LPIAテーブル108の分注位置1082でキュベット内へ吐出する。そして、キュベットが保持された保持孔は、LPIAテーブル108の着脱位置に移動し、キュベットはキュベットチャックユニット109によって把持され、凝固テーブル107の着脱位置へ移送される。また、試薬テーブル104が回転すると共に、試薬蓋開閉ユニット105の先端部が試薬容器の蓋と接触するように所定のタイミングで移動し、予め試薬テーブル104に保持されている所定の試薬容器を開蓋する。そして、開蓋された試薬容器は、所定の採取位置へ移動する。また、試薬ノズルユニット106は所定の採取位置において試薬を採取し、凝固テーブル107の分注位置においてキュベット内へ試薬を吐出する。その後、試薬テーブル104が回転すると共に試薬蓋開閉ユニット105の先端部によって試薬容器の蓋が閉じられる。なお、試薬蓋開閉ユニット105は、試薬容器の鉛直上方から下方に向けて蓋を押圧して、閉蓋することができる。また、凝固テーブル107がスライドし、キュベットは、所定の攪拌位置に移動する。攪拌位置においては、キュベットの底面に設けられた凹部に鉛直下方から攪拌棒を挿入し、攪拌棒の先端が水平面上に円を描くように変位することによりキュベットの内容物を攪拌する。なお、複数の試薬を分注するようにしてもよい。また、凝固テーブル107の各保持孔には、キュベットを挟むように光源と受光部とによって形成される光学測定部が設けられており、光学測定部において特定波長の透過率や吸光度等に基づいて内容物の凝固に基づく変化が測定される。所定の測定が完了した場合、キュベットは凝固テーブル107の着脱位置においてキュベットチャックユニット109によって保持孔から取り外される。また、キュベットチャックユニット109は、取り外したキュベットをキュベット廃棄口111へ搬送し、廃棄する。このような処理を、凝固テーブル107に保持される複数のキュベットに対して並列に行うことができる。なお、凝固時間測定においても、試薬の分注をLPIAテーブル108の分注位置1082において行い、その後に凝固テーブル107に搬送するようにしてもよい。 Further, for example, when the coagulation time is measured, the coagulation table 107 slides and a predetermined holding hole moves to the attachment / detachment position and stops. Further, the cuvette chuck unit 109 holds one cuvette from the cuvette supply port 1021 and moves it to the holding hole at the attachment / detachment position of the LPIA table 108, and holds it in the holding hole. After that, the holding hole holding the cuvette moves to a predetermined dispensing position 1082. The attachment / detachment position and the dispensing position may be the same. Further, the sample rack 1011 is transported so that a desired sample container moves to a predetermined sampling position. Then, the sample nozzle unit 103 collects a sample from the sample container previously held in the sample rack 1011 at the sampling position, and discharges the sample into the cuvette at the dispensing position 1082 of the LPIA table 108. Then, the holding hole in which the cuvette is held moves to the attachment / detachment position of the LPIA table 108, and the cuvette is gripped by the cuvette chuck unit 109 and transferred to the attachment / detachment position of the coagulation table 107. Further, as the reagent table 104 rotates, the reagent lid opening / closing unit 105 moves at a predetermined timing so that the tip of the reagent lid opening / closing unit 105 comes into contact with the lid of the reagent container, and the predetermined reagent container held in advance on the reagent table 104 is opened. Cover. Then, the opened reagent container moves to a predetermined sampling position. Further, the reagent nozzle unit 106 collects the reagent at a predetermined collection position and discharges the reagent into the cuvette at the dispensing position of the coagulation table 107. Thereafter, the reagent table 104 rotates and the lid of the reagent container is closed by the tip of the reagent lid opening / closing unit 105. The reagent lid opening / closing unit 105 can be closed by pressing the lid downward from above the reagent container in the vertical direction. Further, the coagulation table 107 slides and the cuvette moves to a predetermined stirring position. At the stirring position, a stirring rod is inserted vertically downward from a recess provided on the bottom surface of the cuvette, and the tip of the stirring rod is displaced so as to draw a circle on a horizontal plane, whereby the contents of the cuvette are stirred. A plurality of reagents may be dispensed. Further, each holding hole of the coagulation table 107 is provided with an optical measuring section formed by a light source and a light receiving section so as to sandwich the cuvette, and based on the transmittance or the absorbance of a specific wavelength in the optical measuring section. Changes due to the solidification of the contents are measured. When the predetermined measurement is completed, the cuvette is removed from the holding hole by the cuvette chuck unit 109 at the attachment / detachment position of the solidification table 107. Further, the cuvette chuck unit 109 conveys the removed cuvette to the cuvette discarding port 111 and discards it. Such processing can be performed in parallel on a plurality of cuvettes held on the coagulation table 107. Also in the coagulation time measurement, the reagent may be dispensed at the dispensing position 1082 of the LPIA table 108 and then transported to the coagulation table 107.
<スケジューリング>
 また、複数種類の分析を実施できる分析装置において、異なる測定原理の測定が混在すると、一般的には一連の測定処理の間で測定スケジュールを設定することが難しくなり、測定処理能力は低下する。本実施形態においては、上記各ユニットの所定の単位の動作が一定の時間内に完了するように設計されることが好ましい。各ユニットの所定の単位の動作に要する時間は異なっていても良いが、同じである方が、コンピュータが測定処理をスケジュールする上で好ましい。このようにすれば、複数種類の分析を実施できる分析装置においても、容易に測定スケジュールを決定することが可能となり、複数の測定の種類(例えば、上記のラテックス凝集測定や凝固時間測定等が挙げられる)が混在している場合であっても、処理能力の低下を抑えることができる。
<Scheduling>
Further, in an analyzer capable of performing a plurality of types of analysis, if measurements of different measurement principles are mixed, it is generally difficult to set a measurement schedule between a series of measurement processes, and the measurement processing capability is reduced. In this embodiment, it is preferable that the operation of a predetermined unit of each unit is designed to be completed within a certain time. The time required for the operation of a predetermined unit of each unit may be different, but the same time is preferable for the computer to schedule the measurement process. By doing so, it becomes possible to easily determine the measurement schedule even in an analyzer capable of performing a plurality of types of analysis, and a plurality of types of measurement (for example, the above-mentioned latex agglutination measurement and coagulation time measurement and the like can be mentioned. Even if the above) are mixed, it is possible to suppress a decrease in processing capacity.
 例えば、サンプルノズルユニット103は、サンプルをサンプル容器から採取する工程、サンプルをキュベットへ吐出する工程、サンプルノズルを洗浄する工程等の各工程を、一定の間隔(秒)で行う。間隔は、例えば30秒、好ましくは20秒、更に好ましくは15秒、更により好ましくは10秒等である。試薬ノズルユニット106は、試薬を試薬容器から採取する工程、試薬を加温する工程、試薬をキュベットへ吐出する工程、試薬ノズルを洗浄する工程等の各工程を、一定の間隔(秒)で行う。間隔は、例えば30秒、好ましくは20秒、更に好ましくは15秒、更により好ましくは10秒等である。また、例えば、キュベットチャックユニット109は、キュベット供給口からキュベットを測定用の保持孔に移動し保持させる工程、測定が終了したキュベットを保持孔から取り外しキュベット廃棄口に搬送し、廃棄する工程等の各工程を、一定の間隔(秒)で行う。間隔は、例えば30秒、好ましくは20秒、更に好ましくは15秒、更により好ましくは10秒等である。例えば、これらを15秒間隔で行うことにより、240テスト/時間という、高い測定処理能力を達成することができる。 For example, the sample nozzle unit 103 performs each step such as a step of collecting a sample from a sample container, a step of discharging a sample into a cuvette, and a step of cleaning a sample nozzle at regular intervals (seconds). The interval is, for example, 30 seconds, preferably 20 seconds, more preferably 15 seconds, even more preferably 10 seconds. The reagent nozzle unit 106 performs each step such as a step of collecting the reagent from the reagent container, a step of heating the reagent, a step of discharging the reagent into a cuvette, a step of cleaning the reagent nozzle, etc. at regular intervals (seconds). . The interval is, for example, 30 seconds, preferably 20 seconds, more preferably 15 seconds, even more preferably 10 seconds. In addition, for example, the cuvette chuck unit 109 includes a step of moving and holding the cuvette from the cuvette supply port to the holding hole for measurement, a step of removing the cuvette after measurement from the holding hole, transporting it to the cuvette discarding port, and discarding it. Each step is performed at regular intervals (seconds). The interval is, for example, 30 seconds, preferably 20 seconds, more preferably 15 seconds, even more preferably 10 seconds. For example, by performing these at 15 second intervals, a high measurement throughput of 240 tests / hour can be achieved.
<係止構造>
 図13は、キュベットの一例を示す斜視図である。図14は、キュベットの一例を示す断面図である。本実施形態に係るキュベット113は、ほぼ四角柱状のキュベット本体1131の上端部1132付近に、一対のピックアップ用突出片1133を備え、更にその下方に一対の載置用突出片1134を備えている。また、キュベット113の下部にはテーパが付いて先細りになっている。キュベット113は、LPIAテーブル108に設けた保持孔1084に、キュベット本体1131の下方から挿入することによって載置される。ピックアップ用突出片1133は、例えば、キュベットチャックユニット109の二指グリッパ1091が保持する部分である。載置用突出片1134は、キュベット本体1131の上部且つピックアップ用突出辺133よりも下方に設けられており、キュベット113をLPIAテーブルの保持孔1084に載置したときにLPIAテーブル108が備えるバネ1085と係合し、キュベット113がLPIAテーブル108から容易に外れないよう押さえられる部分である。また、キュベット113は、キュベット本体1131の底面1135に、例えば半球状の凹部1136を設け、凹部1136に、攪拌棒115の先端部を挿入可能な挿入口1137を有している。載置用突出片の数や形状は、当業者であれば、キュベットの形状や、装置への載置構造に従って、適宜設計して使用することができる。例えば、一つでも、二つ以上でも良いが、形状が容易で、且つ、安定して載置できるため、特に、二つが好ましい。
<Locking structure>
FIG. 13 is a perspective view showing an example of a cuvette. FIG. 14 is a sectional view showing an example of a cuvette. The cuvette 113 according to the present embodiment includes a pair of protrusion pieces 1133 for pickup near the upper end 1132 of a cuvette body 1131 having a substantially rectangular prism shape, and a pair of protrusion pieces 1134 for placement below the protrusion pieces 1133. Further, the lower part of the cuvette 113 is tapered and tapered. The cuvette 113 is placed by inserting it into the holding hole 1084 provided in the LPIA table 108 from below the cuvette body 1131. The pickup projection piece 1133 is, for example, a portion held by the two-finger gripper 1091 of the cuvette chuck unit 109. The mounting projection piece 1134 is provided above the cuvette body 1131 and below the pickup projection side 133, and the spring 1085 provided in the LPIA table 108 when the cuvette 113 is mounted in the holding hole 1084 of the LPIA table. And the cuvette 113 is pressed against the LPIA table 108 so as not to come off easily. Further, the cuvette 113 is provided with, for example, a hemispherical recess 1136 on the bottom surface 1135 of the cuvette body 1131 and has an insertion opening 1137 into which the tip of the stirring rod 115 can be inserted. Those skilled in the art can appropriately design and use the number and shape of the mounting projection pieces according to the shape of the cuvette and the mounting structure on the device. For example, one or two or more may be used, but two are particularly preferable because the shape is easy and stable mounting is possible.
 図15は、LPIAテーブルの1つの保持孔付近の一例を表す断面図である。図16は、バネの一例を示す斜視図である。LPIAテーブル108の上面には、保持孔1084を挟んで一対のバネ1085が、LPIAテーブル108の表面(上面)にほぼ沿って取り付けられる。バネ1085は、板バネを所定の形状に屈曲して形成され、保持孔1084に挿入されるキュベット113が容易に外れないように緩く押さえるための係止部材である。本実施形態では、2つのバネ1085を一対として、各バネ1085は、その長手方向の一端側に設けられた通し穴等の固定部10851にビス等の固定部材1086を通し、LPIAテーブル108のビス穴に固定する。なお、図15に示す符号114は、一対のバネ1085の取り付け位置及び間隔を調整するための治具の一例を示している。また、保持孔1084の周縁に1つのバネ1085が設けられ、キュベット113を保持孔1084の内壁に押し付けるように付勢して保持する構成であってもよく、保持孔1084の周縁に3つ以上のバネ1085が設けられていてもよい。 FIG. 15 is a sectional view showing an example near one holding hole of the LPIA table. FIG. 16 is a perspective view showing an example of a spring. On the upper surface of the LPIA table 108, a pair of springs 1085 are attached so as to sandwich the holding hole 1084 substantially along the surface (upper surface) of the LPIA table 108. The spring 1085 is a locking member that is formed by bending a leaf spring into a predetermined shape and loosely presses the cuvette 113 inserted into the holding hole 1084 so as not to come off easily. In the present embodiment, two springs 1085 are used as a pair, and each spring 1085 has a fixing member 1086 such as a screw inserted through a fixing portion 10851 such as a through hole provided at one end side in the longitudinal direction of the spring 1085. Fix in the hole. Note that reference numeral 114 shown in FIG. 15 indicates an example of a jig for adjusting the attachment position and the interval of the pair of springs 1085. Further, one spring 1085 may be provided on the peripheral edge of the holding hole 1084, and the cuvette 113 may be biased and held so as to be pressed against the inner wall of the holding hole 1084, and three or more springs may be provided on the peripheral edge of the holding hole 1084. The spring 1085 may be provided.
 また、バネ1085は、長手方向の中央部分に、断面視(側面視)において逆U字状に突出して戻る凸部10852を備える。凸部10852は、断面視において固定部10851を軸としてバネ1085の長手方向の他端が円弧状の軌道でしなる弾性変形だけでなく、バネ1085の長手方向に長さが縮む弾性変形を許容する緩衝部である。また、バネ1085の長手方向の他端側には、断面視においてLPIAテーブル108の上方にやや鋭角にアールを付けて屈曲する屈曲部10853が設けられている。また、バネ1085の長手方向のさらに他端側には、断面視においてLPIAテーブル108側(すなわち、保持孔1084にキュベット113を挿入する方向)にアールを付けて屈曲する丸め部10854が設けられている。すなわち、バネ1085の長手方向の他端側は、断面視において巻かれるように屈曲することにより、アールを付けて面取りされた形状になっている。また、バネ1085の長手方向の他端は保持孔1084の縁よりもバネ1085の固定部10851側に戻った位置に、保持孔1084にキュベット113を挿入する方向に沿った方向を向いて存在する。前記アールの形状は、キュベットの脱着時にキュベットと係止構造が干渉を抑制することが可能であれば限定せず、当業者であれば、適宜設計して使用することができる。 Further, the spring 1085 is provided with a convex portion 10852 that protrudes and returns in an inverted U-shape in a cross-sectional view (side view) at the central portion in the longitudinal direction. The convex portion 10852 allows not only elastic deformation in which the other end in the longitudinal direction of the spring 1085 has an arcuate trajectory with the fixed portion 10851 as an axis in sectional view, but also elastic deformation in which the length of the spring 1085 contracts in the longitudinal direction. It is a buffer section. Further, on the other end side in the longitudinal direction of the spring 1085, there is provided a bent portion 10853 which is bent above the LPIA table 108 in a sectional view so as to be curved with a slightly acute angle. Further, a rounded portion 10854 that is bent to have a radius on the LPIA table 108 side (that is, the direction in which the cuvette 113 is inserted into the holding hole 1084) in a cross-sectional view is provided on the other end side in the longitudinal direction of the spring 1085. There is. That is, the other end side of the spring 1085 in the longitudinal direction has a chamfered shape with a radius by bending so as to be wound in a sectional view. Further, the other end of the spring 1085 in the longitudinal direction is present at a position which is closer to the fixing portion 10851 side of the spring 1085 than the edge of the holding hole 1084, and faces in the direction along which the cuvette 113 is inserted into the holding hole 1084. . The shape of the radius is not limited as long as it can suppress the interference between the cuvette and the locking structure when the cuvette is attached and detached, and those skilled in the art can appropriately design and use it.
 図17は、キュベットをLPIAテーブルの保持孔に挿入する過程を示す断面図である。図18は、キュベットがLPIAテーブルの保持孔に保持された状態の一例を示す断面図である。キュベット113を保持孔1084に挿入すると、載置用突出片1134が屈曲部10853に接触する。さらにキュベット113を保持孔1084に押し入れると、図17に示すように凸部10852がたわんで一対のバネ1085の間隔が広がり、キュベット113の載置用突出片1134がLPIAテーブル108の上面とバネ1085との間を通過する。そして、図18に示すように、載置用突出片1134はLPIAテーブル108の上面とバネ1085との間に挟まれて緩く押さえつけられ(付勢され)、キュベット113はLPIAテーブル108の保持孔1084から容易には外れないように保持される。バネ1085の他端側は、断面視においてその外形にアールがつけられているため(具体的には、バネ1085の他端が、キュベット113の挿入方向に対して鋭角をなす方向を向いているため)、仮にバネ1085が塑性変形した場合であっても、キュベット113を保持孔1084に挿入する際または治具114をバネ1085に当てる際に、その端部がキュベット113や治具114に引っかかる可能性が低減される。 FIG. 17 is a sectional view showing a process of inserting the cuvette into the holding hole of the LPIA table. FIG. 18 is a cross-sectional view showing an example of a state in which the cuvette is held in the holding hole of the LPIA table. When the cuvette 113 is inserted into the holding hole 1084, the mounting projection piece 1134 contacts the bent portion 10853. When the cuvette 113 is further pushed into the holding hole 1084, as shown in FIG. 17, the convex portion 10852 is bent to widen the interval between the pair of springs 1085, and the mounting projection piece 1134 of the cuvette 113 and the upper surface of the LPIA table 108 and the spring. Pass between 1085. Then, as shown in FIG. 18, the mounting projection piece 1134 is sandwiched between the upper surface of the LPIA table 108 and the spring 1085 and is gently pressed (biased), and the cuvette 113 is held in the holding hole 1084 of the LPIA table 108. It is held so that it does not come off easily. Since the outer shape of the other end of the spring 1085 is rounded in a cross-sectional view (specifically, the other end of the spring 1085 faces a direction forming an acute angle with respect to the insertion direction of the cuvette 113. Therefore, even if the spring 1085 is plastically deformed, its end is caught by the cuvette 113 or the jig 114 when the cuvette 113 is inserted into the holding hole 1084 or the jig 114 is applied to the spring 1085. Possibility is reduced.
 図19は、LPIAテーブルに載置されたキュベットが攪拌された状態の一例を示す断面図である。所定の攪拌位置には、LPIAテーブル108の鉛直下方に攪拌装置(図示せず)が設けられている。攪拌装置は、攪拌棒115の先端を半球状の凹部1136に挿入させ、その先端を水平面上で回転させてキュベット113を攪拌する。このとき、バネ1085は、キュベット113が偏心して周回運動させられる際に載置用突出片1134がLPIAテーブル108の表面を離れることを許容すると共に、キュベット113が保持孔1084から外れることは抑制する。キュベット113は、サンプル内に攪拌棒115を挿入することなく、サンプルを攪拌することができる。サンプル内に攪拌棒を挿入して攪拌すると凝固系に影響を与え、測定結果が不正確になることがあるため、凝固試験に好適である。また、キュベット113は、ほぼ四角柱状であり、4側面がそれぞれほぼ平行な平坦面であるため、例えば生化学的な測定項目やLPIAにおける濁度測定のような透過光を利用する測定に好適である。本実施形態に係る保持孔1084は、貫通していない凹部等であってもよいが、サンプル内に攪拌棒を挿入することなく攪拌するためには貫通孔が好ましい。貫通孔および貫通していない凹部等を本発明に係る「保持部」とも呼ぶ。 FIG. 19 is a cross-sectional view showing an example of a state in which the cuvette placed on the LPIA table is agitated. A stirring device (not shown) is provided vertically below the LPIA table 108 at a predetermined stirring position. The stirring device inserts the tip of the stirring rod 115 into the hemispherical recess 1136 and rotates the tip on a horizontal plane to stir the cuvette 113. At this time, the spring 1085 allows the mounting projection piece 1134 to leave the surface of the LPIA table 108 when the cuvette 113 is eccentrically moved around, and also prevents the cuvette 113 from coming off the holding hole 1084. . The cuvette 113 can stir the sample without inserting the stir bar 115 into the sample. When a stirring rod is inserted into the sample and stirred, the coagulation system is affected and the measurement result may be inaccurate, which is suitable for the coagulation test. Further, since the cuvette 113 has a substantially quadrangular prism shape and its four side surfaces are flat surfaces that are substantially parallel to each other, it is suitable for measurement using transmitted light such as biochemical measurement items and turbidity measurement in LPIA. is there. The holding hole 1084 according to the present embodiment may be a recess that does not penetrate, but a through hole is preferable for stirring without inserting a stirring rod into the sample. The through holes and the recesses that do not penetrate are also referred to as "holding portions" according to the present invention.
<変形例>
 上述の実施形態および変形例は例示であり、本発明は上述した構成には限定されない。また、実施形態および変形例に記載した内容は、本発明の課題や技術的思想を逸脱しない範囲で可能な限り組み合わせることができる。
<Modification>
The above-described embodiments and modifications are examples, and the present invention is not limited to the above-described configurations. The contents described in the embodiment and the modifications can be combined as much as possible without departing from the subject and technical idea of the present invention.
 図20は、3つの測定ユニットを備える複合分析装置1000の一例を示す模式的な図である。上述した測定ユニットの数は、2つには限定されない。図20の例では、第3の測定ユニット112が、平面視においてLPIAテーブル108の左側に追加されている。3つ以上の測定ユニットを備える場合も、キュベットチャックユニット109や試薬ノズルユニット106がレール110に沿って直線的に移動し、レールとほぼ平行な直線上に3つの測定ユニットを配置する。このようにすれば、キュベットチャックユニット109や試薬ノズルユニット106の移動を単純な直線的動作にして省電力化することができる。また、レール110をキュベットチャックユニット109及び試薬ノズルユニット106で共用することができ、装置全体を小型化することができる。 FIG. 20 is a schematic diagram showing an example of a composite analyzer 1000 including three measurement units. The number of measurement units described above is not limited to two. In the example of FIG. 20, the third measurement unit 112 is added to the left side of the LPIA table 108 in plan view. Even when three or more measurement units are provided, the cuvette chuck unit 109 and the reagent nozzle unit 106 linearly move along the rail 110, and the three measurement units are arranged on a straight line substantially parallel to the rail. By doing so, the movement of the cuvette chuck unit 109 and the reagent nozzle unit 106 can be made a simple linear operation to save power. Further, the rail 110 can be shared by the cuvette chuck unit 109 and the reagent nozzle unit 106, and the entire apparatus can be downsized.
 また、本発明は、上述した処理を実行する方法やコンピュータプログラム、当該プログラムを記録した、コンピュータ読み取り可能な記録媒体を含む。当該プログラムが記録された記録媒体は、プログラムをコンピュータに実行させることにより、上述の処理が可能となる。 The present invention also includes a method for executing the above-described processing, a computer program, and a computer-readable recording medium recording the program. The recording medium on which the program is recorded enables the above processing by causing the computer to execute the program.
 ここで、コンピュータ読み取り可能な記録媒体とは、データやプログラム等の情報を電気的、磁気的、光学的、機械的、または化学的作用によって蓄積し、コンピュータから読み取ることができる記録媒体をいう。このような記録媒体のうちコンピュータから取り外し可能なものとしては、フレキシブルディスク、光磁気ディスク、光ディスク、磁気テープ、メモリカード等がある。また、コンピュータに固定された記録媒体としては、HDDやSSD(Solid State Drive)、ROM等がある。 Here, the computer-readable recording medium refers to a recording medium that can store information such as data and programs by electrical, magnetic, optical, mechanical, or chemical action and can be read by a computer. Among such recording media, those removable from the computer include flexible disks, magneto-optical disks, optical disks, magnetic tapes, memory cards and the like. Further, as a recording medium fixed to the computer, there are an HDD, an SSD (Solid State Drive), a ROM and the like.
1000 :複合分析装置
1    :測定ユニット収容部
101  :搬送スペース
1011 :サンプルラック
1012 :サンプル容器
102  :キュベット供給ユニット
1021 :キュベット供給口
1022 :ホッパ
103  :サンプルノズルユニット
1031 :回転軸
1032 :ノズル
104  :試薬テーブル
1041 :採取位置
1042 :設置部
1043 :凸部
105  :試薬蓋開閉ユニット
1051 :先端部
106  :試薬ノズルユニット
1061 :ノズル
107  :凝固テーブル
1071 :着脱位置
1072 :保持孔
1073 :光源
1074 :受光部
1075 :駆動部
108  :LPIAテーブル
1081 :着脱位置
1082 :分注位置
1083 :回転軸
1084 :保持孔
1085 :バネ
10851:固定部
10852:凸部
10853:屈曲部
10854:丸め部
1086 :固定部材
109  :キュベットチャックユニット
1091 :二指グリッパ
110  :レール
111  :キュベット廃棄口
112  :第3の測定ユニット
113  :キュベット
1131 :キュベット本体
1132 :上端部
1133 :ピックアップ用突出片
1134 :載置用突出片
1135 :底面
1136 :凹部
1137 :挿入口
2    :タンク等収容部
3    :モニタ
4    :ステータス出力部
1000: Combined analyzer 1: Measuring unit housing 101: Transfer space 1011: Sample rack 1012: Sample container 102: Cuvette supply unit 1021: Cuvette supply port 1022: Hopper 103: Sample nozzle unit 1031: Rotary shaft 1032: Nozzle 104: Reagent table 1041: Sampling position 1042: Installation part 1043: Convex part 105: Reagent lid opening / closing unit 1051: Tip part 106: Reagent nozzle unit 1061: Nozzle 107: Coagulation table 1071: Attachment / detachment position 1072: Holding hole 1073: Light source 1074: Light reception Part 1075: Drive part 108: LPIA table 1081: Attachment / detachment position 1082: Dispensing position 1083: Rotating shaft 1084: Holding hole 1085: Spring 10851: Fixed part 10852: Convex part 1 853: Bending part 10854: Rounding part 1086: Fixing member 109: Cuvette chuck unit 1091: Two-finger gripper 110: Rail 111: Cuvette discarding port 112: Third measuring unit 113: Cuvette 1131: Cuvette body 1132: Top part 1133: Pick-up protruding piece 1134: Placement protruding piece 1135: Bottom surface 1136: Recessed portion 1137: Insertion port 2: Tank, etc. storage part 3: Monitor 4: Status output part

Claims (3)

  1.  キュベットを挿入して保持するための保持部を備えるテーブルに前記キュベットを保持させるための係止構造であって、
     前記保持部の周縁の所定の位置に係止部材を備え、
     前記係止部材は、一端側が前記テーブルに固定され、他端側で、前記キュベットが備える、前記テーブルの表面に載置するための載置用突出片を、前記テーブルの表面との間に挟んで係止し、前記係止部材の他端側は、断面視においてその外形にアールがつけられている
     係止構造。
    A locking structure for holding the cuvette on a table having a holding portion for inserting and holding the cuvette,
    A retaining member is provided at a predetermined position on the periphery of the holding portion,
    One end of the locking member is fixed to the table, and the other end of the locking member sandwiches a mounting projection included in the cuvette for mounting on the surface of the table with the surface of the table. The locking structure is such that the outer shape of the other end of the locking member is rounded in cross section.
  2.  前記保持部の周縁に、前記保持部を基準として対向する位置に設けられる一対の前記係止部材を備える、
     請求項1に記載の係止構造。
    A pair of the locking members provided at positions facing each other on the periphery of the holding portion, with the holding portion as a reference,
    The locking structure according to claim 1.
  3.  前記係止部材は板バネであり、前記係止部材の他端は、前記キュベットを挿入する方向または当該方向と鋭角をなす方向を向く
     請求項1又は2に記載の係止構造。
     
    The locking structure according to claim 1 or 2, wherein the locking member is a leaf spring, and the other end of the locking member faces a direction in which the cuvette is inserted or a direction forming an acute angle with the direction.
PCT/JP2019/040027 2018-10-10 2019-10-10 Locking structure WO2020075806A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020551223A JP7321179B2 (en) 2018-10-10 2019-10-10 locking structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-192195 2018-10-10
JP2018192195 2018-10-10

Publications (1)

Publication Number Publication Date
WO2020075806A1 true WO2020075806A1 (en) 2020-04-16

Family

ID=70163832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040027 WO2020075806A1 (en) 2018-10-10 2019-10-10 Locking structure

Country Status (2)

Country Link
JP (1) JP7321179B2 (en)
WO (1) WO2020075806A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091727A1 (en) * 2020-10-30 2022-05-05 京都電子工業株式会社 Container transfer device
WO2023282075A1 (en) * 2021-07-09 2023-01-12 株式会社日立ハイテク Automatic analysis device and reaction vessel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260795A (en) * 1992-04-06 1995-10-13 F Hoffmann La Roche Ag Converyer for analyzer
JP2002243636A (en) * 2001-02-13 2002-08-28 Fuji Photo Film Co Ltd Sensor utilizing total reflection attenuation and measurement chip
WO2006107016A1 (en) * 2005-04-01 2006-10-12 Mitsubishi Kagaku Iatron, Inc. Biosample multiple autoanalyzer, method of autoanalysis and reaction cuvette

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018206841A1 (en) 2017-05-12 2018-11-15 Thermo Fisher Scientific Oy Receptacle holder and receptacle rack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260795A (en) * 1992-04-06 1995-10-13 F Hoffmann La Roche Ag Converyer for analyzer
JP2002243636A (en) * 2001-02-13 2002-08-28 Fuji Photo Film Co Ltd Sensor utilizing total reflection attenuation and measurement chip
WO2006107016A1 (en) * 2005-04-01 2006-10-12 Mitsubishi Kagaku Iatron, Inc. Biosample multiple autoanalyzer, method of autoanalysis and reaction cuvette

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091727A1 (en) * 2020-10-30 2022-05-05 京都電子工業株式会社 Container transfer device
JP7065535B1 (en) 2020-10-30 2022-05-12 京都電子工業株式会社 Container transfer device
JP2022076491A (en) * 2020-10-30 2022-05-20 京都電子工業株式会社 Container transfer device
WO2023282075A1 (en) * 2021-07-09 2023-01-12 株式会社日立ハイテク Automatic analysis device and reaction vessel

Also Published As

Publication number Publication date
JP7321179B2 (en) 2023-08-04
JPWO2020075806A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
US10151765B2 (en) System for processing closed sample tubes
JP3880658B2 (en) Sample rack and apparatus and method for moving the same
US8562909B2 (en) Device for decapping and recapping sample tubes
JP5006944B2 (en) Apparatus and method for supplying a sample holding container
JP3553540B2 (en) Automatic chemical analysis method and apparatus
JP3880659B2 (en) Transfer device and analyzer using the same
US8066943B2 (en) Clinical analyzer having a variable cycle time and throughput
JP6336791B2 (en) Closed system for reagent container receiving position in automatic analyzer
JP2008534924A (en) Carousel system for automated chemical or biological analyzers using linear racks
IL192757A (en) Unit cuvette for analysing a biological fluid and automatic device for in vitro analysis
WO2020075803A1 (en) Analysis device
WO2020075806A1 (en) Locking structure
JP2007303882A (en) Autoanalyzer
JP2016001176A (en) In-vitro diagnostic analysis method and system
US10739363B2 (en) Method for mixing a liquid in an automated analyzer
JP6381910B2 (en) Closing device
JP6326256B2 (en) Reagent container storage unit and automatic analyzer
US11092612B2 (en) Vessel dispensing system
CN220723523U (en) Reagent library and automatic analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020551223

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870778

Country of ref document: EP

Kind code of ref document: A1