WO2020075468A1 - 環境類似度表示装置、環境類似度表示方法および環境類似度表示アルゴリズム - Google Patents
環境類似度表示装置、環境類似度表示方法および環境類似度表示アルゴリズム Download PDFInfo
- Publication number
- WO2020075468A1 WO2020075468A1 PCT/JP2019/036733 JP2019036733W WO2020075468A1 WO 2020075468 A1 WO2020075468 A1 WO 2020075468A1 JP 2019036733 W JP2019036733 W JP 2019036733W WO 2020075468 A1 WO2020075468 A1 WO 2020075468A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- environment
- recognition
- image data
- graph
- display
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
Definitions
- the present invention relates to an environment similarity display device, an environment similarity display method, and an environment similarity display algorithm, and in particular, an environment similarity display device and environment similarity display that can easily select learning data used when constructing an image recognition device.
- Degree display method and environment similarity display algorithm are examples of the environment similarity display device, an environment similarity display method, and an environment similarity display algorithm, and in particular, an environment similarity display device and environment similarity display that can easily select learning data used when constructing an image recognition device.
- the recognition performance of the image recognition device is affected by environmental factors, which are various factors that make up the environment especially at the shooting location of the fixed camera.
- the environmental factors are, for example, the depression angle of the camera, the weather, the ambient brightness, the background pattern, and the contrast between the recognition target and the background.
- an environment in which the image recognition device is applied is estimated, and a recognition dictionary used in the image recognition device is selected based on the estimated environment.
- the method is known.
- the recognition dictionary indicates a recognition method used by the image recognition device for image recognition, for example.
- Patent Document 1 describes a personal authentication device capable of measuring the environment used and performing biometric authentication using registration data of biometric information registered in advance in the same environment as the measured environment.
- the input environment which is the environment input to the personal identification device described in Patent Document 1, is classified into one or more types in advance.
- the input environment is classified based on, for example, the illumination level.
- the personal authentication device described in Patent Literature 1 has high reliability because the authentication accuracy is increased by the above method.
- the personal authentication device described in Patent Document 1 is not supposed to define the similarity of environmental factors that are difficult to represent with a scalar value.
- the personal identification device described in Patent Document 1 cannot define the similarity of different weather conditions such as fine weather, cloudy weather, rain, snow, and fog.
- the builder of the image recognition device is required to select the combination of the image data having the highest recognition rate after the image recognition device is made to learn each combination of the image data photographed under each environment. It was being done. It is a great burden for the builder to make the image recognition device learn each combination of the image data each time it is constructed.
- the present invention provides an environment similarity display device, an environment similarity display method, and an environment similarity display algorithm that can clearly display an effective image data group when used together as learning data, which solves the above-mentioned problems.
- the purpose is to
- the environment similarity display device displays the recognition rate of the content output by the recognition device for recognizing the content indicated by the image data on the graph formed by the axis indicating the environmental factor that is a factor that constitutes the environment. Is provided with display means for displaying based on the environmental factors of the environment in which the image was captured.
- the recognition rate of the content output by the recognition device for recognizing the content represented by the image data is displayed on a graph constituted by an axis indicating an environmental factor that is a factor constituting the environment. Is displayed based on the environmental factors of the environment in which the image was captured.
- the environment similarity display program displays the recognition rate of the content output by the recognition device for recognizing the content indicated by the image data on a graph formed by an axis indicating the environmental factor that constitutes the environment. It is characterized in that the display processing for displaying the image data is executed based on the environmental factor of the environment in which the image data was captured.
- an effective image data group can be clearly displayed when used together as learning data.
- FIG. 6 is a flowchart showing an operation of a graph display process by the environment similarity display device 100 according to the first embodiment. It is explanatory drawing which shows the hardware structural example of the environment similarity display apparatus 100 by this invention. It is a block diagram which shows the outline
- FIG. 1 is a block diagram showing a configuration example of a first embodiment of an environment similarity display device according to the present invention.
- the environment similarity display device 100 of this embodiment can evaluate the environment similarity from the viewpoint of recognition performance. Specifically, the environment similarity display device 100 can estimate the similarity between the learning data learned by the image recognition means and the image data by displaying the image recognition performance for the group of image data on the graph. Further, the environment similarity display device 100 can also estimate the similarity of the environmental factors associated with the image data group.
- the environment similarity display device 100 preferably displays a group of image data captured in an environment similar to the environment in which the learning data was acquired so that the environment data is collectively included in the learning data.
- the image data group can be shown.
- the environment similarity display device 100 includes an image data storage unit 110, an environment factor data storage unit 120, an image recognition unit 130, an environment factor selection unit 140, and a recognition performance display. And means 150.
- the image data storage means 110 has a function of storing image data for learning.
- the image data group stored in the image data storage unit 110 is an image data group used for learning. Further, each image data is given a correct answer label.
- the image data storage means 110 of this embodiment manages a plurality of similar image data by grouping them for each shooting location and each period.
- the plurality of similar image data is specifically the depression angle of the camera, the distance from the camera to the learning target, the season, the weather, the shooting location (for example, indoors, outdoors, or semi-indoors), the state of the background, the learning target.
- the image data has similar shooting conditions such as the orientation of an object. That is, the display contents of the plurality of similar image data are similar.
- the image data storage unit 110 manages the image data so that it includes an image data group that may be considered to have been taken in an environment similar to one group.
- the group stored in the image data storage unit 110 may include only one image data.
- the period during which the image data to be grouped is captured may be freely divided. For example, the appearance of the learning target object in the image data captured during the day changes significantly compared to the appearance of the learning target object in the image data captured during the night.
- the image data storage unit 110 may manage the image data by dividing the day into two parts from the sunrise to the sunset and from the sunset to the sunrise as the shooting period. Further, the image data storage means 110 manages the image data after dividing one day into three, with the time zone before and after sunrise when the sunshine conditions change rapidly and the time zone before and after sunset as the third time zone. Good.
- the image data storage means 110 may manage the image data by dividing the shooting period into four for each season so as to match the cycle in which the landscape changes. Furthermore, the image data storage unit 110 may manage the image data by dividing the shooting period for each season and then for each time period.
- the environmental factor data storage unit 120 has a function of storing the environmental factor data in which the environmental factors at the point and the period at which the image data stored in the image data storage unit 110 is photographed are recorded.
- environmental factor data stored in the environmental factor data storage unit 120 environmental factors at points and periods corresponding to each group stored in the image data storage unit 110 are recorded.
- the environmental factor data for one fixed camera should be Information such as the depression angle of the camera, the brightness of the surroundings, and the weather is recorded as the environmental factors in the time zone.
- the numerical value itself is recorded in the environmental factor data.
- the depression angle is the same regardless of the shooting time.
- ambient brightness is an environmental factor that can be measured with an illuminometer or the like.
- the ambient brightness varies according to the position in space, or changes temporally or spatially.
- one numerical value representing the group may be recorded in the environmental factor data.
- one numerical value such as the average value of the ambient brightness and the mode value may be recorded in the environmental factor data.
- weather is an environmental factor that is difficult to express numerically. Therefore, regarding the weather, for example, a label representing the weather representative of the group may be recorded in the environmental factor data. For example, according to the definition of weather in the weather forecast, a label indicating the weather condition that has occurred the longest during the shooting time may be recorded.
- the image recognition means 130 has a function of performing image recognition on the image data stored in the image data storage means 110.
- the image recognition unit 130 performs image recognition on the grouped image data stored in the image data storage unit 110.
- the configuration of the image recognition means 130 of the present embodiment is such that one type of recognition dictionary is installed and one recognition performance is output for one group of image data.
- the recognition dictionary indicates a recognition method used by the image recognition unit 130 for image recognition, for example.
- the image recognition means 130 calculates recognition performance for each group of image data.
- the image recognition unit 130 may output a performance value suitable for an expected problem such as a detection rate, a false detection rate, or an identification rate as the recognition performance.
- the assumed problems are, for example, person detection, left-behind object detection, vehicle detection, and object identification (classification).
- the image recognition means 130 of this embodiment outputs a recognition rate as recognition performance. Further, the image recognition unit 130 may output the average value of the recognition performance of each image data as the recognition performance of the group.
- the environmental factor selection means 140 has a function of selecting an environmental factor.
- the recognition performance display means 150 has a function of displaying the recognition performance for each group on the graph constituted by the axis indicating the environmental factor selected by the environmental factor selection means 140.
- the environmental factor selection unit 140 selects an environmental factor used for the axis of the graph displayed by the recognition performance display unit 150 from various environmental factors.
- the environmental factor selection means 140 selects one, two, or three environmental factors, for example.
- the environmental factor selection means 140 may automatically select an environmental factor used for the axis of the graph from, for example, predetermined environmental factors. Further, the environmental factor selection means 140 may select the environmental factor input by the operator via, for example, a keyboard or a mouse.
- the recognition performance display unit 150 plots the recognition performance for each grouped image data on a graph configured by an axis indicating the environmental factor selected by the environmental factor selection unit 140. For example, the recognition performance display unit 150 converts one recognition performance into one circle or one rectangle, and plots the converted circle or rectangle on the graph. After plotting the recognition performance, the recognition performance display means 150 displays a graph.
- the recognition performance display means 150 plots the recognition performance on a line. After plotting the recognition performance, the recognition performance display means 150 displays a one-dimensional graph.
- the recognition performance display means 150 plots the recognition performance on a plane. After plotting the recognition performance, the recognition performance display means 150 displays a two-dimensional graph.
- the recognition performance display means 150 plots the recognition performance in the space. After plotting the recognition performance, the recognition performance display means 150 displays a three-dimensional graph.
- the recognition performance display unit 150 may change the color of the recognition performance displayed according to the recognition rate, for example. Specifically, the recognition performance display unit 150 may display the recognition performance having a low recognition rate in blue and the recognition performance having a high recognition rate in red.
- the recognition performance display means 150 may make the axis of the graph a number line. Further, when the environmental factor is expressed by a qualitative label value such as weather, the recognition performance display unit 150 may display each label value of the environmental factor in which the axes of the graph are arranged at predetermined intervals. Good.
- FIG. 2 is an explanatory diagram showing a display example of a graph by the recognition performance display means 150.
- Each axis of the three-dimensional graph shown in FIG. 2 represents the depression angle of the camera selected as an environmental factor, the ambient brightness, and the weather.
- the recognition performance group A is a set of recognition performances having the highest recognition rate. It is estimated that the similarity between the plurality of pieces of image data that is the calculation source of the recognition performance group having a high recognition rate and the learning data used for the learning of the image recognition unit 130 is relatively high.
- both the depression angle and the brightness are relatively similar, and the image data in which the weather is fine or cloudy is similar to the learning data used for the learning of the image recognition unit 130. Is estimated to be relatively high.
- the learning data used for learning by the image recognition unit 130 is data collected under a limited type of environment, a plurality of image data that is the calculation source of each recognition performance included in the recognition performance group A The similarity of is estimated to be relatively high.
- the similarity between the plurality of image data that is the calculation source of the recognition performance group having a low recognition rate and the learning data used for the learning of the image recognition means 130 is estimated to be relatively low. There are various possible causes for the low similarity.
- the user can easily identify the group of image data that is similar to the learning data by evaluating the similarity between the group of image data and the learning data based on the recognition performance.
- the user can select the image data of the specified group as the image data used for learning.
- the configuration of the image recognition means 130 may be such that a plurality of recognition dictionaries are installed and the recognition performance is output as many as the number of recognition dictionaries for one group of image data.
- the recognition performance display unit 150 When the configuration of the image recognition unit 130 is a configuration in which a plurality of recognition dictionaries are installed, the recognition performance display unit 150 outputs the recognition performance for each group of image data to one group instead of plotting it on the graph. A value indicating the similarity of the plurality of recognized recognition performances may be plotted on the graph.
- the image recognition unit 130 outputs a set of recognition performance for one group.
- the set of recognition performance is regarded as data indicating a vector.
- the recognition performance display unit 150 sets the size of the vector and the angle formed by the vectors of the plurality of recognition performances included in the set so that the similarity can be easily determined. You may plot as a value which shows similarity.
- the recognition performance display unit 150 may plot multidimensional data (for example, data indicating a vector) itself, which is composed of each recognition performance output by the image recognition unit 130 according to each of the plurality of recognition dictionaries, on a graph. .
- FIG. 3 is a flowchart showing the operation of the graph display processing by the environment similarity display device 100 of the first embodiment.
- the image recognition unit 130 performs image recognition on the image data stored in the image data storage unit 110, which is grouped by the location where the image data was captured and the period.
- the image recognition means 130 calculates recognition performance for each group of image data (step S110).
- the image recognition unit 130 inputs the calculated recognition performance for each group to the recognition performance display unit 150.
- the environmental factor selection means 140 selects the environmental factor used for the axis of the displayed graph (step S120).
- the environmental factor selection unit 140 inputs the selected environmental factor to the recognition performance display unit 150.
- the recognition performance display unit 150 plots the recognition performance for each group of the image data calculated in step S110 on the graph constituted by the axis indicating the environmental factor selected in step S120.
- the recognition performance display means 150 displays the generated graph (step S130). After displaying the graph, the environment similarity display device 100 ends the graph display process.
- the environment similarity display device 100 includes an image data storage unit 110 that groups and stores image data captured within a predetermined period at the same location, and an environment when the grouped image data is captured.
- the environmental factor data storage unit 120 stores the environmental factor data in which the factors are recorded.
- the environment similarity display device 100 also includes an image recognition unit 130 that performs image recognition on the grouped image data and outputs recognition performance, and an environmental factor selection unit 140 that selects an environmental factor.
- the environment similarity display device 100 includes a recognition performance display unit 150 that plots recognition performance for each group on a graph configured by an axis indicating the selected environmental factor.
- the environment similarity display device 100 of this embodiment can evaluate the environment similarity from the viewpoint of recognition performance. Further, the environment similarity display device 100 can clearly display an effective image data group when used together as learning data.
- the image recognition unit 130 measures the recognition performance for a group of image data
- the recognition performance display unit 150 associates the recognition performance of each group with the recognition performance for each group on a graph formed by an axis indicating environmental factors Plot based on environmental factors
- the user can estimate the similarity between the learning data learned by the image recognition means 130 and the image data of the group by referring to the displayed graph, and also the similarity of the environment. That is, the user can determine that the groups of image data respectively corresponding to similar environments should be collectively learned.
- an environment factor for which similarity evaluation is difficult for example, an environment factor for which it is difficult to express an attribute value as a scalar value is considered, or a plurality of environments Even if the factors are taken into consideration, the similarity between the learning data and the image data can be estimated.
- FIG. 4 is an explanatory diagram showing a hardware configuration example of the environment similarity display device 100 according to the present invention.
- the environment similarity display device 100 illustrated in FIG. 4 includes a CPU (Central Processing Unit) 101, a main storage unit 102, a communication unit 103, and an auxiliary storage unit 104. Further, an input unit 105 for the user to operate and an output unit 106 for presenting the processing result or the progress of the processing content to the user may be provided.
- a CPU Central Processing Unit
- main storage unit 102 main storage unit
- communication unit 103 main storage unit
- auxiliary storage unit 104 auxiliary storage unit 104
- an input unit 105 for the user to operate and an output unit 106 for presenting the processing result or the progress of the processing content to the user may be provided.
- the environment similarity display device 100 is realized by software by the CPU 101 shown in FIG. 4 executing a program that provides the function of each component.
- each function is realized by software by the CPU 101 loading a program stored in the auxiliary storage unit 104 into the main storage unit 102 and executing the program to control the operation of the environment similarity display device 100.
- the environment similarity display device 100 shown in FIG. 4 may include a DSP (Digital Signal Processor) instead of the CPU 101.
- the environment similarity display device 100 shown in FIG. 4 may include a CPU 101 and a DSP together.
- the main storage unit 102 is used as a data work area or a data temporary save area.
- the main storage unit 102 is, for example, a RAM (Random Access Memory).
- the communication unit 103 has a function of inputting and outputting data to and from peripheral devices via a wired network or a wireless network (information communication network).
- the auxiliary storage unit 104 is a non-transitory tangible storage medium.
- non-temporary tangible storage media include magnetic disks, magneto-optical disks, CD-ROMs (Compact Disk Read Only Memory), DVD-ROMs (Digital Versatile Disk Read Only Memory), and semiconductor memories.
- the input unit 105 has a function of inputting data and processing instructions.
- the input unit 105 is an input device such as a keyboard or a mouse.
- the output unit 106 has a function of outputting data.
- the output unit 106 is, for example, a display device such as a liquid crystal display device or a printing device such as a printer.
- each component is connected to the system bus 107.
- the auxiliary storage unit 104 stores, for example, a program for realizing the image recognition unit 130, the environmental factor selection unit 140, and the recognition performance display unit 150.
- the environment similarity display device 100 may be internally provided with a circuit including a hardware component such as an LSI (Large Scale Integration) that realizes the function illustrated in FIG. 1, for example.
- LSI Large Scale Integration
- the environment similarity display device 100 may be realized by hardware that does not include a computer function using an element such as a CPU.
- a part or all of each component may be realized by a general-purpose circuit or a dedicated circuit, a processor, or a combination thereof. These may be configured by a single chip (for example, the above LSI) or may be configured by a plurality of chips connected via a bus. Some or all of the components may be realized by a combination of the above-described circuit and the like and a program.
- the plurality of information processing devices, circuits, and the like may be centrally arranged or may be distributed.
- the information processing device, the circuit, and the like may be realized as a form in which a client and server system, a cloud computing system, and the like are connected to each other via a communication network.
- FIG. 5 is a block diagram showing an outline of the environment similarity display device according to the present invention.
- the recognition rate of the content output by the recognition device for recognizing the content represented by the image data is displayed on a graph constituted by an axis indicating the environmental factor that is a factor constituting the environment.
- the display unit 11 (for example, the recognition performance display unit 150) that displays based on the environmental factors of the environment in which the data was captured is provided.
- the environment similarity display device can clearly display an effective image data group when used together as learning data.
- the display means 11 may display the recognition rate output by the recognition device on a graph for a group including a plurality of image data captured at the same point within a predetermined period.
- the environment similarity display device 10 may include a first storage unit (for example, the image data storage unit 110) that stores a group including a plurality of image data.
- the environment similarity display device can collectively process a plurality of image data having similar display contents.
- the environmental similarity display device 10 includes a selection unit (for example, an environmental factor selection unit 140) for selecting an environmental factor, and the display unit 11 recognizes it on a graph configured by an axis indicating the selected environmental factor. The rate may be displayed.
- the environment similarity display device 10 may include a second storage unit that stores the environment factor of the environment in which the image data was captured.
- the environment similarity display device can present a graph composed of axes indicating the environmental factors designated by the user.
- the display means 11 may display multidimensional data composed of each recognition rate output by the recognition device according to each of a plurality of recognition methods on a graph.
- the environment similarity display device can support a recognition device equipped with a plurality of recognition dictionaries.
- the environment similarity display device 10 includes a recognition unit (for example, an image recognition unit 130) that recognizes the content indicated by the image data, and the display unit 11 displays the recognition rate output by the recognition unit on a graph. Good.
- a recognition unit for example, an image recognition unit 130
- the display unit 11 displays the recognition rate output by the recognition unit on a graph. Good.
- the environment similarity display device can clearly display an effective image data group when used together as learning data.
- the image data was photographed on a graph composed of an axis indicating the environmental factor, which is a factor that constitutes the environment, for the recognition rate of the content output by the recognition device for recognizing the content indicated by the image data.
- An environment similarity display device comprising display means for displaying the environment based on the environmental factors.
- Supplementary note 3 The environmental similarity display device according to Supplementary note 2, further comprising a first storage unit that stores a group including a plurality of image data.
- Supplementary Note 4 The method according to any one of Supplementary Note 1 to Supplementary Note 3, further including a selection unit for selecting an environmental factor, wherein the display unit displays the recognition rate on a graph configured by an axis indicating the selected environmental factor. Environment similarity display device.
- Supplementary note 5 The environment similarity display device according to any one of Supplementary notes 1 to 4, further including a second storage unit that stores an environmental factor of the environment in which the image data is captured.
- the display means displays multidimensional data composed of respective recognition rates output by the recognition device according to each of a plurality of recognition methods on a graph.
- the environment similar to any one of supplementary notes 1 to 5 Degree display device.
- FIG. 7 An environment-like environment according to any one of supplementary note 1 to supplementary note 6, further comprising: a recognizing unit that recognizes the content indicated by the image data, and the display unit displays the recognition rate output by the recognizing unit on a graph. Degree display device.
- the image data was photographed on a graph composed of an axis indicating the environmental factor, which is a factor that constitutes the environment, for the recognition rate of the content output by the recognition device for recognizing the content indicated by the image data.
- An environment similarity display method comprising displaying the environment based on the environmental factors.
- the recognition rate of the content output by the recognition device for recognizing the content indicated by the image data is displayed on a graph including an axis indicating an environmental factor that is a factor that constitutes the environment.
- An environment similarity display program for executing a display process for displaying based on the environmental factors of a captured environment.
- Supplementary note 11 The environment similar to Supplementary note 10, wherein the display processing causes the computer to display the recognition rate output by the recognition device for a group including a plurality of image data captured at the same location within a predetermined period on a graph. Degree display program.
- 100 environment similarity display device 11 display means 101 CPU 102 main memory 103 communication unit 104 auxiliary memory 105 input unit 106 output unit 107 system bus 110 image data storage unit 120 environmental factor data storage unit 130 image recognition unit 140 environmental factor selection unit 150 recognition performance display unit
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
Abstract
環境類似度表示装置10は、画像データが示す内容を認識する認識装置が出力した内容の認識率を、環境を構成する要因である環境要因を示す軸で構成されるグラフ上に画像データが撮影された環境の環境要因に基づいて表示する表示手段11を備える。
Description
本発明は、環境類似度表示装置、環境類似度表示方法および環境類似度表示アルゴリズムに関し、特に画像認識装置を構築する際に使用される学習データを容易に選択できる環境類似度表示装置、環境類似度表示方法および環境類似度表示アルゴリズムに関する。
機械学習技術により画像認識装置が構築される際、多くの正解ラベル付きの画像データが学習用に求められる。また、構築された画像認識装置の認識性能は、主に学習された画像データが示す内容に依存する。
固定カメラで撮影された画像データが学習される場合、画像認識装置の認識性能は、特に固定カメラの撮影場所における環境を構成する様々な要因である環境要因の影響を受ける。環境要因は、例えば、カメラの俯角、天候、周囲の明るさ、背景の模様、および認識対象物と背景とのコントラストである。
学習データが撮影された環境と画像認識装置の適用対象の環境が異なると、画像認識装置が良好に認識対象物を認識することが困難になるという問題が生じる。
上記のような問題が生じることを可能な限り回避するための方法として、画像認識装置が適用される環境を推定し、推定された環境を基に画像認識装置で使用される認識辞書を選択する方法が知られている。認識辞書は、例えば画像認識装置が画像認識に用いる認識方式を示す。
特許文献1には、使用される環境を計測し、計測された環境と同じ環境で予め登録された生体情報の登録データを用いて生体認証を行うことができる個人認証装置が記載されている。
特許文献1に記載されている個人認証装置に入力される環境である入力環境は、予め1つ以上の種類に区分されている。入力環境は、例えば照明度を基に区分される。特許文献1に記載されている個人認証装置は、上記の方法により認証精度が高くなるため、高い信頼性を有する。
上述したように、画像認識に影響を及ぼす環境要因は、照明度以外にも多く存在する。特許文献1に記載されている個人認証装置では、画像認識に影響を及ぼす複数の環境要因の関係性の有無を判断することは想定されていない。
また、特許文献1に記載されている個人認証装置では、スカラー値で表現することが困難な環境要因の類似性を定義することは想定されていない。例えば、特許文献1に記載されている個人認証装置は、晴天、曇り、雨、雪、霧等の異なる天候の類似性を定義できない。
天候が異なると、環境における光の伝わり方が変化する。よって、例えば天候が晴天、曇り、雨、雪の4通りの各環境下で撮影された画像データを用いてカメラの新たな設置場所用に画像認識装置を構築者が構築する場合、構築者にとってどの画像データを学習に用いればよいかを判断することが困難になる。
従って、画像認識装置の構築者には、各環境下で撮影された画像データの各組み合わせをそれぞれ画像認識装置に学習させた上で認識率が最高になる画像データの組み合わせを選定することが求められていた。構築の度に画像データの各組み合わせを画像認識装置に学習させることは、構築者にとって大きな負担になる。
そこで、本発明は、上述した課題を解決する、学習データとして共に用いられると有効な画像データ群を明確に表示できる環境類似度表示装置、環境類似度表示方法および環境類似度表示アルゴリズムを提供することを目的とする。
本発明による環境類似度表示装置は、画像データが示す内容を認識する認識装置が出力した内容の認識率を、環境を構成する要因である環境要因を示す軸で構成されるグラフ上に画像データが撮影された環境の環境要因に基づいて表示する表示手段を備えることを特徴とする。
本発明による環境類似度表示方法は、画像データが示す内容を認識する認識装置が出力した内容の認識率を、環境を構成する要因である環境要因を示す軸で構成されるグラフ上に画像データが撮影された環境の環境要因に基づいて表示することを特徴とする。
本発明による環境類似度表示プログラムは、コンピュータに、画像データが示す内容を認識する認識装置が出力した内容の認識率を、環境を構成する要因である環境要因を示す軸で構成されるグラフ上に画像データが撮影された環境の環境要因に基づいて表示する表示処理を実行させることを特徴とする。
本発明によれば、学習データとして共に用いられると有効な画像データ群を明確に表示できる。
実施形態1.
以下、本発明の実施形態を、図面を参照して説明する。図1は、本発明による環境類似度表示装置の第1の実施形態の構成例を示すブロック図である。
以下、本発明の実施形態を、図面を参照して説明する。図1は、本発明による環境類似度表示装置の第1の実施形態の構成例を示すブロック図である。
上述したように、画像認識に影響を及ぼす複数の環境要因を考慮して環境の類似性を評価する方法や、学習データとして共に用いられると有効な画像データ群を明確に示す方法は、提供されていない。
本実施形態の環境類似度表示装置100は、認識性能の観点で環境の類似性を評価できる。具体的には、環境類似度表示装置100は、画像データのグループに対する画像の認識性能をグラフ上に表示することによって、画像認識手段が学習した学習データと画像データとの類似性を推定できる。さらに、環境類似度表示装置100は、画像データのグループに対応付けられた環境要因の類似性も推定できる。
また、本実施形態の環境類似度表示装置100は、学習データが取得された環境に類似した環境で撮影された画像データのグループを表示することによって、学習データにまとめて含まれた方がよい画像データ群を示すことができる。
図1に示すように、本実施形態の環境類似度表示装置100は、画像データ記憶手段110と、環境要因データ記憶手段120と、画像認識手段130と、環境要因選択手段140と、認識性能表示手段150とを備える。
画像データ記憶手段110は、学習用の画像データを記憶する機能を有する。画像データ記憶手段110に記憶されている画像データ群は、学習に用いられる画像データ群である。また、各画像データには、正解ラベルがそれぞれ付与されている。
本実施形態の画像データ記憶手段110は、撮影された地点および期間毎に、類似している複数の画像データをグループ化して管理する。類似している複数の画像データは、具体的にカメラの俯角、カメラから学習対象物までの距離、季節、天候、撮影場所(例えば、屋内、屋外、または半屋内)、背景の様子、学習対象物の向き等の撮影条件が類似している画像データである。すなわち、類似している複数の画像データの各表示内容は、類似している。
画像データ記憶手段110は、1つのグループに類似した環境下で撮影されたと考えられても差し支えない画像データ群が含まれるように画像データを管理する。なお、画像データ記憶手段110が記憶するグループには、1つの画像データのみが含まれていてもよい。
なお、グループ化の対象の画像データが撮影された期間は、自由に分割されてもよい。例えば、日中に撮影された画像データにおける学習対象物の映り方は、夜間に撮影された画像データにおける学習対象物の映り方に比べて大きく変化する。
よって、画像データ記憶手段110は、撮影された期間として、1日を日の出から日の入りまでと、日の入りから日の出までの2つに分割して画像データを管理してもよい。さらに、画像データ記憶手段110は、日照条件が急速に変化する日の出前後の時間帯、および日の入り前後の時間帯を第3の時間帯として1日を3分割した上で、画像データを管理してもよい。
また、画像データ記憶手段110は、風景が変化する周期に合わせるように、撮影された期間を季節毎に4分割して画像データを管理してもよい。さらに、画像データ記憶手段110は、撮影された期間を季節毎に分割した後、時間帯毎に分割して画像データを管理してもよい。
環境要因データ記憶手段120は、画像データ記憶手段110に記憶されている画像データが撮影された地点および期間における環境要因が記録された環境要因データを記憶する機能を有する。
環境要因データ記憶手段120に記憶されている環境要因データには、画像データ記憶手段110に記憶されている各グループに対応する地点および期間における環境要因が記録されている。
例えば、撮影時間帯が7:00-19:00、19:00-31:00 (翌日の7:00)のように2分割される場合、1台の固定カメラに対する環境要因データには、それぞれの時間帯における環境要因として、カメラの俯角、周囲の明るさ、天候等の情報が記録される。
カメラの俯角等、計測可能であり、かつ数値表現可能な環境要因の場合、環境要因データには、数値自体が記録される。固定カメラであれば、撮影時間帯に関係なく俯角は同一の値になる。
また、周囲の明るさも、照度計等で計測可能な環境要因である。しかし、カメラの俯角等と異なり、周囲の明るさは、空間内の位置に応じてばらついたり、時間的または空間的に変化したりする。
よって、周囲の明るさに関して、例えばグループを代表する1つの数値が環境要因データに記録されればよい。例えば、周囲の明るさの平均値や最頻値等の1つの数値が環境要因データに記録されればよい。
また、天候は、数値で表現することが困難な環境要因である。よって、天候に関しても、例えばグループを代表する天候を示すラベルが環境要因データに記録されればよい。例えば、天気予報における天気の定義に従って、撮影時間帯中に最も長く発生した気象状態を示すラベルが記録されればよい。
画像認識手段130は、画像データ記憶手段110に記憶されている画像データに対して画像認識を行う機能を有する。画像認識手段130は、画像データ記憶手段110に記憶されているグループ化された画像データに対して画像認識を行う。
本実施形態の画像認識手段130の構成は、1種類の認識辞書を搭載し、1つの画像データのグループに対して1つの認識性能を出力する構成である。認識辞書は、例えば画像認識手段130が画像認識に用いる認識方式を示す。
画像認識手段130は、画像データのグループ毎に認識性能を算出する。例えば、画像認識手段130は、認識性能として検知率、誤検知率、または識別率等、想定される課題に適合した性能値を出力すればよい。なお、想定される課題は、例えば人物検知、置き去り物検知、車両検知、および物体識別(分類)である。
本実施形態の画像認識手段130は、認識性能として認識率を出力する。また、画像認識手段130は、グループの認識性能として、各画像データの認識性能の平均値を出力してもよい。
環境要因選択手段140は、環境要因を選択する機能を有する。また、認識性能表示手段150は、環境要因選択手段140により選択された環境要因を示す軸で構成されるグラフ上にグループ毎の認識性能を表示する機能を有する。
環境要因選択手段140は、多様な環境要因の中から、認識性能表示手段150が表示するグラフの軸に使用される環境要因を選択する。環境要因選択手段140は、例えば環境要因を1つ、2つ、または3つ選択する。
環境要因選択手段140は、例えば予め定められた環境要因の中から自動でグラフの軸に使用される環境要因を選択してもよい。また、環境要因選択手段140は、例えばキーボードやマウス等を介してオペレータが入力した環境要因を選択してもよい。
認識性能表示手段150は、環境要因選択手段140が選択した環境要因を示す軸で構成されるグラフ上に、グループ化された画像データ毎の認識性能をプロットする。例えば、認識性能表示手段150は、1つの認識性能を1つの円または1つの矩形に変換し、変換された円または矩形をグラフ上にプロットする。認識性能をプロットした後、認識性能表示手段150は、グラフを表示する。
表示方法の一例として、例えば選択された環境要因が1つであれば、認識性能表示手段150は、線上に認識性能をプロットする。認識性能をプロットした後、認識性能表示手段150は、1次元のグラフを表示する。
また、例えば選択された環境要因が2つであれば、認識性能表示手段150は、平面上に認識性能をプロットする。認識性能をプロットした後、認識性能表示手段150は、2次元のグラフを表示する。
また、例えば選択された環境要因が3つであれば、認識性能表示手段150は、空間内に認識性能をプロットする。認識性能をプロットした後、認識性能表示手段150は、3次元のグラフを表示する。
認識性能表示手段150は、例えば認識率に応じて表示される認識性能の色を変えてもよい。具体的には、認識性能表示手段150は、認識率が低い認識性能を青色で、認識率が高い認識性能を赤色でそれぞれ表示してもよい。
また、カメラの俯角のように環境要因が数値で表現することが可能な場合、認識性能表示手段150は、グラフの軸を数直線としてもよい。また、天候のように環境要因が定性的なラベル値で表現される場合、認識性能表示手段150は、グラフの軸が所定の間隔で並べられた環境要因の各ラベル値を示すようにしてもよい。
図2は、認識性能表示手段150によるグラフの表示例を示す説明図である。図2に示す3次元のグラフの各軸は、環境要因として選択されたカメラの俯角、周囲の明るさ、天候をそれぞれ示す。
図2に示すように、認識性能群Aは、認識率が最も高い認識性能の集合である。認識率が高い認識性能群の算出元である複数の画像データと、画像認識手段130の学習に用いられた学習データとの類似性は、比較的高いと推定される。
すなわち、図2に示すグラフに基づいて、俯角および明るさが共に比較的類似しており、天候が晴天または曇りの画像データは、画像認識手段130の学習に用いられた学習データとの類似性が比較的高いと推定される。
また、画像認識手段130の学習に用いられた学習データが限られた種類の環境下で収集されたデータである場合、認識性能群Aに含まれる各認識性能の算出元である複数の画像データの類似性は、比較的高いと推定される。
また、認識率が低い認識性能群の算出元である複数の画像データと、画像認識手段130の学習に用いられた学習データとの類似性は、比較的低いと推定される。類似性が低い原因として、様々な事項が考えられる。
例えば、画像認識手段130の学習に認識性能Bの算出元である画像データのグループが用いられており、学習に用いられた画像データが撮影された地点向けの認識辞書を改良する場合を考える。
図2に示すグラフを参照すると、認識辞書を改良するためには、認識率が高い認識性能群Aの算出元である複数の画像データが学習に利用されればよいと判断される。
上述したように、認識性能に基づいて画像データのグループと学習データとの類似性を評価することによって、利用者は、学習データと類似している画像データのグループを容易に特定できる。利用者は、特定されたグループの画像データを、学習に使用する画像データに選定できる。
なお、画像認識手段130の構成は、複数の認識辞書を搭載し、1つの画像データのグループに対して認識辞書の数と同じ数だけ認識性能を出力する構成でもよい。
画像認識手段130の構成が複数の認識辞書を搭載する構成である場合、認識性能表示手段150は、画像データのグループ毎の認識性能をグラフ上にプロットする代わりに、1つのグループに対して出力された複数の認識性能の類似性を示す値をグラフ上にプロットしてもよい。
例えば、画像認識手段130は、1つのグループに対して認識性能の組を出力する。認識性能の組は、ベクトルを示すデータとして捉えられる。認識性能の組がベクトルを示すデータとして捉えられる場合、認識性能表示手段150は、類似度が容易に判断されるように、ベクトルの大きさやベクトルのなす角度を組に含まれる複数の認識性能の類似性を示す値としてプロットしてもよい。
なお、認識性能表示手段150は、画像認識手段130が複数の認識辞書それぞれに従って出力した各認識性能で構成される多次元データ(例えば、ベクトルを示すデータ)自体をグラフ上にプロットしてもよい。
[動作の説明]
以下、本実施形態の環境類似度表示装置100のグラフを表示する動作を図3を参照して説明する。図3は、第1の実施形態の環境類似度表示装置100によるグラフ表示処理の動作を示すフローチャートである。
以下、本実施形態の環境類似度表示装置100のグラフを表示する動作を図3を参照して説明する。図3は、第1の実施形態の環境類似度表示装置100によるグラフ表示処理の動作を示すフローチャートである。
最初に、画像認識手段130は、画像データが撮影された地点および期間毎にグループ化された、画像データ記憶手段110に記憶されている画像データに対して画像認識を行う。
画像認識を行うことによって、画像認識手段130は、画像データのグループ毎に認識性能を算出する(ステップS110)。画像認識手段130は、算出されたグループ毎の認識性能を認識性能表示手段150に入力する。
次いで、環境要因選択手段140は、表示されるグラフの軸に使用される環境要因を選択する(ステップS120)。環境要因選択手段140は、選択された環境要因を認識性能表示手段150に入力する。
次いで、認識性能表示手段150は、ステップS120で選択された環境要因を示す軸で構成されるグラフ上に、ステップS110で算出された画像データのグループ毎の認識性能をプロットする。
プロットした後、認識性能表示手段150は、生成されたグラフを表示する(ステップS130)。グラフを表示した後、環境類似度表示装置100は、グラフ表示処理を終了する。
[発明の効果]
本実施形態の環境類似度表示装置100は、同一地点で所定期間内に撮影された画像データをグループ化して保存する画像データ記憶手段110と、グループ化された画像データが撮影された時の環境要因が記録された環境要因データを保存する環境要因データ記憶手段120とを備える。
本実施形態の環境類似度表示装置100は、同一地点で所定期間内に撮影された画像データをグループ化して保存する画像データ記憶手段110と、グループ化された画像データが撮影された時の環境要因が記録された環境要因データを保存する環境要因データ記憶手段120とを備える。
また、環境類似度表示装置100は、グループ化された画像データに対して画像認識を行い、認識性能を出力する画像認識手段130と、環境要因を選択する環境要因選択手段140とを備える。また、環境類似度表示装置100は、選択された環境要因を示す軸で構成されるグラフ上にグループ毎の認識性能をプロットする認識性能表示手段150を備える。
本実施形態の環境類似度表示装置100は、認識性能の観点で環境の類似性を評価できる。また、環境類似度表示装置100は、学習データとして共に用いられると有効な画像データ群を明確に表示できる。
その理由は、画像認識手段130が画像データのグループに対して認識性能を計測し、認識性能表示手段150が環境要因を示す軸で構成されるグラフ上にグループ毎の認識性能を、グループに関連する環境要因に基づいてプロットする。
よって、利用者は、表示されたグラフを参照することによって、画像認識手段130が学習した学習データとグループの画像データとの類似性を推定し、さらに環境の類似性も推定できる。すなわち、利用者は、類似した環境にそれぞれ対応する画像データのグループをまとめて学習すればよいと判断できるからである。
本実施形態の環境類似度表示装置100が使用されると、類似性の評価が困難な環境要因、例えばスカラー値での属性値の表現が困難な環境要因が考慮される場合、または複数の環境要因が考慮される場合であっても、学習データと画像データとの類似性が推定可能になる。
以下、本実施形態の環境類似度表示装置100のハードウェア構成の具体例を説明する。図4は、本発明による環境類似度表示装置100のハードウェア構成例を示す説明図である。
図4に示す環境類似度表示装置100は、CPU(Central Processing Unit )101と、主記憶部102と、通信部103と、補助記憶部104とを備える。また、ユーザが操作するための入力部105や、ユーザに処理結果または処理内容の経過を提示するための出力部106を備えてもよい。
環境類似度表示装置100は、図4に示すCPU101が各構成要素が有する機能を提供するプログラムを実行することによって、ソフトウェアにより実現される。
すなわち、CPU101が補助記憶部104に格納されているプログラムを、主記憶部102にロードして実行し、環境類似度表示装置100の動作を制御することによって、各機能がソフトウェアにより実現される。
なお、図4に示す環境類似度表示装置100は、CPU101の代わりにDSP(Digital Signal Processor)を備えてもよい。または、図4に示す環境類似度表示装置100は、CPU101とDSPとを併せて備えてもよい。
主記憶部102は、データの作業領域やデータの一時退避領域として用いられる。主記憶部102は、例えばRAM(Random Access Memory)である。
通信部103は、有線のネットワークまたは無線のネットワーク(情報通信ネットワーク)を介して、周辺機器との間でデータを入力および出力する機能を有する。
補助記憶部104は、一時的でない有形の記憶媒体である。一時的でない有形の記憶媒体として、例えば磁気ディスク、光磁気ディスク、CD-ROM(Compact Disk Read Only Memory )、DVD-ROM(Digital Versatile Disk Read Only Memory )、半導体メモリが挙げられる。
入力部105は、データや処理命令を入力する機能を有する。入力部105は、例えばキーボードやマウス等の入力デバイスである。
出力部106は、データを出力する機能を有する。出力部106は、例えば液晶ディスプレイ装置等の表示装置、またはプリンタ等の印刷装置である。
また、図4に示すように、環境類似度表示装置100において、各構成要素は、システムバス107に接続されている。
補助記憶部104は、例えば、画像認識手段130、環境要因選択手段140、および認識性能表示手段150を実現するためのプログラムを記憶している。
なお、環境類似度表示装置100は、例えば内部に図1に示すような機能を実現するLSI(Large Scale Integration )等のハードウェア部品が含まれる回路が実装されてもよい。
また、環境類似度表示装置100は、CPU等の素子を用いるコンピュータ機能を含まないハードウェアにより実現されてもよい。例えば、各構成要素の一部または全部は、汎用の回路(circuitry )または専用の回路、プロセッサ等やこれらの組み合わせによって実現されてもよい。これらは、単一のチップ(例えば、上記のLSI)によって構成されてもよいし、バスを介して接続される複数のチップによって構成されてもよい。各構成要素の一部または全部は、上述した回路等とプログラムとの組み合わせによって実現されてもよい。
各構成要素の一部または全部が複数の情報処理装置や回路等により実現される場合には、複数の情報処理装置や回路等は集中配置されてもよいし、分散配置されてもよい。例えば、情報処理装置や回路等は、クライアントアンドサーバシステム、クラウドコンピューティングシステム等、各々が通信ネットワークを介して接続される形態として実現されてもよい。
次に、本発明の概要を説明する。図5は、本発明による環境類似度表示装置の概要を示すブロック図である。本発明による環境類似度表示装置10は、画像データが示す内容を認識する認識装置が出力した内容の認識率を、環境を構成する要因である環境要因を示す軸で構成されるグラフ上に画像データが撮影された環境の環境要因に基づいて表示する表示手段11(例えば、認識性能表示手段150)を備える。
そのような構成により、環境類似度表示装置は、学習データとして共に用いられると有効な画像データ群を明確に表示できる。
また、表示手段11は、同一地点で所定期間内に撮影された複数の画像データを含むグループに対して認識装置が出力した認識率をグラフ上に表示してもよい。また、環境類似度表示装置10は、複数の画像データを含むグループを記憶する第1記憶手段(例えば、画像データ記憶手段110)を備えてもよい。
そのような構成により、環境類似度表示装置は、表示内容が類似している複数の画像データをまとめて処理できる。
また、環境類似度表示装置10は、環境要因を選択する選択手段(例えば、環境要因選択手段140)を備え、表示手段11は、選択された環境要因を示す軸で構成されるグラフ上に認識率を表示してもよい。また、環境類似度表示装置10は、画像データが撮影された環境の環境要因を記憶する第2記憶手段を備えてもよい。
そのような構成により、環境類似度表示装置は、利用者が指定した環境要因を示す軸で構成されるグラフを提示できる。
また、表示手段11は、認識装置が複数の認識方式それぞれに従って出力した各認識率で構成される多次元データをグラフ上に表示してもよい。
そのような構成により、環境類似度表示装置は、複数の認識辞書を搭載した認識装置に対応できる。
また、環境類似度表示装置10は、画像データが示す内容を認識する認識手段(例えば、画像認識手段130)を備え、表示手段11は、認識手段が出力した認識率をグラフ上に表示してもよい。
そのような構成により、環境類似度表示装置は、学習データとして共に用いられると有効な画像データ群を明確に表示できる。
以上、実施形態および実施例を参照して本願発明を説明したが、本願発明は上記実施形態および実施例に限定されるものではない。本願発明の構成および詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
この出願は、2018年10月11日に出願された日本特許出願2018-192420を基礎とする優先権を主張し、その開示の全てをここに取り込む。
また、上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下に限られない。
(付記1)画像データが示す内容を認識する認識装置が出力した前記内容の認識率を、環境を構成する要因である環境要因を示す軸で構成されるグラフ上に前記画像データが撮影された環境の前記環境要因に基づいて表示する表示手段を備えることを特徴とする環境類似度表示装置。
(付記2)表示手段は、同一地点で所定期間内に撮影された複数の画像データを含むグループに対して認識装置が出力した認識率をグラフ上に表示する付記1記載の環境類似度表示装置。
(付記3)複数の画像データを含むグループを記憶する第1記憶手段を備える付記2記載の環境類似度表示装置。
(付記4)環境要因を選択する選択手段を備え、表示手段は、選択された環境要因を示す軸で構成されるグラフ上に認識率を表示する付記1から付記3のうちのいずれかに記載の環境類似度表示装置。
(付記5)画像データが撮影された環境の環境要因を記憶する第2記憶手段を備える付記1から付記4のうちのいずれかに記載の環境類似度表示装置。
(付記6)表示手段は、認識装置が複数の認識方式それぞれに従って出力した各認識率で構成される多次元データをグラフ上に表示する付記1から付記5のうちのいずれかに記載の環境類似度表示装置。
(付記7)画像データが示す内容を認識する認識手段を備え、表示手段は、前記認識手段が出力した認識率をグラフ上に表示する付記1から付記6のうちのいずれかに記載の環境類似度表示装置。
(付記8)画像データが示す内容を認識する認識装置が出力した前記内容の認識率を、環境を構成する要因である環境要因を示す軸で構成されるグラフ上に前記画像データが撮影された環境の前記環境要因に基づいて表示することを特徴とする環境類似度表示方法。
(付記9)同一地点で所定期間内に撮影された複数の画像データを含むグループに対して認識装置が出力した認識率をグラフ上に表示する付記8記載の環境類似度表示方法。
(付記10)コンピュータに、画像データが示す内容を認識する認識装置が出力した前記内容の認識率を、環境を構成する要因である環境要因を示す軸で構成されるグラフ上に前記画像データが撮影された環境の前記環境要因に基づいて表示する表示処理を実行させるための環境類似度表示プログラム。
(付記11)コンピュータに、表示処理で、同一地点で所定期間内に撮影された複数の画像データを含むグループに対して認識装置が出力した認識率をグラフ上に表示させる付記10記載の環境類似度表示プログラム。
10、100 環境類似度表示装置
11 表示手段
101 CPU
102 主記憶部
103 通信部
104 補助記憶部
105 入力部
106 出力部
107 システムバス
110 画像データ記憶手段
120 環境要因データ記憶手段
130 画像認識手段
140 環境要因選択手段
150 認識性能表示手段
11 表示手段
101 CPU
102 主記憶部
103 通信部
104 補助記憶部
105 入力部
106 出力部
107 システムバス
110 画像データ記憶手段
120 環境要因データ記憶手段
130 画像認識手段
140 環境要因選択手段
150 認識性能表示手段
Claims (11)
- 画像データが示す内容を認識する認識装置が出力した前記内容の認識率を、環境を構成する要因である環境要因を示す軸で構成されるグラフ上に前記画像データが撮影された環境の前記環境要因に基づいて表示する表示手段を備える
ことを特徴とする環境類似度表示装置。 - 表示手段は、同一地点で所定期間内に撮影された複数の画像データを含むグループに対して認識装置が出力した認識率をグラフ上に表示する
請求項1記載の環境類似度表示装置。 - 複数の画像データを含むグループを記憶する第1記憶手段を備える
請求項2記載の環境類似度表示装置。 - 環境要因を選択する選択手段を備え、
表示手段は、選択された環境要因を示す軸で構成されるグラフ上に認識率を表示する
請求項1から請求項3のうちのいずれか1項に記載の環境類似度表示装置。 - 画像データが撮影された環境の環境要因を記憶する第2記憶手段を備える
請求項1から請求項4のうちのいずれか1項に記載の環境類似度表示装置。 - 表示手段は、認識装置が複数の認識方式それぞれに従って出力した各認識率で構成される多次元データをグラフ上に表示する
請求項1から請求項5のうちのいずれか1項に記載の環境類似度表示装置。 - 画像データが示す内容を認識する認識手段を備え、
表示手段は、前記認識手段が出力した認識率をグラフ上に表示する
請求項1から請求項6のうちのいずれか1項に記載の環境類似度表示装置。 - 画像データが示す内容を認識する認識装置が出力した前記内容の認識率を、環境を構成する要因である環境要因を示す軸で構成されるグラフ上に前記画像データが撮影された環境の前記環境要因に基づいて表示する
ことを特徴とする環境類似度表示方法。 - 同一地点で所定期間内に撮影された複数の画像データを含むグループに対して認識装置が出力した認識率をグラフ上に表示する
請求項8記載の環境類似度表示方法。 - コンピュータに、
画像データが示す内容を認識する認識装置が出力した前記内容の認識率を、環境を構成する要因である環境要因を示す軸で構成されるグラフ上に前記画像データが撮影された環境の前記環境要因に基づいて表示する表示処理
を実行させるための環境類似度表示プログラム。 - コンピュータに、
表示処理で、同一地点で所定期間内に撮影された複数の画像データを含むグループに対して認識装置が出力した認識率をグラフ上に表示させる
請求項10記載の環境類似度表示プログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020550285A JP7060107B2 (ja) | 2018-10-11 | 2019-09-19 | 環境類似度表示装置、環境類似度表示方法および環境類似度表示アルゴリズム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-192420 | 2018-10-11 | ||
JP2018192420 | 2018-10-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020075468A1 true WO2020075468A1 (ja) | 2020-04-16 |
Family
ID=70164301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/036733 WO2020075468A1 (ja) | 2018-10-11 | 2019-09-19 | 環境類似度表示装置、環境類似度表示方法および環境類似度表示アルゴリズム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7060107B2 (ja) |
WO (1) | WO2020075468A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021256444A1 (ja) * | 2020-06-15 | 2021-12-23 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006031103A (ja) * | 2004-07-12 | 2006-02-02 | Toshiba Corp | 生体認証装置、生体認証方法および通行制御装置 |
-
2019
- 2019-09-19 JP JP2020550285A patent/JP7060107B2/ja active Active
- 2019-09-19 WO PCT/JP2019/036733 patent/WO2020075468A1/ja active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006031103A (ja) * | 2004-07-12 | 2006-02-02 | Toshiba Corp | 生体認証装置、生体認証方法および通行制御装置 |
Non-Patent Citations (1)
Title |
---|
ISOZUMI, CHIKARA ET AL.: "Licence plate recognition system with robustness against illumination change", IPSJ SIG TECHNICAL REPORTS, February 2012 (2012-02-01) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021256444A1 (ja) * | 2020-06-15 | 2021-12-23 | ||
WO2021256444A1 (ja) * | 2020-06-15 | 2021-12-23 | Jfeスチール株式会社 | 機械的特性の計測装置、機械的特性の計測方法、物質の製造設備、物質の管理方法および物質の製造方法 |
JP7095817B2 (ja) | 2020-06-15 | 2022-07-05 | Jfeスチール株式会社 | 機械的特性の計測装置、機械的特性の計測方法、物質の製造設備、物質の管理方法および物質の製造方法 |
US12092609B2 (en) | 2020-06-15 | 2024-09-17 | Jfe Steel Corporation | Mechanical property measuring apparatus, mechanical property measuring method, substance manufacturing equipment, substance management method, and substance manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020075468A1 (ja) | 2021-09-02 |
JP7060107B2 (ja) | 2022-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6397144B2 (ja) | 画像からの事業発見 | |
CN108229343B (zh) | 目标对象关键点检测方法、深度学习神经网络及装置 | |
CN111986178A (zh) | 产品缺陷检测方法、装置、电子设备和存储介质 | |
US11960569B2 (en) | System and method for refining an item identification model based on feedback | |
US12073624B2 (en) | System and method for capturing images for training of an item identification model | |
US11823444B2 (en) | System and method for aggregating metadata for item identification using digital image processing | |
US20180342071A1 (en) | Moving object tracking apparatus, moving object tracking method, and computer program product | |
US20200250431A1 (en) | Method and device for recognizing states of electrical devices | |
CN111222558B (zh) | 图像处理方法及存储介质 | |
CN114186007A (zh) | 高精地图生成方法、装置、电子设备和存储介质 | |
CN112288883A (zh) | 作业指导信息的提示方法、装置、电子设备及存储介质 | |
WO2020075468A1 (ja) | 環境類似度表示装置、環境類似度表示方法および環境類似度表示アルゴリズム | |
CN111241961A (zh) | 人脸检测方法、装置及电子设备 | |
CN114693963A (zh) | 基于电力数据特征提取的识别模型训练、识别方法及装置 | |
JPWO2020141588A1 (ja) | 情報処理装置、情報処理方法及びプログラム | |
CN114022658B (zh) | 一种目标检测方法、装置、存储介质及终端 | |
CN110942056A (zh) | 服饰关键点定位方法、装置、电子设备及介质 | |
US11798210B2 (en) | Neural network based detection of image space suitable for overlaying media content | |
JP6695454B1 (ja) | 情報処理装置、情報処理方法、及びプログラム | |
CN109034067B (zh) | 商品图像翻拍检测方法、系统、设备及存储介质 | |
US20200184216A1 (en) | Machine continuous learning method of neural network object classifier and related monitoring camera apparatus | |
CN118097706B (zh) | 电网厂站接线图的图元检测方法、系统、设备及介质 | |
CN115761815B (zh) | 人体检测模型的训练方法及人体检测方法、设备、介质 | |
JP2011232999A (ja) | 対象物検出装置、対象物検出方法、及びプログラム | |
CN112785658A (zh) | 一种基于图像处理的火灾预警方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19871870 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020550285 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19871870 Country of ref document: EP Kind code of ref document: A1 |