WO2020075732A1 - Rf tag for embedding in tire, and rf-tagged tire - Google Patents

Rf tag for embedding in tire, and rf-tagged tire Download PDF

Info

Publication number
WO2020075732A1
WO2020075732A1 PCT/JP2019/039736 JP2019039736W WO2020075732A1 WO 2020075732 A1 WO2020075732 A1 WO 2020075732A1 JP 2019039736 W JP2019039736 W JP 2019039736W WO 2020075732 A1 WO2020075732 A1 WO 2020075732A1
Authority
WO
WIPO (PCT)
Prior art keywords
tag
tire
antenna
chip
embedded
Prior art date
Application number
PCT/JP2019/039736
Other languages
French (fr)
Japanese (ja)
Inventor
詩朗 杉村
Original Assignee
株式会社フェニックスソリューション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フェニックスソリューション filed Critical 株式会社フェニックスソリューション
Priority to JP2020551179A priority Critical patent/JPWO2020075732A1/en
Publication of WO2020075732A1 publication Critical patent/WO2020075732A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link

Definitions

  • the present invention relates to an RF tag embedded in a tire and a tire with a built-in RF tag that incorporates the RF tag.
  • the present invention relates to an RF tag whose communication performance does not deteriorate even when embedded in a vulcanized tire.
  • RFID Radio Frequency Identification
  • a reading device a reader / writer
  • the identification information stored in the RF tag is read by the reading device.
  • Patent Document 1 Japanese Patent Publication No. 2006-507967 describes a high frequency device having an antenna which is covered with an insulating coating material having a dielectric constant smaller than that of the rubber material and is embedded in the rubber material of the tire. There is.
  • the antenna of the high-frequency device described in Patent Document 1 is a dipole antenna, and the antenna is covered with an insulating coating material having a dielectric constant smaller than that of a rubber material and not more than 3 to a thickness of at least 0.02 mm.
  • an insulating coating material having a dielectric constant smaller than that of a rubber material and not more than 3 to a thickness of at least 0.02 mm.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2004-013399 discloses a tire antenna device capable of improving communication performance between a communication device provided on the tire and an external communication device, and a tire having a communication function. , By connecting the points C and D, which are arbitrary points of the belt attached over the entire circumference of the tire, by bypass wiring, and connecting the communication circuit section to this bypass wiring, a part of the belt functions as a loop antenna. It is described that the magnetic material is provided in the vicinity of the belt between the points C and D.
  • Patent Document 3 Japanese Patent Publication No. 2005-5354957 discloses an RFID chip housed inside a rubber tire, the RFID chip being mounted inside the rubber tire and being an antenna for radio communication and reception. Are capacitively coupled to a conductive belt housed inside the tire to provide a.
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-2646157
  • An RFID tag having a detection coil and an antenna coil electromagnetically coupled to the detection coil is provided in the tire, and an internal state detection unit for detecting air pressure, internal temperature, etc. is further provided inside the tire.
  • the installation structure of the RFID tag which is configured by connecting the RFID tag to the RFID tag is described.
  • Patent Document 5 Japanese Patent Laid-Open No. 10-166820
  • a transmission output of an interrogator is obtained by using a coil-shaped conductive wire used on the inner and outer circumferences of a tire as an antenna directly connected to a transponder.
  • a transponder-equipped tire is described in which the wires are the transponder's receiving and transmitting antennas.
  • Patent Document 1 discloses a high-frequency device (RF tag) that can be embedded in a tire relatively easily.
  • an RF tag having a half-wavelength dipole length of 83 mm and a reading range of 48 inches in a free space is adjusted to 47 mm when embedded in a tire to realize a reading range of 41 inches (about 1 m).
  • the impedance of the IC chip and the antenna wire do not match depending on the IC chip or the communication frequency. There is a problem that performance deteriorates.
  • the antenna described in Patent Document 1 when the antenna described in Patent Document 1 is embedded in a tire, the antenna length fluctuates due to the pressure during tire molding, and the dielectric constant fluctuates due to variations in rubber components during vulcanization, etc. There is also a problem in that the communication distance is reduced due to two fluctuation factors such that the wavelength ⁇ changes.
  • Patent Document 2 a magnetic body 83 is provided in order to bring a part (2a) of the belt 2 into an electrically close state (Patent Document 2), and the antenna pin 11 is provided.
  • a capacitive coupling to the conductive belt 74, and further, the ground pin 16 is connected to a ground plane provided between the RFID chip 10 and the surface of the tire 50 (Patent Document 3), and a loop antenna having a large diameter along the circumferential direction of the tire. 8 is embedded, and the antenna coil 2 and the detection coil 9 are further added (Patent Document 4), the use is limited to "a tire with a transponder in which the rubber of the belt strip is a non-conductive rubber", and conductive carbon powder is used.
  • an RF tag cannot be used (Patent Document 5), and the tire needs to be subjected to additional complicated processing or embedded. Kill tire there is a problem, such as limited.
  • the main object of the present invention is to be able to embed in a tire without additional complicated processing such as a belt inside the tire, to match the impedance between the IC chip of the RF tag and the antenna, and It is an object of the present invention to provide an RF tag capable of suppressing a decrease in communication distance even when embedded in a wide range of tires including vulcanized tires, and an RF tag built-in tire incorporating such an RF tag.
  • An RF tag is an RF tag of a dipole antenna type embedded in a tire, which includes an IC chip, two antenna wires respectively connected to two terminals of the IC chip, and two terminals of the IC chip.
  • the impedance of the IC chip and the antenna wire is matched at the communication frequency of the RF tag by including an inductor connected between them and a matching circuit configured by the inductor and the internal equivalent capacitance of the IC chip.
  • the impedance of the antenna wire changes depending on the dielectric constant of the rubber of the tire.
  • the impedance of the IC chip for the RF tag also varies depending on the IC chip design and the communication frequency. Therefore, it is necessary to match the impedance between the IC chip and the antenna wire at the communication frequency of the RF tag.
  • an inductor is connected between two terminals of the IC chip, a matching circuit is configured by the internal equivalent capacitance of the inductor and the IC chip, and the value of the inductor is adjusted to adjust the IC chip and the antenna wire. The impedance is matched with.
  • the inductor is a chip inductor.
  • An RF tag according to a third aspect of the present invention is the RF tag according to one aspect, in which the inductor is covered with a material having a dielectric constant smaller than that of rubber of the tire.
  • the inductor for impedance matching by covering the inductor for impedance matching with a material having a lower dielectric constant than the rubber of the tire, even when the rubber overlaps the inductor, the variation in the inductance due to the rubber is suppressed, and the impedance between the IC chip and the antenna wire is reduced. Can maintain consistency.
  • An RF tag according to a fourth aspect of the present invention is the RF tag according to the third aspect of the present invention, in which two antenna lines extend from the IC chip in mutually opposite directions, and the wavelength of the communication frequency of the RF tag is ⁇ . At this time, the lengths of the two antenna lines are both ⁇ / 4.
  • the optimum value of the length of the antenna wire is ⁇ / 4, and it is preferable to design the antenna according to this optimum value. Since the antenna of the present invention is embedded in the tire and the wavelength thereof is affected by the dielectric constant of the tire, it is necessary to consider the dielectric constant of the tire when calculating the wavelength of the communication frequency of the RF tag.
  • An RF tag according to a fifth aspect of the present invention is the RF tag according to any one aspect of the third aspect, wherein the two antenna lines extend from the IC chip in mutually opposite directions, and the wavelength of the communication frequency of the RF tag is ⁇ . At this time, the length of one of the two antenna lines is ⁇ / 4, and the length of the other antenna line is 3 ⁇ / 4.
  • the RF tag when the RF tag is embedded in a dielectric having a complicated structure such as a tire, the communication gain of a specific frequency component is low. However, since this frequency component varies depending on the type or structure of the dielectric, It is difficult to design an RF tag assuming it. Therefore, by designing the lengths of the first antenna and the second antenna of the dipole antenna to be ⁇ / 4 and 3 ⁇ / 4, respectively, the RF tag facilitates communication of harmonics (n times the frequency). That is, by facilitating the communication of the harmonic between the RF tag and the reader / writer, it becomes possible to perform the communication with a high gain in any of the components of the harmonic, so that the communication with a high gain can be performed.
  • the RF tag can be used.
  • An RF tag according to a sixth aspect of the present invention is the RF tag according to any one aspect of the fifth aspect, wherein the two antenna lines are formed by conductor mesh lines.
  • the antenna wire of the present invention Since the antenna wire of the present invention is embedded in the tire, it is pressed during tire molding and vulcanization.
  • the antenna wire is formed of a wire such as spring steel as described in the cited document 1, the length of the antenna wire changes due to the pressure applied during tire molding.
  • the present invention by forming the antenna wire with a mesh of conductors, it is possible to suppress a variation in the length of the antenna wire due to pressure applied during tire molding.
  • the antenna wire although it is possible to form the antenna wire with a straight conductor wire, when the antenna wire is formed with a straight conductor wire, there is a problem that the antenna wire is separated from the rubber of the tire.
  • the antenna wire formed of the mesh wire of the present invention when used, the rubber penetrates into the mesh wire, so that the antenna wire is not separated from the rubber of the tire.
  • An RF tag according to a seventh aspect of the present invention is the RF tag according to any one aspect of the sixth aspect, wherein the two antenna lines are formed of copper mesh wires.
  • the resistance of the antenna wire can be lowered by adopting a copper mesh wire.
  • the tire with a built-in RF tag according to the eighth aspect of the invention is a tire with a built-in RF tag in which the RF tag according to the seventh aspect is embedded.
  • the impedance of the IC chip and the antenna wire are matched, and it is possible to suppress a decrease in communication distance during tire molding and vulcanization. Therefore, the RF tag reading device can reliably read the unique information of the tire.
  • a tire with a built-in RF tag according to a ninth invention is the tire with a built-in RF tag according to the eighth invention, wherein the RF tag is embedded in a sidewall of the tire.
  • a tire with a built-in RF tag according to a tenth aspect of the invention is the tire with a built-in RF tag according to the ninth aspect of the invention, in which two antenna lines are embedded in a radial direction centering on the rotation axis of the tire.
  • the tire with a built-in RF tag according to the eleventh invention is the tire with a built-in RF tag according to the eighth to tenth inventions, wherein the tire is a vulcanized tire.
  • the elastic limit of the rubber of the tire can be increased by vulcanizing.
  • the problem of a decrease in the communication distance due to a change in the dielectric constant of rubber due to vulcanization is a problem.
  • the matching circuit is configured by the inductor and the equivalent capacitance inside the IC chip. It is possible to suppress a decrease in communication distance due to changes in characteristics such as dielectric constant.
  • FIG. 1 is an equivalent circuit diagram of the RF tag 10 of the first embodiment
  • FIG. 2 is a schematic explanatory diagram of the RF tag 10.
  • the main frequency range used by the RF tag 10 is in the range of 860 MHz to 928 MHz, and the flight distance is preferably 2 m or more.
  • the RF tag 10 includes a first antenna line 1, a second antenna line 2, an IC chip 3, and a chip inductor 4.
  • the capacitor 5 is an internal equivalent capacitance of the IC chip 3.
  • the RF tag 10 is an RF tag including a dipole antenna, and the first antenna line 1 and the second antenna line 2 are respectively connected to two terminals of the IC chip 3 and are in opposite directions from the IC chip 3.
  • the two antennas, which are dipole antennas, are extended.
  • the lengths of these two first antenna lines 1 and second antenna lines 2 are 1 ⁇ 4 ⁇ , respectively, where ⁇ is the effective wavelength at the communication frequency of the RF tag 10.
  • these two antenna wires are formed by conductor mesh wires (including braided wires).
  • copper is used as the conductor, but other arbitrary materials such as iron and brass can be used.
  • any metal wire such as copper, iron, or brass, metal material (for example, tape shape, ribbon shape, etc.) or conductive material other than metal (organic conductive material, composite material, etc.) may be used. it can.
  • the first and second antenna wires 1 and 2 may be strip-shaped metal thin plates.
  • the first antenna line 1 and the second antenna line 2 are formed by mesh lines, so that bending, twisting, deformation, etc. in the first antenna line 1 and the second antenna line 2 may be slightly. Enables the contraction of. Thereby, when the tire is deformed or vibrated, the first antenna line 1 and the second antenna line 2 are deformed and vibrated following the deformation and vibration of the tire. 1 and 2 never break.
  • the tire is embedded in the first antenna wire 1 and the second antenna wire 2 of the mesh wire, the rubber penetrates into the inside of each of the first antenna wire 1 and the second antenna wire 2, so that the RF tag 10 is integrated with the rubber of the tire, and the RF tag 10 can be prevented from peeling from the tire.
  • the effective wavelength of the communication distance of the RF tag 10 is usually shortened according to the dielectric constant of the tire.
  • the first antenna line 1 and the second antenna line 2 are contracted (adjusted) to a length corresponding to the maximum dielectric constant, and By adopting the method of stretching (adjusting) according to the dielectric constant, by using one type of RF tag 10, it is possible to flexibly cope with a tire having a relative dielectric constant of 3 to 11.
  • the IC chip 3 has a function as the RF tag 10 including transmission and reception of radio waves.
  • the radio wave transmitting / receiving terminal of the IC chip 3 usually has an output impedance in which a resistance component of about 1 k ⁇ to 2 k ⁇ and a capacitance component of about 1 pF to 2 pF are connected in parallel.
  • the fundamental impedance of the half-wavelength dipole antenna is 73.1 + j42.55 ⁇ . Therefore, when this transmission / reception terminal is connected to the dipole antenna, the impedance does not match and the communication distance of the RF tag 10 becomes short. There are challenges.
  • an inductor is connected between two terminals of the IC chip 3 to form a matching circuit with the inductor and the internal equivalent capacitance of the IC chip 3, and the value of the inductance is adjusted, whereby the radio wave of the IC chip 3 is adjusted.
  • the communication distance of the RF tag 10 is 2 m or more.
  • this inductor when this inductor is configured with a coil pattern, the inductance of the coil pattern may change due to the dielectric constant of the rubber of the tire overlying the coil pattern, and the impedance may not match, resulting in a problem that the communication distance is shortened. . Therefore, in the present embodiment, a chip inductor having a small contact area with rubber is used as the inductor to reduce the variation of the inductance when the RF tag 10 is embedded in the tire and suppress the deviation of impedance matching. There is. Further, when the chip inductor is not used as the inductor, the variation of the inductance can be reduced by a method of covering the coil pattern with a protective material having a small dielectric constant, which is preferable. The dielectric constant of the protective material is preferably 1 or more and 2 or less.
  • FIG. 3 shows an example of actually measured values of the flight distance of the RF tag 10 of the present embodiment in a state of being wrapped in a rubber sheet having a thickness of 2 mm.
  • a flight distance of 2.4 m is obtained in the Eu (Europe) band (860 MHz) and a flight distance of 2.6 m is obtained in the Japan-American band (920 MHz), and a flight distance of 2 m or more is obtained. It can be seen that It should be noted that the flight distance in the Japanese-American band is increased by 1.11 when converted to 4W airp, which corresponds to about 2.9 m.
  • FIG. 4 is a schematic cross-sectional view of the tire 100 with a built-in RF tag, which has the RF tag 10 built therein.
  • an RF tag built-in tire 100 having the RF tag 10 built therein includes a wheel rim 20, a bead wire 30, a carcass 40, a sidewall 50, a breaker cord 60, and a tread 70.
  • the RF tag 10 embeds the antenna wire in the sidewall 50 along the radial direction with the tire rotation axis as the center. This is due to the following reasons. First, the damage due to the deformation of the tire during acceleration / deceleration is small, and the peeling of the RF tag 10 from the RF tag built-in tire 100 can be prevented. When the RF tag reader is placed close to an automobile, the distance to the reader can be shortened by embedding it in the sidewall 50. Finally, there are few obstacles between the RF tag 10 and the reading device.
  • the embedding position of the RF tag 10 is not limited to the above, and the RF tag 10 can be embedded in any place of the tire 100 with a built-in RF tag, such as between the breaker cord 60 and the tread 70.
  • FIG. 5 is a schematic diagram showing another example of the RF tag 10.
  • the RF tag 10 includes a first antenna line 1, a second antenna line 2, and an IC chip 9.
  • the length of these two first antenna lines 1 is (1/4) ⁇ , where ⁇ is the effective wavelength at the communication frequency of the RF tag 10, and the length of the second antenna line 2 is RF.
  • the effective wavelength at the communication frequency of the tag 10 is ⁇ , it is (3/4) ⁇ . That is, the first antenna line 1 and the second antenna 2 of the RF tag 10 in FIG. 5 form a harmonic antenna.
  • the second antenna 2 in the RF tag 10 in FIG. 5 is an antenna capable of handling high-order frequency components that are an integral multiple of the frequency component for transmission / reception.
  • the second antenna 2 is formed of an nth harmonic compatible antenna.
  • the peak of the frequency component of 1 times the communication frequency may be smaller than the integral multiple and the frequency component of the double, and the peak of the double frequency component may be large.
  • the lengths of the first antenna 1 and the second antenna 2 are changed with respect to the effective wavelength, it is possible to communicate by capturing the peak of the frequency component that is doubled.
  • these two antenna lines are formed by conductor mesh lines.
  • copper is used as the conductor, but other arbitrary materials such as iron and brass can be used.
  • the chip inductor 4 and the internal equivalent capacitance 5 of the IC chip 3 are built in the IC chip 9.
  • the IC chip 9 has a size of several millimeters when embedded in a tire, the pressure applied to the RF tag 10 can be reduced.
  • FIGS. 6 and 7 are schematic diagrams for explaining the process when the RF tag 10 is embedded in the tire.
  • the RF tag 10 is attached to the tire material 25 before vulcanization.
  • the tire material 25 before vulcanization has holes or notches 21 formed at least at two or more places.
  • the end of the RF tag 10 is inserted into the hole or notch 21 of the tire material 25.
  • the RF material 10 before vulcanization, to which the RF tag 10 is attached is brought into contact with the tire before vulcanization and vulcanized, so that the RF tag 10 can be easily embedded in the tire.
  • the tire material 25 and the tire can be simultaneously vulcanized.
  • the tip ends of the first antenna line 1 and the second antenna line 2 of the RF tag 10 are passed through the holes or notches 21 of the tire material 25.
  • the first and second antenna wires 1 and 2 are arranged so that the front surface portion of the tire material 25 and the back surface portion of the tire material 25 are alternately arranged.
  • the antenna wires 1 and 2 can be arranged along the tire material 25.
  • the first and second antenna wires 1 and 2 are inserted into the cuts (or holes) 21 so that the first and second antenna wires 1 and 2 are alternately arranged on the front surface and the back surface of the tire material 25.
  • the first and second antenna wires 1 and 2 of the RF tag 10 are securely attached to the tire material 25.
  • the RF tag 10 corresponds to an “RF tag”
  • the first antenna line 1 and the second antenna line 2 correspond to an “antenna line”
  • the IC chip 3 corresponds to an “IC chip”
  • the chip inductor 4 corresponds to an “inductor”
  • the equivalent capacitance 5 included in the IC chip 3 corresponds to an “internal equivalent capacitance”
  • the RF tag built-in tire 100 corresponds to an “RF tag built-in tire”
  • the sidewall 50 Corresponds to the "sidewall”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Tires In General (AREA)

Abstract

[Problem] To provide: an RF tag that can ensure communication performance when embedded in wide tires, including vulcanized tires; and an RF-tagged tire that incorporates such an RF tag. [Solution] This RF tag 10: is a dipole-antenna RF tag 10 that is to be embedded in a tire; and comprises an IC chip 3, a first antenna wire 1 and a second antenna wire 2 that are respectively connected to two terminals of the IC chip 3, and a chip inductor 4 that is connected between the two terminals of the IC chip 3. The chip inductor 4 and the internal equivalent capacity 5 of the IC chip 3 form a rectification circuit. The rectification circuit rectifies the impedance between the IC chip and the antenna lines at a communication frequency for the RF tag 10. This RF-tagged tire 100 has an RF tag 10 that incorporates a rectification circuit embedded therein, which makes it possible for a reading device to reliably read information that is unique to the tire.

Description

タイヤに埋め込まれるRFタグおよびRFタグ内蔵タイヤRF tag embedded in tire and tire with built-in RF tag
 本発明は、タイヤに埋め込まれるRFタグ、およびRFタグを内蔵するRFタグ内蔵タイヤに関する。特に加硫タイヤに埋め込んでも通信性能が劣化しないRFタグに関する。 The present invention relates to an RF tag embedded in a tire and a tire with a built-in RF tag that incorporates the RF tag. In particular, the present invention relates to an RF tag whose communication performance does not deteriorate even when embedded in a vulcanized tire.
 近年、製品または部品等の在庫管理、物流管理等を行う管理システムにおいて、RFID(Radio Frequency Identification)技術が利用されている。このRFID技術を用いたシステムでは、RFタグとリーダライタ(以下、読取装置という。)との間で無線通信が行われ、RFタグに記憶される識別情報等が読取装置により読み取られる。
 自動車等の車両用のタイヤにおいても、製造管理、流通管理、メンテナンス管理等において、タイヤの仕様、製造履歴、使用履歴等について各タイヤの固有情報を把握する必要があり、RFタグを備えるタイヤが提案されている。
2. Description of the Related Art In recent years, RFID (Radio Frequency Identification) technology has been used in management systems that perform inventory management, physical distribution management, and the like of products or parts. In a system using this RFID technology, wireless communication is performed between an RF tag and a reader / writer (hereinafter referred to as a reading device), and the identification information stored in the RF tag is read by the reading device.
Also in the case of tires for vehicles such as automobiles, it is necessary to grasp the unique information of each tire regarding the tire specifications, manufacturing history, usage history, etc. in manufacturing management, distribution management, maintenance management, etc. Proposed.
 特許文献1(特表2006-507967号公報)には、ゴム材料の誘電率より誘電率が小さい絶縁被覆材で覆われ、タイヤのゴム材料中に埋め込まれたアンテナを有する高周波装置が記載されている。 Patent Document 1 (Japanese Patent Publication No. 2006-507967) describes a high frequency device having an antenna which is covered with an insulating coating material having a dielectric constant smaller than that of the rubber material and is embedded in the rubber material of the tire. There is.
 特許文献1に記載の高周波装置のアンテナは、ダイポールアンテナであって、アンテナを誘電率がゴム材料の誘電率より小さく3以下である絶縁被覆材を用いて少なくとも0.02mmの厚さで覆うことで、カーボンブラックなどの補強充填材が含まれることによって導電性を有するゴム材料とアンテナとの直接接触を避け、導電性を有するゴム材料によるエネルギー損失の課題を克服している。 The antenna of the high-frequency device described in Patent Document 1 is a dipole antenna, and the antenna is covered with an insulating coating material having a dielectric constant smaller than that of a rubber material and not more than 3 to a thickness of at least 0.02 mm. By including a reinforcing filler such as carbon black, direct contact between the conductive rubber material and the antenna is avoided, and the problem of energy loss due to the conductive rubber material is overcome.
 特許文献2(特開2004-013399号公報)には、タイヤに設けられた通信装置と外部の通信装置との通信性能を向上させることができるタイヤ用アンテナ装置および通信機能を有するタイヤであって、タイヤの全周にわたって取り付けられたベルトの任意の点である点Cおよび点Dとをバイパス配線により接続し、このバイパス配線に通信回路部を接続して、ベルトの一部をループアンテナとして機能させること、および点Cと点Dの間におけるベルトの近傍に磁性体を設けることが記載されている。 Patent Document 2 (Japanese Unexamined Patent Publication No. 2004-013399) discloses a tire antenna device capable of improving communication performance between a communication device provided on the tire and an external communication device, and a tire having a communication function. , By connecting the points C and D, which are arbitrary points of the belt attached over the entire circumference of the tire, by bypass wiring, and connecting the communication circuit section to this bypass wiring, a part of the belt functions as a loop antenna. It is described that the magnetic material is provided in the vicinity of the belt between the points C and D.
 特許文献3(特表2005-535497号公報)には、ゴム製タイヤの内部に納められたRFIDチップであって、RFIDチップは、ゴム製タイヤの内部に取り付けられると共に電波通信および受信用のアンテナを提供するようタイヤ内部に納められた導電性ベルトに容量結合されていることが記載されている。 Patent Document 3 (Japanese Patent Publication No. 2005-535497) discloses an RFID chip housed inside a rubber tire, the RFID chip being mounted inside the rubber tire and being an antenna for radio communication and reception. Are capacitively coupled to a conductive belt housed inside the tire to provide a.
 特許文献4(特開2002-264617号公報)には、ループアンテナの作用によりタイヤの全周に亘って、どの方向からでも内部のRFIDタグと通信可能で、通信距離も長くすることが出来、更にはタイヤ内部に設置した内部状態検出部の検出値を外部から容易に読み取ることが出来るタイヤへのRFIDタグの設置構造であって、タイヤの周方向に沿ってループアンテナを設け、それに直列回路を構成する検出コイルと、その検出コイルに電磁的に結合されたアンテナコイルを有するRFIDタグをタイヤ内に設け、更にタイヤ内部に空気圧や内部温度等を検出する内部状態検出部を設置し、それをRFIDタグに接続して構成したRFIDタグの設置構造が記載されている。 In Patent Document 4 (Japanese Patent Laid-Open No. 2002-264617), it is possible to communicate with the internal RFID tag from any direction over the entire circumference of the tire by the action of the loop antenna, and it is possible to increase the communication distance. Furthermore, it is a structure for installing an RFID tag on the tire that can easily read the detection value of the internal state detection unit installed inside the tire from the outside, and a loop antenna is provided along the circumferential direction of the tire, and a series circuit is provided therein. An RFID tag having a detection coil and an antenna coil electromagnetically coupled to the detection coil is provided in the tire, and an internal state detection unit for detecting air pressure, internal temperature, etc. is further provided inside the tire. The installation structure of the RFID tag which is configured by connecting the RFID tag to the RFID tag is described.
 特許文献5(特開平10-166820号公報)には、タイヤ内外周部に使用されているコイル状の導電性ワイヤをトランスポンダに直接接続されたアンテナとして使用することで、質問機の送信出力を高めることなく、トランスポンダとの通信距離を大きくすることのできるトランスポンダ付きタイヤであって、トランスポンダとタイヤ内外周部に配置されたジョイントレスベルト内のワイヤとを電気的に直接接続することによって、該ワイヤをトランスポンダの受信および送信用アンテナとするトランスポンダ付きタイヤが記載されている。 In Patent Document 5 (Japanese Patent Laid-Open No. 10-166820), a transmission output of an interrogator is obtained by using a coil-shaped conductive wire used on the inner and outer circumferences of a tire as an antenna directly connected to a transponder. A tire with a transponder capable of increasing a communication distance with a transponder without increasing the height by electrically directly connecting the transponder and a wire in a jointless belt arranged on the inner and outer circumferences of the tire, A transponder-equipped tire is described in which the wires are the transponder's receiving and transmitting antennas.
特表2006-507967号公報Japanese Patent Publication No. 2006-507967 特開2004-013399号公報JP, 2004-013399, A 特表2005-535497号公報Japanese Patent Publication No. 2005-535497 特開2002-264617号公報Japanese Patent Laid-Open No. 2002-264617 特開平10-166820号公報Japanese Unexamined Patent Publication No. 10-166820
 特許文献1には、比較的容易にタイヤに埋め込むことのできる高周波装置(RFタグ)が開示されている。そして、特許文献1では、自由空間では半波長ダイポール長83mmで読取レンジ48インチのRFタグを、タイヤに埋め込む場合47mmに調整することにより、読取レンジ41インチ(約1m)を実現している。しかし、特許文献1のRFタグでは、RFタグのICチップとアンテナのインピーダンスを整合するための素子がないため、ICチップまたは通信周波数によってはICチップとアンテナ線とのインピーダンスが整合せず、通信性能が劣化するとの課題がある。また、特許文献1に記載のアンテナをタイヤに埋め込んだ場合、タイヤ成形時の圧力によってアンテナの長さが変動する、および、加硫等におけるゴムの成分のばらつきによる誘電率の変動によって実効的な波長λが変動する、との2つのばらつき要因による通信距離の低下も課題となる。 Patent Document 1 discloses a high-frequency device (RF tag) that can be embedded in a tire relatively easily. In Patent Document 1, an RF tag having a half-wavelength dipole length of 83 mm and a reading range of 48 inches in a free space is adjusted to 47 mm when embedded in a tire to realize a reading range of 41 inches (about 1 m). However, in the RF tag of Patent Document 1, since there is no element for matching the impedance of the IC chip of the RF tag and the impedance of the antenna, the impedance of the IC chip and the antenna wire do not match depending on the IC chip or the communication frequency. There is a problem that performance deteriorates. Further, when the antenna described in Patent Document 1 is embedded in a tire, the antenna length fluctuates due to the pressure during tire molding, and the dielectric constant fluctuates due to variations in rubber components during vulcanization, etc. There is also a problem in that the communication distance is reduced due to two fluctuation factors such that the wavelength λ changes.
 一方、特許文献2から5に記載の発明では、それぞれ、ベルト2の一部(2a)を電気的に遮断に近い状態とするために磁性体83を設ける(特許文献2)、アンテナピン11を導電性ベルト74に容量結合し、さらにアースピン16をRFIDチップ10とタイヤ50の表面との間に設けられる接地面に接続する(特許文献3)、タイヤの周方向に沿って大口径のループアンテナ8を埋設し、さらにアンテナコイル2と検出コイル9を追加する(特許文献4)、用途が「ベルトストリップのゴムを非導電性ゴムとしたトランスポンダ付きタイヤ」に限定され、導電性の炭素粉末を使用したタイヤに対しては、RFタグを用いることができない(特許文献5)など、タイヤに追加の複雑な加工をする必要がある、あるいは、埋め込むことのできるタイヤが限定されるなどの課題があった。 On the other hand, in the inventions described in Patent Documents 2 to 5, a magnetic body 83 is provided in order to bring a part (2a) of the belt 2 into an electrically close state (Patent Document 2), and the antenna pin 11 is provided. A capacitive coupling to the conductive belt 74, and further, the ground pin 16 is connected to a ground plane provided between the RFID chip 10 and the surface of the tire 50 (Patent Document 3), and a loop antenna having a large diameter along the circumferential direction of the tire. 8 is embedded, and the antenna coil 2 and the detection coil 9 are further added (Patent Document 4), the use is limited to "a tire with a transponder in which the rubber of the belt strip is a non-conductive rubber", and conductive carbon powder is used. For the used tire, an RF tag cannot be used (Patent Document 5), and the tire needs to be subjected to additional complicated processing or embedded. Kill tire there is a problem, such as limited.
 本発明の主な目的は、タイヤの内部のベルト等に追加の複雑な加工をすることなくタイヤに埋め込むことができ、RFタグのICチップとアンテナとのインピーダンスを整合することができ、かつ、加硫タイヤを含めた幅広いタイヤに埋め込んだ時にも通信距離の低下を抑制できるRFタグ、およびそのようなRFタグを内蔵したRFタグ内蔵タイヤを提供することである。 The main object of the present invention is to be able to embed in a tire without additional complicated processing such as a belt inside the tire, to match the impedance between the IC chip of the RF tag and the antenna, and It is an object of the present invention to provide an RF tag capable of suppressing a decrease in communication distance even when embedded in a wide range of tires including vulcanized tires, and an RF tag built-in tire incorporating such an RF tag.
 (1)
 一局面に従うRFタグは、ダイポールアンテナ形式の、タイヤに埋め込まれるRFタグであって、ICチップと、ICチップの2つの端子にそれぞれ接続される2本のアンテナ線と、ICチップの2つの端子間に接続されるインダクタと、インダクタとICチップの内部等価容量とにより構成された整合回路と、を含み、ICチップとアンテナ線とのインピーダンスをRFタグの通信周波数において整合している。
(1)
An RF tag according to one aspect is an RF tag of a dipole antenna type embedded in a tire, which includes an IC chip, two antenna wires respectively connected to two terminals of the IC chip, and two terminals of the IC chip. The impedance of the IC chip and the antenna wire is matched at the communication frequency of the RF tag by including an inductor connected between them and a matching circuit configured by the inductor and the internal equivalent capacitance of the IC chip.
 ダイポールアンテナをタイヤのゴムの中に埋め込んだ場合、アンテナ線のインピーダンスはタイヤのゴムの誘電率によって変動する。一方、RFタグ用のICチップのインピーダンスもICチップの設計により、また通信周波数により変動する。このため、RFタグの通信周波数においてICチップとアンテナ線とのインピーダンスを整合する必要がある。一局面に従うRFタグでは、ICチップの2つの端子間にインダクタを接続して、インダクタとICチップの内部等価容量により整合回路を構成し、インダクタの値を調整することで、ICチップとアンテナ線とのインピーダンスを整合している。 When the dipole antenna is embedded in the rubber of the tire, the impedance of the antenna wire changes depending on the dielectric constant of the rubber of the tire. On the other hand, the impedance of the IC chip for the RF tag also varies depending on the IC chip design and the communication frequency. Therefore, it is necessary to match the impedance between the IC chip and the antenna wire at the communication frequency of the RF tag. In the RF tag according to one aspect, an inductor is connected between two terminals of the IC chip, a matching circuit is configured by the internal equivalent capacitance of the inductor and the IC chip, and the value of the inductor is adjusted to adjust the IC chip and the antenna wire. The impedance is matched with.
 (2)
 第2の発明にかかるRFタグは、一局面に従うRFタグにおいて、インダクタがチップインダクタである。
(2)
In the RF tag according to the second invention, in the RF tag according to one aspect, the inductor is a chip inductor.
 この場合、タイヤのゴムとの接触面積の小さいチップインダクタを採用することによって、インダクタにゴムが重なったときにも、ゴムの誘電率によるインダクタンスの変動を抑え、ICチップとアンテナ線とのインピーダンス整合を保つことができる。 In this case, by adopting a chip inductor having a small contact area with the rubber of the tire, even when the rubber overlaps the inductor, the variation of the inductance due to the dielectric constant of the rubber is suppressed, and the impedance matching between the IC chip and the antenna wire is suppressed. Can be kept.
 (3)
 第3の発明にかかるRFタグは、一局面に従うRFタグにおいて、インダクタがタイヤのゴムより誘電率の小さい材料で被覆されている。
(3)
An RF tag according to a third aspect of the present invention is the RF tag according to one aspect, in which the inductor is covered with a material having a dielectric constant smaller than that of rubber of the tire.
 この場合、インピーダンス整合用のインダクタをタイヤのゴムより誘電率の低い材料で被覆することによって、インダクタにゴムが重なったときにも、ゴムによるインダクタンスの変動を抑え、ICチップとアンテナ線とのインピーダンス整合を保つことができる。 In this case, by covering the inductor for impedance matching with a material having a lower dielectric constant than the rubber of the tire, even when the rubber overlaps the inductor, the variation in the inductance due to the rubber is suppressed, and the impedance between the IC chip and the antenna wire is reduced. Can maintain consistency.
 (4)
 第4の発明にかかるRFタグは、一局面から第3の発明にかかるRFタグにおいて、2本のアンテナ線がICチップから互いに逆方向に伸長し、RFタグの通信周波数の波長をλとしたとき、2本のアンテナ線の長さはともにλ/4である。
(4)
An RF tag according to a fourth aspect of the present invention is the RF tag according to the third aspect of the present invention, in which two antenna lines extend from the IC chip in mutually opposite directions, and the wavelength of the communication frequency of the RF tag is λ. At this time, the lengths of the two antenna lines are both λ / 4.
 ダイポールアンテナにおいては、RFタグの通信周波数の波長をλとしたとき、アンテナ線の長さの最適値はλ/4であり、この最適値に合わせてアンテナを設計することが好ましい。
 なお、本発明のアンテナはタイヤに埋め込まれており、波長がタイヤの誘電率の影響を受けることから、RFタグの通信周波数の波長の計算においてもタイヤの誘電率を考慮する必要がある。
In the dipole antenna, when the wavelength of the communication frequency of the RF tag is λ, the optimum value of the length of the antenna wire is λ / 4, and it is preferable to design the antenna according to this optimum value.
Since the antenna of the present invention is embedded in the tire and the wavelength thereof is affected by the dielectric constant of the tire, it is necessary to consider the dielectric constant of the tire when calculating the wavelength of the communication frequency of the RF tag.
(5)
 第5の発明にかかるRFタグは、一局面から第3の発明にかかるRFタグにおいて、2本のアンテナ線はICチップから互いに逆方向に伸長し、RFタグの通信周波数の波長をλとしたとき、2本のうち一のアンテナ線の長さは、λ/4であり、他のアンテナ線の長さは、3λ/4である。
(5)
An RF tag according to a fifth aspect of the present invention is the RF tag according to any one aspect of the third aspect, wherein the two antenna lines extend from the IC chip in mutually opposite directions, and the wavelength of the communication frequency of the RF tag is λ. At this time, the length of one of the two antenna lines is λ / 4, and the length of the other antenna line is 3λ / 4.
 この場合、タイヤなど構造が複雑な誘電体にRFタグが埋め込まれた場合、特定の周波数成分の通信利得が低くなるが、この周波数成分は誘電体の種類、または構造によって多様であるため、予め想定してRFタグを設計することは困難である。そこで、ダイポールアンテナの第1アンテナおよび第2アンテナの長さをそれぞれλ/4および3λ/4と設計することによって、RFタグは高調波(n倍の周波数)の通信が行いやすくなる。すなわち、RFタグとリーダライタとの間で高調波の通信を行いやすくすることによって、高調波のうちのいずれかの成分で利得の高い通信を行うことができるようになるため、利得の高い通信が可能なRFタグとすることができる。 In this case, when the RF tag is embedded in a dielectric having a complicated structure such as a tire, the communication gain of a specific frequency component is low. However, since this frequency component varies depending on the type or structure of the dielectric, It is difficult to design an RF tag assuming it. Therefore, by designing the lengths of the first antenna and the second antenna of the dipole antenna to be λ / 4 and 3λ / 4, respectively, the RF tag facilitates communication of harmonics (n times the frequency). That is, by facilitating the communication of the harmonic between the RF tag and the reader / writer, it becomes possible to perform the communication with a high gain in any of the components of the harmonic, so that the communication with a high gain can be performed. The RF tag can be used.
 (6)
 第6の発明にかかるRFタグは、一局面から第5の発明にかかるRFタグにおいて、2本のアンテナ線が導体の網線で形成されている。
(6)
An RF tag according to a sixth aspect of the present invention is the RF tag according to any one aspect of the fifth aspect, wherein the two antenna lines are formed by conductor mesh lines.
 本発明のアンテナ線は、タイヤに埋め込まれるため、タイヤの成形時、および加硫時加圧される。引用文献1に記載のように、アンテナ線をバネ鋼等のワイヤで形成した場合、タイヤ成形時等の加圧により、アンテナ線の長さが変動する。これに対して、本発明ではアンテナ線を導体の網線で形成することにより、タイヤ成形時等の加圧によるアンテナ線の長さの変動を抑えることができる。
 一方、アンテナ線をまっすぐな導体のワイヤで形成することも可能であるが、アンテナ線をまっすぐな導体のワイヤで形成した場合、アンテナ線がタイヤのゴムから剥離するとの課題がある。これに対して、本発明の網線で形成されたアンテナ線を用いた場合、ゴムが網線の中まで浸透するため、アンテナ線がタイヤのゴムから剥離することがない。
Since the antenna wire of the present invention is embedded in the tire, it is pressed during tire molding and vulcanization. When the antenna wire is formed of a wire such as spring steel as described in the cited document 1, the length of the antenna wire changes due to the pressure applied during tire molding. On the other hand, according to the present invention, by forming the antenna wire with a mesh of conductors, it is possible to suppress a variation in the length of the antenna wire due to pressure applied during tire molding.
On the other hand, although it is possible to form the antenna wire with a straight conductor wire, when the antenna wire is formed with a straight conductor wire, there is a problem that the antenna wire is separated from the rubber of the tire. On the other hand, when the antenna wire formed of the mesh wire of the present invention is used, the rubber penetrates into the mesh wire, so that the antenna wire is not separated from the rubber of the tire.
 (7)
 第7の発明にかかるRFタグは、一局面から第6の発明にかかるRFタグにおいて、2本のアンテナ線が銅の網線で形成されている。
(7)
An RF tag according to a seventh aspect of the present invention is the RF tag according to any one aspect of the sixth aspect, wherein the two antenna lines are formed of copper mesh wires.
 この場合、銅の網線を採用することによってアンテナ線の抵抗を低くすることができる。 In this case, the resistance of the antenna wire can be lowered by adopting a copper mesh wire.
 (8)
 第8の発明にかかるRFタグ内蔵タイヤは、一局面から第7の発明にかかるRFタグを埋め込んだRFタグ内蔵タイヤである。
(8)
The tire with a built-in RF tag according to the eighth aspect of the invention is a tire with a built-in RF tag in which the RF tag according to the seventh aspect is embedded.
 一局面から第7の発明にかかるRFタグを組み込んだRFタグ内蔵タイヤでは、ICチップとアンテナ線とのインピーダンスが整合しており、タイヤ成形時および加硫時の通信距離の低下を抑えることができるため、RFタグ読取装置によって、確実にタイヤの固有情報を読み取ることができる。 In the tire with an RF tag incorporating the RF tag according to the seventh aspect of the invention, the impedance of the IC chip and the antenna wire are matched, and it is possible to suppress a decrease in communication distance during tire molding and vulcanization. Therefore, the RF tag reading device can reliably read the unique information of the tire.
 (9)
 第9の発明にかかるRFタグ内蔵タイヤは、第8の発明にかかるRFタグ内蔵タイヤにおいて、RFタグがタイヤのサイドウォールに埋め込まれている。
(9)
A tire with a built-in RF tag according to a ninth invention is the tire with a built-in RF tag according to the eighth invention, wherein the RF tag is embedded in a sidewall of the tire.
 この場合、RFタグのタイヤへの埋め込みが容易であるとともに、タイヤの側面に読取装置を配置したときの通信距離を増加させることができる。 In this case, it is easy to embed the RF tag in the tire, and it is possible to increase the communication distance when the reading device is arranged on the side surface of the tire.
 (10)
 第10の発明にかかるRFタグ内蔵タイヤは、第9の発明にかかるRFタグ内蔵タイヤにおいて、2つのアンテナ線をタイヤの回転軸を中心として放射状方向に沿って埋め込んでいる。
(10)
A tire with a built-in RF tag according to a tenth aspect of the invention is the tire with a built-in RF tag according to the ninth aspect of the invention, in which two antenna lines are embedded in a radial direction centering on the rotation axis of the tire.
 この場合、車の加減速時のタイヤの変形によるRFタグの損傷を少なくし、RFタグのタイヤからの剥離を防止することができる。 In this case, damage to the RF tag due to deformation of the tire during acceleration / deceleration of the vehicle can be reduced, and peeling of the RF tag from the tire can be prevented.
 (11)
 第11の発明にかかるRFタグ内蔵タイヤは、第8から第10の発明にかかるRFタグ内蔵タイヤにおいて、タイヤが加硫タイヤである。
(11)
The tire with a built-in RF tag according to the eleventh invention is the tire with a built-in RF tag according to the eighth to tenth inventions, wherein the tire is a vulcanized tire.
 この場合、加硫することによってタイヤのゴムの弾性限界を大きくすることができる。ただし、一般には、加硫によるゴムの誘電率の変動に伴う通信距離の低下が課題となるが、本発明では、インダクタとICチップ内部の等価容量とで整合回路を構成することで、ゴムの誘電率等の特性の変動に伴う通信距離の低下を抑制することができる。 In this case, the elastic limit of the rubber of the tire can be increased by vulcanizing. However, in general, the problem of a decrease in the communication distance due to a change in the dielectric constant of rubber due to vulcanization is a problem. However, in the present invention, the matching circuit is configured by the inductor and the equivalent capacitance inside the IC chip. It is possible to suppress a decrease in communication distance due to changes in characteristics such as dielectric constant.
実施形態のRFタグの等価回路図である。It is an equivalent circuit schematic of the RF tag of embodiment. 実施形態のRFタグの模式的説明図である。It is a schematic explanatory view of the RF tag of the embodiment. 実施形態のRFタグの飛距離の実測値である。It is the measured value of the flight distance of the RF tag of the embodiment. 実施形態のRFタグ内蔵タイヤの模式的断面図である。It is a typical sectional view of a tire with a built-in RF tag of an embodiment. RFタグの他の例を示す模式図である。It is a schematic diagram which shows the other example of RF tag. RFタグをタイヤに埋め込む場合の処理を説明するための模式図である。It is a schematic diagram for demonstrating the process at the time of embedding an RF tag in a tire. RFタグをタイヤに埋め込む場合の処理を説明するための模式図である。It is a schematic diagram for demonstrating the process at the time of embedding an RF tag in a tire.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付す。また、同符号の場合には、それらの名称および機能も同一である。したがって、それらについての詳細な説明は繰り返さないものとする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are designated by the same reference numerals. Further, in the case of the same symbols, their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 (第1の実施形態)
 第1の実施形態に係るRFタグ10について図面を用いて説明する。
 図1は、第1の実施形態のRFタグ10の等価回路図であり、図2は、RFタグ10の模式的説明図である。本実施形態では、RFタグ10の使用周波数の主な範囲は、860MHzから928MHzまでの範囲であり、飛距離は2m以上であることが好ましい。
(First embodiment)
The RF tag 10 according to the first embodiment will be described with reference to the drawings.
FIG. 1 is an equivalent circuit diagram of the RF tag 10 of the first embodiment, and FIG. 2 is a schematic explanatory diagram of the RF tag 10. In the present embodiment, the main frequency range used by the RF tag 10 is in the range of 860 MHz to 928 MHz, and the flight distance is preferably 2 m or more.
 まず、図1および図2に示すように、RFタグ10は、第1のアンテナ線1、第2のアンテナ線2、ICチップ3、およびチップインダクタ4を備えている。
 コンデンサ5は、ICチップ3の内部等価容量である。RFタグ10は、ダイポールアンテナを備えたRFタグであって、第1のアンテナ線1および第2のアンテナ線2は、ICチップ3の2つの端子にそれぞれ接続され、ICチップ3から互いに逆方向に伸長してダイポールアンテナの2つのアンテナを構成している。
 これら2つの第1のアンテナ線1および第2のアンテナ線2の長さはそれぞれ、RFタグ10の通信周波数における実効波長をλとした場合、1/4λである。
 また、これらの2つのアンテナ線(第1のアンテナ線1および第2のアンテナ線2)は、導体の網線(編線を含めるものとする。)により形成されている。本実施形態では、導体として銅を用いているが、その他、鉄、真鍮など、任意の素材を用いることができる。例えば、アンテナ線として、銅、鉄、真鍮など任意の金属線、金属素材(例えば、テープ状、リボン状など)または金属以外の導電性素材(有機導電性素材、複合素材など)を用いることもできる。例えば、第1および第2のアンテナ線1,2は帯状の金属薄板であってもよい。
First, as shown in FIGS. 1 and 2, the RF tag 10 includes a first antenna line 1, a second antenna line 2, an IC chip 3, and a chip inductor 4.
The capacitor 5 is an internal equivalent capacitance of the IC chip 3. The RF tag 10 is an RF tag including a dipole antenna, and the first antenna line 1 and the second antenna line 2 are respectively connected to two terminals of the IC chip 3 and are in opposite directions from the IC chip 3. The two antennas, which are dipole antennas, are extended.
The lengths of these two first antenna lines 1 and second antenna lines 2 are ¼λ, respectively, where λ is the effective wavelength at the communication frequency of the RF tag 10.
Further, these two antenna wires (the first antenna wire 1 and the second antenna wire 2) are formed by conductor mesh wires (including braided wires). In the present embodiment, copper is used as the conductor, but other arbitrary materials such as iron and brass can be used. For example, as the antenna wire, any metal wire such as copper, iron, or brass, metal material (for example, tape shape, ribbon shape, etc.) or conductive material other than metal (organic conductive material, composite material, etc.) may be used. it can. For example, the first and second antenna wires 1 and 2 may be strip-shaped metal thin plates.
 本実施形態では、第1のアンテナ線1および第2のアンテナ線2を網線により形成することで、第1のアンテナ線1および第2のアンテナ線2における、曲げ、ひねり、変形等、若干の収縮を可能にしている。それによって、タイヤが変形あるいは振動した場合に、第1のアンテナ線1および第2のアンテナ線2がタイヤの変形、振動に追従して変形、振動することで、第1および第2のアンテナ線1,2は破断することはない。
 網線の第1のアンテナ線1および第2のアンテナ線2は、タイヤに埋め込んだ場合、ゴムが第1のアンテナ線1および第2のアンテナ線2の個々の内部まで浸透するため、RFタグ10が、タイヤのゴムと一体化し、RFタグ10が、タイヤから剥離することを防止できる。
 また、通常、RFタグ10をタイヤに埋め込んだ場合、タイヤの誘電率に応じてRFタグ10の通信距離の実効波長が短くなる。しかしながら、本実施の形態におけるRFタグ10は、例えば、第1のアンテナ線1および第2のアンテナ線2を最大誘電率に対応した長さに収縮(調整)しておいて、それぞれのタイヤの誘電率に合わせて伸長(調整)するという方法を採用することにより、1種類のRFタグ10を用いることで、比誘電率が3から11までの範囲のタイヤに柔軟に対応することができる。
In the present embodiment, the first antenna line 1 and the second antenna line 2 are formed by mesh lines, so that bending, twisting, deformation, etc. in the first antenna line 1 and the second antenna line 2 may be slightly. Enables the contraction of. Thereby, when the tire is deformed or vibrated, the first antenna line 1 and the second antenna line 2 are deformed and vibrated following the deformation and vibration of the tire. 1 and 2 never break.
When the tire is embedded in the first antenna wire 1 and the second antenna wire 2 of the mesh wire, the rubber penetrates into the inside of each of the first antenna wire 1 and the second antenna wire 2, so that the RF tag 10 is integrated with the rubber of the tire, and the RF tag 10 can be prevented from peeling from the tire.
Further, when the RF tag 10 is embedded in a tire, the effective wavelength of the communication distance of the RF tag 10 is usually shortened according to the dielectric constant of the tire. However, in the RF tag 10 in the present embodiment, for example, the first antenna line 1 and the second antenna line 2 are contracted (adjusted) to a length corresponding to the maximum dielectric constant, and By adopting the method of stretching (adjusting) according to the dielectric constant, by using one type of RF tag 10, it is possible to flexibly cope with a tire having a relative dielectric constant of 3 to 11.
 ICチップ3は、電波の送受信を含むRFタグ10としての機能を備えている。ICチップ3の電波の送受信端子は、通常、1kΩから2kΩ程度の抵抗成分と、1pFから2pF程度の容量成分とが、並列接続された形の出力インピーダンスを備えている。
 一方、半波長型ダイポールアンテナは基本の給電部インピーダンスが73.1+j42.55Ωであるので、この送受信端子をダイポールアンテナに接続した場合、インピーダンスが整合せず、RFタグ10の通信距離が短くなるとの課題がある。
 本実施形態では、ICチップ3の2つの端子間にインダクタを接続してインダクタとICチップ3の内部等価容量とで整合回路を構成し、インダクタンスの値を調整することで、ICチップ3の電波の送受信端子とダイポールアンテナとのインピーダンスを整合させ、RFタグ10の通信距離2m以上を実現している。
The IC chip 3 has a function as the RF tag 10 including transmission and reception of radio waves. The radio wave transmitting / receiving terminal of the IC chip 3 usually has an output impedance in which a resistance component of about 1 kΩ to 2 kΩ and a capacitance component of about 1 pF to 2 pF are connected in parallel.
On the other hand, the fundamental impedance of the half-wavelength dipole antenna is 73.1 + j42.55Ω. Therefore, when this transmission / reception terminal is connected to the dipole antenna, the impedance does not match and the communication distance of the RF tag 10 becomes short. There are challenges.
In the present embodiment, an inductor is connected between two terminals of the IC chip 3 to form a matching circuit with the inductor and the internal equivalent capacitance of the IC chip 3, and the value of the inductance is adjusted, whereby the radio wave of the IC chip 3 is adjusted. By matching the impedance between the transmission / reception terminal and the dipole antenna, the communication distance of the RF tag 10 is 2 m or more.
 また、このインダクタをコイルパターンで構成した場合、コイルパターンの上に重なったタイヤのゴムの誘電率によってコイルパターンのインダクタンスが変化してインピーダンスが整合しなくなり、通信距離が短くなるという問題が生じ得る。
 このため、本実施形態では、インダクタとして、ゴムとの接触面積が小さいチップインダクタを採用することによって、RFタグ10をタイヤに埋め込んだ時のインダクタンスの変動を小さくし、インピーダンス整合のずれを抑えている。
 また、インダクタとしてチップインダクタを採用しない場合は、コイルパターンを誘電率の小さい保護材で被覆する等の手法により、インダクタンスの変動を小さくすることができるので好ましい。保護材の誘電率としては、比誘電率が1以上2以下であることが望ましい。
In addition, when this inductor is configured with a coil pattern, the inductance of the coil pattern may change due to the dielectric constant of the rubber of the tire overlying the coil pattern, and the impedance may not match, resulting in a problem that the communication distance is shortened. .
Therefore, in the present embodiment, a chip inductor having a small contact area with rubber is used as the inductor to reduce the variation of the inductance when the RF tag 10 is embedded in the tire and suppress the deviation of impedance matching. There is.
Further, when the chip inductor is not used as the inductor, the variation of the inductance can be reduced by a method of covering the coil pattern with a protective material having a small dielectric constant, which is preferable. The dielectric constant of the protective material is preferably 1 or more and 2 or less.
 次に、図3に、厚み2mmのゴムシートに包んだ状態での本実施形態のRFタグ10の飛距離の実測値の一例を示す。
 図3に示すように、2W eirpヨーロッパ単位においてEu(欧州)バンド(860MHz)で飛距離2.4m、日本米国バンド(920MHz)で飛距離2.6mが得られており、2m以上の飛距離を達成していることがわかる。なお、日本米国バンドでの飛距離は、4W eirpに変換すると1.11倍されるので、約2.9mに相当する。
Next, FIG. 3 shows an example of actually measured values of the flight distance of the RF tag 10 of the present embodiment in a state of being wrapped in a rubber sheet having a thickness of 2 mm.
As shown in FIG. 3, in a 2W air unit in Europe, a flight distance of 2.4 m is obtained in the Eu (Europe) band (860 MHz) and a flight distance of 2.6 m is obtained in the Japan-American band (920 MHz), and a flight distance of 2 m or more is obtained. It can be seen that It should be noted that the flight distance in the Japanese-American band is increased by 1.11 when converted to 4W airp, which corresponds to about 2.9 m.
 (第2の実施形態)
 次に、第2の実施形態に係るRFタグ内蔵タイヤについて図4を用いて説明する。
 図4は、RFタグ10を内蔵したRFタグ内蔵タイヤ100の模式的断面図である。
(Second embodiment)
Next, the tire with a built-in RF tag according to the second embodiment will be described with reference to FIG.
FIG. 4 is a schematic cross-sectional view of the tire 100 with a built-in RF tag, which has the RF tag 10 built therein.
 図4において、RFタグ10を内蔵したRFタグ内蔵タイヤ100は、ホイールリム20、ビードワイヤ30、カーカス40、サイドウォール50、ブレーカーコード60、およびトレッド70を含む。 In FIG. 4, an RF tag built-in tire 100 having the RF tag 10 built therein includes a wheel rim 20, a bead wire 30, a carcass 40, a sidewall 50, a breaker cord 60, and a tread 70.
 本実施形態においては、RFタグ10はサイドウォール50にアンテナ線をタイヤの回転軸を中心として放射状方向に沿って埋め込んでいる。
 これは、以下の理由によるものである。
 まず、加減速時のタイヤの変形による損傷が少なくRFタグ10のRFタグ内蔵タイヤ100からの剥離を防止できること。
 RFタグ読取装置を自動車に近づけた場合サイドウォール50に埋め込むことで読取装置との間の距離を短くできること。
 最後に、RFタグ10と読取装置との間に障害となるものが少ないこと等である。
 なお、RFタグ10の埋め込み位置は上記に限定されず、ブレーカーコード60とトレッド70との間など、RFタグ内蔵タイヤ100の任意の場所にRFタグ10を埋め込むことができる。
In this embodiment, the RF tag 10 embeds the antenna wire in the sidewall 50 along the radial direction with the tire rotation axis as the center.
This is due to the following reasons.
First, the damage due to the deformation of the tire during acceleration / deceleration is small, and the peeling of the RF tag 10 from the RF tag built-in tire 100 can be prevented.
When the RF tag reader is placed close to an automobile, the distance to the reader can be shortened by embedding it in the sidewall 50.
Finally, there are few obstacles between the RF tag 10 and the reading device.
The embedding position of the RF tag 10 is not limited to the above, and the RF tag 10 can be embedded in any place of the tire 100 with a built-in RF tag, such as between the breaker cord 60 and the tread 70.
 (第3の実施形態)
 次に、第3の実施の形態にかかるRFタグ10について説明を行う。図5は、RFタグ10の他の例を示す模式図である。
(Third Embodiment)
Next, the RF tag 10 according to the third embodiment will be described. FIG. 5 is a schematic diagram showing another example of the RF tag 10.
 図5に示すように、RFタグ10は、第1のアンテナ線1、第2のアンテナ線2、ICチップ9を含む。
 これら2つの第1のアンテナ線1の長さは、RFタグ10の通信周波数における実効波長をλとした場合、(1/4)λであり、第2のアンテナ線2の長さは、RFタグ10の通信周波数における実効波長をλとした場合、(3/4)λである。
 すなわち、図5におけるRFタグ10の第1のアンテナ線1および第2のアンテナ2は、高調波アンテナを形成している。
As shown in FIG. 5, the RF tag 10 includes a first antenna line 1, a second antenna line 2, and an IC chip 9.
The length of these two first antenna lines 1 is (1/4) λ, where λ is the effective wavelength at the communication frequency of the RF tag 10, and the length of the second antenna line 2 is RF. When the effective wavelength at the communication frequency of the tag 10 is λ, it is (3/4) λ.
That is, the first antenna line 1 and the second antenna 2 of the RF tag 10 in FIG. 5 form a harmonic antenna.
 すなわち、図5のRFタグ10における第2のアンテナ2は、送受信を行う周波数成分に対して、n整数倍の高次の周波数成分に対応可能なアンテナである。具体的には、第2のアンテナ2は、第n高調波対応アンテナで形成される。 That is, the second antenna 2 in the RF tag 10 in FIG. 5 is an antenna capable of handling high-order frequency components that are an integral multiple of the frequency component for transmission / reception. Specifically, the second antenna 2 is formed of an nth harmonic compatible antenna.
 例えば、送受信を行う場合において、通信周波数の1倍の周波数成分のピークが、整数倍、2倍の周波数成分よりも小さくなり、2倍の周波数成分のピークが大きくなる場合がある。この場合においても、これらの第1アンテナ1および第2アンテナ2は、実効波長に対する長さを変化させているため、2倍の周波数成分のピークを捉えることで、通信することが可能となるものである。
 また、これらの2つのアンテナ線(第1のアンテナ線1および第2のアンテナ線2)は、導体の網線により形成されている。本実施形態では、導体として銅を用いているが、その他、鉄、真鍮など、任意の素材を用いることができる。
For example, when transmitting and receiving, the peak of the frequency component of 1 times the communication frequency may be smaller than the integral multiple and the frequency component of the double, and the peak of the double frequency component may be large. Even in this case, since the lengths of the first antenna 1 and the second antenna 2 are changed with respect to the effective wavelength, it is possible to communicate by capturing the peak of the frequency component that is doubled. Is.
Further, these two antenna lines (the first antenna line 1 and the second antenna line 2) are formed by conductor mesh lines. In the present embodiment, copper is used as the conductor, but other arbitrary materials such as iron and brass can be used.
 また、図5においては、チップインダクタ4とICチップ3の内部等価容量5とがICチップ9内に内蔵されている。その結果、タイヤに埋め込まれた場合にICチップ9の大きさが数ミリメートルの大きさであるため、RFタグ10に加わる圧力を低減することができる。 Further, in FIG. 5, the chip inductor 4 and the internal equivalent capacitance 5 of the IC chip 3 are built in the IC chip 9. As a result, since the IC chip 9 has a size of several millimeters when embedded in a tire, the pressure applied to the RF tag 10 can be reduced.
 次に、図6および図7は、RFタグ10をタイヤに埋め込む場合の処理を説明するための模式図である。 Next, FIGS. 6 and 7 are schematic diagrams for explaining the process when the RF tag 10 is embedded in the tire.
 図6および図7に示すように、加硫前のタイヤ素材25にRFタグ10を取り付ける。この場合、加硫前のタイヤ素材25は、少なくとも2か所以上に孔または切込み21が形成されている。
 本実施の形態においては、タイヤ素材25の孔または切込み21に、RFタグ10の端部を差し込む。その結果、RFタグ10を取り付けた加硫前のタイヤ素材25を、加硫前のタイヤに接触させて加硫させることで、タイヤにRFタグ10を容易に埋め込むことができる。タイヤ素材25およびタイヤは同時に加硫させることができる。
 本実施の形態においては、タイヤ素材25の孔または切込み21に、RFタグ10の第1のアンテナ線1および第2のアンテナ線2の先端部を通す。第1および第2のアンテナ線1、2をタイヤ素材25の表面側に配置された表面部とタイヤ素材25の裏面側に配置された裏面部とが交互になるように、第1および第2のアンテナ線1、2をタイヤ素材25に沿って配置することができる。タイヤ素材25の表面および裏面に、第1および第2のアンテナ線1、2が交互に配置されるように、第1および第2のアンテナ線1、2を切込み(または孔)21に挿通することで、RFタグ10の第1および第2のアンテナ線1、2がタイヤ素材25に確実に取り付けられる。
As shown in FIGS. 6 and 7, the RF tag 10 is attached to the tire material 25 before vulcanization. In this case, the tire material 25 before vulcanization has holes or notches 21 formed at least at two or more places.
In the present embodiment, the end of the RF tag 10 is inserted into the hole or notch 21 of the tire material 25. As a result, the RF material 10 before vulcanization, to which the RF tag 10 is attached, is brought into contact with the tire before vulcanization and vulcanized, so that the RF tag 10 can be easily embedded in the tire. The tire material 25 and the tire can be simultaneously vulcanized.
In the present embodiment, the tip ends of the first antenna line 1 and the second antenna line 2 of the RF tag 10 are passed through the holes or notches 21 of the tire material 25. The first and second antenna wires 1 and 2 are arranged so that the front surface portion of the tire material 25 and the back surface portion of the tire material 25 are alternately arranged. The antenna wires 1 and 2 can be arranged along the tire material 25. The first and second antenna wires 1 and 2 are inserted into the cuts (or holes) 21 so that the first and second antenna wires 1 and 2 are alternately arranged on the front surface and the back surface of the tire material 25. As a result, the first and second antenna wires 1 and 2 of the RF tag 10 are securely attached to the tire material 25.
 本発明において、RFタグ10が『RFタグ』に相当し、第1のアンテナ線1および第2のアンテナ線2が『アンテナ線』に相当し、ICチップ3が『ICチップ』に相当し、チップインダクタ4が『インダクタ』に相当し、ICチップ3内に含まれる等価容量5が『内部等価容量』に相当し、RFタグ内蔵タイヤ100が『RFタグ内蔵タイヤ』に相当し、サイドウォール50が『サイドウォール』に相当する。 In the present invention, the RF tag 10 corresponds to an “RF tag”, the first antenna line 1 and the second antenna line 2 correspond to an “antenna line”, the IC chip 3 corresponds to an “IC chip”, The chip inductor 4 corresponds to an “inductor”, the equivalent capacitance 5 included in the IC chip 3 corresponds to an “internal equivalent capacitance”, the RF tag built-in tire 100 corresponds to an “RF tag built-in tire”, and the sidewall 50. Corresponds to the "sidewall".
 本発明に係るいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments according to the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and equivalents thereof.
   1 第1のアンテナ線
   2 第2のアンテナ線
   3 ICチップ
   4 チップインダクタ
   5 ICチップ内に含まれる等価容量
  10 RFタグ
  20 ホイールリム
  30 ビードワイヤ
  40 カーカス
  50 サイドウォール
  60 ブレーカーコード
  70 トレッド
 100 RFタグ内蔵タイヤ

 
1 1st antenna line 2 2nd antenna line 3 IC chip 4 Chip inductor 5 Equivalent capacity contained in IC chip 10 RF tag 20 Wheel rim 30 Bead wire 40 Carcass 50 Sidewall 60 Breaker code 70 Tread 100 Tire with a built-in RF tag

Claims (11)

  1.  ダイポールアンテナ形式の、タイヤに埋め込まれるRFタグであって、
     ICチップと、
     前記ICチップの2つの端子にそれぞれ接続される2本のアンテナ線と、
     前記ICチップの2つの端子間に接続されるインダクタと、
     前記インダクタと前記ICチップの内部等価容量とにより構成された整合回路と、を含み、
     前記ICチップと前記アンテナ線とのインピーダンスを前記RFタグの通信周波数において整合した、RFタグ。
    A dipole antenna type RF tag embedded in a tire,
    IC chip,
    Two antenna wires respectively connected to the two terminals of the IC chip,
    An inductor connected between the two terminals of the IC chip,
    A matching circuit constituted by the inductor and an internal equivalent capacitance of the IC chip,
    An RF tag in which impedances of the IC chip and the antenna wire are matched at a communication frequency of the RF tag.
  2.  前記インダクタはチップインダクタである、請求項1に記載のRFタグ。 The RF tag according to claim 1, wherein the inductor is a chip inductor.
  3.  前記インダクタはタイヤのゴムより誘電率の小さい材料で被覆されている、請求項1に記載のRFタグ。 The RF tag according to claim 1, wherein the inductor is covered with a material having a lower dielectric constant than rubber of the tire.
  4.  前記2本のアンテナ線は前記ICチップから互いに逆方向に伸長し、RFタグの通信周波数の波長をλとしたとき、前記2本のアンテナ線の長さはともにλ/4である、請求項1から3のいずれか1項に記載のRFタグ。 The two antenna wires extend in opposite directions from the IC chip, and when the wavelength of the communication frequency of the RF tag is λ, both lengths of the two antenna wires are λ / 4. The RF tag according to any one of 1 to 3.
  5.  前記2本のアンテナ線は前記ICチップから互いに逆方向に伸長し、RFタグの通信周波数の波長をλとしたとき、前記2本のうち一のアンテナ線の長さは、λ/4であり、他のアンテナ線の長さは、3λ/4である、請求項1から3のいずれか1項に記載のRFタグ。 The two antenna wires extend in opposite directions from the IC chip, and when the wavelength of the communication frequency of the RF tag is λ, the length of one of the two antenna wires is λ / 4. The RF tag according to any one of claims 1 to 3, wherein the length of the other antenna wire is 3λ / 4.
  6.  前記2本のアンテナ線はともに導体の網線で形成されている、請求項1から5のいずれか1項に記載のRFタグ。 The RF tag according to any one of claims 1 to 5, wherein the two antenna wires are both formed of a conductor mesh wire.
  7.  前記2本のアンテナ線はともに銅の網線で形成されている、請求項1から6のいずれか1項に記載のRFタグ。 The RF tag according to any one of claims 1 to 6, wherein both of the two antenna wires are made of a copper mesh wire.
  8.  請求項1から7のいずれか1項に記載のRFタグを埋め込んだRFタグ内蔵タイヤ。 A tire with a built-in RF tag, in which the RF tag according to any one of claims 1 to 7 is embedded.
  9.  タイヤのサイドウォールにRFタグを埋め込んだ、請求項8に記載のRFタグ内蔵タイヤ。 The tire with a built-in RF tag according to claim 8, wherein the RF tag is embedded in the sidewall of the tire.
  10.  前記2つのアンテナ線をタイヤの回転軸を中心として放射状方向に沿って埋め込んだ、請求項9に記載のRFタグ内蔵タイヤ。 The tire with a built-in RF tag according to claim 9, wherein the two antenna wires are embedded along a radial direction with a rotation axis of the tire as a center.
  11.  前記RFタグ内蔵タイヤが加硫タイヤである、請求項8から10のいずれか1項に記載のRFタグ内蔵タイヤ。
     
     
     
     
    The tire with a built-in RF tag according to any one of claims 8 to 10, wherein the tire with a built-in RF tag is a vulcanized tire.



PCT/JP2019/039736 2018-10-10 2019-10-09 Rf tag for embedding in tire, and rf-tagged tire WO2020075732A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020551179A JPWO2020075732A1 (en) 2018-10-10 2019-10-09 RF tags embedded in tires and tires with built-in RF tags

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-191509 2018-10-10
JP2018191509 2018-10-10

Publications (1)

Publication Number Publication Date
WO2020075732A1 true WO2020075732A1 (en) 2020-04-16

Family

ID=70163660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039736 WO2020075732A1 (en) 2018-10-10 2019-10-09 Rf tag for embedding in tire, and rf-tagged tire

Country Status (2)

Country Link
JP (1) JPWO2020075732A1 (en)
WO (1) WO2020075732A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182570A (en) * 1989-11-13 1993-01-26 X-Cyte Inc. End fed flat antenna
JP2009288874A (en) * 2008-05-27 2009-12-10 Mitsubishi Electric Corp Radio communication apparatus
JP2012240680A (en) * 2011-05-19 2012-12-10 Goodyear Tire & Rubber Co:The Embedded transponder and tire assembly, and method of construction thereof
WO2013102967A1 (en) * 2012-01-06 2013-07-11 パナソニック株式会社 Antenna device
JP2014021894A (en) * 2012-07-23 2014-02-03 Fujitsu Ltd Rfid tag
KR20160050452A (en) * 2014-10-29 2016-05-11 아시아나아이디티 주식회사 Rfid tag attached on surface of tire
JP2016533968A (en) * 2013-09-17 2016-11-04 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー Tire structure for externally mounted devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182570A (en) * 1989-11-13 1993-01-26 X-Cyte Inc. End fed flat antenna
JP2009288874A (en) * 2008-05-27 2009-12-10 Mitsubishi Electric Corp Radio communication apparatus
JP2012240680A (en) * 2011-05-19 2012-12-10 Goodyear Tire & Rubber Co:The Embedded transponder and tire assembly, and method of construction thereof
WO2013102967A1 (en) * 2012-01-06 2013-07-11 パナソニック株式会社 Antenna device
JP2014021894A (en) * 2012-07-23 2014-02-03 Fujitsu Ltd Rfid tag
JP2016533968A (en) * 2013-09-17 2016-11-04 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー Tire structure for externally mounted devices
KR20160050452A (en) * 2014-10-29 2016-05-11 아시아나아이디티 주식회사 Rfid tag attached on surface of tire

Also Published As

Publication number Publication date
JPWO2020075732A1 (en) 2021-09-24

Similar Documents

Publication Publication Date Title
US11505011B2 (en) Tire suitable for running flat equipped with an electronic member
CN110072713B (en) Pneumatic tire equipped with electronic component
US11264698B2 (en) Radio-frequency transponder for tire
US11152684B2 (en) Radiofrequency communication module for a tire
CN110035913B (en) Pneumatic tire equipped with electronic component
US8593357B2 (en) Tyre having a member with an offset antenna
US11295193B2 (en) Radiofrequency transponder for tire
CN111741858B (en) Tyre provided with a radio frequency communication module
CN114514533B (en) Tyre comprising a radio frequency transponder
WO2020075469A1 (en) Rf tag label and rubber product equipped with rf tag label
JP7410488B2 (en) RF tag labels and rubber products with RF tag labels
CN114450178B (en) Tyre comprising a radio frequency transponder
CN110770050B (en) Tyre provided with an electronic unit and suitable for run-on
WO2016053951A1 (en) Stretchable broad impedance bandwidth rfid devices
US20200215857A1 (en) Tire suitable for running flat, provided with an electronic unit
CN114829158A (en) Tire comprising a radio frequency transponder
CN114423627B (en) Tyre comprising a radio frequency transponder
CN112203872B (en) Radio frequency transponder for tire
WO2020075732A1 (en) Rf tag for embedding in tire, and rf-tagged tire
JP7174415B2 (en) RFID tag, RFID tag built-in tire, and method for adjusting resonance frequency of RFID tag
CN110998967B (en) Antenna for an electronic component of a tyre

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020551179

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872020

Country of ref document: EP

Kind code of ref document: A1