WO2020075262A1 - Failure sign detection device - Google Patents

Failure sign detection device Download PDF

Info

Publication number
WO2020075262A1
WO2020075262A1 PCT/JP2018/037896 JP2018037896W WO2020075262A1 WO 2020075262 A1 WO2020075262 A1 WO 2020075262A1 JP 2018037896 W JP2018037896 W JP 2018037896W WO 2020075262 A1 WO2020075262 A1 WO 2020075262A1
Authority
WO
WIPO (PCT)
Prior art keywords
equipment
feature amount
failure
detection device
power
Prior art date
Application number
PCT/JP2018/037896
Other languages
French (fr)
Japanese (ja)
Inventor
貴玄 中村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020549900A priority Critical patent/JP6976454B2/en
Priority to PCT/JP2018/037896 priority patent/WO2020075262A1/en
Publication of WO2020075262A1 publication Critical patent/WO2020075262A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to a failure precursor detection device for detecting a precursor of a failure in equipment equipment mounted on a refrigeration and air conditioning equipment.
  • Patent Document 1 discloses a method of estimating a motor temperature using a current, a voltage, and a control constant of a motor that drives a compressor, and detecting an abnormality inside the compressor based on the estimation result.
  • Patent Document 2 discloses a method of detecting a pulsation value with respect to an average current value of a motor that drives a compressor and a rotation speed of the motor, and detecting an abnormality inside the compressor based on the detected pulsation value and the rotation speed. It is disclosed.
  • the internal state of the compressor is estimated by analyzing the magnitude and phase of the current of each phase of the three-phase current output to the compressor motor and estimating the torque or rotation speed of the motor. .
  • a weight coefficient is arranged on a map in which the suction pressure of the refrigerant in the compressor is the horizontal axis and the discharge pressure is the vertical axis, and the weight coefficient determined by the acquired suction pressure and discharge pressure of the refrigerant is used. Based on this, a method for diagnosing an abnormality inside the compressor is disclosed. In this method, when the temperature rises inside the compressor due to an abnormality such as poor lubrication, the temperature inside the compressor is estimated by using the influence of the temperature rise on the temperature and pressure of the refrigerant circuit. It
  • the motor that drives the compressor is affected by the heat radiation from the constant contact with the refrigerant and the heat capacity of the motor material itself. Therefore, the motor temperature does not instantly rise when an abnormality occurs. That is, when the motor temperature rises due to an abnormality inside the compressor, it is considered that at least the abnormality continues for several minutes. Therefore, as described in Patent Document 1, the method of detecting an abnormality inside the compressor by using the motor temperature can detect an abnormality that continues until the motor temperature rises. Abnormalities that do not continue until the motor temperature rises may be overlooked.
  • the motor current value varies depending on the motor specifications and load conditions. Therefore, in order to set the threshold value for detecting an abnormality based on the normal time, it is necessary to measure the normal value of the entire operating condition range for each motor model using an actual machine. Therefore, as described in Patent Document 2, the method of detecting the abnormality inside the compressor with high accuracy using the pulsation value with respect to the average current value of the motor requires a huge development load.
  • the present invention has been made in view of the above problems, and quickly and reliably detects a precursor of a failure in equipment such as a compressor related to air conditioning, and accurately determines the degree of damage to the internal structure of the equipment. It is an object of the present invention to provide a failure sign detection device that can be used.
  • the failure sign detection device of the present invention is a failure sign detection device that operates with electric power supplied from a power source via a power conversion device, and detects a sign of a failure in equipment equipment related to air conditioning,
  • a feature amount acquisition unit that obtains a feature amount of the facility device based on the input device-related information about the facility device, and estimates a temperature rise amount of the internal structure of the facility device based on the obtained feature amount.
  • a temperature rise estimation unit a storage unit that stores a threshold value for the temperature rise amount, and a possibility of failure of the equipment and damage to the internal structure based on a comparison result of the estimated temperature rise amount and the threshold value.
  • a determination unit that determines the degree.
  • the feature amount of the facility device is extracted based on the input device-related information, and the temperature rise amount of the internal structure of the facility device is estimated based on the extracted feature amount. Then, the estimated temperature increase amount and the threshold value are compared to determine the possibility of failure and the degree of damage to the equipment. Therefore, a sign of a failure in the equipment related to air conditioning can be detected quickly and reliably, and the degree of damage to the internal structure of the equipment can be accurately determined.
  • FIG. 1 is a schematic diagram showing an example of a configuration of an air conditioner to which a failure sign detection device according to a first embodiment is applied.
  • FIG. 3 is a block diagram showing an example of a configuration of a failure precursor detection device according to the first embodiment. It is a hardware block diagram which shows an example of a structure of the failure sign detection apparatus of FIG. It is a hardware block diagram which shows the other example of a structure of the failure sign detection apparatus of FIG. 5 is a flowchart showing an example of the flow of failure precursor detection processing by the failure precursor detection device according to the first embodiment.
  • Embodiment 1 the failure sign detection device according to the first embodiment of the present invention will be described.
  • the failure sign detection device according to the first embodiment is applied to, for example, an air conditioner and detects a sign of a failure of equipment such as a compressor related to air conditioning.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an air conditioner 100 to which the failure sign detection device 1 according to the first embodiment is applied.
  • the air conditioner 100 of FIG. 1 performs a cooling operation or a heating operation by a heat pump system.
  • the air conditioning apparatus 100 includes a compressor 101, a condenser 102, an expansion device 103, an evaporator 104, a control device 105, and a power conversion device 110.
  • the compressor 101, the condenser 102, the expansion device 103, and the evaporator 104 are sequentially connected by a refrigerant pipe, thereby forming a refrigerant circuit in which the refrigerant circulates in the refrigerant pipe.
  • the compressor 101 has a compression element 101a for compressing the refrigerant and a motor 101b connected to the compression element 101a and supplied with electric power by the power conversion device 110.
  • the power conversion device 110 receives power supply from the power supply 200, supplies the converted power to the motor 101b, and drives the motor 101b to rotate.
  • the rotation speed of the motor 101b is controlled by the control device 105.
  • the condenser 102 exchanges heat between the refrigerant and air to condense the refrigerant.
  • the expansion device 103 expands the refrigerant.
  • the opening degree of the expansion device 103 is controlled by the control device 105.
  • the evaporator 104 exchanges heat between the refrigerant and air to evaporate the refrigerant.
  • the control device 105 controls the overall operation of the air conditioning device 100 based on information received from various sensors (not shown) provided in each part of the air conditioning device 100.
  • the control device 105 controls the motor 101b of the compressor 101 based on the information received from the failure sign detection device 1 described later.
  • the control device 105 realizes various functions by executing software on an arithmetic device such as a microcomputer, or is configured by hardware such as a circuit device that realizes various functions.
  • the air-conditioning apparatus 100 includes the failure sign detection device 1.
  • FIG. 2 is a block diagram showing an example of the configuration of the failure sign detection device 1 according to the first embodiment.
  • the failure sign detection device 1 includes a feature amount acquisition unit 11, a temperature rise estimation unit 12, a determination unit 13, a storage unit 14, and a notification unit 15.
  • the failure sign detection device 1 realizes various functions by executing software on a computing device such as a microcomputer, or is configured by hardware such as a circuit device that realizes various functions.
  • the feature amount acquisition unit 11 receives device-related information from the outside, and acquires the feature amount based on this device-related information.
  • the feature amount is a physical amount having a feature related to a precursor of a failure of the compressor 101, and is, for example, power consumption of the motor 101b that drives the compressor 101.
  • the feature amount is acquired, for example, using an arithmetic expression or the like according to the input device-related information.
  • the device-related information is a physical amount related to the operation of equipment such as the compressor 101, which is necessary for acquiring the feature amount, and is, for example, information obtained when the compressor 101 operates.
  • the device-related information is, for example, a primary input from the power supply 200 that is input to the power conversion device 110, a secondary input that is output from the power conversion device 110, and is input to the motor 101b that drives the compressor 101. is there.
  • the temperature rise estimation unit 12 estimates the temperature rise amount of the internal structure of the compressor 101 based on the characteristic amount acquired by the characteristic amount acquisition unit 11.
  • the temperature rise amount is estimated using, for example, an arithmetic expression according to the acquired feature amount.
  • the determination unit 13 compares the amount of temperature increase estimated by the temperature increase estimation unit 12 with the lower limit threshold value stored in the storage unit 14, and determines the possibility of failure of the compressor 101 based on the comparison result. In addition, when the determination unit 13 determines that the compressor 101 may fail, the determination unit 13 compares the temperature increase amount with the determination threshold value stored in the storage unit 14 to determine the degree of damage inside the compressor 101. judge. The determination unit 13 outputs information indicating the determination result to the notification unit 15 and the control device 105.
  • the lower limit threshold is a threshold indicating the boundary of whether or not the compressor 101 may fail.
  • the determination threshold value is used to determine the degree of damage inside the compressor 101 when it is determined that the compressor 101 may “fail”.
  • the determination threshold value is larger than the lower limit threshold value and is set stepwise.
  • the storage unit 14 stores in advance various information used when processing is performed by each unit of the failure sign detection device 1.
  • the storage unit 14 stores in advance a lower limit threshold value and one or a plurality of determination threshold values set for the temperature increase amount used in the determination unit 13.
  • the notification unit 15 notifies the possibility of failure and the degree of damage to the compressor 101 according to the determination result of the determination unit 13.
  • a display and a display unit such as an LED (Light Emitting Diode) or a voice output unit such as a speaker is used.
  • the notification unit 15 is a display, information according to the determination result is displayed in characters or figures.
  • the notification unit 15 is an LED, information corresponding to the determination result is displayed by lighting, blinking, or extinguishing.
  • the notification unit 15 is a speaker, information according to the determination result is notified by voice.
  • the failure sign detection device 1 of FIG. 2 includes a processing circuit 21 and an output device 22 as shown in FIG. Each function of the feature amount acquisition unit 11, the temperature rise estimation unit 12, the determination unit 13, and the storage unit 14 of FIG. 2 is realized by the processing circuit 21. Further, the notification unit 15 is the output device 22 of FIG.
  • the processing circuit 21 When each function is executed by hardware, the processing circuit 21 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), and an FPGA (Field-Programmable Gate). Array) or a combination thereof.
  • the function of each of the feature amount acquisition unit 11, the temperature rise estimation unit 12, the determination unit 13, and the storage unit 14 may be realized by the processing circuit 21, or the function of each unit may be realized by one processing circuit 21. Good.
  • FIG. 4 is a hardware configuration diagram showing another example of the configuration of the failure precursor detection device 1 of FIG.
  • the failure sign detection device 1 of FIG. 2 includes a processor 31, a memory 32, and an output device 33, as shown in FIG.
  • the functions of the characteristic amount acquisition unit 11, the temperature rise estimation unit 12, the determination unit 13, and the storage unit 14 are realized by the processor 31 and the memory 32.
  • the notification unit 15 in FIG. 2 is the output device 33 in FIG.
  • the functions of the feature amount acquisition unit 11, the temperature rise estimation unit 12, and the determination unit 13 are realized by software, firmware, or a combination of software and firmware.
  • the software and firmware are described as programs and stored in the memory 32.
  • the processor 31 realizes the function of each unit by reading and executing the program stored in the memory 32.
  • a RAM Random Access Memory
  • a ROM Read Only Memory
  • a flash memory an EPROM (Erasable and Programmable ROM), and an EEPROM (Electrically erasable and nonvolatile ROM) such as an EEPROM (Electrically erasable and nonvolatile).
  • a removable recording medium such as a magnetic disk, a flexible disk, an optical disk, a CD (Compact Disc), an MD (Mini Disc), and a DVD (Digital Versatile Disc) may be used.
  • the high-temperature and high-pressure gas refrigerant flowing into the condenser 102 exchanges heat with the air and radiates heat to condense to become a high-pressure liquid refrigerant, which then flows out of the condenser 102.
  • the high-pressure liquid refrigerant that has flowed out of the condenser 102 is expanded and decompressed by the expansion device 103, becomes a low-temperature low-pressure gas-liquid two-phase refrigerant, and flows into the evaporator 104.
  • the low-temperature low-pressure gas-liquid two-phase refrigerant that has flowed into the evaporator 104 cools the air by exchanging heat with the air to absorb heat and evaporate, and flows out of the evaporator 104 as a low-temperature low-pressure gas refrigerant.
  • the low-temperature low-pressure gas refrigerant flowing out from the evaporator 104 is sucked into the compressor 101 and compressed again. Hereinafter, the above operation is repeated.
  • the air conditioner 100 is described as an example, but the present invention is not limited to this, and may be applied to, for example, a heat pump device, a refrigeration device, and other refrigeration cycle devices in general.
  • the temperature rise of the internal structure affects the device-related information, which is a physical quantity having characteristics related to the precursor of the compressor 101 failure.
  • the device-related information is a physical quantity having characteristics related to the precursor of the compressor 101 failure.
  • an increase in the frictional resistance between the shaft and the bearing of the compressor 101 as the temperature of the internal structure increases causes a change in the input to the compressor 101 and the torque of the motor 101b that drives the compressor 101, which is different from the normal state. Occurs.
  • the characteristic amount can be acquired from the device-related information, which is a physical amount related to the operation of the compressor 101. Therefore, if the temperature rise amount can be estimated based on the device-related information affected by the temperature rise, the failure in the compressor 101 can be detected.
  • the temperature rise of the internal structure of the compressor 101 occurs not at the time of the complete failure of the compressor 101 but at the precursory stage of the failure, and the degree of damage inside the compressor 101 increases as the amount of temperature increase increases. Becomes higher. That is, the degree of damage inside the compressor 101 can be determined based on the amount of temperature increase.
  • the characteristic amount regarding the failure in the equipment such as the compressor 101 is acquired, and the temperature rise amount of the internal structure of the equipment is estimated from the acquired characteristic amount. Then, based on the estimated amount of temperature rise, the sign of failure of the equipment and the degree of damage are detected.
  • FIG. 5 is a flowchart showing an example of the flow of failure precursor detection processing by the failure precursor detection device 1 according to the first embodiment.
  • the feature amount acquisition unit 11 acquires the feature amount based on the input device-related information in step S1.
  • the temperature rise estimation unit 12 estimates the temperature rise amount of the internal structure of the compressor 101 based on the characteristic amount acquired by the characteristic amount acquisition unit 11.
  • step S3 the determination unit 13 compares the temperature increase amount estimated in step S2 with the lower limit threshold value stored in the storage unit 14, and determines whether the compressor 101 may fail. . As a result of the comparison, when the amount of temperature increase exceeds the lower limit threshold value (step S3; Yes), the determination unit 13 determines in step S4 that the compressor 101 may “failure”.
  • the determination unit 13 determines the degree of damage inside the compressor 101 in step S5.
  • One or more determination threshold values stored in the storage unit 14 are used to determine the degree of damage to the compressor 101, and the degree of damage to the compressor 101 is determined based on the relationship between the temperature increase amount and one or more determination threshold values. Is determined.
  • the determination unit 13 outputs information indicating the possibility of failure of the compressor 101 and the degree of damage to the notification unit 15 and the control device 105 of the air conditioning apparatus 100.
  • the notification unit 15 notifies the possibility of failure of the compressor 101 and the degree of damage in step S6.
  • the notification unit 15 may give different notifications according to the determined damage degree so that the damage degree determined in step S5 can be identified.
  • the notification unit 15 is a display
  • the notification unit 15 displays information indicating the possibility of failure of the compressor 101 such as “the compressor 101 may fail” and the degree of damage in that case. And information to display.
  • step S3 when the amount of temperature increase is less than or equal to the lower limit threshold value (step S3; No), the determination unit 13 determines in step S7 that the compressor 101 is “normal”.
  • the temperature rise amount of the internal structure of the compressor 101 is estimated based on the feature amount acquired from the device-related information. Then, based on the estimated temperature increase amount, the possibility of failure of the compressor 101 and the degree of damage to the internal structure of the compressor 101 are determined. Accordingly, the possibility of failure and the degree of damage of the compressor 101 can be determined without actually measuring the temperature of the internal structure of the compressor 101. Therefore, it is possible to reliably detect the failure of the compressor 101 before the compressor 101 cannot actually operate due to damage. Further, the failure of the compressor 101 can be quickly detected before the compressor 101 completely fails.
  • the estimated temperature increase amount is compared with a preset lower limit threshold value, and when the temperature increase amount exceeds the lower limit threshold value, it is determined that the compressor 101 may fail. It Thereby, the possibility of failure of the compressor 101 can be easily determined.
  • the temperature increase amount is compared with one or more determination threshold values, and based on the relationship between the temperature increase amount and the determination threshold value.
  • the degree of damage to the internal structure of the compressor 101 is determined. Thereby, the degree of damage to the compressor 101 can be easily determined.
  • Embodiment 2 Next, a second embodiment of the present invention will be described.
  • the power consumption of the motor 101b of the compressor 101 is applied as a characteristic amount will be described.
  • the same parts as those in the first embodiment will be designated by the same reference numerals, and detailed description thereof will be omitted.
  • the configuration of the air conditioning apparatus 100 according to the second embodiment is similar to that of the air conditioning apparatus 100 according to the first embodiment shown in FIG.
  • the configuration of the failure sign detection device 1 is also the same as that of the failure sign detection device 1 according to the first embodiment shown in FIG.
  • the feature quantity acquisition unit 11 of the failure sign detection device 1 of FIG. 2 has a primary input (primary current, primary current) input from the power supply 200 to the power conversion device 110 as device-related information. Voltage), the rotation speed of the compressor 101, the discharge pressure, and the suction pressure are input. The device-related information is measured using an external measuring device or the like, and the measurement result is input to the feature amount acquisition unit 11.
  • the characteristic amount acquisition unit 11 acquires the power consumption of the motor 101b as a characteristic amount based on the input primary input, the rotation speed of the compressor 101, the discharge pressure, and the suction pressure.
  • the temperature rise estimation unit 12 estimates the temperature rise amount of the internal structure of the compressor 101 based on the power consumption acquired by the feature amount acquisition unit 11 and the specification information stored in the storage unit 14. The estimation of the temperature rise amount will be described later.
  • the specification information is various parameters determined by the specifications of the internal structure of the compressor 101.
  • the specification information is the volume of the bearing, which is the sliding portion in the compressor 101, and the specific heat and density of the material used for the bearing.
  • the storage unit 14 stores in advance a lower limit threshold and one or more determination thresholds. Further, in the second embodiment, the storage unit 14 stores in advance the specification information used when the temperature rise estimating unit 12 estimates the temperature rise amount.
  • the torque of the motor 101b is proportional to the input power. Specifically, when the torque of the motor 101b changes, the primary input input from the power supply 200 to the power converter 110 also changes accordingly. When the primary input from the power supply 200 changes, the power consumption of the motor 101b obtained from the primary current and the primary voltage, which are the primary inputs, also changes.
  • the power consumption of the motor 101b that drives the compressor 101 is applied as a characteristic amount, and the amount of temperature increase that occurs according to the change in the power consumption is estimated. Then, the possibility of failure and the degree of damage of the compressor 101 are determined based on the estimated temperature rise amount.
  • the output power from the power supply 200 can be obtained by multiplying the primary current input from the power supply 200 to the power converter 110 and the primary voltage. Further, the efficiency of the compressor 101 can be obtained by obtaining a function determined by the rotation speed of the compressor 101 and the pressure difference between the discharge pressure and the suction pressure of the refrigerant.
  • the temperature increase amount ⁇ T [° C.] is calculated using the equation (2) based on the power consumption and the specification information.
  • the power difference ⁇ P [W] indicates the difference in power consumption at two measurement time points.
  • the duration t [sec] indicates a time difference between two measurement points when calculating the power difference ⁇ P.
  • the specific heat c [kJ / kg ⁇ ° C.] indicates the specific heat of the material used for the sliding portion such as the bearing in the compressor 101.
  • the density ⁇ [kg / m 3 ] indicates the density of the material used for the sliding portion of the compressor 101.
  • the volume V [m 3 ] indicates the volume of the sliding portion in the compressor 101.
  • the specific heat c, the density ⁇ , and the volume V are information included in the specification information stored in the storage unit 14.
  • the power difference ⁇ P is obtained by taking the difference in power at adjacent points sampled at the set interval. Specifically, the power difference ⁇ P is the difference in power between the time point n and the time point n ⁇ 1. Further, the duration t is the length of the adjacent sampling time, specifically, the time difference between the time point n and the time point n-1.
  • step S1 the primary current and the primary voltage as the device-related information, the rotation speed of the compressor 101, the discharge pressure, and the suction pressure are input to the feature amount acquisition unit 11. To be done.
  • the characteristic amount acquisition unit 11 acquires the power consumption of the motor 101b as a characteristic amount using Expression (1) based on these device-related information.
  • step S2 the temperature rise estimation unit 12 uses the formula (2) to calculate the temperature rise amount of the internal structure of the compressor 101 based on the power consumption as the feature amount acquired by the feature amount acquisition unit 11 and the specification information. Calculate ⁇ T.
  • steps S3 to S7 are the same as those in the first embodiment.
  • the secondary input (secondary power) input from the power converter 110 to the motor 101b of the compressor 101, and the rotation speed, discharge pressure, and suction pressure of the compressor 101. Is input to the failure sign detection device 1.
  • the secondary input (secondary power) as the device-related information is acquired using a three-phase power meter or a two-power meter method.
  • the characteristic amount acquisition unit 11 acquires the power consumption of the motor 101b as a characteristic amount using Expression (1) based on these device-related information.
  • step S1 the secondary power as the device-related information, the rotation speed of the compressor 101, the discharge pressure, and the suction pressure are input to the feature amount acquisition unit 11.
  • the characteristic amount acquisition unit 11 acquires the power consumption of the motor 101b as a characteristic amount using Expression (1) based on these device-related information.
  • the processes in steps S2 to S7 are the same as those in the second embodiment.
  • step S1 the feature amount acquisition unit 11 causes the q-axis current Iq and the q-axis voltage Vq as device-related information, and the rotation speed, discharge pressure, and suction pressure of the compressor 101. Is entered.
  • the characteristic amount acquisition unit 11 acquires the power consumption of the motor 101b as a characteristic amount using Expression (1) based on these device-related information.
  • the processes in steps S2 to S7 are the same as those in the second embodiment.
  • the specification information indicating the specifications of the internal structure of the compressor 101 is stored in advance, and the power consumption of the compressor 101 is acquired as the feature amount. To be done. Then, the temperature rise amount of the internal structure of the compressor 101 is estimated based on the power consumption and the specification information. As a result, it is possible to estimate the temperature rise amount according to the material amount of the compressor 101 and the like, and it is possible to accurately estimate the possibility of failure and the degree of damage of the compressor 101.
  • the power consumption as the characteristic amount may be acquired based on the primary power supplied from the power supply 200 to the power converter 110, or may be supplied from the power converter 110 to the motor 101b of the compressor 101. It may be acquired based on the next power.
  • the power consumption may be acquired based on the q-axis current and the q-axis voltage in the power converter 110.
  • Embodiment 3 Next, a third embodiment of the present invention will be described.
  • the third embodiment a case will be described in which, of the three-phase power supplied to the motor 101b of the compressor 101, for example, a power ratio between frames based on a U-phase current is applied as a feature amount.
  • the same parts as those in the first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the configuration of the air conditioning apparatus 100 according to the third embodiment is similar to that of the air conditioning apparatus 100 according to the first and second embodiments shown in FIG.
  • the configuration of the failure sign detection device 1 is also the same as that of the failure sign detection device 1 according to the first and second embodiments shown in FIG.
  • the U-phase current of the three-phase power supplied from the power converter 110 is input to the characteristic amount acquisition unit 11 of the failure sign detection device 1 of FIG. 2 as the device-related information.
  • the U-phase current as the device-related information is measured using an external measuring device or the like, and the measurement result is input to the feature amount acquisition unit 11.
  • the characteristic amount acquisition unit 11 acquires the power ratio Energy_d as a characteristic amount based on the input U-phase current.
  • the power ratio Energy_d indicates the ratio of the power value Energy ( ⁇ ) and the power value Energy ( ⁇ -1) in each of the frame ⁇ , which is a set of preset number of samples, and the immediately preceding frame ⁇ -1. .
  • the temperature rise estimation unit 12 estimates the temperature rise amount of the internal structure of the compressor 101 based on the power ratio Energy_d acquired by the feature amount acquisition unit 11 and the specification information stored in the storage unit 14. The estimation of the temperature rise amount will be described later.
  • the storage unit 14 stores in advance a lower limit threshold and one or more determination thresholds. Further, in the third embodiment, as in the second embodiment, the storage unit 14 stores in advance the specification information used when the temperature increase estimation unit 12 estimates the temperature increase amount.
  • the torque of the motor 101b in the compressor 101 is proportional to the current of one phase of the three-phase current in the stepless state, for example, the U-phase current. Specifically, when the torque of the motor 101b changes, the U-phase current supplied to the motor 101b also changes accordingly. Further, when the U-phase current changes, the power ratio Energy_d of the motor 101b obtained from the U-phase current also changes. Note that "step out" means that the instruction frequency for the motor 101b deviates from the actual frequency.
  • the power ratio Energy_d of the motor 101b that drives the compressor 101 is applied as a feature amount, and the temperature rise amount that occurs according to the power ratio Energy_d is estimated. Then, the possibility of failure and the degree of damage of the compressor 101 are determined based on the estimated temperature rise amount.
  • the power value Power ( ⁇ ) in the frame ⁇ is calculated.
  • the power value Power ( ⁇ ) is calculated based on the equation (3).
  • the frame ⁇ is a set of a preset number of samples
  • x ⁇ (n) in the equation (3) represents the U-phase current at the sampling time n in the frame ⁇ .
  • the power value Energy ( ⁇ ) obtained by logarithmically converting the power value Power ( ⁇ ) is calculated.
  • the power value Energy ( ⁇ ) is calculated based on the equation (4).
  • the power ratio Energy_ ⁇ of the power value Energy ( ⁇ ) with respect to the power value Energy ( ⁇ -1). Is calculated based on the equation (5).
  • the temperature increase amount ⁇ T is estimated based on the power ratio Energy_d and the specification information.
  • a map in which the horizontal axis represents the rotation speed of the compressor 101 and the vertical axis represents the differential pressure of the refrigerant in the compressor 101 is created for each preset power ratio.
  • the map shows the heat generation amount due to the torque fluctuation of the motor 101b estimated from the fluctuation width of the power ratio Energy_d. Therefore, the temperature increase amount ⁇ T corresponding to the heat generation amount can be estimated by referring to the material properties of the sliding portion such as the bearing of the compressor 101 based on the specification information.
  • the U-phase current as the device-related information is input to the feature amount acquisition unit 11 in step S1.
  • the characteristic amount acquisition unit 11 acquires the power ratio Energy_d as a characteristic amount using Expressions (3) to (5) based on the U-phase current.
  • step S2 the temperature rise estimating unit 12 creates a map based on the power ratio Energy_d as the feature amount acquired by the feature amount acquiring unit 11, and based on the heat generation amount and the specification information described in the created map. Estimate the temperature rise amount ⁇ T of the internal structure of the compressor 101.
  • steps S3 to S7 are the same as those in the first embodiment.
  • the U-phase current as the device-related information is input to the feature amount acquisition unit 11 in step S1.
  • the feature amount acquisition unit 11 calculates the power value Power ( ⁇ ) in the frame ⁇ based on the U-phase current using the equation (3).
  • the feature amount acquisition unit 11 acquires the power ratio Power_d as the feature amount based on the calculated power value Power ( ⁇ ) in the frame ⁇ and the power value Power ( ⁇ -1) in the immediately preceding frame ⁇ -1. .
  • step S2 the temperature increase estimation unit 12 creates a map based on the power ratio Power_d as the feature amount, as in the third embodiment, and based on the heat generation amount and the specification information described in the created map, The temperature rise amount ⁇ T of the internal structure of the compressor 101 is calculated.
  • the processes in steps S3 to S7 are the same as those in the third embodiment.
  • the U-phase current as the device-related information is input to the feature amount acquisition unit 11 in step S1.
  • the feature amount acquisition unit 11 calculates the effective value RMS ( ⁇ ) of the U-phase power in the frame ⁇ based on the U-phase current.
  • the characteristic amount acquisition unit 11 acquires the difference effective value RMS_d as the characteristic amount based on the calculated effective value RMS ( ⁇ ) in the frame ⁇ and the effective value RMS ( ⁇ -1) in the immediately preceding frame ⁇ -1. To do.
  • step S2 the temperature rise estimating unit 12 creates a map based on the difference effective value RMS_d as the feature amount, as in the third embodiment, and based on the heat generation amount and the specification information described in the created map.
  • a temperature increase amount ⁇ T of the internal structure of the compressor 101 is calculated.
  • the processes in steps S3 to S7 are the same as those in the third embodiment.
  • a fifth modification of the third embodiment will be described.
  • the U-phase current supplied from the power converter 110 to the motor 101b of the compressor 101 as the device-related information. Is input to the failure sign detection device 1.
  • a difference amplitude value A_d which is a difference value of the amplitude of the U-phase current between frames, is acquired as a feature amount.
  • the amplitude value is the maximum amplitude value obtained from the maximum value in the positive direction and the maximum value in the negative direction of one wavelength.
  • the U-phase current as the device-related information is input to the feature amount acquisition unit 11 in step S1.
  • the feature amount acquisition unit 11 calculates the amplitude A ( ⁇ ) of the U-phase power in the frame ⁇ based on the U-phase current.
  • the characteristic amount acquisition unit 11 acquires the difference amplitude value A_d as the characteristic amount based on the calculated amplitude A ( ⁇ ) in the frame ⁇ and the calculated amplitude A ( ⁇ -1) in the immediately preceding frame ⁇ -1.
  • step S2 the temperature rise estimation unit 12 creates a map based on the difference amplitude value A_d as the feature amount, and based on the heat generation amount and the specification information described in the created map, the internal structure of the compressor 101 is determined.
  • the temperature increase amount ⁇ T is calculated.
  • steps S3 to S7 are the same as those in the third embodiment.
  • the characteristic amount is acquired based on the U-phase current supplied to the compressor 101.
  • the feature amount is a power ratio that is a ratio between the power value in the set frame and the power value in the immediately preceding frame.
  • a difference effective value that is a difference between the effective value of the U-phase current in the setting frame and the effective value of the U-phase current in the immediately preceding frame may be used.
  • a difference amplitude value A_d that is a difference between the amplitude of the U-phase current in the set frame and the amplitude of the U-phase current in the immediately preceding frame may be used.
  • the configuration of the air conditioning apparatus 100 according to the fourth embodiment is similar to that of the air conditioning apparatus 100 according to the first to third embodiments shown in FIG.
  • the configuration of the failure sign detection device 1 is also the same as that of the failure sign detection device 1 according to the first to third embodiments shown in FIG.
  • the q-axis current Iq in the power conversion device 110 is input to the feature amount acquisition unit 11 of the failure sign detection device 1 of FIG. 2 as device-related information.
  • the feature amount acquisition unit 11 acquires the difference value ⁇ Iq of the q-axis current at the sampling interval as the feature amount based on the input q-axis current Iq.
  • the temperature rise estimation unit 12 estimates the temperature rise amount ⁇ T of the internal structure of the compressor 101 based on the difference value ⁇ Iq of the q-axis current acquired by the feature amount acquisition unit 11. The estimation of the temperature increase amount ⁇ T will be described later.
  • the q-axis current Iq as the device-related information is input to the feature amount acquisition unit 11 in step S1.
  • the feature amount acquisition unit 11 calculates the difference value ⁇ Iq at the sampling interval as the feature amount based on the q-axis current Iq.
  • step S2 the temperature rise estimation unit 12 calculates the temperature rise amount ⁇ T of the internal structure of the compressor 101 using the equation (2) based on the difference value ⁇ Iq as the feature amount acquired by the feature amount acquisition unit 11. To do.
  • the processes of steps S3 to S7 are the same as those in the first embodiment.
  • the failure precursor detection device 1 based on the difference value between the q-axis current of the power conversion device 110 in the setting frame and the q-axis current in the immediately preceding frame, and the specification information.
  • the temperature rise amount of the internal structure of the compressor 101 can be calculated.
  • 1 failure sign detection device 11 feature amount acquisition unit, 12 temperature rise estimation unit, 13 determination unit, 14 storage unit, 15 notification unit, 21 processing circuit, 22 output device, 31 processor, 32 memory, 33 output device, 100 air Harmonization device, 101 compressor, 101a compression element, 101b motor, 102 condenser, 103 expansion device, 104 evaporator, 105 control device, 110 power conversion device, 200 power supply.

Abstract

This failure sign detection device detects a failure sign in equipment that is related to air-conditioning and operates with electric power supplied from a power supply via a power conversion device. The failure sign detection device is provided with: a feature amount obtainment unit which obtains a feature amount of the equipment on the basis of equipment-related information about the equipment, the equipment-related information being inputted from the equipment; a temperature increase estimation unit which estimates a temperature increase amount of the internal structure of the equipment on the basis of the obtained feature amount; a storage unit which stores a threshold value for the temperature increase amount; and a determination unit which determines the likelihood of a failure of the equipment and a degree of damage to the internal structure on the basis of a result of comparison between the estimated temperature increase amount and the threshold value.

Description

故障前兆検出装置Failure sign detection device
 本発明は、冷凍空調機器に搭載された設備機器における故障の前兆を検出する故障前兆検出装置に関するものである。 The present invention relates to a failure precursor detection device for detecting a precursor of a failure in equipment equipment mounted on a refrigeration and air conditioning equipment.
 従来から、冷凍空調機器の異常を検出する種々の方法が提案されている。例えば、特許文献1には、圧縮機を駆動するモータの電流、電圧および制御定数を用いてモータ温度を推定し、推定結果に基づき圧縮機内部の異常を検出する方法が開示されている。 Conventionally, various methods for detecting abnormalities in refrigeration and air conditioning equipment have been proposed. For example, Patent Document 1 discloses a method of estimating a motor temperature using a current, a voltage, and a control constant of a motor that drives a compressor, and detecting an abnormality inside the compressor based on the estimation result.
 特許文献2には、圧縮機を駆動するモータの電流平均値に対する脈動値と、モータの回転速度とを検出し、検出された脈動値および回転速度に基づき圧縮機内部の異常を検知する方法が開示されている。この方法では、圧縮機のモータに出力される三相電流の各相の電流の大きさおよび位相を分析し、モータのトルクまたは回転速度を推定することにより、圧縮機の内部状態が推定される。 Patent Document 2 discloses a method of detecting a pulsation value with respect to an average current value of a motor that drives a compressor and a rotation speed of the motor, and detecting an abnormality inside the compressor based on the detected pulsation value and the rotation speed. It is disclosed. In this method, the internal state of the compressor is estimated by analyzing the magnitude and phase of the current of each phase of the three-phase current output to the compressor motor and estimating the torque or rotation speed of the motor. .
 特許文献3には、圧縮機における冷媒の吸入圧を横軸とし、吐出圧を縦軸としたマップ上に重み係数を配置し、取得した冷媒の吸入圧および吐出圧によって決定された重み係数に基づき、圧縮機内部の異常を診断する方法が開示されている。この方法では、潤滑不良などの異常により圧縮機内部で温度上昇が生じた場合に、温度上昇の影響が冷媒回路の温度および圧力等に生じることを利用して、圧縮機内部の温度が推定される。 In Patent Document 3, a weight coefficient is arranged on a map in which the suction pressure of the refrigerant in the compressor is the horizontal axis and the discharge pressure is the vertical axis, and the weight coefficient determined by the acquired suction pressure and discharge pressure of the refrigerant is used. Based on this, a method for diagnosing an abnormality inside the compressor is disclosed. In this method, when the temperature rises inside the compressor due to an abnormality such as poor lubrication, the temperature inside the compressor is estimated by using the influence of the temperature rise on the temperature and pressure of the refrigerant circuit. It
特開2004-201425号公報Japanese Patent Laid-Open No. 2004-201425 国際公開第2017/042949号International Publication No. 2017/042949 特開2004-85088号公報JP 2004-85088 A
 ところで、圧縮機を駆動するモータは、常時冷媒に接触していることによる放熱、ならびにモータ材料自体の熱容量の影響を受ける。そのため、モータ温度は、異常が発生した際に、瞬時に上昇するものではない。すなわち、圧縮機内部の異常によってモータ温度が上昇する場合は、少なくとも異常が数分単位で継続して発生している状態であると考えられる。しがたって、特許文献1に記載されているように、モータ温度を用いて圧縮機内部の異常を検出する方法では、モータ温度が上昇するまで継続するような異常を検出することができるが、モータ温度が上昇するまで継続しない異常は、見逃される虞がある。 By the way, the motor that drives the compressor is affected by the heat radiation from the constant contact with the refrigerant and the heat capacity of the motor material itself. Therefore, the motor temperature does not instantly rise when an abnormality occurs. That is, when the motor temperature rises due to an abnormality inside the compressor, it is considered that at least the abnormality continues for several minutes. Therefore, as described in Patent Document 1, the method of detecting an abnormality inside the compressor by using the motor temperature can detect an abnormality that continues until the motor temperature rises. Abnormalities that do not continue until the motor temperature rises may be overlooked.
 また、モータの電流値は、モータ仕様および負荷条件等によって異なる。そのため、正常時を基準として異常を検出するための閾値を設定するには、モータの機種毎の運転条件範囲全体の正常値を、実機を用いて計測する必要がある。したがって、特許文献2に記載されているように、モータの電流平均値に対する脈動値を用いて圧縮機内部の異常を高精度に検出する方法では、膨大な開発負荷が必要となる。 Also, the motor current value varies depending on the motor specifications and load conditions. Therefore, in order to set the threshold value for detecting an abnormality based on the normal time, it is necessary to measure the normal value of the entire operating condition range for each motor model using an actual machine. Therefore, as described in Patent Document 2, the method of detecting the abnormality inside the compressor with high accuracy using the pulsation value with respect to the average current value of the motor requires a huge development load.
 さらに、冷媒回路の温度および圧力等に変化が生じるような圧縮機内部の温度上昇は、圧縮機内部がすでに重大な故障状態となっている場合に発生する。そのため、特許文献3に記載されているように、圧縮機の吸入圧および吐出圧に基づいて圧縮機内部の異常を検出する方法では、重大な異常が発生する前に異常を検出することができない。 Furthermore, an increase in temperature inside the compressor that causes changes in the temperature and pressure of the refrigerant circuit occurs when the inside of the compressor is already in a serious failure state. Therefore, as described in Patent Document 3, the method of detecting an abnormality inside the compressor based on the suction pressure and the discharge pressure of the compressor cannot detect the abnormality before a serious abnormality occurs. .
 また、圧縮機における冷媒の吸入圧および吐出圧によるマップ上に重み係数を配置するためには、実機を用いてマップの範囲全体で計測する必要がある。すなわち、冷媒の吸入圧および吐出圧によるマップ上に配置された重み係数を用いて圧縮機内部の異常を検出する方法では、膨大な開発負荷が必要となる。 Also, in order to place the weighting factors on the map based on the suction pressure and the discharge pressure of the refrigerant in the compressor, it is necessary to measure the entire range of the map using an actual machine. In other words, a huge development load is required for the method of detecting an abnormality inside the compressor by using the weighting coefficient arranged on the map based on the suction pressure and the discharge pressure of the refrigerant.
 本発明は、上記課題に鑑みてなされたものであって、圧縮機などの空調に関連する設備機器における故障の前兆を迅速かつ確実に検出し、設備機器の内部構造の損傷度合いを精度よく判断することができる故障前兆検出装置を提供することを目的とする。 The present invention has been made in view of the above problems, and quickly and reliably detects a precursor of a failure in equipment such as a compressor related to air conditioning, and accurately determines the degree of damage to the internal structure of the equipment. It is an object of the present invention to provide a failure sign detection device that can be used.
 本発明の故障前兆検出装置は、電力変換装置を介して電源から供給される電力によって動作する、空調に関連する設備機器における故障の前兆を検出する故障前兆検出装置であって、前記設備機器から入力された前記設備機器に関する機器関連情報に基づき、前記設備機器についての特徴量を取得する特徴量取得部と、取得した前記特徴量に基づき、前記設備機器の内部構造の温度上昇量を推定する温度上昇推定部と、前記温度上昇量に対する閾値を記憶する記憶部と、推定された前記温度上昇量と前記閾値との比較結果に基づき、前記設備機器の故障の可能性および前記内部構造の損傷度合いを判定する判定部とを備えるものである。 The failure sign detection device of the present invention is a failure sign detection device that operates with electric power supplied from a power source via a power conversion device, and detects a sign of a failure in equipment equipment related to air conditioning, A feature amount acquisition unit that obtains a feature amount of the facility device based on the input device-related information about the facility device, and estimates a temperature rise amount of the internal structure of the facility device based on the obtained feature amount. A temperature rise estimation unit, a storage unit that stores a threshold value for the temperature rise amount, and a possibility of failure of the equipment and damage to the internal structure based on a comparison result of the estimated temperature rise amount and the threshold value. And a determination unit that determines the degree.
 本発明によれば、入力される機器関連情報に基づいて、設備機器についての特徴量が抽出され、抽出された特徴量に基づいて、設備機器の内部構造の温度上昇量が推定される。そして、推定された温度上昇量と閾値とが比較されることにより、設備機器の故障の可能性および損傷度合いが判定される。そのため、空調に関連する設備機器における故障の前兆を迅速かつ確実に検出し、設備機器の内部構造の損傷度合いを精度よく判断することができる。 According to the present invention, the feature amount of the facility device is extracted based on the input device-related information, and the temperature rise amount of the internal structure of the facility device is estimated based on the extracted feature amount. Then, the estimated temperature increase amount and the threshold value are compared to determine the possibility of failure and the degree of damage to the equipment. Therefore, a sign of a failure in the equipment related to air conditioning can be detected quickly and reliably, and the degree of damage to the internal structure of the equipment can be accurately determined.
実施の形態1に係る故障前兆検出装置を適用した空気調和装置の構成の一例を示す概略図である。1 is a schematic diagram showing an example of a configuration of an air conditioner to which a failure sign detection device according to a first embodiment is applied. 実施の形態1に係る故障前兆検出装置の構成の一例を示すブロック図である。FIG. 3 is a block diagram showing an example of a configuration of a failure precursor detection device according to the first embodiment. 図2の故障前兆検出装置の構成の一例を示すハードウェア構成図である。It is a hardware block diagram which shows an example of a structure of the failure sign detection apparatus of FIG. 図2の故障前兆検出装置の構成の他の例を示すハードウェア構成図である。It is a hardware block diagram which shows the other example of a structure of the failure sign detection apparatus of FIG. 実施の形態1に係る故障前兆検出装置による故障前兆検出処理の流れの一例を示すフローチャートである。5 is a flowchart showing an example of the flow of failure precursor detection processing by the failure precursor detection device according to the first embodiment.
実施の形態1.
 以下、本発明の実施の形態1に係る故障前兆検出装置について説明する。本実施の形態1に係る故障前兆検出装置は、例えば空気調和装置に適用され、圧縮機等の空調に関連する設備機器の故障の前兆を検出するものである。
Embodiment 1.
Hereinafter, the failure sign detection device according to the first embodiment of the present invention will be described. The failure sign detection device according to the first embodiment is applied to, for example, an air conditioner and detects a sign of a failure of equipment such as a compressor related to air conditioning.
[空気調和装置100の構成]
 まず、本実施の形態1に係る故障前兆検出装置1を適用した空気調和装置100の構成について説明する。図1は、本実施の形態1に係る故障前兆検出装置1を適用した空気調和装置100の構成の一例を示す概略図である。図1の空気調和装置100は、ヒートポンプ方式により、冷房運転または暖房運転を行うものである。
[Configuration of Air Conditioner 100]
First, the configuration of the air conditioning apparatus 100 to which the failure sign detection device 1 according to the first embodiment is applied will be described. FIG. 1 is a schematic diagram showing an example of the configuration of an air conditioner 100 to which the failure sign detection device 1 according to the first embodiment is applied. The air conditioner 100 of FIG. 1 performs a cooling operation or a heating operation by a heat pump system.
 図1に示すように、空気調和装置100は、圧縮機101、凝縮器102、膨張装置103、蒸発器104、制御装置105および電力変換装置110を備えている。空気調和装置100では、圧縮機101、凝縮器102、膨張装置103および蒸発器104が冷媒配管によって順次接続されることにより、冷媒配管内を冷媒が循環する冷媒回路が形成されている。 As shown in FIG. 1, the air conditioning apparatus 100 includes a compressor 101, a condenser 102, an expansion device 103, an evaporator 104, a control device 105, and a power conversion device 110. In the air conditioner 100, the compressor 101, the condenser 102, the expansion device 103, and the evaporator 104 are sequentially connected by a refrigerant pipe, thereby forming a refrigerant circuit in which the refrigerant circulates in the refrigerant pipe.
 このうち、圧縮機101は、冷媒を圧縮する圧縮要素101aと、圧縮要素101aに連結された、電力変換装置110により電力が供給されるモータ101bとを有している。電力変換装置110は、電源200から電力供給を受け、変換された電力をモータ101bに供給してモータ101bを回転駆動させる。モータ101bの回転数は、制御装置105によって制御される。 Among these, the compressor 101 has a compression element 101a for compressing the refrigerant and a motor 101b connected to the compression element 101a and supplied with electric power by the power conversion device 110. The power conversion device 110 receives power supply from the power supply 200, supplies the converted power to the motor 101b, and drives the motor 101b to rotate. The rotation speed of the motor 101b is controlled by the control device 105.
 凝縮器102は、冷媒と空気との間で熱交換を行い、冷媒を凝縮させる。膨張装置103は、冷媒を膨張させる。膨張装置103の開度は、制御装置105によって制御される。蒸発器104は、冷媒と空気との間で熱交換を行い、冷媒を蒸発させる。 The condenser 102 exchanges heat between the refrigerant and air to condense the refrigerant. The expansion device 103 expands the refrigerant. The opening degree of the expansion device 103 is controlled by the control device 105. The evaporator 104 exchanges heat between the refrigerant and air to evaporate the refrigerant.
 制御装置105は、この空気調和装置100の各部に設けられた図示しない各種センサ類から受け取る情報に基づき、空気調和装置100全体の動作を制御する。本実施の形態1において、制御装置105は、後述する故障前兆検出装置1から受け取った情報に基づき、圧縮機101のモータ101bを制御する。制御装置105は、マイクロコンピュータなどの演算装置上でソフトウェアを実行することにより各種機能が実現され、もしくは各種機能を実現する回路デバイスなどのハードウェア等で構成されている。 The control device 105 controls the overall operation of the air conditioning device 100 based on information received from various sensors (not shown) provided in each part of the air conditioning device 100. In the first embodiment, the control device 105 controls the motor 101b of the compressor 101 based on the information received from the failure sign detection device 1 described later. The control device 105 realizes various functions by executing software on an arithmetic device such as a microcomputer, or is configured by hardware such as a circuit device that realizes various functions.
(故障前兆検出装置1)
 また、本実施の形態1において、空気調和装置100は、故障前兆検出装置1を備えている。図2は、本実施の形態1に係る故障前兆検出装置1の構成の一例を示すブロック図である。図2に示すように、故障前兆検出装置1は、特徴量取得部11、温度上昇推定部12、判定部13、記憶部14および報知部15を備えている。故障前兆検出装置1は、マイクロコンピュータなどの演算装置上でソフトウェアを実行することにより各種機能が実現され、もしくは各種機能を実現する回路デバイスなどのハードウェア等で構成されている。
(Fault sign detection device 1)
In addition, in the first embodiment, the air-conditioning apparatus 100 includes the failure sign detection device 1. FIG. 2 is a block diagram showing an example of the configuration of the failure sign detection device 1 according to the first embodiment. As illustrated in FIG. 2, the failure sign detection device 1 includes a feature amount acquisition unit 11, a temperature rise estimation unit 12, a determination unit 13, a storage unit 14, and a notification unit 15. The failure sign detection device 1 realizes various functions by executing software on a computing device such as a microcomputer, or is configured by hardware such as a circuit device that realizes various functions.
 特徴量取得部11は、外部から機器関連情報が入力され、この機器関連情報に基づいて特徴量を取得する。特徴量は、圧縮機101の故障の前兆に関連する特徴を有する物理量であり、例えば圧縮機101を駆動するモータ101bの消費電力などである。特徴量は、例えば、入力された機器関連情報に応じた演算式等を用いて取得される。機器関連情報は、特徴量を取得するために必要な、圧縮機101等の設備機器の動作に関わる物理量であり、例えば、圧縮機101が動作する際に得られる情報である。機器関連情報は、例えば、電力変換装置110に入力される電源200からの1次入力、および、電力変換装置110から出力され、圧縮機101を駆動するモータ101bに入力される2次入力などである。 The feature amount acquisition unit 11 receives device-related information from the outside, and acquires the feature amount based on this device-related information. The feature amount is a physical amount having a feature related to a precursor of a failure of the compressor 101, and is, for example, power consumption of the motor 101b that drives the compressor 101. The feature amount is acquired, for example, using an arithmetic expression or the like according to the input device-related information. The device-related information is a physical amount related to the operation of equipment such as the compressor 101, which is necessary for acquiring the feature amount, and is, for example, information obtained when the compressor 101 operates. The device-related information is, for example, a primary input from the power supply 200 that is input to the power conversion device 110, a secondary input that is output from the power conversion device 110, and is input to the motor 101b that drives the compressor 101. is there.
 温度上昇推定部12は、特徴量取得部11で取得された特徴量に基づき、圧縮機101の内部構造の温度上昇量を推定する。温度上昇量は、例えば、取得された特徴量に応じた演算式等を用いて推定される。 The temperature rise estimation unit 12 estimates the temperature rise amount of the internal structure of the compressor 101 based on the characteristic amount acquired by the characteristic amount acquisition unit 11. The temperature rise amount is estimated using, for example, an arithmetic expression according to the acquired feature amount.
 判定部13は、温度上昇推定部12で推定された温度上昇量と、記憶部14に記憶された下限閾値とを比較し、比較結果に基づいて圧縮機101の故障の可能性を判定する。また、判定部13は、圧縮機101が故障する可能性があると判定した場合に、温度上昇量と、記憶部14に記憶された判定閾値とを比較し、圧縮機101内部の損傷度合いを判定する。判定部13は、判定結果を示す情報を報知部15および制御装置105に対して出力する。 The determination unit 13 compares the amount of temperature increase estimated by the temperature increase estimation unit 12 with the lower limit threshold value stored in the storage unit 14, and determines the possibility of failure of the compressor 101 based on the comparison result. In addition, when the determination unit 13 determines that the compressor 101 may fail, the determination unit 13 compares the temperature increase amount with the determination threshold value stored in the storage unit 14 to determine the degree of damage inside the compressor 101. judge. The determination unit 13 outputs information indicating the determination result to the notification unit 15 and the control device 105.
 下限閾値は、圧縮機101が故障する可能性があるか否かの境界を示す閾値である。判定閾値は、圧縮機101が「故障する可能性あり」と判定された場合に、圧縮機101内部の損傷度合いを判定するために用いられる。判定閾値は、下限閾値よりも大きい値で、段階的に設定されている。 The lower limit threshold is a threshold indicating the boundary of whether or not the compressor 101 may fail. The determination threshold value is used to determine the degree of damage inside the compressor 101 when it is determined that the compressor 101 may “fail”. The determination threshold value is larger than the lower limit threshold value and is set stepwise.
 記憶部14には、故障前兆検出装置1の各部で処理を行う際に用いられる各種の情報が予め記憶されている。本実施の形態1において、記憶部14には、判定部13で用いられる温度上昇量に対して設定された下限閾値および1または複数の判定閾値が予め記憶されている。 The storage unit 14 stores in advance various information used when processing is performed by each unit of the failure sign detection device 1. In the first embodiment, the storage unit 14 stores in advance a lower limit threshold value and one or a plurality of determination threshold values set for the temperature increase amount used in the determination unit 13.
 報知部15は、判定部13による判定結果に応じて、故障の可能性および圧縮機101の損傷度合いを報知する。報知部15として、例えば、ディスプレイおよびLED(Light Emitting Diode)等の表示手段、あるいは、スピーカ等の音声出力手段が用いられる。報知部15がディスプレイである場合には、判定結果に応じた情報が文字または図形等で表示される。報知部15がLEDである場合には、判定結果に応じた情報が点灯、点滅または消灯等によって表示される。報知部15がスピーカである場合には、判定結果に応じた情報が音声で報知される。 The notification unit 15 notifies the possibility of failure and the degree of damage to the compressor 101 according to the determination result of the determination unit 13. As the notification unit 15, for example, a display and a display unit such as an LED (Light Emitting Diode) or a voice output unit such as a speaker is used. When the notification unit 15 is a display, information according to the determination result is displayed in characters or figures. When the notification unit 15 is an LED, information corresponding to the determination result is displayed by lighting, blinking, or extinguishing. When the notification unit 15 is a speaker, information according to the determination result is notified by voice.
 図3は、図2の故障前兆検出装置1の構成の一例を示すハードウェア構成図である。故障前兆検出装置1の各種機能がハードウェアで実行される場合、図2の故障前兆検出装置1は、図3に示すように、処理回路21および出力装置22で構成される。図2の特徴量取得部11、温度上昇推定部12、判定部13および記憶部14の各機能は、処理回路21により実現される。また、報知部15は、図3の出力装置22である。 3 is a hardware configuration diagram showing an example of the configuration of the failure precursor detection device 1 of FIG. When various functions of the failure sign detection device 1 are executed by hardware, the failure sign detection device 1 of FIG. 2 includes a processing circuit 21 and an output device 22 as shown in FIG. Each function of the feature amount acquisition unit 11, the temperature rise estimation unit 12, the determination unit 13, and the storage unit 14 of FIG. 2 is realized by the processing circuit 21. Further, the notification unit 15 is the output device 22 of FIG.
 各機能がハードウェアで実行される場合、処理回路21は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものが該当する。特徴量取得部11、温度上昇推定部12、判定部13および記憶部14の各部の機能それぞれを処理回路21で実現してもよいし、各部の機能を1つの処理回路21で実現してもよい。 When each function is executed by hardware, the processing circuit 21 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), and an FPGA (Field-Programmable Gate). Array) or a combination thereof. The function of each of the feature amount acquisition unit 11, the temperature rise estimation unit 12, the determination unit 13, and the storage unit 14 may be realized by the processing circuit 21, or the function of each unit may be realized by one processing circuit 21. Good.
 図4は、図2の故障前兆検出装置1の構成の他の例を示すハードウェア構成図である。故障前兆検出装置1の各種機能がソフトウェアで実行される場合、図2の故障前兆検出装置1は、図4に示すように、プロセッサ31、メモリ32および出力装置33で構成される。特徴量取得部11、温度上昇推定部12、判定部13および記憶部14の各機能は、プロセッサ31およびメモリ32により実現される。また、図2の報知部15は、図4の出力装置33である。 FIG. 4 is a hardware configuration diagram showing another example of the configuration of the failure precursor detection device 1 of FIG. When various functions of the failure sign detection device 1 are executed by software, the failure sign detection device 1 of FIG. 2 includes a processor 31, a memory 32, and an output device 33, as shown in FIG. The functions of the characteristic amount acquisition unit 11, the temperature rise estimation unit 12, the determination unit 13, and the storage unit 14 are realized by the processor 31 and the memory 32. The notification unit 15 in FIG. 2 is the output device 33 in FIG.
 各機能がソフトウェアで実行される場合、特徴量取得部11、温度上昇推定部12および判定部13の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリ32に格納される。プロセッサ31は、メモリ32に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。 When each function is executed by software, the functions of the feature amount acquisition unit 11, the temperature rise estimation unit 12, and the determination unit 13 are realized by software, firmware, or a combination of software and firmware. The software and firmware are described as programs and stored in the memory 32. The processor 31 realizes the function of each unit by reading and executing the program stored in the memory 32.
 メモリ32として、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable and Programmable ROM)およびEEPROM(Electrically Erasable and Programmable ROM)等の不揮発性または揮発性の半導体メモリ等が用いられる。また、メモリ32として、例えば、磁気ディスク、フレキシブルディスク、光ディスク、CD(Compact Disc)、MD(Mini Disc)およびDVD(Digital Versatile Disc)等の着脱可能な記録媒体が用いられてもよい。 As the memory 32, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable and Programmable ROM), and an EEPROM (Electrically erasable and nonvolatile ROM) such as an EEPROM (Electrically erasable and nonvolatile). Is used. As the memory 32, for example, a removable recording medium such as a magnetic disk, a flexible disk, an optical disk, a CD (Compact Disc), an MD (Mini Disc), and a DVD (Digital Versatile Disc) may be used.
[空気調和装置100の動作]
 空気調和装置100の動作について、図1を参照して説明する。電力変換装置110によって圧縮機101のモータ101bが回転駆動することによって、モータ101bに連結した圧縮機101の圧縮要素101aが低温低圧の冷媒を圧縮し、圧縮機101は高温高圧のガス冷媒を吐出する。圧縮機101から吐出された高温高圧のガス冷媒は、凝縮器102へ流入する。
[Operation of Air Conditioner 100]
The operation of the air conditioner 100 will be described with reference to FIG. When the motor 101b of the compressor 101 is rotationally driven by the power converter 110, the compression element 101a of the compressor 101 connected to the motor 101b compresses the low-temperature low-pressure refrigerant, and the compressor 101 discharges the high-temperature high-pressure gas refrigerant. To do. The high-temperature and high-pressure gas refrigerant discharged from the compressor 101 flows into the condenser 102.
 凝縮器102に流入した高温高圧のガス冷媒は、空気と熱交換して放熱しながら凝縮し、高圧の液冷媒となって凝縮器102から流出する。凝縮器102から流出した高圧の液冷媒は、膨張装置103によって膨張および減圧され、低温低圧の気液二相冷媒となり、蒸発器104へ流入する。 The high-temperature and high-pressure gas refrigerant flowing into the condenser 102 exchanges heat with the air and radiates heat to condense to become a high-pressure liquid refrigerant, which then flows out of the condenser 102. The high-pressure liquid refrigerant that has flowed out of the condenser 102 is expanded and decompressed by the expansion device 103, becomes a low-temperature low-pressure gas-liquid two-phase refrigerant, and flows into the evaporator 104.
 蒸発器104に流入した低温低圧の気液二相冷媒は、空気と熱交換して吸熱および蒸発することによって空気を冷却し、低温低圧のガス冷媒となって蒸発器104から流出する。蒸発器104から流出した低温低圧のガス冷媒は、圧縮機101に吸入され、再び圧縮される。以下、上述した動作が繰り返される。 The low-temperature low-pressure gas-liquid two-phase refrigerant that has flowed into the evaporator 104 cools the air by exchanging heat with the air to absorb heat and evaporate, and flows out of the evaporator 104 as a low-temperature low-pressure gas refrigerant. The low-temperature low-pressure gas refrigerant flowing out from the evaporator 104 is sucked into the compressor 101 and compressed again. Hereinafter, the above operation is repeated.
 なお、図1においては、空気調和装置100を例にとって説明したが、これに限られず、例えば、ヒートポンプ装置、冷凍装置およびその他の冷凍サイクル装置一般に適用してもよい。 In FIG. 1, the air conditioner 100 is described as an example, but the present invention is not limited to this, and may be applied to, for example, a heat pump device, a refrigeration device, and other refrigeration cycle devices in general.
[故障前兆検出処理]
 次に、本実施の形態1に係る故障前兆検出装置1による故障前兆検出処理について説明する。空調に関連する設備機器としての圧縮機101においては、通常、軸受等の摺動部に対する油が不足あるいは枯渇して故障が発生した場合に、内部構造の温度が上昇することが知られている。これは、油が不足して摺動部の摩擦抵抗が増加することにより、摩擦による熱が発生するためである。
[Pre-failure detection processing]
Next, a failure precursor detection process by the failure precursor detection device 1 according to the first embodiment will be described. In the compressor 101 as a facility device related to air conditioning, it is generally known that the temperature of the internal structure rises when a failure occurs due to a shortage or depletion of oil for sliding parts such as bearings. . This is because the oil is insufficient and the frictional resistance of the sliding portion increases, so that heat due to friction is generated.
 一方、内部構造の温度上昇は、圧縮機101の故障の前兆に関連する特徴を有する物理量である機器関連情報に影響を与える。例えば、内部構造の温度が上昇するほどの圧縮機101の軸と軸受との摩擦抵抗の増加は、圧縮機101に対する入力および圧縮機101を駆動するモータ101bのトルク等に通常時と異なる変化が生じる。 On the other hand, the temperature rise of the internal structure affects the device-related information, which is a physical quantity having characteristics related to the precursor of the compressor 101 failure. For example, an increase in the frictional resistance between the shaft and the bearing of the compressor 101 as the temperature of the internal structure increases causes a change in the input to the compressor 101 and the torque of the motor 101b that drives the compressor 101, which is different from the normal state. Occurs.
 このように、圧縮機101の内部構造の温度上昇量と特徴量との間には相関がある。そして、特徴量は、圧縮機101の動作に関わる物理量である機器関連情報から取得することができる。そのため、温度上昇の影響を受けた機器関連情報に基づき温度上昇量を推定することができれば、圧縮機101における故障を検出することができる。 In this way, there is a correlation between the temperature rise amount of the internal structure of the compressor 101 and the feature amount. Then, the characteristic amount can be acquired from the device-related information, which is a physical amount related to the operation of the compressor 101. Therefore, if the temperature rise amount can be estimated based on the device-related information affected by the temperature rise, the failure in the compressor 101 can be detected.
 また、圧縮機101の内部構造の温度上昇は、圧縮機101が完全に故障した時点ではなく、故障の前兆の段階から発生し、温度上昇量が大きくなるに従って、圧縮機101の内部の損傷度合いが高くなる。すなわち、温度上昇量の大きさにより、圧縮機101の内部の損傷度合いを判定することができる。 Further, the temperature rise of the internal structure of the compressor 101 occurs not at the time of the complete failure of the compressor 101 but at the precursory stage of the failure, and the degree of damage inside the compressor 101 increases as the amount of temperature increase increases. Becomes higher. That is, the degree of damage inside the compressor 101 can be determined based on the amount of temperature increase.
 そこで、本実施の形態1では、圧縮機101等の設備機器における故障についての特徴量を取得し、取得した特徴量から設備機器の内部構造の温度上昇量を推定する。そして、推定された温度上昇量に基づき、設備機器の故障の前兆および損傷度合いを検出する。 Therefore, in the first embodiment, the characteristic amount regarding the failure in the equipment such as the compressor 101 is acquired, and the temperature rise amount of the internal structure of the equipment is estimated from the acquired characteristic amount. Then, based on the estimated amount of temperature rise, the sign of failure of the equipment and the degree of damage are detected.
 図5は、本実施の形態1に係る故障前兆検出装置1による故障前兆検出処理の流れの一例を示すフローチャートである。まず、特徴量取得部11に外部から機器関連情報が入力されると、特徴量取得部11は、ステップS1において、入力された機器関連情報に基づき特徴量を取得する。ステップS2において、温度上昇推定部12は、特徴量取得部11で取得された特徴量に基づき、圧縮機101の内部構造の温度上昇量を推定する。 FIG. 5 is a flowchart showing an example of the flow of failure precursor detection processing by the failure precursor detection device 1 according to the first embodiment. First, when device-related information is input to the feature amount acquisition unit 11 from the outside, the feature amount acquisition unit 11 acquires the feature amount based on the input device-related information in step S1. In step S2, the temperature rise estimation unit 12 estimates the temperature rise amount of the internal structure of the compressor 101 based on the characteristic amount acquired by the characteristic amount acquisition unit 11.
 ステップS3において、判定部13は、ステップS2で推定された温度上昇量と、記憶部14に記憶された下限閾値とを比較し、圧縮機101が故障する可能性があるか否かを判定する。比較の結果、温度上昇量が下限閾値を超えた場合(ステップS3;Yes)、判定部13は、ステップS4において、圧縮機101が「故障する可能性あり」であると判定する。 In step S3, the determination unit 13 compares the temperature increase amount estimated in step S2 with the lower limit threshold value stored in the storage unit 14, and determines whether the compressor 101 may fail. . As a result of the comparison, when the amount of temperature increase exceeds the lower limit threshold value (step S3; Yes), the determination unit 13 determines in step S4 that the compressor 101 may “failure”.
 次に、判定部13は、ステップS5において、圧縮機101内部の損傷度合いを判定する。圧縮機101の損傷度合いの判定には、記憶部14に記憶された1または複数の判定閾値が用いられ、温度上昇量と1または複数の判定閾値との関係に基づき、圧縮機101の損傷度合いが判定される。 Next, the determination unit 13 determines the degree of damage inside the compressor 101 in step S5. One or more determination threshold values stored in the storage unit 14 are used to determine the degree of damage to the compressor 101, and the degree of damage to the compressor 101 is determined based on the relationship between the temperature increase amount and one or more determination threshold values. Is determined.
 判定部13は、圧縮機101の故障の可能性および損傷度合いを示す情報を、報知部15および空気調和装置100の制御装置105に対して出力する。これにより、報知部15は、ステップS6において、圧縮機101の故障の可能性、ならびに損傷度合いを報知する。このとき、報知部15は、ステップS5で判定された損傷度合いを識別できるように、判定された損傷度合いに応じて異なる報知を行ってもよい。具体的には、報知部15がディスプレイである場合、報知部15は、「圧縮機101が故障する可能性あり」といった圧縮機101の故障の可能性を示す情報と、その場合の損傷度合いを示す情報とを表示する。 The determination unit 13 outputs information indicating the possibility of failure of the compressor 101 and the degree of damage to the notification unit 15 and the control device 105 of the air conditioning apparatus 100. As a result, the notification unit 15 notifies the possibility of failure of the compressor 101 and the degree of damage in step S6. At this time, the notification unit 15 may give different notifications according to the determined damage degree so that the damage degree determined in step S5 can be identified. Specifically, when the notification unit 15 is a display, the notification unit 15 displays information indicating the possibility of failure of the compressor 101 such as “the compressor 101 may fail” and the degree of damage in that case. And information to display.
 一方、ステップS3において、温度上昇量が下限閾値以下である場合(ステップS3;No)、判定部13は、ステップS7において、圧縮機101が「正常」であると判定する。 On the other hand, in step S3, when the amount of temperature increase is less than or equal to the lower limit threshold value (step S3; No), the determination unit 13 determines in step S7 that the compressor 101 is “normal”.
 以上のように、本実施の形態1に係る故障前兆検出装置1では、機器関連情報から取得される特徴量に基づき圧縮機101の内部構造の温度上昇量が推定される。そして、推定された温度上昇量に基づき、圧縮機101の故障の可能性、ならびに圧縮機101の内部構造の損傷度合いが判定される。これにより、圧縮機101の内部構造の温度を実際に計測するまでもなく、圧縮機101の故障の可能性および損傷度合いを判定することができる。そのため、実際に損傷によって圧縮機101の動作が不可能となる前に、圧縮機101の故障を確実に検出することができる。また、圧縮機101が完全に故障する前に、圧縮機101の故障を迅速に検出することができる。 As described above, in the failure sign detection device 1 according to the first embodiment, the temperature rise amount of the internal structure of the compressor 101 is estimated based on the feature amount acquired from the device-related information. Then, based on the estimated temperature increase amount, the possibility of failure of the compressor 101 and the degree of damage to the internal structure of the compressor 101 are determined. Accordingly, the possibility of failure and the degree of damage of the compressor 101 can be determined without actually measuring the temperature of the internal structure of the compressor 101. Therefore, it is possible to reliably detect the failure of the compressor 101 before the compressor 101 cannot actually operate due to damage. Further, the failure of the compressor 101 can be quickly detected before the compressor 101 completely fails.
 本実施の形態1では、推定された温度上昇量と予め設定された下限閾値とが比較され、温度上昇量が下限閾値を超えた場合に、圧縮機101が故障する可能性があると判定される。これにより、圧縮機101の故障の可能性を容易に判定することができる。 In the first embodiment, the estimated temperature increase amount is compared with a preset lower limit threshold value, and when the temperature increase amount exceeds the lower limit threshold value, it is determined that the compressor 101 may fail. It Thereby, the possibility of failure of the compressor 101 can be easily determined.
 本実施の形態1では、圧縮機101が故障する可能性があると判定された場合に、温度上昇量と1または複数の判定閾値とが比較され、温度上昇量と判定閾値との関係に基づき、圧縮機101の内部構造の損傷度合いが判定される。これにより、圧縮機101の損傷度合いを容易に判定することができる。 In the first embodiment, when it is determined that the compressor 101 may fail, the temperature increase amount is compared with one or more determination threshold values, and based on the relationship between the temperature increase amount and the determination threshold value. The degree of damage to the internal structure of the compressor 101 is determined. Thereby, the degree of damage to the compressor 101 can be easily determined.
実施の形態2.
 次に、本発明の実施の形態2について説明する。本実施の形態2では、圧縮機101のモータ101bの消費電力を特徴量として適用した場合について説明する。なお、以下の説明において、実施の形態1と共通する部分には同一の符号を付し、詳細な説明を省略する。
Embodiment 2.
Next, a second embodiment of the present invention will be described. In the second embodiment, a case where the power consumption of the motor 101b of the compressor 101 is applied as a characteristic amount will be described. In the following description, the same parts as those in the first embodiment will be designated by the same reference numerals, and detailed description thereof will be omitted.
[空気調和装置100の構成]
 本実施の形態2に係る空気調和装置100の構成は、図1に示す実施の形態1に係る空気調和装置100と同様である。また、故障前兆検出装置1の構成についても、図2に示す実施の形態1に係る故障前兆検出装置1と同様である。
[Configuration of Air Conditioner 100]
The configuration of the air conditioning apparatus 100 according to the second embodiment is similar to that of the air conditioning apparatus 100 according to the first embodiment shown in FIG. The configuration of the failure sign detection device 1 is also the same as that of the failure sign detection device 1 according to the first embodiment shown in FIG.
 本実施の形態2において、図2の故障前兆検出装置1の特徴量取得部11には、機器関連情報として、電源200から電力変換装置110に入力される1次入力(1次電流、1次電圧)、ならびに、圧縮機101の回転数、吐出圧力および吸入圧力が入力される。これらの機器関連情報は、外部の計測装置等を用いて計測され、計測結果が特徴量取得部11に入力される。 In the second embodiment, the feature quantity acquisition unit 11 of the failure sign detection device 1 of FIG. 2 has a primary input (primary current, primary current) input from the power supply 200 to the power conversion device 110 as device-related information. Voltage), the rotation speed of the compressor 101, the discharge pressure, and the suction pressure are input. The device-related information is measured using an external measuring device or the like, and the measurement result is input to the feature amount acquisition unit 11.
 特徴量取得部11は、入力された1次入力、圧縮機101の回転数、吐出圧力および吸入圧力に基づき、モータ101bの消費電力を特徴量として取得する。 The characteristic amount acquisition unit 11 acquires the power consumption of the motor 101b as a characteristic amount based on the input primary input, the rotation speed of the compressor 101, the discharge pressure, and the suction pressure.
 温度上昇推定部12は、特徴量取得部11で取得された消費電力と、記憶部14に記憶された仕様情報とに基づき、圧縮機101の内部構造の温度上昇量を推定する。温度上昇量の推定については、後述する。仕様情報は、圧縮機101の内部構造の仕様によって決定される各種のパラメータである。例えば、仕様情報は、圧縮機101における摺動部である軸受の体積、ならびに、軸受に用いられる材料の比熱および密度等である。 The temperature rise estimation unit 12 estimates the temperature rise amount of the internal structure of the compressor 101 based on the power consumption acquired by the feature amount acquisition unit 11 and the specification information stored in the storage unit 14. The estimation of the temperature rise amount will be described later. The specification information is various parameters determined by the specifications of the internal structure of the compressor 101. For example, the specification information is the volume of the bearing, which is the sliding portion in the compressor 101, and the specific heat and density of the material used for the bearing.
 記憶部14には、実施の形態1と同様に、下限閾値および1または複数の判定閾値が予め記憶されている。また、本実施の形態2において、記憶部14には、温度上昇推定部12で温度上昇量を推定する際に用いられる仕様情報が予め記憶されている。 Like the first embodiment, the storage unit 14 stores in advance a lower limit threshold and one or more determination thresholds. Further, in the second embodiment, the storage unit 14 stores in advance the specification information used when the temperature rise estimating unit 12 estimates the temperature rise amount.
[温度上昇量の推定]
 実施の形態1で説明したように、圧縮機101の内部構造の温度上昇は、摺動部の摩擦抵抗の増加によって発生する。これにより、圧縮機101のモータ101bのトルクには、通常時と異なる変化が生じる。
[Estimation of temperature rise]
As described in the first embodiment, the temperature rise of the internal structure of the compressor 101 occurs due to the increase of the frictional resistance of the sliding portion. As a result, the torque of the motor 101b of the compressor 101 changes differently from the normal time.
 ここで、モータ101bのトルクは、入力電力と比例関係にある。具体的には、モータ101bのトルクが変化すると、それに応じて電源200から電力変換装置110に入力される1次入力も変化する。また、電源200からの1次入力が変化すると、1次入力である1次電流および1次電圧から得られるモータ101bの消費電力も変化する。 The torque of the motor 101b is proportional to the input power. Specifically, when the torque of the motor 101b changes, the primary input input from the power supply 200 to the power converter 110 also changes accordingly. When the primary input from the power supply 200 changes, the power consumption of the motor 101b obtained from the primary current and the primary voltage, which are the primary inputs, also changes.
 そこで、本実施の形態2では、圧縮機101を駆動するモータ101bの消費電力を特徴量として適用し、消費電力の変化に応じて生じる温度上昇量を推定する。そして、推定された温度上昇量に基づき、圧縮機101の故障の可能性および損傷度合いを判定する。 Therefore, in the second embodiment, the power consumption of the motor 101b that drives the compressor 101 is applied as a characteristic amount, and the amount of temperature increase that occurs according to the change in the power consumption is estimated. Then, the possibility of failure and the degree of damage of the compressor 101 are determined based on the estimated temperature rise amount.
(特徴量の取得)
 まず、本実施の形態2における特徴量としてのモータ101bの消費電力は、式(1)に基づき算出される。式(1)において、「出力」は、電源200からの出力電力である。「効率」は、圧縮機101による圧縮機効率である。
(Acquisition of feature quantity)
First, the power consumption of the motor 101b as the characteristic amount in the second embodiment is calculated based on the equation (1). In Expression (1), “output” is output power from the power supply 200. “Efficiency” is the compressor efficiency of the compressor 101.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 電源200からの出力電力は、電源200から電力変換装置110に入力される1次電流と1次電圧とを乗算することによって得ることができる。また、圧縮機101の効率は、圧縮機101の回転数、および、冷媒の吐出圧力と吸入圧力との差圧によって定まる関数を求めることによって得ることができる。 The output power from the power supply 200 can be obtained by multiplying the primary current input from the power supply 200 to the power converter 110 and the primary voltage. Further, the efficiency of the compressor 101 can be obtained by obtaining a function determined by the rotation speed of the compressor 101 and the pressure difference between the discharge pressure and the suction pressure of the refrigerant.
(温度上昇量の推定)
 次に、温度上昇量ΔT[℃]は、消費電力と仕様情報とに基づき、式(2)を用いて算出される。式(2)において、電力差ΔP[W]は、2つの計測時点における消費電力の差を示す。継続時間t[sec]は、電力差ΔPを算出する際の2つの計測時点における時間差を示す。比熱c[kJ/kg・℃]は、圧縮機101における軸受等の摺動部に用いられている材料の比熱を示す。密度ρ[kg/m]は、圧縮機101における摺動部に用いられている材料の密度を示す。体積V[m]は、圧縮機101における摺動部の体積を示す。比熱c、密度ρおよび体積Vは、記憶部14に記憶された仕様情報に含まれる情報である。
(Estimation of temperature rise)
Next, the temperature increase amount ΔT [° C.] is calculated using the equation (2) based on the power consumption and the specification information. In Expression (2), the power difference ΔP [W] indicates the difference in power consumption at two measurement time points. The duration t [sec] indicates a time difference between two measurement points when calculating the power difference ΔP. The specific heat c [kJ / kg · ° C.] indicates the specific heat of the material used for the sliding portion such as the bearing in the compressor 101. The density ρ [kg / m 3 ] indicates the density of the material used for the sliding portion of the compressor 101. The volume V [m 3 ] indicates the volume of the sliding portion in the compressor 101. The specific heat c, the density ρ, and the volume V are information included in the specification information stored in the storage unit 14.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、電力差ΔPは、設定間隔でサンプリングされた隣接する時点での電力の差分を取ることによって得られる。具体的には、電力差ΔPは、時点nと時点n-1とにおける電力の差分である。また、継続時間tは、隣接するサンプリング時間の長さであり、具体的には、時点nと時点n-1とにおける時間差である。 Here, the power difference ΔP is obtained by taking the difference in power at adjacent points sampled at the set interval. Specifically, the power difference ΔP is the difference in power between the time point n and the time point n−1. Further, the duration t is the length of the adjacent sampling time, specifically, the time difference between the time point n and the time point n-1.
[故障前兆検出処理]
 図5のフローチャートに示すように、特徴量取得部11には、ステップS1において、機器関連情報としての1次電流および1次電圧、ならびに、圧縮機101の回転数、吐出圧力および吸入圧力が入力される。特徴量取得部11は、これらの機器関連情報に基づき、式(1)を用いてモータ101bの消費電力を特徴量として取得する。
[Pre-failure detection processing]
As shown in the flowchart of FIG. 5, in step S1, the primary current and the primary voltage as the device-related information, the rotation speed of the compressor 101, the discharge pressure, and the suction pressure are input to the feature amount acquisition unit 11. To be done. The characteristic amount acquisition unit 11 acquires the power consumption of the motor 101b as a characteristic amount using Expression (1) based on these device-related information.
 ステップS2において、温度上昇推定部12は、特徴量取得部11で取得された特徴量としての消費電力と仕様情報とに基づき、式(2)を用いて圧縮機101の内部構造の温度上昇量ΔTを算出する。ステップS3~ステップS7の各処理については、実施の形態1と同様である。 In step S2, the temperature rise estimation unit 12 uses the formula (2) to calculate the temperature rise amount of the internal structure of the compressor 101 based on the power consumption as the feature amount acquired by the feature amount acquisition unit 11 and the specification information. Calculate ΔT. The processes of steps S3 to S7 are the same as those in the first embodiment.
(第1の変形例)
 本実施の形態2の第1の変形例について説明する。第1の変形例では、機器関連情報として、電力変換装置110から圧縮機101のモータ101bに入力される2次入力(2次電力)、ならびに、圧縮機101の回転数、吐出圧力および吸入圧力が故障前兆検出装置1に入力される。機器関連情報としての2次入力(2次電力)は、三相電力計または二電力計法を用いて取得される。特徴量取得部11は、これらの機器関連情報に基づき、式(1)を用いてモータ101bの消費電力を特徴量として取得する。
(First modification)
A first modification of the second embodiment will be described. In the first modification, as device-related information, the secondary input (secondary power) input from the power converter 110 to the motor 101b of the compressor 101, and the rotation speed, discharge pressure, and suction pressure of the compressor 101. Is input to the failure sign detection device 1. The secondary input (secondary power) as the device-related information is acquired using a three-phase power meter or a two-power meter method. The characteristic amount acquisition unit 11 acquires the power consumption of the motor 101b as a characteristic amount using Expression (1) based on these device-related information.
(故障前兆検出処理)
 図5のフローチャートに示すように、特徴量取得部11には、ステップS1において、機器関連情報としての2次電力、ならびに、圧縮機101の回転数、吐出圧力および吸入圧力が入力される。特徴量取得部11は、これらの機器関連情報に基づき、式(1)を用いてモータ101bの消費電力を特徴量として取得する。ステップS2~ステップS7の各処理については、実施の形態2と同様である。
(Fault sign detection process)
As shown in the flowchart of FIG. 5, in step S1, the secondary power as the device-related information, the rotation speed of the compressor 101, the discharge pressure, and the suction pressure are input to the feature amount acquisition unit 11. The characteristic amount acquisition unit 11 acquires the power consumption of the motor 101b as a characteristic amount using Expression (1) based on these device-related information. The processes in steps S2 to S7 are the same as those in the second embodiment.
(第2の変形例)
 本実施の形態2の第2の変形例について説明する。第2の変形例では、機器関連情報として、電力変換装置110におけるq軸電流Iqおよびq軸電圧Vq、ならびに、圧縮機101の回転数、吐出圧力および吸入圧力が故障前兆検出装置1に入力される。機器関連情報としてのq軸電流Iqおよびq軸電圧Vqは、電力変換装置110から取得することができる。特徴量取得部11は、これらの機器関連情報に基づき、式(1)を用いてモータ101bの消費電力を特徴量として取得する。
(Second modified example)
A second modification of the second embodiment will be described. In the second modified example, as the device-related information, the q-axis current Iq and the q-axis voltage Vq in the power converter 110, the rotation speed of the compressor 101, the discharge pressure, and the suction pressure are input to the failure precursor detection device 1. It The q-axis current Iq and the q-axis voltage Vq as the device-related information can be acquired from the power converter 110. The characteristic amount acquisition unit 11 acquires the power consumption of the motor 101b as a characteristic amount using Expression (1) based on these device-related information.
(故障前兆検出処理)
 図5のフローチャートに示すように、特徴量取得部11には、ステップS1において、機器関連情報としてのq軸電流Iqおよびq軸電圧Vq、ならびに、圧縮機101の回転数、吐出圧力および吸入圧力が入力される。特徴量取得部11は、これらの機器関連情報に基づき、式(1)を用いてモータ101bの消費電力を特徴量として取得する。ステップS2~ステップS7の各処理については、実施の形態2と同様である。
(Fault sign detection process)
As shown in the flowchart of FIG. 5, in step S1, the feature amount acquisition unit 11 causes the q-axis current Iq and the q-axis voltage Vq as device-related information, and the rotation speed, discharge pressure, and suction pressure of the compressor 101. Is entered. The characteristic amount acquisition unit 11 acquires the power consumption of the motor 101b as a characteristic amount using Expression (1) based on these device-related information. The processes in steps S2 to S7 are the same as those in the second embodiment.
 以上のように、本実施の形態2に係る故障前兆検出装置1では、圧縮機101の内部構造の仕様を示す仕様情報が予め記憶されているとともに、圧縮機101の消費電力が特徴量として取得される。そして、消費電力と仕様情報とに基づき、圧縮機101の内部構造の温度上昇量が推定される。これにより、圧縮機101の材量等に応じた温度上昇量を推定することができ、圧縮機101の故障の可能性および損傷度合いを正確に推定することができる。 As described above, in the failure sign detection device 1 according to the second embodiment, the specification information indicating the specifications of the internal structure of the compressor 101 is stored in advance, and the power consumption of the compressor 101 is acquired as the feature amount. To be done. Then, the temperature rise amount of the internal structure of the compressor 101 is estimated based on the power consumption and the specification information. As a result, it is possible to estimate the temperature rise amount according to the material amount of the compressor 101 and the like, and it is possible to accurately estimate the possibility of failure and the degree of damage of the compressor 101.
 このとき、特徴量としての消費電力は、電源200から電力変換装置110に供給される1次電力に基づき取得されてもよいし、電力変換装置110から圧縮機101のモータ101bに供給される2次電力に基づき取得されてもよい。また、消費電力は、電力変換装置110におけるq軸電流およびq軸電圧に基づき取得されてもよい。 At this time, the power consumption as the characteristic amount may be acquired based on the primary power supplied from the power supply 200 to the power converter 110, or may be supplied from the power converter 110 to the motor 101b of the compressor 101. It may be acquired based on the next power. The power consumption may be acquired based on the q-axis current and the q-axis voltage in the power converter 110.
実施の形態3.
 次に、本発明の実施の形態3について説明する。本実施の形態3では、圧縮機101のモータ101bに供給される三相電力のうち、例えばU相の電流に基づくフレーム間の電力比を特徴量として適用した場合について説明する。なお、以下の説明において、実施の形態1および2と共通する部分には同一の符号を付し、詳細な説明を省略する。
Embodiment 3.
Next, a third embodiment of the present invention will be described. In the third embodiment, a case will be described in which, of the three-phase power supplied to the motor 101b of the compressor 101, for example, a power ratio between frames based on a U-phase current is applied as a feature amount. In the following description, the same parts as those in the first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
[空気調和装置100の構成]
 本実施の形態3に係る空気調和装置100の構成は、図1に示す実施の形態1および2に係る空気調和装置100と同様である。また、故障前兆検出装置1の構成についても、図2に示す実施の形態1および2に係る故障前兆検出装置1と同様である。
[Configuration of Air Conditioner 100]
The configuration of the air conditioning apparatus 100 according to the third embodiment is similar to that of the air conditioning apparatus 100 according to the first and second embodiments shown in FIG. The configuration of the failure sign detection device 1 is also the same as that of the failure sign detection device 1 according to the first and second embodiments shown in FIG.
 本実施の形態3において、図2の故障前兆検出装置1の特徴量取得部11には、機器関連情報として、電力変換装置110から供給される三相電力のうち、U相電流が入力される。機器関連情報としてのU相電流は、外部の計測装置等を用いて計測され、計測結果が特徴量取得部11に入力される。 In the third embodiment, the U-phase current of the three-phase power supplied from the power converter 110 is input to the characteristic amount acquisition unit 11 of the failure sign detection device 1 of FIG. 2 as the device-related information. . The U-phase current as the device-related information is measured using an external measuring device or the like, and the measurement result is input to the feature amount acquisition unit 11.
 特徴量取得部11は、入力されたU相電流に基づき、電力比Energy_dを特徴量として取得する。電力比Energy_dは、予め設定されたサンプル数の集合であるフレームτと、直前のフレームτ-1とのそれぞれのフレームにおける電力値Energy(τ)および電力値Energy(τ-1)の比を示す。 The characteristic amount acquisition unit 11 acquires the power ratio Energy_d as a characteristic amount based on the input U-phase current. The power ratio Energy_d indicates the ratio of the power value Energy (τ) and the power value Energy (τ-1) in each of the frame τ, which is a set of preset number of samples, and the immediately preceding frame τ-1. .
 温度上昇推定部12は、特徴量取得部11で取得された電力比Energy_dと、記憶部14に記憶された仕様情報とに基づき、圧縮機101の内部構造の温度上昇量を推定する。温度上昇量の推定については、後述する。 The temperature rise estimation unit 12 estimates the temperature rise amount of the internal structure of the compressor 101 based on the power ratio Energy_d acquired by the feature amount acquisition unit 11 and the specification information stored in the storage unit 14. The estimation of the temperature rise amount will be described later.
 記憶部14には、実施の形態1と同様に、下限閾値および1または複数の判定閾値が予め記憶されている。また、本実施の形態3において、記憶部14には、実施の形態2と同様に、温度上昇推定部12で温度上昇量を推定する際に用いられる仕様情報が予め記憶されている。 Like the first embodiment, the storage unit 14 stores in advance a lower limit threshold and one or more determination thresholds. Further, in the third embodiment, as in the second embodiment, the storage unit 14 stores in advance the specification information used when the temperature increase estimation unit 12 estimates the temperature increase amount.
[温度上昇量の推定]
 圧縮機101におけるモータ101bのトルクは、脱調なき状態での三相電流のうち1相の電流、例えばU相電流と比例関係にある。具体的には、モータ101bのトルクが変化すると、それに応じてモータ101bに供給されるU相電流も変化する。また、U相電流が変化すると、U相電流から得られるモータ101bの電力比Energy_dも変化する。なお、「脱調」とは、モータ101bに対する指示周波数と実際の周波数とがずれることをいう。
[Estimation of temperature rise]
The torque of the motor 101b in the compressor 101 is proportional to the current of one phase of the three-phase current in the stepless state, for example, the U-phase current. Specifically, when the torque of the motor 101b changes, the U-phase current supplied to the motor 101b also changes accordingly. Further, when the U-phase current changes, the power ratio Energy_d of the motor 101b obtained from the U-phase current also changes. Note that "step out" means that the instruction frequency for the motor 101b deviates from the actual frequency.
 そこで、本実施の形態3では、圧縮機101を駆動するモータ101bの電力比Energy_dを特徴量として適用し、電力比Energy_dに応じて生じる温度上昇量を推定する。そして、推定された温度上昇量に基づき、圧縮機101の故障の可能性および損傷度合いを判定する。 Therefore, in the third embodiment, the power ratio Energy_d of the motor 101b that drives the compressor 101 is applied as a feature amount, and the temperature rise amount that occurs according to the power ratio Energy_d is estimated. Then, the possibility of failure and the degree of damage of the compressor 101 are determined based on the estimated temperature rise amount.
(特徴量の取得)
 まず、本実施の形態3における特徴量としてのモータ101bの電力比Energy_dを算出するために、フレームτにおける電力値Power(τ)が算出される。電力値Power(τ)は、式(3)に基づき算出される。ここで、フレームτは、予め設定されたサンプル数の集合であり、式(3)のxτ(n)は、フレームτにおけるサンプリング時間nでのU相電流を示す。
(Acquisition of feature quantity)
First, in order to calculate the power ratio Energy_d of the motor 101b as the feature amount in the third embodiment, the power value Power (τ) in the frame τ is calculated. The power value Power (τ) is calculated based on the equation (3). Here, the frame τ is a set of a preset number of samples, and x τ (n) in the equation (3) represents the U-phase current at the sampling time n in the frame τ.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 次に、電力値Power(τ)を対数変換した電力値Energy(τ)が算出される。電力値Energy(τ)は、式(4)に基づき算出される。 Next, the power value Energy (τ) obtained by logarithmically converting the power value Power (τ) is calculated. The power value Energy (τ) is calculated based on the equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 そして、フレームτにおける電力値Energy(τ)と、直前のフレームτ-1における電力値Energy(τ-1)とから、電力値Energy(τ-1)に対する電力値Energy(τ)の電力比Energy_dが式(5)に基づき算出される。 Then, based on the power value Energy (τ) in the frame τ and the power value Energy (τ-1) in the immediately preceding frame τ-1, the power ratio Energy_τ of the power value Energy (τ) with respect to the power value Energy (τ-1). Is calculated based on the equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
(温度上昇量の推定)
 次に、温度上昇量ΔTは、電力比Energy_dと仕様情報とに基づき推定される。本実施の形態3では、予め設定された電力比毎に、横軸が圧縮機101の回転数であり、縦軸が圧縮機101における冷媒の差圧であるマップが作成される。マップには、電力比Energy_dの変動幅から推定されるモータ101bのトルク変動による発熱量が記載されている。したがって、仕様情報に基づき、圧縮機101における軸受等の摺動部の材料物性を参照することにより、発熱量に対応する温度上昇量ΔTを推定することができる。
(Estimation of temperature rise)
Next, the temperature increase amount ΔT is estimated based on the power ratio Energy_d and the specification information. In the third embodiment, a map in which the horizontal axis represents the rotation speed of the compressor 101 and the vertical axis represents the differential pressure of the refrigerant in the compressor 101 is created for each preset power ratio. The map shows the heat generation amount due to the torque fluctuation of the motor 101b estimated from the fluctuation width of the power ratio Energy_d. Therefore, the temperature increase amount ΔT corresponding to the heat generation amount can be estimated by referring to the material properties of the sliding portion such as the bearing of the compressor 101 based on the specification information.
[故障前兆検出処理]
 図5のフローチャートに示すように、特徴量取得部11には、ステップS1において、機器関連情報としてのU相電流が入力される。特徴量取得部11は、U相電流に基づき、式(3)~式(5)を用いて電力比Energy_dを特徴量として取得する。
[Pre-failure detection processing]
As shown in the flowchart of FIG. 5, the U-phase current as the device-related information is input to the feature amount acquisition unit 11 in step S1. The characteristic amount acquisition unit 11 acquires the power ratio Energy_d as a characteristic amount using Expressions (3) to (5) based on the U-phase current.
 ステップS2において、温度上昇推定部12は、特徴量取得部11で取得された特徴量としての電力比Energy_dに基づきマップを作成し、作成されたマップに記載された発熱量と仕様情報とに基づき、圧縮機101の内部構造の温度上昇量ΔTを推定する。ステップS3~ステップS7の各処理については、実施の形態1と同様である。 In step S2, the temperature rise estimating unit 12 creates a map based on the power ratio Energy_d as the feature amount acquired by the feature amount acquiring unit 11, and based on the heat generation amount and the specification information described in the created map. Estimate the temperature rise amount ΔT of the internal structure of the compressor 101. The processes of steps S3 to S7 are the same as those in the first embodiment.
(第3の変形例)
 本実施の形態3の第3の変形例について説明する。第3の変形例では、実施の形態3と同様に、機器関連情報として、電力変換装置110から圧縮機101のモータ101bに供給されるU相電流が故障前兆検出装置1に入力される。そして、入力されたU相電流に基づき、フレーム間の電力比Power_dが特徴量として取得される。
(Third Modification)
A third modification of the third embodiment will be described. In the third modification, as in the third embodiment, the U-phase current supplied from the power converter 110 to the motor 101b of the compressor 101 is input to the failure sign detection device 1 as the device-related information. Then, the power ratio Power_d between frames is acquired as a feature amount based on the input U-phase current.
(故障前兆検出処理)
 図5のフローチャートに示すように、特徴量取得部11には、ステップS1において、機器関連情報としてのU相電流が入力される。特徴量取得部11は、U相電流に基づき、式(3)を用いてフレームτにおける電力値Power(τ)を算出する。そして、特徴量取得部11は、算出したフレームτにおける電力値Power(τ)と、直前のフレームτ-1における電力値Power(τ-1)とに基づき、電力比Power_dを特徴量として取得する。
(Fault sign detection process)
As shown in the flowchart of FIG. 5, the U-phase current as the device-related information is input to the feature amount acquisition unit 11 in step S1. The feature amount acquisition unit 11 calculates the power value Power (τ) in the frame τ based on the U-phase current using the equation (3). Then, the feature amount acquisition unit 11 acquires the power ratio Power_d as the feature amount based on the calculated power value Power (τ) in the frame τ and the power value Power (τ-1) in the immediately preceding frame τ-1. .
 ステップS2において、温度上昇推定部12は、実施の形態3と同様に、特徴量としての電力比Power_dに基づきマップを作成し、作成されたマップに記載された発熱量と仕様情報とに基づき、圧縮機101の内部構造の温度上昇量ΔTを算出する。ステップS3~ステップS7の各処理については、実施の形態3と同様である。 In step S2, the temperature increase estimation unit 12 creates a map based on the power ratio Power_d as the feature amount, as in the third embodiment, and based on the heat generation amount and the specification information described in the created map, The temperature rise amount ΔT of the internal structure of the compressor 101 is calculated. The processes in steps S3 to S7 are the same as those in the third embodiment.
(第4の変形例)
 本実施の形態3の第4の変形例について説明する。第4の変形例では、実施の形態3および第3の変形例と同様に、機器関連情報として、電力変換装置110から圧縮機101のモータ101bに供給されるU相電流が故障前兆検出装置1に入力される。そして、入力されたU相電流に基づき、フレーム間のU相電流の実効値(RMS)の差分値である差分実効値RMS_dが特徴量として取得される。
(Fourth Modification)
A fourth modified example of the third embodiment will be described. In the fourth modification, similar to the third and third modifications, the U-phase current supplied from the power converter 110 to the motor 101b of the compressor 101 as the device-related information is the failure sign detector 1. Entered in. Then, based on the input U-phase current, the difference effective value RMS_d, which is the difference value of the effective value (RMS) of the U-phase current between frames, is acquired as the feature amount.
(故障前兆検出処理)
 図5のフローチャートに示すように、特徴量取得部11には、ステップS1において、機器関連情報としてのU相電流が入力される。特徴量取得部11は、U相電流に基づき、フレームτにおけるU相電力の実効値RMS(τ)を算出する。そして、特徴量取得部11は、算出したフレームτにおける実効値RMS(τ)と、直前のフレームτ-1における実効値RMS(τ-1)とに基づき、差分実効値RMS_dを特徴量として取得する。
(Fault sign detection process)
As shown in the flowchart of FIG. 5, the U-phase current as the device-related information is input to the feature amount acquisition unit 11 in step S1. The feature amount acquisition unit 11 calculates the effective value RMS (τ) of the U-phase power in the frame τ based on the U-phase current. Then, the characteristic amount acquisition unit 11 acquires the difference effective value RMS_d as the characteristic amount based on the calculated effective value RMS (τ) in the frame τ and the effective value RMS (τ-1) in the immediately preceding frame τ-1. To do.
 ステップS2において、温度上昇推定部12は、実施の形態3と同様に、特徴量としての差分実効値RMS_dに基づきマップを作成し、作成されたマップに記載された発熱量と仕様情報とに基づき、圧縮機101の内部構造の温度上昇量ΔTを算出する。ステップS3~ステップS7の各処理については、実施の形態3と同様である。 In step S2, the temperature rise estimating unit 12 creates a map based on the difference effective value RMS_d as the feature amount, as in the third embodiment, and based on the heat generation amount and the specification information described in the created map. A temperature increase amount ΔT of the internal structure of the compressor 101 is calculated. The processes in steps S3 to S7 are the same as those in the third embodiment.
(第5の変形例)
 本実施の形態3の第5の変形例について説明する。第5の変形例では、実施の形態3、第3の変形例および第4の変形例と同様に、機器関連情報として、電力変換装置110から圧縮機101のモータ101bに供給されるU相電流が故障前兆検出装置1に入力される。そして、入力されたU相電流に基づき、フレーム間のU相電流の振幅の差分値である差分振幅値A_dが特徴量として取得される。なお、振幅値は、1波長の正方向の最大値と負方向の最大値とから得られる最大振幅値とする。
(Fifth Modification)
A fifth modification of the third embodiment will be described. In the fifth modified example, similar to the third, third, and fourth modified examples, the U-phase current supplied from the power converter 110 to the motor 101b of the compressor 101 as the device-related information. Is input to the failure sign detection device 1. Then, based on the input U-phase current, a difference amplitude value A_d, which is a difference value of the amplitude of the U-phase current between frames, is acquired as a feature amount. The amplitude value is the maximum amplitude value obtained from the maximum value in the positive direction and the maximum value in the negative direction of one wavelength.
(故障前兆検出処理)
 図5のフローチャートに示すように、特徴量取得部11には、ステップS1において、機器関連情報としてのU相電流が入力される。特徴量取得部11は、U相電流に基づき、フレームτにおけるU相電力の振幅A(τ)を算出する。そして、特徴量取得部11は、算出したフレームτにおける振幅A(τ)と、直前のフレームτ-1における振幅A(τ-1)とに基づき、差分振幅値A_dを特徴量として取得する。
(Fault sign detection process)
As shown in the flowchart of FIG. 5, the U-phase current as the device-related information is input to the feature amount acquisition unit 11 in step S1. The feature amount acquisition unit 11 calculates the amplitude A (τ) of the U-phase power in the frame τ based on the U-phase current. Then, the characteristic amount acquisition unit 11 acquires the difference amplitude value A_d as the characteristic amount based on the calculated amplitude A (τ) in the frame τ and the calculated amplitude A (τ-1) in the immediately preceding frame τ-1.
 ステップS2において、温度上昇推定部12は、特徴量としての差分振幅値A_dに基づきマップを作成し、作成されたマップに記載された発熱量と仕様情報とに基づき、圧縮機101の内部構造の温度上昇量ΔTを算出する。ステップS3~ステップS7の各処理については、実施の形態3と同様である。 In step S2, the temperature rise estimation unit 12 creates a map based on the difference amplitude value A_d as the feature amount, and based on the heat generation amount and the specification information described in the created map, the internal structure of the compressor 101 is determined. The temperature increase amount ΔT is calculated. The processes in steps S3 to S7 are the same as those in the third embodiment.
 以上のように、本実施の形態3に係る故障前兆検出装置1では、圧縮機101に供給されるU相電流に基づいて特徴量が取得される。この場合の特徴量は、設定フレームにおける電力値と、直前のフレームにおける電力値との比である電力比が用いられる。 As described above, in the failure sign detection device 1 according to the third embodiment, the characteristic amount is acquired based on the U-phase current supplied to the compressor 101. In this case, the feature amount is a power ratio that is a ratio between the power value in the set frame and the power value in the immediately preceding frame.
 また、特徴量は、設定フレームにおけるU相電流の実効値と、直前のフレームにおけるU相電流の実効値との差分である差分実効値が用いられてもよい。さらに、特徴量は、設定フレームにおけるU相電流の振幅と、直前のフレームにおけるU相電流の振幅との差分である差分振幅値A_dが用いられてもよい。 Also, as the feature amount, a difference effective value that is a difference between the effective value of the U-phase current in the setting frame and the effective value of the U-phase current in the immediately preceding frame may be used. Further, as the feature amount, a difference amplitude value A_d that is a difference between the amplitude of the U-phase current in the set frame and the amplitude of the U-phase current in the immediately preceding frame may be used.
実施の形態4.
 次に、本発明の実施の形態4について説明する。本実施の形態4では、電力変換装置110におけるq軸電流の差分値を特徴量として適用した場合について説明する。なお、以下の説明において、実施の形態1~3と共通する部分には同一の符号を付し、詳細な説明を省略する。
Fourth Embodiment
Next, a fourth embodiment of the invention will be described. In the fourth embodiment, a case will be described in which the difference value of the q-axis current in the power converter 110 is applied as the feature amount. In the following description, the same parts as those in the first to third embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
[空気調和装置100の構成]
 本実施の形態4に係る空気調和装置100の構成は、図1に示す実施の形態1~3に係る空気調和装置100と同様である。また、故障前兆検出装置1の構成についても、図2に示す実施の形態1~3に係る故障前兆検出装置1と同様である。
[Configuration of Air Conditioner 100]
The configuration of the air conditioning apparatus 100 according to the fourth embodiment is similar to that of the air conditioning apparatus 100 according to the first to third embodiments shown in FIG. The configuration of the failure sign detection device 1 is also the same as that of the failure sign detection device 1 according to the first to third embodiments shown in FIG.
 本実施の形態4において、図2の故障前兆検出装置1の特徴量取得部11には、機器関連情報として、電力変換装置110におけるq軸電流Iqが入力される。特徴量取得部11は、入力されたq軸電流Iqに基づき、サンプリング間隔でのq軸電流の差分値ΔIqを特徴量として取得する。温度上昇推定部12は、特徴量取得部11で取得されたq軸電流の差分値ΔIqに基づき、圧縮機101の内部構造の温度上昇量ΔTを推定する。温度上昇量ΔTの推定については、後述する。 In the fourth embodiment, the q-axis current Iq in the power conversion device 110 is input to the feature amount acquisition unit 11 of the failure sign detection device 1 of FIG. 2 as device-related information. The feature amount acquisition unit 11 acquires the difference value ΔIq of the q-axis current at the sampling interval as the feature amount based on the input q-axis current Iq. The temperature rise estimation unit 12 estimates the temperature rise amount ΔT of the internal structure of the compressor 101 based on the difference value ΔIq of the q-axis current acquired by the feature amount acquisition unit 11. The estimation of the temperature increase amount ΔT will be described later.
[温度上昇量の推定]
 モータ101bのトルクは、電力変換装置110におけるq軸電流Iqに等しいことが知られている。したがって、サンプリング間隔でのq軸電流Iqの差分値ΔIqは、そのまま仕事となるため、この差分値ΔIqと式(2)とを用いることにより、サンプリング間隔での温度上昇量ΔTを推定することができる。なお、この場合には、式(2)の電力差ΔPに代えて、差分値ΔIqが用いられる。
[Estimation of temperature rise]
It is known that the torque of the motor 101b is equal to the q-axis current Iq in the power converter 110. Therefore, since the difference value ΔIq of the q-axis current Iq at the sampling interval serves as it is, the temperature increase amount ΔT at the sampling interval can be estimated by using this difference value ΔIq and the equation (2). it can. In this case, the difference value ΔIq is used instead of the power difference ΔP in the equation (2).
[故障前兆検出処理]
 図5のフローチャートに示すように、特徴量取得部11には、ステップS1において、機器関連情報としてのq軸電流Iqが入力される。特徴量取得部11は、q軸電流Iqに基づき、サンプリング間隔での差分値ΔIqを特徴量として算出する。
[Pre-failure detection processing]
As shown in the flowchart of FIG. 5, the q-axis current Iq as the device-related information is input to the feature amount acquisition unit 11 in step S1. The feature amount acquisition unit 11 calculates the difference value ΔIq at the sampling interval as the feature amount based on the q-axis current Iq.
 ステップS2において、温度上昇推定部12は、特徴量取得部11で取得された特徴量としての差分値ΔIqに基づき、式(2)を用いて圧縮機101の内部構造の温度上昇量ΔTを算出する。ステップS3~ステップS7の各処理については、実施の形態1と同様である。 In step S2, the temperature rise estimation unit 12 calculates the temperature rise amount ΔT of the internal structure of the compressor 101 using the equation (2) based on the difference value ΔIq as the feature amount acquired by the feature amount acquisition unit 11. To do. The processes of steps S3 to S7 are the same as those in the first embodiment.
 以上のように、本実施の形態4に係る故障前兆検出装置1では、設定フレームにおける電力変換装置110のq軸電流と、直前のフレームにおけるq軸電流との差分値と、仕様情報とに基づき、圧縮機101の内部構造の温度上昇量を算出することができる。 As described above, in the failure precursor detection device 1 according to the fourth embodiment, based on the difference value between the q-axis current of the power conversion device 110 in the setting frame and the q-axis current in the immediately preceding frame, and the specification information. The temperature rise amount of the internal structure of the compressor 101 can be calculated.
 1 故障前兆検出装置、11 特徴量取得部、12 温度上昇推定部、13 判定部、14 記憶部、15 報知部、21 処理回路、22 出力装置、31 プロセッサ、32 メモリ、33 出力装置、100 空気調和装置、101 圧縮機、101a 圧縮要素、101b モータ、102 凝縮器、103 膨張装置、104 蒸発器、105 制御装置、110 電力変換装置、200 電源。 1 failure sign detection device, 11 feature amount acquisition unit, 12 temperature rise estimation unit, 13 determination unit, 14 storage unit, 15 notification unit, 21 processing circuit, 22 output device, 31 processor, 32 memory, 33 output device, 100 air Harmonization device, 101 compressor, 101a compression element, 101b motor, 102 condenser, 103 expansion device, 104 evaporator, 105 control device, 110 power conversion device, 200 power supply.

Claims (13)

  1.  電力変換装置を介して電源から供給される電力によって動作する、空調に関連する設備機器における故障の前兆を検出する故障前兆検出装置であって、
     前記設備機器から入力された前記設備機器に関する機器関連情報に基づき、前記設備機器についての特徴量を取得する特徴量取得部と、
     取得した前記特徴量に基づき、前記設備機器の内部構造の温度上昇量を推定する温度上昇推定部と、
     前記温度上昇量に対する閾値を記憶する記憶部と、
     推定された前記温度上昇量と前記閾値との比較結果に基づき、前記設備機器の故障の可能性および前記内部構造の損傷度合いを判定する判定部と
    を備える故障前兆検出装置。
    A failure precursor detection device that operates with electric power supplied from a power supply via a power conversion device and detects a precursor of a failure in equipment related to air conditioning,
    A feature amount acquisition unit that obtains a feature amount of the facility device, based on device-related information about the facility device input from the facility device,
    Based on the acquired feature amount, a temperature rise estimation unit that estimates the temperature rise amount of the internal structure of the equipment,
    A storage unit that stores a threshold value for the temperature increase amount,
    A failure precursor detection device comprising: a determination unit that determines a possibility of a failure of the equipment and a degree of damage to the internal structure based on a result of comparison between the estimated temperature increase amount and the threshold value.
  2.  前記閾値は、
     故障の有無の境界を示す下限閾値を含み、
     前記判定部は、
     前記温度上昇量と前記下限閾値とを比較し、前記温度上昇量が前記下限閾値を超えた場合に、前記設備機器が故障する可能性があると判定する請求項1に記載の故障前兆検出装置。
    The threshold is
    Including a lower threshold that indicates the boundary of the presence or absence of failure,
    The determination unit includes:
    The failure sign detection device according to claim 1, wherein the temperature increase amount is compared with the lower limit threshold value, and when the temperature increase amount exceeds the lower limit threshold value, it is determined that the facility device may fail. .
  3.  前記閾値は、
     前記下限閾値よりも大きい値を有し、段階的に設定された1または複数の判定閾値をさらに含み、
     前記判定部は、
     前記設備機器が故障する可能性があると判定した場合に、
     前記温度上昇量と前記1または複数の判定閾値との関係に基づき、前記設備機器の前記内部構造の損傷度合いを判定する請求項2に記載の故障前兆検出装置。
    The threshold is
    A value greater than the lower threshold, further including one or more determination thresholds set in stages,
    The determination unit includes:
    When it is determined that the equipment may be damaged,
    The failure sign detection device according to claim 2, wherein the degree of damage to the internal structure of the equipment is determined based on the relationship between the temperature increase amount and the one or more determination thresholds.
  4.  前記特徴量取得部は、
     前記設備機器の消費電力を前記特徴量として取得し、
     前記記憶部は、
     前記設備機器の内部構造の仕様を示す仕様情報を予め記憶し、
     前記温度上昇推定部は、
     前記設備機器の前記消費電力と前記仕様情報とに基づき、前記設備機器の内部構造の前記温度上昇量を推定する請求項1~3のいずれか一項に記載の故障前兆検出装置。
    The feature amount acquisition unit,
    Acquiring the power consumption of the equipment as the characteristic amount,
    The storage unit,
    Pre-store specification information indicating the specifications of the internal structure of the equipment,
    The temperature rise estimation unit,
    The failure sign detection device according to any one of claims 1 to 3, wherein the temperature rise amount of the internal structure of the equipment is estimated based on the power consumption of the equipment and the specification information.
  5.  前記特徴量取得部は、
     前記電源から前記電力変換装置に出力される1次電力に基づき前記消費電力を取得する
    請求項4に記載の故障前兆検出装置。
    The feature amount acquisition unit,
    The failure sign detection device according to claim 4, wherein the power consumption is acquired based on a primary power output from the power supply to the power conversion device.
  6.  前記特徴量取得部は、
     前記電力変換装置から前記設備機器に供給される2次電力に基づき前記消費電力を取得する請求項4に記載の故障前兆検出装置。
    The feature amount acquisition unit,
    The failure sign detection device according to claim 4, wherein the power consumption is acquired based on secondary power supplied from the power conversion device to the equipment.
  7.  前記特徴量取得部は、
     前記電力変換装置のq軸電流およびq軸電圧に基づき前記消費電力を取得する請求項4に記載の故障前兆検出装置。
    The feature amount acquisition unit,
    The failure sign detection device according to claim 4, wherein the power consumption is acquired based on a q-axis current and a q-axis voltage of the power conversion device.
  8.  前記特徴量取得部は、
     前記電力変換装置から前記設備機器に供給される三相電力のうちのいずれか一相の電流に基づき前記特徴量を取得する請求項1~3のいずれか一項に記載の故障前兆検出装置。
    The feature amount acquisition unit,
    The failure sign detection device according to any one of claims 1 to 3, wherein the characteristic amount is acquired based on a current of any one phase of three-phase power supplied from the power conversion device to the equipment.
  9.  前記特徴量取得部は、
     前記一相の電流に基づき、設定フレームにおける電力値と、前記設定フレームの直前のフレームにおける前記電力値との比を示す電力比を特徴量として取得し、
     前記記憶部は、
     前記設備機器の内部構造の仕様を示す仕様情報を予め記憶し、
     前記温度上昇推定部は、
     前記電力比と前記仕様情報とに基づき、前記設備機器の内部構造の前記温度上昇量を推定する請求項8に記載の故障前兆検出装置。
    The feature amount acquisition unit,
    Based on the one-phase current, a power value in a setting frame and a power ratio indicating a ratio of the power value in a frame immediately before the setting frame are acquired as a characteristic amount,
    The storage unit,
    Pre-store specification information indicating the specifications of the internal structure of the equipment,
    The temperature rise estimation unit,
    The failure sign detection device according to claim 8, wherein the temperature rise amount of the internal structure of the equipment is estimated based on the power ratio and the specification information.
  10.  前記特徴量取得部は、
     前記一相の電流に基づき、設定フレームにおける前記電流の実効値と、前記設定フレームの直前のフレームにおける前記電流の実効値との差分を示す差分実効値を特徴量として取得し、
     前記記憶部は、
     前記設備機器の内部構造の仕様を示す仕様情報を予め記憶し、
     前記温度上昇推定部は、
     前記差分実効値と前記仕様情報とに基づき、前記設備機器の内部構造の前記温度上昇量を推定する請求項8に記載の故障前兆検出装置。
    The feature amount acquisition unit,
    Based on the one-phase current, the effective value of the current in the setting frame, and obtain a difference effective value indicating the difference between the effective value of the current in the frame immediately before the setting frame as a feature amount,
    The storage unit,
    Pre-store specification information indicating the specifications of the internal structure of the equipment,
    The temperature rise estimation unit,
    The failure sign detection device according to claim 8, wherein the temperature rise amount of the internal structure of the equipment is estimated based on the difference effective value and the specification information.
  11.  前記特徴量取得部は、
     前記一相の電流に基づき、設定フレームにおける前記電流の振幅と、前記設定フレームの直前のフレームにおける前記電流の振幅との差分を示す差分振幅値を特徴量として取得し、
     前記記憶部は、
     前記設備機器の内部構造の仕様を示す仕様情報を予め記憶し、
     前記温度上昇推定部は、
     前記差分振幅値と前記仕様情報とに基づき、前記設備機器の内部構造の前記温度上昇量を推定する請求項8に記載の故障前兆検出装置。
    The feature amount acquisition unit,
    Based on the one-phase current, the amplitude of the current in the setting frame, and obtain a difference amplitude value indicating the difference between the amplitude of the current in the frame immediately before the setting frame as a feature amount,
    The storage unit,
    Pre-store specification information indicating the specifications of the internal structure of the equipment,
    The temperature rise estimation unit,
    The failure sign detection device according to claim 8, wherein the temperature rise amount of the internal structure of the equipment is estimated based on the difference amplitude value and the specification information.
  12.  前記特徴量取得部は、
     前記電力変換装置の設定フレームにおけるq軸電流と、前記設定フレームの直前のフレームにおけるq軸電流との差分を特徴量として取得し、
     前記記憶部は、
     前記設備機器の内部構造の仕様を示す仕様情報を予め記憶し、
     前記温度上昇推定部は、
     前記q軸電流の差分と前記仕様情報とに基づき、前記設備機器の内部構造の前記温度上昇量を推定する請求項8に記載の故障前兆検出装置。
    The feature amount acquisition unit,
    The difference between the q-axis current in the setting frame of the power converter and the q-axis current in the frame immediately before the setting frame is acquired as a feature amount,
    The storage unit,
    Pre-store specification information indicating the specifications of the internal structure of the equipment,
    The temperature rise estimation unit,
    The failure sign detection device according to claim 8, wherein the temperature rise amount of the internal structure of the equipment is estimated based on the difference between the q-axis currents and the specification information.
  13.  前記判定部による判定結果に応じて、故障の可能性および前記設備機器の損傷度合いを報知する報知部をさらに備える請求項1~12のいずれか一項に記載の故障前兆検出装置。 The failure sign detection device according to any one of claims 1 to 12, further comprising a notification unit that notifies a possibility of a failure and a degree of damage to the equipment according to a determination result of the determination unit.
PCT/JP2018/037896 2018-10-11 2018-10-11 Failure sign detection device WO2020075262A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020549900A JP6976454B2 (en) 2018-10-11 2018-10-11 Failure sign detector
PCT/JP2018/037896 WO2020075262A1 (en) 2018-10-11 2018-10-11 Failure sign detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/037896 WO2020075262A1 (en) 2018-10-11 2018-10-11 Failure sign detection device

Publications (1)

Publication Number Publication Date
WO2020075262A1 true WO2020075262A1 (en) 2020-04-16

Family

ID=70165205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037896 WO2020075262A1 (en) 2018-10-11 2018-10-11 Failure sign detection device

Country Status (2)

Country Link
JP (1) JP6976454B2 (en)
WO (1) WO2020075262A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085129A (en) * 1994-06-16 1996-01-12 Sanyo Electric Co Ltd Air-conditioning device and its motor abnormality-detecting method
JP2007170411A (en) * 2007-03-26 2007-07-05 Daikin Ind Ltd Device for estimating internal condition of compressor and air conditioning device
US20110093424A1 (en) * 2009-10-19 2011-04-21 Siemens Corporation Heat Flow Model for Building Fault Detection and Diagnosis
JP2011226694A (en) * 2010-04-19 2011-11-10 Mitsubishi Electric Corp Air conditioner, equipment system, information management system, and control method of air conditioner
US20140074730A1 (en) * 2012-02-28 2014-03-13 Emerson Climate Technologies, Inc. Hvac system remote monitoring and diagnosis
US20140142727A1 (en) * 2011-03-02 2014-05-22 Carrier Corporation SPC Fault Detection and Diagnostics Algorithm
WO2016035187A1 (en) * 2014-09-04 2016-03-10 三菱電機株式会社 Abnormality detection device and abnormality detection method
US20170300046A1 (en) * 2016-04-13 2017-10-19 Encycle Corporation Methods and Apparatuses for Detecting Faults in HVAC Systems Based on Load Level Patterns

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3541788B2 (en) * 2000-07-26 2004-07-14 ダイキン工業株式会社 Air conditioner
JP4023249B2 (en) * 2002-07-25 2007-12-19 ダイキン工業株式会社 Compressor internal state estimation device and air conditioner
JP3979232B2 (en) * 2002-08-27 2007-09-19 ダイキン工業株式会社 Failure diagnosis apparatus and failure diagnosis method
JP6434634B2 (en) * 2015-09-11 2018-12-05 日立ジョンソンコントロールズ空調株式会社 Air conditioner equipped with compressor failure prediction / detection means and failure prediction / detection method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085129A (en) * 1994-06-16 1996-01-12 Sanyo Electric Co Ltd Air-conditioning device and its motor abnormality-detecting method
JP2007170411A (en) * 2007-03-26 2007-07-05 Daikin Ind Ltd Device for estimating internal condition of compressor and air conditioning device
US20110093424A1 (en) * 2009-10-19 2011-04-21 Siemens Corporation Heat Flow Model for Building Fault Detection and Diagnosis
JP2011226694A (en) * 2010-04-19 2011-11-10 Mitsubishi Electric Corp Air conditioner, equipment system, information management system, and control method of air conditioner
US20140142727A1 (en) * 2011-03-02 2014-05-22 Carrier Corporation SPC Fault Detection and Diagnostics Algorithm
US20140074730A1 (en) * 2012-02-28 2014-03-13 Emerson Climate Technologies, Inc. Hvac system remote monitoring and diagnosis
WO2016035187A1 (en) * 2014-09-04 2016-03-10 三菱電機株式会社 Abnormality detection device and abnormality detection method
US20170300046A1 (en) * 2016-04-13 2017-10-19 Encycle Corporation Methods and Apparatuses for Detecting Faults in HVAC Systems Based on Load Level Patterns

Also Published As

Publication number Publication date
JPWO2020075262A1 (en) 2021-03-11
JP6976454B2 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
Kim et al. Design of a steady-state detector for fault detection and diagnosis of a residential air conditioner
KR101182759B1 (en) System and method for evaluating parameters for a refrigeration system with a variable speed compressor
EP2198165B1 (en) Variable speed compressor protection system and method
EP3805672B1 (en) System and method for calibrating parameters for a refrigeration system with a variable speed compressor
US8418483B2 (en) System and method for calculating parameters for a refrigeration system with a variable speed compressor
EP3225930B1 (en) Air conditioner
JP5143251B2 (en) Monitoring of decrease in refrigerant flow of stator coil
EP2634509B1 (en) Heat source device
Zhao et al. Field implementation and evaluation of a decoupling-based fault detection and diagnostic method for chillers
EP2426433A2 (en) Performance evaluation device for centrifugal chiller
EP3348835B1 (en) Air conditioner provided with failure prognosis/detection means for compressor, and failure prognosis/detection method thereof
US20170003679A1 (en) Chiller control device, chiller, and chiller diagnostic method
US11609010B2 (en) Detection of refrigerant side faults
JP2017221023A (en) Failure sign detector for air-conditioner
US20140214365A1 (en) Method for the diagnostic analysis of a heating, ventilation and air-conditioning system (hvac)
JP2010025475A (en) Failure diagnostic device used for refrigerating cycle equipment
JPWO2018198221A1 (en) Deterioration diagnosis device and air conditioner
WO2020075262A1 (en) Failure sign detection device
EP3502593A1 (en) Composition abnormality detection device and composition abnormality detection method
EP3859250A1 (en) Abnormality determination device, freezing device including this abnormality determination device, and abnormality determination method for compressor
Kim et al. Virtual refrigerant mass flow and power sensors for variable-speed compressors
KR20130129401A (en) System and method for controlling an air conditioning system for a motor vehicle
JP4670825B2 (en) Compressor internal state estimation device and air conditioner
KR100315959B1 (en) Performance tester of two-stage centrifugal compressor
WO2022269657A1 (en) Failure symptom detection device and failure symptom detection method for electric motor-provided equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549900

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936344

Country of ref document: EP

Kind code of ref document: A1