WO2020075301A1 - Storage battery device - Google Patents

Storage battery device Download PDF

Info

Publication number
WO2020075301A1
WO2020075301A1 PCT/JP2018/038198 JP2018038198W WO2020075301A1 WO 2020075301 A1 WO2020075301 A1 WO 2020075301A1 JP 2018038198 W JP2018038198 W JP 2018038198W WO 2020075301 A1 WO2020075301 A1 WO 2020075301A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery unit
voltage
battery
pair
charging
Prior art date
Application number
PCT/JP2018/038198
Other languages
French (fr)
Japanese (ja)
Inventor
黒田 和人
関野 正宏
英生 山崎
岳史 大澤
敏彦 正岡
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to PCT/JP2018/038198 priority Critical patent/WO2020075301A1/en
Publication of WO2020075301A1 publication Critical patent/WO2020075301A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the embodiment of the present invention relates to a storage battery device.
  • low voltage system power (12V system power)
  • high voltage system power (12V system power)
  • low voltage system power (12V system power) is also expected as power for maintaining the minimum safety function required for a vehicle.
  • the present invention has been made in view of the above, and an object thereof is to provide a storage battery device capable of simultaneously supplying low-voltage system power and high-voltage system power while maintaining reliability.
  • the storage battery device of the embodiment is a storage battery device that is installed in a vehicle and supplies electric power to an in-vehicle device, and has a plurality of battery cells connected in series between a pair of first charging / discharging terminals.
  • a first battery unit that supplies power via a first charge / discharge terminal, and a plurality of battery cells connected in series between a pair of second charge / discharge terminals, and a pair of second charge / discharge terminals are provided.
  • one second charging / discharging terminal is connected to the first charging / discharging terminal on the high potential side of the first battery unit, and the first charging / discharging terminal on the low potential side cooperates with the first battery unit.
  • a second battery unit that supplies high-voltage system power via the second charging / discharging terminal on the high potential side, and a DC voltage conversion of the power supplied from the first battery unit via the pair of first charging / discharging terminals. And can supply low-voltage system power through the low-voltage system power supply terminal 1 DC voltage converter and DC voltage conversion of electric power supplied from the second battery unit via the pair of second charging / discharging terminals, and connected in parallel to the first DC voltage converter at the low voltage system power supply terminal And a second DC voltage converter capable of supplying low voltage system power via the low voltage system power supply terminal.
  • FIG. 1 is a schematic block diagram of a vehicle storage battery system according to an embodiment.
  • FIG. 2 is a schematic configuration block diagram of the storage battery device.
  • FIG. 3 is a schematic configuration diagram of the DC-DC converter.
  • FIG. 4 is a processing flowchart of the embodiment.
  • FIG. 1 is a schematic block diagram of a vehicle storage battery system according to an embodiment.
  • the vehicular storage battery system 10 functions as a generator 12G that is driven by the engine 11 and is capable of generating power, or functions as an electric motor (motor) 12M that is supplied with electric power and assists the driving of the engine 11.
  • Power device 12 a storage battery device 13 that supplies power to the vehicle-mounted device, a controller 14 that measures the state of charge (voltage, charging current, and temperature) of the storage battery device 13 and controls the storage battery device 13, and a storage battery device.
  • the electric power device 12 is included in the second load group 16 when it functions as the electric motor 12M.
  • FIG. 2 is a schematic configuration block diagram of the storage battery device.
  • the storage battery device 13 includes a control circuit 21 that controls the storage battery device 13 as a whole, a first battery unit 22 that mainly supplies low-voltage system power, and a state (SOC, voltage, charging current, and temperature) of the first battery unit 22.
  • Status of the first monitoring circuit 23 that monitors and notifies the control result to the control circuit 21, the second battery unit 24 that cooperates with the first battery unit 22 to supply high-voltage power, and the state of the second battery unit 24.
  • a second monitoring circuit 25 for monitoring (SOC, voltage, charging current and temperature) and notifying the control circuit 21 of the monitoring result, and an input / output terminal T1 and an input / output terminal T2.
  • a first DC / DC converter 26 for performing conversion, a first input / output terminal T11 connected to the low potential side electrode of the first battery unit 22, and a second input / output terminal T11 connected to the high potential side electrode of the first battery unit 22.
  • a second DC / DC converter 27 having a terminal T21 and a second input / output terminal T22 connected to the high potential side terminal of the second battery unit 24, for performing DC / DC (direct current / direct current) conversion;
  • the ground terminal TG connected to the low potential side electrode of the one battery unit 22 and the first input / output terminal T11, and the input / output terminal T1 of the first DC / DC converter 26 and the first input / output terminal T12 of the second DC / DC converter.
  • the control circuit 21 includes a communication terminal TC for communicating with the controller 14.
  • the first battery unit 22 and the second battery unit 24 have the same configuration, and a plurality of battery cells 30 are connected in series.
  • the rated output voltage of the first battery unit 22 and the second battery unit 24 is 24 V
  • 24 V is output between the ground terminal TG and the second input / output terminal T2
  • the first DC / The DC converter 26 performs DC / DC conversion (step-down) on this, and outputs 12V (low voltage system power) between the ground terminal TG and the low voltage system power supply terminal TL.
  • 24V is output between the second input / output terminal T21 and the second input / output terminal T22
  • 12V is output between the first input / output terminal T11 and the first input / output terminal T12.
  • 48 V high voltage system power
  • the battery cell 30 is preferably a lithium-ion secondary battery or a nickel-hydrogen secondary battery because it has excellent output characteristics. Further, from the viewpoint of high weight energy density, the lithium ion secondary battery is more preferable.
  • a positive electrode having a larger operating voltage range than the maximum voltage of the cell is an iron phosphate-based positive electrode and a negative electrode is a carbon-based lithium ion secondary battery or a positive electrode is 3d.
  • a lithium ion secondary battery in which the negative electrode is a transition metal lithium oxide (eg, lithium manganate oxide, lithium nickel oxide, lithium cobalt oxide, etc.) and the negative electrode is lithium titanate oxide is more preferable.
  • the above-mentioned positive electrode is a 3d transition metal lithium oxide (for example, lithium manganate oxide).
  • a lithium ion secondary battery in which the negative electrode is a lithium titanate oxide (for example, Li 4 Ti 5 O 12 ) is more preferable.
  • the configuration of the battery cell 30 will be described in more detail.
  • a case where a lithium ion battery cell is used as the battery cell 30 will be described as an example.
  • a second mode of the battery cell 30 includes a lithium metal compound containing at least one metal element selected from the group consisting of cobalt, nickel and manganese, and the lithium metal compound is Li a Ni b Co c Mn.
  • a positive electrode having a positive electrode active material-containing layer represented by d O 4 (where molar ratios a, b, c and d are 0 ⁇ a ⁇ 1.1, b + c + d 2), and a titanium-containing metal composite oxide. It is configured as a non-aqueous electrolyte secondary battery including a negative electrode containing the same and a non-aqueous electrolyte containing a non-aqueous solvent.
  • the average particle diameter of the primary particles of lithium titanium oxide is 1 ⁇ m or less, and the specific surface area of the negative electrode layer by the BET method is 3 to 50 m 2. It is desirable that it be in the range of / g.
  • the lithium titanium oxide is represented by Li 4 + x Ti 5 O 12 (x is ⁇ 1 ⁇ x ⁇ 3) or Li 2 + x Ti 3 O 7 (x is ⁇ 1 ⁇ x ⁇ 3).
  • the titanium-containing metal composite oxide is a metal composite oxide containing Ti and at least one element selected from the group consisting of P, V, Sn, Cu, Ni and Fe. desirable.
  • the configurations of the first DC / DC converter 26 and the second DC / DC converter 27 will be described.
  • the first DC / DC converter 26 and the second DC / DC converter 27 have the same configuration, the second DC / DC converter 27 will be mainly described.
  • FIG. 3 is a schematic configuration diagram of the second DC-DC converter.
  • the second DC / DC converter 27 is a push-pull insulation type DC-DC converter, and includes an insulation transformer 31.
  • the first input / output terminal T12 connected to the first battery unit 22 is connected to the first intermediate tap 31T1 which is an intermediate tap on the primary winding side of the isolation transformer 31, and the first intermediate tap 31T1 is connected to the first battery unit 22 at one end thereof.
  • One end of the switch 32 is connected, and one end of the second switch 33 is connected to the other end of the primary winding.
  • the other end of the first switch 32 and the other end of the second switch 33 are connected to the first input / output terminal T11, respectively. Further, a current stabilizing capacitor 34 is connected between the first input / output terminal T11 and the first input / output terminal T12.
  • the second input / output terminal T22 connected to the second battery unit 24 is connected to the second intermediate tap 31T2, which is an intermediate tap on the secondary winding side of the insulation transformer 31, and is connected to one end of the secondary winding.
  • Is connected to one end of a third switch 35 and the other end of the secondary winding is connected to one end of a fourth switch 36.
  • the other end of the third switch 35 and the other end of the fourth switch 36 are connected to the second input / output terminal T21, respectively.
  • one end is connected to the second intermediate tap 31T2, and the coil 37 having the other end is connected to the second input / output terminal T22. Furthermore, between the connection point between the coil 37 and the second input / output terminal T21 and between the second input / output terminal T22, a capacitor 38 that functions in cooperation with the coil 37 and functions as a low-pass filter is connected.
  • the second DC / DC converter 27 also includes a current sensor 39 for detecting an output current to the second battery unit 24, a control signal from the control circuit 21, a detected voltage of the first battery unit 22, and a detected second battery.
  • a conversion operation circuit 40 that performs DC / DC conversion by controlling the first switch 32 to the fourth switch 36 based on the output current to the second battery unit 24 detected by the voltage and current sensor 39 of the unit 24. I have it.
  • the input / output terminal T1 of the first DC / DC converter 26 corresponds to the first input / output terminal T12 of the second DC / DC converter 27, and the second DC / DC converter
  • An input / output terminal (not shown) corresponding to the first input / output terminal T11 in 27 is connected to the ground terminal TG.
  • the input / output terminal T2 of the first DC / DC converter 26 corresponds to the second input / output terminal T22 of the second DC / DC converter 27, and corresponds to the second input / output terminal T21 of the second DC / DC converter 27.
  • the non-input / output terminal is connected to the ground terminal TG.
  • FIG. 4 is a processing flowchart of the embodiment.
  • the control circuit 21 determines whether or not the failure notification for notifying that the first battery unit 22 is in the failure state has been received from the first monitoring circuit 23 (step S11).
  • step S11 when the failure notification notifying that the first battery unit 22 is in the failure state has not been received from the first monitoring circuit 23 (step S11; No), the control circuit 21 performs the second monitoring. It is determined whether or not a failure notification for notifying that the second battery unit 24 is in a failure state has been received from the circuit 25 (step S12).
  • step S12 when the failure notification notifying that the second battery unit 24 is in the failure state has not been received from the second monitoring circuit 25 (step S12; No), the first DC / DC converter 26 and the The 2DC / DC converter 27 is driven and controlled to supply low-voltage system power (for example, 12V) from both (step S13).
  • the cell balance of the first battery unit 22 and the second battery unit 24 can be maintained similarly, and the first battery unit 22 and the second battery unit 22 can be maintained.
  • the two-battery unit 24 cooperates to supply high-voltage system power (for example, 48 V), it is possible to suppress a decrease in the effective storage capacity of the first battery unit 22 and the second battery unit 24.
  • control circuit 21 determines whether or not the activation signal WU is being received from the ECU (not shown) of the vehicle body (step S14).
  • step S14 when the activation signal WU is being received from the ECU (not shown) of the vehicle body (step S14; Yes), the control circuit 21 turns on the circuit breaker 28 (step S15).
  • low voltage system power for example, 12V
  • high voltage system power for example, 48 V
  • the failure notification is not received from both the first monitoring circuit 23 and the second monitoring circuit 25
  • the first battery unit 22 and the high voltage system power are output regardless of whether the low voltage system power or the high voltage system power is output.
  • the cell balance of the second battery unit 24 can be maintained, and the reduction of the effective storage amount at the time of high-voltage system power output can be suppressed.
  • step S14 when the activation signal WU is not being received from the ECU (not shown) of the vehicle body from the controller 14 (step S14; No), the breaker 28 is opened (or the open state is maintained). (Step S16), the process proceeds to step S11 again, and the above-described process is performed.
  • step S11 when the failure notification for notifying that the first battery unit 22 is in the failure state is received from the first monitoring circuit 23 (step S11; Yes), the control circuit 21 causes the first DC The / DC converter 26 is stopped (step S17). Next, the control circuit 21 determines whether or not the failure notification for notifying that the second battery unit 24 is in the failure state has been received from the second monitoring circuit 25 (step S18).
  • step S18 When it is determined in step S18 that the failure notification notifying that the second battery unit 24 is in the failure state has not been received from the second monitoring circuit 25 (step S18; No), the second DC / DC converter 27 is driven. Then, control is performed so as to supply low-voltage power (for example, 12 V) (step S19). Therefore, at this time, it is possible to supply the low voltage system power via the ground terminal TG and the low voltage system power supply terminal TL. Then, the process proceeds to step S22. In the determination of step S18, when the failure notification notifying that the second battery unit 24 is in the failure state is received from the second monitoring circuit 25 (step S18; Yes), the control circuit 21 causes the second DC / DC. The converter 27 is stopped (step S25). Therefore, at this time, the power supply is disabled.
  • step S18 determines the failure notification notifying that the second battery unit 24 is in the failure state has not been received from the second monitoring circuit 25 (step S18; No).
  • step S12 when the failure notification notifying that the second battery unit 24 is in the failure state is received from the second monitoring circuit 25 (step S12; Yes), the control circuit 21 causes the second DC / DC.
  • the converter 27 is stopped (step S20).
  • control circuit 21 drives the first DC / DC converter 26, Control is performed so as to supply low voltage system power (for example, 12 V) (step S21).
  • the control circuit 21 requests the controller 14 to open the circuit breaker 28 (step S22). It should be noted that the request for permitting the opening of the circuit breaker 28 is not performed when the cell voltage or the cell temperature is in a state immediately before the occurrence of the dangerous event, but the circuit breaker 28 is immediately opened.
  • control circuit 21 determines whether or not the controller 14 permits the circuit breaker 28 to open the circuit breaker (step S23). If it is determined in step S23 that the controller 14 has not yet permitted the circuit breaker to open (step S23; No), the control circuit 21 again shifts the process to step S22 and enters the standby state.
  • step S23 When it is determined in step S23 that the controller 14 permits the circuit breaker to open (step S23; Yes), the control circuit 21 opens the circuit breaker 28 (step S24), and the process proceeds to step S11 again. To do.
  • the present embodiment it is possible to supply the low voltage system power and the high voltage system power at the same time, and at least one of the first battery unit 22 and the second battery unit 24 is supplied.
  • the power cannot be supplied, it is possible to continue supplying the low-voltage power through the corresponding DC voltage converter (DC / DC converter), improving the reliability of the low-voltage power supply. Can be made.
  • the cell balance of the battery cells forming each of the first battery unit 22 and the second battery unit 24 due to the difference in the usage frequency of the first battery unit 22 and the second battery unit 24 can be constantly maintained,
  • the charge / discharge capacity of the storage battery device, in particular, the charge / discharge capacity of high-voltage power can be secured for a long time.
  • the program executed by the storage battery device of the present embodiment is a file in an installable format or an executable format, and can be read by a computer such as a semiconductor storage device such as a CD-ROM, a DVD (Digital Versatile Disk), or a USB memory. It is provided by being recorded in a recording medium.
  • a computer such as a semiconductor storage device such as a CD-ROM, a DVD (Digital Versatile Disk), or a USB memory. It is provided by being recorded in a recording medium.
  • the program executed by the storage battery device of the present embodiment may be stored in a computer connected to a network such as the Internet and provided by being downloaded via the network.
  • the program executed by the storage battery device of the present embodiment may be provided or distributed via a network such as the Internet.
  • the program executed by the storage battery device according to the present embodiment may be incorporated in a ROM or the like in advance and provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A storage battery device according to an embodiment of the present invention comprises: a first battery unit that comprises a plurality of battery cells connected in series, and that supplies power via a pair of first charging-discharging terminals; a second battery unit that comprises a plurality of battery cells connected in series, has one second charging-discharging terminal connected to the high-potential first charging-discharging terminal of the first battery unit, and supplies high-voltage power via the low-potential first charging-discharging terminal and a high-potential second charging-discharging terminal in tandem with the first battery unit; a first DC voltage converter that converts power, supplied from the first battery unit via the pair of first charging-discharging terminals, to DC voltage, and is capable of supplying low-voltage power; and a second DC voltage converter that converts power, supplied from the second battery unit via the pair of second charging-discharging terminals, to DC voltage, is connected to a low-voltage power supply terminal in parallel with the first DC voltage converter, and is capable of supplying low-voltage power. As a result, it is possible to simultaneously supply low-voltage power and high-voltage power while maintaining reliability.

Description

蓄電池装置Storage battery
 本発明の実施形態は、蓄電池装置に関する。 The embodiment of the present invention relates to a storage battery device.
 近年、自動車においては、電装部品の消費電力の増加や回生エネルギーの活用のため、これまで12Vが一般的であった車載用機器(補機)、電装部品等に供給する車内の電源電圧を高電圧化(36~48V)する検討が進められている。例えば、定格電圧を48Vにすると、既存の12Vシステムに比べて出力を高くでき、使用する電流を下げられるため、一部のシステムでは効率を高められる。 In recent years, in automobiles, in order to increase the power consumption of electrical components and to utilize regenerative energy, the power supply voltage inside the vehicle has increased to 12 V, which has been generally used until now, for in-vehicle devices (auxiliaries) and electrical components. A study is underway to turn it into a voltage (36 to 48V). For example, a rated voltage of 48V can provide higher output and lower current consumption compared to existing 12V systems, thus increasing efficiency in some systems.
 一方で、回生エネルギーの活用のために、小型大容量で繰りかえしの充放電に耐えられる蓄電素子としてリチウムイオン電池の利用が広がっている。 On the other hand, in order to utilize regenerative energy, the use of lithium-ion batteries is expanding as a storage element that can withstand repeated charging and discharging with a small capacity.
特開2009-277647号公報JP, 2009-277647, A 特開2001-136735号公報JP, 2001-136735, A
 しかしながら、車載用機器及び電装部品の全てが高電圧対応するには時間を要するため、低電圧系電力(12V系電力)と、高電圧系電力と、の双方を供給することが考えられている。一方、低電圧系電力(12V系電力)は、車両として求められる最低限の安全機能を維持するための電力としても期待されている。 However, since it takes time for all the in-vehicle equipment and electrical components to support high voltage, it is considered to supply both low voltage system power (12V system power) and high voltage system power. . On the other hand, low voltage system power (12V system power) is also expected as power for maintaining the minimum safety function required for a vehicle.
 本発明は、上記に鑑みてなされたものであって、信頼性を維持しつつ低電圧系電力と高電圧系電力とを同時に供給可能な蓄電池装置を提供することを目的としている。 The present invention has been made in view of the above, and an object thereof is to provide a storage battery device capable of simultaneously supplying low-voltage system power and high-voltage system power while maintaining reliability.
 実施形態の蓄電池装置は、車両に搭載されて車載用機器に電力を供給する蓄電池装置であって、一対の第1充放電端子の間に複数の直列接続された電池セルを有し、一対の第1充放電端子を介して電力を供給する第1電池ユニットと、一対の第2充放電端子の間に複数の直列接続された電池セルを有し、一対の第2充放電端子を介して電力を供給するとともに、一方の第2充放電端子が第1電池ユニットの高電位側の第1充放電端子に接続され、第1電池ユニットと共働して低電位側の第1充放電端子及び高電位側の第2充放電端子を介して高電圧系電力を供給する第2電池ユニットと、一対の第1充放電端子を介して第1電池ユニットから供給された電力の直流電圧変換を行い、低電圧系電力供給端子を介して低電圧系電力を供給可能な第1直流電圧変換器と、一対の第2充放電端子を介して第2電池ユニットから供給された電力の直流電圧変換を行い、低電圧系電力供給端子に第1直流電圧変換器と並列に接続され、低電圧系電力供給端子を介して低電圧系電力を供給可能な第2直流電圧変換器と、を備える。 The storage battery device of the embodiment is a storage battery device that is installed in a vehicle and supplies electric power to an in-vehicle device, and has a plurality of battery cells connected in series between a pair of first charging / discharging terminals. A first battery unit that supplies power via a first charge / discharge terminal, and a plurality of battery cells connected in series between a pair of second charge / discharge terminals, and a pair of second charge / discharge terminals are provided. While supplying electric power, one second charging / discharging terminal is connected to the first charging / discharging terminal on the high potential side of the first battery unit, and the first charging / discharging terminal on the low potential side cooperates with the first battery unit. And a second battery unit that supplies high-voltage system power via the second charging / discharging terminal on the high potential side, and a DC voltage conversion of the power supplied from the first battery unit via the pair of first charging / discharging terminals. And can supply low-voltage system power through the low-voltage system power supply terminal 1 DC voltage converter and DC voltage conversion of electric power supplied from the second battery unit via the pair of second charging / discharging terminals, and connected in parallel to the first DC voltage converter at the low voltage system power supply terminal And a second DC voltage converter capable of supplying low voltage system power via the low voltage system power supply terminal.
図1は、実施形態の車両用蓄電池システムの概要構成ブロック図である。FIG. 1 is a schematic block diagram of a vehicle storage battery system according to an embodiment. 図2は、蓄電池装置の概要構成ブロック図である。FIG. 2 is a schematic configuration block diagram of the storage battery device. 図3は、DC-DCコンバータの概要構成図である。FIG. 3 is a schematic configuration diagram of the DC-DC converter. 図4は、実施形態の処理フローチャートである。FIG. 4 is a processing flowchart of the embodiment.
 次に図面を参照して実施形態について詳細に説明する。
 図1は、実施形態の車両用蓄電池システムの概要構成ブロック図である。
 車両用蓄電池システム10は、エンジン11に駆動されて発電可能な発電機(ジェネレータ)12Gとして機能し、あるいは、電力が供給されてエンジン11の駆動を補助(アシスト)する電動機(モータ)12Mとして機能する電力機器12と、車載用機器に電力を供給する蓄電池装置13と、蓄電池装置13の充電状態(電圧、充電電流及び温度)を測定し、蓄電池装置13の制御を行うコントローラ14と、蓄電池装置13から低電圧系電力(例えば、12V系電力)が供給される第1負荷群15と、蓄電池装置13から高電圧系電力(例えば、48V系電力)が供給される第2負荷群16と、を備えている。
 上記構成において、電力機器12は、電動機12Mとして機能する場合には、第2負荷群16に含まれる。
Next, embodiments will be described in detail with reference to the drawings.
FIG. 1 is a schematic block diagram of a vehicle storage battery system according to an embodiment.
The vehicular storage battery system 10 functions as a generator 12G that is driven by the engine 11 and is capable of generating power, or functions as an electric motor (motor) 12M that is supplied with electric power and assists the driving of the engine 11. Power device 12, a storage battery device 13 that supplies power to the vehicle-mounted device, a controller 14 that measures the state of charge (voltage, charging current, and temperature) of the storage battery device 13 and controls the storage battery device 13, and a storage battery device. A first load group 15 to which low voltage system power (for example, 12V system power) is supplied from 13; and a second load group 16 to which high voltage system power (for example, 48V system power) is supplied from the storage battery device 13, Is equipped with.
In the above configuration, the electric power device 12 is included in the second load group 16 when it functions as the electric motor 12M.
 ここで、蓄電池装置13の構成について説明する。
 図2は、蓄電池装置の概要構成ブロック図である。
 蓄電池装置13は、蓄電池装置13全体を制御する制御回路21と、主として低電圧系電力を供給する第1電池ユニット22と、第1電池ユニット22の状態(SOC、電圧、充電電流及び温度)を監視し、監視結果を制御回路21に通知する第1監視回路23と、第1電池ユニット22と共働して高電圧系電力を供給する第2電池ユニット24と、第2電池ユニット24の状態(SOC、電圧、充電電流及び温度)を監視し、監視結果を制御回路21に通知する第2監視回路25と、入出力端子T1及び入出力端子T2を有し、DC/DC(直流/直流)変換を行う第1DC/DCコンバータ26と、第1電池ユニット22の低電位側電極に接続される第1入出力端子T11と、第1電池ユニット22の高電位側電極に接続される第2入出力端子T21と、第2電池ユニット24の高電位側端子に接続される第2入出力端子T22と、を有し、DC/DC(直流/直流)変換を行う第2DC/DCコンバータ27と、第1電池ユニット22の低電位側電極及び第1入出力端子T11に接続されるグランド端子TGと、第1DC/DCコンバータ26の入出力端子T1及び第2DC/DCコンバータの第1入出力端子T12に接続される低電圧系電力供給端子TLと、遮断器28の一端に接続された高電圧系電力供給端子THと、制御回路21にコントローラ14から起動信号WUが入力される起動信号端子TWと、制御回路21がコントローラ14との間で通信を行うための通信端子TCと、を備えている。
Here, the configuration of the storage battery device 13 will be described.
FIG. 2 is a schematic configuration block diagram of the storage battery device.
The storage battery device 13 includes a control circuit 21 that controls the storage battery device 13 as a whole, a first battery unit 22 that mainly supplies low-voltage system power, and a state (SOC, voltage, charging current, and temperature) of the first battery unit 22. Status of the first monitoring circuit 23 that monitors and notifies the control result to the control circuit 21, the second battery unit 24 that cooperates with the first battery unit 22 to supply high-voltage power, and the state of the second battery unit 24. It has a second monitoring circuit 25 for monitoring (SOC, voltage, charging current and temperature) and notifying the control circuit 21 of the monitoring result, and an input / output terminal T1 and an input / output terminal T2. ) A first DC / DC converter 26 for performing conversion, a first input / output terminal T11 connected to the low potential side electrode of the first battery unit 22, and a second input / output terminal T11 connected to the high potential side electrode of the first battery unit 22. In and out A second DC / DC converter 27 having a terminal T21 and a second input / output terminal T22 connected to the high potential side terminal of the second battery unit 24, for performing DC / DC (direct current / direct current) conversion; The ground terminal TG connected to the low potential side electrode of the one battery unit 22 and the first input / output terminal T11, and the input / output terminal T1 of the first DC / DC converter 26 and the first input / output terminal T12 of the second DC / DC converter. A low voltage system power supply terminal TL to be connected, a high voltage system power supply terminal TH connected to one end of the circuit breaker 28, a start signal terminal TW to which a start signal WU is input from the controller 14 to the control circuit 21, The control circuit 21 includes a communication terminal TC for communicating with the controller 14.
 上記構成において、第1電池ユニット22及び第2電池ユニット24は、同一構成であり、複数のバッテリセル30が直列接続されている。 In the above configuration, the first battery unit 22 and the second battery unit 24 have the same configuration, and a plurality of battery cells 30 are connected in series.
 この構成の場合、例えば、第1電池ユニット22及び第2電池ユニット24の定格出力電圧が24Vだとすると、グランド端子TGと第2入出力端子T2との間には、24Vが出力され、第1DC/DCコンバータ26は、これをDC/DC変換(降圧)して、グランド端子TGと低電圧系電力供給端子TLとの間に12V(低電圧系電力)を出力する。
 同様に、第2入出力端子T21と第2入出力端子T22との間には、24Vが出力され、第1入出力端子T11と第1入出力端子T12との間には、12Vが出力され、グランド端子TGと高電圧系電力供給端子THとの間には、48V(高圧系電力)が出力される。
In the case of this configuration, for example, if the rated output voltage of the first battery unit 22 and the second battery unit 24 is 24 V, 24 V is output between the ground terminal TG and the second input / output terminal T2, and the first DC / The DC converter 26 performs DC / DC conversion (step-down) on this, and outputs 12V (low voltage system power) between the ground terminal TG and the low voltage system power supply terminal TL.
Similarly, 24V is output between the second input / output terminal T21 and the second input / output terminal T22, and 12V is output between the first input / output terminal T11 and the first input / output terminal T12. 48 V (high voltage system power) is output between the ground terminal TG and the high voltage system power supply terminal TH.
 上記構成において、バッテリセル30としては、出力特性に優れることからリチウムイオン二次電池、ニッケル水素二次電池が好適である。また、重量エネルギー密度の高さの観点からは、リチウムイオン二次電池の方がより好ましい。 In the above configuration, the battery cell 30 is preferably a lithium-ion secondary battery or a nickel-hydrogen secondary battery because it has excellent output characteristics. Further, from the viewpoint of high weight energy density, the lithium ion secondary battery is more preferable.
 さらにバッテリセル30としては、リチウムイオン二次電池の中でもセルの最大電圧と比較して稼働電圧範囲の割合の大きい正極がリン酸鉄系で負極が炭素系のリチウムイオン二次電池もしくは正極が3d遷移金属リチウム酸化物(例えばマンガン酸リチウム酸化物、ニッケル酸リチウム酸化物、コバルト酸リチウム酸化物等)で負極がチタン酸リチウム酸化物のリチウムイオン二次電池がより好ましい。 Further, as the battery cell 30, among lithium ion secondary batteries, a positive electrode having a larger operating voltage range than the maximum voltage of the cell is an iron phosphate-based positive electrode and a negative electrode is a carbon-based lithium ion secondary battery or a positive electrode is 3d. A lithium ion secondary battery in which the negative electrode is a transition metal lithium oxide (eg, lithium manganate oxide, lithium nickel oxide, lithium cobalt oxide, etc.) and the negative electrode is lithium titanate oxide is more preferable.
 さらに、充放電において負極電位の平滑性が高いとセル間電位の差が少なくなり、横流やセルバランスの制御性に優れるため、前述した正極が3d遷移金属リチウム酸化物(例えばマンガン酸リチウム酸化物、ニッケル酸リチウム酸化物、コバルト酸リチウム酸化物)のコバルト酸リチウムの一部をニッケルとマンガンで置換した三元系(例えば、Li(Ni-Mn-Co)O)のリチウムイオン二次電池であって負極がチタン酸リチウム酸化物(例えば、LiTi12)のリチウムイオン二次電池がより好ましい。 Furthermore, when the smoothness of the negative electrode potential during charging / discharging is high, the potential difference between the cells is small, and the controllability of cross current and cell balance is excellent. Therefore, the above-mentioned positive electrode is a 3d transition metal lithium oxide (for example, lithium manganate oxide). , Lithium nickel oxide, lithium cobalt oxide), a ternary (eg, Li (Ni—Mn—Co) O 2 ) lithium ion secondary battery in which a part of lithium cobalt oxide is replaced with nickel and manganese. However, a lithium ion secondary battery in which the negative electrode is a lithium titanate oxide (for example, Li 4 Ti 5 O 12 ) is more preferable.
 ここで、より詳細にバッテリセル30の構成について説明する。
 この場合において、バッテリセル30として、リチウムイオンバッテリセルを用いる場合を例として説明する。
Here, the configuration of the battery cell 30 will be described in more detail.
In this case, a case where a lithium ion battery cell is used as the battery cell 30 will be described as an example.
 バッテリセル30の第1の態様としては、コバルト、ニッケルおよびマンガンよりなる群から選択される少なくとも一種類の金属元素を含有するリチウム金属化合物を含みリチウム金属化合物はLiNiCoMn(但し、モル比a,b,c及びdは0≦a≦1.1、b+c+d=1)で表される正極活物質含有層を備えた正極と、チタン含有金属複合酸化物を含む負極と、非水溶媒を含む非水電解質とを備えた非水電解質二次電池として構成される。  A first mode of the battery cell 30 includes a lithium metal compound containing at least one metal element selected from the group consisting of cobalt, nickel and manganese, and the lithium metal compound is Li a Ni b Co c Mn d O. 2 (provided that the molar ratios a, b, c and d are 0 ≦ a ≦ 1.1, b + c + d = 1) and a negative electrode containing a titanium-containing metal composite oxide. And a non-aqueous electrolyte containing a non-aqueous solvent.
 また、バッテリセル30の第2の態様としては、コバルト、ニッケルおよびマンガンよりなる群から選択される少なくとも一種類の金属元素を含有するリチウム金属化合物を含みリチウム金属化合物はLiNiCoMn(但し、モル比a,b,c及びdは0≦a≦1.1、b+c+d=2)で表される正極活物質含有層を備えた正極と、チタン含有金属複合酸化物を含む負極と、非水溶媒を含む非水電解質と、を備えた非水電解質二次電池として構成される。  A second mode of the battery cell 30 includes a lithium metal compound containing at least one metal element selected from the group consisting of cobalt, nickel and manganese, and the lithium metal compound is Li a Ni b Co c Mn. a positive electrode having a positive electrode active material-containing layer represented by d O 4 (where molar ratios a, b, c and d are 0 ≦ a ≦ 1.1, b + c + d = 2), and a titanium-containing metal composite oxide. It is configured as a non-aqueous electrolyte secondary battery including a negative electrode containing the same and a non-aqueous electrolyte containing a non-aqueous solvent.
 また、上記第1の態様及び第2の態様のバッテリセル30を構成する場合にリチウムチタン酸化物の一次粒子の平均粒径が1μm以下で、負極層のBET法による比表面積が3~50m/gの範囲であるようにすることが望ましい。  Further, in the case of configuring the battery cell 30 of the first and second aspects, the average particle diameter of the primary particles of lithium titanium oxide is 1 μm or less, and the specific surface area of the negative electrode layer by the BET method is 3 to 50 m 2. It is desirable that it be in the range of / g.
 さらに、リチウムチタン酸化物は、Li4+xTi12(xは-1≦x≦3)もしくはLi2+xTi(xは-1≦x≦3)で表されるようにするのが望ましい。
 さらにまた、チタン含有金属複合酸化物はP、V、Sn、Cu、Ni及びFeよりなる群から選択される少なくとも1種類の元素とTiとを含有する金属複合酸化物であるようにするのが望ましい。
Further, the lithium titanium oxide is represented by Li 4 + x Ti 5 O 12 (x is −1 ≦ x ≦ 3) or Li 2 + x Ti 3 O 7 (x is −1 ≦ x ≦ 3). desirable.
Furthermore, the titanium-containing metal composite oxide is a metal composite oxide containing Ti and at least one element selected from the group consisting of P, V, Sn, Cu, Ni and Fe. desirable.
 次に第1DC/DCコンバータ26及び第2DC/DCコンバータ27の構成について説明する。
 この場合において、第1DC/DCコンバータ26及び第2DC/DCコンバータ27は同様の構成であるので、主として第2DC/DCコンバータ27を説明する。
Next, the configurations of the first DC / DC converter 26 and the second DC / DC converter 27 will be described.
In this case, since the first DC / DC converter 26 and the second DC / DC converter 27 have the same configuration, the second DC / DC converter 27 will be mainly described.
 図3は、第2DC-DCコンバータの概要構成図である。
 第2DC/DCコンバータ27は、プッシュプル方式の絶縁型DC-DCコンバータであり、絶縁トランス31を備えている。
FIG. 3 is a schematic configuration diagram of the second DC-DC converter.
The second DC / DC converter 27 is a push-pull insulation type DC-DC converter, and includes an insulation transformer 31.
 絶縁トランス31の一次巻線側の中間タップである第1中間タップ31T1には、第1電池ユニット22に接続される第1入出力端子T12が接続され、一次巻線の一端には、第1スイッチ32の一端が接続され、一次巻線の他端には、第2スイッチ33の一端が接続されている。 The first input / output terminal T12 connected to the first battery unit 22 is connected to the first intermediate tap 31T1 which is an intermediate tap on the primary winding side of the isolation transformer 31, and the first intermediate tap 31T1 is connected to the first battery unit 22 at one end thereof. One end of the switch 32 is connected, and one end of the second switch 33 is connected to the other end of the primary winding.
 第1スイッチ32の他端及び第2スイッチ33の他端は、第1入出力端子T11にそれぞれ接続されている。
 さらに第1入出力端子T11と第1入出力端子T12との間には、電流安定化用のコンデンサ34が接続されている。
The other end of the first switch 32 and the other end of the second switch 33 are connected to the first input / output terminal T11, respectively.
Further, a current stabilizing capacitor 34 is connected between the first input / output terminal T11 and the first input / output terminal T12.
 また、絶縁トランス31の二次巻線側の中間タップである第2中間タップ31T2には、第2電池ユニット24に接続される第2入出力端子T22が接続され、二次巻線の一端には、第3スイッチ35の一端が接続され、二次次巻線の他端には、第4スイッチ36の一端が接続されている。
 第3スイッチ35の他端及び第4スイッチ36の他端は、第2入出力端子T21にそれぞれ接続されている。
In addition, the second input / output terminal T22 connected to the second battery unit 24 is connected to the second intermediate tap 31T2, which is an intermediate tap on the secondary winding side of the insulation transformer 31, and is connected to one end of the secondary winding. Is connected to one end of a third switch 35 and the other end of the secondary winding is connected to one end of a fourth switch 36.
The other end of the third switch 35 and the other end of the fourth switch 36 are connected to the second input / output terminal T21, respectively.
 さらに第2中間タップ31T2に一端が接続され、第2入出力端子T22に他端が接続されたコイル37が接続されている。
 さらにまた、コイル37と第2入出力端子T21との接続点及び第2入出力端子T22の間には、コイル37と共働してロウパスフィルタとして機能するコンデンサ38が接続されている。
Further, one end is connected to the second intermediate tap 31T2, and the coil 37 having the other end is connected to the second input / output terminal T22.
Furthermore, between the connection point between the coil 37 and the second input / output terminal T21 and between the second input / output terminal T22, a capacitor 38 that functions in cooperation with the coil 37 and functions as a low-pass filter is connected.
 また、第2DC/DCコンバータ27は、第2電池ユニット24への出力電流を検出する電流センサ39と、制御回路21からの制御信号、検出した第1電池ユニット22の電圧、検出した第2電池ユニット24の電圧及び電流センサ39により検出した第2電池ユニット24への出力電流に基づいて第1スイッチ32~第4スイッチ36を制御して、DC/DC変換を行う変換演算回路40と、を備えている。 The second DC / DC converter 27 also includes a current sensor 39 for detecting an output current to the second battery unit 24, a control signal from the control circuit 21, a detected voltage of the first battery unit 22, and a detected second battery. A conversion operation circuit 40 that performs DC / DC conversion by controlling the first switch 32 to the fourth switch 36 based on the output current to the second battery unit 24 detected by the voltage and current sensor 39 of the unit 24. I have it.
 また、図3中に括弧付きの符号で示すように、第1DC/DCコンバータ26の入出力端子T1は、第2DC/DCコンバータ27における第1入出力端子T12に相当し、第2DC/DCコンバータ27における第1入出力端子T11に相当する図示しない入出力端子は、グランド端子TGに接続されている。
 同様に、第1DC/DCコンバータ26の入出力端子T2は、第2DC/DCコンバータ27における第2入出力端子T22に相当し、第2DC/DCコンバータ27における第2入出力端子T21に相当する図示しない入出力端子は、グランド端子TGに接続されている。
Further, as indicated by the reference numeral in parentheses in FIG. 3, the input / output terminal T1 of the first DC / DC converter 26 corresponds to the first input / output terminal T12 of the second DC / DC converter 27, and the second DC / DC converter An input / output terminal (not shown) corresponding to the first input / output terminal T11 in 27 is connected to the ground terminal TG.
Similarly, the input / output terminal T2 of the first DC / DC converter 26 corresponds to the second input / output terminal T22 of the second DC / DC converter 27, and corresponds to the second input / output terminal T21 of the second DC / DC converter 27. The non-input / output terminal is connected to the ground terminal TG.
 図4は、実施形態の処理フローチャートである。
 制御回路21は、第1監視回路23から第1電池ユニット22が故障状態にあることを通知する故障通知を受信したか否かを判別する(ステップS11)。
FIG. 4 is a processing flowchart of the embodiment.
The control circuit 21 determines whether or not the failure notification for notifying that the first battery unit 22 is in the failure state has been received from the first monitoring circuit 23 (step S11).
 ステップS11の判別において、第1監視回路23から第1電池ユニット22が故障状態にあることを通知する故障通知を受信していない場合は(ステップS11;No)、制御回路21は、第2監視回路25から第2電池ユニット24が故障状態にあることを通知する故障通知を受信したか否かを判別する(ステップS12)。
 ステップS12の判別において、第2監視回路25から第2電池ユニット24が故障状態にあることを通知する故障通知を受信していない場合は(ステップS12;No)、第1DC/DCコンバータ26及び第2DC/DCコンバータ27を駆動し、双方から低電圧系電力(例えば、12V)を供給するように制御する(ステップS13)。
In the determination of step S11, when the failure notification notifying that the first battery unit 22 is in the failure state has not been received from the first monitoring circuit 23 (step S11; No), the control circuit 21 performs the second monitoring. It is determined whether or not a failure notification for notifying that the second battery unit 24 is in a failure state has been received from the circuit 25 (step S12).
In the determination of step S12, when the failure notification notifying that the second battery unit 24 is in the failure state has not been received from the second monitoring circuit 25 (step S12; No), the first DC / DC converter 26 and the The 2DC / DC converter 27 is driven and controlled to supply low-voltage system power (for example, 12V) from both (step S13).
 この結果、低電圧系電力が出力されて第1負荷群15により供給される場合でも、第1電池ユニット22及び第2電池ユニット24のセルバランスを同様に維持でき、第1電池ユニット22及び第2電池ユニット24が共働して、高電圧系電力(例えば、48V)を供給した場合でも第1電池ユニット22及び第2電池ユニット24の有効蓄電容量の減少を抑制できる。 As a result, even when the low-voltage system power is output and supplied by the first load group 15, the cell balance of the first battery unit 22 and the second battery unit 24 can be maintained similarly, and the first battery unit 22 and the second battery unit 22 can be maintained. Even when the two-battery unit 24 cooperates to supply high-voltage system power (for example, 48 V), it is possible to suppress a decrease in the effective storage capacity of the first battery unit 22 and the second battery unit 24.
 続いて制御回路21は、車両本体の図示しないECUから起動信号WUを受信中か否かを判別する(ステップS14)。 Subsequently, the control circuit 21 determines whether or not the activation signal WU is being received from the ECU (not shown) of the vehicle body (step S14).
 ステップS14の判別において、車両本体の図示しないECUから起動信号WUを受信中の場合には(ステップS14;Yes)、制御回路21は、遮断器28を投入する(ステップS15)。
 これらの結果、グランド端子TGと低電圧系電力供給端子TLとの間には、低電圧系電力(例えば、12V)が供給され、これと同時に、グランド端子TGと高電圧系電力供給端子THとの間には、高電圧系電力(例えば、48V)が供給される。
 したがって、第1監視回路23及び第2監視回路25の双方から故障通知を受信していない場合には、低電圧系電力あるいは高電圧系電力のいずれを出力する場合でも、第1電池ユニット22及び第2電池ユニット24のセルバランスを同様に維持でき、高電圧系電力出力時の有効蓄電量の減少を抑制できる。
In the determination of step S14, when the activation signal WU is being received from the ECU (not shown) of the vehicle body (step S14; Yes), the control circuit 21 turns on the circuit breaker 28 (step S15).
As a result, low voltage system power (for example, 12V) is supplied between the ground terminal TG and the low voltage system power supply terminal TL, and at the same time, the ground terminal TG and the high voltage system power supply terminal TH are connected. In between, high voltage system power (for example, 48 V) is supplied.
Therefore, when the failure notification is not received from both the first monitoring circuit 23 and the second monitoring circuit 25, the first battery unit 22 and the high voltage system power are output regardless of whether the low voltage system power or the high voltage system power is output. Similarly, the cell balance of the second battery unit 24 can be maintained, and the reduction of the effective storage amount at the time of high-voltage system power output can be suppressed.
 一方、ステップS14の判別において、コントローラ14から車両本体の図示しないECUから起動信号WUを受信中ではない場合には(ステップS14;No)、遮断器28の開放を行い(あるいは、開放状態を維持し)(ステップS16)、処理を再びステップS11に移行し、上述した処理を行う。 On the other hand, in the determination of step S14, when the activation signal WU is not being received from the ECU (not shown) of the vehicle body from the controller 14 (step S14; No), the breaker 28 is opened (or the open state is maintained). (Step S16), the process proceeds to step S11 again, and the above-described process is performed.
 一方、ステップS11の判別において、第1監視回路23から第1電池ユニット22が故障状態にあることを通知する故障通知を受信した場合には(ステップS11;Yes)、制御回路21は、第1DC/DCコンバータ26を停止する(ステップS17)。
 次に制御回路21は、第2監視回路25から第2電池ユニット24が故障状態にあることを通知する故障通知を受信したか否かを判別する(ステップS18)。
On the other hand, in the determination of step S11, when the failure notification for notifying that the first battery unit 22 is in the failure state is received from the first monitoring circuit 23 (step S11; Yes), the control circuit 21 causes the first DC The / DC converter 26 is stopped (step S17).
Next, the control circuit 21 determines whether or not the failure notification for notifying that the second battery unit 24 is in the failure state has been received from the second monitoring circuit 25 (step S18).
 ステップS18の判別において、第2監視回路25から第2電池ユニット24が故障状態にあることを通知する故障通知を受信していない場合は(ステップS18;No)、第2DC/DCコンバータ27を駆動し、低電圧系電力(例えば、12V)を供給するように制御する(ステップS19)。
 したがって、この時点でグランド端子TG及び低電圧系電力供給端子TLを介した低電圧系電力の供給が可能となる。
 そして処理をステップS22に移行する。
 ステップS18の判別において、第2監視回路25から第2電池ユニット24が故障状態にあることを通知する故障通知を受信した場合には(ステップS18;Yes)、制御回路21は、第2DC/DCコンバータ27を停止する(ステップS25)。
 したがって、この時点で電力供給は不能な状態となる。
When it is determined in step S18 that the failure notification notifying that the second battery unit 24 is in the failure state has not been received from the second monitoring circuit 25 (step S18; No), the second DC / DC converter 27 is driven. Then, control is performed so as to supply low-voltage power (for example, 12 V) (step S19).
Therefore, at this time, it is possible to supply the low voltage system power via the ground terminal TG and the low voltage system power supply terminal TL.
Then, the process proceeds to step S22.
In the determination of step S18, when the failure notification notifying that the second battery unit 24 is in the failure state is received from the second monitoring circuit 25 (step S18; Yes), the control circuit 21 causes the second DC / DC. The converter 27 is stopped (step S25).
Therefore, at this time, the power supply is disabled.
 ステップS12の判別において、第2監視回路25から第2電池ユニット24が故障状態にあることを通知する故障通知を受信した場合には(ステップS12;Yes)、制御回路21は、第2DC/DCコンバータ27を停止する(ステップS20)。 In the determination of step S12, when the failure notification notifying that the second battery unit 24 is in the failure state is received from the second monitoring circuit 25 (step S12; Yes), the control circuit 21 causes the second DC / DC. The converter 27 is stopped (step S20).
 この場合においては、第1監視回路23からは第1電池ユニット22が故障状態にあることを通知する故障通知を受信していないので、制御回路21は、第1DC/DCコンバータ26を駆動し、低電圧系電力(例えば、12V)を供給するように制御する(ステップS21)。 In this case, since the failure notification notifying that the first battery unit 22 is in the failure state has not been received from the first monitoring circuit 23, the control circuit 21 drives the first DC / DC converter 26, Control is performed so as to supply low voltage system power (for example, 12 V) (step S21).
 続いて制御回路21は、高電圧系電力の供給が行えないため、遮断器28の開放許可要求をコントローラ14に対して行う(ステップS22)。なお、遮断器28の開放許可要求は、セル電圧やセル温度が危険事象の発生寸前の状態の場合には行わずに、直ちに遮断器28の開放を行う。 Subsequently, since the control circuit 21 cannot supply the high-voltage power, the control circuit 21 requests the controller 14 to open the circuit breaker 28 (step S22). It should be noted that the request for permitting the opening of the circuit breaker 28 is not performed when the cell voltage or the cell temperature is in a state immediately before the occurrence of the dangerous event, but the circuit breaker 28 is immediately opened.
 そして、制御回路21は、コントローラ14から遮断器28の遮断器開放許可がなされたか否かを判別する(ステップS23)。
 ステップS23の判別において、未だコントローラ14から遮断器開放許可がなされていない場合には(ステップS23;No)、制御回路21は、再び処理をステップS22に移行し待機状態となる。
Then, the control circuit 21 determines whether or not the controller 14 permits the circuit breaker 28 to open the circuit breaker (step S23).
If it is determined in step S23 that the controller 14 has not yet permitted the circuit breaker to open (step S23; No), the control circuit 21 again shifts the process to step S22 and enters the standby state.
 ステップS23の判別において、コントローラ14から遮断器開放許可がなされた場合には(ステップS23;Yes)、制御回路21は、遮断器28の開放を行い(ステップS24)、処理を再びステップS11に移行する。 When it is determined in step S23 that the controller 14 permits the circuit breaker to open (step S23; Yes), the control circuit 21 opens the circuit breaker 28 (step S24), and the process proceeds to step S11 again. To do.
 以上の説明のように、本実施形態によれば、低電圧系電力及び高電圧系電力を同時に供給可能とすることができるとともに、第1電池ユニット22あるいは第2電池ユニット24のいずれか一方が供給不能な状態となった場合には、対応する直流電圧変換器(DC/DCコンバータ)を介して低電圧系電力の供給を継続することが可能となり、低電圧系電力供給の信頼性を向上させることができる。 As described above, according to the present embodiment, it is possible to supply the low voltage system power and the high voltage system power at the same time, and at least one of the first battery unit 22 and the second battery unit 24 is supplied. When the power cannot be supplied, it is possible to continue supplying the low-voltage power through the corresponding DC voltage converter (DC / DC converter), improving the reliability of the low-voltage power supply. Can be made.
 さらに第1電池ユニット22及び第2電池ユニット24の使用頻度の差に起因する第1電池ユニット22及び第2電池ユニット24のそれぞれを構成している電池セルのセルバランスを常時とることができ、蓄電池装置の充放電能力、特に、高電圧系電力の充放電能力を長く確保することができる。 Furthermore, the cell balance of the battery cells forming each of the first battery unit 22 and the second battery unit 24 due to the difference in the usage frequency of the first battery unit 22 and the second battery unit 24 can be constantly maintained, The charge / discharge capacity of the storage battery device, in particular, the charge / discharge capacity of high-voltage power can be secured for a long time.
 本実施形態の蓄電池装置で実行されるプログラムは、インストール可能な形式又は実行可能な形式のファイルでCD-ROM、DVD(Digital Versatile Disk)、USBメモリ等の半導体記憶装置等のコンピュータで読み取り可能な記録媒体に記録されて提供される。 The program executed by the storage battery device of the present embodiment is a file in an installable format or an executable format, and can be read by a computer such as a semiconductor storage device such as a CD-ROM, a DVD (Digital Versatile Disk), or a USB memory. It is provided by being recorded in a recording medium.
 また、本実施形態の蓄電池装置で実行されるプログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、本実施形態の蓄電池装置で実行されるプログラムをインターネット等のネットワーク経由で提供または配布するように構成しても良い。
 また、本実施形態の蓄電池装置で実行されるプログラムを、ROM等に予め組み込んで提供するように構成してもよい。
Further, the program executed by the storage battery device of the present embodiment may be stored in a computer connected to a network such as the Internet and provided by being downloaded via the network. In addition, the program executed by the storage battery device of the present embodiment may be provided or distributed via a network such as the Internet.
Further, the program executed by the storage battery device according to the present embodiment may be incorporated in a ROM or the like in advance and provided.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. These new embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the invention described in the claims and equivalents thereof.

Claims (6)

  1.  車両に搭載されて車載用機器に電力を供給する蓄電池装置であって、
     一対の第1充放電端子の間に複数の直列接続された電池セルを有し、前記一対の第1充放電端子を介して電力を供給する第1電池ユニットと、
     一対の第2充放電端子の間に複数の直列接続された電池セルを有し、前記一対の第2充放電端子を介して電力を供給するとともに、一方の前記第2充放電端子が前記第1電池ユニットの高電位側の前記第1充放電端子に接続され、前記第1電池ユニットと共働して低電位側の前記第1充放電端子及び高電位側の前記第2充放電端子を介して高電圧系電力を供給する第2電池ユニットと、
     前記一対の第1充放電端子を介して前記第1電池ユニットから供給された電力の直流電圧変換を行い、低電圧系電力供給端子を介して低電圧系電力を供給可能な第1直流電圧変換器と、
     前記一対の第2充放電端子を介して前記第2電池ユニットから供給された電力の直流電圧変換を行い、前記低電圧系電力供給端子に前記第1直流電圧変換器と並列に接続され、前記低電圧系電力供給端子を介して前記低電圧系電力を供給可能な第2直流電圧変換器と、
     を備えた蓄電池装置。
    A storage battery device mounted on a vehicle to supply electric power to an in-vehicle device,
    A first battery unit having a plurality of battery cells connected in series between a pair of first charging / discharging terminals, and supplying electric power via the pair of first charging / discharging terminals;
    A plurality of battery cells connected in series are provided between a pair of second charge / discharge terminals, and power is supplied via the pair of second charge / discharge terminals, and one of the second charge / discharge terminals is the first battery. One battery unit is connected to the first charge / discharge terminal on the high potential side, and cooperates with the first battery unit to connect the first charge / discharge terminal on the low potential side and the second charge / discharge terminal on the high potential side. A second battery unit for supplying high-voltage system power via
    First DC voltage conversion capable of DC voltage conversion of electric power supplied from the first battery unit via the pair of first charging / discharging terminals, and supplying low voltage system electric power via the low voltage system electric power supply terminal A vessel,
    DC voltage conversion of electric power supplied from the second battery unit via the pair of second charging / discharging terminals is performed, and the low voltage system power supply terminal is connected in parallel with the first DC voltage converter. A second direct-current voltage converter capable of supplying the low-voltage power through a low-voltage power supply terminal;
    Storage battery device equipped with.
  2.  前記第1電池ユニット及び前記第2電池ユニットは、定格出力電圧及び定格電力容量が同一とされ、
     前記第1電池ユニットが前記一対の第1充放電端子及び前記第1直流電圧変換器を介して出力する電力と、前記第2電池ユニットが前記一対の第2充放電端子及び前記第2直流電圧変換器を介して出力する電力とが、同一となるように制御する制御回路を備えた、
     請求項1記載の蓄電池装置。
    The first battery unit and the second battery unit have the same rated output voltage and rated power capacity,
    Electric power that the first battery unit outputs via the pair of first charge / discharge terminals and the first DC voltage converter, and the second battery unit outputs the pair of second charge / discharge terminals and the second DC voltage. The output power through the converter, equipped with a control circuit to control the same,
    The storage battery device according to claim 1.
  3.  前記第1電池ユニット及び前記第2電池ユニットにおいて、前記電池セルは、同種の電池セルが用いられている、
     請求項2記載の蓄電池装置。
    In the first battery unit and the second battery unit, the same type of battery cells are used as the battery cells,
    The storage battery device according to claim 2.
  4.  前記第1電池ユニット及び前記第2電池ユニットは、同一構成とされている、
     請求項2または請求項3記載の蓄電池装置。
    The first battery unit and the second battery unit have the same configuration,
    The storage battery device according to claim 2 or 3.
  5.  前記第1電池ユニットを監視する第1監視回路と、
     前記第2電池ユニットを監視する第2監視回路と、
     高圧系電力を供給する電力供給経路に設けられた遮断器と、を備え、
     前記制御回路は、前記第1監視回路及び前記第2監視回路の監視結果に基づいて、前記第1電池ユニット及び前記第2電池ユニットのうち、少なくともいずれか一方が故障状態となった場合に、前記遮断器を開放状態とする、
     請求項2または請求項3記載の蓄電池装置。
    A first monitoring circuit for monitoring the first battery unit;
    A second monitoring circuit for monitoring the second battery unit;
    A circuit breaker provided in a power supply path for supplying high-voltage power,
    The control circuit, based on the monitoring results of the first monitoring circuit and the second monitoring circuit, when at least one of the first battery unit and the second battery unit is in a failure state, Open the circuit breaker,
    The storage battery device according to claim 2 or 3.
  6.  前記制御回路は、前記第1監視回路及び前記第2監視回路の監視結果に基づいて、前記第1電池ユニット及び前記第2電池ユニットのうち、少なくともいずれか一方が故障状態となった場合に、前記第1直流電圧変換器及び前記第2直流電圧変換器のうち、故障状態となった電池ユニットに対応する直流電圧変換器を動作停止状態とする、
     請求項5記載の蓄電池装置。
    The control circuit, based on the monitoring results of the first monitoring circuit and the second monitoring circuit, when at least one of the first battery unit and the second battery unit is in a failure state, Among the first DC voltage converter and the second DC voltage converter, the DC voltage converter corresponding to the battery unit in the failed state is put into an inoperative state.
    The storage battery device according to claim 5.
PCT/JP2018/038198 2018-10-12 2018-10-12 Storage battery device WO2020075301A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/038198 WO2020075301A1 (en) 2018-10-12 2018-10-12 Storage battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/038198 WO2020075301A1 (en) 2018-10-12 2018-10-12 Storage battery device

Publications (1)

Publication Number Publication Date
WO2020075301A1 true WO2020075301A1 (en) 2020-04-16

Family

ID=70164664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038198 WO2020075301A1 (en) 2018-10-12 2018-10-12 Storage battery device

Country Status (1)

Country Link
WO (1) WO2020075301A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016208832A (en) * 2015-04-21 2016-12-08 三星電子株式会社Samsung Electronics Co.,Ltd. Battery control apparatus, battery module, battery pack, and battery control method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016208832A (en) * 2015-04-21 2016-12-08 三星電子株式会社Samsung Electronics Co.,Ltd. Battery control apparatus, battery module, battery pack, and battery control method

Similar Documents

Publication Publication Date Title
US8884461B2 (en) Battery system for vehicle and control method thereof
WO2012168963A1 (en) Battery system, and method for controlling battery system
JP5742990B2 (en) Charging method
JP6427574B2 (en) Device for charge balancing of power battery
JP2008109840A (en) Power supply system, vehicle with the same, control method of power supply system, and computer readable recording medium which records program for making computer execute the control method
CN109690901B (en) Supercapacitor-based energy storage device
JP6343599B2 (en) Drive device
JP2011018547A (en) Lithium ion secondary battery and battery system
US20200168958A1 (en) Charge voltage controller for energy storage device, energy storage apparatus, battery charger for energy storage device, and charging method for energy storage device
JP7252807B2 (en) power system
JP2014023231A (en) Onboard charge control unit
JP2015009654A (en) Power storage system
US10576835B2 (en) Energy storage device, transport apparatus, and control method
JP4387813B2 (en) DC voltage feeder
JP2019016571A (en) Composite power storage system
JP6214607B2 (en) Power storage device and transportation equipment
JP2012234697A (en) Battery system
JP2011130534A (en) Power supply device for vehicle
JP2011108372A (en) Module for power supply device and automobile equipped with this
JP6194344B2 (en) Driving device and transportation equipment
WO2020075301A1 (en) Storage battery device
WO2020136907A1 (en) Storage battery device
US10439544B2 (en) Drive system, transporter, and control method performed by drive system
JP6170984B2 (en) Power storage device, transport device and control method
WO2014184861A1 (en) Battery system, mobile body and power storage system provided with battery system, and control method for battery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP