WO2020075771A1 - Planning device, planning method, and planning program - Google Patents

Planning device, planning method, and planning program Download PDF

Info

Publication number
WO2020075771A1
WO2020075771A1 PCT/JP2019/039878 JP2019039878W WO2020075771A1 WO 2020075771 A1 WO2020075771 A1 WO 2020075771A1 JP 2019039878 W JP2019039878 W JP 2019039878W WO 2020075771 A1 WO2020075771 A1 WO 2020075771A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
prediction
unit
model
transportation
Prior art date
Application number
PCT/JP2019/039878
Other languages
French (fr)
Japanese (ja)
Inventor
豪秀 奈木野
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2020551208A priority Critical patent/JP7157815B2/en
Publication of WO2020075771A1 publication Critical patent/WO2020075771A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Definitions

  • the present invention relates to a planning device, a planning method, and a planning program.
  • the hydrogen supply cost may increase.
  • the planning device may include an operation prediction unit that generates an operation prediction of each of the plurality of hydrogen generation devices that generate hydrogen using an operation prediction model.
  • the planning device may include a demand prediction unit that generates a hydrogen demand forecast at each of the plurality of hydrogen stations using a demand forecast model.
  • the planning device uses the transportation planning model to make a transportation plan for transporting the hydrogen generated by the multiple hydrogen generators to the multiple hydrogen stations, using the transportation planning model to predict the operation of each of the multiple hydrogen generators and each of the multiple hydrogen stations.
  • a transportation planning unit that generates the transportation planning factor based on the transportation planning factor may be included.
  • the planning device may include a power generation amount prediction unit that generates a power generation amount prediction of renewable energy for each of a plurality of renewable energy power generation facilities using a power generation amount prediction model.
  • the operation prediction unit may generate the operation prediction of each of the plurality of hydrogen generators that use renewable energy, based on the power generation amount prediction of each of the plurality of renewable energy power generation facilities.
  • the planning device may further include an electricity price prediction unit that generates an electricity price prediction of the renewable energy using the electricity price prediction model.
  • the operation prediction unit may generate the operation prediction of each of the plurality of hydrogen generators based on the operation prediction factors including the electricity rate prediction.
  • the electricity rate prediction model is at least one of electricity rate, power demand, power supply, renewable energy power generation, weather information, and power generation prediction of renewable energy by the power generation prediction unit before the prediction target period.
  • the electricity price forecast of the renewable energy may be calculated based on the electricity rate prediction factors including one.
  • the planning apparatus may include an electricity price prediction model updating unit that updates the electricity price prediction model by learning using the actual value of the electricity price.
  • the operation prediction factor is the operation amount of the plurality of hydrogen generators, the storage amount of hydrogen in the plurality of hydrogen storage devices that store hydrogen generated by the plurality of hydrogen generation devices, and the plurality of hydrogen storage devices before the prediction target period. At least one of the hydrogen transportation amount, the hydrogen demand amount at each of the plurality of hydrogen stations, and the electricity price forecast for the forecast period.
  • the planning device may include an operation prediction model updating unit that updates the operation prediction model by learning using the actual values of the operation amounts of the plurality of hydrogen generation devices.
  • the planning device may include a consumption prediction unit that generates a hydrogen consumption prediction at each of a plurality of hydrogen stations using a consumption prediction model.
  • the demand forecasting unit may forecast hydrogen demand at each of the plurality of hydrogen stations based on a demand forecast factor including a hydrogen consumption forecast at each hydrogen station.
  • the consumption forecast model is supplied from each of the plurality of hydrogen stations, the demand amount of hydrogen at each of the plurality of hydrogen stations, the hydrogen consumption at each of the plurality of hydrogen stations, the weather information, and the plurality of hydrogen stations before the forecast period.
  • the hydrogen consumption prediction of the plurality of hydrogen stations during the prediction target period may be calculated based on the consumption prediction factor that further includes at least one of the factors related to the hydrogen usage amount of the service provided using hydrogen.
  • the planning apparatus may include a consumption prediction model updating unit that updates the consumption prediction model by learning using the actual value of the amount of hydrogen consumed at each of the plurality of hydrogen stations.
  • the demand forecasting model is based on a demand forecasting factor further including at least one of hydrogen demand at each of the plurality of hydrogen stations and hydrogen consumption at each of the plurality of hydrogen stations before the forecast period.
  • a hydrogen demand forecast may be calculated for each of the plurality of hydrogen stations during the forecast period.
  • the planning device may further include a demand prediction model updating unit that updates the demand prediction model by learning using the actual value of the demanded amount of hydrogen at each of the plurality of hydrogen stations.
  • the planning device may include a storage amount prediction unit that generates a storage amount prediction of hydrogen in each of the plurality of hydrogen storage devices that stores hydrogen generated by the plurality of hydrogen generation devices, using a storage amount prediction model.
  • the transportation planning unit uses a transportation planning model to predict a hydrogen storage amount in each of the plurality of hydrogen storage devices and each of the plurality of hydrogen storage devices by using the transportation planning model. It may be generated based on the transportation planning factors that are further included.
  • the storage amount prediction model is a storage amount of hydrogen of the plurality of hydrogen storage devices in the prediction target period, the operating amount of the plurality of hydrogen generators before the prediction target period, the storage amount of hydrogen in the plurality of hydrogen storage device, May be predicted based on a storage amount prediction factor including at least one of the transport amount of hydrogen from the hydrogen storage device, the demand amount of hydrogen at each of the plurality of hydrogen stations, and the operation prediction of the plurality of hydrogen generation devices.
  • the planning device may include a storage amount prediction model updating unit that updates the storage amount prediction model by learning using the actual values of the hydrogen storage amounts of the plurality of hydrogen storage devices.
  • the transportation planning factor is at least the operating amount of each of the plurality of hydrogen generators, the storage amount of hydrogen in each of the plurality of hydrogen storage devices, and the demand amount of hydrogen in each of the plurality of hydrogen stations before the prediction target period. May include one.
  • the planning device includes a plurality of hydrogen generators, a plurality of hydrogen storage devices, a transportation means between each of the plurality of hydrogen storage devices and each of the plurality of hydrogen stations, and a production of a cooperation system including the plurality of hydrogen stations.
  • a transportation plan model updating unit that updates the transportation plan model by learning based on an evaluation index that evaluates the property may be provided.
  • the evaluation index may be based on at least one of operating costs, sales, and profits of the cooperation system, and cost per unit amount of hydrogen supplied by the cooperation system.
  • the planning device uses the transportation prediction model based on the transportation prediction factor including at least one of the operation prediction of each of the plurality of hydrogen generators and the hydrogen demand prediction of each of the plurality of hydrogen stations to use the transportation prediction model.
  • a transport predictor may be provided that generates a transport forecast that is a forecast of a transport plan for transporting hydrogen between the device and the plurality of hydrogen stations.
  • the planning device uses the operation planning model to generate an operation plan for each of the plurality of hydrogen generators based on the operation planning factors including the hydrogen transport prediction between the plurality of hydrogen generators and the plurality of hydrogen stations.
  • An operation planning unit may be provided.
  • the planning apparatus may include an operation plan model updating unit that updates the operation plan model by learning based on the evaluation index.
  • the planning device uses the storage planning model to calculate the hydrogen storage plan in each of the plurality of hydrogen storage devices that store hydrogen generated by the plurality of hydrogen generation devices, using the storage planning model.
  • a storage planning unit may be provided that generates based on a storage planning factor including an operation prediction of the apparatus and a hydrogen transportation prediction between the plurality of hydrogen generation apparatuses and the plurality of hydrogen stations.
  • the planning apparatus may further include a storage plan model updating unit that updates the storage plan model by learning based on the evaluation index.
  • a planning device may include a demand prediction unit that generates a hydrogen demand forecast at each of the plurality of hydrogen stations using a demand forecast model.
  • the planning device uses the transport prediction model based on the transport prediction factor including the hydrogen demand forecast at each of the multiple hydrogen stations to generate hydrogen between the multiple hydrogen generators that generate hydrogen and between the multiple hydrogen stations.
  • a transportation prediction unit that generates a transportation prediction that is a prediction of a transportation plan to be transported may be provided.
  • the planning device uses the operation planning model to generate an operation plan for each of the plurality of hydrogen generators based on the operation planning factors including the hydrogen transport prediction between the plurality of hydrogen generators and the plurality of hydrogen stations.
  • An operation planning unit may be provided.
  • a planning method may include a step of generating an operation prediction of each of the plurality of hydrogen generation devices that generate hydrogen using an operation prediction model.
  • the planning method may include the step of generating a demand forecast of hydrogen at each of the plurality of hydrogen stations using a demand forecast model.
  • the planning method is to use a transportation planning model to create a transportation plan for transporting hydrogen generated by multiple hydrogen generators to multiple hydrogen stations. May be generated based on transportation planning factors including the demand forecast of
  • a planning program is provided.
  • the planning program is executed by a computer and causes the computer to function as an operation prediction unit that generates an operation prediction of each of a plurality of hydrogen generation devices that generate hydrogen using an operation prediction model.
  • the planning program is executed by a computer and causes the computer to function as a demand prediction unit that generates a hydrogen demand forecast at each of a plurality of hydrogen stations using a demand forecast model.
  • the planning program is executed by the computer, and the transportation plan for transporting the hydrogen generated by the plurality of hydrogen generators to the plurality of hydrogen stations is used by the computer to operate each of the plurality of hydrogen generators. It functions as a transportation planning unit that generates based on transportation planning factors including forecasts and demand forecasts for each of a plurality of hydrogen stations.
  • a planning method may include the step of generating a demand forecast of hydrogen at each of the plurality of hydrogen stations using a demand forecast model.
  • the planning method uses a transport prediction model based on a transport prediction factor including a hydrogen demand forecast at each of the plurality of hydrogen stations to generate hydrogen between the plurality of hydrogen generators that generate hydrogen and the plurality of hydrogen stations.
  • the method may include generating a transportation forecast that is a forecast of a transportation plan to transport.
  • the planning method uses an operation plan model to generate an operation plan for each of the plurality of hydrogen generators based on an operation plan factor including transportation prediction of hydrogen between the plurality of hydrogen generators and the plurality of hydrogen stations. Stages may be provided.
  • a planning program is provided.
  • the planning program is executed by a computer and causes the computer to function as a demand prediction unit that generates a hydrogen demand forecast at each of a plurality of hydrogen stations using a demand forecast model.
  • the planning program is executed by a computer, and the computer is configured to generate a plurality of hydrogen generators and a plurality of hydrogen generators that generate hydrogen by using a transportation prediction model based on a transportation prediction factor including a hydrogen demand prediction at each of the plurality of hydrogen stations. It functions as a transport prediction unit that generates a transport forecast that is a forecast of a transport plan for transporting hydrogen between the hydrogen stations of the above.
  • the planning program is executed by a computer, and the computer uses the operation planning model based on the operation planning factors including the hydrogen transportation prediction between the plurality of hydrogen generating apparatuses and the plurality of hydrogen stations. It functions as an operation planning unit that generates each operation plan of each.
  • 1 shows a system 10 according to this embodiment.
  • the structural example of the planning apparatus 70 which concerns on this embodiment is shown.
  • the detailed structural example of the prediction part 120 of the planning device 70 of this embodiment is shown.
  • the detailed structural example of the planning part 130 of the planning device 70 of this embodiment is shown.
  • An example of the flow of the planning device 70 according to the present embodiment is shown.
  • 1 illustrates an example computer 1900 in which aspects of the present embodiment may be embodied in whole or in part.
  • FIG. 1 shows a system 10 according to this embodiment.
  • the system 10 produces
  • the system 10 includes a plurality of renewable energy power generation facilities 20, a plurality of hydrogen generators 30, a plurality of hydrogen storage devices 40, a plurality of transportation means 50, a plurality of hydrogen stations 60, and a planning device 70. .
  • the plurality of renewable energy power generation facilities 20 are respectively connected to the hydrogen generation device 30 via the power transmission grid of the electric power system 80 or not.
  • the renewable energy power generation facilities 20a and 20b are connected to the hydrogen generators 30a and 30b, respectively, without passing through the power grid, and the renewable energy power generation facilities 20c and 20d are connected to the hydrogen via the power grid of the power grid 80.
  • the generators 30c and 30d are respectively connected.
  • the plurality of renewable energy power generation facilities 20 are facilities that generate electricity using renewable energy such as wind power, sunlight, heat, geothermal power, hydraulic power, and / or biomass.
  • the plurality of renewable energy power generation facilities 20 supply generated power to the hydrogen generation device 30 at the connection destination. Further, the plurality of renewable energy power generation facilities 20 may sell the generated power to the power grid 80.
  • the electric power system 80 supplies electric power to a large number of consumers via a power transmission network from, for example, one or a plurality of power plants that perform nuclear power generation, thermal power generation, and / or power generation using renewable energy. System.
  • the electricity charge for example, the power sale charge and the power purchase charge
  • the electricity charge can change every predetermined time, every day, every month, or the like.
  • the plurality of hydrogen generators 30 are connected to the hydrogen storage device 40, respectively.
  • the hydrogen generator 30 is, for example, a device that generates hydrogen by electrolysis using electric energy.
  • the hydrogen generator 30 may operate according to the plan generated by the planning device 70.
  • the hydrogen generator 30 operates by being supplied with power from the renewable energy power generation facility 20 and / or the power grid 80.
  • the plurality of hydrogen storage devices 40 may be, for example, tanks that store hydrogen generated by the hydrogen generation device 30.
  • the hydrogen storage device 40d may be directly connected to the hydrogen station 60 and supply the stored hydrogen to the hydrogen station 60 via a pipe or the like.
  • the plurality of hydrogen storage devices 40 may be connected to one hydrogen generation device 30.
  • the plurality of transportation means 50 are, for example, a trailer that stores and carries compressed hydrogen in a tank or the like, and a vehicle that pulls the trailer.
  • the plurality of transportation means 50 transports hydrogen between each of the plurality of hydrogen storage devices 40 and each of the plurality of hydrogen stations 60.
  • the plurality of hydrogen stations 60 is, for example, a facility that supplies hydrogen to a consumption means 90 such as a fuel cell vehicle that consumes hydrogen as fuel.
  • the hydrogen station 60 may have a storage facility for compressing and storing the hydrogen transported by the transportation means 50.
  • the planning device 70 includes at least one of the plurality of renewable energy power generation facilities 20, the plurality of hydrogen generators 30, the plurality of hydrogen storage devices 40, the plurality of transportation means 50, and the plurality of hydrogen stations 60, or at least one of the at least one. It may be connected to a management device or the like owned by the business operator. The planning device 70 generates and outputs a plan for operating a plurality of devices in the system 10 in cooperation.
  • the planning device 70 may be a computer such as a personal computer, a tablet computer, a smartphone, a workstation, a server computer, or a general-purpose computer, or may be a computer system in which a plurality of computers are connected.
  • the planning device 70 may generate a plan or the like by processing in a CPU, a GPU (Graphics Processing Unit), and / or a TPU (Tensor Processing Unit) of a computer. Further, the planning device 70 may perform various processes on the cloud provided by the server computer.
  • FIG. 2 shows a configuration example of the planning device 70 according to this embodiment.
  • the planning device 70 includes an acquisition unit 100, a storage unit 110, a prediction unit 120, a planning unit 130, and an output unit 140.
  • one or more management devices 150 in FIG. 2 are connected to the planning device 70 via a network or the like.
  • the one or more management devices 150 include at least one of the plurality of renewable energy power generation facilities 20, the plurality of hydrogen generators 30, the plurality of hydrogen storage devices 40, the plurality of transportation means 50, and the plurality of hydrogen stations 60. It may be a device or a device owned by the at least one business operator.
  • the one or more management devices 150 are at least one of the plurality of renewable energy power generation facilities 20, the plurality of hydrogen generators 30, the plurality of hydrogen storage devices 40, the plurality of transportation means 50, and the plurality of hydrogen stations 60.
  • Various data may be acquired from the above and supplied to the planning apparatus 70.
  • One or a plurality of management apparatuses 150 may supply the data input by the user of the management apparatus 150 to the planning apparatus 70.
  • the one or more management devices 150 may control the devices in the system 10 according to the plan received from the planning device 70.
  • the one or more management apparatuses 150 may display the plan or the like received from the planning apparatus 70.
  • the acquisition unit 100 may be connected to the management device 150 and the storage unit 110, and may acquire data used for learning from the management device 150.
  • the acquisition unit 100 may acquire and update the information for each predetermined period.
  • the acquisition unit 100 may acquire the information at almost the same or different periods and add or update the information, respectively, depending on the information to be acquired.
  • the acquisition unit 100 may be connected to a network or the like and acquire data via the network. When at least a part of the data to be acquired is stored in an external database or the like, the acquisition unit 100 may access the database or the like and acquire the data.
  • the acquisition unit 100 supplies the acquired data to the storage unit 110.
  • the storage unit 110 is connected to the prediction unit 120 and the planning unit 130, and stores the data acquired by the acquisition unit 100.
  • the storage unit 110 may store data processed by the planning device 70.
  • the storage unit 110 may store intermediate data, calculation results, parameters, and the like that are calculated or used by the planning apparatus 70 in the process of generating a plan.
  • the storage unit 110 may supply the stored data to the request source in response to a request from each component in the planning device 70.
  • the prediction unit 120 is connected to the planning unit 130, and generates a prediction result including at least one of an operation prediction, a demand prediction, a consumption prediction, a power generation amount prediction, an electricity price prediction, a storage amount prediction, and a transportation prediction.
  • the prediction unit 120 generates one or a plurality of learning models, learns and updates the learning model, and generates a prediction result based on the updated learning model.
  • the prediction unit 120 supplies the prediction result to the storage unit 110 or the planning unit 130.
  • the operation prediction is the operation amount of each of the plurality of hydrogen generation devices 30 that generate hydrogen in the future prediction period (for example, the operation rate of the hydrogen generation device 30, the operation period, the cumulative hydrogen generation amount, or the unit).
  • the amount of hydrogen produced per hour) may be included.
  • the demand forecast may include at least one of the cumulative demand of hydrogen at each of the plurality of hydrogen stations 60 and the demand of hydrogen for each hour, day, or month in the future forecast period.
  • the consumption prediction may include at least one of a cumulative hydrogen consumption amount in each of the plurality of hydrogen stations 60 and a hydrogen consumption amount per hour, day, or month in a future prediction period.
  • the demand amount is, for example, a required amount of hydrogen in the hydrogen station 60, and a predetermined buffer amount is supplied to the consuming means 90 so that the hydrogen storage amount in the hydrogen station 60 does not become zero. It may be the amount of hydrogen added to the amount. Further, the consumption amount may be the supply amount of hydrogen to the consumption means 90 in the hydrogen station 60.
  • the power generation amount prediction includes at least one of the cumulative amount of power generation of renewable energy and the amount of power generation of each hour, day, or month for each of the plurality of renewable energy power generation facilities 20 in the prediction period.
  • the electricity price forecast is a renewable energy that is supplied from the renewable energy power generation facility 20 to the hydrogen generator 30 through the power transmission grid of the power grid 80 or directly without the grid during the prediction period. It may include the electricity rate (power selling rate or power purchasing rate) of the power generated by.
  • the electric power system 80 purchases the electric power from the renewable energy power generation facility 20
  • the charge for the electric power to be purchased by the hydrogen generator 30 via the power transmission network of the electric power system 80 is renewable. It may be included in the electricity bill for energy.
  • the storage amount prediction indicates the storage amount of hydrogen (for example, the ratio of the storage amount to the maximum possible storage amount) in each of the plurality of hydrogen storage devices 40 that stores the hydrogen generated by the plurality of hydrogen generation devices 30 in the prediction period. May be included.
  • the transportation forecast is a forecast of a transportation plan for transporting hydrogen between the plurality of hydrogen generators 30 and the plurality of hydrogen stations 60 in the prediction period.
  • the planning unit 130 is connected to the output unit 140 and generates planning data including at least one of a transportation plan, an operation plan, and a storage plan.
  • the planning unit 130 generates one or a plurality of learning models, learns and updates the learning model, and generates planning data based on the updated learning model.
  • the planning unit 130 supplies the generated planning data to the storage unit 110 and the output unit 140.
  • the transportation plan includes a transportation route of each transportation means 50, a transportation distance of each transportation means 50, and a transportation distance of each transportation means 50 between the plurality of hydrogen generators 30 and the plurality of hydrogen stations 60 in the planning period.
  • a plan may be included that specifies at least one of a transportation time, a transportation cost for each transportation means 50, a number of transportation means 50, and a type of each transportation means 50.
  • the operation plan may include a plan that specifies at least one of the operation rate, the hydrogen generation amount, the operation period, and the operation time zone of each of the plurality of hydrogen generation devices 30 in the plan target period.
  • the storage plan is a time-dependent change in the storage amount of hydrogen in each of the plurality of hydrogen storage devices 40 that store hydrogen generated by the plurality of hydrogen generation devices 30, the minimum storage amount of hydrogen, and the maximum storage amount of hydrogen in the planning period.
  • a plan may be included that specifies at least one of the reserves.
  • the output unit 140 is connected to the management device 150 and outputs plan data to the management device 150.
  • the planning device 70 of the present embodiment described above it is possible to reduce the supply cost by generating an appropriate plan based on the model updated by learning and supplying hydrogen according to the plan.
  • FIG. 3 shows a detailed configuration example of the prediction unit 120 of the planning device 70 of this embodiment.
  • the prediction unit 120 includes an operation prediction model generation unit 200, an operation prediction model update unit 210, and an operation prediction unit 220, and generates the operation prediction of each of the hydrogen generation devices 30 that generate hydrogen.
  • the prediction unit 120 includes a demand prediction model generation unit 230, a demand prediction model update unit 240, and a demand prediction unit 250, and generates a hydrogen demand prediction at each of the plurality of hydrogen stations 60.
  • the prediction unit 120 includes a power generation prediction model generation unit 260, a power generation prediction model update unit 270, and a power generation prediction unit 280, and generates renewable energy for each of the plurality of renewable energy power generation facilities 20. Generate a quantity forecast.
  • the prediction unit 120 includes an electricity price prediction model generation unit 290, an electricity price prediction model update unit 300, and an electricity price prediction unit 310, and generates an electricity price prediction of renewable energy.
  • the prediction unit 120 includes a consumption prediction model generation unit 320, a consumption prediction model update unit 330, and a consumption prediction unit 340, and generates a hydrogen consumption prediction at each of the plurality of hydrogen stations 60.
  • the prediction unit 120 includes a storage amount prediction model generation unit 350, a storage amount prediction model update unit 360, and a storage amount prediction unit 370, and stores a plurality of hydrogen storage units that store the hydrogen generated by the plurality of hydrogen generation devices 30. Generate hydrogen storage forecasts in each of the devices 40.
  • the prediction unit 120 includes a transportation prediction model generation unit 380, a transportation prediction model update unit 390, and a transportation prediction unit 400, and transports hydrogen between the plurality of hydrogen generation devices 30 and the plurality of hydrogen stations 60. Generate transport forecasts, which are forecasts for the plan.
  • the storage unit 110 stores prediction factors including an operation prediction factor, a demand prediction factor, a power generation amount prediction factor, an electricity rate prediction factor, a consumption prediction factor, a storage amount prediction factor, and a transportation prediction factor.
  • the operation prediction factor may include information on the operation of the hydrogen generator 30.
  • the operation prediction factor is the operation amount of the plurality of hydrogen generation devices 30, the storage amount of hydrogen in the plurality of hydrogen storage devices 40 that stores the hydrogen generated by the plurality of hydrogen generation devices 30, and the plurality of hydrogens before the prediction target period. At least one of the transportation amount of hydrogen from the storage device 40, the demand amount of hydrogen at each of the plurality of hydrogen stations 60, the demand forecast for the prediction target period, and the electricity charge forecast for the prediction target period may be included.
  • the operation predicting factor includes the power generation amount of the renewable energy power generation facility 20 connected to the hydrogen generator 30 and the hydrogen generation efficiency of the hydrogen generator 30 (for example, per unit power or per unit time) before the prediction target period. At least one of the generation amount of hydrogen) and the power generation amount prediction in the prediction target period of the renewable energy power generation facility 20 connected to the hydrogen generation device 30 may be further included. Further, the operation prediction factor may include virtual data calculated from the physical model of the hydrogen generator 30.
  • the demand forecasting factor may include information about the demanded amount of hydrogen at the hydrogen station 60.
  • the demand prediction factor is at least the hydrogen consumption amount at each hydrogen station 60, the hydrogen demand amount at each of the plurality of hydrogen stations 60, and the hydrogen consumption forecast at each of the plurality of hydrogen stations 60 before the prediction target period. May include one.
  • the demand forecasting factor is the number of consumption means 90 using the hydrogen station 60 before the forecast target period, weather information (for example, weather information before the forecast target period, or weather forecast for the forecast target period), and operation. It may further include at least one of the operation predictions of the prediction target period by the prediction unit 220.
  • the weather information may include at least one of wind speed, wind direction, sunny, rain, temperature, wave height, sunshine duration, and the like.
  • the power generation amount prediction factor may include information on the power generation amount of the renewable energy power generation facility 20.
  • the power generation amount prediction factor is the power generation amount (for example, power generation efficiency) of each renewable energy power generation facility 20, the power supply amount of each renewable energy power generation facility 20, and each renewable energy power generation facility 20 before the prediction target period. May include at least one of the amount of electric power purchased or the amount of electric power sold, and the selling price or purchasing price of each renewable energy power generation facility 20.
  • the power generation amount prediction factor is the type of the renewable energy power generation facility 20 (for example, the type of renewable energy used for power generation), weather information (for example, weather information before the prediction target period, or weather prediction for the prediction target period). ), And at least one of the usage periods of the renewable energy power generation facility 20. Further, the power generation amount prediction factor may include virtual data calculated from the physical model of the renewable energy power generation facility 20.
  • the electricity price prediction factor may include information related to the electricity price when the hydrogen generator 30 purchases electricity.
  • the electricity rate predictor is an electricity rate, a power demand, a power supply, a renewable energy generation amount, weather information (for example, weather information before the forecast period, or weather in the forecast period before the forecast period). Prediction), and at least one of the power generation amount prediction of the renewable energy in the prediction target period by the power generation amount prediction unit 280.
  • the consumption predictor may include information regarding the consumption of hydrogen at the hydrogen station 60.
  • the consumption prediction factor is a hydrogen demand amount at each of the plurality of hydrogen stations 60 before the prediction target period, a hydrogen consumption amount at each of the plurality of hydrogen stations 60, and weather information (for example, the weather before the prediction target period). Information, or weather forecast for the forecast target period), and at least one of the factors related to the hydrogen usage amount of the service provided by using the hydrogen supplied from each of the plurality of hydrogen stations 60.
  • Factors relating to the amount of hydrogen used for the services provided by using the hydrogen supplied from each of the plurality of hydrogen stations 60 include, for example, operation information of the fuel cell bus, which is the consuming means 90, and each of the plurality of hydrogen stations 60. It may include at least one of the number of consuming means 90 to be used and the supply amount of hydrogen to each consuming means 90 in the hydrogen station 60.
  • the storage amount prediction factor may include information about the storage amount of hydrogen in the hydrogen storage device 40.
  • the storage amount prediction factor includes the operating amount of the plurality of hydrogen generation devices 30, the storage amount of hydrogen in the plurality of hydrogen storage devices 40, the transport amount of hydrogen from the plurality of hydrogen storage devices 40, and At least one of the demanded amount of hydrogen in each of the hydrogen stations 60 and the operation prediction of the plurality of hydrogen generators 30 during the prediction target period may be included.
  • the storage amount prediction factor is at least one of the transportable amount of hydrogen in each transportation means 50, the number of times hydrogen is supplied from the hydrogen storage device 40 to the transportation means 50, and the hydrogen supply date and time from the hydrogen storage device 40 to the transportation means 50. May be included.
  • the transportation predictor may include information on transportation of hydrogen between the plurality of hydrogen generators 30 and the plurality of hydrogen stations 60.
  • the transportation prediction factor may include at least one of an operation prediction of each of the plurality of hydrogen generators 30 and a hydrogen demand prediction of each of the plurality of hydrogen stations 60.
  • the transportation prediction factor is the date and time of hydrogen supply to the hydrogen station 60 by the transportation means 50 before the prediction target period, the number of times of hydrogen supply to the hydrogen station 60 by the transportation means 50, the number of transportation means 50, the type of each transportation means 50, At least one of the transportable amount of hydrogen of each transportation means 50, the transportation cost of each transportation means 50, the transportation time of each transportation means 50, the available time zone of the plurality of transportation means 50, and the arrangement of the plurality of transportation means 50. May include one.
  • At least one of the operation forecasting factor, the demand forecasting factor, the power generation forecasting factor, the electricity price forecasting factor, the consumption forecasting factor, the storage amount forecasting factor, and the transport forecasting factor may be time-series information at approximately fixed time intervals. At least one of the operation predictor, the demand predictor, the power generation predictor, the electricity rate predictor, the consumption predictor, the storage predictor, and the transport predictor may be added or updated over time. At least one of the operation predicting factor, the demand predicting factor, the power generation predicting factor, the electricity rate predicting factor, the consumption predicting factor, the storage predicting factor, and the transport predicting factor are prediction results generated by the planning device 70, and plan data. May be further included.
  • At least one of the operation predicting factor, the demand predicting factor, the power generation predicting factor, the electricity rate predicting factor, the consumption predicting factor, the storage predicting factor, and the transport predicting factor is supplied from an external database or the management device 150.
  • the information acquired by the acquisition unit 100 may be included.
  • the operation prediction model generation unit 200 is connected to the storage unit 110 and the operation prediction model update unit 210.
  • the operation prediction model generation unit 200 generates an operation prediction model that generates an operation prediction of the hydrogen generator 30 based on the operation prediction factor.
  • the operation prediction model generation unit 200 may generate an operation prediction model by a process called pre-learning or off-line learning using information past the prediction target period.
  • the operation prediction model generation unit 200 generates an operation prediction model using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixture model, and hidden Markov model. If, for example, a model having LSTM (Long short-term memory), RNN (Recurrent Neural Network), and other memory is used as the operation prediction model, the operation of the hydrogen generator 30 is predicted from the time series of factors. You can also do it.
  • the operation prediction model generation unit 200 supplies the generated operation prediction model to the operation prediction model update unit 210.
  • the operation prediction model updating unit 210 is connected to the storage unit 110 and the operation prediction unit 220.
  • the operation prediction model updating unit 210 updates the operation prediction model by learning using learning data including the actual values of the operation amounts of the plurality of hydrogen generation devices 30.
  • the operation prediction model updating unit 210 may update to a new operation prediction model by learning, for example, at each predetermined update period. Instead of this, the operation prediction model updating unit 210 sets the operation prediction model according to various conditions such as learning a predetermined number of times, or an error difference due to learning falling below a predetermined threshold value. You may update.
  • the operation prediction model updating unit 210 may learn the operation prediction model by a process called adaptive learning or online learning.
  • the operation prediction model updating unit 210 learns the operation prediction model by executing reinforcement learning using an arbitrary machine learning model as an identification model, for example. By performing such machine learning, the operation prediction model updating unit 210 predicts the operation amount and the like of the hydrogen generator 30 according to the operation prediction factor with the accuracy according to the model to which the operation prediction factor is input. You will be able to.
  • the operation prediction model updating unit 210 learn by further using information that is later in time than the information of the operation prediction factor used by the operation prediction model generation unit 200 to generate the operation prediction model.
  • the operation prediction model updating unit 210 may update the operation prediction model by learning, for example, based on the value of the operation prediction factor in the past period and the actual value of the operation amount of the hydrogen generator 30 after the past period.
  • the operation prediction model updating unit 210 learns the operation prediction model using the information of the operation prediction factors updated by the actual operation of the hydrogen generator 30.
  • the operation prediction model updating unit 210 may perform learning of the operation prediction model in response to the update of the operation prediction factor information.
  • the operation prediction model update unit 210 may execute learning one or more times during the update period.
  • the operation prediction model updating unit 210 supplies the updated operation prediction model to the operation prediction unit 220.
  • the operation prediction unit 220 is connected to the storage unit 110.
  • the operation prediction unit 220 generates an operation prediction of each of the hydrogen generation devices 30 that generate hydrogen using an operation prediction model.
  • the operation prediction unit 220 may generate an operation prediction of each of the plurality of hydrogen generation devices 30 that use renewable energy, based on each power generation amount prediction of each of the plurality of renewable energy power generation facilities 20.
  • the hydrogen generator 30, which uses renewable energy is connected to the renewable energy power generation facility 20 via a power transmission network of the power system 80, and is supplied with power via the power transmission network, for example.
  • the hydrogen generation device 30 may be directly connected to the renewable energy power generation facility 20 without a power grid of the power system 80 and supplied with power from the renewable energy power generation facility 20.
  • the operation prediction unit 220 may generate the operation prediction of each of the plurality of hydrogen generation devices 30 based on the operation prediction factors including the electricity price prediction.
  • the operation prediction unit 220 can generate a highly accurate operation prediction for the hydrogen generator 30 that operates according to the fluctuating electricity rate by using the electricity rate prediction for the estimation.
  • the operation prediction unit 220 predicts the operation of the hydrogen generation device 30 in the predetermined period in the future, for example, for each predetermined period.
  • the operation prediction unit 220 may predict the operation amount of the hydrogen generator 30 using the operation prediction model and the information of the operation prediction factor.
  • the operation prediction unit 220 predicts the operation of the hydrogen generator 30, for example, by applying the information of the operation prediction factor in the period immediately before the period to be predicted to the operation prediction model.
  • the operation prediction unit 220 supplies the prediction result to the storage unit 110, and stores it as at least one of a transportation prediction factor, a storage amount prediction factor, a transportation planning factor, and a storage planning factor, for example.
  • the operation prediction unit 220 may directly supply the prediction result to another configuration of the prediction unit 120 or the planning unit 130.
  • the demand forecast model generation unit 230 is connected to the storage unit 110 and the demand forecast model update unit 240.
  • the demand prediction model generation unit 230 generates a demand prediction model that generates a hydrogen demand prediction at the hydrogen station 60 based on the demand prediction factor.
  • the demand forecasting model is based on a demand forecasting factor including at least one of the demanded amount of hydrogen in each of the plurality of hydrogen stations 60 and the consumed amount of hydrogen in each of the plurality of hydrogen stations 60 before the forecast period.
  • the model may be a model for calculating the demand forecast of hydrogen for each of the plurality of hydrogen stations 60 in the prediction target period.
  • the demand prediction model generation unit 230 may generate a demand prediction model by a process called pre-learning or offline learning using information past the prediction target period.
  • the demand prediction model generation unit 230 generates a demand prediction model by using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixture model, hidden Markov model, or the like. Further, for example, if a model having memory such as LSTM, RNN, and the like is used as the demand prediction model, the demand amount of hydrogen at the hydrogen station 60 can be predicted from the time series of factors.
  • the demand forecast model generation unit 230 supplies the generated demand forecast model to the demand forecast model update unit 240.
  • the demand forecast model update unit 240 is connected to the storage unit 110 and the demand forecast unit 250.
  • the demand prediction model updating unit 240 updates the demand prediction model by learning using learning data including the actual value of the demanded amount of hydrogen in each of the plurality of hydrogen stations 60.
  • the demand forecast model update unit 240 may update the new demand forecast model by learning, for example, at each predetermined update period. Instead of this, the demand prediction model update unit 240 sets the demand prediction model according to various conditions such as learning a predetermined number of times, or an error difference due to learning falling below a predetermined threshold value. You may update.
  • the demand forecast model updating unit 240 may learn the demand forecast model by a process called adaptive learning or online learning.
  • the demand prediction model updating unit 240 learns the demand prediction model by executing reinforcement learning using, for example, an arbitrary machine learning model as an identification model. By performing such machine learning, the demand prediction model updating unit 240 receives the demand prediction factor as an input and predicts the demand amount of the hydrogen station 60 or the like according to the demand prediction factor with accuracy according to the model to be applied. Will be able to.
  • the demand forecast model update unit 240 further learns by further using information that is later in time than the information of the demand forecast factor used by the demand forecast model generation unit 230 to generate the demand forecast model.
  • the demand prediction model updating unit 240 may update the demand prediction model by learning, for example, based on the value of the demand prediction factor in the past period and the actual value of the demand amount of the hydrogen station 60 after the past period.
  • the demand forecast model updating unit 240 learns the demand forecast model using the information of the demand forecast factor updated by the actual hydrogen demand.
  • the demand prediction model updating unit 240 may execute the learning of the demand prediction model in response to the update of the information of the demand prediction factor.
  • the demand prediction model updating unit 240 may execute learning one or more times during the update period.
  • the demand forecast model updating unit 240 supplies the updated demand forecast model to the demand forecasting unit 250.
  • the demand prediction unit 250 is connected to the storage unit 110.
  • the demand prediction unit 250 generates a hydrogen demand prediction for each of the plurality of hydrogen stations 60 using a demand prediction model.
  • the demand prediction unit 250 may predict the demand forecast of hydrogen at each of the plurality of hydrogen stations 60 based on a demand forecast factor including a hydrogen consumption forecast at each hydrogen station 60.
  • the demand prediction unit 250 predicts, for example, for every predetermined period, the hydrogen demand amount of the hydrogen station 60 in the future for the predetermined period.
  • the demand prediction unit 250 may predict the demanded amount of hydrogen at the hydrogen station 60 using the demand prediction model and the information of the demand prediction factor.
  • the demand prediction unit 250 predicts the demand quantity of the hydrogen station 60 by applying the information of the demand prediction factor in the period immediately before the period to be predicted to the demand prediction model, for example.
  • the demand prediction unit 250 supplies the prediction result to the storage unit 110, and stores it as at least one of a transportation prediction factor and a transportation planning factor, for example. Further, the demand prediction unit 250 may directly supply the prediction result to another configuration of the prediction unit 120 or the planning unit 130.
  • the power generation amount prediction model generation unit 260 is connected to the storage unit 110 and the power generation amount prediction model update unit 270.
  • the power generation amount prediction model generation unit 260 generates a power generation amount prediction model that generates a power generation amount prediction of renewable energy for each of the plurality of renewable energy power generation facilities 20 based on a power generation amount prediction factor.
  • the power generation prediction model is a model for calculating the power generation prediction of renewable energy for each of the plurality of renewable energy power generation facilities 20 in the prediction target period based on the power generation prediction factor before the prediction target period. Good.
  • the power generation amount prediction model generation unit 260 may generate a power generation amount prediction model by a process called pre-learning or off-line learning using information past the prediction target period.
  • the power generation amount prediction model generation unit 260 generates a power generation amount prediction model by using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixture model, hidden Markov model, or the like.
  • the power generation of the renewable energy power generation facility 20 can be predicted from the time series of factors.
  • the power generation amount prediction model generation unit 260 supplies the generated power generation amount prediction model to the power generation amount prediction model update unit 270.
  • the power generation amount prediction model update unit 270 is connected to the storage unit 110 and the power generation amount prediction unit 280.
  • the power generation amount prediction model updating unit 270 updates the power generation amount prediction model by learning using learning data including the actual value of the power generation amount in each of the plurality of renewable energy power generation facilities 20.
  • the power generation amount prediction model update unit 270 may update the power generation amount prediction model with a new power generation amount prediction model by learning for each predetermined update period. Instead of this, the power generation amount prediction model updating unit 270 predicts the power generation amount according to various conditions, such as learning a predetermined number of times, or an error difference due to learning falling below a predetermined threshold value.
  • the model may be updated.
  • the power generation prediction model updating unit 270 may learn the power generation prediction model by a process called adaptive learning or online learning.
  • the power generation amount prediction model updating unit 270 learns the power generation amount prediction model by executing reinforcement learning using, for example, an arbitrary machine learning model as the identification model. By performing such machine learning, the power generation amount prediction model updating unit 270 receives the power generation amount prediction factor as an input and applies the power generation amount of the renewable energy power generation facility 20 according to the power generation amount prediction factor to the model to be applied. It becomes possible to make predictions according to the accuracy.
  • the power generation prediction model updating unit 270 further learns by further using information that is later in time than the information of the power generation prediction factor used by the power generation prediction model generation unit 260 to generate the power generation prediction model.
  • the power generation amount prediction model updating unit 270 learns the power generation amount prediction model based on, for example, the value of the power generation amount prediction factor in the past period and the actual value of the power generation amount of the renewable energy power generation facility 20 after the past period. You may update.
  • the power generation amount prediction model update unit 270 learns the power generation amount prediction model using the information of the power generation amount prediction factor updated by the actual power generation of the renewable energy power generation facility 20.
  • the power generation amount prediction model updating unit 270 may execute learning of the power generation amount prediction model in response to the information of the power generation amount prediction factor being updated.
  • the power generation prediction model updating unit 270 may execute learning one or more times during the update period.
  • the power generation amount prediction model updating unit 270 supplies the updated power generation amount prediction model to the power generation amount prediction unit 280.
  • the power generation amount prediction unit 280 is connected to the storage unit 110.
  • the power generation amount prediction unit 280 generates a power generation amount prediction of renewable energy for each of the plurality of renewable energy power generation facilities 20 using a power generation amount prediction model.
  • the power generation amount prediction unit 280 predicts, for example, for each predetermined period, the power generation amount of the renewable energy power generation facility 20 in the predetermined period in the future.
  • the power generation amount prediction unit 280 may predict the power generation amount of the renewable energy power generation facility 20 using the power generation amount prediction model and the information of the power generation amount prediction factor.
  • the power generation amount prediction unit 280 predicts the power generation amount of the renewable energy power generation facility 20 by applying the information of the power generation amount prediction factor in the period immediately before the period to be predicted to the power generation amount prediction model, for example.
  • the power generation amount prediction unit 280 supplies the prediction result to the storage unit 110 and stores it as at least one of an electricity rate prediction factor and an operation prediction factor, for example.
  • the power generation amount prediction unit 280 may directly supply the prediction result to another configuration of the prediction unit 120 or the planning unit 130.
  • the electricity price prediction model generation unit 290 is connected to the storage unit 110 and the electricity price prediction model update unit 300.
  • the electricity rate prediction model generation unit 290 generates an electricity rate prediction model that generates an electricity rate prediction of renewable energy based on the electricity rate prediction factor before the prediction target period.
  • the electricity price prediction model generation unit 290 may generate an electricity price prediction model by a process called pre-learning or offline learning using information past the prediction target period.
  • the electricity price prediction model generation unit 290 generates an electricity price prediction model using, for example, regression analysis, Bayesian inference, a neural network, a Gaussian mixture model, a hidden Markov model, or the like.
  • an LSTM, RNN, or other model having memory is used as the electricity price prediction model, the electricity price of the renewable energy can be predicted from the time series of the factors.
  • the electricity charge prediction model generation unit 290 supplies the generated electricity charge prediction model to the electricity charge prediction model update unit 300.
  • the electricity charge prediction model updating unit 300 is connected to the storage unit 110 and the electricity charge prediction unit 310.
  • the electricity price prediction model updating unit 300 may update the electricity price prediction model by learning using the learning data including the actual value of the electricity price.
  • the electricity price prediction model updating unit 300 may update a new electricity price prediction model by learning for each predetermined update period. Instead of this, the electricity price prediction model update unit 300 predicts the electricity price according to various conditions such as learning a predetermined number of times, or an error difference due to learning falling below a predetermined threshold value.
  • the model may be updated.
  • the electricity price prediction model updating unit 300 may learn the electricity price prediction model by a process called adaptive learning or online learning.
  • the electricity charge prediction model updating unit 300 learns the electricity charge prediction model by executing reinforcement learning using an arbitrary machine learning model as an identification model, for example. By performing such machine learning, the electricity price prediction model updating unit 300 receives the electricity price prediction factor as an input, and generates the electricity price of the renewable energy according to the electricity price prediction factor with accuracy according to the applied model. Be able to predict.
  • the electricity price prediction model update unit 300 further learns by further using information that is later in time than the information of the electricity price prediction factor used by the electricity price prediction model generation unit 290 to generate the electricity price prediction model.
  • the electricity price prediction model updating unit 300 may update the electricity price prediction model by learning, for example, based on the value of the electricity price prediction factor in the past period and the actual value of the electricity price after the past period.
  • the electricity price prediction model updating unit 300 learns the electricity price prediction model using the information of the electricity price prediction factor updated by the transition of the actual electricity price.
  • the electricity charge prediction model updating unit 300 may execute the learning of the electricity charge prediction model in response to the update of the information of the electricity charge prediction factor.
  • the electricity price prediction model update unit 300 may perform learning one or more times during the update period.
  • the electricity charge prediction model updating unit 300 supplies the updated electricity charge prediction model to the electricity charge prediction unit 310.
  • the electricity price prediction unit 310 is connected to the storage unit 110.
  • the electricity bill prediction unit 310 uses the electricity bill prediction model to generate an electricity bill prediction for renewable energy.
  • the electricity price prediction unit 310 predicts, for example, for each predetermined period, the future electricity price in the predetermined period.
  • the electricity charge prediction unit 310 may predict the electricity charge of the renewable energy using the electricity charge prediction model and the information of the electricity charge prediction factor.
  • the electricity charge prediction unit 310 predicts the electricity charge by applying, for example, the information of the electricity charge prediction factor in the period immediately before the period to be predicted to the electricity charge prediction model.
  • the electricity price prediction unit 310 supplies the prediction result to the storage unit 110, and stores it as at least one of an operation prediction factor and an operation plan factor, for example.
  • the electricity price prediction unit 310 may directly supply the prediction result to another configuration of the prediction unit 120 or the planning unit 130.
  • the consumption prediction model generation unit 320 is connected to the storage unit 110 and the consumption prediction model update unit 330.
  • the consumption prediction model generation unit 320 generates a consumption prediction model that calculates a hydrogen consumption prediction of the plurality of hydrogen stations 60 during the prediction target period based on the consumption prediction factor before the prediction target period.
  • the consumption prediction model generation unit 320 may generate a consumption prediction model by a process called pre-learning or offline learning using information past the prediction target period.
  • the consumption prediction model generation unit 320 generates a consumption prediction model using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixture model, hidden Markov model, or the like. Further, for example, if a model having a memory such as LSTM, RNN, and the like is used as the consumption prediction model, it is possible to predict the hydrogen consumption at the hydrogen station 60 from the time series of the factors.
  • the consumption prediction model generation unit 320 supplies the generated consumption prediction model to the consumption prediction model update unit 330.
  • the consumption prediction model updating unit 330 is connected to the storage unit 110 and the consumption prediction unit 340.
  • the consumption prediction model update unit 330 may update the consumption prediction model by learning using learning data including the actual value of the amount of hydrogen consumed in each of the plurality of hydrogen stations 60.
  • the consumption prediction model updating unit 330 may update the new consumption prediction model by learning, for example, for each predetermined update period. Instead of this, the consumption prediction model update unit 330 sets the consumption prediction model according to various conditions such as learning a predetermined number of times or an error difference due to learning falling below a predetermined threshold value. You may update.
  • the consumption prediction model updating unit 330 may learn the consumption prediction model by a process called adaptive learning or online learning.
  • the consumption prediction model update unit 330 learns the consumption prediction model by executing reinforcement learning using, for example, an arbitrary machine learning model as an identification model. By performing such machine learning, the consumption prediction model updating unit 330 predicts the consumption amount of hydrogen in the hydrogen station 60 according to the consumption prediction factor with the accuracy according to the model to which the consumption prediction factor is input. You will be able to.
  • the consumption prediction model update unit 330 learn by further using information that is later in time than the information of the consumption prediction factor used by the consumption prediction model generation unit 320 to generate the consumption prediction model.
  • the consumption prediction model updating unit 330 may update the consumption prediction model by learning, for example, based on the value of the consumption prediction factor in the past period and the actual value such as the hydrogen consumption amount after the past period.
  • the consumption prediction model updating unit 330 learns the consumption prediction model using the information of the consumption prediction factor updated by the transition of the actual hydrogen consumption amount.
  • the consumption prediction model update unit 330 may perform learning of the consumption prediction model in response to the information on the consumption prediction factor being updated.
  • the consumption prediction model update unit 330 may perform learning one or more times during the update period.
  • the consumption prediction model update unit 330 supplies the updated consumption prediction model to the consumption prediction unit 340.
  • the consumption prediction unit 340 is connected to the storage unit 110.
  • the consumption prediction unit 340 generates a hydrogen consumption prediction in each of the plurality of hydrogen stations 60 using a consumption prediction model.
  • the consumption prediction unit 340 predicts, for example, for every predetermined period, hydrogen consumption in the hydrogen station 60 in the predetermined period in the future.
  • the consumption prediction unit 340 may predict the consumption of hydrogen at the hydrogen station 60 using the consumption prediction model and the information of the consumption prediction factor. For example, the consumption prediction unit 340 applies the information of the consumption prediction factor in the period immediately before the period to be predicted to the consumption prediction model to predict the hydrogen consumption amount in the hydrogen station 60.
  • the consumption prediction unit 340 supplies the prediction result to the storage unit 110 and stores it as, for example, a demand prediction factor. Moreover, the consumption prediction unit 340 may directly supply the prediction result to another configuration of the prediction unit 120 or the planning unit 130.
  • the storage amount prediction model generation unit 350 is connected to the storage unit 110 and the storage amount prediction model update unit 360.
  • the storage amount prediction model generation unit 350 generates a storage amount prediction model that calculates the storage amount prediction based on the storage amount prediction factor.
  • the storage amount prediction model may be a model that predicts the storage amount of hydrogen in the plurality of hydrogen storage devices 40 in the prediction target period based on the storage amount prediction factor before the prediction target period.
  • the storage amount prediction model generation unit 350 may generate a storage amount prediction model by a process called pre-learning or off-line learning using information past the prediction target period.
  • the storage amount prediction model generation unit 350 generates a storage amount prediction model using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixture model, hidden Markov model, and the like. Further, if a model having memory such as LSTM, RNN, and the like is used as the storage amount prediction model, the storage amount of the hydrogen storage device 40 can be predicted from the time series of the factors.
  • the storage amount prediction model generation unit 350 supplies the generated storage amount prediction model to the storage amount prediction model update unit 360.
  • the storage amount prediction model update unit 360 is connected to the storage unit 110 and the storage amount prediction unit 370.
  • the storage amount prediction model updating unit 360 may update the storage amount prediction model by learning using learning data including the actual values of the hydrogen storage amounts of the plurality of hydrogen storage devices 40.
  • the storage amount prediction model updating unit 360 may update the storage amount prediction model by learning, for example, at each predetermined update period. Instead of this, the storage amount prediction model update unit 360 predicts the storage amount according to various conditions such as that learning is performed a predetermined number of times, or that an error difference due to learning is below a predetermined threshold value.
  • the model may be updated.
  • the storage amount prediction model updating unit 360 may learn the storage amount prediction model by a process called adaptive learning or online learning.
  • the storage amount prediction model updating unit 360 learns the storage amount prediction model by executing reinforcement learning using, for example, an arbitrary machine learning model as an identification model. By performing such machine learning, the storage amount prediction model updating unit 360 receives the storage amount prediction factor as an input, and stores the hydrogen storage amount of the hydrogen storage device 40 according to the storage amount prediction factor according to the applied model. It becomes possible to predict with high accuracy.
  • the storage amount prediction model update unit 360 further learns by further using information that is later in time than the information of the storage amount prediction factor used by the storage amount prediction model generation unit 350 to generate the storage amount prediction model.
  • the storage amount prediction model updating unit 360 learns the storage amount prediction model based on, for example, the value of the storage amount prediction factor in the past period and the actual value of the hydrogen storage amount of the hydrogen storage device 40 after the past period. You may update.
  • the storage amount prediction model updating unit 360 learns the storage amount prediction model using the information of the storage amount prediction factor updated by the transition of the actual storage amount of hydrogen.
  • the storage amount prediction model updating unit 360 may execute the learning of the storage amount prediction model in response to the information of the storage amount prediction factor being updated.
  • the storage amount prediction model update unit 360 may execute learning one or more times during the update period.
  • the storage amount prediction model update unit 360 supplies the updated storage amount prediction model to the storage amount prediction unit 370.
  • the storage amount prediction unit 370 is connected to the storage unit 110.
  • the storage amount prediction unit 370 generates a hydrogen storage amount prediction in each of the plurality of hydrogen storage devices 40 that stores hydrogen generated by the plurality of hydrogen generation devices 30, using the updated storage amount prediction model.
  • the storage amount prediction unit 370 predicts the storage amount of hydrogen in the hydrogen storage device 40 in the future for the predetermined period, for example, for each predetermined period.
  • the storage amount prediction unit 370 may predict the storage amount of hydrogen in the hydrogen storage device 40 using the storage amount prediction model and the information on the storage amount prediction factor.
  • the storage amount prediction unit 370 predicts the storage amount of hydrogen of the hydrogen storage device 40, for example, by applying the information of the storage amount prediction factor in the period immediately before the period to be predicted to the storage amount prediction model.
  • the storage amount prediction unit 370 supplies the prediction result to the storage unit 110 and stores it as at least one of a transportation planning factor and a storage planning factor, for example.
  • the storage amount prediction unit 370 may directly supply the prediction result to another configuration of the prediction unit 120 or the planning unit 130.
  • the transportation prediction model generation unit 380 is connected to the storage unit 110 and the transportation prediction model update unit 390.
  • the transportation prediction model generation unit 380 predicts a transportation plan for transporting hydrogen between the plurality of hydrogen generation devices 30 and the plurality of hydrogen stations 60 during the prediction target period based on the transport prediction factor before the prediction target period.
  • the transportation prediction model generation unit 380 may generate a transportation prediction model by a process called pre-learning or off-line learning using information past the prediction target period.
  • the transportation prediction model generation unit 380 generates a transportation prediction model using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixture model, hidden Markov model, or the like. Moreover, if a model having a memory such as LSTM, RNN, and the like is used as the transportation prediction model, the transportation plan can be predicted from a time series of factors.
  • the transportation prediction model generation unit 380 supplies the generated transportation prediction model to the transportation prediction model updating unit 390.
  • the transportation prediction model updating unit 390 is connected to the storage unit 110 and the transportation prediction unit 400.
  • the transportation prediction model updating unit 390 updates the transportation prediction model by learning using learning data including the actual value of the transportation plan (for example, the actual value of the executed transportation plan or the actually executed transportation). Good.
  • the transportation prediction model updating unit 390 may update the transportation prediction model by learning, for example, in each predetermined updating period. Instead of this, the transportation prediction model updating unit 390 sets the transportation prediction model in accordance with various conditions such as learning a predetermined number of times or an error difference due to learning falling below a predetermined threshold value. You may update.
  • the transportation prediction model updating unit 390 may learn the transportation prediction model by a process called adaptive learning or online learning.
  • the transportation prediction model updating unit 390 learns the transportation prediction model by executing reinforcement learning using an arbitrary machine learning model as an identification model, for example. By performing such machine learning, the transportation prediction model update unit 390 can predict the transportation plan according to the transportation prediction factor with the accuracy according to the applied model by inputting the transportation prediction factor. Become.
  • the transportation prediction model update unit 390 further learns by further using information that is later in time than the information of the transportation prediction factor used by the transportation prediction model generation unit 380 to generate the transportation prediction model.
  • the transportation prediction model updating unit 390 may update the transportation prediction model by learning, for example, based on the value of the transportation prediction factor in the past period and the actual value of the transportation plan after the past period.
  • the transportation prediction model update unit 390 learns the transportation prediction model using the information of the transportation prediction factor updated by the actual implementation of the transportation plan.
  • the transportation prediction model updating unit 390 may execute learning of the transportation prediction model in response to the information of the transportation prediction factor being updated.
  • the transportation prediction model update unit 390 may perform learning one or more times during the update period.
  • the transportation prediction model updating unit 390 supplies the updated transportation prediction model to the transportation prediction unit 400.
  • the transportation prediction unit 400 is connected to the storage unit 110.
  • the transportation prediction unit 400 uses a transportation prediction model based on the transportation prediction factor to generate a transportation prediction that is a prediction of a transportation plan that transports hydrogen between the plurality of hydrogen generation devices 30 and the plurality of hydrogen stations 60. .
  • the transportation prediction unit 400 predicts a transportation plan in the predetermined period in the future, for example, for each predetermined period.
  • the transportation prediction unit 400 may predict the transportation plan using the transportation prediction model and the information of the transportation prediction factor.
  • the transportation prediction unit 400 predicts a transportation plan by applying, for example, the information of the transportation prediction factor in the period immediately before the period to be predicted to the transportation prediction model.
  • the transportation prediction unit 400 supplies the prediction result to the storage unit 110, and stores it as at least one of the operation planning factor and the storage planning factor, for example.
  • the transportation prediction unit 400 may directly supply the prediction result to another configuration of the prediction unit 120 or the planning unit 130.
  • FIG. 4 shows a detailed configuration example of the planning unit 130 of the planning device 70 of this embodiment.
  • the planning unit 130 includes a transportation plan model generation unit 410, a transportation plan model updating unit 420, and a transportation planning unit 430, and transports hydrogen generated by the plurality of hydrogen generation devices 30 to the plurality of hydrogen stations 60. Generate a transportation plan.
  • the planning unit 130 includes an operation plan model generation unit 440, an operation plan model update unit 450, and an operation plan unit 460, and generates an operation plan for each of the hydrogen generation devices 30.
  • the planning unit 130 includes a storage plan model generating unit 470, a storage plan model updating unit 480, and a storage planning unit 490, and generates a hydrogen storage plan for each of the plurality of hydrogen storage devices 40.
  • the storage unit 110 stores planning factors including a transportation planning factor, an operation planning factor, and a storage planning factor.
  • the transportation plan factor may include information on a transportation plan for transporting hydrogen generated by the plurality of hydrogen generators 30 to the plurality of hydrogen stations 60.
  • the transportation planning factor includes at least one of an operation prediction of each of the plurality of hydrogen generators 30, a storage amount prediction of hydrogen in each of the plurality of hydrogen storage devices 40, and a demand prediction of each of the plurality of hydrogen stations 60. Good.
  • the transportation planning factor is the operating amount of each of the plurality of hydrogen generators 30, the storage amount of hydrogen in each of the plurality of hydrogen storage devices 40, and the demand of hydrogen in each of the plurality of hydrogen stations 60 before the prediction target period. It may further comprise at least one of the amounts.
  • Transportation planning factors may include transportation predictors.
  • the transportation planning factor is at least one of the type of transportation means 50, the number of transportation means 50, the transportation cost of each transportation means 50, the arrangement of each transportation means 50, and the transportable amount of hydrogen of each transportation means 50. May be included.
  • the operation plan factor may include information on the operation of the plurality of hydrogen generators 30.
  • the operation plan factor includes a hydrogen transportation prediction between the plurality of hydrogen generators 30 and the plurality of hydrogen stations 60.
  • the operation plan factor may include an operation prediction factor.
  • the operation plan factor is an identifier of the hydrogen generator 30 and the renewable energy power generation facility 20 that supplies power to the hydrogen generation device 30, the type of renewable energy used by the renewable energy power generation facility 20 for power generation, and the renewable energy power generation facility. It may include at least one of 20 power generation amounts, power generation amount predictions, electricity prices for renewable energy, electricity price forecasts, and operation forecasts.
  • the storage plan factor may include information regarding the storage amount of hydrogen in the plurality of hydrogen storage devices 40.
  • the storage plan factor is the operation prediction of the corresponding hydrogen generation device 30 (the hydrogen generation device 30 connected to the hydrogen storage device 40 corresponding to the storage plan factor) among the plurality of hydrogen generation devices 30, and the plurality of hydrogen generation devices 30. And hydrogen transport predictions between the plurality of hydrogen stations 60.
  • the storage planning factor may include a storage amount prediction factor.
  • the storage plan factor is, for example, the type of each hydrogen storage device 40, the maximum amount of hydrogen that can be stored in each hydrogen storage device 40, and information on the hydrogen generation device 30 corresponding to each hydrogen storage device 40 (for the hydrogen generation device 30). At least one of the number of connections, hydrogen generation efficiency, operating rate, and / or operating time).
  • At least one of the transportation planning factor, the operation planning factor, and the storage planning factor may be time-series information at approximately fixed time intervals. At least one of a transportation planning factor, an operation planning factor, and a storage planning factor may be added or updated over time, respectively. At least one of the transportation planning factor, the operation planning factor, and the storage planning factor may include at least one of the prediction result generated by the planning device 70 and the planning data. Further, at least one of the transportation planning factor, the operation planning factor, and the storage planning factor may be supplied from an external database or the management device 150, and may include the information acquired by the acquisition unit 100.
  • the transportation plan model generation unit 410 is connected to the storage unit 110 and the transportation plan model updating unit 420.
  • the transportation plan model generation unit 410 transports hydrogen between each of the plurality of hydrogen storage devices 40 and each of the plurality of hydrogen stations 60 during the planning period based on the transportation planning factor before the planning period. Generate transportation planning model.
  • the transportation plan model generation unit 410 may generate the transportation plan model by a process called pre-learning or off-line learning using information past the planned period.
  • the transportation plan model generation unit 410 generates a transportation plan model using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixture model, hidden Markov model, or the like. Further, if a transport plan model such as an LSTM, an RNN, or another model having a memory is used, the transport plan can be generated from a time series of factors.
  • the transportation plan model generation unit 410 supplies the generated transportation plan model to the transportation plan model updating unit 420.
  • the transportation plan model updating unit 420 is connected to the storage unit 110 and the transportation planning unit 430.
  • the transportation plan model updating unit 420 includes a plurality of hydrogen generators 30, a plurality of hydrogen storage devices 40, a transportation means 50 between each of the plurality of hydrogen storage devices 40 and each of the plurality of hydrogen stations 60, and a plurality of hydrogens.
  • the transportation planning model is updated by learning based on the evaluation index for evaluating the productivity of the cooperation system including the station 60.
  • the evaluation index may be based on at least one of the operating cost, sales, and profit of the cooperation system, and the cost per unit amount of hydrogen supplied by the cooperation system.
  • the evaluation index may be calculated by each model updating unit of the planning device 70, or may be supplied to the planning device 70 from an external device.
  • the evaluation index may be calculated by an objective function, for example.
  • the evaluation index is calculated by an objective function of a weighted sum obtained by weighting the operating costs, sales, and profits of the cooperation system, and the cost per unit amount of hydrogen supplied by the cooperation system. May be done.
  • the transportation plan model updating unit 420 may update a new transportation plan model by learning, for example, at each predetermined updating period. Instead, the transportation plan model updating unit 420 has learned a predetermined number of times, that the error difference due to learning has fallen below a predetermined threshold value, or the evaluation index is maximum, minimum, or predetermined.
  • the transportation planning model may be updated according to various conditions such as being within the specified range.
  • the transportation plan model updating unit 420 may learn the transportation plan model by a process called adaptive learning or online learning.
  • the transportation plan model updating unit 420 learns the transportation plan model by executing reinforcement learning using an arbitrary machine learning model as an identification model, for example. By carrying out such machine learning, the transportation plan model updating unit 420 can generate a transportation plan according to the transportation plan factor with the accuracy according to the applied model by inputting the transportation plan factor. Become.
  • the transportation plan model update unit 420 further learns by further using information that is later in time than the information of the transportation plan factor used by the transportation plan model generation unit 410 to generate the transportation plan model.
  • the transportation plan model updating unit 420 may update the transportation plan model by learning, for example, based on the value of the transportation plan factor in the past period and the evaluation index of the transportation plan after the past period.
  • the transportation plan model updating unit 420 learns the transportation plan model using the evaluation index calculated according to the actual implementation of the transportation plan.
  • the transportation plan model updating unit 420 may perform learning of the transportation plan model according to the calculation of the evaluation index.
  • the transportation plan model update unit 420 may perform learning one or more times during the update period.
  • the transportation planning model updating unit 420 supplies the updated transportation planning model to the transportation planning unit 430.
  • the transportation planning unit 430 is connected to the storage unit 110 and the output unit 140.
  • the transportation planning unit 430 generates a transportation plan that transports the hydrogen generated by the plurality of hydrogen generators 30 to the plurality of hydrogen stations 60, using the transportation planning model, based on the transportation planning factor.
  • the transportation planning unit 430 for example, for each predetermined period, generates a transportation plan for the future predetermined period.
  • the transportation planning unit 430 may generate a transportation plan using the transportation planning model and the information on the transportation planning factors.
  • the transportation planning unit 430 applies, for example, the information of the transportation planning factor in the period immediately before the period to be planned to the transportation planning model to generate the transportation plan.
  • the transportation planning unit 430 supplies the planning data of the transportation plan to the storage unit 110 and stores it as a planning factor, for example.
  • the transportation planning unit 430 may directly supply the planning data to other components of the prediction unit 120 and / or the planning unit 130.
  • the operation plan model generation unit 440 is connected to the storage unit 110 and the operation plan model update unit 450.
  • the operation plan model generation unit 440 generates an operation plan model that generates an operation plan for each of the plurality of hydrogen generators 30 during the planning period based on the operation planning factors before the planning period.
  • the operation plan model generation unit 440 may generate an operation plan model by a process called pre-learning or offline learning using the information in the past of the plan target period.
  • the operation plan model generation unit 440 generates an operation plan model using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixture model, hidden Markov model, and the like. Further, if, for example, an LSTM, RNN, or other model having memory is used as the operation plan model, the operation plan can be generated from the time series of factors.
  • the operation plan model generation unit 440 supplies the generated operation plan model to the operation plan model update unit 450.
  • the operation plan model updating unit 450 is connected to the storage unit 110 and the operation planning unit 460.
  • the operation plan model updating unit 450 updates the operation plan model by learning based on the evaluation index for evaluating the productivity of the cooperation system.
  • the operation plan model updating unit 450 may update a new operation plan model by learning, for example, in each predetermined update period. Instead, the operation plan model updating unit 450 has learned a predetermined number of times, that the error difference due to learning has fallen below a predetermined threshold value, or the evaluation index is maximum, minimum, or predetermined.
  • the operation plan model may be updated according to various conditions such as being within the specified range.
  • the operation plan model updating unit 450 may learn the operation plan model by a process called adaptive learning or online learning.
  • the operation plan model updating unit 450 learns the operation plan model by executing reinforcement learning using, for example, an arbitrary machine learning model as an identification model. By performing such machine learning, the operation plan model updating unit 450 can generate an operation plan according to the operation plan factor with the accuracy according to the applied model by inputting the operation plan factor. Become.
  • the operation plan model update unit 450 further learns by further using information that is later in time than the information of the operation plan factor used by the operation plan model generation unit 440 to generate the operation plan model.
  • the operation plan model updating unit 450 may update the operation plan model by learning, for example, based on the value of the operation plan factor in the past period and the evaluation index of the operation plan after the past period.
  • the operation plan model updating unit 450 learns the operation plan model using the evaluation index calculated according to the actual execution of the operation plan.
  • the operation plan model updating unit 450 may execute learning of the operation plan model according to the calculation of the evaluation index.
  • the operation plan model updating unit 450 may execute learning one or more times during the update period.
  • the operation plan model updating unit 450 supplies the updated operation plan model to the operation planning unit 460.
  • the operation planning unit 460 is connected to the storage unit 110 and the output unit 140.
  • the operation planning unit 460 generates an operation plan for each of the plurality of hydrogen generators 30 using the operation plan model based on the operation plan factor.
  • the operation planning unit 460 for example, generates an operation plan for the future predetermined period for each predetermined period.
  • the operation plan unit 460 may generate an operation plan using the operation plan model and the information on the operation plan factors.
  • the operation planning unit 460 applies, for example, the information of the operation plan factors in the period immediately before the period to be planned to the operation plan model to generate the operation plan.
  • the operation planning unit 460 supplies the plan data of the operation plan to the storage unit 110 and stores it as a planning factor, for example.
  • the operation planning unit 460 may directly supply the planning data to other components of the prediction unit 120 and / or the planning unit 130.
  • the storage plan model generation unit 470 is connected to the storage unit 110 and the storage plan model update unit 480.
  • the storage plan model generation unit 470 determines the hydrogen in each of the plurality of hydrogen storage devices 40 that stores the hydrogen generated by the plurality of hydrogen generation devices 30 during the planning target period based on the storage planning factor before the planning target period. Generate a storage plan model to generate the storage plan of the.
  • the storage plan model generation unit 470 may generate a storage plan model by a process called pre-learning or off-line learning, using information past the planning period.
  • the storage plan model generation unit 470 generates a storage plan model using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixture model, hidden Markov model, and the like. Further, if a storage plan model, for example, an LSTM, RNN, or other model having memory is used, the storage plan can be generated from a time series of factors.
  • the storage plan model generation unit 470 supplies the generated storage plan model to the storage plan model update unit 480.
  • the storage plan model updating unit 480 is connected to the storage unit 110 and the storage planning unit 490.
  • the storage plan model updating unit 480 updates the storage plan model by learning based on the evaluation index for evaluating the productivity of the cooperation system.
  • the storage plan model updating unit 480 may update a new storage plan model by learning, for example, at each predetermined update period. Instead of this, the storage plan model updating unit 480 learns a predetermined number of times, the error difference due to learning is below a predetermined threshold value, or the evaluation index is maximum, minimum, or predetermined.
  • the storage plan model may be updated according to various conditions such as being within the specified range.
  • the storage plan model updating unit 480 may learn the storage plan model by a process called adaptive learning or online learning.
  • the storage plan model updating unit 480 learns the storage plan model by executing reinforcement learning using an arbitrary machine learning model as an identification model, for example. By performing such machine learning, the storage plan model updating unit 480 can generate a storage plan according to the storage plan factor with the accuracy according to the applied model by inputting the storage plan factor. Become.
  • the storage plan model updating unit 480 further learns by further using information that is later in time than the storage plan factor information used by the storage plan model generating unit 470 to generate the storage plan model.
  • the storage plan model updating unit 480 may update the storage plan model by learning, for example, based on the value of the storage plan factor in the past period and the evaluation index of the storage plan after the past period.
  • the storage plan model updating unit 480 may learn the storage plan model using the evaluation index calculated according to the actual implementation of the storage plan.
  • the storage plan model updating unit 480 may execute the storage plan model learning according to the calculation of the evaluation index.
  • the storage plan model updating unit 480 may execute learning one or more times during the update period.
  • the storage plan model updating unit 480 supplies the updated storage plan model to the storage planning unit 490.
  • the storage planning unit 490 is connected to the storage unit 110 and the output unit 140.
  • the storage planning unit 490 uses the updated storage planning model based on the storage planning factor to set the hydrogen storage plan in each of the plurality of hydrogen storage devices 40 that stores the hydrogen generated by the plurality of hydrogen generation devices 30. To generate.
  • the storage planning unit 490 generates, for example, for each predetermined period, a storage plan for the future predetermined period.
  • the storage planning unit 490 may generate a storage plan using the storage planning model and the information on the storage planning factors.
  • the storage planning unit 490 applies, for example, the information of the storage planning factor in the period immediately before the period to be planned to the storage planning model to generate the storage plan.
  • the storage planning unit 490 supplies the plan data of the storage plan to the storage unit 110 and stores it as a planning factor, for example.
  • the storage planning unit 490 may directly supply the planning data to the prediction unit 120 and / or other components of the planning unit 130.
  • the planning device 70 can generate an efficient plan for supplying hydrogen at low cost in the cooperative system from hydrogen generation to consumption by using the model generated by learning. .
  • the operation of the planning device 70 will be described below.
  • FIG. 5 shows an example of the flow of the planning device 70 according to this embodiment.
  • the acquisition unit 100 acquires information on a predictive factor and a plan factor that are past trends (S510).
  • the acquisition unit 100 acquires, for example, information on the prediction factor and the design factor from time t0 to time t1.
  • the acquisition unit 100 causes the storage unit 110 to store the acquired information about the prediction factor and the design factor. Further, the acquisition unit 100 may directly supply the information of the prediction factor and the planning factor to the prediction unit 120 and the planning unit 130.
  • the prediction unit 120 and the planning unit 130 generate a learning model (S520).
  • the prediction unit 120 and the planning unit 130 generate a learning model based on the values of the prediction factor and the planning factor in the period from time t0 to time t1.
  • the operation prediction model generation unit 200 uses the value of the operation prediction factor in the period from time t0 to time t1 to generate the operation prediction model.
  • the demand prediction model generation unit 230 generates a demand prediction model using the value of the demand prediction factor in the period from time t0 to time t1.
  • the power generation amount prediction model generation unit 260 generates a power generation amount prediction model using the value of the power generation amount prediction factor in the period from time t0 to time t1.
  • the electricity charge prediction model generation unit 290 generates an electricity charge prediction model using the value of the electricity charge prediction factor in the period from time t0 to time t1.
  • the consumption prediction model generation unit 320 generates a consumption prediction model using the value of the consumption prediction factor in the period from time t0 to time t1.
  • the storage amount prediction model generation unit 350 generates a storage amount prediction model using the value of the storage amount prediction factor in the period from time t0 to time t1.
  • the transportation prediction model generation unit 380 generates a transportation prediction model using the value of the transportation prediction factor in the period from time t0 to time t1.
  • the transportation plan model generation unit 410 also generates a transportation plan model using the values of the transportation plan factor in the period from time t0 to time t1.
  • the operation plan model generation unit 440 uses the value of the operation plan factor in the period from time t0 to time t1 to generate the operation plan model.
  • the storage plan model generation unit 470 uses the value of the storage plan factor in the period from time t0 to time t1 to generate the storage plan model.
  • the prediction unit 120 and the planning unit 130 are based on the physical model of the target device such as the hydrogen generation device 30, the renewable energy power generation facility 20, the hydrogen storage device 40, the transportation means 50, the hydrogen station 60, or the consumption means 90.
  • a model may be generated by using virtual data as prediction data and comparing the prediction data with actual data acquired in the past operation of the target apparatus.
  • the prediction unit 120 and the planning unit 130 enhance the error between the prediction data and the target data derived from the past actual data so that the error is a minimum error (for example, 0) or less than a predetermined value. Perform training to generate a model.
  • the prediction unit 120 and the planning unit 130 set the period of M days in the period from time t0 to time t1 as a virtual prediction period or planning period.
  • the M days may be, for example, a period of several days or a dozen days, one or several weeks. Then, the prediction unit 120 and the planning unit 130 predict the prediction period in the period from the time t0 to the time t1 or the prediction result or the plan data based on the value of the factor of the period before the planning period or the planning period, and the prediction period. Alternatively, reinforcement learning is performed so that the error between the actual data and the virtual data in the planning period is minimized.
  • the generation of the learning model by the predicting unit 120 and the planning unit 130 may be executed before the planning device 70 acquires the actual data of the target device as the target device operates.
  • the prediction unit 120 and the planning unit 130 adaptively learn the generated learning model (S530).
  • the acquisition unit 100 may further acquire information on each factor.
  • the acquisition unit 100 acquires information on each factor from time t2 to time t3, for example.
  • the planning device 70 may calculate the evaluation index or acquire the evaluation index from an external device or the like.
  • the prediction unit 120 and the planning unit 130 may generate information on each factor from time t2 to time t3, for example.
  • the period from time t2 to time t3 is the period after the period from time t0 to time t1.
  • the prediction unit 120 and the planning unit 130 may perform adaptive learning using the information of each new factor and / or the evaluation index.
  • the operation prediction model updating unit 210 adaptively learns the operation prediction model based on the value of the operation prediction factor.
  • the operation prediction model updating unit 210 may adaptively learn the operation prediction model using the operation status of the hydrogen generator 30 in the period from time t2 to time t3.
  • the operation prediction model updating unit 210 uses the operation prediction model to predict the operation amount of the hydrogen generator 30 in the period from time t2 to time t3, and the obtained result is the hydrogen generator in the period from time t2 to time t3. Reinforcement learning may be performed so as to match the operation status of 30.
  • the operation prediction model updating unit 210 sets a period of M days in a period from time t2 to time t3 as a virtual prediction period.
  • the M days may be, for example, a period of several days or ten and several days, one or several weeks, one or several months, one or several years.
  • the operation prediction model updating unit 210 determines that the error between the prediction result of the prediction period based on the value of the operation prediction factor in the period before the prediction period in the period from time t2 to time t3 and the actual data in the prediction period is , Minimum error (for example, 0) or reinforcement learning is performed so as to be less than a predetermined value.
  • the demand forecast model updating unit 240 adaptively learns the demand forecast model based on the value of the demand forecast factor.
  • the demand prediction model updating unit 240 may adaptively learn the demand prediction model using the demanded amount of hydrogen at each hydrogen station 60 in the period from time t2 to time t3.
  • the demand forecast model updating unit 240 predicts the demand amount of hydrogen at the hydrogen station 60 during the period from time t2 to time t3 using the demand forecast model, and the obtained hydrogen station 60 during the period from time t2 to time t3. Reinforcement learning may be performed so as to match the demand amount of hydrogen in.
  • the demand prediction model update unit 240 sets the period of M days in the period from time t2 to time t3 as a virtual prediction period.
  • the M days may be, for example, a period of several days or ten and several days, one or several weeks, one or several months, one or several years.
  • the demand prediction model updating unit 240 determines that the error between the prediction result of the prediction period based on the value of the demand prediction factor in the period before the prediction period in the period from time t2 to time t3 and the actual data in the prediction period is , Minimum error (for example, 0) or reinforcement learning is performed so as to be less than a predetermined value.
  • the power generation prediction model updating unit 270 adaptively learns the power generation prediction model based on the value of the power generation prediction factor.
  • the power generation amount prediction model updating unit 270 may adaptively learn the power generation amount prediction model using the power generation amount of the renewable energy in each renewable energy power generation facility 20 in the period from time t2 to time t3.
  • the power generation amount prediction model update unit 270 predicts the power generation amount in the renewable energy power generation facility 20 in the period from time t2 to time t3 using the power generation amount prediction model, and the result is obtained in the acquired period from time t2 to time t3. Reinforcement learning may be performed so as to match the amount of power generation in the renewable energy power generation facility 20.
  • the power generation amount prediction model updating unit 270 sets the period of M days in the period from time t2 to time t3 as a virtual prediction period.
  • the M days may be, for example, a period of several days or ten and several days, one or several weeks, one or several months, one or several years.
  • the power generation amount prediction model updating unit 270 determines that the error between the prediction result of the prediction period based on the value of the power generation amount prediction factor in the period before the prediction period from time t2 to time t3 and the actual data of the prediction period is , Minimum error (for example, 0) or reinforcement learning is performed so as to be less than a predetermined value.
  • the electricity price prediction model updating unit 300 adaptively learns the electricity price prediction model based on the value of the electricity price prediction factor.
  • the electricity price prediction model updating unit 300 may adaptively learn the electricity price prediction model using the electricity price of the renewable energy in the period from time t2 to time t3.
  • the electricity price prediction model update unit 300 predicts the electricity price of the renewable energy during the period from time t2 to time t3 using the electricity price prediction model, and the result of the obtained renewable energy during the period from time t2 to time t3 Reinforcement learning may be performed so as to match the electricity bill.
  • the electricity price prediction model updating unit 300 sets the period of M days in the period from time t2 to time t3 as a virtual prediction period.
  • the M days may be, for example, a period of several days or ten and several days, one or several weeks, one or several months, one or several years.
  • the electricity price prediction model updating unit 300 calculates the prediction result of the prediction period based on the value of the electricity price prediction factor in the period before the prediction period in the period from time t2 to time t3, and the actual data of the prediction period. Reinforcement learning is performed so that the error becomes the minimum error (for example, 0) or less than a predetermined value.
  • the consumption prediction model updating unit 330 adaptively learns the consumption prediction model based on the value of the consumption prediction factor.
  • the consumption prediction model updating unit 330 may adaptively learn the consumption prediction model using the hydrogen consumption amount in each hydrogen station 60 in the period from time t2 to time t3.
  • the consumption prediction model update unit 330 uses the consumption prediction model to predict the amount of hydrogen consumed at the hydrogen station 60 in the period from time t2 to time t3, and the obtained result is the hydrogen station in the period from time t2 to time t3. Reinforcement learning may be performed so as to match the hydrogen consumption amount in 60.
  • the consumption prediction model update unit 330 sets the period of M days in the period from time t2 to time t3 as a virtual prediction period.
  • the M days may be, for example, a period of several days or ten and several days, one or several weeks, one or several months, one or several years.
  • the consumption prediction model update unit 330 determines that the error between the prediction result of the prediction period based on the value of the consumption prediction factor in the period before the prediction period in the period from time t2 to time t3 and the actual data in the prediction period is , Minimum error (for example, 0) or reinforcement learning is performed so as to be less than a predetermined value.
  • the storage amount prediction model updating unit 360 adaptively learns the storage amount prediction model based on the value of the storage amount prediction factor.
  • the storage amount prediction model updating unit 360 may adaptively learn the storage amount prediction model using the storage amount of hydrogen of each hydrogen storage device 40 in the period from time t2 to time t3.
  • the storage amount prediction model updating unit 360 predicts the storage amount of hydrogen of the hydrogen storage device 40 during the period from time t2 to time t3 using the storage amount prediction model, and obtains the result of the estimation during the period from time t2 to time t3. Reinforcement learning may be performed so as to match the hydrogen storage amount of the hydrogen storage device 40.
  • the storage amount prediction model updating unit 360 sets the period of M days in the period from time t2 to time t3 as a virtual prediction period.
  • the M days may be, for example, a period of several days or ten and several days, one or several weeks, one or several months, one or several years.
  • the storage amount prediction model updating unit 360 calculates the prediction result of the prediction period based on the value of the storage amount prediction factor in the period before the prediction period in the period from time t2 to time t3, and the actual data of the prediction period. Reinforcement learning is performed so that the error becomes the minimum error (for example, 0) or less than a predetermined value.
  • the transportation prediction model updating unit 390 adaptively learns the transportation prediction model based on the value of the transportation prediction factor.
  • the transportation prediction model updating unit 390 applies the transportation prediction model using the actual values of the transportation plan for transporting hydrogen between the plurality of hydrogen generators 30 and the plurality of hydrogen stations 60 in the period from time t2 to time t3. You may learn.
  • the transportation prediction model updating unit 390 uses the transportation prediction model to predict the transportation plan in the period from time t2 to time t3, and the result matches the acquired transportation plan (or transportation record) in the period from time t2 to time t3. Reinforcement learning may be done.
  • the transportation prediction model updating unit 390 sets the period of M days in the period from time t2 to time t3 as a virtual prediction period.
  • the M days may be, for example, a period of several days or ten and several days, one or several weeks, one or several months, one or several years.
  • the transportation prediction model updating unit 390 determines that the error between the prediction result of the prediction period based on the value of the transport prediction factor in the period before the period from time t2 to time t3 and the actual data in the prediction period is the minimum error. (For example, 0) or reinforcement learning is performed so as to be less than a predetermined value.
  • the transportation plan model updating unit 420 may adaptively learn the transportation plan model based on the evaluation index for evaluating the productivity of the cooperation system. For example, the transportation plan model updating unit 420 may learn the transportation plan model using the learning data including the evaluation index in the period from time t2 to time t3. The transportation plan model updating unit 420 has a minimum (for example, 0), maximum, or a predetermined range of the evaluation index value for the transportation plan generated using the transportation plan model from the time t2 to the time t3. Reinforcement learning may be performed so that
  • the transportation plan model updating unit 420 sets the period of M days in the period from time t2 to time t3 as a virtual planning period.
  • the M days may be, for example, a period of several days or ten and several days, one or several weeks, one or several months, one or several years.
  • the transportation plan model updating unit 420 for the transportation plan in the planning period based on the value of the transportation planning factor in the period before the planning period from time t2 to time t3, indicates the evaluation index of the transportation plan executed in the planning period. Reinforcement learning may be performed so that the value is the minimum (for example, 0), the maximum, or within a predetermined range.
  • the operation plan model updating unit 450 may adaptively learn the operation plan model based on the evaluation index for evaluating the productivity of the cooperation system. For example, the operation plan model updating unit 450 may learn the operation plan model using the learning data including the evaluation index in the period from time t2 to time t3.
  • the operation plan model updating unit 450 has a minimum (for example, 0), maximum, or a predetermined range of the evaluation index value for the operation plan generated from the time t2 to the time t3 using the operation plan model. Reinforcement learning may be performed so that
  • the operation plan model updating unit 450 sets the period of M days in the period from time t2 to time t3 as a virtual planning period.
  • the M days may be, for example, a period of several days or ten and several days, one or several weeks, one or several months, one or several years.
  • the operation plan model updating unit 450 for the operation plan of the plan period based on the value of the operation plan factor of the period before the plan period from time t2 to time t3, the evaluation index of the operation plan executed in the plan period.
  • Reinforcement learning may be performed so that the value is the minimum (for example, 0), the maximum, or within a predetermined range.
  • the storage plan model updating unit 480 may adaptively learn the storage plan model based on the evaluation index for evaluating the productivity of the cooperation system. For example, the storage plan model updating unit 480 may learn the storage plan model using learning data including the evaluation index in the period from time t2 to time t3. The storage plan model updating unit 480 determines that the value of the evaluation index is minimum (for example, 0), maximum, or within a predetermined range for the storage plan generated using the storage plan model from time t2 to time t3. Reinforcement learning may be performed so that
  • the storage plan model updating unit 480 sets the period of M days in the period from time t2 to time t3 as a virtual planning period.
  • the M days may be, for example, a period of several days or ten and several days, one or several weeks, one or several months, one or several years.
  • the storage plan model update unit 480 determines the evaluation index of the storage plan executed in the plan period for the storage plan in the plan period based on the value of the storage plan factor in the period before the plan period from time t2 to time t3. Reinforcement learning may be performed so that the value is the minimum (for example, 0), the maximum, or within a predetermined range.
  • prediction periods in the respective components of the prediction unit 120 may be different periods or the same period.
  • the planning period in each configuration of the planning unit 130 may be a different period or the same period. Further, the prediction period and the planning period may be different periods or the same period.
  • the transportation plan model updating unit 420, the operation plan model updating unit 450, and the storage plan model updating unit 480 may learn a plurality of planning models according to one evaluation index.
  • the transportation plan model update unit 420, the operation plan model update unit 450, and the storage plan model update unit 480 calculate the evaluation index with one objective function for two or more of the transportation plan, the operation plan, and the storage plan, for example.
  • the plurality of planning models may be reinforced and learned so that the value of the evaluation index is the minimum (for example, 0), the maximum, or within a predetermined range.
  • the prediction unit 120 and the planning unit 130 update the learned learning model (S540).
  • the prediction unit 120 and the planning unit 130 may update the learning model every predetermined time. For example, the prediction unit 120 and the planning unit 130 start adaptive learning, continue the adaptive learning for the initial update period required for updating, and then perform the first update of the learning model, and thereafter, at regular intervals. Repeat the update.
  • the initial update period is preferably longer than the planned period of the plan to be generated.
  • the fixed period of repeating the update may be several hours, ten and several hours, one day, several tens of hours, or several days.
  • the prediction unit 120 and the planning unit 130 may update the learning model in different update periods or the same update period.
  • the prediction unit 120 generates a prediction result using the learning model (S550).
  • the operation prediction unit 220 predicts the operation amount of the hydrogen generator 30 from time t4 to time t5 using the updated operation prediction model and the value of the operation prediction factor.
  • the period from time t4 to time t5 is a period after the period from time t2 to time t3, and may be a future period at the prediction time point.
  • the operation prediction unit 220 calculates the value of the operation prediction factor for N days acquired by the acquisition unit 100 in the initial update period and / or the value of the operation prediction factor including the prediction result generated by the prediction unit 120 as the operation prediction. Apply to the model to predict operating capacity in N days after the initial renewal period.
  • the operation prediction unit 220 may supply the generated operation prediction to the storage unit 110 and store it therein.
  • the demand prediction unit 250 predicts the demand (for example, demand amount) of hydrogen at the hydrogen station 60 from time t4 to time t5 using the updated demand prediction model and the value of the demand prediction factor.
  • the demand prediction unit 250 calculates the value of the operation prediction factor for N days acquired by the acquisition unit 100 in the initial update period and / or the value of the operation prediction factor including the prediction result generated by the prediction unit 120 as the demand prediction. Apply to the model to predict demand for N days after the initial update period.
  • the demand prediction unit 250 may supply the generated demand prediction to the storage unit 110 and store it therein.
  • the power generation amount prediction unit 280 predicts the power generation amount of the renewable energy power generation facility 20 from time t4 to time t5 using the updated power generation amount prediction model and the value of the power generation amount prediction factor.
  • the power generation amount prediction unit 280 sets the value of the power generation amount prediction factor for N days acquired by the acquisition unit 100 in the initial update period and / or the value of the power generation amount prediction factor including the prediction result generated by the prediction unit 120. , Is applied to a power generation prediction model to predict power generation in N days after the initial update period.
  • the power generation amount prediction unit 280 may supply the generated power generation amount prediction to the storage unit 110 and store it therein.
  • the electricity price prediction unit 310 predicts the electricity price of the renewable energy from the time t4 to the time t5 by using the updated electricity price prediction model and the value of the electricity price prediction factor.
  • the electricity charge prediction unit 310 may obtain the value of the electricity charge prediction factor for N days acquired by the acquisition unit 100 during the initial update period and / or the value of the electricity charge prediction factor including the prediction result generated by the prediction unit 120. , It is applied to the electricity rate prediction model to forecast the electricity rate in N days after the initial renewal period.
  • the electricity bill prediction unit 310 may supply the generated electricity bill prediction to the storage unit 110 to store the electricity bill prediction.
  • the consumption prediction unit 340 predicts the amount of hydrogen consumed at the hydrogen station 60 from time t4 to time t5 using the updated values of the consumption prediction model and the consumption prediction factor.
  • the consumption prediction unit 340 applies the value of the consumption prediction factor for N days acquired by the acquisition unit 100 and / or the value of the consumption prediction factor generated by the prediction unit 120 to the consumption prediction model in the initial update period. And predict the consumption in N days after the initial renewal period.
  • the consumption prediction unit 340 may supply the generated consumption prediction to the storage unit 110 and store it therein.
  • the storage amount prediction unit 370 uses the updated storage amount prediction model and the value of the storage amount prediction factor to predict the storage amount of hydrogen in the hydrogen storage device 40 from time t4 to time t5.
  • the storage amount prediction unit 370 displays the value of the storage amount prediction factor for N days acquired by the acquisition unit 100 in the initial update period and / or the value of the storage amount prediction factor including the prediction result generated by the prediction unit 120. , It is applied to the storage amount prediction model to predict the storage amount in N days after the initial renewal period.
  • the storage amount prediction unit 370 may supply the generated storage amount prediction to the storage unit 110 and store it therein.
  • the transportation prediction unit 400 uses the updated transportation prediction model and transportation prediction factor values to plan transportation of hydrogen between the plurality of hydrogen generators 30 and the plurality of hydrogen stations 60 from time t4 to time t5. Predict.
  • the transportation prediction unit 400 applies the value of the transportation prediction factor for N days acquired by the acquisition unit 100 during the initial update period and / or the value of the transportation prediction factor generated by the prediction unit 120 to the transportation prediction model. And forecast the transportation plan in N days after the initial renewal period.
  • the transportation prediction unit 400 may supply the generated transportation prediction to the storage unit 110 to store the transportation prediction.
  • the planning unit 130 uses the updated learning model to generate a plan (S560).
  • the transportation planning unit 430 may apply the value of the transportation planning factor including the prediction result generated by the prediction unit 120 to the updated transportation planning model to generate the transportation plan from time t4 to time t5.
  • the transportation planning unit 430 sets the value of the transportation planning factor for N days acquired by the acquisition unit 100 during the initial update period and / or the value of the transportation prediction factor including the prediction result generated by the prediction unit 120 to the transportation planning unit 430. Apply to the model to generate a transportation plan for N days after the initial update period.
  • the transportation planning unit 430 may generate a transportation plan for each of the plurality of transportation means 50.
  • the transportation planning unit 430 may respectively generate substantially the same transportation plans.
  • the transportation planning unit 430 may generate different transportation plans for each of the plurality of transportation means 50 including different types of transportation means 50, transportation means 50 of different transportation cost, or a combination thereof.
  • the transportation plan model generation unit 410 may generate a plurality of transportation plan models corresponding to each transportation means 50 or each combination of a plurality of transportation means 50. Further, the transportation plan model updating unit 420 may learn each of the plurality of transportation plan models and update each.
  • the operation plan unit 460 may apply the value of the operation plan factor including the prediction result generated by the prediction unit 120 to the updated operation plan model to generate the operation plan from time t4 to time t5.
  • the operation planning unit 460 sets the value of the operation plan factor for N days acquired by the acquisition unit 100 in the initial update period and / or the value of the operation prediction factor including the prediction result generated by the prediction unit 120 to the operation plan. Apply to the model to generate a work plan for N days after the initial update period.
  • the operation planning unit 460 may generate an operation plan for each of the plurality of hydrogen generators 30.
  • the operation planning unit 460 may generate substantially the same operation plans when the plurality of hydrogen generation devices 30 are substantially the same.
  • the operation planning unit 460 generates different operation plans corresponding to different types of hydrogen generators 30, hydrogen generators 30 having different hydrogen generation costs, or a plurality of hydrogen generators 30 including a combination thereof. You can do it.
  • the operation plan model generation unit 440 may generate a plurality of operation plan models corresponding to each hydrogen generation device 30 or each combination of a plurality of hydrogen generation devices 30. Further, the operation plan model updating unit 450 may each learn a plurality of operation plan models and update each.
  • the storage planning unit 490 may apply the value of the storage planning factor including the prediction result generated by the prediction unit 120 to the updated storage planning model to generate the storage plan from time t4 to time t5.
  • the storage planning unit 490 sets the value of the storage planning factor for the N days acquired by the acquisition unit 100 in the initial update period and / or the value of the storage prediction factor including the prediction result generated by the prediction unit 120 to the storage plan. Apply to the model to generate a storage plan for N days after the initial renewal period.
  • the storage planning unit 490 may generate a storage plan for each of the plurality of hydrogen storage devices 40.
  • the storage planning unit 490 may respectively generate substantially the same storage plans.
  • the storage planning unit 490 corresponds to each of the plurality of hydrogen storage devices 40 and stores different hydrogen. A plan may be generated.
  • the storage plan model generation unit 470 may generate a plurality of storage plan models corresponding to each hydrogen storage device 40 or each combination of a plurality of hydrogen storage devices 40. Further, the storage plan model updating unit 480 may learn each of the plurality of storage plan models and update each of them.
  • the output unit 140 outputs the plan generated by the planning unit 130 (S570). Accordingly, each business operator of the system 10 that supplies hydrogen can operate and control each configuration of the system 10 according to the plan received by the management device 150.
  • the process returns to S530 and the planner 70 adaptively learns the learning model.
  • the acquisition unit 100 sequentially acquires information on factors that change due to the operation of the target device during the period from the time t4 to the time t5, and sequentially stores the information in the storage unit 110. That is, the planning apparatus 70 includes the information of the period from the time t4 to the time t5 in the past information, and sets the target period as a period after the period from the time t4 to the time t5.
  • the planning device 70 repeats the adaptive learning of the model, updates the model according to the lapse of a certain period, and generates and outputs the plan.
  • the planning apparatus 70 according to the present embodiment can continuously output the plan while updating the learning model by repeating the generation of the plan for the target period and the operation of the system 10 during the target period.
  • each period may be a temporally continuous period.
  • the planning device 70 can predict the operation of each component in the system 10 by learning and create a plan that can efficiently supply hydrogen at low cost.
  • the planning device 70 includes an operation plan model generation unit 440, an operation plan model update unit 450, an operation plan unit 460, a storage plan model generation unit 470, a storage plan model update unit 480, and a storage plan unit 490.
  • the planning device 70 may generate a transportation plan.
  • the planning device 70 includes a transportation plan model generating unit 410, a transportation planning model updating unit 420, a transportation planning unit 430, a storage planning model generating unit 470, a storage planning model updating unit 480, and a storage planning unit 490. May not be included, and in this case, the planning apparatus 70 may generate the operation plan.
  • the planning device 70 may not have at least one configuration of the prediction unit 120, and in this case, the plan may be generated using the prediction result supplied from the external device.
  • the planning apparatus 70 proposes an operation plan that proposes to increase or decrease the number of hydrogen generators 30 in the system 10, a transportation plan that proposes to increase or decrease the transportation means 50 in the system 10, and hydrogen storage in the system 10.
  • a storage plan may be created that suggests increasing or decreasing the number of devices 40.
  • timings of generation of prediction results in the plurality of configurations of the prediction unit 120 may be different or may be the same.
  • the timing of generating the plan data in the plurality of configurations of the planning unit 130 may be different or may be the same.
  • a block is (1) a stage of a process in which an operation is performed or (2) an apparatus responsible for performing an operation. Section may be represented. Specific steps and sections are implemented by dedicated circuitry, programmable circuitry provided with computer readable instructions stored on a computer readable medium, and / or a processor provided with computer readable instructions stored on a computer readable medium. You may Dedicated circuits may include digital and / or analog hardware circuits, and may include integrated circuits (ICs) and / or discrete circuits.
  • ICs integrated circuits
  • Programmable circuits include memory elements such as logical AND, logical OR, logical XOR, logical NAND, logical NOR, and other logical operations, flip-flops, registers, field programmable gate arrays (FPGA), programmable logic arrays (PLA), and the like.
  • Reconfigurable hardware circuitry may be included, including, and the like.
  • Computer-readable media may include any tangible device capable of storing instructions executed by a suitable device, such that computer-readable media having instructions stored therein are designated by flowcharts or block diagrams.
  • a product will be provided that includes instructions that can be executed to create a means for performing the operations.
  • Examples of computer readable media may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, and the like.
  • Computer-readable media include floppy disks, diskettes, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), Electrically Erasable Programmable Read Only Memory (EEPROM), Static Random Access Memory (SRAM), Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD), Blu-Ray (RTM) Disc, Memory Stick, Integrated Circuit cards and the like may be included.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • SRAM Static Random Access Memory
  • CD-ROM Compact Disc Read Only Memory
  • DVD Digital Versatile Disc
  • RTM Blu-Ray
  • Computer readable instructions include assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state set data, or object oriented programming such as Smalltalk, JAVA, C ++, etc. Language, Python, and any source or object code written in any combination of one or more programming languages, including conventional procedural programming languages such as the "C" programming language or similar programming languages. May be included.
  • ISA instruction set architecture
  • machine instructions machine dependent instructions
  • microcode firmware instructions
  • state set data state set data
  • object oriented programming such as Smalltalk, JAVA, C ++, etc.
  • Language, Python and any source or object code written in any combination of one or more programming languages, including conventional procedural programming languages such as the "C" programming language or similar programming languages. May be included.
  • Computer-readable instructions are provided to a processor or programmable circuit of a general purpose computer, a special purpose computer, or other programmable data processing device, locally or in a wide area network (WAN) such as a local area network (LAN), the Internet, or the like.
  • Computer readable instructions may be executed to create a means for performing the operations specified in the flowcharts or block diagrams. Examples of processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers, and the like.
  • FIG. 6 illustrates an example computer 1900 in which multiple aspects of the present invention may be embodied in whole or in part.
  • the program installed in the computer 1900 can cause the computer 1900 to perform an operation associated with an apparatus according to an embodiment of the present invention or one or more sections of the apparatus, or the operation or the one or more sections. Sections may be executed and / or computer 1900 may perform processes or stages of processes according to embodiments of the invention.
  • Such programs may be executed by CPU 2000 to cause computer 1900 to perform certain operations associated with some or all of the blocks in the flowcharts and block diagrams described herein.
  • the computer 1900 is connected to the host controller 2082 by an input / output controller 2084 and a CPU peripheral part having a CPU 2000, a RAM 2020, a graphic controller 2075, and a display device 2080, which are mutually connected by a host controller 2082.
  • An input / output unit having a communication interface 2030, a hard disk drive 2040, and a DVD drive 2060, a ROM 2010 connected to the input / output controller 2084, a flash memory drive 2050, and a legacy input / output unit having an input / output chip 2070. .
  • the host controller 2082 connects the RAM 2020 with the CPU 2000 and the graphic controller 2075 that access the RAM 2020 at a high transfer rate.
  • the CPU 2000 operates based on the programs stored in the ROM 2010 and the RAM 2020, and controls each unit.
  • the graphic controller 2075 acquires image data generated by the CPU 2000 or the like on a frame buffer provided in the RAM 2020 and displays it on the display device 2080.
  • the graphic controller 2075 may internally include a frame buffer that stores image data generated by the CPU 2000 or the like.
  • the input / output controller 2084 connects the host controller 2082 to the communication interface 2030, hard disk drive 2040, and DVD drive 2060, which are relatively high-speed input / output devices.
  • the communication interface 2030 communicates with other devices via a network by wire or wirelessly. Further, the communication interface functions as hardware that performs communication.
  • the hard disk drive 2040 stores programs and data used by the CPU 2000 in the computer 1900.
  • the DVD drive 2060 reads a program or data from the DVD 2095 and provides it to the hard disk drive 2040 via the RAM 2020.
  • the ROM 2010, the flash memory drive 2050, and the relatively low-speed input / output device of the input / output chip 2070 are connected to the input / output controller 2084.
  • the ROM 2010 stores a boot program executed by the computer 1900 at startup, and / or a program dependent on the hardware of the computer 1900.
  • the flash memory drive 2050 reads a program or data from the flash memory 2090 and provides it to the hard disk drive 2040 via the RAM 2020.
  • the input / output chip 2070 connects the flash memory drive 2050 to the input / output controller 2084, and inputs / outputs various input / output devices via, for example, a parallel port, a serial port, a keyboard port, a mouse port, or the like. Connect to controller 2084.
  • the program provided to the hard disk drive 2040 via the RAM 2020 is stored in a recording medium such as a flash memory 2090, a DVD 2095, or an IC card and provided by the user.
  • the program is read from the recording medium, installed in the hard disk drive 2040 in the computer 1900 via the RAM 2020, and executed by the CPU 2000.
  • the information processing described in these programs is read by the computer 1900, and causes the software and the various types of hardware resources described above to cooperate with each other.
  • An apparatus or method may be configured by implementing the operation or processing of information according to the use of the computer 1900.
  • the CPU 2000 executes the communication program loaded on the RAM 2020, and based on the processing content described in the communication program, the communication interface. Instructing 2030 to perform communication processing.
  • the communication interface 2030 reads out the transmission data stored in the transmission buffer area or the like provided on the storage device such as the RAM 2020, the hard disk drive 2040, the flash memory 2090, or the DVD 2095 and transmits it to the network.
  • the received data received from the network is written to the receiving buffer area or the like provided on the storage device.
  • the communication interface 2030 may transfer the transmission / reception data to / from the storage device by the DMA (Direct Memory Access) method.
  • the CPU 2000 transfers the storage device or the communication interface 2030 of the transfer source.
  • the transmission / reception data may be transferred by reading the data from the device and writing the data to the transfer destination communication interface 2030 or the storage device.
  • the CPU 2000 DMAs all or necessary portions from files or databases stored in an external storage device such as a hard disk drive 2040, a DVD drive 2060 (DVD2095), a flash memory drive 2050 (flash memory 2090).
  • the data is read into the RAM 2020 by transfer or the like, and various processing is performed on the data in the RAM 2020. Then, the CPU 2000 writes the processed data back to the external storage device by DMA transfer or the like.
  • the RAM 2020 can be regarded as temporarily holding the contents of the external storage device, and thus in the present embodiment, the RAM 2020 and the external storage device are collectively referred to as a memory, a storage unit, a storage device, or the like.
  • Various types of information such as various types of programs, data, tables, and databases according to the present embodiment are stored in such a storage device and are subject to information processing.
  • the CPU 2000 can also hold part of the RAM 2020 in the cache memory and read / write on the cache memory. Even in such a form, the cache memory plays a part of the function of the RAM 2020. Therefore, in the present embodiment, the cache memory is also included in the RAM 2020, the memory, and / or the storage device unless otherwise indicated. To do.
  • the CPU 2000 performs various operations specified in the instruction sequence of the program on the data read from the RAM 2020, including various calculations, information processing, condition determination, information search / replacement, and the like. Process and write back to the RAM 2020. For example, in the case of performing the condition determination, the CPU 2000 determines whether or not the various variables shown in the present embodiment satisfy a condition such as being larger, smaller, above, below, or equal to other variables or constants. If the condition is satisfied (or not satisfied), a branch is made to a different instruction sequence or a subroutine is called.
  • a condition such as being larger, smaller, above, below, or equal to other variables or constants.
  • the CPU 2000 can search for information stored in a file or database in the storage device. For example, when a plurality of entries in which the attribute values of the second attribute are associated with the attribute values of the first attribute are stored in the storage device, the CPU 2000 determines that the entries of the plurality of entries stored in the storage device are stored. Corresponding to the first attribute satisfying a predetermined condition by searching the entry in which the attribute value of the first attribute matches the specified condition and reading the attribute value of the second attribute stored in the entry. The attribute value of the obtained second attribute can be obtained.
  • X executes Y using A, B and C
  • X may execute Y by using D in addition to A, B and C.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

When hydrogen is frequently transported to hydrogen stations to prevent shortages of hydrogen at the hydrogen stations, hydrogen supply costs may increase. Provided is a planning device that comprises: an operation prediction part that uses an operation prediction model to generate an operation prediction for each of a plurality of hydrogen generation devices that generate hydrogen; a demand prediction part that uses a demand prediction model to generate a hydrogen demand prediction for each of a plurality of hydrogen stations; and a transport planning part that, on the basis of transport planning factors that include the operation predictions for the plurality of hydrogen generation devices and the demand predictions for the plurality of hydrogen stations, uses a transport planning model to generate a transport plan for transporting hydrogen that has been generated by the plurality of hydrogen generation devices to the plurality of hydrogen stations.

Description

計画装置、計画方法、および計画プログラムPlanning device, planning method, and planning program
 本発明は、計画装置、計画方法、および計画プログラムに関する。 The present invention relates to a planning device, a planning method, and a planning program.
 従来、水を電気分解することにより水素を生成する水素生成装置が知られている。水素生成装置で生成された水素は、複数の水素ステーションに輸送されて消費される。 Conventionally, hydrogen generators that generate hydrogen by electrolyzing water have been known. The hydrogen generated by the hydrogen generator is transported to a plurality of hydrogen stations and consumed.
解決しようとする課題Issues to be solved
 水素ステーションにおいて水素が不足しないように、水素を頻繁に水素ステーションに輸送すると、水素の供給コストが増加する場合がある。 -If hydrogen is frequently transported to the hydrogen station so that the hydrogen station does not run short of hydrogen, the hydrogen supply cost may increase.
一般的開示General disclosure
 上記課題を解決するために、本発明の第1の態様においては、計画装置が提供される。計画装置は、水素を生成する複数の水素生成装置のそれぞれの稼働予測を、稼働予測モデルを用いて生成する稼働予測部を備えてよい。計画装置は、複数の水素ステーションのそれぞれにおける水素の需要予測を、需要予測モデルを用いて生成する需要予測部を備えてよい。計画装置は、複数の水素生成装置で生成された水素を複数の水素ステーションに輸送する輸送計画を、輸送計画モデルを用いて、複数の水素生成装置のそれぞれの稼働予測および複数の水素ステーションのそれぞれの需要予測を含む輸送計画因子に基づいて生成する輸送計画部を備えてよい。 In order to solve the above problems, a planning device is provided in the first aspect of the present invention. The planning device may include an operation prediction unit that generates an operation prediction of each of the plurality of hydrogen generation devices that generate hydrogen using an operation prediction model. The planning device may include a demand prediction unit that generates a hydrogen demand forecast at each of the plurality of hydrogen stations using a demand forecast model. The planning device uses the transportation planning model to make a transportation plan for transporting the hydrogen generated by the multiple hydrogen generators to the multiple hydrogen stations, using the transportation planning model to predict the operation of each of the multiple hydrogen generators and each of the multiple hydrogen stations. A transportation planning unit that generates the transportation planning factor based on the transportation planning factor may be included.
 また、計画装置は、複数の再生可能エネルギー発電設備のそれぞれについて、再生可能エネルギーの発電量予測を、発電量予測モデルを用いて生成する発電量予測部を備えてよい。稼働予測部は、再生可能エネルギーを用いる複数の水素生成装置のそれぞれの稼働予測を、複数の再生可能エネルギー発電設備のそれぞれの発電量予測に基づいて生成してよい。計画装置は、電気料金予測モデルを用いて、再生可能エネルギーの電気料金予測を生成する電気料金予測部を更に備えてよい。稼働予測部は、電気料金予測を含む稼働予測因子に基づいて、複数の水素生成装置のそれぞれの稼働予測を生成してよい。電気料金予測モデルは、予測対象期間より前における、電気料金、電力需要量、電力供給量、再生可能エネルギー発電量、天気情報、および、発電量予測部による再生可能エネルギーの発電量予測の少なくとも1つを含む電気料金予測因子に基づいて、再生可能エネルギーの電気料金予測を算出してよい。計画装置は、電気料金の実績値を用いて、電気料金予測モデルを学習により更新する電気料金予測モデル更新部を備えてよい。稼働予測因子は、予測対象期間より前における、複数の水素生成装置の稼働量、複数の水素生成装置が生成した水素を貯蔵する複数の水素貯蔵装置における水素の貯蔵量、複数の水素貯蔵装置からの水素の輸送量、複数の水素ステーションのそれぞれにおける水素の需要量、および、予測対象期間の電気料金予測の少なくとも1つを更に含んでよい。計画装置は、複数の水素生成装置の稼働量の実績値を用いて、稼働予測モデルを学習により更新する稼働予測モデル更新部を備えてよい。 Further, the planning device may include a power generation amount prediction unit that generates a power generation amount prediction of renewable energy for each of a plurality of renewable energy power generation facilities using a power generation amount prediction model. The operation prediction unit may generate the operation prediction of each of the plurality of hydrogen generators that use renewable energy, based on the power generation amount prediction of each of the plurality of renewable energy power generation facilities. The planning device may further include an electricity price prediction unit that generates an electricity price prediction of the renewable energy using the electricity price prediction model. The operation prediction unit may generate the operation prediction of each of the plurality of hydrogen generators based on the operation prediction factors including the electricity rate prediction. The electricity rate prediction model is at least one of electricity rate, power demand, power supply, renewable energy power generation, weather information, and power generation prediction of renewable energy by the power generation prediction unit before the prediction target period. The electricity price forecast of the renewable energy may be calculated based on the electricity rate prediction factors including one. The planning apparatus may include an electricity price prediction model updating unit that updates the electricity price prediction model by learning using the actual value of the electricity price. The operation prediction factor is the operation amount of the plurality of hydrogen generators, the storage amount of hydrogen in the plurality of hydrogen storage devices that store hydrogen generated by the plurality of hydrogen generation devices, and the plurality of hydrogen storage devices before the prediction target period. At least one of the hydrogen transportation amount, the hydrogen demand amount at each of the plurality of hydrogen stations, and the electricity price forecast for the forecast period. The planning device may include an operation prediction model updating unit that updates the operation prediction model by learning using the actual values of the operation amounts of the plurality of hydrogen generation devices.
 また、計画装置は、複数の水素ステーションのそれぞれにおける水素の消費予測を、消費予測モデルを用いて生成する消費予測部を備えてよい。需要予測部は、複数の水素ステーションのそれぞれにおける水素の需要予測を、各水素ステーションにおける水素の消費予測を含む需要予測因子に基づいて予測してよい。消費予測モデルは、予測対象期間より前における、複数の水素ステーションのそれぞれにおける水素の需要量、複数の水素ステーションのそれぞれにおける水素の消費量、天気情報、および複数の水素ステーションのそれぞれから供給される水素を利用して提供されるサービスの水素使用量に関する因子の少なくとも1つを更に含む消費予測因子に基づいて、予測対象期間中における複数の水素ステーションの水素の消費予測を算出してよい。計画装置は、複数の水素ステーションのそれぞれにおける水素の消費量の実績値を用いて、消費予測モデルを学習により更新する消費予測モデル更新部を備えてよい。需要予測モデルは、予測対象期間より前における、複数の水素ステーションのそれぞれにおける水素の需要量、および複数の水素ステーションのそれぞれにおける水素の消費量の少なくとも1つを更に含む需要予測因子に基づいて、予測対象期間における複数の水素ステーションのそれぞれについての水素の需要予測を算出してよい。計画装置は、複数の水素ステーションのそれぞれにおける水素の需要量の実績値を用いて、需要予測モデルを学習により更新する需要予測モデル更新部を更に備えてよい。 Also, the planning device may include a consumption prediction unit that generates a hydrogen consumption prediction at each of a plurality of hydrogen stations using a consumption prediction model. The demand forecasting unit may forecast hydrogen demand at each of the plurality of hydrogen stations based on a demand forecast factor including a hydrogen consumption forecast at each hydrogen station. The consumption forecast model is supplied from each of the plurality of hydrogen stations, the demand amount of hydrogen at each of the plurality of hydrogen stations, the hydrogen consumption at each of the plurality of hydrogen stations, the weather information, and the plurality of hydrogen stations before the forecast period. The hydrogen consumption prediction of the plurality of hydrogen stations during the prediction target period may be calculated based on the consumption prediction factor that further includes at least one of the factors related to the hydrogen usage amount of the service provided using hydrogen. The planning apparatus may include a consumption prediction model updating unit that updates the consumption prediction model by learning using the actual value of the amount of hydrogen consumed at each of the plurality of hydrogen stations. The demand forecasting model is based on a demand forecasting factor further including at least one of hydrogen demand at each of the plurality of hydrogen stations and hydrogen consumption at each of the plurality of hydrogen stations before the forecast period. A hydrogen demand forecast may be calculated for each of the plurality of hydrogen stations during the forecast period. The planning device may further include a demand prediction model updating unit that updates the demand prediction model by learning using the actual value of the demanded amount of hydrogen at each of the plurality of hydrogen stations.
 また、計画装置は、複数の水素生成装置が生成した水素を貯蔵する複数の水素貯蔵装置のそれぞれにおける水素の貯蔵量予測を、貯蔵量予測モデルを用いて生成する貯蔵量予測部を備えてよい。輸送計画部は、複数の水素貯蔵装置のそれぞれと複数の水素ステーションのそれぞれとの間における水素の輸送計画を、輸送計画モデルを用いて、複数の水素貯蔵装置のそれぞれにおける水素の貯蔵量予測を更に含む輸送計画因子に基づいて生成してよい。貯蔵量予測モデルは、予測対象期間における複数の水素貯蔵装置の水素の貯蔵量を、予測対象期間より前における、複数の水素生成装置の稼働量、複数の水素貯蔵装置における水素の貯蔵量、複数の水素貯蔵装置からの水素の輸送量、複数の水素ステーションのそれぞれにおける水素の需要量、および複数の水素生成装置の稼働予測の少なくとも1つを含む貯蔵量予測因子に基づいて予測してよい。計画装置は、複数の水素貯蔵装置の水素の貯蔵量の実績値を用いて、貯蔵量予測モデルを学習により更新する貯蔵量予測モデル更新部を備えてよい。輸送計画因子は、予測対象期間より前における、複数の水素生成装置のそれぞれの稼働量、複数の水素貯蔵装置のそれぞれにおける水素の貯蔵量、および複数の水素ステーションのそれぞれにおける水素の需要量の少なくとも1つを含んでよい。 In addition, the planning device may include a storage amount prediction unit that generates a storage amount prediction of hydrogen in each of the plurality of hydrogen storage devices that stores hydrogen generated by the plurality of hydrogen generation devices, using a storage amount prediction model. . The transportation planning unit uses a transportation planning model to predict a hydrogen storage amount in each of the plurality of hydrogen storage devices and each of the plurality of hydrogen storage devices by using the transportation planning model. It may be generated based on the transportation planning factors that are further included. The storage amount prediction model is a storage amount of hydrogen of the plurality of hydrogen storage devices in the prediction target period, the operating amount of the plurality of hydrogen generators before the prediction target period, the storage amount of hydrogen in the plurality of hydrogen storage device, May be predicted based on a storage amount prediction factor including at least one of the transport amount of hydrogen from the hydrogen storage device, the demand amount of hydrogen at each of the plurality of hydrogen stations, and the operation prediction of the plurality of hydrogen generation devices. The planning device may include a storage amount prediction model updating unit that updates the storage amount prediction model by learning using the actual values of the hydrogen storage amounts of the plurality of hydrogen storage devices. The transportation planning factor is at least the operating amount of each of the plurality of hydrogen generators, the storage amount of hydrogen in each of the plurality of hydrogen storage devices, and the demand amount of hydrogen in each of the plurality of hydrogen stations before the prediction target period. May include one.
 また、計画装置は、複数の水素生成装置、複数の水素貯蔵装置、複数の水素貯蔵装置のそれぞれと複数の水素ステーションのそれぞれとの間の輸送手段、および複数の水素ステーションを含む連携システムの生産性を評価する評価指標に基づいて、輸送計画モデルを学習により更新する輸送計画モデル更新部を備えてよい。評価指標は、連携システムの運営コスト、売上、および利益、並びに、連携システムが供給する水素の単位量当たりの原価の少なくとも1つに基づいてよい。計画装置は、複数の水素生成装置のそれぞれの稼働予測および複数の水素ステーションのそれぞれにおける水素の需要予測の少なくとも1つを含む輸送予測因子に基づいて、輸送予測モデルを用いて、複数の水素生成装置および複数の水素ステーションの間で水素を輸送する輸送計画の予測である輸送予測を生成する輸送予測部を備えてよい。計画装置は、複数の水素生成装置および複数の水素ステーションの間における水素の輸送予測を含む稼働計画因子に基づいて、稼働計画モデルを用いて、複数の水素生成装置のそれぞれの稼働計画を生成する稼働計画部を備えてよい。計画装置は、評価指標に基づいて、稼働計画モデルを学習により更新する稼働計画モデル更新部を備えてよい。 In addition, the planning device includes a plurality of hydrogen generators, a plurality of hydrogen storage devices, a transportation means between each of the plurality of hydrogen storage devices and each of the plurality of hydrogen stations, and a production of a cooperation system including the plurality of hydrogen stations. A transportation plan model updating unit that updates the transportation plan model by learning based on an evaluation index that evaluates the property may be provided. The evaluation index may be based on at least one of operating costs, sales, and profits of the cooperation system, and cost per unit amount of hydrogen supplied by the cooperation system. The planning device uses the transportation prediction model based on the transportation prediction factor including at least one of the operation prediction of each of the plurality of hydrogen generators and the hydrogen demand prediction of each of the plurality of hydrogen stations to use the transportation prediction model. A transport predictor may be provided that generates a transport forecast that is a forecast of a transport plan for transporting hydrogen between the device and the plurality of hydrogen stations. The planning device uses the operation planning model to generate an operation plan for each of the plurality of hydrogen generators based on the operation planning factors including the hydrogen transport prediction between the plurality of hydrogen generators and the plurality of hydrogen stations. An operation planning unit may be provided. The planning apparatus may include an operation plan model updating unit that updates the operation plan model by learning based on the evaluation index.
 また、計画装置は、複数の水素生成装置が生成した水素を貯蔵する複数の水素貯蔵装置のそれぞれにおける水素の貯蔵計画を、貯蔵計画モデルを用いて、複数の水素生成装置のうち対応する水素生成装置の稼働予測、並びに複数の水素生成装置および複数の水素ステーションの間における水素の輸送予測を含む貯蔵計画因子に基づいて生成する貯蔵計画部を備えてよい。計画装置は、評価指標に基づいて、貯蔵計画モデルを学習により更新する貯蔵計画モデル更新部を更に備えてよい。 In addition, the planning device uses the storage planning model to calculate the hydrogen storage plan in each of the plurality of hydrogen storage devices that store hydrogen generated by the plurality of hydrogen generation devices, using the storage planning model. A storage planning unit may be provided that generates based on a storage planning factor including an operation prediction of the apparatus and a hydrogen transportation prediction between the plurality of hydrogen generation apparatuses and the plurality of hydrogen stations. The planning apparatus may further include a storage plan model updating unit that updates the storage plan model by learning based on the evaluation index.
 本発明の第2の態様においては、計画装置が提供される。計画装置は、複数の水素ステーションのそれぞれにおける水素の需要予測を、需要予測モデルを用いて生成する需要予測部を備えてよい。計画装置は、複数の水素ステーションのそれぞれにおける水素の需要予測を含む輸送予測因子に基づいて、輸送予測モデルを用いて、水素を生成する複数の水素生成装置および複数の水素ステーションの間で水素を輸送する輸送計画の予測である輸送予測を生成する輸送予測部を備えてよい。計画装置は、複数の水素生成装置および複数の水素ステーションの間における水素の輸送予測を含む稼働計画因子に基づいて、稼働計画モデルを用いて、複数の水素生成装置のそれぞれの稼働計画を生成する稼働計画部を備えてよい。 In the second aspect of the present invention, a planning device is provided. The planning device may include a demand prediction unit that generates a hydrogen demand forecast at each of the plurality of hydrogen stations using a demand forecast model. The planning device uses the transport prediction model based on the transport prediction factor including the hydrogen demand forecast at each of the multiple hydrogen stations to generate hydrogen between the multiple hydrogen generators that generate hydrogen and between the multiple hydrogen stations. A transportation prediction unit that generates a transportation prediction that is a prediction of a transportation plan to be transported may be provided. The planning device uses the operation planning model to generate an operation plan for each of the plurality of hydrogen generators based on the operation planning factors including the hydrogen transport prediction between the plurality of hydrogen generators and the plurality of hydrogen stations. An operation planning unit may be provided.
 本発明の第3の態様においては、計画方法が提供される。計画方法は、水素を生成する複数の水素生成装置のそれぞれの稼働予測を、稼働予測モデルを用いて生成する段階を備えてよい。計画方法は、複数の水素ステーションのそれぞれにおける水素の需要予測を、需要予測モデルを用いて生成する段階を備えてよい。計画方法は、複数の水素生成装置で生成された水素を複数の水素ステーションに輸送する輸送計画を、輸送計画モデルを用いて、複数の水素生成装置のそれぞれの稼働予測および複数の水素ステーションのそれぞれの需要予測を含む輸送計画因子に基づいて生成する段階を備えてよい。 In the third aspect of the present invention, a planning method is provided. The planning method may include a step of generating an operation prediction of each of the plurality of hydrogen generation devices that generate hydrogen using an operation prediction model. The planning method may include the step of generating a demand forecast of hydrogen at each of the plurality of hydrogen stations using a demand forecast model. The planning method is to use a transportation planning model to create a transportation plan for transporting hydrogen generated by multiple hydrogen generators to multiple hydrogen stations. May be generated based on transportation planning factors including the demand forecast of
 本発明の第4の態様においては、計画プログラムが提供される。計画プログラムは、コンピュータにより実行され、コンピュータを、水素を生成する複数の水素生成装置のそれぞれの稼働予測を、稼働予測モデルを用いて生成する稼働予測部として機能させる。計画プログラムは、コンピュータにより実行され、コンピュータを、複数の水素ステーションのそれぞれにおける水素の需要予測を、需要予測モデルを用いて生成する需要予測部として機能させる。計画プログラムは、コンピュータにより実行され、コンピュータを、複数の水素生成装置で生成された水素を複数の水素ステーションに輸送する輸送計画を、輸送計画モデルを用いて、複数の水素生成装置のそれぞれの稼働予測および複数の水素ステーションのそれぞれの需要予測を含む輸送計画因子に基づいて生成する輸送計画部として機能させる。 In the fourth aspect of the present invention, a planning program is provided. The planning program is executed by a computer and causes the computer to function as an operation prediction unit that generates an operation prediction of each of a plurality of hydrogen generation devices that generate hydrogen using an operation prediction model. The planning program is executed by a computer and causes the computer to function as a demand prediction unit that generates a hydrogen demand forecast at each of a plurality of hydrogen stations using a demand forecast model. The planning program is executed by the computer, and the transportation plan for transporting the hydrogen generated by the plurality of hydrogen generators to the plurality of hydrogen stations is used by the computer to operate each of the plurality of hydrogen generators. It functions as a transportation planning unit that generates based on transportation planning factors including forecasts and demand forecasts for each of a plurality of hydrogen stations.
 本発明の第5の態様においては、計画方法が提供される。計画方法は、複数の水素ステーションのそれぞれにおける水素の需要予測を、需要予測モデルを用いて生成する段階を備えてよい。計画方法は、複数の水素ステーションのそれぞれにおける水素の需要予測を含む輸送予測因子に基づいて、輸送予測モデルを用いて、水素を生成する複数の水素生成装置および複数の水素ステーションの間で水素を輸送する輸送計画の予測である輸送予測を生成する段階を備えてよい。計画方法は、複数の水素生成装置および複数の水素ステーションの間における水素の輸送予測を含む稼働計画因子に基づいて、稼働計画モデルを用いて、複数の水素生成装置のそれぞれの稼働計画を生成する段階を備えてよい。 In the fifth aspect of the present invention, a planning method is provided. The planning method may include the step of generating a demand forecast of hydrogen at each of the plurality of hydrogen stations using a demand forecast model. The planning method uses a transport prediction model based on a transport prediction factor including a hydrogen demand forecast at each of the plurality of hydrogen stations to generate hydrogen between the plurality of hydrogen generators that generate hydrogen and the plurality of hydrogen stations. The method may include generating a transportation forecast that is a forecast of a transportation plan to transport. The planning method uses an operation plan model to generate an operation plan for each of the plurality of hydrogen generators based on an operation plan factor including transportation prediction of hydrogen between the plurality of hydrogen generators and the plurality of hydrogen stations. Stages may be provided.
 本発明の第6の態様においては、計画プログラムが提供される。計画プログラムは、コンピュータにより実行され、コンピュータを、複数の水素ステーションのそれぞれにおける水素の需要予測を、需要予測モデルを用いて生成する需要予測部として機能させる。計画プログラムは、コンピュータにより実行され、コンピュータを、複数の水素ステーションのそれぞれにおける水素の需要予測を含む輸送予測因子に基づいて、輸送予測モデルを用いて、水素を生成する複数の水素生成装置および複数の水素ステーションの間で水素を輸送する輸送計画の予測である輸送予測を生成する輸送予測部として機能させる。計画プログラムは、コンピュータにより実行され、コンピュータを、複数の水素生成装置および複数の水素ステーションの間における水素の輸送予測を含む稼働計画因子に基づいて、稼働計画モデルを用いて、複数の水素生成装置のそれぞれの稼働計画を生成する稼働計画部として機能させる。 In the sixth aspect of the present invention, a planning program is provided. The planning program is executed by a computer and causes the computer to function as a demand prediction unit that generates a hydrogen demand forecast at each of a plurality of hydrogen stations using a demand forecast model. The planning program is executed by a computer, and the computer is configured to generate a plurality of hydrogen generators and a plurality of hydrogen generators that generate hydrogen by using a transportation prediction model based on a transportation prediction factor including a hydrogen demand prediction at each of the plurality of hydrogen stations. It functions as a transport prediction unit that generates a transport forecast that is a forecast of a transport plan for transporting hydrogen between the hydrogen stations of the above. The planning program is executed by a computer, and the computer uses the operation planning model based on the operation planning factors including the hydrogen transportation prediction between the plurality of hydrogen generating apparatuses and the plurality of hydrogen stations. It functions as an operation planning unit that generates each operation plan of each.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 The summary of the invention described above does not enumerate all necessary features of the invention. Further, a sub-combination of these feature groups can also be an invention.
本実施形態に係るシステム10を示す。1 shows a system 10 according to this embodiment. 本実施形態に係る計画装置70の構成例を示す。The structural example of the planning apparatus 70 which concerns on this embodiment is shown. 本実施形態の計画装置70の予測部120の詳細な構成例を示す。The detailed structural example of the prediction part 120 of the planning device 70 of this embodiment is shown. 本実施形態の計画装置70の計画部130の詳細な構成例を示す。The detailed structural example of the planning part 130 of the planning device 70 of this embodiment is shown. 本実施形態に係る計画装置70のフローの一例を示す。An example of the flow of the planning device 70 according to the present embodiment is shown. 本実施形態の複数の態様が全体的または部分的に具現化されうるコンピュータ1900の例を示す。1 illustrates an example computer 1900 in which aspects of the present embodiment may be embodied in whole or in part.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention according to the claims. In addition, not all of the combinations of features described in the embodiments are essential to the solving means of the invention.
 図1は、本実施形態に係るシステム10を示す。システム10は、水素ステーション60の需要を満たすための計画を生成して、当該計画に従って、水素生成装置で生成された水素を水素ステーションに供給する。システム10は、複数の再生可能エネルギー発電設備20と、複数の水素生成装置30と、複数の水素貯蔵装置40と、複数の輸送手段50と、複数の水素ステーション60と、計画装置70とを備える。 FIG. 1 shows a system 10 according to this embodiment. The system 10 produces | generates the plan for satisfying the demand of the hydrogen station 60, and supplies the hydrogen produced | generated by the hydrogen generator to the hydrogen station according to the said plan. The system 10 includes a plurality of renewable energy power generation facilities 20, a plurality of hydrogen generators 30, a plurality of hydrogen storage devices 40, a plurality of transportation means 50, a plurality of hydrogen stations 60, and a planning device 70. .
 複数の再生可能エネルギー発電設備20は、電力系統80の送電網を介して、または送電網を介さずに、それぞれ水素生成装置30に接続される。例えば、再生可能エネルギー発電設備20aおよび20bは、送電網を介さずに、水素生成装置30aおよび30bにそれぞれ接続され、再生可能エネルギー発電設備20cおよび20dは、電力系統80の送電網を介して水素生成装置30cおよび30dにそれぞれ接続される。複数の再生可能エネルギー発電設備20は、風力、太陽光、熱、地熱、水力、および/またはバイオマス等の再生可能エネルギーによる発電を行う設備である。複数の再生可能エネルギー発電設備20は、発電電力を接続先の水素生成装置30に供給する。また、複数の再生可能エネルギー発電設備20は、発電電力を、電力系統80に売電してもよい。 The plurality of renewable energy power generation facilities 20 are respectively connected to the hydrogen generation device 30 via the power transmission grid of the electric power system 80 or not. For example, the renewable energy power generation facilities 20a and 20b are connected to the hydrogen generators 30a and 30b, respectively, without passing through the power grid, and the renewable energy power generation facilities 20c and 20d are connected to the hydrogen via the power grid of the power grid 80. The generators 30c and 30d are respectively connected. The plurality of renewable energy power generation facilities 20 are facilities that generate electricity using renewable energy such as wind power, sunlight, heat, geothermal power, hydraulic power, and / or biomass. The plurality of renewable energy power generation facilities 20 supply generated power to the hydrogen generation device 30 at the connection destination. Further, the plurality of renewable energy power generation facilities 20 may sell the generated power to the power grid 80.
 ここで、電力系統80は、一例として、原子力発電、火力発電、および/または再生可能エネルギーによる発電等を行う1または複数の発電所から、送電網を介して多数の需要家に電力を供給するシステムである。電力系統80は、例えば、発電量及び需要量に応じて、所定時間毎、1日毎、または1ヶ月毎等に電気料金(例えば、売電料金および買電料金)が変動しうるものである。 Here, the electric power system 80 supplies electric power to a large number of consumers via a power transmission network from, for example, one or a plurality of power plants that perform nuclear power generation, thermal power generation, and / or power generation using renewable energy. System. In the electric power system 80, for example, depending on the amount of power generation and the amount of demand, the electricity charge (for example, the power sale charge and the power purchase charge) can change every predetermined time, every day, every month, or the like.
 複数の水素生成装置30は、水素貯蔵装置40にそれぞれ接続される。水素生成装置30は、一例として、電気エネルギーを用いた電気分解によって水素を生成する装置である。水素生成装置30は、計画装置70が生成した計画に従って稼働してよい。水素生成装置30は、再生可能エネルギー発電設備20および/または電力系統80から電力供給されることによって稼働する。 The plurality of hydrogen generators 30 are connected to the hydrogen storage device 40, respectively. The hydrogen generator 30 is, for example, a device that generates hydrogen by electrolysis using electric energy. The hydrogen generator 30 may operate according to the plan generated by the planning device 70. The hydrogen generator 30 operates by being supplied with power from the renewable energy power generation facility 20 and / or the power grid 80.
 複数の水素貯蔵装置40は、一例として、水素生成装置30で生成された水素を貯蔵するタンク等であってよい。水素貯蔵装置40dは、水素ステーション60に直接接続され、貯蔵された水素を、当該水素ステーション60にパイプ等を介して供給してよい。なお、複数の水素貯蔵装置40は、1つの水素生成装置30に接続されてもよい。 The plurality of hydrogen storage devices 40 may be, for example, tanks that store hydrogen generated by the hydrogen generation device 30. The hydrogen storage device 40d may be directly connected to the hydrogen station 60 and supply the stored hydrogen to the hydrogen station 60 via a pipe or the like. In addition, the plurality of hydrogen storage devices 40 may be connected to one hydrogen generation device 30.
 複数の輸送手段50は、一例として、タンク等に圧縮した水素を貯蔵して運ぶトレーラーおよび当該トレーラーを牽引する自動車である。複数の輸送手段50は、複数の水素貯蔵装置40のそれぞれと複数の水素ステーション60のそれぞれとの間の水素の輸送を行う。 The plurality of transportation means 50 are, for example, a trailer that stores and carries compressed hydrogen in a tank or the like, and a vehicle that pulls the trailer. The plurality of transportation means 50 transports hydrogen between each of the plurality of hydrogen storage devices 40 and each of the plurality of hydrogen stations 60.
 複数の水素ステーション60は、一例として、水素を燃料として消費する燃料電池自動車等の消費手段90に水素を供給する設備である。水素ステーション60は、輸送手段50により輸送された水素を圧縮して貯蔵するための貯蔵設備を有してよい。 The plurality of hydrogen stations 60 is, for example, a facility that supplies hydrogen to a consumption means 90 such as a fuel cell vehicle that consumes hydrogen as fuel. The hydrogen station 60 may have a storage facility for compressing and storing the hydrogen transported by the transportation means 50.
 計画装置70は、複数の再生可能エネルギー発電設備20、複数の水素生成装置30、複数の水素貯蔵装置40、複数の輸送手段50、および複数の水素ステーション60の少なくとも1つ、または当該少なくとも1つの事業者が有する管理装置等に接続されてよい。計画装置70は、システム10内の複数の装置を連携稼働させるための計画を生成して出力する。 The planning device 70 includes at least one of the plurality of renewable energy power generation facilities 20, the plurality of hydrogen generators 30, the plurality of hydrogen storage devices 40, the plurality of transportation means 50, and the plurality of hydrogen stations 60, or at least one of the at least one. It may be connected to a management device or the like owned by the business operator. The planning device 70 generates and outputs a plan for operating a plurality of devices in the system 10 in cooperation.
 計画装置70は、パーソナルコンピュータ、タブレット型コンピュータ、スマートフォン、ワークステーション、サーバコンピュータ、または汎用コンピュータ等のコンピュータであってよく、複数のコンピュータが接続されたコンピュータシステムであってもよい。計画装置70は、コンピュータのCPU、GPU(Graphics Processing Unit)、および/またはTPU(Tensor Processing Unit)における処理によって計画等を生成してよい。また、計画装置70は、サーバコンピュータにより提供されるクラウド上で各種の処理を行うものであってよい。 The planning device 70 may be a computer such as a personal computer, a tablet computer, a smartphone, a workstation, a server computer, or a general-purpose computer, or may be a computer system in which a plurality of computers are connected. The planning device 70 may generate a plan or the like by processing in a CPU, a GPU (Graphics Processing Unit), and / or a TPU (Tensor Processing Unit) of a computer. Further, the planning device 70 may perform various processes on the cloud provided by the server computer.
 図2は、本実施形態に係る計画装置70の構成例を示す。計画装置70は、取得部100と、記憶部110と、予測部120と、計画部130と、出力部140とを備える。 FIG. 2 shows a configuration example of the planning device 70 according to this embodiment. The planning device 70 includes an acquisition unit 100, a storage unit 110, a prediction unit 120, a planning unit 130, and an output unit 140.
 ここで、図2における1または複数の管理装置150は、ネットワーク等を介して計画装置70に接続される。1または複数の管理装置150は、複数の再生可能エネルギー発電設備20、複数の水素生成装置30、複数の水素貯蔵装置40、複数の輸送手段50、および複数の水素ステーション60のうちの少なくとも1つの機器、または、当該少なくとも1つの事業者が有する装置であってよい。1または複数の管理装置150は、複数の再生可能エネルギー発電設備20、複数の水素生成装置30、複数の水素貯蔵装置40、複数の輸送手段50、および複数の水素ステーション60のうちの少なくとも1つから各種のデータを取得して計画装置70に供給してよい。1または複数の管理装置150は、当該管理装置150のユーザから入力されたデータを計画装置70に供給してよい。1または複数の管理装置150は、計画装置70から受信した計画に応じてシステム10内の装置を制御してよい。1または複数の管理装置150は、計画装置70から受信した計画等を表示してよい。 Here, one or more management devices 150 in FIG. 2 are connected to the planning device 70 via a network or the like. The one or more management devices 150 include at least one of the plurality of renewable energy power generation facilities 20, the plurality of hydrogen generators 30, the plurality of hydrogen storage devices 40, the plurality of transportation means 50, and the plurality of hydrogen stations 60. It may be a device or a device owned by the at least one business operator. The one or more management devices 150 are at least one of the plurality of renewable energy power generation facilities 20, the plurality of hydrogen generators 30, the plurality of hydrogen storage devices 40, the plurality of transportation means 50, and the plurality of hydrogen stations 60. Various data may be acquired from the above and supplied to the planning apparatus 70. One or a plurality of management apparatuses 150 may supply the data input by the user of the management apparatus 150 to the planning apparatus 70. The one or more management devices 150 may control the devices in the system 10 according to the plan received from the planning device 70. The one or more management apparatuses 150 may display the plan or the like received from the planning apparatus 70.
 取得部100は、管理装置150と記憶部110とに接続され、管理装置150から、学習に用いるデータを取得してよい。取得部100は、予め定められた期間毎に、情報を取得して更新してよい。取得部100は、取得すべき情報に応じて、略同一または異なる期間毎に当該情報を取得して、それぞれ追加または更新してよい。また、取得部100は、ネットワーク等に接続され、当該ネットワークを介してデータを取得してもよい。取得部100は、取得すべきデータの少なくとも一部が外部のデータベース等に記憶されている場合、当該データベース等にアクセスし、取得してよい。取得部100は、取得したデータを、記憶部110に供給する。 The acquisition unit 100 may be connected to the management device 150 and the storage unit 110, and may acquire data used for learning from the management device 150. The acquisition unit 100 may acquire and update the information for each predetermined period. The acquisition unit 100 may acquire the information at almost the same or different periods and add or update the information, respectively, depending on the information to be acquired. Further, the acquisition unit 100 may be connected to a network or the like and acquire data via the network. When at least a part of the data to be acquired is stored in an external database or the like, the acquisition unit 100 may access the database or the like and acquire the data. The acquisition unit 100 supplies the acquired data to the storage unit 110.
 記憶部110は、予測部120と計画部130とに接続され、取得部100が取得したデータを記憶する。記憶部110は、当該計画装置70が処理するデータを記憶してよい。記憶部110は、計画装置70が計画を生成する過程で算出または利用する中間データ、算出結果、およびパラメータ等をそれぞれ記憶してもよい。また、記憶部110は、計画装置70内の各構成の要求に応じて、記憶したデータを要求元に供給してよい。 The storage unit 110 is connected to the prediction unit 120 and the planning unit 130, and stores the data acquired by the acquisition unit 100. The storage unit 110 may store data processed by the planning device 70. The storage unit 110 may store intermediate data, calculation results, parameters, and the like that are calculated or used by the planning apparatus 70 in the process of generating a plan. In addition, the storage unit 110 may supply the stored data to the request source in response to a request from each component in the planning device 70.
 予測部120は、計画部130に接続され、稼働予測、需要予測、消費予測、発電量予測、電気料金予測、貯蔵量予測、および輸送予測の少なくとも1つを含む予測結果を生成する。予測部120は、1または複数の学習モデルを生成して、当該学習モデルを学習して更新し、更新した学習モデルに基づいて、予測結果を生成する。予測部120は、予測結果を記憶部110または計画部130に供給する。 The prediction unit 120 is connected to the planning unit 130, and generates a prediction result including at least one of an operation prediction, a demand prediction, a consumption prediction, a power generation amount prediction, an electricity price prediction, a storage amount prediction, and a transportation prediction. The prediction unit 120 generates one or a plurality of learning models, learns and updates the learning model, and generates a prediction result based on the updated learning model. The prediction unit 120 supplies the prediction result to the storage unit 110 or the planning unit 130.
 ここで、稼働予測は、将来の予測期間における、水素を生成する複数の水素生成装置30のそれぞれの稼働量(例えば、水素生成装置30の稼働率、稼働期間、水素生成量の累計、または単位時間当たりの水素生成量等)を含んでよい。需要予測は、将来の予測期間における、複数の水素ステーション60のそれぞれにおける水素の需要量の累計、および時間毎、日毎、または月毎の水素の需要量の少なくとも1つを含んでよい。消費予測は、将来の予測期間における、複数の水素ステーション60のそれぞれにおける水素の消費量の累計、および時間毎、日毎、または月毎の水素の消費量の少なくとも1つを含んでよい。 Here, the operation prediction is the operation amount of each of the plurality of hydrogen generation devices 30 that generate hydrogen in the future prediction period (for example, the operation rate of the hydrogen generation device 30, the operation period, the cumulative hydrogen generation amount, or the unit). The amount of hydrogen produced per hour) may be included. The demand forecast may include at least one of the cumulative demand of hydrogen at each of the plurality of hydrogen stations 60 and the demand of hydrogen for each hour, day, or month in the future forecast period. The consumption prediction may include at least one of a cumulative hydrogen consumption amount in each of the plurality of hydrogen stations 60 and a hydrogen consumption amount per hour, day, or month in a future prediction period.
 ここで、需要量は、例えば、水素ステーション60における水素の必要量であり、水素ステーション60における水素貯蔵量が0とならないように、予め定められたバッファ量を、消費手段90への水素の供給量に加えた水素の量であってよい。また、消費量は、水素ステーション60における消費手段90への水素の供給量であってよい。 Here, the demand amount is, for example, a required amount of hydrogen in the hydrogen station 60, and a predetermined buffer amount is supplied to the consuming means 90 so that the hydrogen storage amount in the hydrogen station 60 does not become zero. It may be the amount of hydrogen added to the amount. Further, the consumption amount may be the supply amount of hydrogen to the consumption means 90 in the hydrogen station 60.
 発電量予測は、予測期間における、複数の再生可能エネルギー発電設備20のそれぞれについての、再生可能エネルギーの発電量の累計、および時間毎、日毎、または月毎の発電量の少なくとも1つを含んでよい。電気料金予測は、予測期間における、再生可能エネルギー発電設備20から水素生成装置30へ、電力系統80の送電網を介して供給される、または送電網を介さずに直接供給される、再生可能エネルギーによる発電電力の電気料金(売電料金または買電料金)を含んでよい。なお、電力系統80が再生可能エネルギー発電設備20からの電力を買電している場合には、当該電力系統80の送電網を介して水素生成装置30が電力を買電する料金は、再生可能エネルギーの電気料金に含まれてよい。 The power generation amount prediction includes at least one of the cumulative amount of power generation of renewable energy and the amount of power generation of each hour, day, or month for each of the plurality of renewable energy power generation facilities 20 in the prediction period. Good. The electricity price forecast is a renewable energy that is supplied from the renewable energy power generation facility 20 to the hydrogen generator 30 through the power transmission grid of the power grid 80 or directly without the grid during the prediction period. It may include the electricity rate (power selling rate or power purchasing rate) of the power generated by. In addition, when the electric power system 80 purchases the electric power from the renewable energy power generation facility 20, the charge for the electric power to be purchased by the hydrogen generator 30 via the power transmission network of the electric power system 80 is renewable. It may be included in the electricity bill for energy.
 貯蔵量予測は、予測期間における、複数の水素生成装置30が生成した水素を貯蔵する複数の水素貯蔵装置40のそれぞれにおける水素の貯蔵量(例えば、当該貯蔵量の最大可能貯蔵量に対する割合)を含んでよい。輸送予測は、予測期間における、複数の水素生成装置30および複数の水素ステーション60の間で水素を輸送する輸送計画の予測である。 The storage amount prediction indicates the storage amount of hydrogen (for example, the ratio of the storage amount to the maximum possible storage amount) in each of the plurality of hydrogen storage devices 40 that stores the hydrogen generated by the plurality of hydrogen generation devices 30 in the prediction period. May be included. The transportation forecast is a forecast of a transportation plan for transporting hydrogen between the plurality of hydrogen generators 30 and the plurality of hydrogen stations 60 in the prediction period.
 計画部130は、出力部140に接続され、輸送計画、稼働計画、および貯蔵計画の少なくとも1つを含む計画データを生成する。計画部130は、1または複数の学習モデルを生成して、当該学習モデルを学習して更新し、更新した学習モデルに基づいて、計画データを生成する。計画部130は、生成した計画データを、記憶部110および出力部140に供給する。 The planning unit 130 is connected to the output unit 140 and generates planning data including at least one of a transportation plan, an operation plan, and a storage plan. The planning unit 130 generates one or a plurality of learning models, learns and updates the learning model, and generates planning data based on the updated learning model. The planning unit 130 supplies the generated planning data to the storage unit 110 and the output unit 140.
 ここで、輸送計画は、計画対象期間における、複数の水素生成装置30および複数の水素ステーション60の間での、各輸送手段50の輸送経路、各輸送手段50の輸送距離、各輸送手段50の輸送時間、各輸送手段50の輸送コスト、輸送手段50の数、および各輸送手段50の種類の少なくとも1つを指定する計画を含んでよい。稼働計画は、計画対象期間における、複数の水素生成装置30のそれぞれの稼働率、水素生成量、稼働期間、および稼働時間帯の少なくとも1つを指定する計画を含んでよい。貯蔵計画は、計画対象期間における、複数の水素生成装置30が生成した水素を貯蔵する複数の水素貯蔵装置40のそれぞれにおける水素の貯蔵量の経時的変化、水素の最低貯蔵量、および水素の最大貯蔵量の少なくとも1つを指定する計画を含んでよい。 Here, the transportation plan includes a transportation route of each transportation means 50, a transportation distance of each transportation means 50, and a transportation distance of each transportation means 50 between the plurality of hydrogen generators 30 and the plurality of hydrogen stations 60 in the planning period. A plan may be included that specifies at least one of a transportation time, a transportation cost for each transportation means 50, a number of transportation means 50, and a type of each transportation means 50. The operation plan may include a plan that specifies at least one of the operation rate, the hydrogen generation amount, the operation period, and the operation time zone of each of the plurality of hydrogen generation devices 30 in the plan target period. The storage plan is a time-dependent change in the storage amount of hydrogen in each of the plurality of hydrogen storage devices 40 that store hydrogen generated by the plurality of hydrogen generation devices 30, the minimum storage amount of hydrogen, and the maximum storage amount of hydrogen in the planning period. A plan may be included that specifies at least one of the reserves.
 出力部140は、管理装置150に接続され、計画データを管理装置150に出力する。 The output unit 140 is connected to the management device 150 and outputs plan data to the management device 150.
 以上の本実施形態の計画装置70によれば、学習により更新したモデルに基づいて、適切な計画を生成し、当該計画に沿って水素を供給することで供給コストを低減することができる。 According to the planning device 70 of the present embodiment described above, it is possible to reduce the supply cost by generating an appropriate plan based on the model updated by learning and supplying hydrogen according to the plan.
 図3は、本実施形態の計画装置70の予測部120の詳細な構成例を示す。予測部120は、稼働予測モデル生成部200と、稼働予測モデル更新部210と、稼働予測部220とを有し、水素を生成する複数の水素生成装置30のそれぞれの稼働予測を生成する。予測部120は、需要予測モデル生成部230と、需要予測モデル更新部240と、需要予測部250とを有し、複数の水素ステーション60のそれぞれにおける水素の需要予測を生成する。予測部120は、発電量予測モデル生成部260と、発電量予測モデル更新部270と、発電量予測部280とを有し、複数の再生可能エネルギー発電設備20のそれぞれについて、再生可能エネルギーの発電量予測を生成する。 FIG. 3 shows a detailed configuration example of the prediction unit 120 of the planning device 70 of this embodiment. The prediction unit 120 includes an operation prediction model generation unit 200, an operation prediction model update unit 210, and an operation prediction unit 220, and generates the operation prediction of each of the hydrogen generation devices 30 that generate hydrogen. The prediction unit 120 includes a demand prediction model generation unit 230, a demand prediction model update unit 240, and a demand prediction unit 250, and generates a hydrogen demand prediction at each of the plurality of hydrogen stations 60. The prediction unit 120 includes a power generation prediction model generation unit 260, a power generation prediction model update unit 270, and a power generation prediction unit 280, and generates renewable energy for each of the plurality of renewable energy power generation facilities 20. Generate a quantity forecast.
 予測部120は、電気料金予測モデル生成部290と、電気料金予測モデル更新部300と、電気料金予測部310とを有し、再生可能エネルギーの電気料金予測を生成する。予測部120は、消費予測モデル生成部320と、消費予測モデル更新部330と、消費予測部340とを有し、複数の水素ステーション60のそれぞれにおける水素の消費予測を生成する。予測部120は、貯蔵量予測モデル生成部350と、貯蔵量予測モデル更新部360と、貯蔵量予測部370とを有し、複数の水素生成装置30が生成した水素を貯蔵する複数の水素貯蔵装置40のそれぞれにおける水素の貯蔵量予測を生成する。予測部120は、輸送予測モデル生成部380と、輸送予測モデル更新部390と、輸送予測部400とを有し、複数の水素生成装置30および複数の水素ステーション60の間で水素を輸送する輸送計画の予測である輸送予測を生成する。 The prediction unit 120 includes an electricity price prediction model generation unit 290, an electricity price prediction model update unit 300, and an electricity price prediction unit 310, and generates an electricity price prediction of renewable energy. The prediction unit 120 includes a consumption prediction model generation unit 320, a consumption prediction model update unit 330, and a consumption prediction unit 340, and generates a hydrogen consumption prediction at each of the plurality of hydrogen stations 60. The prediction unit 120 includes a storage amount prediction model generation unit 350, a storage amount prediction model update unit 360, and a storage amount prediction unit 370, and stores a plurality of hydrogen storage units that store the hydrogen generated by the plurality of hydrogen generation devices 30. Generate hydrogen storage forecasts in each of the devices 40. The prediction unit 120 includes a transportation prediction model generation unit 380, a transportation prediction model update unit 390, and a transportation prediction unit 400, and transports hydrogen between the plurality of hydrogen generation devices 30 and the plurality of hydrogen stations 60. Generate transport forecasts, which are forecasts for the plan.
 ここで、記憶部110は、稼働予測因子、需要予測因子、発電量予測因子、電気料金予測因子、消費予測因子、貯蔵量予測因子、および輸送予測因子を含む予測因子を記憶する。 Here, the storage unit 110 stores prediction factors including an operation prediction factor, a demand prediction factor, a power generation amount prediction factor, an electricity rate prediction factor, a consumption prediction factor, a storage amount prediction factor, and a transportation prediction factor.
 稼働予測因子は、水素生成装置30の稼働に関する情報を含んでよい。稼働予測因子は、予測対象期間より前における、複数の水素生成装置30の稼働量、複数の水素生成装置30が生成した水素を貯蔵する複数の水素貯蔵装置40における水素の貯蔵量、複数の水素貯蔵装置40からの水素の輸送量、複数の水素ステーション60のそれぞれにおける水素の需要量、予測対象期間の需要予測、および、予測対象期間の電気料金予測の少なくとも1つを含んでよい。稼働予測因子は、予測対象期間より前における、水素生成装置30に接続された再生可能エネルギー発電設備20の発電量、水素生成装置30の水素の生成効率(例えば、単位電力当たりまたは単位時間当たりの水素の生成量等)、および水素生成装置30に接続された再生可能エネルギー発電設備20の予測対象期間の発電量予測の少なくとも1つをさらに含んでよい。また、稼働予測因子は、水素生成装置30の物理モデルから算出される仮想データを含んでよい。 The operation prediction factor may include information on the operation of the hydrogen generator 30. The operation prediction factor is the operation amount of the plurality of hydrogen generation devices 30, the storage amount of hydrogen in the plurality of hydrogen storage devices 40 that stores the hydrogen generated by the plurality of hydrogen generation devices 30, and the plurality of hydrogens before the prediction target period. At least one of the transportation amount of hydrogen from the storage device 40, the demand amount of hydrogen at each of the plurality of hydrogen stations 60, the demand forecast for the prediction target period, and the electricity charge forecast for the prediction target period may be included. The operation predicting factor includes the power generation amount of the renewable energy power generation facility 20 connected to the hydrogen generator 30 and the hydrogen generation efficiency of the hydrogen generator 30 (for example, per unit power or per unit time) before the prediction target period. At least one of the generation amount of hydrogen) and the power generation amount prediction in the prediction target period of the renewable energy power generation facility 20 connected to the hydrogen generation device 30 may be further included. Further, the operation prediction factor may include virtual data calculated from the physical model of the hydrogen generator 30.
 需要予測因子は、水素ステーション60における水素の需要量に関する情報を含んでよい。需要予測因子は、予測対象期間より前における、各水素ステーション60における水素の消費量、複数の水素ステーション60のそれぞれにおける水素の需要量、および複数の水素ステーション60のそれぞれにおける水素の消費予測の少なくとも1つを含んでよい。需要予測因子は、予測対象期間より前における、水素ステーション60を利用する消費手段90の数、天気情報(例えば、予測対象期間より前の天気情報、または予想対象期間の天気予測等)、および稼働予測部220による予測対象期間の稼働予測の少なくとも1つをさらに含んでよい。天気情報は、風速、風向き、晴れ、雨、温度、波の高さ、および日照時間等の少なくとも1つを含んでよい。 The demand forecasting factor may include information about the demanded amount of hydrogen at the hydrogen station 60. The demand prediction factor is at least the hydrogen consumption amount at each hydrogen station 60, the hydrogen demand amount at each of the plurality of hydrogen stations 60, and the hydrogen consumption forecast at each of the plurality of hydrogen stations 60 before the prediction target period. May include one. The demand forecasting factor is the number of consumption means 90 using the hydrogen station 60 before the forecast target period, weather information (for example, weather information before the forecast target period, or weather forecast for the forecast target period), and operation. It may further include at least one of the operation predictions of the prediction target period by the prediction unit 220. The weather information may include at least one of wind speed, wind direction, sunny, rain, temperature, wave height, sunshine duration, and the like.
 発電量予測因子は、再生可能エネルギー発電設備20の発電量に関する情報を含んでよい。発電量予測因子は、予測対象期間より前における、各再生可能エネルギー発電設備20の発電量(例えば、発電効率等)、各再生可能エネルギー発電設備20の電力供給量、各再生可能エネルギー発電設備20が買電した電力量または売電した電力量、および各再生可能エネルギー発電設備20の売電料金または買電料金の少なくとも1つを含んでよい。発電量予測因子は、再生可能エネルギー発電設備20の種類(例えば、発電に用いる再生可能エネルギーの種類等)、天気情報(例えば、予測対象期間より前の天気情報、または予想対象期間の天気予測等)、および再生可能エネルギー発電設備20の利用期間の少なくとも1つをさらに含んでよい。また、発電量予測因子は、再生可能エネルギー発電設備20の物理モデルから算出される仮想データを含んでよい。 The power generation amount prediction factor may include information on the power generation amount of the renewable energy power generation facility 20. The power generation amount prediction factor is the power generation amount (for example, power generation efficiency) of each renewable energy power generation facility 20, the power supply amount of each renewable energy power generation facility 20, and each renewable energy power generation facility 20 before the prediction target period. May include at least one of the amount of electric power purchased or the amount of electric power sold, and the selling price or purchasing price of each renewable energy power generation facility 20. The power generation amount prediction factor is the type of the renewable energy power generation facility 20 (for example, the type of renewable energy used for power generation), weather information (for example, weather information before the prediction target period, or weather prediction for the prediction target period). ), And at least one of the usage periods of the renewable energy power generation facility 20. Further, the power generation amount prediction factor may include virtual data calculated from the physical model of the renewable energy power generation facility 20.
 電気料金予測因子は、水素生成装置30が買電する際の電気料金に関連する情報を含んでよい。電気料金予測因子は、予測対象期間より前における、電気料金、電力需要量、電力供給量、再生可能エネルギー発電量、天気情報(例えば、予測対象期間より前の天気情報、または予想対象期間の天気予測等)、および、発電量予測部280による予測対象期間の再生可能エネルギーの発電量予測の少なくとも1つを含んでよい。 The electricity price prediction factor may include information related to the electricity price when the hydrogen generator 30 purchases electricity. The electricity rate predictor is an electricity rate, a power demand, a power supply, a renewable energy generation amount, weather information (for example, weather information before the forecast period, or weather in the forecast period before the forecast period). Prediction), and at least one of the power generation amount prediction of the renewable energy in the prediction target period by the power generation amount prediction unit 280.
 消費予測因子は、水素ステーション60における水素の消費に関する情報を含んでよい。消費予測因子は、予測対象期間より前における、複数の水素ステーション60のそれぞれにおける水素の需要量、複数の水素ステーション60のそれぞれにおける水素の消費量、天気情報(例えば、予測対象期間より前の天気情報、または予想対象期間の天気予測等)、および複数の水素ステーション60のそれぞれから供給される水素を利用して提供されるサービスの水素使用量に関する因子の少なくとも1つを含んでよい。複数の水素ステーション60のそれぞれから供給される水素を利用して提供されるサービスの水素使用量に関する因子は、例えば、消費手段90である燃料電池バスの運行情報、複数の水素ステーション60のそれぞれを利用する消費手段90の数、および水素ステーション60における各消費手段90への水素の供給量の少なくとも1つを含んでよい。 The consumption predictor may include information regarding the consumption of hydrogen at the hydrogen station 60. The consumption prediction factor is a hydrogen demand amount at each of the plurality of hydrogen stations 60 before the prediction target period, a hydrogen consumption amount at each of the plurality of hydrogen stations 60, and weather information (for example, the weather before the prediction target period). Information, or weather forecast for the forecast target period), and at least one of the factors related to the hydrogen usage amount of the service provided by using the hydrogen supplied from each of the plurality of hydrogen stations 60. Factors relating to the amount of hydrogen used for the services provided by using the hydrogen supplied from each of the plurality of hydrogen stations 60 include, for example, operation information of the fuel cell bus, which is the consuming means 90, and each of the plurality of hydrogen stations 60. It may include at least one of the number of consuming means 90 to be used and the supply amount of hydrogen to each consuming means 90 in the hydrogen station 60.
 貯蔵量予測因子は、水素貯蔵装置40の水素の貯蔵量に関する情報を含んでよい。貯蔵量予測因子は、予測対象期間より前における、複数の水素生成装置30の稼働量、複数の水素貯蔵装置40における水素の貯蔵量、複数の水素貯蔵装置40からの水素の輸送量、複数の水素ステーション60のそれぞれにおける水素の需要量、および複数の水素生成装置30の予測対象期間の稼働予測の少なくとも1つを含んでよい。貯蔵量予測因子は、各輸送手段50の水素の輸送可能な量、水素貯蔵装置40から輸送手段50への水素供給回数、および水素貯蔵装置40から輸送手段50への水素供給日時の少なくとも1つを含んでよい。 The storage amount prediction factor may include information about the storage amount of hydrogen in the hydrogen storage device 40. The storage amount prediction factor includes the operating amount of the plurality of hydrogen generation devices 30, the storage amount of hydrogen in the plurality of hydrogen storage devices 40, the transport amount of hydrogen from the plurality of hydrogen storage devices 40, and At least one of the demanded amount of hydrogen in each of the hydrogen stations 60 and the operation prediction of the plurality of hydrogen generators 30 during the prediction target period may be included. The storage amount prediction factor is at least one of the transportable amount of hydrogen in each transportation means 50, the number of times hydrogen is supplied from the hydrogen storage device 40 to the transportation means 50, and the hydrogen supply date and time from the hydrogen storage device 40 to the transportation means 50. May be included.
 輸送予測因子は、複数の水素生成装置30および複数の水素ステーション60の間における水素の輸送に関する情報を含んでよい。輸送予測因子は、複数の水素生成装置30のそれぞれの稼働予測および複数の水素ステーション60のそれぞれにおける水素の需要予測の少なくとも1つを含んでよい。輸送予測因子は、予測対象期間より前における輸送手段50による水素ステーション60への水素供給日時、輸送手段50による水素ステーション60への水素供給回数、輸送手段50の数、各輸送手段50の種類、各輸送手段50の水素の輸送可能な量、各輸送手段50の輸送コスト、各輸送手段50の輸送時間、複数の輸送手段50の利用可能時間帯、および複数の輸送手段50の配置の少なくとも1つを含んでよい。 The transportation predictor may include information on transportation of hydrogen between the plurality of hydrogen generators 30 and the plurality of hydrogen stations 60. The transportation prediction factor may include at least one of an operation prediction of each of the plurality of hydrogen generators 30 and a hydrogen demand prediction of each of the plurality of hydrogen stations 60. The transportation prediction factor is the date and time of hydrogen supply to the hydrogen station 60 by the transportation means 50 before the prediction target period, the number of times of hydrogen supply to the hydrogen station 60 by the transportation means 50, the number of transportation means 50, the type of each transportation means 50, At least one of the transportable amount of hydrogen of each transportation means 50, the transportation cost of each transportation means 50, the transportation time of each transportation means 50, the available time zone of the plurality of transportation means 50, and the arrangement of the plurality of transportation means 50. May include one.
 稼働予測因子、需要予測因子、発電量予測因子、電気料金予測因子、消費予測因子、貯蔵量予測因子、および輸送予測因子の少なくとも1つは、略一定時間毎の時系列の情報でよい。稼働予測因子、需要予測因子、発電量予測因子、電気料金予測因子、消費予測因子、貯蔵量予測因子、および輸送予測因子の少なくとも1つは、時間の経過と共にそれぞれ追加または更新されてよい。稼働予測因子、需要予測因子、発電量予測因子、電気料金予測因子、消費予測因子、貯蔵量予測因子、および輸送予測因子の少なくとも1つは、計画装置70において生成された予測結果、および計画データの少なくとも1つをさらに含んでよい。また、稼働予測因子、需要予測因子、発電量予測因子、電気料金予測因子、消費予測因子、貯蔵量予測因子、および輸送予測因子の少なくとも1つは、外部のデータベースまたは管理装置150等から供給され、取得部100で取得した情報を含んでよい。 At least one of the operation forecasting factor, the demand forecasting factor, the power generation forecasting factor, the electricity price forecasting factor, the consumption forecasting factor, the storage amount forecasting factor, and the transport forecasting factor may be time-series information at approximately fixed time intervals. At least one of the operation predictor, the demand predictor, the power generation predictor, the electricity rate predictor, the consumption predictor, the storage predictor, and the transport predictor may be added or updated over time. At least one of the operation predicting factor, the demand predicting factor, the power generation predicting factor, the electricity rate predicting factor, the consumption predicting factor, the storage predicting factor, and the transport predicting factor are prediction results generated by the planning device 70, and plan data. May be further included. Further, at least one of the operation predicting factor, the demand predicting factor, the power generation predicting factor, the electricity rate predicting factor, the consumption predicting factor, the storage predicting factor, and the transport predicting factor is supplied from an external database or the management device 150. The information acquired by the acquisition unit 100 may be included.
 稼働予測モデル生成部200は、記憶部110と稼働予測モデル更新部210とに接続される。稼働予測モデル生成部200は、稼働予測因子に基づいて水素生成装置30の稼働予測を生成する稼働予測モデルを生成する。稼働予測モデル生成部200は、予測対象期間よりも過去の情報を用いて、事前学習またはオフライン学習等と呼ばれる処理により、稼働予測モデルを生成してよい。 The operation prediction model generation unit 200 is connected to the storage unit 110 and the operation prediction model update unit 210. The operation prediction model generation unit 200 generates an operation prediction model that generates an operation prediction of the hydrogen generator 30 based on the operation prediction factor. The operation prediction model generation unit 200 may generate an operation prediction model by a process called pre-learning or off-line learning using information past the prediction target period.
 稼働予測モデル生成部200は、例えば、回帰分析、ベイズ推論、ニューラルネットワーク、ガウシアン混合モデル、および隠れマルコフモデル等を用いて、稼働予測モデルを生成する。また、稼働予測モデルとして、例えば、LSTM(Long short-term memory)、RNN(Recurrent Neural Network)、およびその他の記憶を有するモデルを使用すれば、因子の時系列から水素生成装置30の稼働を予測することもできる。稼働予測モデル生成部200は、生成した稼働予測モデルを稼働予測モデル更新部210に供給する。 The operation prediction model generation unit 200 generates an operation prediction model using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixture model, and hidden Markov model. If, for example, a model having LSTM (Long short-term memory), RNN (Recurrent Neural Network), and other memory is used as the operation prediction model, the operation of the hydrogen generator 30 is predicted from the time series of factors. You can also do it. The operation prediction model generation unit 200 supplies the generated operation prediction model to the operation prediction model update unit 210.
 稼働予測モデル更新部210は、記憶部110と稼働予測部220とに接続される。稼働予測モデル更新部210は、複数の水素生成装置30の稼働量の実績値を含む学習データを用いて、稼働予測モデルを学習により更新する。稼働予測モデル更新部210は、例えば、予め定められた更新期間毎に、学習により新たな稼働予測モデルに更新してよい。これに代えて、稼働予測モデル更新部210は、予め定められた回数だけ学習したこと、または学習による誤差差分が予め定められた閾値を下回ったこと等の諸条件に応じて、稼働予測モデルを更新してもよい。 The operation prediction model updating unit 210 is connected to the storage unit 110 and the operation prediction unit 220. The operation prediction model updating unit 210 updates the operation prediction model by learning using learning data including the actual values of the operation amounts of the plurality of hydrogen generation devices 30. The operation prediction model updating unit 210 may update to a new operation prediction model by learning, for example, at each predetermined update period. Instead of this, the operation prediction model updating unit 210 sets the operation prediction model according to various conditions such as learning a predetermined number of times, or an error difference due to learning falling below a predetermined threshold value. You may update.
 稼働予測モデル更新部210は、適応学習またはオンライン学習等と呼ばれる処理により、稼働予測モデルを学習してよい。稼働予測モデル更新部210は、例えば、任意の機械学習モデルを識別モデルとして、強化学習を実行することによって、稼働予測モデルを学習する。このような機械学習を行うことにより、稼働予測モデル更新部210は、稼働予測因子を入力として、稼働予測因子に応じた水素生成装置30の稼働量等を、適用するモデルに応じた精度で予測することができるようになる。 The operation prediction model updating unit 210 may learn the operation prediction model by a process called adaptive learning or online learning. The operation prediction model updating unit 210 learns the operation prediction model by executing reinforcement learning using an arbitrary machine learning model as an identification model, for example. By performing such machine learning, the operation prediction model updating unit 210 predicts the operation amount and the like of the hydrogen generator 30 according to the operation prediction factor with the accuracy according to the model to which the operation prediction factor is input. You will be able to.
 稼働予測モデル更新部210は、稼働予測モデル生成部200が稼働予測モデルの生成に用いた稼働予測因子の情報よりも時間的に後の情報を更に用いて学習することが望ましい。稼働予測モデル更新部210は、例えば、過去期間における稼働予測因子の値と、過去期間以降の水素生成装置30の稼働量の実績値とに基づいて、稼働予測モデルを学習により更新してよい。稼働予測モデル更新部210は、実際に生じた水素生成装置30の稼働によって更新された稼働予測因子の情報を用いて、稼働予測モデルを学習する。稼働予測モデル更新部210は、稼働予測因子の情報が更新されたことに応じて、稼働予測モデルの学習を実行してよい。稼働予測モデル更新部210は、更新期間の間に、1または複数回の学習を実行してよい。稼働予測モデル更新部210は、更新した稼働予測モデルを稼働予測部220に供給する。 It is desirable that the operation prediction model updating unit 210 learn by further using information that is later in time than the information of the operation prediction factor used by the operation prediction model generation unit 200 to generate the operation prediction model. The operation prediction model updating unit 210 may update the operation prediction model by learning, for example, based on the value of the operation prediction factor in the past period and the actual value of the operation amount of the hydrogen generator 30 after the past period. The operation prediction model updating unit 210 learns the operation prediction model using the information of the operation prediction factors updated by the actual operation of the hydrogen generator 30. The operation prediction model updating unit 210 may perform learning of the operation prediction model in response to the update of the operation prediction factor information. The operation prediction model update unit 210 may execute learning one or more times during the update period. The operation prediction model updating unit 210 supplies the updated operation prediction model to the operation prediction unit 220.
 稼働予測部220は、記憶部110に接続される。稼働予測部220は、水素を生成する複数の水素生成装置30のそれぞれの稼働予測を、稼働予測モデルを用いて生成する。稼働予測部220は、再生可能エネルギーを用いる複数の水素生成装置30のそれぞれの稼働予測を、複数の再生可能エネルギー発電設備20のそれぞれの発電量予測に基づいて生成してよい。 The operation prediction unit 220 is connected to the storage unit 110. The operation prediction unit 220 generates an operation prediction of each of the hydrogen generation devices 30 that generate hydrogen using an operation prediction model. The operation prediction unit 220 may generate an operation prediction of each of the plurality of hydrogen generation devices 30 that use renewable energy, based on each power generation amount prediction of each of the plurality of renewable energy power generation facilities 20.
 ここで、再生可能エネルギーを用いる水素生成装置30は、例えば、再生可能エネルギー発電設備20に電力系統80の送電網を介して接続され、当該送電網を介して電力供給される水素生成装置30、および/または、再生可能エネルギー発電設備20に電力系統80の送電網を介さずに直接接続され、当該再生可能エネルギー発電設備20から電力供給される水素生成装置30であってよい。 Here, the hydrogen generator 30, which uses renewable energy, is connected to the renewable energy power generation facility 20 via a power transmission network of the power system 80, and is supplied with power via the power transmission network, for example. Alternatively, the hydrogen generation device 30 may be directly connected to the renewable energy power generation facility 20 without a power grid of the power system 80 and supplied with power from the renewable energy power generation facility 20.
 また、稼働予測部220は、電気料金予測を含む稼働予測因子に基づいて、複数の水素生成装置30のそれぞれの稼働予測を生成してよい。稼働予測部220は、予測に電気料金予測を用いることで、変動する電気料金に応じて稼働する水素生成装置30について、精度の良い稼働予測を生成できる。 Further, the operation prediction unit 220 may generate the operation prediction of each of the plurality of hydrogen generation devices 30 based on the operation prediction factors including the electricity price prediction. The operation prediction unit 220 can generate a highly accurate operation prediction for the hydrogen generator 30 that operates according to the fluctuating electricity rate by using the electricity rate prediction for the estimation.
 稼働予測部220は、例えば、予め定められた期間毎に、将来における当該予め定められた期間における水素生成装置30の稼働を予測する。稼働予測部220は、稼働予測モデルと稼働予測因子の情報とを用いて、水素生成装置30の稼働量を予測してよい。稼働予測部220は、例えば、予測すべき期間の直前までの期間における稼働予測因子の情報を、稼働予測モデルに適用して水素生成装置30の稼働を予測する。稼働予測部220は、予測結果を記憶部110に供給し、例えば、輸送予測因子、貯蔵量予測因子、輸送計画因子、および貯蔵計画因子の少なくとも1つとして記憶させる。また、稼働予測部220は、予測結果を、予測部120の他の構成または計画部130に直接供給してよい。 The operation prediction unit 220 predicts the operation of the hydrogen generation device 30 in the predetermined period in the future, for example, for each predetermined period. The operation prediction unit 220 may predict the operation amount of the hydrogen generator 30 using the operation prediction model and the information of the operation prediction factor. The operation prediction unit 220 predicts the operation of the hydrogen generator 30, for example, by applying the information of the operation prediction factor in the period immediately before the period to be predicted to the operation prediction model. The operation prediction unit 220 supplies the prediction result to the storage unit 110, and stores it as at least one of a transportation prediction factor, a storage amount prediction factor, a transportation planning factor, and a storage planning factor, for example. In addition, the operation prediction unit 220 may directly supply the prediction result to another configuration of the prediction unit 120 or the planning unit 130.
 需要予測モデル生成部230は、記憶部110と需要予測モデル更新部240とに接続される。需要予測モデル生成部230は、需要予測因子に基づいて水素ステーション60における水素の需要予測を生成する需要予測モデルを生成する。需要予測モデルは、予測対象期間より前における、複数の水素ステーション60のそれぞれにおける水素の需要量、および複数の水素ステーション60のそれぞれにおける水素の消費量の少なくとも1つを含む需要予測因子に基づいて、予測対象期間における複数の水素ステーション60のそれぞれについての水素の需要予測を算出するモデルであってよい。 The demand forecast model generation unit 230 is connected to the storage unit 110 and the demand forecast model update unit 240. The demand prediction model generation unit 230 generates a demand prediction model that generates a hydrogen demand prediction at the hydrogen station 60 based on the demand prediction factor. The demand forecasting model is based on a demand forecasting factor including at least one of the demanded amount of hydrogen in each of the plurality of hydrogen stations 60 and the consumed amount of hydrogen in each of the plurality of hydrogen stations 60 before the forecast period. The model may be a model for calculating the demand forecast of hydrogen for each of the plurality of hydrogen stations 60 in the prediction target period.
 需要予測モデル生成部230は、予測対象期間よりも過去の情報を用いて、事前学習またはオフライン学習等と呼ばれる処理により、需要予測モデルを生成してよい。需要予測モデル生成部230は、例えば、回帰分析、ベイズ推論、ニューラルネットワーク、ガウシアン混合モデル、および隠れマルコフモデル等を用いて、需要予測モデルを生成する。また、需要予測モデルとして、例えば、LSTM、RNN、およびその他の記憶を有するモデルを使用すれば、因子の時系列から水素ステーション60における水素の需要量等を予測することもできる。需要予測モデル生成部230は、生成した需要予測モデルを需要予測モデル更新部240に供給する。 The demand prediction model generation unit 230 may generate a demand prediction model by a process called pre-learning or offline learning using information past the prediction target period. The demand prediction model generation unit 230 generates a demand prediction model by using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixture model, hidden Markov model, or the like. Further, for example, if a model having memory such as LSTM, RNN, and the like is used as the demand prediction model, the demand amount of hydrogen at the hydrogen station 60 can be predicted from the time series of factors. The demand forecast model generation unit 230 supplies the generated demand forecast model to the demand forecast model update unit 240.
 需要予測モデル更新部240は、記憶部110と需要予測部250とに接続される。需要予測モデル更新部240は、複数の水素ステーション60のそれぞれにおける水素の需要量の実績値を含む学習データを用いて、需要予測モデルを学習により更新する。需要予測モデル更新部240は、例えば、予め定められた更新期間毎に、学習により新たな需要予測モデルに更新してよい。これに代えて、需要予測モデル更新部240は、予め定められた回数だけ学習したこと、または学習による誤差差分が予め定められた閾値を下回ったこと等の諸条件に応じて、需要予測モデルを更新してもよい。 The demand forecast model update unit 240 is connected to the storage unit 110 and the demand forecast unit 250. The demand prediction model updating unit 240 updates the demand prediction model by learning using learning data including the actual value of the demanded amount of hydrogen in each of the plurality of hydrogen stations 60. The demand forecast model update unit 240 may update the new demand forecast model by learning, for example, at each predetermined update period. Instead of this, the demand prediction model update unit 240 sets the demand prediction model according to various conditions such as learning a predetermined number of times, or an error difference due to learning falling below a predetermined threshold value. You may update.
 需要予測モデル更新部240は、適応学習またはオンライン学習等と呼ばれる処理により、需要予測モデルを学習してよい。需要予測モデル更新部240は、例えば、任意の機械学習モデルを識別モデルとして、強化学習を実行することによって、需要予測モデルを学習する。このような機械学習を行うことにより、需要予測モデル更新部240は、需要予測因子を入力として、需要予測因子に応じた水素ステーション60の需要量等を、適用するモデルに応じた精度で予測することができるようになる。 The demand forecast model updating unit 240 may learn the demand forecast model by a process called adaptive learning or online learning. The demand prediction model updating unit 240 learns the demand prediction model by executing reinforcement learning using, for example, an arbitrary machine learning model as an identification model. By performing such machine learning, the demand prediction model updating unit 240 receives the demand prediction factor as an input and predicts the demand amount of the hydrogen station 60 or the like according to the demand prediction factor with accuracy according to the model to be applied. Will be able to.
 需要予測モデル更新部240は、需要予測モデル生成部230が需要予測モデルの生成に用いた需要予測因子の情報よりも時間的に後の情報を更に用いて学習することが望ましい。需要予測モデル更新部240は、例えば、過去期間における需要予測因子の値と、過去期間以降の水素ステーション60の需要量の実績値とに基づいて、需要予測モデルを学習により更新してよい。需要予測モデル更新部240は、実際の水素需要によって更新された需要予測因子の情報を用いて、需要予測モデルを学習する。需要予測モデル更新部240は、需要予測因子の情報が更新されたことに応じて、需要予測モデルの学習を実行してよい。需要予測モデル更新部240は、更新期間の間に、1または複数回の学習を実行してよい。需要予測モデル更新部240は、更新した需要予測モデルを需要予測部250に供給する。 It is desirable that the demand forecast model update unit 240 further learns by further using information that is later in time than the information of the demand forecast factor used by the demand forecast model generation unit 230 to generate the demand forecast model. The demand prediction model updating unit 240 may update the demand prediction model by learning, for example, based on the value of the demand prediction factor in the past period and the actual value of the demand amount of the hydrogen station 60 after the past period. The demand forecast model updating unit 240 learns the demand forecast model using the information of the demand forecast factor updated by the actual hydrogen demand. The demand prediction model updating unit 240 may execute the learning of the demand prediction model in response to the update of the information of the demand prediction factor. The demand prediction model updating unit 240 may execute learning one or more times during the update period. The demand forecast model updating unit 240 supplies the updated demand forecast model to the demand forecasting unit 250.
 需要予測部250は、記憶部110に接続される。需要予測部250は、複数の水素ステーション60のそれぞれの水素の需要予測を、需要予測モデルを用いて生成する。需要予測部250は、複数の水素ステーション60のそれぞれにおける水素の需要予測を、各水素ステーション60における水素の消費予測を含む需要予測因子に基づいて予測してよい。 The demand prediction unit 250 is connected to the storage unit 110. The demand prediction unit 250 generates a hydrogen demand prediction for each of the plurality of hydrogen stations 60 using a demand prediction model. The demand prediction unit 250 may predict the demand forecast of hydrogen at each of the plurality of hydrogen stations 60 based on a demand forecast factor including a hydrogen consumption forecast at each hydrogen station 60.
 需要予測部250は、例えば、予め定められた期間毎に、将来における当該予め定められた期間における水素ステーション60の水素の需要量を予測する。需要予測部250は、需要予測モデルと需要予測因子の情報とを用いて、水素ステーション60における水素の需要量を予測してよい。需要予測部250は、例えば、予測すべき期間の直前までの期間における需要予測因子の情報を、需要予測モデルに適用して水素ステーション60の需要量を予測する。需要予測部250は、予測結果を記憶部110に供給し、例えば、輸送予測因子および輸送計画因子の少なくとも1つとして記憶させる。また、需要予測部250は、予測結果を、予測部120の他の構成または計画部130に直接供給してよい。 The demand prediction unit 250 predicts, for example, for every predetermined period, the hydrogen demand amount of the hydrogen station 60 in the future for the predetermined period. The demand prediction unit 250 may predict the demanded amount of hydrogen at the hydrogen station 60 using the demand prediction model and the information of the demand prediction factor. The demand prediction unit 250 predicts the demand quantity of the hydrogen station 60 by applying the information of the demand prediction factor in the period immediately before the period to be predicted to the demand prediction model, for example. The demand prediction unit 250 supplies the prediction result to the storage unit 110, and stores it as at least one of a transportation prediction factor and a transportation planning factor, for example. Further, the demand prediction unit 250 may directly supply the prediction result to another configuration of the prediction unit 120 or the planning unit 130.
 発電量予測モデル生成部260は、記憶部110と発電量予測モデル更新部270とに接続される。発電量予測モデル生成部260は、複数の再生可能エネルギー発電設備20のそれぞれについて、再生可能エネルギーの発電量予測を、発電量予測因子に基づいて生成する発電量予測モデルを生成する。発電量予測モデルは、予測対象期間より前における発電量予測因子に基づいて、予測対象期間における複数の再生可能エネルギー発電設備20のそれぞれについて、再生可能エネルギーの発電量予測を算出するモデルであってよい。 The power generation amount prediction model generation unit 260 is connected to the storage unit 110 and the power generation amount prediction model update unit 270. The power generation amount prediction model generation unit 260 generates a power generation amount prediction model that generates a power generation amount prediction of renewable energy for each of the plurality of renewable energy power generation facilities 20 based on a power generation amount prediction factor. The power generation prediction model is a model for calculating the power generation prediction of renewable energy for each of the plurality of renewable energy power generation facilities 20 in the prediction target period based on the power generation prediction factor before the prediction target period. Good.
 発電量予測モデル生成部260は、予測対象期間よりも過去の情報を用いて、事前学習またはオフライン学習等と呼ばれる処理により、発電量予測モデルを生成してよい。発電量予測モデル生成部260は、例えば、回帰分析、ベイズ推論、ニューラルネットワーク、ガウシアン混合モデル、および隠れマルコフモデル等を用いて、発電量予測モデルを生成する。また、発電量予測モデルとして、例えば、LSTM、RNN、およびその他の記憶を有するモデルを使用すれば、因子の時系列から再生可能エネルギー発電設備20の発電量等を予測することもできる。発電量予測モデル生成部260は、生成した発電量予測モデルを発電量予測モデル更新部270に供給する。 The power generation amount prediction model generation unit 260 may generate a power generation amount prediction model by a process called pre-learning or off-line learning using information past the prediction target period. The power generation amount prediction model generation unit 260 generates a power generation amount prediction model by using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixture model, hidden Markov model, or the like. In addition, for example, if a model having a memory such as LSTM, RNN, and the like is used as the power generation prediction model, the power generation of the renewable energy power generation facility 20 can be predicted from the time series of factors. The power generation amount prediction model generation unit 260 supplies the generated power generation amount prediction model to the power generation amount prediction model update unit 270.
 発電量予測モデル更新部270は、記憶部110と発電量予測部280とに接続される。発電量予測モデル更新部270は、複数の再生可能エネルギー発電設備20のそれぞれにおける発電量の実績値を含む学習データを用いて、発電量予測モデルを学習により更新する。発電量予測モデル更新部270は、例えば、予め定められた更新期間毎に、学習により新たな発電量予測モデルに更新してよい。これに代えて、発電量予測モデル更新部270は、予め定められた回数だけ学習したこと、または学習による誤差差分が予め定められた閾値を下回ったこと等の諸条件に応じて、発電量予測モデルを更新してもよい。 The power generation amount prediction model update unit 270 is connected to the storage unit 110 and the power generation amount prediction unit 280. The power generation amount prediction model updating unit 270 updates the power generation amount prediction model by learning using learning data including the actual value of the power generation amount in each of the plurality of renewable energy power generation facilities 20. The power generation amount prediction model update unit 270 may update the power generation amount prediction model with a new power generation amount prediction model by learning for each predetermined update period. Instead of this, the power generation amount prediction model updating unit 270 predicts the power generation amount according to various conditions, such as learning a predetermined number of times, or an error difference due to learning falling below a predetermined threshold value. The model may be updated.
 発電量予測モデル更新部270は、適応学習またはオンライン学習等と呼ばれる処理により、発電量予測モデルを学習してよい。発電量予測モデル更新部270は、例えば、任意の機械学習モデルを識別モデルとして、強化学習を実行することによって、発電量予測モデルを学習する。このような機械学習を行うことにより、発電量予測モデル更新部270は、発電量予測因子を入力として、発電量予測因子に応じた再生可能エネルギー発電設備20の発電量等を、適用するモデルに応じた精度で予測することができるようになる。 The power generation prediction model updating unit 270 may learn the power generation prediction model by a process called adaptive learning or online learning. The power generation amount prediction model updating unit 270 learns the power generation amount prediction model by executing reinforcement learning using, for example, an arbitrary machine learning model as the identification model. By performing such machine learning, the power generation amount prediction model updating unit 270 receives the power generation amount prediction factor as an input and applies the power generation amount of the renewable energy power generation facility 20 according to the power generation amount prediction factor to the model to be applied. It becomes possible to make predictions according to the accuracy.
 発電量予測モデル更新部270は、発電量予測モデル生成部260が発電量予測モデルの生成に用いた発電量予測因子の情報よりも時間的に後の情報を更に用いて学習することが望ましい。発電量予測モデル更新部270は、例えば、過去期間における発電量予測因子の値と、過去期間以降の再生可能エネルギー発電設備20の発電量の実績値とに基づいて、発電量予測モデルを学習により更新してよい。発電量予測モデル更新部270は、実際の再生可能エネルギー発電設備20の発電によって更新された発電量予測因子の情報を用いて、発電量予測モデルを学習する。発電量予測モデル更新部270は、発電量予測因子の情報が更新されたことに応じて、発電量予測モデルの学習を実行してよい。発電量予測モデル更新部270は、更新期間の間に、1または複数回の学習を実行してよい。発電量予測モデル更新部270は、更新した発電量予測モデルを発電量予測部280に供給する。 It is desirable that the power generation prediction model updating unit 270 further learns by further using information that is later in time than the information of the power generation prediction factor used by the power generation prediction model generation unit 260 to generate the power generation prediction model. The power generation amount prediction model updating unit 270 learns the power generation amount prediction model based on, for example, the value of the power generation amount prediction factor in the past period and the actual value of the power generation amount of the renewable energy power generation facility 20 after the past period. You may update. The power generation amount prediction model update unit 270 learns the power generation amount prediction model using the information of the power generation amount prediction factor updated by the actual power generation of the renewable energy power generation facility 20. The power generation amount prediction model updating unit 270 may execute learning of the power generation amount prediction model in response to the information of the power generation amount prediction factor being updated. The power generation prediction model updating unit 270 may execute learning one or more times during the update period. The power generation amount prediction model updating unit 270 supplies the updated power generation amount prediction model to the power generation amount prediction unit 280.
 発電量予測部280は、記憶部110に接続される。発電量予測部280は、複数の再生可能エネルギー発電設備20のそれぞれについて、再生可能エネルギーの発電量予測を、発電量予測モデルを用いて生成する。 The power generation amount prediction unit 280 is connected to the storage unit 110. The power generation amount prediction unit 280 generates a power generation amount prediction of renewable energy for each of the plurality of renewable energy power generation facilities 20 using a power generation amount prediction model.
 発電量予測部280は、例えば、予め定められた期間毎に、将来における当該予め定められた期間における再生可能エネルギー発電設備20の発電量を予測する。発電量予測部280は、発電量予測モデルと発電量予測因子の情報とを用いて、再生可能エネルギー発電設備20の発電量を予測してよい。発電量予測部280は、例えば、予測すべき期間の直前までの期間における発電量予測因子の情報を、発電量予測モデルに適用して再生可能エネルギー発電設備20の発電量を予測する。発電量予測部280は、予測結果を記憶部110に供給し、例えば、電気料金予測因子および稼働予測因子の少なくとも1つとして記憶させる。また、発電量予測部280は、予測結果を、予測部120の他の構成または計画部130に直接供給してよい。 The power generation amount prediction unit 280 predicts, for example, for each predetermined period, the power generation amount of the renewable energy power generation facility 20 in the predetermined period in the future. The power generation amount prediction unit 280 may predict the power generation amount of the renewable energy power generation facility 20 using the power generation amount prediction model and the information of the power generation amount prediction factor. The power generation amount prediction unit 280 predicts the power generation amount of the renewable energy power generation facility 20 by applying the information of the power generation amount prediction factor in the period immediately before the period to be predicted to the power generation amount prediction model, for example. The power generation amount prediction unit 280 supplies the prediction result to the storage unit 110 and stores it as at least one of an electricity rate prediction factor and an operation prediction factor, for example. In addition, the power generation amount prediction unit 280 may directly supply the prediction result to another configuration of the prediction unit 120 or the planning unit 130.
 電気料金予測モデル生成部290は、記憶部110と電気料金予測モデル更新部300とに接続される。電気料金予測モデル生成部290は、予測対象期間より前における電気料金予測因子に基づいて、再生可能エネルギーの電気料金予測を生成する電気料金予測モデルを生成する。 The electricity price prediction model generation unit 290 is connected to the storage unit 110 and the electricity price prediction model update unit 300. The electricity rate prediction model generation unit 290 generates an electricity rate prediction model that generates an electricity rate prediction of renewable energy based on the electricity rate prediction factor before the prediction target period.
 電気料金予測モデル生成部290は、予測対象期間よりも過去の情報を用いて、事前学習またはオフライン学習等と呼ばれる処理により、電気料金予測モデルを生成してよい。電気料金予測モデル生成部290は、例えば、回帰分析、ベイズ推論、ニューラルネットワーク、ガウシアン混合モデル、および隠れマルコフモデル等を用いて、電気料金予測モデルを生成する。また、電気料金予測モデルとして、例えば、LSTM、RNN、およびその他の記憶を有するモデルを使用すれば、因子の時系列から再生可能エネルギーの電気料金を予測することもできる。電気料金予測モデル生成部290は、生成した電気料金予測モデルを電気料金予測モデル更新部300に供給する。 The electricity price prediction model generation unit 290 may generate an electricity price prediction model by a process called pre-learning or offline learning using information past the prediction target period. The electricity price prediction model generation unit 290 generates an electricity price prediction model using, for example, regression analysis, Bayesian inference, a neural network, a Gaussian mixture model, a hidden Markov model, or the like. In addition, if an LSTM, RNN, or other model having memory is used as the electricity price prediction model, the electricity price of the renewable energy can be predicted from the time series of the factors. The electricity charge prediction model generation unit 290 supplies the generated electricity charge prediction model to the electricity charge prediction model update unit 300.
 電気料金予測モデル更新部300は、記憶部110と電気料金予測部310とに接続される。電気料金予測モデル更新部300は、電気料金の実績値を含む学習データを用いて、電気料金予測モデルを学習により更新してよい。電気料金予測モデル更新部300は、例えば、予め定められた更新期間毎に、学習により新たな電気料金予測モデルに更新してよい。これに代えて、電気料金予測モデル更新部300は、予め定められた回数だけ学習したこと、または学習による誤差差分が予め定められた閾値を下回ったこと等の諸条件に応じて、電気料金予測モデルを更新してもよい。 The electricity charge prediction model updating unit 300 is connected to the storage unit 110 and the electricity charge prediction unit 310. The electricity price prediction model updating unit 300 may update the electricity price prediction model by learning using the learning data including the actual value of the electricity price. The electricity price prediction model updating unit 300 may update a new electricity price prediction model by learning for each predetermined update period. Instead of this, the electricity price prediction model update unit 300 predicts the electricity price according to various conditions such as learning a predetermined number of times, or an error difference due to learning falling below a predetermined threshold value. The model may be updated.
 電気料金予測モデル更新部300は、適応学習またはオンライン学習等と呼ばれる処理により、電気料金予測モデルを学習してよい。電気料金予測モデル更新部300は、例えば、任意の機械学習モデルを識別モデルとして、強化学習を実行することによって、電気料金予測モデルを学習する。このような機械学習を行うことにより、電気料金予測モデル更新部300は、電気料金予測因子を入力として、電気料金予測因子に応じた再生可能エネルギーの電気料金を、適用するモデルに応じた精度で予測することができるようになる。 The electricity price prediction model updating unit 300 may learn the electricity price prediction model by a process called adaptive learning or online learning. The electricity charge prediction model updating unit 300 learns the electricity charge prediction model by executing reinforcement learning using an arbitrary machine learning model as an identification model, for example. By performing such machine learning, the electricity price prediction model updating unit 300 receives the electricity price prediction factor as an input, and generates the electricity price of the renewable energy according to the electricity price prediction factor with accuracy according to the applied model. Be able to predict.
 電気料金予測モデル更新部300は、電気料金予測モデル生成部290が電気料金予測モデルの生成に用いた電気料金予測因子の情報よりも時間的に後の情報を更に用いて学習することが望ましい。電気料金予測モデル更新部300は、例えば、過去期間における電気料金予測因子の値と、過去期間以降の電気料金の実績値とに基づいて、電気料金予測モデルを学習により更新してよい。電気料金予測モデル更新部300は、実際の電気料金の推移によって更新された電気料金予測因子の情報を用いて、電気料金予測モデルを学習する。電気料金予測モデル更新部300は、電気料金予測因子の情報が更新されたことに応じて、電気料金予測モデルの学習を実行してよい。電気料金予測モデル更新部300は、更新期間の間に、1または複数回の学習を実行してよい。電気料金予測モデル更新部300は、更新した電気料金予測モデルを電気料金予測部310に供給する。 It is desirable that the electricity price prediction model update unit 300 further learns by further using information that is later in time than the information of the electricity price prediction factor used by the electricity price prediction model generation unit 290 to generate the electricity price prediction model. The electricity price prediction model updating unit 300 may update the electricity price prediction model by learning, for example, based on the value of the electricity price prediction factor in the past period and the actual value of the electricity price after the past period. The electricity price prediction model updating unit 300 learns the electricity price prediction model using the information of the electricity price prediction factor updated by the transition of the actual electricity price. The electricity charge prediction model updating unit 300 may execute the learning of the electricity charge prediction model in response to the update of the information of the electricity charge prediction factor. The electricity price prediction model update unit 300 may perform learning one or more times during the update period. The electricity charge prediction model updating unit 300 supplies the updated electricity charge prediction model to the electricity charge prediction unit 310.
 電気料金予測部310は、記憶部110に接続される。電気料金予測部310は、電気料金予測モデルを用いて、再生可能エネルギーの電気料金予測を生成する。 The electricity price prediction unit 310 is connected to the storage unit 110. The electricity bill prediction unit 310 uses the electricity bill prediction model to generate an electricity bill prediction for renewable energy.
 電気料金予測部310は、例えば、予め定められた期間毎に、将来における当該予め定められた期間における電気料金を予測する。電気料金予測部310は、電気料金予測モデルと電気料金予測因子の情報とを用いて、再生可能エネルギーの電気料金を予測してよい。電気料金予測部310は、例えば、予測すべき期間の直前までの期間における電気料金予測因子の情報を、電気料金予測モデルに適用して電気料金を予測する。電気料金予測部310は、予測結果を記憶部110に供給し、例えば、稼働予測因子および稼働計画因子の少なくとも1つとして記憶させる。また、電気料金予測部310は、予測結果を、予測部120の他の構成または計画部130に直接供給してよい。 The electricity price prediction unit 310 predicts, for example, for each predetermined period, the future electricity price in the predetermined period. The electricity charge prediction unit 310 may predict the electricity charge of the renewable energy using the electricity charge prediction model and the information of the electricity charge prediction factor. The electricity charge prediction unit 310 predicts the electricity charge by applying, for example, the information of the electricity charge prediction factor in the period immediately before the period to be predicted to the electricity charge prediction model. The electricity price prediction unit 310 supplies the prediction result to the storage unit 110, and stores it as at least one of an operation prediction factor and an operation plan factor, for example. In addition, the electricity price prediction unit 310 may directly supply the prediction result to another configuration of the prediction unit 120 or the planning unit 130.
 消費予測モデル生成部320は、記憶部110と消費予測モデル更新部330とに接続される。消費予測モデル生成部320は、予測対象期間より前における消費予測因子に基づいて、予測対象期間中における複数の水素ステーション60の水素の消費予測を算出する消費予測モデルを生成する。 The consumption prediction model generation unit 320 is connected to the storage unit 110 and the consumption prediction model update unit 330. The consumption prediction model generation unit 320 generates a consumption prediction model that calculates a hydrogen consumption prediction of the plurality of hydrogen stations 60 during the prediction target period based on the consumption prediction factor before the prediction target period.
 消費予測モデル生成部320は、予測対象期間よりも過去の情報を用いて、事前学習またはオフライン学習等と呼ばれる処理により、消費予測モデルを生成してよい。消費予測モデル生成部320は、例えば、回帰分析、ベイズ推論、ニューラルネットワーク、ガウシアン混合モデル、および隠れマルコフモデル等を用いて、消費予測モデルを生成する。また、消費予測モデルとして、例えば、LSTM、RNN、およびその他の記憶を有するモデルを使用すれば、因子の時系列から水素ステーション60における水素の消費量を予測することもできる。消費予測モデル生成部320は、生成した消費予測モデルを消費予測モデル更新部330に供給する。 The consumption prediction model generation unit 320 may generate a consumption prediction model by a process called pre-learning or offline learning using information past the prediction target period. The consumption prediction model generation unit 320 generates a consumption prediction model using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixture model, hidden Markov model, or the like. Further, for example, if a model having a memory such as LSTM, RNN, and the like is used as the consumption prediction model, it is possible to predict the hydrogen consumption at the hydrogen station 60 from the time series of the factors. The consumption prediction model generation unit 320 supplies the generated consumption prediction model to the consumption prediction model update unit 330.
 消費予測モデル更新部330は、記憶部110と消費予測部340とに接続される。消費予測モデル更新部330は、複数の水素ステーション60のそれぞれにおける水素の消費量の実績値を含む学習データを用いて、消費予測モデルを学習により更新してよい。消費予測モデル更新部330は、例えば、予め定められた更新期間毎に、学習により新たな消費予測モデルに更新してよい。これに代えて、消費予測モデル更新部330は、予め定められた回数だけ学習したこと、または学習による誤差差分が予め定められた閾値を下回ったこと等の諸条件に応じて、消費予測モデルを更新してもよい。 The consumption prediction model updating unit 330 is connected to the storage unit 110 and the consumption prediction unit 340. The consumption prediction model update unit 330 may update the consumption prediction model by learning using learning data including the actual value of the amount of hydrogen consumed in each of the plurality of hydrogen stations 60. The consumption prediction model updating unit 330 may update the new consumption prediction model by learning, for example, for each predetermined update period. Instead of this, the consumption prediction model update unit 330 sets the consumption prediction model according to various conditions such as learning a predetermined number of times or an error difference due to learning falling below a predetermined threshold value. You may update.
 消費予測モデル更新部330は、適応学習またはオンライン学習等と呼ばれる処理により、消費予測モデルを学習してよい。消費予測モデル更新部330は、例えば、任意の機械学習モデルを識別モデルとして、強化学習を実行することによって、消費予測モデルを学習する。このような機械学習を行うことにより、消費予測モデル更新部330は、消費予測因子を入力として、消費予測因子に応じた水素ステーション60における水素の消費量を、適用するモデルに応じた精度で予測することができるようになる。 The consumption prediction model updating unit 330 may learn the consumption prediction model by a process called adaptive learning or online learning. The consumption prediction model update unit 330 learns the consumption prediction model by executing reinforcement learning using, for example, an arbitrary machine learning model as an identification model. By performing such machine learning, the consumption prediction model updating unit 330 predicts the consumption amount of hydrogen in the hydrogen station 60 according to the consumption prediction factor with the accuracy according to the model to which the consumption prediction factor is input. You will be able to.
 消費予測モデル更新部330は、消費予測モデル生成部320が消費予測モデルの生成に用いた消費予測因子の情報よりも時間的に後の情報を更に用いて学習することが望ましい。消費予測モデル更新部330は、例えば、過去期間における消費予測因子の値と、過去期間以降の水素の消費量等の実績値とに基づいて、消費予測モデルを学習により更新してよい。消費予測モデル更新部330は、実際の水素の消費量の推移によって更新された消費予測因子の情報を用いて、消費予測モデルを学習する。消費予測モデル更新部330は、消費予測因子の情報が更新されたことに応じて、消費予測モデルの学習を実行してよい。消費予測モデル更新部330は、更新期間の間に、1または複数回の学習を実行してよい。消費予測モデル更新部330は、更新した消費予測モデルを消費予測部340に供給する。 It is desirable that the consumption prediction model update unit 330 learn by further using information that is later in time than the information of the consumption prediction factor used by the consumption prediction model generation unit 320 to generate the consumption prediction model. The consumption prediction model updating unit 330 may update the consumption prediction model by learning, for example, based on the value of the consumption prediction factor in the past period and the actual value such as the hydrogen consumption amount after the past period. The consumption prediction model updating unit 330 learns the consumption prediction model using the information of the consumption prediction factor updated by the transition of the actual hydrogen consumption amount. The consumption prediction model update unit 330 may perform learning of the consumption prediction model in response to the information on the consumption prediction factor being updated. The consumption prediction model update unit 330 may perform learning one or more times during the update period. The consumption prediction model update unit 330 supplies the updated consumption prediction model to the consumption prediction unit 340.
 消費予測部340は、記憶部110に接続される。消費予測部340は、複数の水素ステーション60のそれぞれにおける水素の消費予測を、消費予測モデルを用いて生成する。 The consumption prediction unit 340 is connected to the storage unit 110. The consumption prediction unit 340 generates a hydrogen consumption prediction in each of the plurality of hydrogen stations 60 using a consumption prediction model.
 消費予測部340は、例えば、予め定められた期間毎に、将来における当該予め定められた期間における水素ステーション60における水素の消費を予測する。消費予測部340は、消費予測モデルと消費予測因子の情報とを用いて、水素ステーション60における水素の消費を予測してよい。消費予測部340は、例えば、予測すべき期間の直前までの期間における消費予測因子の情報を、消費予測モデルに適用して水素ステーション60における水素の消費量を予測する。消費予測部340は、予測結果を記憶部110に供給し、例えば、需要予測因子として記憶させる。また、消費予測部340は、予測結果を、予測部120の他の構成または計画部130に直接供給してよい。 The consumption prediction unit 340 predicts, for example, for every predetermined period, hydrogen consumption in the hydrogen station 60 in the predetermined period in the future. The consumption prediction unit 340 may predict the consumption of hydrogen at the hydrogen station 60 using the consumption prediction model and the information of the consumption prediction factor. For example, the consumption prediction unit 340 applies the information of the consumption prediction factor in the period immediately before the period to be predicted to the consumption prediction model to predict the hydrogen consumption amount in the hydrogen station 60. The consumption prediction unit 340 supplies the prediction result to the storage unit 110 and stores it as, for example, a demand prediction factor. Moreover, the consumption prediction unit 340 may directly supply the prediction result to another configuration of the prediction unit 120 or the planning unit 130.
 貯蔵量予測モデル生成部350は、記憶部110と貯蔵量予測モデル更新部360とに接続される。貯蔵量予測モデル生成部350は、貯蔵量予測因子に基づいて貯蔵量予測を算出する貯蔵量予測モデルを生成する。貯蔵量予測モデルは、予測対象期間における複数の水素貯蔵装置40の水素の貯蔵量を、予測対象期間より前における貯蔵量予測因子に基づいて予測するモデルであってよい。 The storage amount prediction model generation unit 350 is connected to the storage unit 110 and the storage amount prediction model update unit 360. The storage amount prediction model generation unit 350 generates a storage amount prediction model that calculates the storage amount prediction based on the storage amount prediction factor. The storage amount prediction model may be a model that predicts the storage amount of hydrogen in the plurality of hydrogen storage devices 40 in the prediction target period based on the storage amount prediction factor before the prediction target period.
 貯蔵量予測モデル生成部350は、予測対象期間よりも過去の情報を用いて、事前学習またはオフライン学習等と呼ばれる処理により、貯蔵量予測モデルを生成してよい。貯蔵量予測モデル生成部350は、例えば、回帰分析、ベイズ推論、ニューラルネットワーク、ガウシアン混合モデル、および隠れマルコフモデル等を用いて、貯蔵量予測モデルを生成する。また、貯蔵量予測モデルとして、例えば、LSTM、RNN、およびその他の記憶を有するモデルを使用すれば、因子の時系列から水素貯蔵装置40の貯蔵量を予測することもできる。貯蔵量予測モデル生成部350は、生成した貯蔵量予測モデルを貯蔵量予測モデル更新部360に供給する。 The storage amount prediction model generation unit 350 may generate a storage amount prediction model by a process called pre-learning or off-line learning using information past the prediction target period. The storage amount prediction model generation unit 350 generates a storage amount prediction model using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixture model, hidden Markov model, and the like. Further, if a model having memory such as LSTM, RNN, and the like is used as the storage amount prediction model, the storage amount of the hydrogen storage device 40 can be predicted from the time series of the factors. The storage amount prediction model generation unit 350 supplies the generated storage amount prediction model to the storage amount prediction model update unit 360.
 貯蔵量予測モデル更新部360は、記憶部110と貯蔵量予測部370に接続される。貯蔵量予測モデル更新部360は、複数の水素貯蔵装置40の水素の貯蔵量の実績値を含む学習データを用いて、貯蔵量予測モデルを学習により更新してよい。貯蔵量予測モデル更新部360は、例えば、予め定められた更新期間毎に、学習により新たな貯蔵量予測モデルに更新してよい。これに代えて、貯蔵量予測モデル更新部360は、予め定められた回数だけ学習したこと、または学習による誤差差分が予め定められた閾値を下回ったこと等の諸条件に応じて、貯蔵量予測モデルを更新してもよい。 The storage amount prediction model update unit 360 is connected to the storage unit 110 and the storage amount prediction unit 370. The storage amount prediction model updating unit 360 may update the storage amount prediction model by learning using learning data including the actual values of the hydrogen storage amounts of the plurality of hydrogen storage devices 40. The storage amount prediction model updating unit 360 may update the storage amount prediction model by learning, for example, at each predetermined update period. Instead of this, the storage amount prediction model update unit 360 predicts the storage amount according to various conditions such as that learning is performed a predetermined number of times, or that an error difference due to learning is below a predetermined threshold value. The model may be updated.
 貯蔵量予測モデル更新部360は、適応学習またはオンライン学習等と呼ばれる処理により、貯蔵量予測モデルを学習してよい。貯蔵量予測モデル更新部360は、例えば、任意の機械学習モデルを識別モデルとして、強化学習を実行することによって、貯蔵量予測モデルを学習する。このような機械学習を行うことにより、貯蔵量予測モデル更新部360は、貯蔵量予測因子を入力として、貯蔵量予測因子に応じた水素貯蔵装置40の水素の貯蔵量を、適用するモデルに応じた精度で予測することができるようになる。 The storage amount prediction model updating unit 360 may learn the storage amount prediction model by a process called adaptive learning or online learning. The storage amount prediction model updating unit 360 learns the storage amount prediction model by executing reinforcement learning using, for example, an arbitrary machine learning model as an identification model. By performing such machine learning, the storage amount prediction model updating unit 360 receives the storage amount prediction factor as an input, and stores the hydrogen storage amount of the hydrogen storage device 40 according to the storage amount prediction factor according to the applied model. It becomes possible to predict with high accuracy.
 貯蔵量予測モデル更新部360は、貯蔵量予測モデル生成部350が貯蔵量予測モデルの生成に用いた貯蔵量予測因子の情報よりも時間的に後の情報を更に用いて学習することが望ましい。貯蔵量予測モデル更新部360は、例えば、過去期間における貯蔵量予測因子の値と、過去期間以降の水素貯蔵装置40の水素の貯蔵量の実績値とに基づいて、貯蔵量予測モデルを学習により更新してよい。貯蔵量予測モデル更新部360は、実際の水素の貯蔵量の推移によって更新された貯蔵量予測因子の情報を用いて、貯蔵量予測モデルを学習する。貯蔵量予測モデル更新部360は、貯蔵量予測因子の情報が更新されたことに応じて、貯蔵量予測モデルの学習を実行してよい。貯蔵量予測モデル更新部360は、更新期間の間に、1または複数回の学習を実行してよい。貯蔵量予測モデル更新部360は、更新した貯蔵量予測モデルを貯蔵量予測部370に供給する。 It is desirable that the storage amount prediction model update unit 360 further learns by further using information that is later in time than the information of the storage amount prediction factor used by the storage amount prediction model generation unit 350 to generate the storage amount prediction model. The storage amount prediction model updating unit 360 learns the storage amount prediction model based on, for example, the value of the storage amount prediction factor in the past period and the actual value of the hydrogen storage amount of the hydrogen storage device 40 after the past period. You may update. The storage amount prediction model updating unit 360 learns the storage amount prediction model using the information of the storage amount prediction factor updated by the transition of the actual storage amount of hydrogen. The storage amount prediction model updating unit 360 may execute the learning of the storage amount prediction model in response to the information of the storage amount prediction factor being updated. The storage amount prediction model update unit 360 may execute learning one or more times during the update period. The storage amount prediction model update unit 360 supplies the updated storage amount prediction model to the storage amount prediction unit 370.
 貯蔵量予測部370は、記憶部110に接続される。貯蔵量予測部370は、複数の水素生成装置30が生成した水素を貯蔵する複数の水素貯蔵装置40のそれぞれにおける水素の貯蔵量予測を、更新された貯蔵量予測モデルを用いて生成する。 The storage amount prediction unit 370 is connected to the storage unit 110. The storage amount prediction unit 370 generates a hydrogen storage amount prediction in each of the plurality of hydrogen storage devices 40 that stores hydrogen generated by the plurality of hydrogen generation devices 30, using the updated storage amount prediction model.
 貯蔵量予測部370は、例えば、予め定められた期間毎に、将来における当該予め定められた期間における水素貯蔵装置40の水素の貯蔵量を予測する。貯蔵量予測部370は、貯蔵量予測モデルと貯蔵量予測因子の情報とを用いて、水素貯蔵装置40の水素の貯蔵量を予測してよい。貯蔵量予測部370は、例えば、予測すべき期間の直前までの期間における貯蔵量予測因子の情報を、貯蔵量予測モデルに適用して水素貯蔵装置40の水素の貯蔵量を予測する。貯蔵量予測部370は、予測結果を記憶部110に供給し、例えば、輸送計画因子および貯蔵計画因子の少なくとも1つとして記憶させる。また、貯蔵量予測部370は、予測結果を、予測部120の他の構成または計画部130に直接供給してよい。 The storage amount prediction unit 370 predicts the storage amount of hydrogen in the hydrogen storage device 40 in the future for the predetermined period, for example, for each predetermined period. The storage amount prediction unit 370 may predict the storage amount of hydrogen in the hydrogen storage device 40 using the storage amount prediction model and the information on the storage amount prediction factor. The storage amount prediction unit 370 predicts the storage amount of hydrogen of the hydrogen storage device 40, for example, by applying the information of the storage amount prediction factor in the period immediately before the period to be predicted to the storage amount prediction model. The storage amount prediction unit 370 supplies the prediction result to the storage unit 110 and stores it as at least one of a transportation planning factor and a storage planning factor, for example. In addition, the storage amount prediction unit 370 may directly supply the prediction result to another configuration of the prediction unit 120 or the planning unit 130.
 輸送予測モデル生成部380は、記憶部110と輸送予測モデル更新部390とに接続される。輸送予測モデル生成部380は、予測対象期間より前における輸送予測因子に基づいて、予測対象期間中における、複数の水素生成装置30および複数の水素ステーション60の間で水素を輸送する輸送計画の予測である輸送予測を生成する輸送予測モデルを生成する。 The transportation prediction model generation unit 380 is connected to the storage unit 110 and the transportation prediction model update unit 390. The transportation prediction model generation unit 380 predicts a transportation plan for transporting hydrogen between the plurality of hydrogen generation devices 30 and the plurality of hydrogen stations 60 during the prediction target period based on the transport prediction factor before the prediction target period. Generate a transport forecasting model that produces a transport forecast that is
 輸送予測モデル生成部380は、予測対象期間よりも過去の情報を用いて、事前学習またはオフライン学習等と呼ばれる処理により、輸送予測モデルを生成してよい。輸送予測モデル生成部380は、例えば、回帰分析、ベイズ推論、ニューラルネットワーク、ガウシアン混合モデル、および隠れマルコフモデル等を用いて、輸送予測モデルを生成する。また、輸送予測モデルとして、例えば、LSTM、RNN、およびその他の記憶を有するモデルを使用すれば、因子の時系列から輸送計画を予測することもできる。輸送予測モデル生成部380は、生成した輸送予測モデルを輸送予測モデル更新部390に供給する。 The transportation prediction model generation unit 380 may generate a transportation prediction model by a process called pre-learning or off-line learning using information past the prediction target period. The transportation prediction model generation unit 380 generates a transportation prediction model using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixture model, hidden Markov model, or the like. Moreover, if a model having a memory such as LSTM, RNN, and the like is used as the transportation prediction model, the transportation plan can be predicted from a time series of factors. The transportation prediction model generation unit 380 supplies the generated transportation prediction model to the transportation prediction model updating unit 390.
 輸送予測モデル更新部390は、記憶部110と輸送予測部400とに接続される。輸送予測モデル更新部390は、輸送計画の実績値(例えば、実行された輸送計画または実際に実行された輸送の実績値等)を含む学習データを用いて、輸送予測モデルを学習により更新してよい。輸送予測モデル更新部390は、例えば、予め定められた更新期間毎に、学習により新たな輸送予測モデルに更新してよい。これに代えて、輸送予測モデル更新部390は、予め定められた回数だけ学習したこと、または学習による誤差差分が予め定められた閾値を下回ったこと等の諸条件に応じて、輸送予測モデルを更新してもよい。 The transportation prediction model updating unit 390 is connected to the storage unit 110 and the transportation prediction unit 400. The transportation prediction model updating unit 390 updates the transportation prediction model by learning using learning data including the actual value of the transportation plan (for example, the actual value of the executed transportation plan or the actually executed transportation). Good. The transportation prediction model updating unit 390 may update the transportation prediction model by learning, for example, in each predetermined updating period. Instead of this, the transportation prediction model updating unit 390 sets the transportation prediction model in accordance with various conditions such as learning a predetermined number of times or an error difference due to learning falling below a predetermined threshold value. You may update.
 輸送予測モデル更新部390は、適応学習またはオンライン学習等と呼ばれる処理により、輸送予測モデルを学習してよい。輸送予測モデル更新部390は、例えば、任意の機械学習モデルを識別モデルとして、強化学習を実行することによって、輸送予測モデルを学習する。このような機械学習を行うことにより、輸送予測モデル更新部390は、輸送予測因子を入力として、輸送予測因子に応じた輸送計画を、適用するモデルに応じた精度で予測することができるようになる。 The transportation prediction model updating unit 390 may learn the transportation prediction model by a process called adaptive learning or online learning. The transportation prediction model updating unit 390 learns the transportation prediction model by executing reinforcement learning using an arbitrary machine learning model as an identification model, for example. By performing such machine learning, the transportation prediction model update unit 390 can predict the transportation plan according to the transportation prediction factor with the accuracy according to the applied model by inputting the transportation prediction factor. Become.
 輸送予測モデル更新部390は、輸送予測モデル生成部380が輸送予測モデルの生成に用いた輸送予測因子の情報よりも時間的に後の情報を更に用いて学習することが望ましい。輸送予測モデル更新部390は、例えば、過去期間における輸送予測因子の値と、過去期間以降の輸送計画の実績値とに基づいて、輸送予測モデルを学習により更新してよい。輸送予測モデル更新部390は、実際の輸送計画の実施によって更新された輸送予測因子の情報を用いて、輸送予測モデルを学習する。輸送予測モデル更新部390は、輸送予測因子の情報が更新されたことに応じて、輸送予測モデルの学習を実行してよい。輸送予測モデル更新部390は、更新期間の間に、1または複数回の学習を実行してよい。輸送予測モデル更新部390は、更新した輸送予測モデルを輸送予測部400に供給する。 It is desirable that the transportation prediction model update unit 390 further learns by further using information that is later in time than the information of the transportation prediction factor used by the transportation prediction model generation unit 380 to generate the transportation prediction model. The transportation prediction model updating unit 390 may update the transportation prediction model by learning, for example, based on the value of the transportation prediction factor in the past period and the actual value of the transportation plan after the past period. The transportation prediction model update unit 390 learns the transportation prediction model using the information of the transportation prediction factor updated by the actual implementation of the transportation plan. The transportation prediction model updating unit 390 may execute learning of the transportation prediction model in response to the information of the transportation prediction factor being updated. The transportation prediction model update unit 390 may perform learning one or more times during the update period. The transportation prediction model updating unit 390 supplies the updated transportation prediction model to the transportation prediction unit 400.
 輸送予測部400は、記憶部110に接続される。輸送予測部400は、輸送予測因子に基づいて、輸送予測モデルを用いて、複数の水素生成装置30および複数の水素ステーション60の間で水素を輸送する輸送計画の予測である輸送予測を生成する。 The transportation prediction unit 400 is connected to the storage unit 110. The transportation prediction unit 400 uses a transportation prediction model based on the transportation prediction factor to generate a transportation prediction that is a prediction of a transportation plan that transports hydrogen between the plurality of hydrogen generation devices 30 and the plurality of hydrogen stations 60. .
 輸送予測部400は、例えば、予め定められた期間毎に、将来における当該予め定められた期間における輸送計画を予測する。輸送予測部400は、輸送予測モデルと輸送予測因子の情報とを用いて、輸送計画を予測してよい。輸送予測部400は、例えば、予測すべき期間の直前までの期間における輸送予測因子の情報を、輸送予測モデルに適用して輸送計画を予測する。輸送予測部400は、予測結果を記憶部110に供給し、例えば、稼働計画因子および貯蔵計画因子の少なくとも1つとして記憶させる。また、輸送予測部400は、予測結果を、予測部120の他の構成または計画部130に直接供給してよい。 The transportation prediction unit 400 predicts a transportation plan in the predetermined period in the future, for example, for each predetermined period. The transportation prediction unit 400 may predict the transportation plan using the transportation prediction model and the information of the transportation prediction factor. The transportation prediction unit 400 predicts a transportation plan by applying, for example, the information of the transportation prediction factor in the period immediately before the period to be predicted to the transportation prediction model. The transportation prediction unit 400 supplies the prediction result to the storage unit 110, and stores it as at least one of the operation planning factor and the storage planning factor, for example. In addition, the transportation prediction unit 400 may directly supply the prediction result to another configuration of the prediction unit 120 or the planning unit 130.
 図4は、本実施形態の計画装置70の計画部130の詳細な構成例を示す。計画部130は、輸送計画モデル生成部410と、輸送計画モデル更新部420と、輸送計画部430とを有し、複数の水素生成装置30で生成された水素を複数の水素ステーション60に輸送する輸送計画を生成する。計画部130は、稼働計画モデル生成部440と、稼働計画モデル更新部450と、稼働計画部460とを有し、複数の水素生成装置30のそれぞれの稼働計画を生成する。計画部130は、貯蔵計画モデル生成部470と、貯蔵計画モデル更新部480と、貯蔵計画部490とを有し、複数の水素貯蔵装置40のそれぞれにおける水素の貯蔵計画を生成する。 FIG. 4 shows a detailed configuration example of the planning unit 130 of the planning device 70 of this embodiment. The planning unit 130 includes a transportation plan model generation unit 410, a transportation plan model updating unit 420, and a transportation planning unit 430, and transports hydrogen generated by the plurality of hydrogen generation devices 30 to the plurality of hydrogen stations 60. Generate a transportation plan. The planning unit 130 includes an operation plan model generation unit 440, an operation plan model update unit 450, and an operation plan unit 460, and generates an operation plan for each of the hydrogen generation devices 30. The planning unit 130 includes a storage plan model generating unit 470, a storage plan model updating unit 480, and a storage planning unit 490, and generates a hydrogen storage plan for each of the plurality of hydrogen storage devices 40.
 ここで、記憶部110は、輸送計画因子、稼働計画因子、および貯蔵計画因子を含む計画因子を記憶する。 Here, the storage unit 110 stores planning factors including a transportation planning factor, an operation planning factor, and a storage planning factor.
 輸送計画因子は、複数の水素生成装置30で生成された水素を複数の水素ステーション60に輸送する輸送計画に関する情報を含んでよい。輸送計画因子は、複数の水素生成装置30のそれぞれの稼働予測、複数の水素貯蔵装置40のそれぞれにおける水素の貯蔵量予測、および複数の水素ステーション60のそれぞれの需要予測の少なくとも1つを含んでよい。輸送計画因子は、予測対象期間より前における、複数の水素生成装置30のそれぞれの稼働量、複数の水素貯蔵装置40のそれぞれにおける水素の貯蔵量、および複数の水素ステーション60のそれぞれにおける水素の需要量の少なくとも1つを更に含んでよい。輸送計画因子は、輸送予測因子を含んでよい。また、輸送計画因子は、輸送手段50の種類、輸送手段50の数、各輸送手段50の輸送コスト、各輸送手段50の配置、および各輸送手段50の水素の輸送可能な量の少なくとも1つを含んでよい。 The transportation plan factor may include information on a transportation plan for transporting hydrogen generated by the plurality of hydrogen generators 30 to the plurality of hydrogen stations 60. The transportation planning factor includes at least one of an operation prediction of each of the plurality of hydrogen generators 30, a storage amount prediction of hydrogen in each of the plurality of hydrogen storage devices 40, and a demand prediction of each of the plurality of hydrogen stations 60. Good. The transportation planning factor is the operating amount of each of the plurality of hydrogen generators 30, the storage amount of hydrogen in each of the plurality of hydrogen storage devices 40, and the demand of hydrogen in each of the plurality of hydrogen stations 60 before the prediction target period. It may further comprise at least one of the amounts. Transportation planning factors may include transportation predictors. The transportation planning factor is at least one of the type of transportation means 50, the number of transportation means 50, the transportation cost of each transportation means 50, the arrangement of each transportation means 50, and the transportable amount of hydrogen of each transportation means 50. May be included.
 稼働計画因子は、複数の水素生成装置30の稼働に関する情報を含んでよい。稼働計画因子は、複数の水素生成装置30および複数の水素ステーション60の間における水素の輸送予測を含む。稼働計画因子は、稼働予測因子を含んでよい。稼働計画因子は、水素生成装置30と当該水素生成装置30に電力供給する再生可能エネルギー発電設備20の識別子、再生可能エネルギー発電設備20が発電に利用する再生可能エネルギーの種類、再生可能エネルギー発電設備20の発電量、発電量予測、再生可能エネルギーの電気料金、電気料金予測、および稼働予測の少なくとも1つを含んでよい。 The operation plan factor may include information on the operation of the plurality of hydrogen generators 30. The operation plan factor includes a hydrogen transportation prediction between the plurality of hydrogen generators 30 and the plurality of hydrogen stations 60. The operation plan factor may include an operation prediction factor. The operation plan factor is an identifier of the hydrogen generator 30 and the renewable energy power generation facility 20 that supplies power to the hydrogen generation device 30, the type of renewable energy used by the renewable energy power generation facility 20 for power generation, and the renewable energy power generation facility. It may include at least one of 20 power generation amounts, power generation amount predictions, electricity prices for renewable energy, electricity price forecasts, and operation forecasts.
 貯蔵計画因子は、複数の水素貯蔵装置40の水素の貯蔵量に関する情報を含んでよい。貯蔵計画因子は、複数の水素生成装置30のうち対応する水素生成装置30(貯蔵計画因子に対応する水素貯蔵装置40に接続された水素生成装置30)の稼働予測、並びに複数の水素生成装置30および複数の水素ステーション60の間における水素の輸送予測を含んでよい。貯蔵計画因子は、貯蔵量予測因子を含んでよい。貯蔵計画因子は、例えば、各水素貯蔵装置40の種類、各水素貯蔵装置40の水素の貯蔵可能な最大量、および各水素貯蔵装置40に対応する水素生成装置30の情報(水素生成装置30の接続数、水素生成効率、稼働率、および/または稼働時間等)の少なくとも1つを含んでよい。 The storage plan factor may include information regarding the storage amount of hydrogen in the plurality of hydrogen storage devices 40. The storage plan factor is the operation prediction of the corresponding hydrogen generation device 30 (the hydrogen generation device 30 connected to the hydrogen storage device 40 corresponding to the storage plan factor) among the plurality of hydrogen generation devices 30, and the plurality of hydrogen generation devices 30. And hydrogen transport predictions between the plurality of hydrogen stations 60. The storage planning factor may include a storage amount prediction factor. The storage plan factor is, for example, the type of each hydrogen storage device 40, the maximum amount of hydrogen that can be stored in each hydrogen storage device 40, and information on the hydrogen generation device 30 corresponding to each hydrogen storage device 40 (for the hydrogen generation device 30). At least one of the number of connections, hydrogen generation efficiency, operating rate, and / or operating time).
 輸送計画因子、稼働計画因子、および貯蔵計画因子の少なくとも1つは、略一定時間毎の時系列の情報でよい。輸送計画因子、稼働計画因子、および貯蔵計画因子の少なくとも1つは、時間の経過と共にそれぞれ追加または更新されてよい。輸送計画因子、稼働計画因子、および貯蔵計画因子の少なくとも1つは、計画装置70において生成された予測結果、および計画データの少なくとも1つを含んでよい。また、輸送計画因子、稼働計画因子、および貯蔵計画因子の少なくとも1つは、外部のデータベースまたは管理装置150等から供給され、取得部100で取得した情報を含んでよい。 At least one of the transportation planning factor, the operation planning factor, and the storage planning factor may be time-series information at approximately fixed time intervals. At least one of a transportation planning factor, an operation planning factor, and a storage planning factor may be added or updated over time, respectively. At least one of the transportation planning factor, the operation planning factor, and the storage planning factor may include at least one of the prediction result generated by the planning device 70 and the planning data. Further, at least one of the transportation planning factor, the operation planning factor, and the storage planning factor may be supplied from an external database or the management device 150, and may include the information acquired by the acquisition unit 100.
 輸送計画モデル生成部410は、記憶部110と輸送計画モデル更新部420とに接続される。輸送計画モデル生成部410は、計画対象期間より前における輸送計画因子に基づいて、計画対象期間中における、複数の水素貯蔵装置40のそれぞれと複数の水素ステーション60のそれぞれとの間における水素の輸送計画を生成する輸送計画モデルを生成する。 The transportation plan model generation unit 410 is connected to the storage unit 110 and the transportation plan model updating unit 420. The transportation plan model generation unit 410 transports hydrogen between each of the plurality of hydrogen storage devices 40 and each of the plurality of hydrogen stations 60 during the planning period based on the transportation planning factor before the planning period. Generate transportation planning model.
 輸送計画モデル生成部410は、計画対象期間よりも過去の情報を用いて、事前学習またはオフライン学習等と呼ばれる処理により、輸送計画モデルを生成してよい。輸送計画モデル生成部410は、例えば、回帰分析、ベイズ推論、ニューラルネットワーク、ガウシアン混合モデル、および隠れマルコフモデル等を用いて、輸送計画モデルを生成する。また、輸送計画モデルとして、例えば、LSTM、RNN、およびその他の記憶を有するモデルを使用すれば、因子の時系列から輸送計画を生成することもできる。輸送計画モデル生成部410は、生成した輸送計画モデルを輸送計画モデル更新部420に供給する。 The transportation plan model generation unit 410 may generate the transportation plan model by a process called pre-learning or off-line learning using information past the planned period. The transportation plan model generation unit 410 generates a transportation plan model using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixture model, hidden Markov model, or the like. Further, if a transport plan model such as an LSTM, an RNN, or another model having a memory is used, the transport plan can be generated from a time series of factors. The transportation plan model generation unit 410 supplies the generated transportation plan model to the transportation plan model updating unit 420.
 輸送計画モデル更新部420は、記憶部110と輸送計画部430とに接続される。輸送計画モデル更新部420は、複数の水素生成装置30、複数の水素貯蔵装置40、複数の水素貯蔵装置40のそれぞれと複数の水素ステーション60のそれぞれとの間の輸送手段50、および複数の水素ステーション60を含む連携システムの生産性を評価する評価指標に基づいて、輸送計画モデルを学習により更新する。 The transportation plan model updating unit 420 is connected to the storage unit 110 and the transportation planning unit 430. The transportation plan model updating unit 420 includes a plurality of hydrogen generators 30, a plurality of hydrogen storage devices 40, a transportation means 50 between each of the plurality of hydrogen storage devices 40 and each of the plurality of hydrogen stations 60, and a plurality of hydrogens. The transportation planning model is updated by learning based on the evaluation index for evaluating the productivity of the cooperation system including the station 60.
 ここで、評価指標は、連携システムの運営コスト、売上、および利益、並びに、連携システムが供給する水素の単位量当たりの原価の少なくとも1つに基づくものであってよい。評価指標は、計画装置70の各モデル更新部により算出されてよく、または外部の装置から計画装置70に供給されてよい。評価指標は、例えば、目的関数により算出されるものであってよい。評価指標は、一例として、連携システムの運営コスト、売上、および利益、並びに、連携システムが供給する水素の単位量当たりの原価のそれぞれに重みをかけて和をとった重み付け和の目的関数で算出されてよい。 Here, the evaluation index may be based on at least one of the operating cost, sales, and profit of the cooperation system, and the cost per unit amount of hydrogen supplied by the cooperation system. The evaluation index may be calculated by each model updating unit of the planning device 70, or may be supplied to the planning device 70 from an external device. The evaluation index may be calculated by an objective function, for example. As an example, the evaluation index is calculated by an objective function of a weighted sum obtained by weighting the operating costs, sales, and profits of the cooperation system, and the cost per unit amount of hydrogen supplied by the cooperation system. May be done.
 輸送計画モデル更新部420は、例えば、予め定められた更新期間毎に、学習により新たな輸送計画モデルに更新してよい。これに代えて、輸送計画モデル更新部420は、予め定められた回数だけ学習したこと、学習による誤差差分が予め定められた閾値を下回ったこと、または、評価指標が最大、最小、もしくは予め定められた範囲内になったこと等の諸条件に応じて、輸送計画モデルを更新してもよい。 The transportation plan model updating unit 420 may update a new transportation plan model by learning, for example, at each predetermined updating period. Instead, the transportation plan model updating unit 420 has learned a predetermined number of times, that the error difference due to learning has fallen below a predetermined threshold value, or the evaluation index is maximum, minimum, or predetermined. The transportation planning model may be updated according to various conditions such as being within the specified range.
 輸送計画モデル更新部420は、適応学習またはオンライン学習等と呼ばれる処理により、輸送計画モデルを学習してよい。輸送計画モデル更新部420は、例えば、任意の機械学習モデルを識別モデルとして、強化学習を実行することによって、輸送計画モデルを学習する。このような機械学習を行うことにより、輸送計画モデル更新部420は、輸送計画因子を入力として、輸送計画因子に応じた輸送計画を、適用するモデルに応じた精度で生成することができるようになる。 The transportation plan model updating unit 420 may learn the transportation plan model by a process called adaptive learning or online learning. The transportation plan model updating unit 420 learns the transportation plan model by executing reinforcement learning using an arbitrary machine learning model as an identification model, for example. By carrying out such machine learning, the transportation plan model updating unit 420 can generate a transportation plan according to the transportation plan factor with the accuracy according to the applied model by inputting the transportation plan factor. Become.
 輸送計画モデル更新部420は、輸送計画モデル生成部410が輸送計画モデルの生成に用いた輸送計画因子の情報よりも時間的に後の情報を更に用いて学習することが望ましい。輸送計画モデル更新部420は、例えば、過去期間における輸送計画因子の値と、過去期間以降の輸送計画の評価指標等とに基づいて、輸送計画モデルを学習により更新してよい。輸送計画モデル更新部420は、実際の輸送計画の実施に応じて算出された評価指標を用いて、輸送計画モデルを学習する。輸送計画モデル更新部420は、評価指標の算出に応じて、輸送計画モデルの学習を実行してよい。輸送計画モデル更新部420は、更新期間の間に、1または複数回の学習を実行してよい。輸送計画モデル更新部420は、更新した輸送計画モデルを輸送計画部430に供給する。 It is desirable that the transportation plan model update unit 420 further learns by further using information that is later in time than the information of the transportation plan factor used by the transportation plan model generation unit 410 to generate the transportation plan model. The transportation plan model updating unit 420 may update the transportation plan model by learning, for example, based on the value of the transportation plan factor in the past period and the evaluation index of the transportation plan after the past period. The transportation plan model updating unit 420 learns the transportation plan model using the evaluation index calculated according to the actual implementation of the transportation plan. The transportation plan model updating unit 420 may perform learning of the transportation plan model according to the calculation of the evaluation index. The transportation plan model update unit 420 may perform learning one or more times during the update period. The transportation planning model updating unit 420 supplies the updated transportation planning model to the transportation planning unit 430.
 輸送計画部430は、記憶部110と出力部140とに接続される。輸送計画部430は、複数の水素生成装置30で生成された水素を複数の水素ステーション60に輸送する輸送計画を、輸送計画モデルを用いて、輸送計画因子に基づいて生成する。 The transportation planning unit 430 is connected to the storage unit 110 and the output unit 140. The transportation planning unit 430 generates a transportation plan that transports the hydrogen generated by the plurality of hydrogen generators 30 to the plurality of hydrogen stations 60, using the transportation planning model, based on the transportation planning factor.
 輸送計画部430は、例えば、予め定められた期間毎に、将来における当該予め定められた期間における輸送計画を生成する。輸送計画部430は、輸送計画モデルと輸送計画因子の情報とを用いて、輸送計画を生成してよい。輸送計画部430は、例えば、計画すべき期間の直前までの期間における輸送計画因子の情報を、輸送計画モデルに適用して輸送計画を生成する。輸送計画部430は、輸送計画の計画データを記憶部110に供給し、例えば、計画因子として記憶させる。また、輸送計画部430は、計画データを、予測部120および/または計画部130の他の構成に直接供給してもよい。 The transportation planning unit 430, for example, for each predetermined period, generates a transportation plan for the future predetermined period. The transportation planning unit 430 may generate a transportation plan using the transportation planning model and the information on the transportation planning factors. The transportation planning unit 430 applies, for example, the information of the transportation planning factor in the period immediately before the period to be planned to the transportation planning model to generate the transportation plan. The transportation planning unit 430 supplies the planning data of the transportation plan to the storage unit 110 and stores it as a planning factor, for example. In addition, the transportation planning unit 430 may directly supply the planning data to other components of the prediction unit 120 and / or the planning unit 130.
 稼働計画モデル生成部440は、記憶部110と稼働計画モデル更新部450とに接続される。稼働計画モデル生成部440は、計画対象期間より前における稼働計画因子に基づいて、計画対象期間中における、複数の水素生成装置30のそれぞれの稼働計画を生成する稼働計画モデルを生成する。 The operation plan model generation unit 440 is connected to the storage unit 110 and the operation plan model update unit 450. The operation plan model generation unit 440 generates an operation plan model that generates an operation plan for each of the plurality of hydrogen generators 30 during the planning period based on the operation planning factors before the planning period.
 稼働計画モデル生成部440は、計画対象期間よりも過去の情報を用いて、事前学習またはオフライン学習等と呼ばれる処理により、稼働計画モデルを生成してよい。稼働計画モデル生成部440は、例えば、回帰分析、ベイズ推論、ニューラルネットワーク、ガウシアン混合モデル、および隠れマルコフモデル等を用いて、稼働計画モデルを生成する。また、稼働計画モデルとして、例えば、LSTM、RNN、およびその他の記憶を有するモデルを使用すれば、因子の時系列から稼働計画を生成することもできる。稼働計画モデル生成部440は、生成した稼働計画モデルを稼働計画モデル更新部450に供給する。 The operation plan model generation unit 440 may generate an operation plan model by a process called pre-learning or offline learning using the information in the past of the plan target period. The operation plan model generation unit 440 generates an operation plan model using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixture model, hidden Markov model, and the like. Further, if, for example, an LSTM, RNN, or other model having memory is used as the operation plan model, the operation plan can be generated from the time series of factors. The operation plan model generation unit 440 supplies the generated operation plan model to the operation plan model update unit 450.
 稼働計画モデル更新部450は、記憶部110と稼働計画部460に接続される。稼働計画モデル更新部450は、連携システムの生産性を評価する評価指標に基づいて、稼働計画モデルを学習により更新する。稼働計画モデル更新部450は、例えば、予め定められた更新期間毎に、学習により新たな稼働計画モデルに更新してよい。これに代えて、稼働計画モデル更新部450は、予め定められた回数だけ学習したこと、学習による誤差差分が予め定められた閾値を下回ったこと、または、評価指標が最大、最小もしくは予め定められた範囲内になったこと等の諸条件に応じて、稼働計画モデルを更新してもよい。 The operation plan model updating unit 450 is connected to the storage unit 110 and the operation planning unit 460. The operation plan model updating unit 450 updates the operation plan model by learning based on the evaluation index for evaluating the productivity of the cooperation system. The operation plan model updating unit 450 may update a new operation plan model by learning, for example, in each predetermined update period. Instead, the operation plan model updating unit 450 has learned a predetermined number of times, that the error difference due to learning has fallen below a predetermined threshold value, or the evaluation index is maximum, minimum, or predetermined. The operation plan model may be updated according to various conditions such as being within the specified range.
 稼働計画モデル更新部450は、適応学習またはオンライン学習等と呼ばれる処理により、稼働計画モデルを学習してよい。稼働計画モデル更新部450は、例えば、任意の機械学習モデルを識別モデルとして、強化学習を実行することによって、稼働計画モデルを学習する。このような機械学習を行うことにより、稼働計画モデル更新部450は、稼働計画因子を入力として、稼働計画因子に応じた稼働計画を、適用するモデルに応じた精度で生成することができるようになる。 The operation plan model updating unit 450 may learn the operation plan model by a process called adaptive learning or online learning. The operation plan model updating unit 450 learns the operation plan model by executing reinforcement learning using, for example, an arbitrary machine learning model as an identification model. By performing such machine learning, the operation plan model updating unit 450 can generate an operation plan according to the operation plan factor with the accuracy according to the applied model by inputting the operation plan factor. Become.
 稼働計画モデル更新部450は、稼働計画モデル生成部440が稼働計画モデルの生成に用いた稼働計画因子の情報よりも時間的に後の情報を更に用いて学習することが望ましい。稼働計画モデル更新部450は、例えば、過去期間における稼働計画因子の値と、過去期間以降の稼働計画の評価指標等とに基づいて、稼働計画モデルを学習により更新してよい。稼働計画モデル更新部450は、実際の稼働計画の実施に応じて算出された評価指標を用いて、稼働計画モデルを学習する。稼働計画モデル更新部450は、評価指標の算出に応じて、稼働計画モデルの学習を実行してよい。稼働計画モデル更新部450は、更新期間の間に、1または複数回の学習を実行してよい。稼働計画モデル更新部450は、更新した稼働計画モデルを稼働計画部460に供給する。 It is desirable that the operation plan model update unit 450 further learns by further using information that is later in time than the information of the operation plan factor used by the operation plan model generation unit 440 to generate the operation plan model. The operation plan model updating unit 450 may update the operation plan model by learning, for example, based on the value of the operation plan factor in the past period and the evaluation index of the operation plan after the past period. The operation plan model updating unit 450 learns the operation plan model using the evaluation index calculated according to the actual execution of the operation plan. The operation plan model updating unit 450 may execute learning of the operation plan model according to the calculation of the evaluation index. The operation plan model updating unit 450 may execute learning one or more times during the update period. The operation plan model updating unit 450 supplies the updated operation plan model to the operation planning unit 460.
 稼働計画部460は、記憶部110と出力部140とに接続される。稼働計画部460は、稼働計画因子に基づいて、稼働計画モデルを用いて、複数の水素生成装置30のそれぞれの稼働計画を生成する。 The operation planning unit 460 is connected to the storage unit 110 and the output unit 140. The operation planning unit 460 generates an operation plan for each of the plurality of hydrogen generators 30 using the operation plan model based on the operation plan factor.
 稼働計画部460は、例えば、予め定められた期間毎に、将来における当該予め定められた期間における稼働計画を生成する。稼働計画部460は、稼働計画モデルと稼働計画因子の情報とを用いて、稼働計画を生成してよい。稼働計画部460は、例えば、計画すべき期間の直前までの期間における稼働計画因子の情報を、稼働計画モデルに適用して稼働計画を生成する。稼働計画部460は、稼働計画の計画データを記憶部110に供給し、例えば、計画因子として記憶させる。また、稼働計画部460は、計画データを、予測部120および/または計画部130の他の構成に直接供給してよい。 The operation planning unit 460, for example, generates an operation plan for the future predetermined period for each predetermined period. The operation plan unit 460 may generate an operation plan using the operation plan model and the information on the operation plan factors. The operation planning unit 460 applies, for example, the information of the operation plan factors in the period immediately before the period to be planned to the operation plan model to generate the operation plan. The operation planning unit 460 supplies the plan data of the operation plan to the storage unit 110 and stores it as a planning factor, for example. In addition, the operation planning unit 460 may directly supply the planning data to other components of the prediction unit 120 and / or the planning unit 130.
 貯蔵計画モデル生成部470は、記憶部110と貯蔵計画モデル更新部480とに接続される。貯蔵計画モデル生成部470は、計画対象期間より前における貯蔵計画因子に基づいて、計画対象期間中における、複数の水素生成装置30が生成した水素を貯蔵する複数の水素貯蔵装置40のそれぞれにおける水素の貯蔵計画を生成する貯蔵計画モデルを生成する。 The storage plan model generation unit 470 is connected to the storage unit 110 and the storage plan model update unit 480. The storage plan model generation unit 470 determines the hydrogen in each of the plurality of hydrogen storage devices 40 that stores the hydrogen generated by the plurality of hydrogen generation devices 30 during the planning target period based on the storage planning factor before the planning target period. Generate a storage plan model to generate the storage plan of the.
 貯蔵計画モデル生成部470は、計画対象期間よりも過去の情報を用いて、事前学習またはオフライン学習等と呼ばれる処理により、貯蔵計画モデルを生成してよい。貯蔵計画モデル生成部470は、例えば、回帰分析、ベイズ推論、ニューラルネットワーク、ガウシアン混合モデル、および隠れマルコフモデル等を用いて、貯蔵計画モデルを生成する。また、貯蔵計画モデルとして、例えば、LSTM、RNN、およびその他の記憶を有するモデルを使用すれば、因子の時系列から貯蔵計画を生成することもできる。貯蔵計画モデル生成部470は、生成した貯蔵計画モデルを貯蔵計画モデル更新部480に供給する。 The storage plan model generation unit 470 may generate a storage plan model by a process called pre-learning or off-line learning, using information past the planning period. The storage plan model generation unit 470 generates a storage plan model using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixture model, hidden Markov model, and the like. Further, if a storage plan model, for example, an LSTM, RNN, or other model having memory is used, the storage plan can be generated from a time series of factors. The storage plan model generation unit 470 supplies the generated storage plan model to the storage plan model update unit 480.
 貯蔵計画モデル更新部480は、記憶部110と貯蔵計画部490に接続される。貯蔵計画モデル更新部480は、連携システムの生産性を評価する評価指標に基づいて、貯蔵計画モデルを学習により更新する。貯蔵計画モデル更新部480は、例えば、予め定められた更新期間毎に、学習により新たな貯蔵計画モデルに更新してよい。これに代えて、貯蔵計画モデル更新部480は、予め定められた回数だけ学習したこと、学習による誤差差分が予め定められた閾値を下回ったこと、または、評価指標が最大、最小もしくは予め定められた範囲内になったこと等の諸条件に応じて、貯蔵計画モデルを更新してもよい。 The storage plan model updating unit 480 is connected to the storage unit 110 and the storage planning unit 490. The storage plan model updating unit 480 updates the storage plan model by learning based on the evaluation index for evaluating the productivity of the cooperation system. The storage plan model updating unit 480 may update a new storage plan model by learning, for example, at each predetermined update period. Instead of this, the storage plan model updating unit 480 learns a predetermined number of times, the error difference due to learning is below a predetermined threshold value, or the evaluation index is maximum, minimum, or predetermined. The storage plan model may be updated according to various conditions such as being within the specified range.
 貯蔵計画モデル更新部480は、適応学習またはオンライン学習等と呼ばれる処理により、貯蔵計画モデルを学習してよい。貯蔵計画モデル更新部480は、例えば、任意の機械学習モデルを識別モデルとして、強化学習を実行することによって、貯蔵計画モデルを学習する。このような機械学習を行うことにより、貯蔵計画モデル更新部480は、貯蔵計画因子を入力として、貯蔵計画因子に応じた貯蔵計画を、適用するモデルに応じた精度で生成することができるようになる。 The storage plan model updating unit 480 may learn the storage plan model by a process called adaptive learning or online learning. The storage plan model updating unit 480 learns the storage plan model by executing reinforcement learning using an arbitrary machine learning model as an identification model, for example. By performing such machine learning, the storage plan model updating unit 480 can generate a storage plan according to the storage plan factor with the accuracy according to the applied model by inputting the storage plan factor. Become.
 貯蔵計画モデル更新部480は、貯蔵計画モデル生成部470が貯蔵計画モデルの生成に用いた貯蔵計画因子の情報よりも時間的に後の情報を更に用いて学習することが望ましい。貯蔵計画モデル更新部480は、例えば、過去期間における貯蔵計画因子の値と、過去期間以降の貯蔵計画の評価指標とに基づいて、貯蔵計画モデルを学習により更新してよい。貯蔵計画モデル更新部480は、実際の貯蔵計画の実施に応じて算出された評価指標を用いて、貯蔵計画モデルを学習してよい。貯蔵計画モデル更新部480は、評価指標の算出に応じて、貯蔵計画モデルの学習を実行してよい。貯蔵計画モデル更新部480は、更新期間の間に、1または複数回の学習を実行してよい。貯蔵計画モデル更新部480は、更新した貯蔵計画モデルを貯蔵計画部490に供給する。 It is desirable that the storage plan model updating unit 480 further learns by further using information that is later in time than the storage plan factor information used by the storage plan model generating unit 470 to generate the storage plan model. The storage plan model updating unit 480 may update the storage plan model by learning, for example, based on the value of the storage plan factor in the past period and the evaluation index of the storage plan after the past period. The storage plan model updating unit 480 may learn the storage plan model using the evaluation index calculated according to the actual implementation of the storage plan. The storage plan model updating unit 480 may execute the storage plan model learning according to the calculation of the evaluation index. The storage plan model updating unit 480 may execute learning one or more times during the update period. The storage plan model updating unit 480 supplies the updated storage plan model to the storage planning unit 490.
 貯蔵計画部490は、記憶部110と出力部140とに接続される。貯蔵計画部490は、貯蔵計画因子に基づいて、更新された貯蔵計画モデルを用いて、複数の水素生成装置30が生成した水素を貯蔵する複数の水素貯蔵装置40のそれぞれにおける水素の貯蔵計画を生成する。 The storage planning unit 490 is connected to the storage unit 110 and the output unit 140. The storage planning unit 490 uses the updated storage planning model based on the storage planning factor to set the hydrogen storage plan in each of the plurality of hydrogen storage devices 40 that stores the hydrogen generated by the plurality of hydrogen generation devices 30. To generate.
 貯蔵計画部490は、例えば、予め定められた期間毎に、将来における当該予め定められた期間における貯蔵計画を生成する。貯蔵計画部490は、貯蔵計画モデルと貯蔵計画因子の情報とを用いて、貯蔵計画を生成してよい。貯蔵計画部490は、例えば、計画すべき期間の直前までの期間における貯蔵計画因子の情報を、貯蔵計画モデルに適用して貯蔵計画を生成する。貯蔵計画部490は、貯蔵計画の計画データを記憶部110に供給し、例えば、計画因子として記憶させる。また、貯蔵計画部490は、計画データを、予測部120および/または計画部130の他の構成に直接供給してよい。 The storage planning unit 490 generates, for example, for each predetermined period, a storage plan for the future predetermined period. The storage planning unit 490 may generate a storage plan using the storage planning model and the information on the storage planning factors. The storage planning unit 490 applies, for example, the information of the storage planning factor in the period immediately before the period to be planned to the storage planning model to generate the storage plan. The storage planning unit 490 supplies the plan data of the storage plan to the storage unit 110 and stores it as a planning factor, for example. In addition, the storage planning unit 490 may directly supply the planning data to the prediction unit 120 and / or other components of the planning unit 130.
 以上の本実施形態に係る計画装置70は、学習により生成したモデルを用いて、水素生成から消費までの連携システムにおいて、水素を低コストに供給するための効率的な計画を生成することができる。このような計画装置70の動作について、次に説明する。 The planning device 70 according to the present embodiment described above can generate an efficient plan for supplying hydrogen at low cost in the cooperative system from hydrogen generation to consumption by using the model generated by learning. . The operation of the planning device 70 will be described below.
 図5は、本実施形態に係る計画装置70のフローの一例を示す。 FIG. 5 shows an example of the flow of the planning device 70 according to this embodiment.
 取得部100は、過去のトレンドとなる予測因子および計画因子の情報を取得する(S510)。取得部100は、例えば、時刻t0から時刻t1における、予測因子および計画因子の情報を取得する。取得部100は、取得した予測因子および計画因子の情報を記憶部110に記憶させる。また、取得部100は、予測因子および計画因子の情報を予測部120および計画部130に直接供給してもよい。 The acquisition unit 100 acquires information on a predictive factor and a plan factor that are past trends (S510). The acquisition unit 100 acquires, for example, information on the prediction factor and the design factor from time t0 to time t1. The acquisition unit 100 causes the storage unit 110 to store the acquired information about the prediction factor and the design factor. Further, the acquisition unit 100 may directly supply the information of the prediction factor and the planning factor to the prediction unit 120 and the planning unit 130.
 次に、予測部120および計画部130は、学習モデルを生成する(S520)。予測部120および計画部130は、時刻t0から時刻t1の期間における予測因子および計画因子の値に基づき学習モデルを生成する。例えば、稼働予測モデル生成部200は、時刻t0から時刻t1の期間における稼働予測因子の値を用いて、稼働予測モデルを生成する。需要予測モデル生成部230は、時刻t0から時刻t1の期間における需要予測因子の値を用いて、需要予測モデルを生成する。発電量予測モデル生成部260は、時刻t0から時刻t1の期間における発電量予測因子の値を用いて、発電量予測モデルを生成する。電気料金予測モデル生成部290は、時刻t0から時刻t1の期間における電気料金予測因子の値を用いて、電気料金予測モデルを生成する。消費予測モデル生成部320は、時刻t0から時刻t1の期間における消費予測因子の値を用いて、消費予測モデルを生成する。貯蔵量予測モデル生成部350は、時刻t0から時刻t1の期間における貯蔵量予測因子の値を用いて、貯蔵量予測モデルを生成する。輸送予測モデル生成部380は、時刻t0から時刻t1の期間における輸送予測因子の値を用いて、輸送予測モデルを生成する。 Next, the prediction unit 120 and the planning unit 130 generate a learning model (S520). The prediction unit 120 and the planning unit 130 generate a learning model based on the values of the prediction factor and the planning factor in the period from time t0 to time t1. For example, the operation prediction model generation unit 200 uses the value of the operation prediction factor in the period from time t0 to time t1 to generate the operation prediction model. The demand prediction model generation unit 230 generates a demand prediction model using the value of the demand prediction factor in the period from time t0 to time t1. The power generation amount prediction model generation unit 260 generates a power generation amount prediction model using the value of the power generation amount prediction factor in the period from time t0 to time t1. The electricity charge prediction model generation unit 290 generates an electricity charge prediction model using the value of the electricity charge prediction factor in the period from time t0 to time t1. The consumption prediction model generation unit 320 generates a consumption prediction model using the value of the consumption prediction factor in the period from time t0 to time t1. The storage amount prediction model generation unit 350 generates a storage amount prediction model using the value of the storage amount prediction factor in the period from time t0 to time t1. The transportation prediction model generation unit 380 generates a transportation prediction model using the value of the transportation prediction factor in the period from time t0 to time t1.
 また、輸送計画モデル生成部410は、時刻t0から時刻t1の期間における輸送計画因子の値を用いて、輸送計画モデルを生成する。稼働計画モデル生成部440は、時刻t0から時刻t1の期間における稼働計画因子の値を用いて、稼働計画モデルを生成する。貯蔵計画モデル生成部470は、時刻t0から時刻t1の期間における貯蔵計画因子の値を用いて、貯蔵計画モデルを生成する。 The transportation plan model generation unit 410 also generates a transportation plan model using the values of the transportation plan factor in the period from time t0 to time t1. The operation plan model generation unit 440 uses the value of the operation plan factor in the period from time t0 to time t1 to generate the operation plan model. The storage plan model generation unit 470 uses the value of the storage plan factor in the period from time t0 to time t1 to generate the storage plan model.
 また、予測部120および計画部130は、水素生成装置30、再生可能エネルギー発電設備20、水素貯蔵装置40、輸送手段50、水素ステーション60、または消費手段90等の対象の装置の物理モデルに基づく仮想データを予測データとし、当該予測データおよび過去の対象の装置の稼働において取得された実データを比較することにより、モデルを生成してよい。例えば、予測部120および計画部130は、予測データと、過去の実データから導出された目標データとの誤差が、誤差最小(例えば、0)または予め定められた値未満となるように、強化学習を実行してモデルを生成する。 Further, the prediction unit 120 and the planning unit 130 are based on the physical model of the target device such as the hydrogen generation device 30, the renewable energy power generation facility 20, the hydrogen storage device 40, the transportation means 50, the hydrogen station 60, or the consumption means 90. A model may be generated by using virtual data as prediction data and comparing the prediction data with actual data acquired in the past operation of the target apparatus. For example, the prediction unit 120 and the planning unit 130 enhance the error between the prediction data and the target data derived from the past actual data so that the error is a minimum error (for example, 0) or less than a predetermined value. Perform training to generate a model.
 予測部120および計画部130は、一例として、時刻t0から時刻t1の期間におけるM日間の期間を仮想的な予測期間または計画期間とする。なお、M日間は、例えば、数日または十数日、1または数週間といった期間でよい。そして、予測部120および計画部130は、時刻t0から時刻t1の期間における予測期間または計画期間よりも前の期間の因子の値に基づく予測期間または計画期間の予測結果または計画データと、予測期間または計画期間の実データまたは仮想データとの誤差が、最小となるように強化学習する。 As an example, the prediction unit 120 and the planning unit 130 set the period of M days in the period from time t0 to time t1 as a virtual prediction period or planning period. The M days may be, for example, a period of several days or a dozen days, one or several weeks. Then, the prediction unit 120 and the planning unit 130 predict the prediction period in the period from the time t0 to the time t1 or the prediction result or the plan data based on the value of the factor of the period before the planning period or the planning period, and the prediction period. Alternatively, reinforcement learning is performed so that the error between the actual data and the virtual data in the planning period is minimized.
 なお、このような予測部120および計画部130による学習モデルの生成は、対象の装置の稼働に伴って計画装置70が当該対象の装置の実データを取得する前に、実行されてよい。 The generation of the learning model by the predicting unit 120 and the planning unit 130 may be executed before the planning device 70 acquires the actual data of the target device as the target device operates.
 次に、予測部120および計画部130は、生成した学習モデルを適応学習する(S530)。ここで、取得部100は、各因子の情報をさらに取得してよい。取得部100は、例えば、時刻t2から時刻t3における、各因子の情報を取得する。また、計画装置70は、評価指標を算出または外部の装置等から取得してよい。また、予測部120および計画部130は、例えば、時刻t2から時刻t3における、各因子の情報を生成してもよい。なお、時刻t2から時刻t3の間の期間は、時刻t0から時刻t1の期間の後の期間とする。予測部120および計画部130は、新たな各因子の情報および/または評価指標を用いて適応学習してよい。 Next, the prediction unit 120 and the planning unit 130 adaptively learn the generated learning model (S530). Here, the acquisition unit 100 may further acquire information on each factor. The acquisition unit 100 acquires information on each factor from time t2 to time t3, for example. Further, the planning device 70 may calculate the evaluation index or acquire the evaluation index from an external device or the like. In addition, the prediction unit 120 and the planning unit 130 may generate information on each factor from time t2 to time t3, for example. The period from time t2 to time t3 is the period after the period from time t0 to time t1. The prediction unit 120 and the planning unit 130 may perform adaptive learning using the information of each new factor and / or the evaluation index.
 例えば、稼働予測モデル更新部210は、稼働予測因子の値に基づき、稼働予測モデルを適応学習する。稼働予測モデル更新部210は、時刻t2から時刻t3の期間における、水素生成装置30の稼働状況を用いて、稼働予測モデルを適応学習してよい。稼働予測モデル更新部210は、稼働予測モデルを用いて時刻t2から時刻t3の期間における水素生成装置30の稼働量等を予測した結果が、取得した時刻t2から時刻t3の期間の当該水素生成装置30の稼働状況と一致するように強化学習してよい。 For example, the operation prediction model updating unit 210 adaptively learns the operation prediction model based on the value of the operation prediction factor. The operation prediction model updating unit 210 may adaptively learn the operation prediction model using the operation status of the hydrogen generator 30 in the period from time t2 to time t3. The operation prediction model updating unit 210 uses the operation prediction model to predict the operation amount of the hydrogen generator 30 in the period from time t2 to time t3, and the obtained result is the hydrogen generator in the period from time t2 to time t3. Reinforcement learning may be performed so as to match the operation status of 30.
 稼働予測モデル更新部210は、一例として、時刻t2から時刻t3の期間におけるM日間の期間を仮想的な予測期間とする。なお、M日間は、例えば、数日または十数日、1または数週間、1または数ヶ月、1または数年といった期間でよい。稼働予測モデル更新部210は、一例として、時刻t2から時刻t3の期間における予測期間よりも前の期間の稼働予測因子の値に基づく予測期間の予測結果と、予測期間の実データとの誤差が、誤差最小(例えば、0)または予め定められた値未満となるように強化学習する。 The operation prediction model updating unit 210, for example, sets a period of M days in a period from time t2 to time t3 as a virtual prediction period. The M days may be, for example, a period of several days or ten and several days, one or several weeks, one or several months, one or several years. As an example, the operation prediction model updating unit 210 determines that the error between the prediction result of the prediction period based on the value of the operation prediction factor in the period before the prediction period in the period from time t2 to time t3 and the actual data in the prediction period is , Minimum error (for example, 0) or reinforcement learning is performed so as to be less than a predetermined value.
 例えば、需要予測モデル更新部240は、需要予測因子の値に基づき、需要予測モデルを適応学習する。需要予測モデル更新部240は、時刻t2から時刻t3の期間における、各水素ステーション60における水素の需要量を用いて、需要予測モデルを適応学習してよい。需要予測モデル更新部240は、需要予測モデルを用いて時刻t2から時刻t3の期間における水素ステーション60における水素の需要量を予測した結果が、取得した時刻t2から時刻t3の期間の当該水素ステーション60における水素の需要量と一致するように強化学習してよい。 For example, the demand forecast model updating unit 240 adaptively learns the demand forecast model based on the value of the demand forecast factor. The demand prediction model updating unit 240 may adaptively learn the demand prediction model using the demanded amount of hydrogen at each hydrogen station 60 in the period from time t2 to time t3. The demand forecast model updating unit 240 predicts the demand amount of hydrogen at the hydrogen station 60 during the period from time t2 to time t3 using the demand forecast model, and the obtained hydrogen station 60 during the period from time t2 to time t3. Reinforcement learning may be performed so as to match the demand amount of hydrogen in.
 需要予測モデル更新部240は、一例として、時刻t2から時刻t3の期間におけるM日間の期間を仮想的な予測期間とする。なお、M日間は、例えば、数日または十数日、1または数週間、1または数ヶ月、1または数年といった期間でよい。需要予測モデル更新部240は、一例として、時刻t2から時刻t3の期間における予測期間よりも前の期間の需要予測因子の値に基づく予測期間の予測結果と、予測期間の実データとの誤差が、誤差最小(例えば、0)または予め定められた値未満となるように強化学習する。 The demand prediction model update unit 240, for example, sets the period of M days in the period from time t2 to time t3 as a virtual prediction period. The M days may be, for example, a period of several days or ten and several days, one or several weeks, one or several months, one or several years. As an example, the demand prediction model updating unit 240 determines that the error between the prediction result of the prediction period based on the value of the demand prediction factor in the period before the prediction period in the period from time t2 to time t3 and the actual data in the prediction period is , Minimum error (for example, 0) or reinforcement learning is performed so as to be less than a predetermined value.
 例えば、発電量予測モデル更新部270は、発電量予測因子の値に基づき、発電量予測モデルを適応学習する。発電量予測モデル更新部270は、時刻t2から時刻t3の期間における、各再生可能エネルギー発電設備20における再生可能エネルギーの発電量を用いて、発電量予測モデルを適応学習してよい。発電量予測モデル更新部270は、発電量予測モデルを用いて時刻t2から時刻t3の期間における再生可能エネルギー発電設備20における発電量を予測した結果が、取得した時刻t2から時刻t3の期間の当該再生可能エネルギー発電設備20における発電量と一致するように強化学習してよい。 For example, the power generation prediction model updating unit 270 adaptively learns the power generation prediction model based on the value of the power generation prediction factor. The power generation amount prediction model updating unit 270 may adaptively learn the power generation amount prediction model using the power generation amount of the renewable energy in each renewable energy power generation facility 20 in the period from time t2 to time t3. The power generation amount prediction model update unit 270 predicts the power generation amount in the renewable energy power generation facility 20 in the period from time t2 to time t3 using the power generation amount prediction model, and the result is obtained in the acquired period from time t2 to time t3. Reinforcement learning may be performed so as to match the amount of power generation in the renewable energy power generation facility 20.
 発電量予測モデル更新部270は、一例として、時刻t2から時刻t3の期間におけるM日間の期間を仮想的な予測期間とする。なお、M日間は、例えば、数日または十数日、1または数週間、1または数ヶ月、1または数年といった期間でよい。発電量予測モデル更新部270は、一例として、時刻t2から時刻t3の予測期間よりも前の期間の発電量予測因子の値に基づく予測期間の予測結果と、予測期間の実データとの誤差が、誤差最小(例えば、0)または予め定められた値未満となるように強化学習する。 As an example, the power generation amount prediction model updating unit 270 sets the period of M days in the period from time t2 to time t3 as a virtual prediction period. The M days may be, for example, a period of several days or ten and several days, one or several weeks, one or several months, one or several years. As an example, the power generation amount prediction model updating unit 270 determines that the error between the prediction result of the prediction period based on the value of the power generation amount prediction factor in the period before the prediction period from time t2 to time t3 and the actual data of the prediction period is , Minimum error (for example, 0) or reinforcement learning is performed so as to be less than a predetermined value.
 例えば、電気料金予測モデル更新部300は、電気料金予測因子の値に基づき、電気料金予測モデルを適応学習する。電気料金予測モデル更新部300は、時刻t2から時刻t3の期間における、再生可能エネルギーの電気料金を用いて、電気料金予測モデルを適応学習してよい。電気料金予測モデル更新部300は、電気料金予測モデルを用いて時刻t2から時刻t3の期間における再生可能エネルギーの電気料金を予測した結果が、取得した時刻t2から時刻t3の期間の再生可能エネルギーの電気料金と一致するように強化学習してよい。 For example, the electricity price prediction model updating unit 300 adaptively learns the electricity price prediction model based on the value of the electricity price prediction factor. The electricity price prediction model updating unit 300 may adaptively learn the electricity price prediction model using the electricity price of the renewable energy in the period from time t2 to time t3. The electricity price prediction model update unit 300 predicts the electricity price of the renewable energy during the period from time t2 to time t3 using the electricity price prediction model, and the result of the obtained renewable energy during the period from time t2 to time t3 Reinforcement learning may be performed so as to match the electricity bill.
 電気料金予測モデル更新部300は、一例として、時刻t2から時刻t3の期間におけるM日間の期間を仮想的な予測期間とする。なお、M日間は、例えば、数日または十数日、1または数週間、1または数ヶ月、1または数年といった期間でよい。電気料金予測モデル更新部300は、一例として、時刻t2から時刻t3の期間における予測期間よりも前の期間の電気料金予測因子の値に基づく予測期間の予測結果と、予測期間の実データとの誤差が、誤差最小(例えば、0)または予め定められた値未満となるように強化学習する。 The electricity price prediction model updating unit 300, for example, sets the period of M days in the period from time t2 to time t3 as a virtual prediction period. The M days may be, for example, a period of several days or ten and several days, one or several weeks, one or several months, one or several years. As an example, the electricity price prediction model updating unit 300 calculates the prediction result of the prediction period based on the value of the electricity price prediction factor in the period before the prediction period in the period from time t2 to time t3, and the actual data of the prediction period. Reinforcement learning is performed so that the error becomes the minimum error (for example, 0) or less than a predetermined value.
 例えば、消費予測モデル更新部330は、消費予測因子の値に基づき、消費予測モデルを適応学習する。消費予測モデル更新部330は、時刻t2から時刻t3の期間における、各水素ステーション60における水素の消費量等を用いて、消費予測モデルを適応学習してよい。消費予測モデル更新部330は、消費予測モデルを用いて時刻t2から時刻t3の期間における水素ステーション60における水素の消費量等を予測した結果が、取得した時刻t2から時刻t3の期間の当該水素ステーション60における水素の消費量等と一致するように強化学習してよい。 For example, the consumption prediction model updating unit 330 adaptively learns the consumption prediction model based on the value of the consumption prediction factor. The consumption prediction model updating unit 330 may adaptively learn the consumption prediction model using the hydrogen consumption amount in each hydrogen station 60 in the period from time t2 to time t3. The consumption prediction model update unit 330 uses the consumption prediction model to predict the amount of hydrogen consumed at the hydrogen station 60 in the period from time t2 to time t3, and the obtained result is the hydrogen station in the period from time t2 to time t3. Reinforcement learning may be performed so as to match the hydrogen consumption amount in 60.
 消費予測モデル更新部330は、一例として、時刻t2から時刻t3の期間におけるM日間の期間を仮想的な予測期間とする。なお、M日間は、例えば、数日または十数日、1または数週間、1または数ヶ月、1または数年といった期間でよい。消費予測モデル更新部330は、一例として、時刻t2から時刻t3の期間における予測期間よりも前の期間の消費予測因子の値に基づく予測期間の予測結果と、予測期間の実データとの誤差が、誤差最小(例えば、0)または予め定められた値未満となるように強化学習する。 As an example, the consumption prediction model update unit 330 sets the period of M days in the period from time t2 to time t3 as a virtual prediction period. The M days may be, for example, a period of several days or ten and several days, one or several weeks, one or several months, one or several years. As an example, the consumption prediction model update unit 330 determines that the error between the prediction result of the prediction period based on the value of the consumption prediction factor in the period before the prediction period in the period from time t2 to time t3 and the actual data in the prediction period is , Minimum error (for example, 0) or reinforcement learning is performed so as to be less than a predetermined value.
 例えば、貯蔵量予測モデル更新部360は、貯蔵量予測因子の値に基づき、貯蔵量予測モデルを適応学習する。貯蔵量予測モデル更新部360は、時刻t2から時刻t3の期間における、各水素貯蔵装置40の水素の貯蔵量を用いて、貯蔵量予測モデルを適応学習してよい。貯蔵量予測モデル更新部360は、貯蔵量予測モデルを用いて時刻t2から時刻t3の期間における水素貯蔵装置40の水素の貯蔵量を予測した結果が、取得した時刻t2から時刻t3の期間の当該水素貯蔵装置40の水素の貯蔵量と一致するように強化学習してよい。 For example, the storage amount prediction model updating unit 360 adaptively learns the storage amount prediction model based on the value of the storage amount prediction factor. The storage amount prediction model updating unit 360 may adaptively learn the storage amount prediction model using the storage amount of hydrogen of each hydrogen storage device 40 in the period from time t2 to time t3. The storage amount prediction model updating unit 360 predicts the storage amount of hydrogen of the hydrogen storage device 40 during the period from time t2 to time t3 using the storage amount prediction model, and obtains the result of the estimation during the period from time t2 to time t3. Reinforcement learning may be performed so as to match the hydrogen storage amount of the hydrogen storage device 40.
 貯蔵量予測モデル更新部360は、一例として、時刻t2から時刻t3の期間におけるM日間の期間を仮想的な予測期間とする。なお、M日間は、例えば、数日または十数日、1または数週間、1または数ヶ月、1または数年といった期間でよい。貯蔵量予測モデル更新部360は、一例として、時刻t2から時刻t3の期間における予測期間よりも前の期間の貯蔵量予測因子の値に基づく予測期間の予測結果と、予測期間の実データとの誤差が、誤差最小(例えば、0)または予め定められた値未満となるように強化学習する。 The storage amount prediction model updating unit 360, for example, sets the period of M days in the period from time t2 to time t3 as a virtual prediction period. The M days may be, for example, a period of several days or ten and several days, one or several weeks, one or several months, one or several years. As one example, the storage amount prediction model updating unit 360 calculates the prediction result of the prediction period based on the value of the storage amount prediction factor in the period before the prediction period in the period from time t2 to time t3, and the actual data of the prediction period. Reinforcement learning is performed so that the error becomes the minimum error (for example, 0) or less than a predetermined value.
 例えば、輸送予測モデル更新部390は、輸送予測因子の値に基づき、輸送予測モデルを適応学習する。輸送予測モデル更新部390は、時刻t2から時刻t3の期間における、複数の水素生成装置30および複数の水素ステーション60の間で水素を輸送する輸送計画の実績値を用いて、輸送予測モデルを適応学習してよい。輸送予測モデル更新部390は、輸送予測モデルを用いて時刻t2から時刻t3の期間における輸送計画を予測した結果が、取得した時刻t2から時刻t3の期間の輸送計画(または輸送実績)と一致するように強化学習してよい。 For example, the transportation prediction model updating unit 390 adaptively learns the transportation prediction model based on the value of the transportation prediction factor. The transportation prediction model updating unit 390 applies the transportation prediction model using the actual values of the transportation plan for transporting hydrogen between the plurality of hydrogen generators 30 and the plurality of hydrogen stations 60 in the period from time t2 to time t3. You may learn. The transportation prediction model updating unit 390 uses the transportation prediction model to predict the transportation plan in the period from time t2 to time t3, and the result matches the acquired transportation plan (or transportation record) in the period from time t2 to time t3. Reinforcement learning may be done.
 輸送予測モデル更新部390は、一例として、時刻t2から時刻t3の期間におけるM日間の期間を仮想的な予測期間とする。なお、M日間は、例えば、数日または十数日、1または数週間、1または数ヶ月、1または数年といった期間でよい。輸送予測モデル更新部390は、一例として、時刻t2から時刻t3の期間よりも前の期間の輸送予測因子の値に基づく予測期間の予測結果と、予測期間の実データとの誤差が、誤差最小(例えば、0)または予め定められた値未満となるように強化学習する。 As an example, the transportation prediction model updating unit 390 sets the period of M days in the period from time t2 to time t3 as a virtual prediction period. The M days may be, for example, a period of several days or ten and several days, one or several weeks, one or several months, one or several years. As an example, the transportation prediction model updating unit 390 determines that the error between the prediction result of the prediction period based on the value of the transport prediction factor in the period before the period from time t2 to time t3 and the actual data in the prediction period is the minimum error. (For example, 0) or reinforcement learning is performed so as to be less than a predetermined value.
 また、輸送計画モデル更新部420は、連携システムの生産性を評価する評価指標に基づき、輸送計画モデルを適応学習してよい。例えば、輸送計画モデル更新部420は、時刻t2から時刻t3の期間における、評価指標を含む学習データを用いて、輸送計画モデルを学習してよい。輸送計画モデル更新部420は、輸送計画モデルを用いて生成した時刻t2から時刻t3の期間における輸送計画について、評価指標の値が、最小(例えば、0)、最大、または予め定められた範囲内となるように、強化学習を実行してよい。 Further, the transportation plan model updating unit 420 may adaptively learn the transportation plan model based on the evaluation index for evaluating the productivity of the cooperation system. For example, the transportation plan model updating unit 420 may learn the transportation plan model using the learning data including the evaluation index in the period from time t2 to time t3. The transportation plan model updating unit 420 has a minimum (for example, 0), maximum, or a predetermined range of the evaluation index value for the transportation plan generated using the transportation plan model from the time t2 to the time t3. Reinforcement learning may be performed so that
 輸送計画モデル更新部420は、一例として、時刻t2から時刻t3の期間におけるM日間の期間を仮想的な計画期間とする。なお、M日間は、例えば、数日または十数日、1または数週間、1または数ヶ月、1または数年といった期間でよい。そして、輸送計画モデル更新部420は、時刻t2から時刻t3の計画期間よりも前の期間の輸送計画因子の値に基づく計画期間の輸送計画について、計画期間において実施された輸送計画の評価指標の値が、最小(例えば、0)、最大、または予め定められた範囲内となるように、強化学習を実行してよい。 As an example, the transportation plan model updating unit 420 sets the period of M days in the period from time t2 to time t3 as a virtual planning period. The M days may be, for example, a period of several days or ten and several days, one or several weeks, one or several months, one or several years. Then, the transportation plan model updating unit 420, for the transportation plan in the planning period based on the value of the transportation planning factor in the period before the planning period from time t2 to time t3, indicates the evaluation index of the transportation plan executed in the planning period. Reinforcement learning may be performed so that the value is the minimum (for example, 0), the maximum, or within a predetermined range.
 また、稼働計画モデル更新部450は、連携システムの生産性を評価する評価指標に基づき、稼働計画モデルを適応学習してよい。例えば、稼働計画モデル更新部450は、時刻t2から時刻t3の期間における、評価指標を含む学習データを用いて、稼働計画モデルを学習してよい。稼働計画モデル更新部450は、稼働計画モデルを用いて生成した時刻t2から時刻t3の期間における稼働計画について、評価指標の値が、最小(例えば、0)、最大、または予め定められた範囲内となるように、強化学習を実行してよい。 Further, the operation plan model updating unit 450 may adaptively learn the operation plan model based on the evaluation index for evaluating the productivity of the cooperation system. For example, the operation plan model updating unit 450 may learn the operation plan model using the learning data including the evaluation index in the period from time t2 to time t3. The operation plan model updating unit 450 has a minimum (for example, 0), maximum, or a predetermined range of the evaluation index value for the operation plan generated from the time t2 to the time t3 using the operation plan model. Reinforcement learning may be performed so that
 稼働計画モデル更新部450は、一例として、時刻t2から時刻t3の期間におけるM日間の期間を仮想的な計画期間とする。なお、M日間は、例えば、数日または十数日、1または数週間、1または数ヶ月、1または数年といった期間でよい。そして、稼働計画モデル更新部450は、時刻t2から時刻t3の計画期間よりも前の期間の稼働計画因子の値に基づく計画期間の稼働計画について、計画期間において実施された稼働計画の評価指標の値が、最小(例えば、0)、最大、または予め定められた範囲内となるように、強化学習を実行してよい。 As an example, the operation plan model updating unit 450 sets the period of M days in the period from time t2 to time t3 as a virtual planning period. The M days may be, for example, a period of several days or ten and several days, one or several weeks, one or several months, one or several years. Then, the operation plan model updating unit 450, for the operation plan of the plan period based on the value of the operation plan factor of the period before the plan period from time t2 to time t3, the evaluation index of the operation plan executed in the plan period. Reinforcement learning may be performed so that the value is the minimum (for example, 0), the maximum, or within a predetermined range.
 また、貯蔵計画モデル更新部480は、連携システムの生産性を評価する評価指標に基づき、貯蔵計画モデルを適応学習してよい。例えば、貯蔵計画モデル更新部480は、時刻t2から時刻t3の期間における評価指標を含む学習データを用いて、貯蔵計画モデルを学習してよい。貯蔵計画モデル更新部480は、貯蔵計画モデルを用いて生成した時刻t2から時刻t3の期間における貯蔵計画について、評価指標の値が、最小(例えば、0)、最大、または予め定められた範囲内となるように、強化学習を実行してよい。 Further, the storage plan model updating unit 480 may adaptively learn the storage plan model based on the evaluation index for evaluating the productivity of the cooperation system. For example, the storage plan model updating unit 480 may learn the storage plan model using learning data including the evaluation index in the period from time t2 to time t3. The storage plan model updating unit 480 determines that the value of the evaluation index is minimum (for example, 0), maximum, or within a predetermined range for the storage plan generated using the storage plan model from time t2 to time t3. Reinforcement learning may be performed so that
 貯蔵計画モデル更新部480は、一例として、時刻t2から時刻t3の期間におけるM日間の期間を仮想的な計画期間とする。なお、M日間は、例えば、数日または十数日、1または数週間、1または数ヶ月、1または数年といった期間でよい。そして、貯蔵計画モデル更新部480は、時刻t2から時刻t3の計画期間よりも前の期間の貯蔵計画因子の値に基づく計画期間の貯蔵計画について、計画期間において実施された貯蔵計画の評価指標の値が、最小(例えば、0)、最大、または予め定められた範囲内となるように、強化学習を実行してよい。 The storage plan model updating unit 480, for example, sets the period of M days in the period from time t2 to time t3 as a virtual planning period. The M days may be, for example, a period of several days or ten and several days, one or several weeks, one or several months, one or several years. Then, the storage plan model update unit 480 determines the evaluation index of the storage plan executed in the plan period for the storage plan in the plan period based on the value of the storage plan factor in the period before the plan period from time t2 to time t3. Reinforcement learning may be performed so that the value is the minimum (for example, 0), the maximum, or within a predetermined range.
 なお、予測部120の各構成における予測期間は、それぞれ異なる期間であってよく、または同一の期間であってよい。計画部130の各構成における計画期間は、それぞれ異なる期間であってよく、または同一の期間であってよい。また、予測期間および計画期間は、それぞれ異なる期間であってよく、または同一の期間であってよい。 Note that the prediction periods in the respective components of the prediction unit 120 may be different periods or the same period. The planning period in each configuration of the planning unit 130 may be a different period or the same period. Further, the prediction period and the planning period may be different periods or the same period.
 また、輸送計画モデル更新部420、稼働計画モデル更新部450、および貯蔵計画モデル更新部480は、複数の計画モデルを、1つの評価指標に応じて学習してよい。輸送計画モデル更新部420、稼働計画モデル更新部450、および貯蔵計画モデル更新部480は、例えば、輸送計画、稼働計画、および貯蔵計画のうちの2つ以上について1つの目的関数で評価指標を算出して、当該評価指標の値が最小(例えば、0)、最大、または予め定められた範囲内となるように、複数の計画モデルを強化学習してよい。 Further, the transportation plan model updating unit 420, the operation plan model updating unit 450, and the storage plan model updating unit 480 may learn a plurality of planning models according to one evaluation index. The transportation plan model update unit 420, the operation plan model update unit 450, and the storage plan model update unit 480 calculate the evaluation index with one objective function for two or more of the transportation plan, the operation plan, and the storage plan, for example. Then, the plurality of planning models may be reinforced and learned so that the value of the evaluation index is the minimum (for example, 0), the maximum, or within a predetermined range.
 次に、予測部120および計画部130は、学習した学習モデルを更新する(S540)。予測部120および計画部130は、予め定められた時間毎に学習モデルを更新してよい。例えば、予測部120および計画部130は、適応学習を開始してから更新に必要な初期更新期間だけ適応学習を継続させてから、学習モデルの最初の更新を実行し、その後、一定の期間毎に更新を繰り返す。ここで、初期更新期間は、生成する計画の計画期間以上であることが望ましい。また、更新を繰り返す一定の期間は、数時間、十数時間、1日、数十時間、または数日等でよい。なお、予測部120および計画部130は、それぞれ異なる更新期間または同一の更新期間で学習モデルを更新してよい。 Next, the prediction unit 120 and the planning unit 130 update the learned learning model (S540). The prediction unit 120 and the planning unit 130 may update the learning model every predetermined time. For example, the prediction unit 120 and the planning unit 130 start adaptive learning, continue the adaptive learning for the initial update period required for updating, and then perform the first update of the learning model, and thereafter, at regular intervals. Repeat the update. Here, the initial update period is preferably longer than the planned period of the plan to be generated. Moreover, the fixed period of repeating the update may be several hours, ten and several hours, one day, several tens of hours, or several days. The prediction unit 120 and the planning unit 130 may update the learning model in different update periods or the same update period.
 次に、予測部120は、学習モデルを用いて予測結果を生成する(S550)。例えば、稼働予測部220は、更新された稼働予測モデルおよび稼働予測因子の値を用いて、時刻t4から時刻t5における水素生成装置30の稼働量を予測する。なお、時刻t4から時刻t5の間の期間は、時刻t2から時刻t3の期間の後の期間であり、予測時点の将来の期間であってよい。稼働予測部220は、一例として、初期更新期間に取得部100で取得したN日分の稼働予測因子の値および/または予測部120で生成した予測結果を含む稼働予測因子の値を、稼働予測モデルに適用して、初期更新期間の後のN日間での稼働量を予測する。稼働予測部220は、生成した稼働予測を記憶部110に供給して、記憶させてよい。 Next, the prediction unit 120 generates a prediction result using the learning model (S550). For example, the operation prediction unit 220 predicts the operation amount of the hydrogen generator 30 from time t4 to time t5 using the updated operation prediction model and the value of the operation prediction factor. The period from time t4 to time t5 is a period after the period from time t2 to time t3, and may be a future period at the prediction time point. As an example, the operation prediction unit 220 calculates the value of the operation prediction factor for N days acquired by the acquisition unit 100 in the initial update period and / or the value of the operation prediction factor including the prediction result generated by the prediction unit 120 as the operation prediction. Apply to the model to predict operating capacity in N days after the initial renewal period. The operation prediction unit 220 may supply the generated operation prediction to the storage unit 110 and store it therein.
 例えば、需要予測部250は、更新された需要予測モデルおよび需要予測因子の値を用いて、時刻t4から時刻t5における水素ステーション60における水素の需要(例えば需要量)を予測する。需要予測部250は、一例として、初期更新期間に取得部100で取得したN日分の稼働予測因子の値および/または予測部120で生成した予測結果を含む稼働予測因子の値を、需要予測モデルに適用して、初期更新期間の後のN日間での需要量を予測する。需要予測部250は、生成した需要予測を記憶部110に供給して、記憶させてよい。 For example, the demand prediction unit 250 predicts the demand (for example, demand amount) of hydrogen at the hydrogen station 60 from time t4 to time t5 using the updated demand prediction model and the value of the demand prediction factor. As an example, the demand prediction unit 250 calculates the value of the operation prediction factor for N days acquired by the acquisition unit 100 in the initial update period and / or the value of the operation prediction factor including the prediction result generated by the prediction unit 120 as the demand prediction. Apply to the model to predict demand for N days after the initial update period. The demand prediction unit 250 may supply the generated demand prediction to the storage unit 110 and store it therein.
 例えば、発電量予測部280は、更新された発電量予測モデルおよび発電量予測因子の値を用いて、時刻t4から時刻t5における再生可能エネルギー発電設備20の発電量を予測する。発電量予測部280は、一例として、初期更新期間に取得部100で取得したN日分の発電量予測因子の値および/または予測部120で生成した予測結果を含む発電量予測因子の値を、発電量予測モデルに適用して、初期更新期間の後のN日間での発電量を予測する。発電量予測部280は、生成した発電量予測を記憶部110に供給して、記憶させてよい。 For example, the power generation amount prediction unit 280 predicts the power generation amount of the renewable energy power generation facility 20 from time t4 to time t5 using the updated power generation amount prediction model and the value of the power generation amount prediction factor. As an example, the power generation amount prediction unit 280 sets the value of the power generation amount prediction factor for N days acquired by the acquisition unit 100 in the initial update period and / or the value of the power generation amount prediction factor including the prediction result generated by the prediction unit 120. , Is applied to a power generation prediction model to predict power generation in N days after the initial update period. The power generation amount prediction unit 280 may supply the generated power generation amount prediction to the storage unit 110 and store it therein.
 例えば、電気料金予測部310は、更新された電気料金予測モデルおよび電気料金予測因子の値を用いて、時刻t4から時刻t5における再生可能エネルギーの電気料金を予測する。電気料金予測部310は、一例として、初期更新期間に取得部100で取得したN日分の電気料金予測因子の値および/または予測部120で生成した予測結果を含む電気料金予測因子の値を、電気料金予測モデルに適用して、初期更新期間の後のN日間での電気料金を予測する。電気料金予測部310は、生成した電気料金予測を記憶部110に供給して、記憶させてよい。 For example, the electricity price prediction unit 310 predicts the electricity price of the renewable energy from the time t4 to the time t5 by using the updated electricity price prediction model and the value of the electricity price prediction factor. As an example, the electricity charge prediction unit 310 may obtain the value of the electricity charge prediction factor for N days acquired by the acquisition unit 100 during the initial update period and / or the value of the electricity charge prediction factor including the prediction result generated by the prediction unit 120. , It is applied to the electricity rate prediction model to forecast the electricity rate in N days after the initial renewal period. The electricity bill prediction unit 310 may supply the generated electricity bill prediction to the storage unit 110 to store the electricity bill prediction.
 例えば、消費予測部340は、更新された消費予測モデルおよび消費予測因子の値を用いて、時刻t4から時刻t5における、水素ステーション60における水素の消費量を予測する。消費予測部340は、一例として、初期更新期間に取得部100で取得したN日分の消費予測因子の値および/または予測部120で生成した消費予測因子の値を、消費予測モデルに適用して、初期更新期間の後のN日間での消費量を予測する。消費予測部340は、生成した消費予測を記憶部110に供給して、記憶させてよい。 For example, the consumption prediction unit 340 predicts the amount of hydrogen consumed at the hydrogen station 60 from time t4 to time t5 using the updated values of the consumption prediction model and the consumption prediction factor. As an example, the consumption prediction unit 340 applies the value of the consumption prediction factor for N days acquired by the acquisition unit 100 and / or the value of the consumption prediction factor generated by the prediction unit 120 to the consumption prediction model in the initial update period. And predict the consumption in N days after the initial renewal period. The consumption prediction unit 340 may supply the generated consumption prediction to the storage unit 110 and store it therein.
 例えば、貯蔵量予測部370は、更新された貯蔵量予測モデルおよび貯蔵量予測因子の値を用いて、時刻t4から時刻t5における、水素貯蔵装置40の水素の貯蔵量を予測する。貯蔵量予測部370は、一例として、初期更新期間に取得部100で取得したN日分の貯蔵量予測因子の値および/または予測部120で生成した予測結果を含む貯蔵量予測因子の値を、貯蔵量予測モデルに適用して、初期更新期間の後のN日間での貯蔵量を予測する。貯蔵量予測部370は、生成した貯蔵量予測を記憶部110に供給して、記憶させてよい。 For example, the storage amount prediction unit 370 uses the updated storage amount prediction model and the value of the storage amount prediction factor to predict the storage amount of hydrogen in the hydrogen storage device 40 from time t4 to time t5. As an example, the storage amount prediction unit 370 displays the value of the storage amount prediction factor for N days acquired by the acquisition unit 100 in the initial update period and / or the value of the storage amount prediction factor including the prediction result generated by the prediction unit 120. , It is applied to the storage amount prediction model to predict the storage amount in N days after the initial renewal period. The storage amount prediction unit 370 may supply the generated storage amount prediction to the storage unit 110 and store it therein.
 例えば、輸送予測部400は、更新された輸送予測モデルおよび輸送予測因子の値を用いて、時刻t4から時刻t5における、複数の水素生成装置30および複数の水素ステーション60の間における水素の輸送計画を予測する。輸送予測部400は、一例として、初期更新期間に取得部100で取得したN日分の輸送予測因子の値および/または予測部120で生成した輸送予測因子の値を、輸送予測モデルに適用して、初期更新期間の後のN日間での輸送計画を予測する。輸送予測部400は、生成した輸送予測を記憶部110に供給して、記憶させてよい。 For example, the transportation prediction unit 400 uses the updated transportation prediction model and transportation prediction factor values to plan transportation of hydrogen between the plurality of hydrogen generators 30 and the plurality of hydrogen stations 60 from time t4 to time t5. Predict. As an example, the transportation prediction unit 400 applies the value of the transportation prediction factor for N days acquired by the acquisition unit 100 during the initial update period and / or the value of the transportation prediction factor generated by the prediction unit 120 to the transportation prediction model. And forecast the transportation plan in N days after the initial renewal period. The transportation prediction unit 400 may supply the generated transportation prediction to the storage unit 110 to store the transportation prediction.
 計画部130は、更新された学習モデルを用いて、計画を生成する(S560)。例えば、輸送計画部430は、予測部120が生成した予測結果を含む輸送計画因子の値を、更新された輸送計画モデルに適用して、時刻t4から時刻t5における輸送計画を生成してよい。輸送計画部430は、一例として、初期更新期間に取得部100が取得したN日分の輸送計画因子の値および/または予測部120で生成した予測結果を含む輸送予測因子の値を、輸送計画モデルに適用して、初期更新期間の後のN日分の輸送計画を生成する。 The planning unit 130 uses the updated learning model to generate a plan (S560). For example, the transportation planning unit 430 may apply the value of the transportation planning factor including the prediction result generated by the prediction unit 120 to the updated transportation planning model to generate the transportation plan from time t4 to time t5. As an example, the transportation planning unit 430 sets the value of the transportation planning factor for N days acquired by the acquisition unit 100 during the initial update period and / or the value of the transportation prediction factor including the prediction result generated by the prediction unit 120 to the transportation planning unit 430. Apply to the model to generate a transportation plan for N days after the initial update period.
 また、輸送計画部430は、複数の輸送手段50のそれぞれに対する輸送計画を生成してよい。輸送計画部430は、複数の輸送手段50が略同一である場合は、略同一の輸送計画をそれぞれ生成してよい。また、輸送計画部430は、異なる種類の輸送手段50、異なる輸送コストの輸送手段50、またはこれらの組み合わせを含む複数の輸送手段50のそれぞれに対応して、異なる輸送計画を生成してよい。 Also, the transportation planning unit 430 may generate a transportation plan for each of the plurality of transportation means 50. When the plurality of transportation means 50 are substantially the same, the transportation planning unit 430 may respectively generate substantially the same transportation plans. Further, the transportation planning unit 430 may generate different transportation plans for each of the plurality of transportation means 50 including different types of transportation means 50, transportation means 50 of different transportation cost, or a combination thereof.
 この場合、輸送計画モデル生成部410は、輸送手段50毎にまたは複数の輸送手段50の組み合わせ毎にそれぞれ対応する複数の輸送計画モデルを生成してよい。また、輸送計画モデル更新部420は、複数の輸送計画モデルをそれぞれ学習し、それぞれ更新してよい。 In this case, the transportation plan model generation unit 410 may generate a plurality of transportation plan models corresponding to each transportation means 50 or each combination of a plurality of transportation means 50. Further, the transportation plan model updating unit 420 may learn each of the plurality of transportation plan models and update each.
 例えば、稼働計画部460は、予測部120が生成した予測結果を含む稼働計画因子の値を、更新された稼働計画モデルに適用して、時刻t4から時刻t5における稼働計画を生成してよい。稼働計画部460は、一例として、初期更新期間に取得部100が取得したN日分の稼働計画因子の値および/または予測部120で生成した予測結果を含む稼働予測因子の値を、稼働計画モデルに適用して、初期更新期間の後のN日分の稼働計画を生成する。 For example, the operation plan unit 460 may apply the value of the operation plan factor including the prediction result generated by the prediction unit 120 to the updated operation plan model to generate the operation plan from time t4 to time t5. As an example, the operation planning unit 460 sets the value of the operation plan factor for N days acquired by the acquisition unit 100 in the initial update period and / or the value of the operation prediction factor including the prediction result generated by the prediction unit 120 to the operation plan. Apply to the model to generate a work plan for N days after the initial update period.
 また、稼働計画部460は、複数の水素生成装置30のそれぞれに対する稼働計画を生成してよい。稼働計画部460は、複数の水素生成装置30が略同一である場合は、略同一の稼働計画をそれぞれ生成してよい。また、稼働計画部460は、異なる種類の水素生成装置30、異なる水素生成コストの水素生成装置30、またはこれらの組み合わせを含む複数の水素生成装置30のそれぞれに対応して、異なる稼働計画を生成してよい。 Further, the operation planning unit 460 may generate an operation plan for each of the plurality of hydrogen generators 30. The operation planning unit 460 may generate substantially the same operation plans when the plurality of hydrogen generation devices 30 are substantially the same. In addition, the operation planning unit 460 generates different operation plans corresponding to different types of hydrogen generators 30, hydrogen generators 30 having different hydrogen generation costs, or a plurality of hydrogen generators 30 including a combination thereof. You can do it.
 この場合、稼働計画モデル生成部440は、水素生成装置30毎にまたは複数の水素生成装置30の組み合わせ毎にそれぞれ対応する複数の稼働計画モデルを生成してよい。また、稼働計画モデル更新部450は、複数の稼働計画モデルをそれぞれ学習し、それぞれ更新してよい。 In this case, the operation plan model generation unit 440 may generate a plurality of operation plan models corresponding to each hydrogen generation device 30 or each combination of a plurality of hydrogen generation devices 30. Further, the operation plan model updating unit 450 may each learn a plurality of operation plan models and update each.
 例えば、貯蔵計画部490は、予測部120が生成した予測結果を含む貯蔵計画因子の値を、更新された貯蔵計画モデルに適用して、時刻t4から時刻t5における貯蔵計画を生成してよい。貯蔵計画部490は、一例として、初期更新期間に取得部100が取得したN日分の貯蔵計画因子の値および/または予測部120で生成した予測結果を含む貯蔵予測因子の値を、貯蔵計画モデルに適用して、初期更新期間の後のN日分の貯蔵計画を生成する。 For example, the storage planning unit 490 may apply the value of the storage planning factor including the prediction result generated by the prediction unit 120 to the updated storage planning model to generate the storage plan from time t4 to time t5. As an example, the storage planning unit 490 sets the value of the storage planning factor for the N days acquired by the acquisition unit 100 in the initial update period and / or the value of the storage prediction factor including the prediction result generated by the prediction unit 120 to the storage plan. Apply to the model to generate a storage plan for N days after the initial renewal period.
 また、貯蔵計画部490は、複数の水素貯蔵装置40のそれぞれに対する貯蔵計画を生成してよい。貯蔵計画部490は、複数の水素貯蔵装置40および/または当該水素貯蔵装置40に接続された水素生成装置30が略同一である場合は、略同一の貯蔵計画をそれぞれ生成してよい。また、貯蔵計画部490は、水素貯蔵装置40および/または当該水素貯蔵装置40に接続された水素生成装置30が異なる種類である場合、複数の水素貯蔵装置40のそれぞれに対応して、異なる貯蔵計画を生成してよい。 Further, the storage planning unit 490 may generate a storage plan for each of the plurality of hydrogen storage devices 40. When the plurality of hydrogen storage devices 40 and / or the hydrogen generation devices 30 connected to the hydrogen storage devices 40 are substantially the same, the storage planning unit 490 may respectively generate substantially the same storage plans. In addition, when the hydrogen storage device 40 and / or the hydrogen generation device 30 connected to the hydrogen storage device 40 are of different types, the storage planning unit 490 corresponds to each of the plurality of hydrogen storage devices 40 and stores different hydrogen. A plan may be generated.
 この場合、貯蔵計画モデル生成部470は、水素貯蔵装置40毎にまたは複数の水素貯蔵装置40の組み合わせ毎にそれぞれ対応する複数の貯蔵計画モデルを生成してよい。また、貯蔵計画モデル更新部480は、複数の貯蔵計画モデルをそれぞれ学習し、それぞれ更新してよい。 In this case, the storage plan model generation unit 470 may generate a plurality of storage plan models corresponding to each hydrogen storage device 40 or each combination of a plurality of hydrogen storage devices 40. Further, the storage plan model updating unit 480 may learn each of the plurality of storage plan models and update each of them.
 出力部140は、計画部130が生成した計画を出力する(S570)。これにより、水素を供給するシステム10の各事業者等は、管理装置150で受け取った計画に従ってシステム10の各構成を運用および制御することができる。 The output unit 140 outputs the plan generated by the planning unit 130 (S570). Accordingly, each business operator of the system 10 that supplies hydrogen can operate and control each configuration of the system 10 according to the plan received by the management device 150.
 計画装置70による計画の出力後または時刻t4から時刻t5の期間の経過後に、計画の生成を継続する場合(S580:No)、S530に戻り、計画装置70は学習モデルを適応学習する。この場合、取得部100は、当該時刻t4から時刻t5の期間において対象の装置の稼働によって推移する因子の情報を順次取得し、記憶部110に順次記憶させる。即ち、計画装置70は、時刻t4から時刻t5の期間の情報を過去の情報に含め、対象期間を時刻t4から時刻t5の期間よりも後の期間とする。 After the plan is output by the planner 70 or after the period from time t4 to time t5 has elapsed (S580: No), the process returns to S530 and the planner 70 adaptively learns the learning model. In this case, the acquisition unit 100 sequentially acquires information on factors that change due to the operation of the target device during the period from the time t4 to the time t5, and sequentially stores the information in the storage unit 110. That is, the planning apparatus 70 includes the information of the period from the time t4 to the time t5 in the past information, and sets the target period as a period after the period from the time t4 to the time t5.
 そして、計画装置70は、モデルの適応学習を繰り返し、一定期間の経過に応じてモデルを更新して、計画を生成して出力する。このように、本実施形態に係る計画装置70は、対象期間の計画の生成と、当該対象期間のシステム10の稼働とを繰り返すことにより、学習モデルを更新しつつ計画を継続して出力できる。 Then, the planning device 70 repeats the adaptive learning of the model, updates the model according to the lapse of a certain period, and generates and outputs the plan. As described above, the planning apparatus 70 according to the present embodiment can continuously output the plan while updating the learning model by repeating the generation of the plan for the target period and the operation of the system 10 during the target period.
 以上の計画装置70の動作フローにおいて、時刻t0~t5の順に、計画装置70を時系列に動作させる例を説明した。ここで、各期間は、時間的に連続した期間でよい。 In the above operation flow of the planning device 70, an example has been described in which the planning device 70 is operated in time series in the order of time t0 to t5. Here, each period may be a temporally continuous period.
 本実施形態に係る計画装置70は、システム10における各構成の動作を学習によって予測し、水素を低コストで効率的に供給可能な計画を作成できる。 The planning device 70 according to the present embodiment can predict the operation of each component in the system 10 by learning and create a plan that can efficiently supply hydrogen at low cost.
 なお、計画装置70は、稼働計画モデル生成部440と、稼働計画モデル更新部450と、稼働計画部460と、貯蔵計画モデル生成部470と、貯蔵計画モデル更新部480と、貯蔵計画部490とを有さなくてもよく、この場合、計画装置70は、輸送計画を生成してよい。また、計画装置70は、輸送計画モデル生成部410と、輸送計画モデル更新部420と、輸送計画部430と、貯蔵計画モデル生成部470と、貯蔵計画モデル更新部480と、貯蔵計画部490とを有さなくてもよく、この場合、計画装置70は、稼働計画を生成してよい。 The planning device 70 includes an operation plan model generation unit 440, an operation plan model update unit 450, an operation plan unit 460, a storage plan model generation unit 470, a storage plan model update unit 480, and a storage plan unit 490. In this case, the planning device 70 may generate a transportation plan. Further, the planning device 70 includes a transportation plan model generating unit 410, a transportation planning model updating unit 420, a transportation planning unit 430, a storage planning model generating unit 470, a storage planning model updating unit 480, and a storage planning unit 490. May not be included, and in this case, the planning apparatus 70 may generate the operation plan.
 また、計画装置70は、予測部120の少なくとも1つの構成を有さなくてもよく、この場合、外部の装置から供給された予測結果を用いて計画を生成してよい。また、計画装置70は、システム10における水素生成装置30の数を増やすまたは減らすことを提案する稼働計画、システム10における輸送手段50を増やすまたは減らすことを提案する輸送計画、およびシステム10における水素貯蔵装置40を増やすまたは減らすことを提案する貯蔵計画を生成してもよい。 Further, the planning device 70 may not have at least one configuration of the prediction unit 120, and in this case, the plan may be generated using the prediction result supplied from the external device. In addition, the planning apparatus 70 proposes an operation plan that proposes to increase or decrease the number of hydrogen generators 30 in the system 10, a transportation plan that proposes to increase or decrease the transportation means 50 in the system 10, and hydrogen storage in the system 10. A storage plan may be created that suggests increasing or decreasing the number of devices 40.
 また、予測部120の複数の構成における予測結果生成のタイミングは異なっていてよく、または同時であってもよい。計画部130の複数の構成における計画データ生成のタイミングは異なっていてよく、または同時であってもよい。 Further, the timings of generation of prediction results in the plurality of configurations of the prediction unit 120 may be different or may be the same. The timing of generating the plan data in the plurality of configurations of the planning unit 130 may be different or may be the same.
 本発明の様々な実施形態は、フローチャートおよびブロック図を参照して記載されてよく、ここにおいてブロックは、(1)操作が実行されるプロセスの段階または(2)操作を実行する役割を持つ装置のセクションを表わしてよい。特定の段階およびセクションが、専用回路、コンピュータ可読媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、および/またはコンピュータ可読媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタルおよび/またはアナログハードウェア回路を含んでよく、集積回路(IC)および/またはディスクリート回路を含んでよい。プログラマブル回路は、論理AND、論理OR、論理XOR、論理NAND、論理NOR、および他の論理操作、フリップフロップ、レジスタ、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブルロジックアレイ(PLA)等のようなメモリ要素等を含む、再構成可能なハードウェア回路を含んでよい。 Various embodiments of the present invention may be described with reference to flowcharts and block diagrams, where a block is (1) a stage of a process in which an operation is performed or (2) an apparatus responsible for performing an operation. Section may be represented. Specific steps and sections are implemented by dedicated circuitry, programmable circuitry provided with computer readable instructions stored on a computer readable medium, and / or a processor provided with computer readable instructions stored on a computer readable medium. You may Dedicated circuits may include digital and / or analog hardware circuits, and may include integrated circuits (ICs) and / or discrete circuits. Programmable circuits include memory elements such as logical AND, logical OR, logical XOR, logical NAND, logical NOR, and other logical operations, flip-flops, registers, field programmable gate arrays (FPGA), programmable logic arrays (PLA), and the like. Reconfigurable hardware circuitry may be included, including, and the like.
 コンピュータ可読媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読媒体は、フローチャートまたはブロック図で指定された操作を実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROMまたはフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(RTM)ディスク、メモリスティック、集積回路カード等が含まれてよい。 Computer-readable media may include any tangible device capable of storing instructions executed by a suitable device, such that computer-readable media having instructions stored therein are designated by flowcharts or block diagrams. A product will be provided that includes instructions that can be executed to create a means for performing the operations. Examples of computer readable media may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, and the like. More specific examples of computer-readable media include floppy disks, diskettes, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), Electrically Erasable Programmable Read Only Memory (EEPROM), Static Random Access Memory (SRAM), Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD), Blu-Ray (RTM) Disc, Memory Stick, Integrated Circuit cards and the like may be included.
 コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、またはSmalltalk、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、Python、および「C」プログラミング言語または同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1または複数のプログラミング言語の任意の組み合わせで記述されたソースコードまたはオブジェクトコードのいずれかを含んでよい。 Computer readable instructions include assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state set data, or object oriented programming such as Smalltalk, JAVA, C ++, etc. Language, Python, and any source or object code written in any combination of one or more programming languages, including conventional procedural programming languages such as the "C" programming language or similar programming languages. May be included.
 コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサまたはプログラマブル回路に対し、ローカルにまたはローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して提供され、フローチャートまたはブロック図で指定された操作を実行するための手段を作成すべく、コンピュータ可読命令を実行してよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。 Computer-readable instructions are provided to a processor or programmable circuit of a general purpose computer, a special purpose computer, or other programmable data processing device, locally or in a wide area network (WAN) such as a local area network (LAN), the Internet, or the like. Computer readable instructions may be executed to create a means for performing the operations specified in the flowcharts or block diagrams. Examples of processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers, and the like.
 図6は、本発明の複数の態様が全体的または部分的に具現化されてよいコンピュータ1900の例を示す。コンピュータ1900にインストールされたプログラムは、コンピュータ1900に、本発明の実施形態に係る装置に関連付けられる操作または当該装置の1または複数のセクションとして機能させることができ、または当該操作または当該1または複数のセクションを実行させることができ、および/またはコンピュータ1900に、本発明の実施形態に係るプロセスまたは当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ1900に、本明細書に記載のフローチャートおよびブロック図のブロックのうちのいくつかまたはすべてに関連付けられた特定の操作を実行させるべく、CPU2000によって実行されてよい。 FIG. 6 illustrates an example computer 1900 in which multiple aspects of the present invention may be embodied in whole or in part. The program installed in the computer 1900 can cause the computer 1900 to perform an operation associated with an apparatus according to an embodiment of the present invention or one or more sections of the apparatus, or the operation or the one or more sections. Sections may be executed and / or computer 1900 may perform processes or stages of processes according to embodiments of the invention. Such programs may be executed by CPU 2000 to cause computer 1900 to perform certain operations associated with some or all of the blocks in the flowcharts and block diagrams described herein.
 本実施形態に係るコンピュータ1900は、ホスト・コントローラ2082により相互に接続されるCPU2000、RAM2020、グラフィック・コントローラ2075、及び表示装置2080を有するCPU周辺部と、入出力コントローラ2084によりホスト・コントローラ2082に接続される通信インターフェイス2030、ハードディスクドライブ2040、及びDVDドライブ2060を有する入出力部と、入出力コントローラ2084に接続されるROM2010、フラッシュメモリ・ドライブ2050、及び入出力チップ2070を有するレガシー入出力部を備える。 The computer 1900 according to this embodiment is connected to the host controller 2082 by an input / output controller 2084 and a CPU peripheral part having a CPU 2000, a RAM 2020, a graphic controller 2075, and a display device 2080, which are mutually connected by a host controller 2082. An input / output unit having a communication interface 2030, a hard disk drive 2040, and a DVD drive 2060, a ROM 2010 connected to the input / output controller 2084, a flash memory drive 2050, and a legacy input / output unit having an input / output chip 2070. .
 ホスト・コントローラ2082は、RAM2020と、高い転送レートでRAM2020をアクセスするCPU2000及びグラフィック・コントローラ2075とを接続する。CPU2000は、ROM2010及びRAM2020に格納されたプログラムに基づいて動作し、各部の制御を行う。グラフィック・コントローラ2075は、CPU2000等がRAM2020内に設けたフレーム・バッファ上に生成する画像データを取得し、表示装置2080上に表示させる。これに代えて、グラフィック・コントローラ2075は、CPU2000等が生成する画像データを格納するフレーム・バッファを、内部に含んでもよい。 The host controller 2082 connects the RAM 2020 with the CPU 2000 and the graphic controller 2075 that access the RAM 2020 at a high transfer rate. The CPU 2000 operates based on the programs stored in the ROM 2010 and the RAM 2020, and controls each unit. The graphic controller 2075 acquires image data generated by the CPU 2000 or the like on a frame buffer provided in the RAM 2020 and displays it on the display device 2080. Instead of this, the graphic controller 2075 may internally include a frame buffer that stores image data generated by the CPU 2000 or the like.
 入出力コントローラ2084は、ホスト・コントローラ2082と、比較的高速な入出力装置である通信インターフェイス2030、ハードディスクドライブ2040、DVDドライブ2060を接続する。通信インターフェイス2030は、有線又は無線によりネットワークを介して他の装置と通信する。また、通信インターフェイスは、通信を行うハードウェアとして機能する。ハードディスクドライブ2040は、コンピュータ1900内のCPU2000が使用するプログラム及びデータを格納する。DVDドライブ2060は、DVD2095からプログラム又はデータを読み取り、RAM2020を介してハードディスクドライブ2040に提供する。 The input / output controller 2084 connects the host controller 2082 to the communication interface 2030, hard disk drive 2040, and DVD drive 2060, which are relatively high-speed input / output devices. The communication interface 2030 communicates with other devices via a network by wire or wirelessly. Further, the communication interface functions as hardware that performs communication. The hard disk drive 2040 stores programs and data used by the CPU 2000 in the computer 1900. The DVD drive 2060 reads a program or data from the DVD 2095 and provides it to the hard disk drive 2040 via the RAM 2020.
 また、入出力コントローラ2084には、ROM2010と、フラッシュメモリ・ドライブ2050、及び入出力チップ2070の比較的低速な入出力装置とが接続される。ROM2010は、コンピュータ1900が起動時に実行するブート・プログラム、及び/又は、コンピュータ1900のハードウェアに依存するプログラム等を格納する。フラッシュメモリ・ドライブ2050は、フラッシュメモリ2090からプログラム又はデータを読み取り、RAM2020を介してハードディスクドライブ2040に提供する。入出力チップ2070は、フラッシュメモリ・ドライブ2050を入出力コントローラ2084へと接続するとともに、例えばパラレル・ポート、シリアル・ポート、キーボード・ポート、マウス・ポート等を介して各種の入出力装置を入出力コントローラ2084へと接続する。 Further, the ROM 2010, the flash memory drive 2050, and the relatively low-speed input / output device of the input / output chip 2070 are connected to the input / output controller 2084. The ROM 2010 stores a boot program executed by the computer 1900 at startup, and / or a program dependent on the hardware of the computer 1900. The flash memory drive 2050 reads a program or data from the flash memory 2090 and provides it to the hard disk drive 2040 via the RAM 2020. The input / output chip 2070 connects the flash memory drive 2050 to the input / output controller 2084, and inputs / outputs various input / output devices via, for example, a parallel port, a serial port, a keyboard port, a mouse port, or the like. Connect to controller 2084.
 RAM2020を介してハードディスクドライブ2040に提供されるプログラムは、フラッシュメモリ2090、DVD2095、又はICカード等の記録媒体に格納されて利用者によって提供される。プログラムは、記録媒体から読み出され、RAM2020を介してコンピュータ1900内のハードディスクドライブ2040にインストールされ、CPU2000において実行される。これらのプログラム内に記述される情報処理は、コンピュータ1900に読み取られ、ソフトウェアと、上記様々なタイプのハードウェア資源との間の協働をもたらす。装置または方法が、コンピュータ1900の使用に従い情報の操作または処理を実現することによって構成されてよい。 The program provided to the hard disk drive 2040 via the RAM 2020 is stored in a recording medium such as a flash memory 2090, a DVD 2095, or an IC card and provided by the user. The program is read from the recording medium, installed in the hard disk drive 2040 in the computer 1900 via the RAM 2020, and executed by the CPU 2000. The information processing described in these programs is read by the computer 1900, and causes the software and the various types of hardware resources described above to cooperate with each other. An apparatus or method may be configured by implementing the operation or processing of information according to the use of the computer 1900.
 一例として、コンピュータ1900と外部の装置等との間で通信を行う場合には、CPU2000は、RAM2020上にロードされた通信プログラムを実行し、通信プログラムに記述された処理内容に基づいて、通信インターフェイス2030に対して通信処理を指示する。通信インターフェイス2030は、CPU2000の制御を受けて、RAM2020、ハードディスクドライブ2040、フラッシュメモリ2090、又はDVD2095等の記憶装置上に設けた送信バッファ領域等に記憶された送信データを読み出してネットワークへと送信し、もしくは、ネットワークから受信した受信データを記憶装置上に設けた受信バッファ領域等へと書き込む。このように、通信インターフェイス2030は、DMA(ダイレクト・メモリ・アクセス)方式により記憶装置との間で送受信データを転送してもよく、これに代えて、CPU2000が転送元の記憶装置又は通信インターフェイス2030からデータを読み出し、転送先の通信インターフェイス2030又は記憶装置へとデータを書き込むことにより送受信データを転送してもよい。 As an example, when communication is performed between the computer 1900 and an external device or the like, the CPU 2000 executes the communication program loaded on the RAM 2020, and based on the processing content described in the communication program, the communication interface. Instructing 2030 to perform communication processing. Under the control of the CPU 2000, the communication interface 2030 reads out the transmission data stored in the transmission buffer area or the like provided on the storage device such as the RAM 2020, the hard disk drive 2040, the flash memory 2090, or the DVD 2095 and transmits it to the network. Alternatively, the received data received from the network is written to the receiving buffer area or the like provided on the storage device. As described above, the communication interface 2030 may transfer the transmission / reception data to / from the storage device by the DMA (Direct Memory Access) method. Instead, the CPU 2000 transfers the storage device or the communication interface 2030 of the transfer source. The transmission / reception data may be transferred by reading the data from the device and writing the data to the transfer destination communication interface 2030 or the storage device.
 また、CPU2000は、ハードディスクドライブ2040、DVDドライブ2060(DVD2095)、フラッシュメモリ・ドライブ2050(フラッシュメモリ2090)等の外部記憶装置に格納されたファイルまたはデータベース等の中から、全部または必要な部分をDMA転送等によりRAM2020へと読み込ませ、RAM2020上のデータに対して各種の処理を行う。そして、CPU2000は、処理を終えたデータを、DMA転送等により外部記憶装置へと書き戻す。このような処理において、RAM2020は、外部記憶装置の内容を一時的に保持するものとみなせるから、本実施形態においてはRAM2020及び外部記憶装置等をメモリ、記憶部、または記憶装置等と総称する。 In addition, the CPU 2000 DMAs all or necessary portions from files or databases stored in an external storage device such as a hard disk drive 2040, a DVD drive 2060 (DVD2095), a flash memory drive 2050 (flash memory 2090). The data is read into the RAM 2020 by transfer or the like, and various processing is performed on the data in the RAM 2020. Then, the CPU 2000 writes the processed data back to the external storage device by DMA transfer or the like. In such a process, the RAM 2020 can be regarded as temporarily holding the contents of the external storage device, and thus in the present embodiment, the RAM 2020 and the external storage device are collectively referred to as a memory, a storage unit, a storage device, or the like.
 本実施形態における各種のプログラム、データ、テーブル、データベース等の各種の情報は、このような記憶装置上に格納されて、情報処理の対象となる。なお、CPU2000は、RAM2020の一部をキャッシュメモリに保持し、キャッシュメモリ上で読み書きを行うこともできる。このような形態においても、キャッシュメモリはRAM2020の機能の一部を担うから、本実施形態においては、区別して示す場合を除き、キャッシュメモリもRAM2020、メモリ、及び/又は記憶装置に含まれるものとする。 Various types of information such as various types of programs, data, tables, and databases according to the present embodiment are stored in such a storage device and are subject to information processing. Note that the CPU 2000 can also hold part of the RAM 2020 in the cache memory and read / write on the cache memory. Even in such a form, the cache memory plays a part of the function of the RAM 2020. Therefore, in the present embodiment, the cache memory is also included in the RAM 2020, the memory, and / or the storage device unless otherwise indicated. To do.
 また、CPU2000は、RAM2020から読み出したデータに対して、プログラムの命令列により指定された、本実施形態中に記載した各種の演算、情報の加工、条件判断、情報の検索・置換等を含む各種の処理を行い、RAM2020へと書き戻す。例えば、CPU2000は、条件判断を行う場合においては、本実施形態において示した各種の変数が、他の変数または定数と比較して、大きい、小さい、以上、以下、等しい等の条件を満たすか否かを判断し、条件が成立した場合(又は不成立であった場合)に、異なる命令列へと分岐し、またはサブルーチンを呼び出す。 Further, the CPU 2000 performs various operations specified in the instruction sequence of the program on the data read from the RAM 2020, including various calculations, information processing, condition determination, information search / replacement, and the like. Process and write back to the RAM 2020. For example, in the case of performing the condition determination, the CPU 2000 determines whether or not the various variables shown in the present embodiment satisfy a condition such as being larger, smaller, above, below, or equal to other variables or constants. If the condition is satisfied (or not satisfied), a branch is made to a different instruction sequence or a subroutine is called.
 また、CPU2000は、記憶装置内のファイルまたはデータベース等に格納された情報を検索することができる。例えば、第1属性の属性値に対し第2属性の属性値がそれぞれ対応付けられた複数のエントリが記憶装置に格納されている場合において、CPU2000は、記憶装置に格納されている複数のエントリの中から第1属性の属性値が指定された条件と一致するエントリを検索し、そのエントリに格納されている第2属性の属性値を読み出すことにより、所定の条件を満たす第1属性に対応付けられた第2属性の属性値を得ることができる。 Also, the CPU 2000 can search for information stored in a file or database in the storage device. For example, when a plurality of entries in which the attribute values of the second attribute are associated with the attribute values of the first attribute are stored in the storage device, the CPU 2000 determines that the entries of the plurality of entries stored in the storage device are stored. Corresponding to the first attribute satisfying a predetermined condition by searching the entry in which the attribute value of the first attribute matches the specified condition and reading the attribute value of the second attribute stored in the entry. The attribute value of the obtained second attribute can be obtained.
 また、実施形態の説明において複数の要素が列挙された場合には、列挙された要素以外の要素を用いてもよい。例えば、「Xは、A、B及びCを用いてYを実行する」と記載される場合、Xは、A、B及びCに加え、Dを用いてYを実行してもよい。 Also, when a plurality of elements are listed in the description of the embodiment, elements other than the listed elements may be used. For example, when it is described that "X executes Y using A, B and C", X may execute Y by using D in addition to A, B and C.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 Although the present invention has been described using the embodiments, the technical scope of the present invention is not limited to the scope described in the above embodiments. It is apparent to those skilled in the art that various changes or improvements can be made to the above embodiment. It is apparent from the description of the appended claims that embodiments with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each processing such as operation, procedure, step, and step in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “before”. It should be noted that they can be realized in any order as long as the output of the previous process is not used in the subsequent process. For the convenience of description in the claims, the description, and the operation flow in the drawings, it is essential that the operation is performed in this order even if the description is made using “first”, “next”, and the like for convenience. is not.
10 システム
20 再生可能エネルギー発電設備
30 水素生成装置
40 水素貯蔵装置
50 輸送手段
60 水素ステーション
70 計画装置
80 電力系統
90 消費手段
100 取得部
110 記憶部
120 予測部
130 計画部
140 出力部
150 管理装置
200 稼働予測モデル生成部
210 稼働予測モデル更新部
220 稼働予測部
230 需要予測モデル生成部
240 需要予測モデル更新部
250 需要予測部
260 発電量予測モデル生成部
270 発電量予測モデル更新部
280 発電量予測部
290 電気料金予測モデル生成部
300 電気料金予測モデル更新部
310 電気料金予測部
320 消費予測モデル生成部
330 消費予測モデル更新部
340 消費予測部
350 貯蔵量予測モデル生成部
360 貯蔵量予測モデル更新部
370 貯蔵量予測部
380 輸送予測モデル生成部
390 輸送予測モデル更新部
400 輸送予測部
410 輸送計画モデル生成部
420 輸送計画モデル更新部
430 輸送計画部
440 稼働計画モデル生成部
450 稼働計画モデル更新部
460 稼働計画部
470 貯蔵計画モデル生成部
480 貯蔵計画モデル更新部
490 貯蔵計画部
1900 コンピュータ
2000 CPU
2010 ROM
2020 RAM
2030 通信インターフェイス
2040 ハードディスクドライブ
2050 フラッシュメモリ・ドライブ
2060 DVDドライブ
2070 入出力チップ
2075 グラフィック・コントローラ
2080 表示装置
2082 ホスト・コントローラ
2084 入出力コントローラ
2090 フラッシュメモリ
2095 DVD
10 system 20 renewable energy power generation facility 30 hydrogen generator 40 hydrogen storage device 50 transportation means 60 hydrogen station 70 planning device 80 electric power system 90 consumption means 100 acquisition unit 110 storage unit 120 prediction unit 130 planning unit 140 output unit 150 management device 200 Operation prediction model generation unit 210 Operation prediction model update unit 220 Operation prediction unit 230 Demand prediction model generation unit 240 Demand prediction model update unit 250 Demand prediction unit 260 Power generation prediction model generation unit 270 Power generation prediction model update unit 280 Power generation prediction unit 290 Electricity charge prediction model generation unit 300 Electricity charge prediction model update unit 310 Electricity charge prediction unit 320 Consumption prediction model generation unit 330 Consumption prediction model update unit 340 Consumption prediction unit 350 Storage amount prediction model generation unit 360 Storage amount prediction model update unit 370 Storage amount forecast 380 Transport Prediction Model Generation Unit 390 Transport Prediction Model Update Unit 400 Transport Prediction Unit 410 Transport Plan Model Generation Unit 420 Transport Plan Model Update Unit 430 Transport Planning Unit 440 Operation Plan Model Generation Unit 450 Operation Plan Model Update Unit 460 Operation Planning Unit 470 Storage plan model generation unit 480 Storage plan model update unit 490 Storage plan unit 1900 Computer 2000 CPU
2010 ROM
2020 RAM
2030 communication interface 2040 hard disk drive 2050 flash memory drive 2060 DVD drive 2070 input / output chip 2075 graphic controller 2080 display device 2082 host controller 2084 input / output controller 2090 flash memory 2095 DVD

Claims (28)

  1.  水素を生成する複数の水素生成装置のそれぞれの稼働予測を、稼働予測モデルを用いて生成する稼働予測部と、
     複数の水素ステーションのそれぞれにおける水素の需要予測を、需要予測モデルを用いて生成する需要予測部と、
     前記複数の水素生成装置で生成された水素を前記複数の水素ステーションに輸送する輸送計画を、輸送計画モデルを用いて、前記複数の水素生成装置のそれぞれの稼働予測および前記複数の水素ステーションのそれぞれの需要予測を含む輸送計画因子に基づいて生成する輸送計画部と
     を備える計画装置。
    An operation prediction unit that generates an operation prediction of each of a plurality of hydrogen generation devices that generate hydrogen using an operation prediction model,
    A demand forecasting unit that generates a demand forecast for hydrogen at each of a plurality of hydrogen stations using a demand forecasting model,
    A transportation plan for transporting hydrogen generated by the plurality of hydrogen generators to the plurality of hydrogen stations, using a transportation plan model, an operation prediction of each of the plurality of hydrogen generators and each of the plurality of hydrogen stations. And a transportation planning unit which is generated based on a transportation planning factor including the demand forecast of the vehicle.
  2.  複数の再生可能エネルギー発電設備のそれぞれについて、再生可能エネルギーの発電量予測を、発電量予測モデルを用いて生成する発電量予測部を更に備え、
     前記稼働予測部は、再生可能エネルギーを用いる前記複数の水素生成装置のそれぞれの稼働予測を、前記複数の再生可能エネルギー発電設備のそれぞれの発電量予測に基づいて生成する
     請求項1に記載の計画装置。
    For each of the plurality of renewable energy power generation facilities, further comprises a power generation amount prediction unit that generates a power generation amount prediction of renewable energy using a power generation amount prediction model,
    The plan according to claim 1, wherein the operation prediction unit generates an operation prediction of each of the plurality of hydrogen generators that use renewable energy based on a power generation amount prediction of each of the plurality of renewable energy power generation facilities. apparatus.
  3.  電気料金予測モデルを用いて、再生可能エネルギーの電気料金予測を生成する電気料金予測部を更に備え、
     前記稼働予測部は、前記電気料金予測を含む稼働予測因子に基づいて、前記複数の水素生成装置のそれぞれの稼働予測を生成する
     請求項2に記載の計画装置。
    And further comprising an electricity price prediction unit that generates an electricity price prediction for renewable energy using the electricity price prediction model,
    The planning device according to claim 2, wherein the operation prediction unit generates an operation prediction of each of the plurality of hydrogen generation devices based on an operation prediction factor including the electricity price prediction.
  4.  前記電気料金予測モデルは、予測対象期間より前における、電気料金、電力需要量、電力供給量、再生可能エネルギー発電量、天気情報、および、前記発電量予測部による再生可能エネルギーの発電量予測の少なくとも1つを含む電気料金予測因子に基づいて、再生可能エネルギーの電気料金予測を算出する請求項3に記載の計画装置。 The electricity price prediction model is an electricity price, a power demand, a power supply, a renewable energy power generation amount, weather information, and a power generation amount prediction amount of the renewable energy by the power generation amount prediction unit before the prediction target period. The planning apparatus according to claim 3, wherein the electricity price forecast of the renewable energy is calculated based on the electricity rate prediction factor including at least one.
  5.  電気料金の実績値を用いて、前記電気料金予測モデルを学習により更新する電気料金予測モデル更新部を更に備える請求項3または4に記載の計画装置。 The planning apparatus according to claim 3 or 4, further comprising an electricity price prediction model updating unit that updates the electricity price prediction model by learning using the actual value of the electricity price.
  6.  前記稼働予測因子は、予測対象期間より前における、前記複数の水素生成装置の稼働量、前記複数の水素生成装置が生成した水素を貯蔵する複数の水素貯蔵装置における水素の貯蔵量、前記複数の水素貯蔵装置からの水素の輸送量、前記複数の水素ステーションのそれぞれにおける水素の需要量、および、前記予測対象期間の前記電気料金予測の少なくとも1つを更に含む請求項3から5のいずれか一項に記載の計画装置。 The operation predicting factor is, before the prediction target period, the operating amount of the plurality of hydrogen generators, the storage amount of hydrogen in the plurality of hydrogen storage devices that store hydrogen generated by the plurality of hydrogen generators, the plurality of 6. The method according to claim 3, further comprising at least one of a transport amount of hydrogen from the hydrogen storage device, a demand amount of hydrogen at each of the plurality of hydrogen stations, and the electricity price forecast for the forecast target period. Planning device according to paragraph.
  7.  前記複数の水素生成装置の稼働量の実績値を用いて、前記稼働予測モデルを学習により更新する稼働予測モデル更新部を更に備える請求項1から6のいずれか一項に記載の計画装置。 The planning device according to any one of claims 1 to 6, further comprising an operation prediction model updating unit that updates the operation prediction model by learning using actual values of the operation amounts of the plurality of hydrogen generation devices.
  8.  前記複数の水素ステーションのそれぞれにおける水素の消費予測を、消費予測モデルを用いて生成する消費予測部を更に備え、
     前記需要予測部は、前記複数の水素ステーションのそれぞれにおける水素の需要予測を、各水素ステーションにおける水素の消費予測を含む需要予測因子に基づいて予測する
     請求項1から7のいずれか一項に記載の計画装置。
    A hydrogen consumption prediction in each of the plurality of hydrogen stations, further comprising a consumption prediction unit that generates using a consumption prediction model,
    The said demand estimation part estimates the demand forecast of hydrogen in each of these hydrogen stations based on the demand forecast factor containing the hydrogen consumption forecast in each hydrogen station. Planning equipment.
  9.  前記消費予測モデルは、予測対象期間より前における、前記複数の水素ステーションのそれぞれにおける水素の需要量、前記複数の水素ステーションのそれぞれにおける水素の消費量、天気情報、および前記複数の水素ステーションのそれぞれから供給される水素を利用して提供されるサービスの水素使用量に関する因子の少なくとも1つを更に含む消費予測因子に基づいて、前記予測対象期間中における前記複数の水素ステーションの水素の消費予測を算出する請求項8に記載の計画装置。 The consumption prediction model is, before the prediction target period, the hydrogen demand in each of the plurality of hydrogen stations, the hydrogen consumption in each of the plurality of hydrogen stations, weather information, and each of the plurality of hydrogen stations A hydrogen consumption prediction of the plurality of hydrogen stations during the prediction target period based on a consumption prediction factor further including at least one factor related to the hydrogen usage amount of the service provided by using the hydrogen supplied from The planning device according to claim 8, which calculates.
  10.  前記複数の水素ステーションのそれぞれにおける水素の消費量の実績値を用いて、前記消費予測モデルを学習により更新する消費予測モデル更新部を更に備える請求項9に記載の計画装置。 The planning apparatus according to claim 9, further comprising a consumption prediction model updating unit that updates the consumption prediction model by learning using actual values of hydrogen consumption at each of the plurality of hydrogen stations.
  11.  前記需要予測モデルは、前記予測対象期間より前における、前記複数の水素ステーションのそれぞれにおける水素の需要量、および前記複数の水素ステーションのそれぞれにおける水素の消費量の少なくとも1つを更に含む前記需要予測因子に基づいて、前記予測対象期間における前記複数の水素ステーションのそれぞれについての水素の需要予測を算出する請求項9または10に記載の計画装置。 The demand forecast model further includes at least one of a demand amount of hydrogen at each of the plurality of hydrogen stations and a hydrogen consumption amount at each of the plurality of hydrogen stations before the forecast target period. The planning device according to claim 9 or 10, which calculates a hydrogen demand forecast for each of the plurality of hydrogen stations in the forecast target period based on a factor.
  12.  前記複数の水素ステーションのそれぞれにおける水素の需要量の実績値を用いて、前記需要予測モデルを学習により更新する需要予測モデル更新部を更に備える請求項1から11のいずれか一項に記載の計画装置。 The plan according to any one of claims 1 to 11, further comprising: a demand prediction model updating unit that updates the demand prediction model by learning using actual values of the demanded amount of hydrogen at each of the plurality of hydrogen stations. apparatus.
  13.  前記複数の水素生成装置が生成した水素を貯蔵する複数の水素貯蔵装置のそれぞれにおける水素の貯蔵量予測を、貯蔵量予測モデルを用いて生成する貯蔵量予測部を更に備え、
     前記輸送計画部は、前記複数の水素貯蔵装置のそれぞれと前記複数の水素ステーションのそれぞれとの間における水素の輸送計画を、前記輸送計画モデルを用いて、前記複数の水素貯蔵装置のそれぞれにおける水素の貯蔵量予測を更に含む前記輸送計画因子に基づいて生成する
     請求項1から12のいずれか一項に記載の計画装置。
    The storage amount prediction of hydrogen in each of the plurality of hydrogen storage devices that store hydrogen generated by the plurality of hydrogen generation devices, further comprising a storage amount prediction unit that uses a storage amount prediction model,
    The transportation planning unit uses a transportation planning model to calculate a hydrogen transportation plan between each of the plurality of hydrogen storage apparatuses and each of the plurality of hydrogen stations. The planning device according to any one of claims 1 to 12, wherein the planning device is generated based on the transportation planning factor that further includes a storage amount prediction of.
  14.  前記貯蔵量予測モデルは、予測対象期間における前記複数の水素貯蔵装置の水素の貯蔵量を、前記予測対象期間より前における、前記複数の水素生成装置の稼働量、前記複数の水素貯蔵装置における水素の貯蔵量、前記複数の水素貯蔵装置からの水素の輸送量、前記複数の水素ステーションのそれぞれにおける水素の需要量、および前記複数の水素生成装置の稼働予測の少なくとも1つを含む貯蔵量予測因子に基づいて予測する請求項13に記載の計画装置。 The storage amount prediction model, the storage amount of hydrogen of the plurality of hydrogen storage device in the prediction target period, before the prediction target period, the operating amount of the plurality of hydrogen generators, hydrogen in the plurality of hydrogen storage devices Storage amount, a transport amount of hydrogen from the plurality of hydrogen storage devices, a demand amount of hydrogen at each of the plurality of hydrogen stations, and a storage amount prediction factor including at least one of operation predictions of the plurality of hydrogen generation devices The planning device according to claim 13, wherein the planning is performed based on the above.
  15.  前記複数の水素貯蔵装置の水素の貯蔵量の実績値を用いて、前記貯蔵量予測モデルを学習により更新する貯蔵量予測モデル更新部を更に備える請求項13または14に記載の計画装置。 The planning device according to claim 13 or 14, further comprising a storage amount prediction model updating unit that updates the storage amount prediction model by learning using actual values of the hydrogen storage amounts of the plurality of hydrogen storage devices.
  16.  前記輸送計画因子は、予測対象期間より前における、前記複数の水素生成装置のそれぞれの稼働量、前記複数の水素貯蔵装置のそれぞれにおける水素の貯蔵量、および前記複数の水素ステーションのそれぞれにおける水素の需要量の少なくとも1つを更に含む請求項13から15のいずれか一項に記載の計画装置。 The transportation planning factor is the operating amount of each of the plurality of hydrogen generators, the storage amount of hydrogen in each of the plurality of hydrogen storage devices, and the amount of hydrogen in each of the plurality of hydrogen stations before the prediction target period. 16. The planning device according to claim 13, further comprising at least one of demand amounts.
  17.  前記複数の水素生成装置、前記複数の水素貯蔵装置、前記複数の水素貯蔵装置のそれぞれと前記複数の水素ステーションのそれぞれとの間の輸送手段、および前記複数の水素ステーションを含む連携システムの生産性を評価する評価指標に基づいて、前記輸送計画モデルを学習により更新する輸送計画モデル更新部を更に備える請求項13から15のいずれか一項に記載の計画装置。 Productivity of the plurality of hydrogen generators, the plurality of hydrogen storage devices, a transportation means between each of the plurality of hydrogen storage devices and each of the plurality of hydrogen stations, and a cooperation system including the plurality of hydrogen stations The planning apparatus according to any one of claims 13 to 15, further comprising a transportation plan model updating unit that updates the transportation planning model by learning based on an evaluation index that evaluates.
  18.  前記評価指標は、前記連携システムの運営コスト、売上、および利益、並びに、前記連携システムが供給する水素の単位量当たりの原価の少なくとも1つに基づく請求項17に記載の計画装置。 18. The planning apparatus according to claim 17, wherein the evaluation index is based on at least one of an operating cost, sales, and profit of the cooperation system, and a cost per unit amount of hydrogen supplied by the cooperation system.
  19.  前記複数の水素生成装置のそれぞれの稼働予測および前記複数の水素ステーションのそれぞれにおける水素の需要予測の少なくとも1つを含む輸送予測因子に基づいて、輸送予測モデルを用いて、前記複数の水素生成装置および前記複数の水素ステーションの間で水素を輸送する輸送計画の予測である輸送予測を生成する輸送予測部を更に備える請求項1から18のいずれか一項に記載の計画装置。 The plurality of hydrogen generators are used by using a transport prediction model based on a transport prediction factor including at least one of an operation forecast of each of the plurality of hydrogen generators and a hydrogen demand forecast at each of the plurality of hydrogen stations. The planning apparatus according to any one of claims 1 to 18, further comprising: a transportation prediction unit that generates a transportation prediction that is a transportation planning prediction for transporting hydrogen between the plurality of hydrogen stations.
  20.  前記複数の水素生成装置および前記複数の水素ステーションの間における水素の輸送予測を含む稼働計画因子に基づいて、稼働計画モデルを用いて、前記複数の水素生成装置のそれぞれの稼働計画を生成する稼働計画部を更に備える請求項19に記載の計画装置。 An operation of generating an operation plan of each of the plurality of hydrogen generators using an operation plan model based on an operation plan factor including transportation prediction of hydrogen between the plurality of hydrogen generators and the plurality of hydrogen stations. The planning device according to claim 19, further comprising a planning unit.
  21.  前記評価指標に基づいて、前記稼働計画モデルを学習により更新する稼働計画モデル更新部を更に備える、請求項17または18に従属する請求項20に記載の計画装置。 21. The planning apparatus according to claim 20, which is dependent on claim 17 or 18, further comprising an operation plan model updating unit that updates the operation plan model by learning based on the evaluation index.
  22.  前記複数の水素生成装置が生成した水素を貯蔵する複数の水素貯蔵装置のそれぞれにおける水素の貯蔵計画を、貯蔵計画モデルを用いて、前記複数の水素生成装置のうち対応する水素生成装置の稼働予測、並びに前記複数の水素生成装置および前記複数の水素ステーションの間における水素の輸送予測を含む貯蔵計画因子に基づいて生成する貯蔵計画部を更に備える請求項19から21のいずれか一項に記載の計画装置。 A storage plan of hydrogen in each of the plurality of hydrogen storage devices that store the hydrogen generated by the plurality of hydrogen generation devices, using a storage planning model, the operation prediction of the corresponding hydrogen generation device of the plurality of hydrogen generation device 22. and a storage planning unit for generating hydrogen based on a storage planning factor including a transportation prediction of hydrogen between the plurality of hydrogen generators and the plurality of hydrogen stations. 22. Planning equipment.
  23.  前記評価指標に基づいて、前記貯蔵計画モデルを学習により更新する貯蔵計画モデル更新部を更に備える、請求項17または18に従属する請求項22に記載の計画装置。 23. The planning apparatus according to claim 22, which is dependent on claim 17 or 18, further comprising a storage plan model updating unit that updates the storage plan model by learning based on the evaluation index.
  24.  複数の水素ステーションのそれぞれにおける水素の需要予測を、需要予測モデルを用いて生成する需要予測部と、
     前記複数の水素ステーションのそれぞれにおける水素の需要予測を含む輸送予測因子に基づいて、輸送予測モデルを用いて、水素を生成する複数の水素生成装置および前記複数の水素ステーションの間で水素を輸送する輸送計画の予測である輸送予測を生成する輸送予測部と、
     前記複数の水素生成装置および前記複数の水素ステーションの間における水素の輸送予測を含む稼働計画因子に基づいて、稼働計画モデルを用いて、前記複数の水素生成装置のそれぞれの稼働計画を生成する稼働計画部と
     を備える計画装置。
    A demand forecasting unit that generates a demand forecast for hydrogen at each of a plurality of hydrogen stations using a demand forecasting model,
    A transportation prediction model is used to transport hydrogen between a plurality of hydrogen generators that generate hydrogen and the plurality of hydrogen stations based on a transportation prediction factor including a hydrogen demand prediction at each of the plurality of hydrogen stations. A transportation forecasting unit that generates a transportation forecast that is a forecast of a transportation plan;
    An operation of generating an operation plan of each of the plurality of hydrogen generators using an operation plan model based on an operation plan factor including transportation prediction of hydrogen between the plurality of hydrogen generators and the plurality of hydrogen stations. A planning device having a planning section.
  25.  水素を生成する複数の水素生成装置のそれぞれの稼働予測を、稼働予測モデルを用いて生成する段階と、
     複数の水素ステーションのそれぞれにおける水素の需要予測を、需要予測モデルを用いて生成する段階と、
     前記複数の水素生成装置で生成された水素を前記複数の水素ステーションに輸送する輸送計画を、輸送計画モデルを用いて、前記複数の水素生成装置のそれぞれの稼働予測および前記複数の水素ステーションのそれぞれの需要予測を含む輸送計画因子に基づいて生成する段階と
     を備える計画方法。
    A step of generating an operation prediction of each of a plurality of hydrogen generators that generate hydrogen using an operation prediction model;
    Generating a demand forecast for hydrogen at each of the plurality of hydrogen stations using a demand forecast model;
    A transportation plan for transporting hydrogen generated by the plurality of hydrogen generators to the plurality of hydrogen stations, using a transportation plan model, an operation prediction of each of the plurality of hydrogen generators and each of the plurality of hydrogen stations. And a step of generating the transportation plan factor including a demand forecast of the vehicle.
  26.  コンピュータにより実行され、前記コンピュータを、
     水素を生成する複数の水素生成装置のそれぞれの稼働予測を、稼働予測モデルを用いて生成する稼働予測部と、
     複数の水素ステーションのそれぞれにおける水素の需要予測を、需要予測モデルを用いて生成する需要予測部と、
     前記複数の水素生成装置で生成された水素を前記複数の水素ステーションに輸送する輸送計画を、輸送計画モデルを用いて、前記複数の水素生成装置のそれぞれの稼働予測および前記複数の水素ステーションのそれぞれの需要予測を含む輸送計画因子に基づいて生成する輸送計画部と
     して機能させる計画プログラム。
    Executed by a computer,
    An operation prediction unit that generates an operation prediction of each of a plurality of hydrogen generation devices that generate hydrogen using an operation prediction model,
    A demand forecasting unit that generates a demand forecast for hydrogen at each of a plurality of hydrogen stations using a demand forecasting model,
    A transportation plan for transporting hydrogen generated by the plurality of hydrogen generators to the plurality of hydrogen stations, using a transportation plan model, an operation prediction of each of the plurality of hydrogen generators and each of the plurality of hydrogen stations. A planning program that functions as a transportation planning section that is generated based on transportation planning factors including the demand forecast of
  27.  複数の水素ステーションのそれぞれにおける水素の需要予測を、需要予測モデルを用いて生成する段階と、
     前記複数の水素ステーションのそれぞれにおける水素の需要予測を含む輸送予測因子に基づいて、輸送予測モデルを用いて、水素を生成する複数の水素生成装置および前記複数の水素ステーションの間で水素を輸送する輸送計画の予測である輸送予測を生成する段階と、
     前記複数の水素生成装置および前記複数の水素ステーションの間における水素の輸送予測を含む稼働計画因子に基づいて、稼働計画モデルを用いて、前記複数の水素生成装置のそれぞれの稼働計画を生成する段階と
     を備える計画方法。
    Generating a demand forecast for hydrogen at each of the plurality of hydrogen stations using a demand forecast model;
    A transportation prediction model is used to transport hydrogen between a plurality of hydrogen generators that generate hydrogen and the plurality of hydrogen stations based on a transportation prediction factor including a hydrogen demand prediction at each of the plurality of hydrogen stations. Generating a transportation forecast that is a forecast of the transportation plan;
    Generating an operation plan for each of the plurality of hydrogen generators using an operation plan model based on an operation plan factor that includes transportation prediction of hydrogen between the plurality of hydrogen generators and the plurality of hydrogen stations. And a planning method comprising.
  28.  コンピュータにより実行され、前記コンピュータを、
     複数の水素ステーションのそれぞれにおける水素の需要予測を、需要予測モデルを用いて生成する需要予測部と、
     前記複数の水素ステーションのそれぞれにおける水素の需要予測を含む輸送予測因子に基づいて、輸送予測モデルを用いて、水素を生成する複数の水素生成装置および前記複数の水素ステーションの間で水素を輸送する輸送計画の予測である輸送予測を生成する輸送予測部と、
     前記複数の水素生成装置および前記複数の水素ステーションの間における水素の輸送予測を含む稼働計画因子に基づいて、稼働計画モデルを用いて、前記複数の水素生成装置のそれぞれの稼働計画を生成する稼働計画部と
     して機能させる計画プログラム。
    Executed by a computer,
    A demand forecasting unit that generates a demand forecast for hydrogen at each of a plurality of hydrogen stations using a demand forecasting model,
    A transportation prediction model is used to transport hydrogen between a plurality of hydrogen generators that generate hydrogen and the plurality of hydrogen stations based on a transportation prediction factor that includes a hydrogen demand prediction at each of the plurality of hydrogen stations. A transportation forecasting unit that generates a transportation forecast that is a forecast of a transportation plan;
    An operation of generating an operation plan of each of the plurality of hydrogen generators using an operation plan model based on an operation plan factor including transportation prediction of hydrogen between the plurality of hydrogen generators and the plurality of hydrogen stations. A planning program that functions as a planning department.
PCT/JP2019/039878 2018-10-12 2019-10-09 Planning device, planning method, and planning program WO2020075771A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020551208A JP7157815B2 (en) 2018-10-12 2019-10-09 Planning equipment, planning methods and planning programs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-193439 2018-10-12
JP2018193439 2018-10-12

Publications (1)

Publication Number Publication Date
WO2020075771A1 true WO2020075771A1 (en) 2020-04-16

Family

ID=70165189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039878 WO2020075771A1 (en) 2018-10-12 2019-10-09 Planning device, planning method, and planning program

Country Status (2)

Country Link
JP (1) JP7157815B2 (en)
WO (1) WO2020075771A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113313352A (en) * 2021-04-26 2021-08-27 国家能源集团新能源有限责任公司 Safety monitoring method for hydrogen station, electronic equipment and storage medium
WO2023286500A1 (en) 2021-07-13 2023-01-19 矢崎総業株式会社 Hydrogen station, control unit for hydrogen station, and program for hydrogen station
DE102022116106A1 (en) 2021-07-13 2023-01-19 Yazaki Corporation VEHICLE, DELIVERY SYSTEM, SERVER AND COMPUTER-READABLE STORAGE MEDIUM WITH PROGRAM FOR DELIVERY SYSTEM
KR102544816B1 (en) * 2022-12-26 2023-06-16 한국전력기술 주식회사 Hydrogen production system having electrolyzers with different operational characteristics and method of operating the same
EP4344001A2 (en) 2022-09-20 2024-03-27 Kabushiki Kaisha Toshiba Hydrogen system operation planning device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11272323A (en) * 1998-03-19 1999-10-08 Toshiba Corp Plant control system
JP2006001797A (en) * 2004-06-17 2006-01-05 Toho Gas Co Ltd Operation control device of hydrogen production system
JP2015530652A (en) * 2012-08-21 2015-10-15 ゼネラル・エレクトリック・カンパニイ Plant control optimization system
JP2016103082A (en) * 2014-11-27 2016-06-02 住友電気工業株式会社 Power management device, power system, consumer device, power management method and power management program
JP2017009069A (en) * 2015-06-24 2017-01-12 Jxエネルギー株式会社 Centralized management system of hydrogen station, and hydrogen manufacturing and shipping system
WO2019059321A1 (en) * 2017-09-25 2019-03-28 旭化成株式会社 Planning device, method of creating operation planning, hydrogen manufacturing method, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11272323A (en) * 1998-03-19 1999-10-08 Toshiba Corp Plant control system
JP2006001797A (en) * 2004-06-17 2006-01-05 Toho Gas Co Ltd Operation control device of hydrogen production system
JP2015530652A (en) * 2012-08-21 2015-10-15 ゼネラル・エレクトリック・カンパニイ Plant control optimization system
JP2016103082A (en) * 2014-11-27 2016-06-02 住友電気工業株式会社 Power management device, power system, consumer device, power management method and power management program
JP2017009069A (en) * 2015-06-24 2017-01-12 Jxエネルギー株式会社 Centralized management system of hydrogen station, and hydrogen manufacturing and shipping system
WO2019059321A1 (en) * 2017-09-25 2019-03-28 旭化成株式会社 Planning device, method of creating operation planning, hydrogen manufacturing method, and program

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HATORI, SHOICHI ET AL.: "Allocation of tank lorry by constraint logic programming", OPERATIONS RESEARCH AS A MANAGEMENT SCIENCE RESEARCH, vol. 42, no. 5, 1 May 1997 (1997-05-01), pages 317 - 320 *
OGIMOTO, KAZUHIKO ET AL.: "Indirect technology related to system coordination of solar photoelectric generating system -Prediction of solar photovoltaic generation, and active response to demands", 2012 NATIONAL CONVENTION RECORD I.E.E. JAPAN, 5 March 2012 (2012-03-05), pages S5 - 16 - ss-19 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113313352A (en) * 2021-04-26 2021-08-27 国家能源集团新能源有限责任公司 Safety monitoring method for hydrogen station, electronic equipment and storage medium
WO2023286500A1 (en) 2021-07-13 2023-01-19 矢崎総業株式会社 Hydrogen station, control unit for hydrogen station, and program for hydrogen station
DE102022116106A1 (en) 2021-07-13 2023-01-19 Yazaki Corporation VEHICLE, DELIVERY SYSTEM, SERVER AND COMPUTER-READABLE STORAGE MEDIUM WITH PROGRAM FOR DELIVERY SYSTEM
EP4344001A2 (en) 2022-09-20 2024-03-27 Kabushiki Kaisha Toshiba Hydrogen system operation planning device
KR102544816B1 (en) * 2022-12-26 2023-06-16 한국전력기술 주식회사 Hydrogen production system having electrolyzers with different operational characteristics and method of operating the same

Also Published As

Publication number Publication date
JPWO2020075771A1 (en) 2021-09-02
JP7157815B2 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
WO2020203520A1 (en) Device, method, and program
WO2020179849A1 (en) Planning device, control device, method, and program
WO2020075771A1 (en) Planning device, planning method, and planning program
JP7256790B2 (en) DESIGN APPARATUS, METHOD AND PROGRAM
Wu et al. Multiple kernel learning-based transfer regression for electric load forecasting
Agrawal et al. Long term load forecasting with hourly predictions based on long-short-term-memory networks
Fan et al. Short-term load forecasting based on a semi-parametric additive model
CN111080338B (en) User data processing method and device, electronic equipment and storage medium
JPWO2019059321A1 (en) Planning equipment, operation plan generation method, hydrogen production method, and program
WO2017056368A1 (en) Optimization system, optimization method, and optimization program
CN112200489B (en) Integrated optimization system, method and device for nonferrous metal smelting production and supply marketing
van der Weide et al. Robust long-term aircraft heavy maintenance check scheduling optimization under uncertainty
Yilmaz et al. Learning optimal solutions via an LSTM-optimization framework
WO2020059741A1 (en) Planning apparatus, method, and program
CN111832785A (en) Method and system for predicting electric energy substitution potential
US11288691B2 (en) Systems and methods for price markdown optimization
Ferrando et al. Physics-Informed Machine Learning for Electricity Markets: A NYISO Case Study
Wang et al. Technology portfolio adoption considering capacity planning under demand and technology uncertainty
CN112200366B (en) Load prediction method and device, electronic equipment and readable storage medium
WO2020196889A1 (en) Planning device, method for generating operation plan, method for producing hydrogen, and program
JP2022163293A (en) Operation support device, operation support method and program
Fan et al. Short-term load forecasting using semi-parametric additive models
Bao et al. A surrogate-assisted heuristic approach for the joint optimization of resource allocation and scheduling of an aircraft final assembly line
Lee et al. Management Automation Technique for Maintaining Performance of Machine Learning-Based Power Grid Condition Prediction Model
Karabiyik et al. Investigation of Long Short-Term Memory Networks in Short-Term Electric Vehicle Charging Load Modeling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020551208

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19871654

Country of ref document: EP

Kind code of ref document: A1