WO2020074292A1 - Electrically heated catalytic converter, and method for operating such a catalytic converter - Google Patents

Electrically heated catalytic converter, and method for operating such a catalytic converter Download PDF

Info

Publication number
WO2020074292A1
WO2020074292A1 PCT/EP2019/076352 EP2019076352W WO2020074292A1 WO 2020074292 A1 WO2020074292 A1 WO 2020074292A1 EP 2019076352 W EP2019076352 W EP 2019076352W WO 2020074292 A1 WO2020074292 A1 WO 2020074292A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
catalytic converter
catalytic
heating
heating element
Prior art date
Application number
PCT/EP2019/076352
Other languages
German (de)
French (fr)
Inventor
Dietmar Ellmer
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of WO2020074292A1 publication Critical patent/WO2020074292A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1626Catalyst activation temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to an electrically heated catalytic converter and a method for operating an electrically heated catalytic converter.
  • Exhaust gas catalysts in which a chemical conversion of combustion pollutants is carried out by oxidation or reduction of the respective pollutant.
  • the catalytic converters have active catalytic areas in which the chemical conversion - catalysis - takes place.
  • the required operating temperature is usually in a fuel- and coating-dependent area, starting at a minimum of around 250 ° C, since the catalysis that is carried out in the catalytic area requires a certain minimum temperature, also called light-off temperature, for effective exhaust gas aftertreatment.
  • combustion-related measures can be carried out on the one hand, that is, measures in which the internal combustion engine is operated in such a way that the waste heat from the internal combustion engine can be used to quickly heat up the exhaust gas catalytic converter.
  • an electrically heatable catalytic converter Such catalytic converter have their own electrical heating device, which brings the gas catalytic converter from the desired operating temperature.
  • One advantage of an electrically heatable exhaust gas catalytic converter is that the exhaust gas catalytic converter can be brought to operating temperature in a so-called catalytic converter cold phase even without the internal combustion engine operating.
  • the electrically heated catalytic converter in contrast, enables this alternative measures for heating the same, heating the catalytic surface directly, that is to say on-site. This has the advantage of briefly introducing heat into the catalytic converter.
  • the structure of such electrically heated catalytic converters are described, for example, in the publications DE 199 43 846 Al and DE 44 34 673 Al.
  • the heating disc that is, the heat source as such, in the direction of flow on the front or outside of the exhaust gas catalytic converter, for example, when preheating, i.e. a heating process before the start of the internal combustion engine, a large part of the heat generated in the catalytic converter facing away Lost direction. If there is a heating disc at the outlet of the exhaust gas catalytic converter, this cannot be used to heat up a catalytic converter volume when forced convection in the flow direction (for example, the internal combustion engine is in operation).
  • the heat sources for the temporary heating process of parts of the exhaust gas aftertreatment system should be used to minimize the absolute number in terms of the complexity of the system. For example, it may be necessary to increase the exhaust gas temperature to such an extent that a particle filter positioned downstream of the exhaust gas catalyst regenerates or switches on
  • NOx aftertreatment system can be activated.
  • the case may arise that the heat given off is not sufficient to reach the exhaust gas temperature after the exhaust gas catalytic converter for heating the following part of the exhaust gas aftertreatment system.
  • the heat losses are also significantly greater.
  • a single heating disc is positioned further downstream in the catalytic converter, the front part of the catalytic converter remains largely catalytically inactive for a long time at low exhaust gas temperatures.
  • a single heating disc is usually located in the flow direction on the end face of the exhaust gas catalytic converter.
  • the number of heat sources, i.e. the heating discs can also be larger.
  • DE 10 2016 213 612 B3 describes an electrically heated exhaust gas catalytic converter for a vehicle with an internal combustion engine, the exhaust gas catalytic converter having the following: an active catalytic converter area for reducing and / or oxidizing at least one gas flow generated in the internal combustion engine and flowing through the active catalytic converter area along a flow direction Exhaust gas; a heating device for heating the catalytic converter area, the heating device having a first heating element and a second heating element arranged separately from the first heating element, the first heating element being arranged in the flow direction of the exhaust gas upstream of the catalytic converter area and the second heating element in the flow direction of the exhaust gas downstream of the catalytic converter area .
  • the first heating element is thus arranged directly on the end face of the exhaust gas catalytic converter, that is to say at the gas inlet, and the second heating element is arranged directly at the opposite end of the exhaust gas catalytic converter, that is to say at the gas outlet. Furthermore, a control device is provided for controlling the heating device in such a way that only the first heating element for heating the catalytic converter area is actuated when the internal combustion engine is operating, and that only the second heating element for heating the catalytic converter area is actuated when the internal combustion engine is at a standstill.
  • the invention has for its object to provide an electrically heatable catalytic converter that can be operated particularly efficiently and an improved converter ensures behavior even under real driving conditions. It is also an object of the present invention to provide a method for operating such an exhaust gas catalytic converter.
  • an electrically heatable exhaust gas catalytic converter which has an overall catalytic area for the catalytic treatment of the exhaust gas of the internal combustion engine, two electrical heating elements being arranged within the total catalytic area, which are placed one behind the other at a predetermined distance in the flow direction of the exhaust gas, so that the total catalytic area n is divided into three successive catalytic areas in the flow direction of the exhaust gas.
  • a first heating element is arranged within the overall catalytic area in such a way that, seen in the flow direction of the exhaust gas, a first catalytic area is formed upstream of the first heating element, which is 5-15% of the total catalytic area.
  • a second heating element is arranged in the overall catalytic area in such a way that, seen in the flow direction of the exhaust gas, a catalytic area is formed upstream of the second heating element, which amounts to 60-80% of the total catalytic area.
  • a third catalytic area is in
  • the specified positioning of the two heating sources of the externally heatable exhaust gas catalytic converter, so that both heating elements are surrounded by active catalytic converter areas, means that very good conversion behavior is achieved not only on the test bench, but also in real driving on the road, and that with low complexity of the exhaust gas aftertreatment system . In addition, a very rapid heating of the exhaust gas catalyst is achieved.
  • the advantage lies in the number of selected heating sources in relation to the commonly used electrical energy sources, the overall size of a catalytic converter for a vehicle and the design of the electrical system, taking into account an increasing complexity of the overall system as the number of heating elements increases.
  • methods for heating an electrically heatable exhaust gas catalytic converter according to the first aspect are proposed, which show different heating strategies for this exhaust gas catalytic converter. These correlate with the heat emission of the internal combustion engine in such a way that the exhaust gas mass flow of the internal combustion engine is used for heat transport and as available heat input into the exhaust gas aftertreatment system.
  • the invention is based on the assumption that this heat contribution from the internal combustion engine is such that it is minimal under the current boundary conditions and thus CO 2 emissions are optimal.
  • the volume (catalytic converter areas) heated by the two heating elements activated in parallel is maximum. It is particularly advantageous that the heating elements are bordered by adjoining catalyst parts in an almost maximum manner.
  • the heated volume increases significantly over the time axis compared to an exhaust gas catalytic converter with a single heating element.
  • the same gas mass flow flowing through the exhaust gas catalyst transports the heat to parts of the exhaust gas catalyst at two different locations which have not yet reached the threshold temperature.
  • the advantage here is that if the downstream catalyst volume is completely heated up prematurely, the second heat source can be deactivated before the first one.
  • Reactivate heating element Not only can a catalyst volume, which is inactive due to the temperature level, be activated particularly quickly, but this is done with lower electrical energy expenditure, since this can take place in a targeted manner depending on the exhaust gas mass flow and its heat contribution.
  • the divisions made according to the invention, as well as the position of the heating elements in the cases of holistic temperature management that occur, are clearly advantageous compared to other variants with regard to the electrical energy to be used for them.
  • the single FIGURE shows a schematic representation of an internal combustion engine 10, an electric machine 43 connected to the internal combustion engine 10, an intake tract 15 with an electric machine 44 arranged therein, in particular in the form of an electrically driven compressor, an engine block 20 with a plurality of cylinders, not specified and an exhaust line 25 in which an exhaust gas aftertreatment system 30 is arranged.
  • the exhaust gas aftertreatment system 30 has, inter alia, an exhaust gas catalyst 35 according to the invention. Downstream of the gas catalytic converter 35, further exhaust gas treatment components 50 are optionally provided, only one of which is shown. Possible exhaust gas aftertreatment components at this point are a three-way catalytic converter, an SCR catalytic converter for selective catalytic reduction, diesel particle filter, SCR-coated diesel particle filter, gasoline particle filter, NOx catalyst (lean NOx trap).
  • the exhaust gas catalytic converter 35 is designed as an electrically heatable catalytic converter and comprises a jacket tube 36 which encloses an overall physically catalytic area 42.
  • the total catalytic area 42 there is a heating device, consisting of two separate heating elements 40, 41, which are placed one behind the other at a predetermined distance in the direction of flow of the exhaust gas, so that there are three successive catalytic areas 37, 38, 39.
  • a first heating element 40 is arranged in the total catalytic area 42 in such a way that, seen in the flow direction of the exhaust gas, a first catalytic area 37 is formed upstream of the first heating element, which amounts to 5-15% of the total catalytic area 42.
  • a second heating element 41 is arranged in the overall catalytic area 42 in such a way that, seen in the flow direction of the exhaust gas, a catalytic area 37, 38 is formed upstream of the second heating element 41, which is 60-80% of the total catalytic area 42.
  • a third catalytic region 39 is located downstream of the second heating element 41.
  • the exact position results from the heat capacity of the downstream catalytic converter volume, the downstream path and the part of the exhaust gas aftertreatment system that is to be activated by the heat of the exhaust gas. This includes the outside temperatures to be taken into account as the lowest limit, the minimum or maximum conceivable exhaust gas mass flow and its emission properties.
  • exhaust gas catalytic converter can also be a cascade of individual bricks, provided that the distance between them is less than a few millimeters or zero and that it only results from the fact that the heating elements or the individual bricks in continuous operation show no premature wear or deactivation Experienced.
  • the three catalytic converter areas 37, 38, 39 serve to catalytically treat or oxidize or reduce the exhaust gas present in the exhaust gas line 25 from the internal combustion engine 10 so that the exhaust gas can be discharged into the environment largely free of pollutants.
  • the heating devices 40, 41 are preferably designed as heating disks and can almost completely fill the interior of the casing tube 36, so that when the heating disks are heated, a large amount of thermal energy is available for heating the three catalytic converter areas 37, 38, 39.
  • the heating devices 40, 41 are fixed, for example, to a so-called supporting catalyst volume.
  • the heating elements 40, 41 are fixed in such a way that in addition to this form of Heat transport the heat conduction is intensified as possible.
  • the position of the exhaust gas catalytic converter in the vehicle plays a role (its axis is preferably perpendicular to the longitudinal axis of the vehicle), the nature and shape of the carrier material and the feasibility of the minimum distance between the respective heating element and the adjacent catalyst volume.
  • An electronic control device (ECU) 60 is provided, which is connected in terms of control to the two heating devices 40, 41 and to sensors and actuators of the internal combustion engine 10, not shown, and which can independently control the heating devices 40, 41 independently of one another depending on the signals from these sensors .
  • the electronic control device 60 can be designed as a separate catalytic converter heating control device or can be integrated in a motor control device for the internal combustion engine 10.
  • the heating element 40 heats the adjacent catalytic areas 37 and 38, the heating element 41 heats the adjacent catalytic areas 38 and 39.
  • the electrical control of the two heating elements 40, 41 can be differentiated into two basic cases.
  • both heating elements 40, 41 can be supplied with energy at the same time, which leads to heating of the entire physically available total catalytic area of the exhaust gas catalytic converter 35 in the shortest possible time.
  • Preheating the two heating elements 40, 41 with the internal combustion engine 10 at a standstill results in optimal utilization of the free convection and thermal conduction of the catalyst volume upstream of the respective heating element.
  • the convection and heat conduction can also can be used depending on the direction.
  • the full catalyst volume, i.e. the catalytically active total area 42 can be heated.
  • the heating elements 40, 41 are only activated until the volume that can be heated directly by the gas movement is catalytically active.
  • both heating elements 40, 41 become a heating operation controlled by ON / OFF in order to maintain the temperature level on the respective heating element 40, 41 (limited to the maximum level at which premature aging or even destruction is certain can be avoided).
  • the ON / OFF operation depends on the amount of the locally reached catalyst temperatures and the exhaust gas mass flow. Respective deactivation of the heating elements 40, 41 when the heatable maximum catalyst volume is reached downstream.
  • the two heating elements 40, 41 within the exhaust gas catalytic converter 35, these can be used to increase the temperature of the exhaust gas to activate a component of the exhaust gas aftertreatment system located downstream of the exhaust gas catalytic converter.
  • the second heating element 41 downstream of the first heating element 40 is activated, i.e. supplied with energy until the exhaust gas temperature after the exhaust gas catalyst 35 exceeds a predetermined threshold.
  • current information such as fuel quality, individual vehicle properties (vehicle owner, driving history, component status, etc.), environmental parameters such as outside temperature, humidity, traffic density, construction sites, prior knowledge, e.g. a known route profile , if necessary, individual driving information such as driver type, system information based on artificial intelligence to adapt all the above-mentioned temperature threshold values, heating times and setpoints.
  • the activation of the heating elements 40, 41 can be interrupted before the catalytically active region which can be heated to the maximum is reached, in order to use compensation process and to save electrical energy.
  • the heating or temperature compensation process is predicted by models, and thus the targeted adaptation of the heating process to the space velocity of the catalytic converter is carried out.
  • the control strategy is carried out as optimally as possible in accordance with the specified quality criteria.
  • activation of the heating elements 40, 41 according to the invention is to take place, however, it is fundamentally to be checked whether this is possible within the scope of the still available amount of energy in the energy store.
  • the threshold values and setpoints specified above can be increased or decreased depending on the available amount of energy in the energy store which supplies the heating devices 40, 41 with energy, or by the requirements of comprehensive energy management.

Abstract

The invention relates to a catalytic converter (35) having a total catalysis region (42) for catalytically treating the exhaust gas of the internal combustion engine (10). Two electric heating elements (40, 41) are provided which are arranged within the total catalysis region (42) and which are placed one behind the other at a specified distance to one another in the flow direction of the exhaust gas such that the total catalysis region (42) is divided into three catalysis regions (37, 38, 39) which follow one another in the flow direction of the exhaust gas. A first heating element (40) is arranged within the total catalysis region (42) such that a first catalysis region (37) which constitutes 5-15% of the total catalysis region (42) is formed upstream of the first heating element (40) when viewed in the flow direction of the exhaust gas, a second heating element (41) is arranged in the total catalysis region (42) such that a catalysis region (37, 38) which constitutes 60-80% of the total catalysis region (42) is formed upstream of the second heating element (41) when viewed in the flow direction of the exhaust gas, and a third catalysis region (39) is formed downstream of the second heating element (41) when viewed in the flow direction of the exhaust gas.

Description

Beschreibung description
ELEKTRISCH BEHEIZTER ABGASKATALYSATOR UND VERFAHREN ZUM BETREIBEN EINES SOLCHEN ELECTRICALLY HEATED EXHAUST GAS CATALYST AND METHOD FOR OPERATING SUCH A
Die Erfindung betrifft einen elektrisch beheizten Abgaskata lysator und ein Verfahren zum Betreiben eines elektrisch be heizten Abgaskatalysators. The invention relates to an electrically heated catalytic converter and a method for operating an electrically heated catalytic converter.
Immer strengere gesetzliche Vorschriften machen es bei Ever stricter legal regulations make it
Kraftfahrzeugen mit Verbrennungskraftmaschinen zum einen er forderlich, die Rohemissionen, hervorgerufen durch die Ver brennung des Luft/Kraftstoff-Gemisches in den Zylindern, so weit wie möglich zu senken. Zum anderen sind in Verbrennungs kraftmaschinen Abgasnachbehandlungssysteme im Einsatz, die Schadstoffemissionen, die während des Verbrennungsprozesses des Luft/Kraftstoff - Gemisches in den Zylindern erzeugt werden, in unschädliche Stoffe umwandeln. Motor vehicles with internal combustion engines, on the one hand, he required to reduce the raw emissions caused by the combustion of the air / fuel mixture in the cylinders as much as possible. On the other hand, exhaust gas aftertreatment systems are used in internal combustion engines, converting the pollutant emissions that are generated in the cylinders during the combustion process of the air / fuel mixture into harmless substances.
Hierzu dienen u.a. Abgaskatalysatoren, in denen eine chemische Umwandlung von Verbrennungsschadstoffen durch Oxidation bzw. Reduktion des jeweiligen Schadstoffes durchgeführt wird. Among other things, Exhaust gas catalysts in which a chemical conversion of combustion pollutants is carried out by oxidation or reduction of the respective pollutant.
Dazu weisen die Abgaskatalysatoren aktive Katalysebereiche auf, in denen die chemische Umwandlung- Katalyse- stattfindet.  For this purpose, the catalytic converters have active catalytic areas in which the chemical conversion - catalysis - takes place.
Die nötige Betriebstemperatur liegt zumeist in einem kraftstoff- und beschichtungsabhängigen Bereich beginnend mit minimal circa 250 °C, da die Katalyse, die in dem Katalysebereich durchgeführt wird, für eine effektive Abgasnachbehandlung eine bestimmte Mindesttemperatur, auch light-off Temperatur genannt, benötigt. The required operating temperature is usually in a fuel- and coating-dependent area, starting at a minimum of around 250 ° C, since the catalysis that is carried out in the catalytic area requires a certain minimum temperature, also called light-off temperature, for effective exhaust gas aftertreatment.
Es ist also notwendig, den Abgaskatalysator schnell auf die gewünschte Betriebstemperatur zu bringen. Hierzu können ei nerseits verbrennungstechnische Maßnahmen durchgeführt werden, das heißt Maßnahmen, bei denen die Verbrennungskraftmaschine derart betrieben wird, sodass die Abwärme der Brennkraftmaschine zum schnellen Aufheizen des Abgaskatalysators genutzt werden kann. Dies führt jedoch zu einem höheren Kraftstoffverbrauch. Andererseits ist es auch möglich, einen elektrisch beheizbaren Abgaskatalysator einzusetzen. Derartige Abgaskatalysator weisen eine eigene elektrische Heizeinrichtung auf, welche den Ab gaskatalysator auf die gewünschte Betriebstemperatur bringt. Ein Vorteil eines elektrisch beheizbaren Abgaskatalysators besteht darin, dass der Abgaskatalysator in einer sogenannten Kata- lysator-Kaltphase auch ohne Betrieb der Verbrennungskraftma schine auf Betriebstemperatur gebracht werden kann. It is therefore necessary to quickly bring the catalytic converter up to the desired operating temperature. For this purpose, combustion-related measures can be carried out on the one hand, that is, measures in which the internal combustion engine is operated in such a way that the waste heat from the internal combustion engine can be used to quickly heat up the exhaust gas catalytic converter. However, this leads to higher fuel consumption. On the other hand, it is also possible to use an electrically heatable catalytic converter. Such catalytic converter have their own electrical heating device, which brings the gas catalytic converter from the desired operating temperature. One advantage of an electrically heatable exhaust gas catalytic converter is that the exhaust gas catalytic converter can be brought to operating temperature in a so-called catalytic converter cold phase even without the internal combustion engine operating.
Ein elektrisch beheizbarer Abgaskatalysator (EHC = electrical heated catalyst, E-KAT) , wobei die elektrische Heizeinrichtung beispielsweise in Form von einer oder mehreren elektrischen Heizscheiben realisiert ist, stellt dabei ein besonders wirksames Sub-System dar. So ermöglicht es der elektrisch beheizte Abgaskatalysator gegenüber alternativen Maßnahmen zur Aufheizung desselben, die katalytische Oberfläche unmittelbar, das heißt vor Ort aufzuheizen. Dadurch ergibt sich der Vorteil, kurzfristig Wärme in den Abgaskatalysator einzutragen. Der Aufbau solcher elektrisch beheizbaren Abgaskatalysatoren sind beispielsweise in den Druckschriften DE 199 43 846 Al und DE 44 34 673 Al beschrieben. An electrically heated catalytic converter (EHC = electrical heated catalyst, E-KAT), the electrical heating device being implemented, for example, in the form of one or more electrical heating disks, represents a particularly effective sub-system. The electrically heated catalytic converter, in contrast, enables this alternative measures for heating the same, heating the catalytic surface directly, that is to say on-site. This has the advantage of briefly introducing heat into the catalytic converter. The structure of such electrically heated catalytic converters are described, for example, in the publications DE 199 43 846 Al and DE 44 34 673 Al.
Dabei ergibt sich allerdings das Problem, dass das katalytische Volumen beim Start der Verbrennungskraftmaschine vergleichs weise gering ist, da der Wärmetransport nur durch Wärmeleitung und freie Konvektion erfolgt. Befindet sich die Heizscheibe, das heißt die Wärmequelle als solche, in Strömungsrichtung an der Stirn- oder Außenseite des Abgaskatalysators, geht bei spielsweise bei einem Vorheizen, das heißt einem Heizvorgang vor dem Start der Verbrennungskraftmaschine ein großer Teil der generierten Wärme in der dem Abgaskatalysator abgewandten Richtung verloren . Befindet sich eine Heizscheibe am Austritt des Abgaskatalysators, kann diese bei erzwungener Konvektion in Strömungsrichtung (zum Beispiel die Verbrennungskraftmaschine ist in Betrieb) nicht zur Aufheizung eines Katalysatorvolumens genutzt werden. Hinzu kommt, dass die Wärmequellen für den temporären Aufheizvorgang von Teilen des Abgasnachbehand- lungssystems genutzt werden sollten, um die absolute Zahl im Hinblick auf die Komplexität des Systems zu minimieren. So kann es beispielsweise erforderlich sein, die Abgastemperatur soweit zu erhöhen, dass ein stromabwärts des Abgaskatalysators po sitionierter Partikelfilter regeneriert oder ein The problem arises, however, that the catalytic volume at the start of the internal combustion engine is comparatively low, since the heat is transported only by heat conduction and free convection. Is the heating disc, that is, the heat source as such, in the direction of flow on the front or outside of the exhaust gas catalytic converter, for example, when preheating, i.e. a heating process before the start of the internal combustion engine, a large part of the heat generated in the catalytic converter facing away Lost direction. If there is a heating disc at the outlet of the exhaust gas catalytic converter, this cannot be used to heat up a catalytic converter volume when forced convection in the flow direction (for example, the internal combustion engine is in operation). In addition, the heat sources for the temporary heating process of parts of the exhaust gas aftertreatment system should be used to minimize the absolute number in terms of the complexity of the system. For example, it may be necessary to increase the exhaust gas temperature to such an extent that a particle filter positioned downstream of the exhaust gas catalyst regenerates or switches on
NOx-Nachbehandlungssystems aktiviert werden kann. NOx aftertreatment system can be activated.
Im Hinblick auf eine schnelle Bereitschaft und ausreichende Intensität der lokalen Wärmequellen bzw. der Wärmeerzeugung ergeben sich für den realen Fährbetrieb zusätzliche Anforde rungen. Des Weiteren muss ein Emissionsschlupf unter allen Aspekten vermieden werden, da die Gesetzgebung bei der Bewertung des Emissionsverhaltens eines Kraftfahrzeugs mehr und mehr den Kurzstreckenbetrieb im Fokus hat. With regard to the rapid availability and sufficient intensity of the local heat sources or heat generation, there are additional requirements for real ferry operations. Furthermore, emission hatching must be avoided in all aspects, since legislation increasingly focuses on short-haul operations when evaluating the emission behavior of a motor vehicle.
Prinzipiell haben alle lokalen Temperaturerhöhungen in dem Abgasnachbehandlungssystem, die auf der Zusammensetzung des Abgases basieren, den Nachteil, dass sie mit einer Konver tierungsverschlechterung unterhalb von 100% einhergehen. Ex terne Wärmequellen können diesen Nachteil bei entsprechendem Design und der dazu passenden Strategie weitgehend vermeiden. Nachteilig bei der üblichen Verwendung von lediglich einer einzigen Heizscheibe im Stirnbereich des Abgaskatalysators ist, dass eine notwendige Gastemperaturerhöhung am Ende des Ab gaskatalysators, das heißt an der Austrittsseite des Abgases immer eine Erhöhung der Temperatur des gesamten vorderen Bereichs des Abgaskatalysators durch diese einzige Heizscheibe erfor derlich macht. Dabei kann in der Abhängigkeit der Heizleistung dieser Heizscheibe unter Realfahrbedingungen der Fall auftreten, dass die abgegebene Wärme nicht ausreichend ist, um die Ab gastemperatur nach dem Abgaskatalysator für die Aufheizung des folgenden Teils des Abgasnachbehandlungssystems zu erreichen. Gleichfalls sind die Wärmeverluste deutlich größer. Positioniert man eine einzelne Heizscheibe weiter stromabwärts im Kataly sator, bleibt bei geringen Abgastemperaturen der vordere Teil des Abgaskatalysators zu großen Teilen über längere Zeit katalytisch inaktiv . Üblicherweise befindet sich eine einzelne Heizscheibe in Strömungsrichtung an der Stirnseite des Abgaskatalysators. Die Zahl der Wärmequellen, also der Heizscheiben kann auch größer sein. So wird in der Veröffentlichung „Innovative Catalyst Substrate Components for Future Passenger Car Diesel After treatment Systems" [Rolf Brück, Peter Hirth, Francois Jajat, Continental Emitec GmbH, Lohmar, Germany] ; 26th Aachen Col loquium Automobile and Engine Technology 2017, ein Dreiheiz- scheiben-Kat schematisch dargestellt, der die theoretischen Positionierungsmöglichkeiten der Heizscheiben in einem Ab gaskatalysators ausweist. In principle, all local temperature increases in the exhaust gas aftertreatment system, which are based on the composition of the exhaust gas, have the disadvantage that they are accompanied by a conversion deterioration below 100%. External heat sources can largely avoid this disadvantage with the appropriate design and strategy. A disadvantage of the usual use of only a single heating disk in the end region of the exhaust gas catalytic converter is that a necessary increase in gas temperature at the end of the exhaust gas catalytic converter, that is to say always an increase in the temperature of the entire front area of the exhaust gas catalytic converter by this single heating disk at the outlet side of the exhaust gas power. In this case, depending on the heating power of this heating disk under real driving conditions, the case may arise that the heat given off is not sufficient to reach the exhaust gas temperature after the exhaust gas catalytic converter for heating the following part of the exhaust gas aftertreatment system. The heat losses are also significantly greater. If a single heating disc is positioned further downstream in the catalytic converter, the front part of the catalytic converter remains largely catalytically inactive for a long time at low exhaust gas temperatures. A single heating disc is usually located in the flow direction on the end face of the exhaust gas catalytic converter. The number of heat sources, i.e. the heating discs, can also be larger. The publication "Innovative Catalyst Substrate Components for Future Passenger Car Diesel After Treatment Systems" [Rolf Brück, Peter Hirth, Francois Jajat, Continental Emitec GmbH, Lohmar, Germany]; 26th Aachen Col loquium Automobile and Engine Technology 2017, describes a three-heater - Disc Kat shown schematically, which shows the theoretical positioning of the heating discs in a gas catalytic converter.
In der DE 10 2016 213 612 B3 ist ein elektrisch beheizter Abgaskatalysator für ein Fahrzeug mit einer Brennkraftmaschine beschrieben, wobei der Abgaskatalysator folgendes aufweist: einen aktiven Katalysebereich zum Reduzieren und/oder Oxidieren wenigstens eines in der Brennkraftmaschine erzeugten, den aktiven Katalysebereich entlang einer Strömungsrichtung durchströmenden Abgases; eine Heizeinrichtung zum Heizen des Katalysebereichs, wobei die Heizeinrichtung ein erstes Heiz element und ein von dem ersten Heizelement getrennt angeordnetes zweites Heizelement aufweist, wobei das erste Heizelement in Strömungsrichtung des Abgases vor dem Katalysebereich und das zweite Heizelement in Strömungsrichtung des Abgases nach dem Katalysebereich angeordnet ist. Das erste Heizelement ist somit unmittelbar an der Stirnseite des Abgaskatalysators, also am Gaseintritt, das zweite Heizelement unmittelbar am gegen überliegenden Ende des Abgaskatalysators, also am Gasaustritt angeordnet. Ferner ist eine Steuereinrichtung vorgesehen zum Ansteuern der Heizeinrichtung derart, dass bei einem Betrieb der Brennkraftmaschine nur das erste Heizelement zum Heizen des Katalysebereichs angesteuert wird, und dass bei einem Stillstand der Brennkraftmaschine nur das zweite Heizelement zum Heizen des Katalysebereichs angesteuert wird. DE 10 2016 213 612 B3 describes an electrically heated exhaust gas catalytic converter for a vehicle with an internal combustion engine, the exhaust gas catalytic converter having the following: an active catalytic converter area for reducing and / or oxidizing at least one gas flow generated in the internal combustion engine and flowing through the active catalytic converter area along a flow direction Exhaust gas; a heating device for heating the catalytic converter area, the heating device having a first heating element and a second heating element arranged separately from the first heating element, the first heating element being arranged in the flow direction of the exhaust gas upstream of the catalytic converter area and the second heating element in the flow direction of the exhaust gas downstream of the catalytic converter area . The first heating element is thus arranged directly on the end face of the exhaust gas catalytic converter, that is to say at the gas inlet, and the second heating element is arranged directly at the opposite end of the exhaust gas catalytic converter, that is to say at the gas outlet. Furthermore, a control device is provided for controlling the heating device in such a way that only the first heating element for heating the catalytic converter area is actuated when the internal combustion engine is operating, and that only the second heating element for heating the catalytic converter area is actuated when the internal combustion engine is at a standstill.
Der Erfindung liegt die Aufgabe zugrunde, einen elektrisch beheizbaren Abgaskatalysator bereitzustellen, der besonders effizient betrieben werden kann und ein verbessertes Konver- tierungsverhalten auch bei Realfahrbedingungen sicherstellt. Ferner ist es Aufgabe der vorliegenden Erfindung ein Verfahren zum Betreiben eines derartigen Abgaskatalysators anzugeben. The invention has for its object to provide an electrically heatable catalytic converter that can be operated particularly efficiently and an improved converter ensures behavior even under real driving conditions. It is also an object of the present invention to provide a method for operating such an exhaust gas catalytic converter.
Diese Aufgaben werden durch einen elektrisch beheizbaren Ab gaskatalysator gemäß dem Anspruch 1 und das Verfahren gemäß den Ansprüchen 6, 11 und 13 gelöst. These objects are achieved by an electrically heatable gas catalytic converter according to claim 1 and the method according to claims 6, 11 and 13.
Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche. Advantageous embodiments of the invention are the subject of the dependent claims.
Gemäß einem ersten Aspekt wird ein elektrisch beheizbarer Abgaskatalysator geschaffen, der einen Gesamtkatalysebereich zur katalytischen Behandlung des Abgases der Verbrennungs kraftmaschine aufweist, wobei zwei innerhalb des Gesamtkata lysebereiches angeordnete elektrische Heizelemente vorhanden sind, welche in einem vorbestimmten Abstand in Strömungsrichtung des Abgases hintereinander platziert sind, so dass der Ge samtkatalysebereich n drei in Strömungsrichtung des Abgases aufeinanderfolgende Katalysebereiche aufgeteilt ist. Ein erstes Heizelement ist innerhalb des Gesamtkatalysebereiches derart angeordnet, dass in Strömungsrichtung des Abgases gesehen, stromaufwärts des ersten Heizelementes ein erster Kataly sebereich gebildet ist, der 5-15 % des Gesamtkatalysebereiches beträgt. Ein zweites Heizelement ist in dem Gesamtkataly- sebereich derart angeordnet, dass in Strömungsrichtung des Abgases gesehen, stromaufwärts des zweiten Heizelementes ein Katalysebereich gebildet ist, der 60-80% des Gesamtkataly- sebereiches beträgt. Ein dritter Katalysebereich ist in According to a first aspect, an electrically heatable exhaust gas catalytic converter is created which has an overall catalytic area for the catalytic treatment of the exhaust gas of the internal combustion engine, two electrical heating elements being arranged within the total catalytic area, which are placed one behind the other at a predetermined distance in the flow direction of the exhaust gas, so that the total catalytic area n is divided into three successive catalytic areas in the flow direction of the exhaust gas. A first heating element is arranged within the overall catalytic area in such a way that, seen in the flow direction of the exhaust gas, a first catalytic area is formed upstream of the first heating element, which is 5-15% of the total catalytic area. A second heating element is arranged in the overall catalytic area in such a way that, seen in the flow direction of the exhaust gas, a catalytic area is formed upstream of the second heating element, which amounts to 60-80% of the total catalytic area. A third catalytic area is in
Strömungsrichtung des Abgases gesehen, stromabwärts des zweiten Heizelementes gebildet. Direction of flow of the exhaust gas seen, formed downstream of the second heating element.
Durch die angegebene Positionierung der beiden Heizquellen des extern beheizbaren Abgaskatalysators, so dass beide Heiz elemente von aktiven Katalysebereichen eingefasst sind, wird ein sehr gutes Konvertierungsverhalten nicht nur auf dem Prüfstand, sondern auch im realen Fahrbetreib auf der Straße erreicht und das bei geringer Komplexität des Abgasnachbehandlungssystems. Außerdem wird dadurch eine sehr rasche Aufheizung des Abgas katalysators erreicht. The specified positioning of the two heating sources of the externally heatable exhaust gas catalytic converter, so that both heating elements are surrounded by active catalytic converter areas, means that very good conversion behavior is achieved not only on the test bench, but also in real driving on the road, and that with low complexity of the exhaust gas aftertreatment system . In addition, a very rapid heating of the exhaust gas catalyst is achieved.
Der Vorteil liegt bei der Anzahl der gewählten Heizquellen in Bezug auf die üblicherweise verwendeten elektrischen Ener giequellen, der Gesamtgröße eines Abgaskatalysators eines Fahrzeugs und der Auslegung des elektrischen Bordnetzes unter Berücksichtigung einer mit Zunahme der Anzahl der Heizelemente steigenden Komplexität des Gesamtsystems. The advantage lies in the number of selected heating sources in relation to the commonly used electrical energy sources, the overall size of a catalytic converter for a vehicle and the design of the electrical system, taking into account an increasing complexity of the overall system as the number of heating elements increases.
Gemäß einem weiteren Aspekt der Erfindung werden Verfahren zum Aufheizen eines elektrisch beheizbaren Abgaskatalysator nach dem ersten Aspekt vorgeschlagen, welche verschiedene Heizstrategien für diesen Abgaskatalysator aufzeigen. Diese korrelieren mit der Wärmeabgabe der Verbrennungskraftmaschine derart, dass der Abgasmassenstrom der Verbrennungskraftmaschine für den Wär metransport und als verfügbarer Wärmeeintrag in das Abgas nachbehandlungssystem genutzt wird. Der Erfindung liegt die Annahme zugrunde, dass dieser Wärmebeitrag der Verbrennungs kraftmaschine derart ist, dass dieser unter den aktuellen Randbedingungen minimal und somit C02-Ausstoß optimal ist. According to a further aspect of the invention, methods for heating an electrically heatable exhaust gas catalytic converter according to the first aspect are proposed, which show different heating strategies for this exhaust gas catalytic converter. These correlate with the heat emission of the internal combustion engine in such a way that the exhaust gas mass flow of the internal combustion engine is used for heat transport and as available heat input into the exhaust gas aftertreatment system. The invention is based on the assumption that this heat contribution from the internal combustion engine is such that it is minimal under the current boundary conditions and thus CO 2 emissions are optimal.
Beim Aufheizen auf Basis freier Konvektion ist das durch die beiden parallel aktivierten Heizelemente aufgeheizte Volumen (Katalysebereiche) maximal. Besonders vorteilhaft ist dabei, dass die Heizelemente in nahezu maximaler Art und Weise von angrenzenden Katalysatorteilen eingefasst sind. Beim Aufheizen auf Basis erzwungener Konvektion vergrößert sich das aufgeheizte Volumen über der Zeitachse gegenüber einem Abgaskatalysator mit einem einzigen Heizelement deutlich. When heating on the basis of free convection, the volume (catalytic converter areas) heated by the two heating elements activated in parallel is maximum. It is particularly advantageous that the heating elements are bordered by adjoining catalyst parts in an almost maximum manner. When heating on the basis of forced convection, the heated volume increases significantly over the time axis compared to an exhaust gas catalytic converter with a single heating element.
Der gleiche durch den Abgaskatalysator strömende Gasmassenstrom transportiert an zwei unterschiedlichen Orten die Wärme in Teile des Abgaskatalysators, welche noch nicht die Schwellentemperatur erreicht haben . Dabei ist von Vorteil , dass bei einem vorzeitigen vollständigen Aufheizen des stromabwärts liegenden Katalysa torsvolumens, die zweite Wärmequelle zeitlich vor der ersten deaktiviert werden kann. Bei einem Nachheizen aufgrund eines kalten Abgasmassenstroms oder langen Motorstillstandzeiten genügt ist, das bezüglich der Strömungsrichtung vordere The same gas mass flow flowing through the exhaust gas catalyst transports the heat to parts of the exhaust gas catalyst at two different locations which have not yet reached the threshold temperature. The advantage here is that if the downstream catalyst volume is completely heated up prematurely, the second heat source can be deactivated before the first one. When reheating due to a cold exhaust gas mass flow or long engine downtimes is sufficient, the front in terms of flow direction
Heizelement erneut zu aktivieren. So kann nicht nur besonders rasch ein aufgrund des Temperaturniveaus inaktives Katalysa torvolumen aktiviert werden, sondern dies erfolgt mit geringerem elektrischen Energieaufwand, da dieser zielgerichtet in der Abhängigkeit des Abgasmassenstroms und dessen Wärmebeitrags erfolgen kann. Dabei sind die gemäß der Erfindung vorgenommenen Aufteilungen so wie die Position der Heizelemente für die auftretenden Fälle eines ganzheitlichen Temperaturmanagements gegenüber anderen Varianten klar vorteilhaft in Bezug auf die dafür einzusetzende elektrische Energie. Reactivate heating element. Not only can a catalyst volume, which is inactive due to the temperature level, be activated particularly quickly, but this is done with lower electrical energy expenditure, since this can take place in a targeted manner depending on the exhaust gas mass flow and its heat contribution. The divisions made according to the invention, as well as the position of the heating elements in the cases of holistic temperature management that occur, are clearly advantageous compared to other variants with regard to the electrical energy to be used for them.
Weitere Vorteile und Ausgestaltungen des erfindungsgemäßen Abgaskatalysators bzw. des Ansteuerverfahrens für einen solchen Abgaskatalysator werden anhand der nachfolgenden Beschreibung eines Ausführungsbeispiels bezugnehmend auf die Zeichnung näher erläutert . Further advantages and refinements of the exhaust gas catalytic converter according to the invention and the control method for such an exhaust gas catalytic converter are explained in more detail with reference to the following description of an exemplary embodiment with reference to the drawing.
Die einzige Figur zeigt in schematischer Darstellung eine Verbrennungskraftmaschine 10, eine mit der Verbrennungs kraftmaschine 10 antriebsmäßig verbundene Elektromaschine 43, einem Ansaugtrakt 15 mit einer darin angeordneten elektrischen Maschine 44, insbesondere in Formeines elektrisch angetriebenen Verdichters, einem Motorblock 20 mit mehreren, nicht näher bezeichneten Zylindern und einen Abgasstrang 25, in dem eine Abgasnachbehandlungsanlage 30 angeordnet ist. The single FIGURE shows a schematic representation of an internal combustion engine 10, an electric machine 43 connected to the internal combustion engine 10, an intake tract 15 with an electric machine 44 arranged therein, in particular in the form of an electrically driven compressor, an engine block 20 with a plurality of cylinders, not specified and an exhaust line 25 in which an exhaust gas aftertreatment system 30 is arranged.
Die Abgasnachbehandlungsanlage 30 weist u.a. einen erfin dungsgemäßen Abgaskatalysator 35 auf. Stromabwärts des Ab gaskatalysators 35 sind optional noch weitere Abgasnachbe handlungskomponenten 50 vorgesehen, von denen nur eine gezeigt ist. Als mögliche Abgasnachbehandlungskomponenten seien an dieser Stelle ein Dreiwegekatalysator, ein SCR-Katalysator für eine selektive katalytische Reduktion, Dieselpartikelfilter, SCR-beschichtete Dieselpartikelfilter, Ottopartikelfilter, NOx-Katalysator (lean NOx trap) genannt. Der Abgaskatalysator 35 ist als ein elektrisch beheizbarer Katalysator ausgebildet und umfasst ein Mantelrohr 36, das einen physikalisch katalytischen Gesamtbereich 42 einschließt. In dem katalytischen Gesamtbereich 42 ist eine Heizeinrichtung, be stehend aus zwei voneinander getrennten Heizelementen 40,41 angeordnet, welche in einem vorbestimmten Abstand in Strö mungsrichtung des Abgases hintereinander platziert sind, so dass sich drei aufeinanderfolgende Katalysebereiche 37, 38, 39 ergeben . The exhaust gas aftertreatment system 30 has, inter alia, an exhaust gas catalyst 35 according to the invention. Downstream of the gas catalytic converter 35, further exhaust gas treatment components 50 are optionally provided, only one of which is shown. Possible exhaust gas aftertreatment components at this point are a three-way catalytic converter, an SCR catalytic converter for selective catalytic reduction, diesel particle filter, SCR-coated diesel particle filter, gasoline particle filter, NOx catalyst (lean NOx trap). The exhaust gas catalytic converter 35 is designed as an electrically heatable catalytic converter and comprises a jacket tube 36 which encloses an overall physically catalytic area 42. In the total catalytic area 42 there is a heating device, consisting of two separate heating elements 40, 41, which are placed one behind the other at a predetermined distance in the direction of flow of the exhaust gas, so that there are three successive catalytic areas 37, 38, 39.
Dabei ist ein erstes Heizelement 40 in dem katalytischen Ge samtbereich 42 derart angeordnet, dass in Strömungsrichtung des Abgases gesehen, stromaufwärts des ersten Heizelementes ein erster Katalysebereich 37 gebildet ist, der 5-15 % des kata lytischen Gesamtbereiches 42 beträgt. A first heating element 40 is arranged in the total catalytic area 42 in such a way that, seen in the flow direction of the exhaust gas, a first catalytic area 37 is formed upstream of the first heating element, which amounts to 5-15% of the total catalytic area 42.
Ein zweites Heizelement 41 ist in dem katalytischen Gesamtbereich 42 derart angeordnet, dass in Strömungsrichtung des Abgases gesehen, stromaufwärts des zweiten Heizelementes 41 ein Ka talysebereich 37,38 gebildet ist, der 60-80% des katalytischen Gesamtbereiches 42 beträgt. Stromabwärts des zweiten Heiz elementes 41 befindet sich ein dritter Katalysebereich 39. A second heating element 41 is arranged in the overall catalytic area 42 in such a way that, seen in the flow direction of the exhaust gas, a catalytic area 37, 38 is formed upstream of the second heating element 41, which is 60-80% of the total catalytic area 42. A third catalytic region 39 is located downstream of the second heating element 41.
Die genaue Position ergibt sich aus der Wärmekapazität des stromabwärts befindlichen Katlysatorvolumens , der stromabwärts folgenden Strecke und dem Teil des Abgasnachbehandlungssystems, das durch die Wärme des Abgases aktiviert werden soll. Hierbei werden die, durch die als unterste Grenze festgelegten, zu berücksichtigenden Außentemperaturen und der minimale bzw. maximale denkbare Abgasmassenstrom und seine Emissionsbe schaffenheit einbezogen. The exact position results from the heat capacity of the downstream catalytic converter volume, the downstream path and the part of the exhaust gas aftertreatment system that is to be activated by the heat of the exhaust gas. This includes the outside temperatures to be taken into account as the lowest limit, the minimum or maximum conceivable exhaust gas mass flow and its emission properties.
Bei dem Begriff Abgaskatalysator kann es sich gleichfalls um eine Kaskade von einzelnen Bricks handeln, sofern der Abstand zwischen diesen kleiner weniger Millimeter oder Null ist und sich le diglich daraus ergibt, dass die Heizelemente bzw. die einzelnen Bricks in Dauerbetrieb keinen vorzeitigen Verschleiß bzw. Deaktivierung erfahren. Die drei Katalysebereiche 37,38,39 dienen dazu, das im Ab gasstrang 25 vorhandene Abgas der Verbrennungskraftmaschine 10 katalytisch zu behandeln bzw. zu oxidieren oder zu reduzieren, damit das Abgas weitestgehend schadstofffrei in die Umgebung ausgeleitet werden kann. The term exhaust gas catalytic converter can also be a cascade of individual bricks, provided that the distance between them is less than a few millimeters or zero and that it only results from the fact that the heating elements or the individual bricks in continuous operation show no premature wear or deactivation Experienced. The three catalytic converter areas 37, 38, 39 serve to catalytically treat or oxidize or reduce the exhaust gas present in the exhaust gas line 25 from the internal combustion engine 10 so that the exhaust gas can be discharged into the environment largely free of pollutants.
Die Heizeinrichtungen 40,41 sind bevorzugt als Heizscheiben ausgebildet und können den Innenraum des Mantelrohrs 36 nahezu vollständig ausfüllen, sodass beim Erwärmen der Heizscheiben eine große Wärmeenergie zur Erwärmung der drei Katalysebereiche 37,38,39 zur Verfügung steht. Die Fixierung der Heizeinrich tungen 40,41 erfolgt beispielsweise an jeweils einem sogenannten Stützkatalysatorvolumen . The heating devices 40, 41 are preferably designed as heating disks and can almost completely fill the interior of the casing tube 36, so that when the heating disks are heated, a large amount of thermal energy is available for heating the three catalytic converter areas 37, 38, 39. The heating devices 40, 41 are fixed, for example, to a so-called supporting catalyst volume.
Besteht bei stillstehender Verbrennungskraftmaschine 10 zu Beginn des Fahrzyklus (Kaltstart) keine Möglichkeit der Rea lisierung einer erzwungenen Konvektion, sodass lediglich die freie Konvektion zu einer Vergrößerung des möglichen kataly tischen Bereiches führt, werden die Heizelemente 40,41 derart fixiert, dass neben dieser Form des Wärmetransports die Wär meleitung möglichst intensiviert wird. Dabei spielt die Ein bauposition des Abgaskatalysators im Fahrzeug eine Rolle (vorzugsweise steht dessen Achse senkrecht zur Längsachse des Fahrzeuges) , die Beschaffenheit und Form des Trägermaterials und der Realisierbarkeit des minimalen Abstands zwischen dem je weiligen Heizelement und dem jeweils angrenzenden Katalysa torvolumens . If the internal combustion engine 10 is at a standstill at the beginning of the driving cycle (cold start), there is no possibility of realizing forced convection, so that only free convection leads to an enlargement of the possible catalytic area, the heating elements 40, 41 are fixed in such a way that in addition to this form of Heat transport the heat conduction is intensified as possible. The position of the exhaust gas catalytic converter in the vehicle plays a role (its axis is preferably perpendicular to the longitudinal axis of the vehicle), the nature and shape of the carrier material and the feasibility of the minimum distance between the respective heating element and the adjacent catalyst volume.
Es ist eine elektronische Steuereinrichtung (ECU) 60 vorgesehen, die steuerungsmäßig mit den beiden Heizeinrichtungen 40, 41 und mit nicht gezeigten Sensoren und Aktoren der Verbrennungs kraftmaschine 10 verbunden ist und die Heizeinrichtungen 40, 41 abhängig von den Signalen dieser Sensoren unabhängig voneinander aktiv ansteuern kann. Die elektronische Steuerungseinrichtung 60 kann als separate Katalysator-Heizungsteuerungseinrichtung konzipiert sein oder in ein Motorsteuergerät für die Ver brennungskraftmaschine 10 integriert sein. Werden die Heiz- einrichtungen 40,41 mit Energie beaufschlagt, erwärmen sich diese und übertragen ihre Wärmeenergie auf die drei Kataly sebereiche 37,38,39. Das Heizelement 40 erwärmt die daran angrenzenden Katalysebereiche 37 und 38, das Heizelement 41 erwärmt die daran angrenzenden Katalysebereiche 38 und 39. An electronic control device (ECU) 60 is provided, which is connected in terms of control to the two heating devices 40, 41 and to sensors and actuators of the internal combustion engine 10, not shown, and which can independently control the heating devices 40, 41 independently of one another depending on the signals from these sensors . The electronic control device 60 can be designed as a separate catalytic converter heating control device or can be integrated in a motor control device for the internal combustion engine 10. Are the heating devices 40, 41 are energized, they heat up and transfer their thermal energy to the three catalytic areas 37, 38, 39. The heating element 40 heats the adjacent catalytic areas 37 and 38, the heating element 41 heats the adjacent catalytic areas 38 and 39.
Bei der Strategie der Aktivierung, d.h. der elektrischen An steuerung der beiden Heizelemente 40,41 können zwei grund sätzliche Fälle unterschieden werden. In the strategy of activation, i.e. The electrical control of the two heating elements 40, 41 can be differentiated into two basic cases.
Zum einen können beide Heizelemente 40,41 gleichzeitig mit Energie versorgt werden, was zu einer Aufheizung des gesamten physikalisch verfügbaren katalytischen Gesamtbereiches des Abgaskatalysators 35 in kürzester Zeit führt. On the one hand, both heating elements 40, 41 can be supplied with energy at the same time, which leads to heating of the entire physically available total catalytic area of the exhaust gas catalytic converter 35 in the shortest possible time.
Durch ein Vorheizen der beiden Heizelemente 40,41 bei still stehender Verbrennungskraftmaschine 10 ergibt sich eine optimale Nutzung der freien Konvektion und Wärmeleitung des Katalysa torvolumens stromaufwärts des jeweiligen Heizelements. Sofern die Auslegung des Systems es möglich macht, eine Konvektion zu erzwingen, beispielsweise unter Einsatz einer elektrisch an getriebenen Maschine, welche einen Luftmassenstrom in den Abgasstrang liefert, oder durch Schleppen der Verbrennungs kraftmaschine in eine ihrer beiden möglichen Drehrichtungen, kann die Konvektion und Wärmeleitung auch richtungsabhängig genutzt werden. Somit kann das vollständige Katalysatorvolumen, d.h. der katalytisch aktive Gesamtbereich 42 aufgeheizt werden. Dabei werden die Heizelemente 40,41 jeweils nur solange ak tiviert, bis das jeweils für sie durch die Gasbewegung un mittelbar aufheizbare Volumen katalytisch aktiv ist. Preheating the two heating elements 40, 41 with the internal combustion engine 10 at a standstill results in optimal utilization of the free convection and thermal conduction of the catalyst volume upstream of the respective heating element. If the design of the system makes it possible to force convection, for example using an electrically driven machine that delivers an air mass flow into the exhaust line, or by dragging the internal combustion engine in one of its two possible directions of rotation, the convection and heat conduction can also can be used depending on the direction. Thus the full catalyst volume, i.e. the catalytically active total area 42 can be heated. In this case, the heating elements 40, 41 are only activated until the volume that can be heated directly by the gas movement is catalytically active.
Bei Einsetzen der Drehbewegung der Verbrennungskraftmaschine 10 werden beide Heizelemente 40,41 bis zum Übergang eines ON/OFF gesteuerten Heizbetriebes zur Erhaltung des Temperaturniveaus an dem jeweiligen Heizelement 40, 41 (begrenzt auf die maximale Höhe, bei der eine vorzeitig relevante Alterung oder gar Zerstörung sicher vermieden werden kann) angesteuert. Der ON/OFF-Betrieb richtet sich an der Höhe der lokal erreichten Katalysator- temperaturen und des Abgasmassenstroms aus. Jeweilige Deak tivierung der Heizelemente 40,41 bei erreichtem aufheizbaren maximalen Katalysatorvolumens stromabwärts. When the rotary movement of the internal combustion engine 10 begins, both heating elements 40, 41 become a heating operation controlled by ON / OFF in order to maintain the temperature level on the respective heating element 40, 41 (limited to the maximum level at which premature aging or even destruction is certain can be avoided). The ON / OFF operation depends on the amount of the locally reached catalyst temperatures and the exhaust gas mass flow. Respective deactivation of the heating elements 40, 41 when the heatable maximum catalyst volume is reached downstream.
Zum anderen kann aufgrund der beschriebenen Platzierung der beiden Heizelemente 40,41 innerhalb des Abgaskatalysators 35 diese zur Erhöhung der Temperatur des Abgases zur Aktivierung einer stromabwärts des Abgaskatalysators liegenden Komponente der Abgasnachbehandlungsanlage genutzt werden. Hierzu wird ausschließlich das zweite Heizelement 41 stromabwärts des ersten Heizelementes 40 aktiviert, d.h. mit Energie beaufschlagt, bis die Abgastemperatur nach dem Abgaskatalysator 35 einen vor gegebenen Schwellenwert überschreitet. Es erfolgt ein On the other hand, due to the described placement of the two heating elements 40, 41 within the exhaust gas catalytic converter 35, these can be used to increase the temperature of the exhaust gas to activate a component of the exhaust gas aftertreatment system located downstream of the exhaust gas catalytic converter. For this purpose, only the second heating element 41 downstream of the first heating element 40 is activated, i.e. supplied with energy until the exhaust gas temperature after the exhaust gas catalyst 35 exceeds a predetermined threshold. There is a
ON/OFF-Betrieb bei Heizfunktion des zweiten Heizelementes 41 zur Aufrechterhaltung der Abgastemperatur bis die stromabwärts liegende Komponente des Abgaskatalysators ausreichendes Tem peraturniveau erreicht hat. Gegebenenfalls erfolgt eine ON / OFF operation with the heating function of the second heating element 41 to maintain the exhaust gas temperature until the downstream component of the catalytic converter has reached sufficient temperature level. If necessary, a
Fortsetzung des ON/OFF-Heizelementbetriebs bis ein temporärer Prozess im stromabwärtsliegenden Teil der Abgasnachbehand lungsanlage abgeschlossen ist, beispielsweise die Regeneration eines Partikelfilters beendet ist. Continuation of the ON / OFF heating element operation until a temporary process in the downstream part of the exhaust gas aftertreatment system is completed, for example the regeneration of a particle filter has ended.
In einer besonderen Ausführung der angegebenen Fälle können aktuelle Informationen wie zum Beispiel Kraftstoffqualität individuelle Fahrzeugeigenschaften (Fahrzeughalter, Fahrhis torie, Komponentenzustand, etc.), Umgebungsparameter wie Au ßentemperatur, Luftfeuchtigkeit, Verkehrsdichte, Baustellen, A-priori-Kenntnisse, zum Beispiel ein bekanntes Streckenprofil, gegebenenfalls individuelle Fahrinformationen wie Fahrertypus, auf auch künstlicher Intelligenz basierende Systeminformationen zur Anpassung aller oben aufgeführten Temperaturschwellenwerte, Heizdauern und Sollwerte verwendet werden. In a special embodiment of the specified cases, current information such as fuel quality, individual vehicle properties (vehicle owner, driving history, component status, etc.), environmental parameters such as outside temperature, humidity, traffic density, construction sites, prior knowledge, e.g. a known route profile , if necessary, individual driving information such as driver type, system information based on artificial intelligence to adapt all the above-mentioned temperature threshold values, heating times and setpoints.
In einer besonderen Ausführungsform der Ansteuerstrategie kann die Aktivierung der Heizelemente 40,41 vor der Erreichung des maximal aufheizbaren katalytisch aktiven Bereiches unterbrochen werden, um den stark verzögerten Aufheiz- bzw. Temperatur- ausgleichsvorgang zu nutzen und um elektrische Energie ein zusparen . In a special embodiment of the actuation strategy, the activation of the heating elements 40, 41 can be interrupted before the catalytically active region which can be heated to the maximum is reached, in order to use compensation process and to save electrical energy.
In einer weiteren Ausführung der Ansteuerstrategie der Heiz elemente 40,41 wird der Aufheiz- bzw. Temperaturausgleichs vorgang durch Modelle prädiziert und somit die gezielte Anpassung des Heizvorgangs an die Raumgeschwindigkeit des Katalysators vorgenommen .  In a further embodiment of the control strategy of the heating elements 40, 41, the heating or temperature compensation process is predicted by models, and thus the targeted adaptation of the heating process to the space velocity of the catalytic converter is carried out.
Sollte der ideale Heizvorgang aufgrund des Raumgeschwindig- keitsverlaufs mit den beiden Heizelementen 40,41 nicht rea lisierbar sein, erfolgt die Ansteuerstrategie gemäß der an gegebenen Gütekriterien so optimal wie möglich. In den Fällen, in denen eine Aktivierung der Heizelemente 40,41 gemäß der Erfindung erfolgen soll, ist jedoch grundsätzlich zu prüfen, ob dies im Rahmen der noch verfügbaren Energiemenge des Ener giespeichers möglich ist. If the ideal heating process cannot be realized with the two heating elements 40, 41 due to the course of the room speed, the control strategy is carried out as optimally as possible in accordance with the specified quality criteria. In the cases in which activation of the heating elements 40, 41 according to the invention is to take place, however, it is fundamentally to be checked whether this is possible within the scope of the still available amount of energy in the energy store.
In einer besonderen Ausführung können die oben angegebenen Schwellenwerte und Sollwerte in Abhängigkeit der verfügbaren Energiemenge des Energiespeichers, welcher die Heizeinrich tungen 40,41 mit Energie versorgt, bzw. durch die Vorgaben eines umfassenden Energiemanagements herauf- bzw. herabgesetzt werden . In a special embodiment, the threshold values and setpoints specified above can be increased or decreased depending on the available amount of energy in the energy store which supplies the heating devices 40, 41 with energy, or by the requirements of comprehensive energy management.
Begriffs-/Bezugszeichenliste List of terms / reference symbols
10 Verbrennungskraftmaschine 10 internal combustion engine
15 Ansaugtrakt  15 intake tract
20 Motorblock 20 engine block
25 Abgasstrang  25 exhaust line
30 Abgasnachbehandlungsanlage 30 exhaust gas aftertreatment system
35 elektrisch beheizter Abgaskatalysator 35 electrically heated catalytic converter
36 Mantelrohr 36 casing tube
37 erster Katalysabereich 37 first catalytic converter area
38 zweiter Katalysebereich  38 second catalytic area
39 dritter Katalysebereich  39 third catalytic area
40 erstes Heizelement  40 first heating element
41 zweites Heizelement  41 second heating element
42 Gesamtkatalysebereich 42 Total catalytic range
43 Elektromaschine  43 electric machine
44 elektrische Maschine im Ansaugtrakt, 50 Abgasnachbehandlungskomponente  44 electrical machine in the intake tract, 50 exhaust gas aftertreatment component
60 elektronische Steuerungseinrichtung 60 electronic control device

Claims

Patentansprüche Claims
1. Elektrisch beheizter Abgaskatalysator (35) in einem Ab gasstrang (25) einer Verbrennungskraftmaschine (10), aufwei send : 1. Electrically heated exhaust gas catalytic converter (35) in a gas line (25) from an internal combustion engine (10), comprising:
- einen Gesamtkatalysebereich (42) zur katalytischen Behandlung des Abgases der Verbrennungskraftmaschine (10), - a total catalytic area (42) for the catalytic treatment of the exhaust gas of the internal combustion engine (10),
- zwei innerhalb des Gesamtkatalysebereiches (42) angeordnete elektrische Heizelemente (40,41), welche in einem vorbe stimmten Abstand in Strömungsrichtung des Abgases hinter einander platziert sind, so dass der Gesamtkatalysebereich (42) in drei in Strömungsrichtung des Abgases aufeinander folgende Katalysebereiche (37, 38, 39) aufgeteilt ist, - Two electrical heating elements (40, 41) arranged within the overall catalytic converter area (42), which are placed one behind the other at a predetermined distance in the flow direction of the exhaust gas, so that the overall catalytic converter area (42) in three catalytic converter areas (37) following one another in the flow direction of the exhaust gas , 38, 39) is divided,
- ein erstes Heizelement (40) das in dem Gesamtkatalysebereich- A first heating element (40) in the overall catalytic range
(42) derart angeordnet ist, dass in Strömungsrichtung des Abgases gesehen, stromaufwärts des ersten Heizelementes (40) ein erster Katalysebereich (37) gebildet ist, der 5-15 % des Gesamtkatalysebereiches (42) beträgt (42) is arranged such that, seen in the flow direction of the exhaust gas, a first catalytic area (37) is formed upstream of the first heating element (40), which amounts to 5-15% of the total catalytic area (42)
- ein zweites Heizelement (41) das in dem Gesamtkatalysebereich - A second heating element (41) in the overall catalytic range
(42) derart angeordnet ist, dass in Strömungsrichtung des Abgases gesehen, stromaufwärts des zweiten Heizelementes (41) ein Katalysebereich (37,38) gebildet ist, der 60-80% des Gesamtkatalysebereiches (42) beträgt. (42) is arranged such that, seen in the flow direction of the exhaust gas, a catalytic area (37, 38) is formed upstream of the second heating element (41), which is 60-80% of the total catalytic area (42).
- einen dritten Katalysebereich (39) , der in Strömungsrichtung des Abgases gesehen, stromabwärts des zweiten Heizelementes (41) gebildet ist.  - A third catalytic area (39), which is seen in the flow direction of the exhaust gas, downstream of the second heating element (41).
2. Abgaskatalysator nach Anspruch 1, wobei der erste katalytische Bereich (37) und der zweite katalytische Bereich (38) das erste elektrische Heizelement (40) kontaktieren. 2. The catalytic converter according to claim 1, wherein the first catalytic region (37) and the second catalytic region (38) contact the first electrical heating element (40).
3. Abgaskatalysator nach Anspruch 1 oder 2, wobei, wobei der zweite katalytische Bereich (38) und der dritte katalytische Bereich (39) das zweite elektrische Heizelement (42) kontak tieren . 3. The catalytic converter according to claim 1 or 2, wherein, wherein the second catalytic region (38) and the third catalytic region (39) contact the second electrical heating element (42).
4. Abgaskatalysator nach einem der vorhergehenden Ansprüche 1, wobei die elektrischen Heizelemente (40,41) als Heizscheiben ausgebildet sind. 4. Exhaust gas catalytic converter according to one of the preceding claims 1, wherein the electrical heating elements (40, 41) are designed as heating disks.
5. Abgaskatalysator nach Anspruch 4, wobei der Abgaskatalysator (35) ein Mantelrohr (36) aufweist und die Heizscheiben den Innenraum des Mantelrohrs (36) in radialer Richtung nahezu vollständig ausfüllen und die Fixierung der Heizscheiben mittels Stützstiften an jeweils einem Stützkatalysatorvolumen erfolgt. 5. Exhaust gas catalytic converter according to claim 4, wherein the exhaust gas catalytic converter (35) has a jacket tube (36) and the heating disks almost completely fill the interior of the jacket tube (36) in the radial direction and the heating disks are fixed by means of support pins to a respective catalyst volume.
6. Verfahren zum Betreiben eines elektrisch beheizten Abgas katalysators (35) nach einem der Ansprüche 1 bis 5, wobei zeitlich vor dem Start der Verbrennungskraftmaschine (10) mindestens eines der beiden Heizelemente (40,41) mit elektrischer Energie versorgt wird. 6. A method of operating an electrically heated exhaust gas catalytic converter (35) according to one of claims 1 to 5, wherein at least one of the two heating elements (40, 41) is supplied with electrical energy before the start of the internal combustion engine (10).
7. Verfahren nach Anspruch 6, wobei und eine erzwungene Kon vektion mittels eines Luftmassenstromes durch das mindestens eine Heizelement (40,41) erzeugt wird. 7. The method according to claim 6, wherein and a forced convection by means of an air mass flow through the at least one heating element (40, 41) is generated.
8. Verfahren nach Anspruch 7, wobei die erzwungene Konvektion durch Aktivieren einer im Ansaugtrakt (15) angeordneten elektrisch angetriebenen Maschine (44) erfolgt, welche einen Luftmassenstrom erzeugt. 8. The method according to claim 7, wherein the forced convection is carried out by activating an electrically driven machine (44) which is arranged in the intake tract (15) and which generates an air mass flow.
9. Verfahren nach Anspruch 7, wobei die erzwungene Konvektion mittels der Verbrennungskraftmaschine (10) erfolgt, welche von einer Elektromaschine (42) geschleppt wird. 9. The method according to claim 7, wherein the forced convection is carried out by means of the internal combustion engine (10), which is towed by an electric machine (42).
10. Verfahren nach Anspruch 9, wobei eine richtungsabhängige erzwungene Konvektion erzeugt wird, indem die Verbrennungs kraftmaschine (10) abwechselnd in einer ersten Drehrichtung gedreht wird und anschließend in einer zu der ersten Drehrichtung entgegengesetzten zweiten Drehrichtung gedreht wird. 10. The method of claim 9, wherein a direction-dependent forced convection is generated by the internal combustion engine (10) is rotated alternately in a first direction of rotation and then rotated in a second direction of rotation opposite to the first direction of rotation.
11. Verfahren zum Betreiben eines elektrisch beheizten Ab gaskatalysators (35) nach einem der Ansprüche 1 bis 5, wobei bei einsetzender Drehbewegung der Verbrennungskraftmaschine (10) beide Heizelemente (40,41) mit elektrischer Energie versorgt werden . 11. A method of operating an electrically heated gas catalyst (35) according to one of claims 1 to 5, wherein at starting rotary movement of the internal combustion engine (10), both heating elements (40, 41) are supplied with electrical energy.
12. Verfahren nach Anspruch 11, wobei die Aktivierung der beiden Heizelemente (40,41) andauert, bis zu einem ON/OFF gesteuerten Heizbetrieb zur Erhaltung eines vorbestimmten Temperaturniveaus an dem jeweiligen Heizelement (40,41). 12. The method according to claim 11, wherein the activation of the two heating elements (40, 41) continues until an ON / OFF controlled heating operation to maintain a predetermined temperature level on the respective heating element (40, 41).
13. Verfahren zum Betreiben eines elektrisch beheizten Ab gaskatalysators (35) nach einem der Ansprüche 1 bis 5, wobei bis zum Erreichen einer vorbestimmten Schwellenwertes für die Abgastemperatur stromabwärts des Abgaskatalysators (35) aus schließlich das zweite Heizelement (42) mit elektrischer Energie versorgt wird. 13. A method for operating an electrically heated gas catalytic converter (35) according to one of claims 1 to 5, wherein until a predetermined threshold value for the exhaust gas temperature downstream of the exhaust gas catalytic converter (35) is finally supplied to the second heating element (42) with electrical energy .
14. Verfahren nach Anspruch 13, wobei nach Erreichen des Schwellenwertes das zweite Heizelement (41) in einem ON/OFF gesteuerten Heizbetrieb zur Aufrechterhaltung der Abgastem peratur betrieben wird, bis der stromabwärts liegende Teil des Abgaskatalysators (35) ein ausreichendes Temperaturniveau erreicht hat. 14. The method according to claim 13, wherein after reaching the threshold value, the second heating element (41) is operated in an ON / OFF controlled heating mode to maintain the exhaust gas temperature until the downstream part of the exhaust gas catalytic converter (35) has reached a sufficient temperature level.
15. Verfahren nach Anspruch 14, wobei der ON/OFF gesteuerte Heizbetrieb solange aufrechterhalten wird, bis ein temporärer Prozess für eine weitere Abgasnachbehandlungskomponente (50) stromabwärts des Abgaskatalysators (35) abgeschlossen ist. 15. The method according to claim 14, wherein the ON / OFF controlled heating operation is maintained until a temporary process for a further exhaust gas aftertreatment component (50) downstream of the exhaust gas catalytic converter (35) is completed.
16. Verfahren nach Anspruch 15, wobei der temporäre Prozess eine Regeneration eines Partikelfilters ist. 16. The method of claim 15, wherein the temporary process is a regeneration of a particle filter.
PCT/EP2019/076352 2018-10-08 2019-09-30 Electrically heated catalytic converter, and method for operating such a catalytic converter WO2020074292A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018217174.2 2018-10-08
DE102018217174.2A DE102018217174B4 (en) 2018-10-08 2018-10-08 Electrically heated catalytic converter and method for operating an electrically heated catalytic converter

Publications (1)

Publication Number Publication Date
WO2020074292A1 true WO2020074292A1 (en) 2020-04-16

Family

ID=68104641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/076352 WO2020074292A1 (en) 2018-10-08 2019-09-30 Electrically heated catalytic converter, and method for operating such a catalytic converter

Country Status (2)

Country Link
DE (1) DE102018217174B4 (en)
WO (1) WO2020074292A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11614017B2 (en) 2021-05-20 2023-03-28 Ford Global Technologies, Llc Systems and methods for providing heat to a catalyst of an after-treatment system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020214288A1 (en) 2020-11-13 2022-05-19 Robert Bosch Gesellschaft mit beschränkter Haftung Method for operating an internal combustion engine
DE102021205533A1 (en) * 2020-11-27 2022-06-02 Vitesco Technologies GmbH Method and device for electrically heating an exhaust gas catalytic converter

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447113A (en) * 1990-06-13 1992-02-17 Nissan Motor Co Ltd Exhaust gas purification device for engine
US5234668A (en) * 1990-07-25 1993-08-10 Ngk Insulators, Ltd. Catalytic converter for use in automotive exhaust emissions control
DE4302039A1 (en) * 1993-01-26 1994-07-28 Emitec Emissionstechnologie Catalytic converter with electric heating
DE4434673A1 (en) 1994-09-28 1996-04-04 Emitec Emissionstechnologie Electrically heated catalyst
EP0913357A1 (en) * 1997-10-28 1999-05-06 Ngk Insulators, Ltd. Reformer and method for operation thereof
DE19943846A1 (en) 1999-09-13 2001-03-15 Emitec Emissionstechnologie Device with heating element for exhaust gas cleaning
EP1669564A1 (en) * 2003-09-19 2006-06-14 Hino Motors, Ltd. Exhaust gas-purifying device
US20110030344A1 (en) * 2009-08-07 2011-02-10 Gm Global Technology Operations, Inc. Radiant heating systems and methods for catalysts of exhaust treatment systems
DE102016213612B3 (en) 2016-07-25 2017-12-28 Continental Automotive Gmbh Electric catalytic converter, vehicle and method for operating an electric catalytic converter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447113A (en) * 1990-06-13 1992-02-17 Nissan Motor Co Ltd Exhaust gas purification device for engine
US5234668A (en) * 1990-07-25 1993-08-10 Ngk Insulators, Ltd. Catalytic converter for use in automotive exhaust emissions control
DE4302039A1 (en) * 1993-01-26 1994-07-28 Emitec Emissionstechnologie Catalytic converter with electric heating
DE4434673A1 (en) 1994-09-28 1996-04-04 Emitec Emissionstechnologie Electrically heated catalyst
EP0913357A1 (en) * 1997-10-28 1999-05-06 Ngk Insulators, Ltd. Reformer and method for operation thereof
DE19943846A1 (en) 1999-09-13 2001-03-15 Emitec Emissionstechnologie Device with heating element for exhaust gas cleaning
EP1669564A1 (en) * 2003-09-19 2006-06-14 Hino Motors, Ltd. Exhaust gas-purifying device
US20110030344A1 (en) * 2009-08-07 2011-02-10 Gm Global Technology Operations, Inc. Radiant heating systems and methods for catalysts of exhaust treatment systems
DE102016213612B3 (en) 2016-07-25 2017-12-28 Continental Automotive Gmbh Electric catalytic converter, vehicle and method for operating an electric catalytic converter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROLF BRÜCKPETER HIRTHFRANCOIS JAJAT: "26th Aachen Colloquium Automobile and Engine Technology", 2017, CONTINENTAL EMITEC GMBH, article "Innovative Catalyst Substrate Components for Future Passenger Car Diesel Aftertreatment Systems"

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11614017B2 (en) 2021-05-20 2023-03-28 Ford Global Technologies, Llc Systems and methods for providing heat to a catalyst of an after-treatment system

Also Published As

Publication number Publication date
DE102018217174B4 (en) 2020-07-09
DE102018217174A1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
EP0893154B1 (en) Process and apparatus for desulphating of NOx-traps for DI-Diesel engines
EP1744924B1 (en) Method and device for operating a hybrid vehicle
WO2020074292A1 (en) Electrically heated catalytic converter, and method for operating such a catalytic converter
DE10355664A1 (en) Exhaust emission reduction system includes particulate filter within exhaust stream, heat exchanger to adjust temperature of diesel exhaust stream and catalytic absorber of nitrogen oxides within temperature adjusted diesel exhaust stream
DE102009052713A1 (en) Cold start engine load for accelerated heating of an exhaust aftertreatment system
DE102011108238A1 (en) Method and device for monitoring a regeneration frequency of a vehicle particle filter
DE112013005723T5 (en) Reductant injection control system
EP2150686A1 (en) Method and device for operating a motor vehicle comprising an exhaust gas heating device
DE102018208980A1 (en) Process for heating a catalyst
DE102017115408A1 (en) Exhaust gas aftertreatment system and method for exhaust aftertreatment of an internal combustion engine
EP3578771B1 (en) Motor vehicle and a method for operating a motor vehicle
DE102008030307A1 (en) Catalyst arrangement for purifying exhaust gas flow of internal combustion engine in motor vehicle, has electrical heater for heating catalyst and/or exhaust gas flow, and another heater for heating another catalyst and/or exhaust gas flow
EP2146063A2 (en) Regeneration device
DE102018207627B4 (en) Method and arrangement for heating exhaust gas aftertreatment devices and motor vehicles
EP2404042B1 (en) Method for operating a device for cleaning exhaust having a heating apparatus
DE102012218119A1 (en) Method for operating powertrain of e.g. motor car, involves measuring temperature of post-treatment components according to enthalpy of detected exhaust gas to increase value of exhaust gas and to maintain desired speed of vehicle
DE102018208718B4 (en) Method for operating an electrically heatable catalytic converter
DE10120973B4 (en) Emission control system with particle filter means and regeneration method for particulate filter means
WO2022112014A1 (en) Method and apparatus for electrically heating a catalytic converter
DE102018112265A1 (en) SYSTEMS AND METHOD FOR CONTROLLING THE BYPASS OF AN EXHAUST TREATMENT DEVICE
DE102016205265A1 (en) Method and device for operating an SCR exhaust aftertreatment device
DE102018208958A1 (en) Motor vehicle with an exhaust system comprising an LNT catalyst, an electrically heatable eSCR catalytic converter and a particulate filter and method for operating such a motor vehicle
EP1544430B1 (en) Method for operating a NOx storage catalyst
DE112013003885B4 (en) Method and system for determining a sensor function for a PM sensor
DE10048392A1 (en) Procedure for temperature-dependent overrun fuel cut-off

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19779872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19779872

Country of ref document: EP

Kind code of ref document: A1