WO2020074283A1 - Optimized recuperation strategy for a hybrid vehicle with electrically heatable catalytic converter - Google Patents

Optimized recuperation strategy for a hybrid vehicle with electrically heatable catalytic converter Download PDF

Info

Publication number
WO2020074283A1
WO2020074283A1 PCT/EP2019/076279 EP2019076279W WO2020074283A1 WO 2020074283 A1 WO2020074283 A1 WO 2020074283A1 EP 2019076279 W EP2019076279 W EP 2019076279W WO 2020074283 A1 WO2020074283 A1 WO 2020074283A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
control system
electric machine
temperature
Prior art date
Application number
PCT/EP2019/076279
Other languages
German (de)
French (fr)
Inventor
Dietmar Ellmer
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of WO2020074283A1 publication Critical patent/WO2020074283A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18136Engine braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/008Mounting or arrangement of exhaust sensors in or on exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/18081With torque flow from driveshaft to engine, i.e. engine being driven by vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/068Engine exhaust temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0605Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/08Exhaust treating devices having provisions not otherwise provided for for preventing heat loss or temperature drop, using other means than layers of heat-insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/11Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1626Catalyst activation temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0005Controlling intake air during deceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a control system and a method for reducing the cooling of a catalytic converter, in particular for a hybrid vehicle.
  • the invention further relates to a program element, a computer-readable medium and a use.
  • a minimum temperature is required for the safe catalysis of all relevant pollutants.
  • This minimum temperature also called “light-off temperature”
  • this threshold is, for example, above 400.degree of the internal combustion engine - as can occur in hybrid vehicles in particular - the temperature can drop below the light-off temperature, so that safe catalysis is no longer guaranteed when the internal combustion engine is restarted.
  • the object of the invention is to at least partially overcome the disadvantages of the prior art, in particular to at least partially reduce the cooling of the catalyst.
  • One aspect of the invention relates to a control system for reducing the cooling down of a catalytic converter, for an internal combustion engine of a hybrid vehicle, the hybrid vehicle comprising the internal combustion engine and an electric machine having.
  • the control system has a catalytic converter which is arranged in a gas path of the internal combustion engine and at least one actuator in the gas path.
  • the so-called gas path of the internal combustion engine through which a fluid - e.g. Fresh air or exhaust gas - flows, can be roughly divided into a so-called fresh air path, which is arranged in front of the internal combustion engine, and a so-called exhaust gas path, which is arranged after the internal combustion engine.
  • the mass flow (also gas throughput or volume flow) of the fluid flow through the gas path can be varied by a number of devices. The number and type of these devices can vary depending on the engine. In the following, all devices in the gas path which allow a variation of the mass flow through the catalytic converter or parts of the catalytic converter and thus a variation of the space velocity are referred to as "actuators".
  • the space velocity is a measure of the quantity of the mass flow of the fluid through a
  • the space velocity is the reciprocal of the dwell time of a gas.
  • the "actuator" in the gas path can be, for example, a throttle valve, air cycle valve, swirl flap (tumble), actuator, valve lift variation on the inlet or outlet side, stowage flap, exhaust flap, flap for exhaust gas recirculation (EGR), gas cycle valve, gas diverter flap, secondary air pump, wastegate and / or variable turbine geometry charger (VTG charger) of a turbocharger, electric compressor, gas cycle valve or any other actuator that changes due to its active operation causes the space velocity of the catalyst.
  • EGR exhaust gas recirculation
  • VVTG charger variable turbine geometry charger
  • the control system furthermore has a controller which is set up to determine a target braking power when the internal combustion engine is being towed, and, if the target braking power is less than a maximum recuperation power of the electric machine in generator mode, the electric machine in to operate the generator operation with the target braking power and to increase a mass flow through the gas path by means of the at least one actuator.
  • the internal combustion engine is in towing mode when the internal combustion engine is no longer used to drive the vehicle. This may include switching off the fuel and / or air supply and / or the ignition. If the internal combustion engine is no longer coupled to the moving vehicle or if the vehicle is at a standstill, this can include a standstill of the internal combustion engine.
  • the target braking power can be derived, for example, from a driver's request, for example via the so-called braking target value (BSW).
  • the target braking power can be determined by an assistance system, particularly in the case of at least partially automated vehicles.
  • the recuperation power is a kinetic energy of the vehicle, which can be recovered as electrical energy during a deceleration of the vehicle, for example during a braking operation, using the electric machine in generator mode. In many vehicles, this is seen as an essential contribution to reducing fuel consumption and reducing CCg.
  • the maximum recuperation power of the electric machine in generator operation can be determined by the dimensioning and the type of the electric machine.
  • the fluid flow through the gas path is minimized during towing, for example in order to use the braking effect of the engine and thereby relieve the brakes, for example.
  • the gas path is at least partially "throttled", ie the mass flow through the gas path, for example through the engine, is increased by means of the at least one actuator.
  • the loss torque is reduced by at least some 25% in some internal combustion engines
  • this can be used, for example, to increase the recuperation power of the electric machine in generator operation, which can contribute to a further reduction in the fuel consumption or the CO 2 emissions of the vehicle.
  • the dethrottling can finally be carried out if this leads to a further increase in the recuperation energy.
  • control is also set up when, in towing operation, the braking power is equal to or greater than the recuperation power, to operate the electric machine in generator mode with the recuperation power and to reduce the mass flow by means of the at least one actuator.
  • a possible cooling of the catalytic converter is reduced by the fact that the mass flow through the gas path is reduced in operating phases in which the recuperation power has been exhausted. As a result, less (possibly cooling) fluid flows through the catalyst. In addition, the braking effect of the internal combustion engine can be increased.
  • control system also has a first temperature sensor which is arranged in the region of the catalytic converter and which is set up to determine a first actual temperature of the catalytic converter.
  • the controller is also set up to increase the mass flow by means of the at least one actuator depending on the first actual temperature.
  • the temperature sensor can be arranged inside the catalytic converter, directly at the catalytic converter or in the vicinity of the catalytic converter.
  • the temperature sensor can be on a catalyst
  • Such a catalyst temperature model can show the local temperatures in the catalyst both in the flow direction (axial) and in the transverse direction (radial, in cylindrical form).
  • the increase in the mass flow is dependent on the first actual temperature.
  • This dependency includes that the first actual temperature should be well above the light-off temperature to ensure safe catalysis. If this is the case, a dethrottling strategy can be determined. This can take into account, for example, the difference between the light-off temperature; this can be done, for example, in such a way that the higher the first one, the greater the dethrottling of the gas path
  • the dethrottling strategy can also use cooling models of the catalytic converter, for example in such a way that a time remaining until cooling is predicted.
  • the predicted remaining time can take into account, for example, the first actual temperature, exhaust gas temperature models, route-specific parameters (e.g. terrain, wind strength, wind direction) and the traffic situation and determine the dethrottling of the gas path.
  • the dethrottling can be designed so that the shorter the predicted remaining time until it cools down, the lower it is. With this e.g. A balanced optimum can be achieved from an environmental point of view, because both the energy recuperated and the catalyst function are taken into account.
  • control system also has a second temperature sensor, which is arranged in the exhaust gas path and which is set up to have a second one
  • control is also set up to increase the fluid flow by means of the at least one actuator, as a function of the second actual temperature.
  • the first actual temperature of the catalytic converter can be calculated from the second actual temperature, for example on the basis of temperature models, and one of the dethrottling strategies explained above can be selected as a function thereof.
  • the determination of the second actual temperature enables the exhaust gas temperature to be taken into account. This extends the dethrottling strategies explained above to the extent that the thermal inertia of the internal combustion engine is also incorporated into the Prediction of the remaining time and may contribute to a further increase in the recuperated energy.
  • control system also has a heat source which is arranged in the region of the catalytic converter, the control system being further set up to do so when the first actual temperature and / or the second
  • Actual temperature is less than a predefined temperature, to apply a predefined power to the heat source in order to reach the predefined temperature.
  • the heat source can be designed as a single heat source or as several heat sources.
  • the heat source can be arranged in the catalytic converter or close to the catalytic converter upstream, that is to say between the internal combustion engine and the catalytic converter.
  • the heat source can e.g. be designed as an electrically heated heating disc.
  • the predefined temperature can be in the range of
  • Light-off temperature of the catalyst are or at a distance above the light-off temperature that a certain "reserve temperature" remains for safe catalysis. If the first actual temperature and / or the second actual temperature is lower than the predefined temperature, the control system applies a predefined power to the heat source, so that the predefined temperature is reached, thus preventing an unacceptable deterioration in the conversion behavior of the catalytic converter.
  • the application of the catalyst is dependent on the state of charge of the energy source
  • Vehicle such as the car battery, triggered. This can prevent an early discharge of the energy source.
  • the controller is set up to interrupt the application of the heat source in order to observe the thermal inertia of the heat source. For example, a excessive power consumption by the heat source and / or excessive and / or unnecessary heating of the heat source can be avoided. Models can also be used for the heating process.
  • the predefined power for applying the heat source is at least partially derived from a current recuperation power of the electric machine.
  • the heat source of the catalytic converter is activated for a certain time.
  • This time and the spatial speed set with the aid of the at least one actuator is selected so that the cooled area is quickly and sustainably heated.
  • the step insofar as it becomes necessary in a special case, is inexpensive because the directly recuperated energy can be used directly for heating. This leads to better efficiency in contrast to temporary storage in the vehicle's energy source, e.g. the battery.
  • current information such as Fuel quality, individual vehicle characteristics (e.g. vehicle age, driving history, component status, etc.), environmental parameters such as outside temperature, air humidity, traffic density, construction sites, prior knowledge (e.g. a known route profile, driver information (such as the type of driver), or also AI-based system information can be used to adjust all of the above thresholds and setpoints.
  • the thresholds and setpoints given above may depend on the available ones
  • Amount of energy, the energy storage or by the specifications of a comprehensive energy management can be increased or decreased.
  • Another aspect of the invention relates to a method for reducing the cooling of a catalyst, for an internal combustion engine of a hybrid vehicle, the hybrid vehicle having the internal combustion engine and an electric machine, with the steps:
  • the target braking power is less than the maximum recuperation power of the electric machine in generator mode, operate the electric machine in generator mode with the target braking power and increase the mass flow by means of the at least one actuator.
  • the method has the following further steps:
  • the method has the further step:
  • Actual temperature is less than a predefined temperature, apply a predefined power to a heat source in order to reach the predefined temperature.
  • Another aspect of the invention relates to a program element which, when executed on a controller, guides the controller to carry out the method described here.
  • Another aspect of the invention relates to a computer-readable medium on which the program element described here is stored.
  • Another aspect of the invention relates to the use of a control system, as described above, for reducing the cooling of a catalytic converter in an exhaust gas stream, for an internal combustion engine of a hybrid vehicle.
  • FIG. 1 shows a schematic illustration of a vehicle with a control system according to an embodiment of the present invention
  • Fig. 2 is a schematic representation of a dethrottled
  • Fig. 3 is a schematic representation of a dethrottled
  • Fig. 4 is a flowchart with a method according to a
  • the vehicle 300 is designed as a hybrid vehicle 300, with an internal combustion engine 310 and an electric machine 320, which are coupled by means of a coupling element 315.
  • the coupling element 315 can rigidly be guided or have a clutch to separate the combustion engine 310 and the electric machine 320 if necessary.
  • the internal combustion engine 310 has a gas path 210, the gas, for example an exhaust gas, flowing in the direction of the arrow 215 to a catalytic converter 200.
  • An actuator 270 is arranged between the internal combustion engine 310 and the catalytic converter 200.
  • a first temperature sensor 251 is arranged in the region of the catalyst 200.
  • the first temperature sensor 251 supplies a first actual temperature Til of the catalytic converter 200 to a controller 150.
  • the controller 150 is set up to control the actuator 270, the internal combustion engine 310 and the electric machine 320.
  • FIG. 2 shows a schematic illustration of an unthrottled gas path 210 of the internal combustion engine 310 (see FIG. 1) according to an embodiment of the present invention.
  • the gas path 210 has a fresh air path 212 and an exhaust gas path 211.
  • the catalytic converter 200 is arranged in the exhaust gas path 211.
  • a heat source 205 is arranged in the region of the catalyst 200.
  • a first temperature sensor 251 is arranged in the region of the catalytic converter 200 and a second temperature sensor 252 is arranged in the exhaust gas path 211.
  • the actuators 270 which are each arranged in the fresh air path 212 and in the exhaust gas path 211, are shown in a dethrottled position so that the fluid or gas can flow through the gas path 210 in the direction of the arrow 215.
  • the dethrottled position differs from the throttled position in that a mass flow through the gas path 210 is increased by means of at least one actuator 270.
  • the actuators in gas path 210 can be, for example, a throttle valve, air cycle valve, tumble flap tumbler, actuator, valve lift variation on the inlet or outlet side, damper valve, exhaust gas valve, flap for EGR exhaust gas recirculation, gas cycle valve, gas deflection valve, secondary air pump, wastegate and / or variable-turbine geometry superchargers, turbochargers, electric compressors, gas stroke valves or any other actuator which, through its active operation, brings about a change in the space velocity of the catalytic converter 200.
  • 3 shows a schematic illustration of a throttled gas path 210 according to an embodiment of the present invention. The elements shown and the reference numerals correspond to the elements and reference numerals shown in FIG. 2. The only difference from FIG.
  • the actuators 270 which are respectively arranged in the fresh air path 212 and in the exhaust gas path 211, are shown in a throttled position. In the throttled position, the actuators 270 are in a position in which the mass flow through the gas path 210 is reduced in comparison to the dethrottled position by means of at least one of the actuators 270.
  • step 401 it is checked whether the internal combustion engine 310 (see FIG. 1) is in a towing mode. If no, the method is ended in a step 403. If so, then a target braking power is determined in a step 404.
  • a step 405 it is then queried whether the catalytic converter 200 has a predefined temperature above the light-off temperature. If this is not the case, in a step 410, the heat source 205, in the region of the catalyst 200, is acted upon by the controller 150 with a predefined power Pv in order to reach the predefined temperature Tv. If the catalytic converter 200 has the predefined above the light-off temperature, the electric machine 320 is operated in generator mode in a step 406. In a step 407, it is determined whether a
  • Target braking power e.g. was requested by a driver is less than a maximum recuperation power
  • Electric machine 320 in a generator mode. If this is the case, then in a step 408, the electric machine 320 is operated in generator mode with the target braking power and a mass flow through the gas path 210 is increased by means of the at least one actuator 270. If the target braking power is greater than or equal to the maximum recuperation power, then, in a step 409, the electric machine 320 is operated with the maximum recuperation power and the mass flow is by means of of the at least one actuator 270.
  • the method is ended in a step 411. After the end of the method in step 403 or 411, the method can be started again in step 401. In one embodiment there is a repetition, in particular a regular repetition, of the method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

The invention relates to a control system and a method for reducing the cooling of a catalytic converter, in particular for a hybrid vehicle. The control system (100) has an internal combustion engine (310) and an electric machine (320). Additionally, the control system (100) has a catalytic converter (200) and at least one actuator (270) which is arranged in a gas path (210). The control system (100) also has a controller (150) which is designed to determine a target braking power in a drag mode of the internal combustion engine (310), operate the electric machine (320) in a generator mode at the target braking power when the target braking power is less than a maximum recuperation power of the electric machine (320) in the generator mode, and increase a mass flow flowing through the gas path (210) by means of the at least one actuator (270).

Description

Beschreibung description
Optimierte Rekuperationsstrategie bei einem Hybridfahrzeug mit elektrisch beheizbaren Katalysator Optimized recuperation strategy for a hybrid vehicle with an electrically heated catalytic converter
Die Erfindung betrifft ein Steuerungssystem und ein Verfahren zur Reduzierung des Auskühlens eines Katalysators, insbesondere für ein Hybrid-Fahrzeug . Weiterhin betrifft die Erfindung ein Programmelement, ein computerlesbares Medium und eine Ver wendung . The invention relates to a control system and a method for reducing the cooling of a catalytic converter, in particular for a hybrid vehicle. The invention further relates to a program element, a computer-readable medium and a use.
Viele Fahrzeuge mit Verbrennungsmotor verfügen über einen Katalysator zur Reduktion der Schadstoffemissionen. Dabei ist zur sicheren Katalyse aller relevanten Schadstoffe eine Min- desttemperatur erforderlich. Diese Mindesttemperatur, auch „Light-Off-Temperatur" genannt, liegt z.B. bei Abgas von Ot tomotoren im Bereich von 250 bis 300°C, bei CNG (Methan) liegt diese Schwelle beispielsweise oberhalb von 400°C. Bei längerem Schleppbetrieb oder längerem Abschalten des Verbrennungsmotors - wie das insbesondere bei Hybrid-Fahrzeugen Vorkommen kann - kann die Temperatur unter die Light-Off-Temperatur fallen, so dass beim Neustart des Verbrennungsmotors die sichere Katalyse nicht mehr gewährleistet ist. Many vehicles with internal combustion engines have a catalytic converter to reduce pollutant emissions. A minimum temperature is required for the safe catalysis of all relevant pollutants. This minimum temperature, also called "light-off temperature", is, for example, in the case of exhaust gas from ot tomotors in the range from 250 to 300.degree. C. For CNG (methane), this threshold is, for example, above 400.degree of the internal combustion engine - as can occur in hybrid vehicles in particular - the temperature can drop below the light-off temperature, so that safe catalysis is no longer guaranteed when the internal combustion engine is restarted.
Es ist Aufgabe der Erfindung, die Nachteile des Standes der Technik wenigstens teilweise zu überwinden, insbesondere das Auskühlens des Katalysators zumindest teilweise zu reduzieren. The object of the invention is to at least partially overcome the disadvantages of the prior art, in particular to at least partially reduce the cooling of the catalyst.
Diese Aufgabe wird durch den Gegenstand der unabhängigen Pa tentansprüche gelöst. Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der folgenden Beschreibung. This object is achieved by the subject matter of the independent claims. Further developments of the invention result from the subclaims and the following description.
Ein Aspekt der Erfindung betrifft ein Steuerungssystem zur Reduzierung des Auskühlens eines Katalysators, für einen Verbrennungsmotor eines Hybrid-Fahrzeugs , wobei das Hyb rid-Fahrzeug den Verbrennungsmotor und eine Elektromaschine aufweist. Das Steuerungssystem weist einen Katalysator auf, welcher in einem Gaspfad des Verbrennungsmotors angeordnet ist und mindestens einen Steller in dem Gaspfad. One aspect of the invention relates to a control system for reducing the cooling down of a catalytic converter, for an internal combustion engine of a hybrid vehicle, the hybrid vehicle comprising the internal combustion engine and an electric machine having. The control system has a catalytic converter which is arranged in a gas path of the internal combustion engine and at least one actuator in the gas path.
Der sogenannte Gaspfad des Verbrennungsmotors, durch welchen ein Fluid - z.B. Frischluft oder Abgas - strömt, lässt sich grob in einen sogenannten Frischluftpfad, der vor dem Verbrennungsmotor angeordnet ist, und einen sogenannten Abgaspfad, der nach dem Verbrennungsmotor angeordnet ist, aufteilen. Dabei kann der Massenstrom (auch Gasdurchsatz oder Volumenstrom) des Flu idstroms durch den Gaspfad durch eine Reihe von Vorrichtungen variiert werden. Die Anzahl und der Typ dieser Vorrichtungen kann, je nach Motor, variieren. Im Folgenden werden alle Vorrichtungen in dem Gaspfad, die eine Variation des Massenstroms durch den Katalysator bzw. Teile des Katalysators und somit eine Variation der Raumgeschwindigkeit ermöglichen, als „Steller" bezeichnet. Die Raumgeschwindigkeit ist ein Maß für die Quantität des Massenstroms des Fluids durch ein durchströmtes Element. Die Raumgeschwindigkeit ist der Kehrwert der Verweilzeit eines Gases. Bei dem „Steller" im Gaspfad kann es sich beispielsweise um eine Drosselklappe, Lufttaktventil, Drallklappe (Tumble) , Steller, Ventilhubvariation auf der Einlass- oder Auslassseite, Stauklappe, Abgasklappe, Klappe für die Abgas-Rückführung (EGR) , Gastaktventil, Gasumlenkklappe, Sekundärluftpumpe, Wastegate und/oder Variable-Turbinengeometrie-Lader (VTG-Lader) eines Turboladers, elektrischer Kompressor, Gastaktventil oder um jeden anderen Aktor handeln, der durch seinen aktiven Betrieb eine Veränderung der Raumgeschwindigkeit des Katalysators herbeiführt . The so-called gas path of the internal combustion engine, through which a fluid - e.g. Fresh air or exhaust gas - flows, can be roughly divided into a so-called fresh air path, which is arranged in front of the internal combustion engine, and a so-called exhaust gas path, which is arranged after the internal combustion engine. The mass flow (also gas throughput or volume flow) of the fluid flow through the gas path can be varied by a number of devices. The number and type of these devices can vary depending on the engine. In the following, all devices in the gas path which allow a variation of the mass flow through the catalytic converter or parts of the catalytic converter and thus a variation of the space velocity are referred to as "actuators". The space velocity is a measure of the quantity of the mass flow of the fluid through a The space velocity is the reciprocal of the dwell time of a gas. The "actuator" in the gas path can be, for example, a throttle valve, air cycle valve, swirl flap (tumble), actuator, valve lift variation on the inlet or outlet side, stowage flap, exhaust flap, flap for exhaust gas recirculation (EGR), gas cycle valve, gas diverter flap, secondary air pump, wastegate and / or variable turbine geometry charger (VTG charger) of a turbocharger, electric compressor, gas cycle valve or any other actuator that changes due to its active operation causes the space velocity of the catalyst.
Das Steuerungssystem weist weiterhin eine Steuerung auf, welche dazu eingerichtet ist, in einem Schleppbetrieb des Verbren nungsmotors eine Soll-Bremsleistung zu bestimmen, und, wenn die Soll-Bremsleistung kleiner ist als eine maximale Rekuperati- onsleistung der Elektromaschine in einem Generatorbetrieb, die Elektromaschine in dem Generatorbetrieb mit der Soll-Brems- leistung zu betreiben und einen Massenstrom durch den Gaspfad mittels des mindestens eines Stellers zu erhöhen. Der Verbrennungsmotor ist in dem Schleppbetrieb, wenn der Verbrennungsmotor nicht mehr zum Antrieb des Fahrzeugs genutzt wird. Dies kann ein Abstellen der Kraftstoff- und/oder der Luftzufuhr und/oder der Zündung beinhalten. Wenn der Ver brennungsmotor nicht mehr an das sich bewegende Fahrzeug an gekoppelt ist oder wenn das Fahrzeug steht, kann dies einen Stillstand des Verbrennungsmotors beinhalten. Die Soll-Brems- leistung kann z.B. aus einem Fahrerwunsch abgeleitet sein, beispielsweise über den sogenannten Bremssollwert (BSW) . Die Soll-Bremsleistung kann, insbesondere bei zumindest teilweise automatisiert fahrenden Fahrzeugen, durch ein Assistenzsystem bestimmt werden. The control system furthermore has a controller which is set up to determine a target braking power when the internal combustion engine is being towed, and, if the target braking power is less than a maximum recuperation power of the electric machine in generator mode, the electric machine in to operate the generator operation with the target braking power and to increase a mass flow through the gas path by means of the at least one actuator. The internal combustion engine is in towing mode when the internal combustion engine is no longer used to drive the vehicle. This may include switching off the fuel and / or air supply and / or the ignition. If the internal combustion engine is no longer coupled to the moving vehicle or if the vehicle is at a standstill, this can include a standstill of the internal combustion engine. The target braking power can be derived, for example, from a driver's request, for example via the so-called braking target value (BSW). The target braking power can be determined by an assistance system, particularly in the case of at least partially automated vehicles.
Die Rekuperationsleistung ist eine kinetische Energie des Fahrzeugs, die als elektrische Energie während einer Verzögerung des Fahrzeugs, beispielsweise während eines Bremsvorgangs, mit Hilfe der Elektromaschine im Generatorbetrieb zurückgewonnen werden kann. Dies wird bei vielen Fahrzeugen als ein wesentlicher Beitrag zur Verbrauchsreduzierung und zu CCg-Absenkung be trachtet. Die maximale Rekuperationsleistung der Elektroma schine im Generatorbetrieb kann durch die Dimensionierung und den Typ der Elektromaschine festgelegt sein. The recuperation power is a kinetic energy of the vehicle, which can be recovered as electrical energy during a deceleration of the vehicle, for example during a braking operation, using the electric machine in generator mode. In many vehicles, this is seen as an essential contribution to reducing fuel consumption and reducing CCg. The maximum recuperation power of the electric machine in generator operation can be determined by the dimensioning and the type of the electric machine.
Im Stand der Technik wird in dem Schleppbetrieb der Fluidstrom durch den Gaspfad minimiert, z.B. um die Bremswirkung des Motors zu nutzen und dadurch beispielsweise die Bremsen zu entlasten. Im Gegensatz dazu wird bei der vorliegenden Erfindung der Gaspfad zumindest teilweise „entdrosselt" , d.h. der Massenstrom durch den Gaspfad, also z.B. durch den Motor, wird mittels des mindestens eines Stellers erhöht. Dadurch wird zumindest bei einigen Verbrennungsmotoren das Verlustmoment um etwa 25 % reduziert. Dies kann erfindungsgemäß z.B. zur Erhöhung der Rekuperationsleistung der Elektromaschine im Generatorbetrieb genutzt werden. Dies kann zu einer weiteren Reduktion des Treibstoffverbrauchs bzw. des C02-Ausstoßes des Fahrzeugs beitragen . In einer Variation der Erfindung kann die Entdrosselung aus schließlich dann durchgeführt werden, wenn dies zu einer weiteren Erhöhung der Rekuperationsenergie führt. In the prior art, the fluid flow through the gas path is minimized during towing, for example in order to use the braking effect of the engine and thereby relieve the brakes, for example. In contrast to this, in the present invention the gas path is at least partially "throttled", ie the mass flow through the gas path, for example through the engine, is increased by means of the at least one actuator. As a result, the loss torque is reduced by at least some 25% in some internal combustion engines According to the invention, this can be used, for example, to increase the recuperation power of the electric machine in generator operation, which can contribute to a further reduction in the fuel consumption or the CO 2 emissions of the vehicle. In a variation of the invention, the dethrottling can finally be carried out if this leads to a further increase in the recuperation energy.
In einer Ausführungsform ist die Steuerung weiterhin dazu eingerichtet, wenn, im Schleppbetrieb, die Bremsleistung gleich oder größer ist als die Rekuperationsleistung, die Elektro- maschine im Generatorbetrieb mit der Rekuperationsleistung zu betreiben und den Massenstrom mittels des mindestens eines Stellers, zu reduzieren. In one embodiment, the control is also set up when, in towing operation, the braking power is equal to or greater than the recuperation power, to operate the electric machine in generator mode with the recuperation power and to reduce the mass flow by means of the at least one actuator.
Bei dieser Ausführungsform wird ein mögliches Auskühlen des Katalysators dadurch reduziert, dass in Betriebsphasen, in denen die Rekuperationsleistung ausgeschöpft ist, der Massenstrom durch den Gaspfad reduziert wird. Dadurch strömt weniger (möglicherweise kühlendes) Fluid durch den Katalysator . Außerdem kann die Bremswirkung des Verbrennungsmotors erhöht werden. In this embodiment, a possible cooling of the catalytic converter is reduced by the fact that the mass flow through the gas path is reduced in operating phases in which the recuperation power has been exhausted. As a result, less (possibly cooling) fluid flows through the catalyst. In addition, the braking effect of the internal combustion engine can be increased.
In einer Ausführungsform weist das Steuerungssystem weiterhin einen ersten Temperatursensor auf, der im Bereich des Kataly sators angeordnet ist und der dazu eingerichtet ist, eine erste Ist-Temperatur des Katalysators zu bestimmen. Dabei ist die Steuerung weiterhin dazu eingerichtet, das Erhöhen des Mas senstroms, mittels des mindestens eines Stellers, in Abhän gigkeit von der ersten Ist-Temperatur durchzuführen. In one embodiment, the control system also has a first temperature sensor which is arranged in the region of the catalytic converter and which is set up to determine a first actual temperature of the catalytic converter. The controller is also set up to increase the mass flow by means of the at least one actuator depending on the first actual temperature.
Der Temperatursensor kann innerhalb des Katalysators, direkt bei dem Katalysator oder in der Nähe des Katalysators angeordnet sein. Der Temperatursensor kann auf einem Katalysator The temperature sensor can be arranged inside the catalytic converter, directly at the catalytic converter or in the vicinity of the catalytic converter. The temperature sensor can be on a catalyst
temperaturmodell basieren, das gegebenenfalls durch weitere Sensoren unterstützt, korrigiert, adaptiert und/oder optimiert wird. Ein derartiges Katalysatortemperaturmodell kann die lokalen Temperaturen in dem Katalysator sowohl in Strömungs richtung (axial) als auch in Querrichtung (radial, bei zylin drischer Form) ausweisen. based temperature model, which may be supported, corrected, adapted and / or optimized by additional sensors. Such a catalyst temperature model can show the local temperatures in the catalyst both in the flow direction (axial) and in the transverse direction (radial, in cylindrical form).
Das Erhöhen des Massenstroms ist in dieser Ausführungsform abhängig von der ersten Ist-Temperatur. Diese Abhängigkeit schließt ein, dass die erste Ist-Temperatur deutlich über der Light-Off-Temperatur liegen sollte, um die sichere Katalyse zu gewährleisten. Ist dies der Fall, dann kann eine Entdrosselungs- strategie ermittelt werden. Diese kann z.B. die Differenz zwischen der Light-Off-Temperatur berücksichtigen; dies kann beispielsweise in der Weise geschehen, dass die Entdrosselung des Gaspfades umso stärker sein kein, je höher die erste In this embodiment, the increase in the mass flow is dependent on the first actual temperature. This dependency includes that the first actual temperature should be well above the light-off temperature to ensure safe catalysis. If this is the case, a dethrottling strategy can be determined. This can take into account, for example, the difference between the light-off temperature; this can be done, for example, in such a way that the higher the first one, the greater the dethrottling of the gas path
Ist-Temperatur über der Light-Off-Temperatur liegt. Die Ent- drosselungsstrategie kann weiterhin Auskühlungsmodelle des Katalysators verwenden, etwa in der Art, dass eine Restzeit bis zu einer Auskühlung prädiziert wird. Die prädizierte Restzeit kann z.B., neben der ersten Ist-Temperatur, Abgastemperatur- modelle, Strecken-spezifische Parameter (z.B. Gelände, Wind stärke, Windrichtung) und die Verkehrssituation berücksichtigen und daraus die Entdrosselung des Gaspfades bestimmen. Generell kann die Entdrosselung so ausgelegt werden, dass diese umso geringer ist, je kürzer die prädizierte Restzeit bis zu einer Auskühlung ist. Damit kann z.B. ein ausgewogenes Optimum unter Umweltgesichtspunkten erreicht werden, weil sowohl die reku- perierte Energie als auch die Katalysatorfunktion berücksichtigt werden . Actual temperature is above the light-off temperature. The dethrottling strategy can also use cooling models of the catalytic converter, for example in such a way that a time remaining until cooling is predicted. The predicted remaining time can take into account, for example, the first actual temperature, exhaust gas temperature models, route-specific parameters (e.g. terrain, wind strength, wind direction) and the traffic situation and determine the dethrottling of the gas path. In general, the dethrottling can be designed so that the shorter the predicted remaining time until it cools down, the lower it is. With this e.g. A balanced optimum can be achieved from an environmental point of view, because both the energy recuperated and the catalyst function are taken into account.
In einer Ausführungsform weist das Steuerungssystem weiterhin einen zweiten Temperatursensor auf, der in dem Abgaspfad an geordnet ist und der dazu eingerichtet ist, eine zweite In one embodiment, the control system also has a second temperature sensor, which is arranged in the exhaust gas path and which is set up to have a second one
Ist-Temperatur des Abgaspfads zu bestimmen, wobei die Steuerung, weiterhin dazu eingerichtet ist, das Erhöhen des Fluidstroms mittels des mindestens eines Stellers, in Abhängigkeit von der zweiten Ist-Temperatur durchzuführen. To determine the actual temperature of the exhaust gas path, wherein the control is also set up to increase the fluid flow by means of the at least one actuator, as a function of the second actual temperature.
Aus der zweiten Ist-Temperatur kann, z.B. auf Basis von Tem peraturmodellen, die erste Ist-Temperatur des Katalysators berechnet werden und in abhängig davon eine der oben erläuterten Entdrosselungsstrategien gewählt werden. Darüber hinaus er möglicht das Bestimmen der zweiten Ist-Temperatur die Be rücksichtigung der Abgastemperatur . Dies erweitert die oben erläuterten Entdrosselungsstrategien dahingehend, dass auch noch die thermische Trägheit des Verbrennungsmotors in die Prädiktion der Restzeit eingehen kann und möglicherweise zu einer weiteren Erhöhung der rekuperierten Energie beitragen kann. The first actual temperature of the catalytic converter can be calculated from the second actual temperature, for example on the basis of temperature models, and one of the dethrottling strategies explained above can be selected as a function thereof. In addition, the determination of the second actual temperature enables the exhaust gas temperature to be taken into account. This extends the dethrottling strategies explained above to the extent that the thermal inertia of the internal combustion engine is also incorporated into the Prediction of the remaining time and may contribute to a further increase in the recuperated energy.
In einer Ausführungsform weist das Steuerungssystem weiterhin eine Wärmequelle auf, welche im Bereich des Katalysators an geordnet ist, wobei die Steuerung weiterhin dazu eingerichtet ist, wenn die erste Ist-Temperatur und/oder die zweite In one embodiment, the control system also has a heat source which is arranged in the region of the catalytic converter, the control system being further set up to do so when the first actual temperature and / or the second
Ist-Temperatur kleiner ist als eine vordefinierte Temperatur, die Wärmequelle mit einer vordefinierten Leistung zu beauf schlagen, um die vordefinierte Temperatur zu erreichen. Actual temperature is less than a predefined temperature, to apply a predefined power to the heat source in order to reach the predefined temperature.
Die Wärmequelle kann als eine einzelne Wärmequelle oder als mehrere Wärmequellen ausgeführt sein. Insbesondere im Fall der einzelnen Wärmequelle kann die Wärmequelle in dem Katalysator oder nahe bei dem Katalysator stromaufwärts angeordnet sein, also zwischen dem Verbrennungsmotor und dem Katalysator. Die Wär mequelle kann z.B. als eine elektrisch beheizbare Heizscheibe ausgeführt sein. The heat source can be designed as a single heat source or as several heat sources. In the case of the individual heat source in particular, the heat source can be arranged in the catalytic converter or close to the catalytic converter upstream, that is to say between the internal combustion engine and the catalytic converter. The heat source can e.g. be designed as an electrically heated heating disc.
Die vordefinierte Temperatur kann im Bereich der The predefined temperature can be in the range of
Light-Off-Temperatur des Katalysators liegen oder in einem Abstand über der Light-Off-Temperatur, dass noch eine gewisse „Reserve-Temperatur" für die sichere Katalyse verbleibt. Wenn die erste Ist-Temperatur und/oder die zweite Ist-Temperatur kleiner ist als die vordefinierte Temperatur, beaufschlagt die Steuerung die Wärmequelle mit einer vordefinierten Leistung, so dass die vordefinierte Temperatur erreicht wird. Damit kann eine inakzeptable Verschlechterung des Konvertierungsverhaltens des Katalysators ausgeschlossen werden. Light-off temperature of the catalyst are or at a distance above the light-off temperature that a certain "reserve temperature" remains for safe catalysis. If the first actual temperature and / or the second actual temperature is lower than the predefined temperature, the control system applies a predefined power to the heat source, so that the predefined temperature is reached, thus preventing an unacceptable deterioration in the conversion behavior of the catalytic converter.
In einer Ausführungsform wird die Beaufschlagung des Kataly sators abhängig vom Ladezustand der Energiequelle des In one embodiment, the application of the catalyst is dependent on the state of charge of the energy source
Fahr-zeugs, beispielsweise der Autobatterie, ausgelöst. Damit kann einem frühen Entladen der Energiequelle vorgebeugt werden. Vehicle, such as the car battery, triggered. This can prevent an early discharge of the energy source.
In einer Ausführungsform ist die Steuerung dazu eingerichtet, das Beaufschlagen der Wärmequelle zu unterbrechen, um die thermische Trägheit der Wärmequelle zu beobachten. Dadurch kann z.B. ein übermäßiger Stromverbrauch durch die Wärmequelle und/oder ein übermäßiges und/oder unnötiges Erhitzen der Wärmequelle ver mieden werden. Es können darüber hinaus Modelle für den Auf heizvorgang verwendet werden. In one embodiment, the controller is set up to interrupt the application of the heat source in order to observe the thermal inertia of the heat source. For example, a excessive power consumption by the heat source and / or excessive and / or unnecessary heating of the heat source can be avoided. Models can also be used for the heating process.
In einer Ausführungsform wird die vordefinierte Leistung zum Beaufschlagen der Wärmequelle zumindest teilweise einer ak tuellen Rekuperationsleistung der Elektromaschine entnommen. In one embodiment, the predefined power for applying the heat source is at least partially derived from a current recuperation power of the electric machine.
Sollte also der Fall eintreten, dass eine lokale Temperatur im Katalysator während des Schleppbetriebs unter eine Schwelle fällt, die eine inakzeptable Verschlechterung des Konvertie rungsverhaltens des Katalysators bei Wiedereinsetzen des Verbrennungsmotors hervorruft, wird die Wärmequelle des Ka talysators für eine bestimmte Zeit aktiviert. Diese Zeit und die mit Hilfe des mindestens einen Stellers eingestellte Raumge schwindigkeit wird so gewählt, dass der ausgekühlte Bereich zügig und nachhaltig aufgeheizt wird. Energetisch ist der Schritt, sofern er im Sonderfall notwendig wird, insofern günstig, da die unmittelbar rekuperierte Energie zum Heizen direkt eingesetzt werden kann. Dies führt zu einem besseren Wirkungsgrad im Gegensatz zur temporären Speicherung in der Energiequelle des Fahrzeugs, z.B. der Batterie. So should the case occur that a local temperature in the catalytic converter during towing falls below a threshold that causes an unacceptable deterioration in the conversion behavior of the catalytic converter when the internal combustion engine is reinserted, the heat source of the catalytic converter is activated for a certain time. This time and the spatial speed set with the aid of the at least one actuator is selected so that the cooled area is quickly and sustainably heated. In terms of energy, the step, insofar as it becomes necessary in a special case, is inexpensive because the directly recuperated energy can be used directly for heating. This leads to better efficiency in contrast to temporary storage in the vehicle's energy source, e.g. the battery.
In einer Ausführungsform können aktuelle Informationen, wie z.B. Kraftstoffqualität , individuelle Fahrzeugeigenschaften (z.B. Fahrzeugalter, Fahrhistorie, Komponentenzustand, etc.), Um gebungsparameter wie Außentemperatur, Luftfeuchtigkeit, Ver kehrsdichte, Baustellen, a-priori-Kenntnisse (z.B. ein be kanntes Streckenprofil, Fahrerinformationen (wie z.B. der Fahrertypus) , oder auch auf KI basierende Systeminformationen zur Anpassung aller oben genannten Schwellenwerte und Sollwerte verwendet werden. In one embodiment, current information, such as Fuel quality, individual vehicle characteristics (e.g. vehicle age, driving history, component status, etc.), environmental parameters such as outside temperature, air humidity, traffic density, construction sites, prior knowledge (e.g. a known route profile, driver information (such as the type of driver), or also AI-based system information can be used to adjust all of the above thresholds and setpoints.
In einer Ausführungsform können die oben angegebenen Schwell werte und Sollwerte in der Abhängigkeit der verfügbaren In one embodiment, the thresholds and setpoints given above may depend on the available ones
Energiemenge, des Energiespeichers bzw. durch die Vorgaben eines umfassenden Energiemanagements herauf- bzw. herabgesetzt werden . Amount of energy, the energy storage or by the specifications of a comprehensive energy management can be increased or decreased.
Ein weiterer Aspekt der Erfindung betrifft ein Verfahren zur Reduzierung des Auskühlens eines Katalysators, für einen Verbrennungsmotor eines Hybrid-Fahrzeugs , wobei das Hyb- rid-Fahrzeug den Verbrennungsmotor und eine Elektromaschine aufweist, mit den Schritten: Another aspect of the invention relates to a method for reducing the cooling of a catalyst, for an internal combustion engine of a hybrid vehicle, the hybrid vehicle having the internal combustion engine and an electric machine, with the steps:
- Bestimmen, im Schleppbetrieb des Verbrennungsmotors, einer Soll-Bremsleistung; und  - Determine, in the trailing operation of the internal combustion engine, a target braking power; and
- Wenn die Soll-Bremsleistung kleiner ist als die maximale Rekuperationsleistung der Elektromaschine im Generatorbetrieb, betreiben der Elektromaschine im Generatorbetrieb mit der Soll-Bremsleistung und erhöhen des Massenstroms mittels des mindestens eines Stellers.  - If the target braking power is less than the maximum recuperation power of the electric machine in generator mode, operate the electric machine in generator mode with the target braking power and increase the mass flow by means of the at least one actuator.
In einer Ausführungsform weist das Verfahren folgende weitere Schritte auf: In one embodiment, the method has the following further steps:
- Bestimmen, mittels eines ersten Temperatursensor, der im Bereich des Katalysators angeordnet ist, einer ersten  - Determine, by means of a first temperature sensor, which is arranged in the region of the catalytic converter, a first one
Ist-Temperatur des Katalysators, und/oder, mittels eines zweiten Temperatursensor, der in dem Abgaspfad angeordnet ist, einer zweiten Ist-Temperatur des Abgaspfads; und Actual temperature of the catalytic converter, and / or, by means of a second temperature sensor which is arranged in the exhaust gas path, a second actual temperature of the exhaust gas path; and
- Erhöhen des Massenstroms, mittels des mindestens eines Stellers, in positiver Abhängigkeit von der ersten  - Increase the mass flow, by means of the at least one actuator, in a positive dependence on the first
Ist-Temperatur . Actual temperature.
In einer Ausführungsform weist das Verfahren den weiteren Schritt auf : In one embodiment, the method has the further step:
- Wenn die erste Ist-Temperatur und/oder die zweite  - If the first actual temperature and / or the second
Ist-Temperatur kleiner ist als eine vordefinierte Temperatur, beaufschlagen einer Wärmequelle mit einer vordefinierten Leistung, um die vordefinierte Temperatur zu erreichen. Actual temperature is less than a predefined temperature, apply a predefined power to a heat source in order to reach the predefined temperature.
Ein weiterer Aspekt der Erfindung betrifft ein Programmelement, welches, wenn es auf einer Steuerung ausgeführt wird, die Steuerung anleitet, das hier beschriebene Verfahren durchzu führen . Ein weiterer Aspekt der Erfindung betrifft ein computerlesbares Medium, auf dem das hier beschriebene Programmelement ge speichert ist. Another aspect of the invention relates to a program element which, when executed on a controller, guides the controller to carry out the method described here. Another aspect of the invention relates to a computer-readable medium on which the program element described here is stored.
Ein weiterer Aspekt der Erfindung betrifft eine Verwendung eines Steuerungssystems, wie es oben beschrieben ist, zur Reduzierung des Auskühlens eines Katalysators in einem Abgasstrom, für einen Verbrennungsmotor eines Hybrid-Fahrzeugs . Another aspect of the invention relates to the use of a control system, as described above, for reducing the cooling of a catalytic converter in an exhaust gas stream, for an internal combustion engine of a hybrid vehicle.
Zur weiteren Verdeutlichung wird die Erfindung anhand von in den Figuren abgebildeten Ausführungsformen beschrieben. Diese Ausführungsformen sind nur als Beispiel, nicht aber als Ein schränkung zu verstehen. For further clarification, the invention is described on the basis of embodiments shown in the figures. These embodiments are only to be understood as an example, but not as a limitation.
Es zeigt: It shows:
Fig. 1 eine schematische Darstellung eines Fahrzeugs mit einem Steuerungssystem gemäß einer Ausführungsform der vorliegenden Erfindung; 1 shows a schematic illustration of a vehicle with a control system according to an embodiment of the present invention;
Fig. 2 eine schematische Darstellung eines entdrosselten Fig. 2 is a schematic representation of a dethrottled
Gaspfads gemäß einer Ausführungsform der vorliegenden Erfindung;  Gas paths according to an embodiment of the present invention;
Fig. 3 eine schematische Darstellung eines entdrosselten Fig. 3 is a schematic representation of a dethrottled
Gaspfads gemäß einer Ausführungsform der vorliegenden Erfindung;  Gas paths according to an embodiment of the present invention;
Fig. 4 ein Flussdiagramm mit einem Verfahren gemäß einer Fig. 4 is a flowchart with a method according to a
Ausführungsform der vorliegenden Erfindung.  Embodiment of the present invention.
Fig. 1 zeigt eine schematische Darstellung eines Fahrzeugs 300 mit einem Steuerungssystem 100 gemäß einer Ausführungsform der vorliegenden Erfindung. Das Fahrzeug 300 ist als ein Hyb- rid-Fahrzeug 300 ausgeführt, mit einem Verbrennungsmotor 310 und einer Elektromaschine 320, die mittels eines Kopplungselements 315 gekoppelt sind. Das Kopplungselement 315 kann starr aus- geführt sein oder eine Kupplung aufweisen, um den Verbren nungsmotor 310 und die Elektromaschine 320 bei Bedarf zu trennen. Der Verbrennungsmotor 310 weist einen Gaspfad 210 auf, wobei das Gas z.B. ein Abgas, in Pfeilrichtung 215, zu einem Katalysator 200 strömt. Zwischen dem Verbrennungsmotor 310 und dem Kata lysator 200 ist ein Steller 270 angeordnet. Im Bereich des Katalysators 200 ist ein erster Temperatursensor 251 angeordnet. Der erste Temperatursensor 251 liefert eine erste Ist-Temperatur Til des Katalysators 200 an eine Steuerung 150. Die Steuerung 150 ist dazu eingerichtet, den Steller 270, den Verbrennungsmotor 310 und die Elektromaschine 320 zu steuern. 1 shows a schematic illustration of a vehicle 300 with a control system 100 according to an embodiment of the present invention. The vehicle 300 is designed as a hybrid vehicle 300, with an internal combustion engine 310 and an electric machine 320, which are coupled by means of a coupling element 315. The coupling element 315 can rigidly be guided or have a clutch to separate the combustion engine 310 and the electric machine 320 if necessary. The internal combustion engine 310 has a gas path 210, the gas, for example an exhaust gas, flowing in the direction of the arrow 215 to a catalytic converter 200. An actuator 270 is arranged between the internal combustion engine 310 and the catalytic converter 200. A first temperature sensor 251 is arranged in the region of the catalyst 200. The first temperature sensor 251 supplies a first actual temperature Til of the catalytic converter 200 to a controller 150. The controller 150 is set up to control the actuator 270, the internal combustion engine 310 and the electric machine 320.
Fig. 2 zeigt eine schematische Darstellung eines entdrosselten Gaspfads 210 des Verbrennungsmotors 310 (siehe Fig. 1) gemäß einer Ausführungsform der vorliegenden Erfindung. Der Gaspfad 210 weist einen Frischluftpfad 212 und einen Abgaspfad 211 auf. In dem Abgaspfad 211 ist der Katalysator 200 angeordnet. Im Bereich des Katalysators 200 ist eine Wärmequelle 205 angeordnet. Weiterhin sind ein erster Temperatursensor 251 im Bereich des Katalysators 200 angeordnet und ein zweiter Temperatursensor 252 in dem Abgaspfad 211 angeordnet. Die Steller 270, die jeweils in dem Frischluftpfad 212 und in dem Abgaspfad 211 angeordnet sind, sind in einer entdrosselten Position dargestellt, so dass das Fluid oder Gas durch den Gaspfad 210 in Pfeilrichtung 215 strömen kann. Die entdrosselte Position unterscheidet sich von der gedrosselten Position dadurch, dass ein Massenstrom durch den Gaspfad 210 mittels mindestens eines Stellers 270 erhöht ist. Bei den Stellern im Gaspfad 210 kann es sich beispielsweise um eine Drosselklappe, Lufttaktventil, Drallklappe Tumble, Steller, Ventilhubvariation auf der Einlass- oder Auslassseite, Stau klappe, Abgasklappe, Klappe für die Abgas-Rückführung EGR, Gas taktventil, Gasumlenkklappe, Sekundärluftpumpe, Wastegate und/oder Variable-Turbinengeometrie-Lader VTG-Lader eines Turboladers, elektrischer Kompressor, Gastaktventil oder um jeden anderen Aktor handeln, der durch seinen aktiven Betrieb eine Veränderung der Raumgeschwindigkeit des Katalysators 200 herbeiführt . Fig. 3 zeigt eine schematische Darstellung eines gedrosselten Gaspfads 210 gemäß einer Ausführungsform der vorliegenden Erfindung. Die gezeigten Elemente und die Bezugszeichen ent sprechen den Elementen und Bezugszeichen, die in Fig. 2 gezeigt sind. Der einzige Unterschied zu Fig. 2 besteht darin, dass die Steller 270, die jeweils in dem Frischluftpfad 212 und in dem Abgaspfad 211 angeordnet sind, in einer gedrosselten Position dargestellt sind. Bei der gedrosselten Position sind die Steller 270 in einer Position, bei welcher der Massenstrom durch den Gaspfad 210, im Vergleich zur entdrosselten Position mittels mindestens eines der Steller 270 reduziert ist. FIG. 2 shows a schematic illustration of an unthrottled gas path 210 of the internal combustion engine 310 (see FIG. 1) according to an embodiment of the present invention. The gas path 210 has a fresh air path 212 and an exhaust gas path 211. The catalytic converter 200 is arranged in the exhaust gas path 211. A heat source 205 is arranged in the region of the catalyst 200. Furthermore, a first temperature sensor 251 is arranged in the region of the catalytic converter 200 and a second temperature sensor 252 is arranged in the exhaust gas path 211. The actuators 270, which are each arranged in the fresh air path 212 and in the exhaust gas path 211, are shown in a dethrottled position so that the fluid or gas can flow through the gas path 210 in the direction of the arrow 215. The dethrottled position differs from the throttled position in that a mass flow through the gas path 210 is increased by means of at least one actuator 270. The actuators in gas path 210 can be, for example, a throttle valve, air cycle valve, tumble flap tumbler, actuator, valve lift variation on the inlet or outlet side, damper valve, exhaust gas valve, flap for EGR exhaust gas recirculation, gas cycle valve, gas deflection valve, secondary air pump, wastegate and / or variable-turbine geometry superchargers, turbochargers, electric compressors, gas stroke valves or any other actuator which, through its active operation, brings about a change in the space velocity of the catalytic converter 200. 3 shows a schematic illustration of a throttled gas path 210 according to an embodiment of the present invention. The elements shown and the reference numerals correspond to the elements and reference numerals shown in FIG. 2. The only difference from FIG. 2 is that the actuators 270, which are respectively arranged in the fresh air path 212 and in the exhaust gas path 211, are shown in a throttled position. In the throttled position, the actuators 270 are in a position in which the mass flow through the gas path 210 is reduced in comparison to the dethrottled position by means of at least one of the actuators 270.
Fig. 4 zeigt ein Flussdiagramm 400 mit einem Verfahren gemäß einer Ausführungsform der vorliegenden Erfindung. Das Verfahren startet mit einem Schritt 401. In einem Schritt 402 wird überprüft, ob der Verbrennungsmotor 310 (siehe Fig. 1) in einem Schleppbetrieb ist. Wenn nein, wird das Verfahren in einem Schritt 403 beendet. Wenn ja, dann wird in einem Schritt 404 eine Soll-Bremsleistung bestimmt. In einem Schritt 405 wird dann abgefragt, ob der Katalysator 200 eine vordefinierte Temperatur oberhalb der Light-Off-Temperatur aufweist. Ist dies nicht der Fall, wird, in einem Schritt 410, die Wärmequelle 205, im Bereich des Katalysators 200, durch die Steuerung 150 mit einer vor definierten Leistung Pv beaufschlagt, um die vordefinierte Temperatur Tv zu erreichen. Wenn der Katalysator 200 die vordefinierte oberhalb der Light-Off-Temperatur aufweist, wird, in einem Schritt 406, die Elektromaschine 320 im Generatorbetrieb betrieben. In einem Schritt 407 wird ermittelt, ob eine 4 shows a flow diagram 400 with a method according to an embodiment of the present invention. The method starts with a step 401. In a step 402 it is checked whether the internal combustion engine 310 (see FIG. 1) is in a towing mode. If no, the method is ended in a step 403. If so, then a target braking power is determined in a step 404. In a step 405, it is then queried whether the catalytic converter 200 has a predefined temperature above the light-off temperature. If this is not the case, in a step 410, the heat source 205, in the region of the catalyst 200, is acted upon by the controller 150 with a predefined power Pv in order to reach the predefined temperature Tv. If the catalytic converter 200 has the predefined above the light-off temperature, the electric machine 320 is operated in generator mode in a step 406. In a step 407, it is determined whether a
Soll-Bremsleistung, die z.B. von einem Fahrer angefordert wurde, kleiner ist als eine maximale Rekuperationsleistung der Target braking power, e.g. was requested by a driver is less than a maximum recuperation power
Elektromaschine 320 in einem Generatorbetrieb. Ist dies der Fall, dann wird, in einem Schritt 408, die Elektromaschine 320 in dem Generatorbetrieb mit der Soll-Bremsleistung betrieben und ein Massenstrom durch den Gaspfad 210 mittels des mindestens eines Stellers 270 erhöht. Ist die Soll-Bremsleistung größer oder gleich der maximalen Rekuperationsleistung, dann wird, in einem Schritt 409, die Elektromaschine 320 mit der maximalen Reku perationsleistung betrieben und der Massenstrom wird, mittels des mindestens eines Stellers 270, reduziert. In einem Schritt 411 wird das Verfahren beendet. Nach der Beendigung des Ver fahrens in Schritt 403 oder 411 kann das Verfahren wieder in dem Schritt 401 gestartet werden. In einer Ausführungsform findet eine Wiederholung, insbesondere eine regelmäßige Wiederholung, des Verfahrens statt. Electric machine 320 in a generator mode. If this is the case, then in a step 408, the electric machine 320 is operated in generator mode with the target braking power and a mass flow through the gas path 210 is increased by means of the at least one actuator 270. If the target braking power is greater than or equal to the maximum recuperation power, then, in a step 409, the electric machine 320 is operated with the maximum recuperation power and the mass flow is by means of of the at least one actuator 270. The method is ended in a step 411. After the end of the method in step 403 or 411, the method can be started again in step 401. In one embodiment there is a repetition, in particular a regular repetition, of the method.
Bezugszeichenliste Reference list
100 SteuerungsSystem 100 control system
150 Steuerung  150 control
200 Katalysator  200 catalyst
205 Wärmequelle  205 heat source
210 Gaspfad  210 gas path
211 Abgaspfad  211 exhaust gas path
212 Frischluftpfad  212 fresh air path
215 Pfeilrichtung  215 arrow direction
251 erster Temperatursensor 251 first temperature sensor
252 zweiter Temperatursensor252 second temperature sensor
270 Steller 270 digits
300 Fahrzeug  300 vehicle
310 Verbrennungsmotor  310 internal combustion engine
315 Kopplungselement  315 coupling element
320 Elektromaschine  320 electric machine
400 Flussdiagramm  400 flowchart
401 - 411 Schritte 401 - 411 steps

Claims

Patentansprüche Claims
1. Steuerungssystem (100) zur Reduzierung des Auskühlens eines Katalysators (200), für einen Verbrennungsmotor (310) eines Hybrid-Fahrzeugs (300), wobei das Hybrid-Fahrzeug (300) den Verbrennungsmotor (310) und eine Elektromaschine (320) aufweist, das Steuerungssystem (100) aufweisend: 1. Control system (100) for reducing the cooling of a catalytic converter (200), for an internal combustion engine (310) of a hybrid vehicle (300), the hybrid vehicle (300) having the internal combustion engine (310) and an electric machine (320) comprising the control system (100):
einen Katalysator (200) , welcher in einem Gaspfad (210) des Verbrennungsmotors (310) angeordnet ist, mindestens einen Steller (270) in dem Gaspfad (210), und eine Steuerung (150), welche dazu eingerichtet ist, in einem Schleppbetrieb des Verbrennungsmotors (310) eine Soll-Bremsleistung zu bestimmen, und wenn die Soll-Bremsleistung kleiner ist als eine maximale Rekuperationsleistung der Elektromaschine (320) in einem Generatorbetrieb, die Elektromaschine (320) in dem Ge neratorbetrieb mit der Soll-Bremsleistung zu betreiben und einen Massenstrom durch den Gaspfad (210) mittels des mindestens eines Stellers (270) zu erhöhen.  a catalytic converter (200) which is arranged in a gas path (210) of the internal combustion engine (310), at least one actuator (270) in the gas path (210), and a controller (150) which is set up to be in a towing operation of the Determine internal combustion engine (310) a target braking power, and if the target braking power is less than a maximum recuperation power of the electric machine (320) in a generator operation, the electric machine (320) in the generator operation with the target braking power and one Increase mass flow through the gas path (210) by means of the at least one actuator (270).
2. Steuerungssystem (100) nach Anspruch 1, wobei die Steuerung (150) , weiterhin dazu eingerichtet ist, wenn, im Schleppbetrieb, die Bremsleistung gleich oder größer ist als die maximale Rekuperationsleistung, die Elektromaschine (320) im Generatorbetrieb mit der maximalen Rekuperationsleistung zu betreiben und den Massenstrom mittels des mindestens eines Stellers (270) , zu reduzieren. 2. Control system (100) according to claim 1, wherein the controller (150) is further configured to, if, in towing operation, the braking power is equal to or greater than the maximum recuperation power, the electric machine (320) in generator mode with the maximum recuperation power operate and reduce the mass flow by means of the at least one actuator (270).
3. Steuerungssystem (100) nach Anspruch 1 oder 2, weiterhin aufweisend : einen ersten Temperatursensor (251), der im Bereich des Katalysators (200) angeordnet ist und der dazu eingerichtet ist, eine erste Ist-Temperatur (Til) des Katalysators (200) zu bestimmen, wobei die Steuerung (150) , weiterhin dazu eingerichtet ist, das Erhöhen des Massenstroms, mittels des mindestens eines Stellers (270), in Abhängigkeit von der ersten 3. Control system (100) according to claim 1 or 2, further comprising: a first temperature sensor (251) which is arranged in the region of the catalytic converter (200) and which is set up to determine a first actual temperature (Til) of the catalytic converter (200), the controller (150) also being set up to do so , increasing the mass flow, by means of the at least one actuator (270), depending on the first
Ist-Temperatur (Til) durchzuführen.  Actual temperature (Til) to be carried out.
4. Steuerungssystem (100) nach einem der vorhergehenden 4. Control system (100) according to one of the preceding
Ansprüche, weiterhin aufweisend einen zweiten Tempera tursensor (252), der in dem Abgaspfad (211) angeordnet ist und der dazu eingerichtet ist, eine zweite Ist-Temperatur (Ti2) des Abgaspfads (211) zu bestimmen, wobei die Steuerung (150) , weiterhin dazu eingerichtet ist, das Erhöhen des Massenstroms mittels des mindestens eines Stellers (270), in Abhängigkeit von der zweiten  Claims, further comprising a second temperature sensor (252) which is arranged in the exhaust gas path (211) and which is set up to determine a second actual temperature (Ti2) of the exhaust gas path (211), the controller (150), is furthermore set up to increase the mass flow by means of the at least one actuator (270) as a function of the second
Ist-Temperatur (Ti2) durchzuführen.  Actual temperature (Ti2) to be carried out.
5. Steuerungssystem (100) nach einem der vorhergehenden 5. Control system (100) according to one of the preceding
Ansprüche, weiterhin aufweisend eine Wärmequelle (205) , welche im Bereich des Katalysators (200) angeordnet ist, wobei die Steuerung (150) , weiterhin dazu eingerichtet ist, wenn die erste Ist-Temperatur (Til) und/oder die zweite Ist-Temperatur (Ti2) kleiner ist als eine vordefinierte Temperatur (Tv) , die Wärmequelle (205) mit einer vorde finierten Leistung (Pv) zu beaufschlagen, um die vorde finierte Temperatur (Tv) zu erreichen.  Claims, further comprising a heat source (205), which is arranged in the region of the catalyst (200), wherein the controller (150) is also set up to do so when the first actual temperature (Til) and / or the second actual temperature (Ti2) is less than a predefined temperature (Tv), the heat source (205) is subjected to a predefined power (Pv) in order to reach the predefined temperature (Tv).
6. Steuerungssystem (100) nach Anspruch 5, wobei die Steuerung (150) dazu eingerichtet ist, das Beaufschlagen der Wärmequelle (205) zu unterbrechen, um die thermische Trägheit der Wärmequelle (205) zu beobachten. 6. Control system (100) according to claim 5, the controller (150) being set up to interrupt the application of the heat source (205) in order to observe the thermal inertia of the heat source (205).
7. Steuerungssystem (100) nach Anspruch 5 oder 6, wobei die vordefinierte Leistung (Pv) zum Beaufschlagen der Wärmequelle (205) zumindest teilweise einer aktuellen Rekuperationsleistung der Elektromaschine (320) entnommen wird . 7. Control system (100) according to claim 5 or 6, wherein the predefined power (Pv) for acting on the heat source (205) is at least partially taken from a current recuperation power of the electric machine (320).
8. Verfahren zur Reduzierung des Auskühlens eines Katalysators (200), für einen Verbrennungsmotor (310) eines Hyb- rid-Fahrzeugs (300), wobei das Hybrid-Fahrzeug (300) den Verbrennungsmotor (310) und eine Elektromaschine (320) aufweist, mit den Schritten: 8. A method for reducing the cooling of a catalytic converter (200) for an internal combustion engine (310) of a hybrid vehicle (300), the hybrid vehicle (300) having the internal combustion engine (310) and an electric machine (320), with the steps:
- Bestimmen, im Schleppbetrieb des Verbrennungsmotors (310), einer Soll-Bremsleistung; und - Determining, in the trailing operation of the internal combustion engine (310), a target braking power; and
- Wenn die Soll-Bremsleistung kleiner ist als die maximale Rekuperationsleistung der Elektromaschine (320) im Ge neratorbetrieb, betreiben der Elektromaschine (320) im Generatorbetrieb mit der Soll-Bremsleistung und erhöhen des Massenstroms mittels des mindestens eines Stellers (270). - If the target braking power is less than the maximum recuperation power of the electric machine (320) in ge generator operation, operate the electric machine (320) in generator mode with the target braking power and increase the mass flow by means of the at least one actuator (270).
9. Verfahren nach Anspruch 8, mit den weiteren Schritten: 9. The method according to claim 8, with the further steps:
- Bestimmen, mittels eines ersten Temperatursensor (251), der im Bereich des Katalysators (200) angeordnet ist, einer ersten Ist-Temperatur (Til) des Katalysators (200), und/oder, mittels eines zweiten Temperatursensor (252), der in dem Abgaspfad (211) angeordnet ist, einer zweiten Ist-Temperatur (Ti2) des Abgaspfads (211); und - Erhöhen des Massenstroms, mittels des mindestens eines Stellers (270), in positiver Abhängigkeit von der ersten Ist-Temperatur (Til). - Determining, by means of a first temperature sensor (251), which is arranged in the region of the catalyst (200), a first actual temperature (Til) of the catalyst (200), and / or, by means of a second temperature sensor (252), which the exhaust gas path (211) is arranged, a second actual temperature (Ti2) of the exhaust gas path (211); and - Increase the mass flow, by means of the at least one actuator (270), in a positive dependence on the first actual temperature (Til).
10. Verfahren nach Anspruch 8 oder 9, mit dem weiteren Schritt: 10. The method according to claim 8 or 9, with the further step:
- Wenn die erste Ist-Temperatur (Til) und/oder die zweite Ist-Temperatur (Ti2) kleiner ist als eine vordefinierte Temperatur (Tv) , beaufschlagen einer Wärmequelle (205) mit einer vordefinierten Leistung (Pv) , um die vordefinierte Temperatur (Tv) zu erreichen. If the first actual temperature (Til) and / or the second actual temperature (Ti2) is less than a predefined temperature (Tv), a heat source (205) is subjected to a predefined power (Pv) in order to reduce the predefined temperature ( Tv) to achieve.
11. Programmelement, das, wenn es auf einer Steuerung (150) ausgeführt wird, die Steuerung (150) anleitet, die Schritte des Verfahrens nach einem der Ansprüche 8 bis 10 durch zuführen . 11. Program element which, when executed on a controller (150), instructs the controller (150) to carry out the steps of the method according to one of claims 8 to 10.
12. Computerlesbares Medium, auf dem ein Programmelement gemäß Anspruch 11 gespeichert ist. 12. Computer-readable medium on which a program element according to claim 11 is stored.
13. Verwendung eines Steuerungssystems nach einem der Ansprüche 1 bis 7 oder eines Verfahrens nach einem der Ansprüche 8 bis 10 zur Reduzierung des Auskühlens eines Katalysators (200) in einem Abgasstrom, für einen Verbrennungsmotor (310) eines Hybrid-Fahrzeugs (300). 13. Use of a control system according to one of claims 1 to 7 or a method according to one of claims 8 to 10 for reducing the cooling of a catalyst (200) in an exhaust gas stream, for an internal combustion engine (310) of a hybrid vehicle (300).
PCT/EP2019/076279 2018-10-08 2019-09-27 Optimized recuperation strategy for a hybrid vehicle with electrically heatable catalytic converter WO2020074283A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018217161.0 2018-10-08
DE102018217161.0A DE102018217161A1 (en) 2018-10-08 2018-10-08 Optimized recuperation strategy for a hybrid vehicle with an electrically heated catalytic converter

Publications (1)

Publication Number Publication Date
WO2020074283A1 true WO2020074283A1 (en) 2020-04-16

Family

ID=68138054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/076279 WO2020074283A1 (en) 2018-10-08 2019-09-27 Optimized recuperation strategy for a hybrid vehicle with electrically heatable catalytic converter

Country Status (2)

Country Link
DE (1) DE102018217161A1 (en)
WO (1) WO2020074283A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021209465A1 (en) * 2021-08-30 2023-03-02 Psa Automobiles Sa Heating device for a catalytic converter of a motor vehicle and motor vehicle with such a heating device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903258A2 (en) * 1997-09-17 1999-03-24 Honda Giken Kogyo Kabushiki Kaisha Control system for hybrid vehicle
US20030160455A1 (en) * 2002-02-08 2003-08-28 Haoran Hu Internal combustion engines for hybrid powertrain
US20110100013A1 (en) * 2009-10-30 2011-05-05 Gm Global Technology Operations, Inc. Pumping loss reduction systems and methods
DE102012204478A1 (en) * 2012-03-21 2013-09-26 Zf Friedrichshafen Ag Method for operating exhaust gas after-treatment system in hybrid vehicle to reduce emission of e.g. carbon monoxide in engine gas, involves controlling supply of electrical energy to heating system under consideration of operation ranges

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011085462A1 (en) * 2011-10-28 2013-05-02 Mtu Friedrichshafen Gmbh Method for controlling hybrid drive for rail vehicle, involves operating combustion engine in drag operation on motor-generator and conducting charge air from air pressure side on exhaust side to combustion engine during drag operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903258A2 (en) * 1997-09-17 1999-03-24 Honda Giken Kogyo Kabushiki Kaisha Control system for hybrid vehicle
US20030160455A1 (en) * 2002-02-08 2003-08-28 Haoran Hu Internal combustion engines for hybrid powertrain
US20110100013A1 (en) * 2009-10-30 2011-05-05 Gm Global Technology Operations, Inc. Pumping loss reduction systems and methods
DE102012204478A1 (en) * 2012-03-21 2013-09-26 Zf Friedrichshafen Ag Method for operating exhaust gas after-treatment system in hybrid vehicle to reduce emission of e.g. carbon monoxide in engine gas, involves controlling supply of electrical energy to heating system under consideration of operation ranges

Also Published As

Publication number Publication date
DE102018217161A1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
EP3455114B1 (en) Control method for a hybrid drive, controller, and hybrid drive
DE102017101177B4 (en) Method for regenerating a particle filter and exhaust gas aftertreatment device with a particle filter
DE102018217169B4 (en) Energy-optimized forced regeneration of a particle filter in a hybrid vehicle
DE112008000975T5 (en) Exhaust gas purification device for internal combustion engine
DE102014220860B4 (en) Method for operating a hybrid vehicle and hybrid vehicle
DE102012101190A1 (en) Device for controlling an internal combustion engine
WO2018162269A1 (en) Control unit for adapting the emission of a vehicle
DE102018120402A1 (en) DUAL POWER SUPPLY FOR ECAT AND CONTROL
WO2009112056A1 (en) Cylinder pressure guided regeneration operation and operation type change
EP3056718A1 (en) Method and device for raising and/or lowering an exhaust gas temperature of a combustion engine with an exhaust gas aftertreatment device in an exhaust gas line
DE102018208980A1 (en) Process for heating a catalyst
DE102012007053A1 (en) Method for operating internal combustion engine of motor car, involves determining heating power of the internal combustion engine and on-board network of the motor car
DE102015222684A1 (en) Control unit for an internal combustion engine
DE102019111667A1 (en) EXHAUST GAS RECIRCULATION SYSTEM AND METHOD FOR OPERATING THE SAME
DE102012104155A1 (en) Method for adjusting mass flow of exhaust gas recirculation of internal combustion engine, involves pre-calculating optimum supplied exhaust gas mass flow to engine, in consideration of dead and control time of gas recirculation line
WO2020074283A1 (en) Optimized recuperation strategy for a hybrid vehicle with electrically heatable catalytic converter
DE102016216492A1 (en) Method and device for heating a component of an exhaust gas train of a vehicle
DE102017222221A1 (en) A vehicle system and method for heating a soot filter using the same
WO2020074267A1 (en) Method and device for actuating a heating device in the exhaust section of an internal combustion engine
WO2017108652A1 (en) Method and device for operating a motor vehicle with a hybrid drive
EP4095364B1 (en) Method for operating a combustion engine
DE102016200923A1 (en) Control of exhaust gas temperature by electric turbine
DE102018203859A1 (en) Method, processing and control unit and arrangement for regenerating an LNT catalyst and motor vehicle
DE102018201487A1 (en) Method and arrangement for cooling exhaust aftertreatment devices, motor vehicle and computer program product
WO2010020562A2 (en) Method for the operation of a hybrid drive apparatus, hybrid drive apparatus, and electronic control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19782957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19782957

Country of ref document: EP

Kind code of ref document: A1