WO2020073464A1 - 显示装置的驱动方法和显示装置 - Google Patents

显示装置的驱动方法和显示装置 Download PDF

Info

Publication number
WO2020073464A1
WO2020073464A1 PCT/CN2018/119046 CN2018119046W WO2020073464A1 WO 2020073464 A1 WO2020073464 A1 WO 2020073464A1 CN 2018119046 W CN2018119046 W CN 2018119046W WO 2020073464 A1 WO2020073464 A1 WO 2020073464A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
correction
gamma
preset
Prior art date
Application number
PCT/CN2018/119046
Other languages
English (en)
French (fr)
Inventor
陈伟
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Priority to US16/245,521 priority Critical patent/US10777151B2/en
Publication of WO2020073464A1 publication Critical patent/WO2020073464A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance

Definitions

  • the display device includes a display panel, the display panel includes a plurality of pixels arranged in an array, at least some of the pixels are main pixels, and at least some of the pixels Is a sub-pixel;
  • the driving method of the display device includes the following steps:
  • the corrected brightness of the main pixel is greater than the brightness before correction
  • the corrected brightness of the sub-pixel is less than the brightness before correction
  • the absolute value of the change of the sum of the brightness of the main pixel and the sub-pixel before and after the correction is less Or equal to the preset luminance difference
  • the absolute value of the change in the chromaticity of the pixel before and after the correction is less than or equal to the preset chromaticity difference.
  • the display device includes a display panel, and the display panel includes a plurality of pixels arranged in an array, at least some of the pixels are main pixels, and at least some of the pixels are sub-pixels;
  • the driving method of the display device includes the following steps: At least one of color parameters, image frequency and image isolation, wherein the color parameters include at least one of hue and saturation; according to the color parameters, image frequency and / or image isolation, determine the pixel correction coefficient;
  • the correction coefficient determines the display parameters of the pixels; and, controls the pixels to be displayed according to the display parameters; where the corrected brightness of the main pixels is greater than the brightness before the correction, the corrected brightness of the sub-pixels is less than the brightness before the correction, and the main pixels before and after the correction
  • the absolute value of the change of the luminance sum of the sub-pixels is less than or equal to the preset luminance difference, and the absolute value of the change of the chromaticity of the pixels before and after correction is less than or equal to the preset chromaticity difference.
  • the display parameters of the main pixels and the sub-pixels are controlled so that the main pixels are displayed in a bright state and the sub-pixels are displayed in a dark state while ensuring the display device
  • the overall brightness and overall chromaticity before and after the correction are basically constant, thereby increasing the viewing angle while reducing the penetration rate of the display device, reducing the color shift, and improving the display quality.
  • FIG. 2 is a schematic diagram of the relationship between normalized brightness under a biased viewing angle and normalized brightness under a positive viewing angle in an example
  • FIG. 3 is a schematic diagram of the relationship between normalized brightness under an offset viewing angle and normalized brightness under a positive viewing angle in another example
  • FIG. 6 is a schematic diagram of a pixel structure for calculating image frequency in a specific example
  • FIG. 7 is a schematic diagram of a pixel structure for calculating image isolation in a specific example
  • FIG. 8 is a schematic diagram of the gamma response corresponding to the first gamma value, the second gamma value, and the third gamma value in an embodiment of the driving method of the display device;
  • FIG. 9 is a schematic diagram of the relationship between saturation correction coefficient and saturation in another specific example of the driving method of the display device.
  • FIG. 10 is a schematic diagram of the relationship between the frequency correction coefficient and the image frequency in yet another specific example of the driving method of the display device;
  • FIG. 12 is a schematic structural diagram of an embodiment of a display device according to this application.
  • FIG. 13 is a schematic structural diagram of a correction coefficient module and a display parameter module of the display device in FIG.
  • the directional indication is only used to explain in a specific posture (as shown in the drawings) The relative positional relationship, movements, etc. of the various components below, if the specific posture changes, then the directional indication changes accordingly.
  • first”, “second”, etc. are for descriptive purposes only, and cannot be interpreted as indications or hints Its relative importance or implicitly indicates the number of technical features indicated.
  • the features defined with “first” and “second” may include at least one of the features either explicitly or implicitly.
  • the meaning of “and / or” appearing throughout the text is to include three parallel plans. Taking “A and / or B” as an example, it includes plan A, or plan B, or plans that both A and B satisfy.
  • the normalized brightness under the partial viewing angle and the normalized brightness under the positive viewing angle have a non-linear relationship.
  • the pixel or sub-pixel is split into two parts A and B, and the display of parts A and B is controlled Different brightness.
  • the two dot-dash lines correspond to the normalized brightness of parts A and B, respectively, under partial and positive viewing angles, where the actual brightness of part A is higher and the actual brightness of part B is lower.
  • the effect of the final mixing of parts A and B is shown by the solid line in FIG. 3, which is close to the ideal situation shown by the broken line in FIG.
  • This application proposes a driving method for a display device, which controls the display parameters of the main pixel and the sub-pixel according to at least one of the color parameters of the display screen, the image frequency, and the image isolation, thereby ensuring the transparency of the display device At the same time, the viewing angle of the display device is increased, the color shift is reduced, and the display quality is improved.
  • the display device includes a display panel, the display panel includes a plurality of pixels arranged in an array, at least some of the pixels are main pixels 110, and at least some of the pixels are sub-pixels Pixel 120 (sub pixel); as shown in FIG. 5, the driving method of the display device includes the following steps:
  • Step S100 Acquire at least one of a pixel's color parameter, image frequency and image isolation, wherein the color parameter includes at least one of hue and saturation;
  • Step S200 Determine a pixel correction coefficient according to color parameters, image frequency and / or image isolation;
  • Step S300 Determine the display parameters of the pixel according to the correction coefficient.
  • Step S400 controlling pixels to be displayed according to display parameters
  • the corrected brightness of the main pixel 110 is greater than the brightness before the correction
  • the corrected brightness of the sub-pixel 120 is less than the brightness before the correction
  • the absolute value of the change in the sum of the brightness of the main pixel 110 and the sub-pixel 120 before and after the correction is less than or equal to the preset
  • the absolute value of the change in the chromaticity of the pixel 110 before and after the correction is less than or equal to the preset chromaticity difference.
  • the pixels on the display panel are generally arranged in a rectangular array, in which some pixels are the main pixels 110 and some pixels are the sub-pixels 120.
  • the main pixels 110 and the sub-pixels 120 can be arranged according to a certain rule, as shown in FIG. 4
  • the main pixel 110 and the sub-pixel 120 are arranged in a cross pattern, that is, the pixels adjacent to the top, bottom, left, and right of the main pixel 110 are all sub-pixels 120, and the top, bottom, left, and right phases of the sub-pixel 120
  • the neighboring pixels are all main pixels 110, thereby helping to make the brightness and chromaticity of the entire display panel uniform.
  • the display panel may be divided into different display areas according to the viewing angle, and the main pixel 110 and the sub-pixel 120 are set in the display area corresponding to the off-view angle, and driven according to the driving method described later ; In the display area corresponding to the positive viewing angle, the main pixel and the sub-pixel are no longer distinguished, and are directly driven according to the driving method in the above example.
  • the color parameter of the pixel is determined according to the original picture signal, and the color parameter specifically includes hue and / or saturation.
  • one pixel (main pixel 110 or sub-pixel 120) usually includes three sub-pixels of red sub-pixel, green sub-pixel and blue sub-pixel, so as to realize the display of multiple colors under the principle of spatial mixing, correspondingly,
  • the color mode used in the display device is usually a red-green-blue color mode (RGB color mode).
  • RGB color mode red-green-blue color mode
  • the RGB color mode can be converted into a hue saturation brightness color mode (HSV color mode).
  • H corresponds to hue
  • S corresponds to saturation
  • the specific conversion relationship is as follows:
  • the hue and / or saturation before correction of the main pixel 110 and the sub-pixel 120 can be obtained, respectively.
  • the hue in the color parameters can reflect the category of the displayed object.
  • the user may pay more attention. Therefore, adjusting the display parameters of the pixels at these special object positions can be obtained Better display effect. For example, when determining that the displayed object is a human face based on the hue, since the user usually pays more attention to the human face part in the display screen, if this part is at a position with an off-angle of view, a larger color cast will occur, which will have a greater impact on the display quality. Obvious impact.
  • the correction coefficient can be used to determine a larger correction intensity for the display area with the corresponding hue, and the first display parameter of the main pixel and the second Two display parameters are modified to increase the viewing angle and reduce the color cast.
  • the special object can also be other objects such as plants, animals, etc. You can pre-set different display modes in the display device to give the correspondence between the hue and the correction coefficient in each mode, and the user can choose the mode independently. Or through automatic recognition of the display screen, to achieve automatic mode switching.
  • the saturation in the color parameters reflects the vividness of the colors in the display screen. Generally, the greater the saturation of the pixel, the greater the color cast that may be generated at a large viewing angle. Correspondingly, a larger correction intensity is required to correct the color Partial.
  • the correction coefficient is determined according to the saturation before pixel correction, and the first display parameter of the main pixel and the second display parameter of the sub-pixel are further determined according to the correction coefficient, so that the main pixel 110 is displayed according to the first display parameter, and the sub-pixel 120 Display according to the second display parameter.
  • the image frequency of the pixels reflects the edge characteristics of the display screen.
  • the edge part in the display screen corresponds to a high-frequency image
  • the other parts correspond to low-frequency images.
  • the correction coefficient is determined only based on the color parameters such as hue and saturation of the display screen, it is likely to cause distortion of the display screen. Therefore, as the frequency of the image increases, the correction coefficient should be adjusted accordingly to reduce the correction intensity of the high-frequency image portion or make no additional corrections to the high-frequency image portion to improve the display quality.
  • the image isolation of pixels reflects whether the corresponding area in the display screen is a small object, such as a cursor.
  • the image isolation is high, there is often a large difference in the display parameters between adjacent pixels.
  • the correction coefficient is determined only based on the color parameters such as the hue and saturation of the display screen, it may cause the display screen to distortion. Therefore, as the isolation of the image increases, the correction coefficient should be adjusted accordingly to reduce the correction intensity of the small object image portion or do not make additional corrections to the small object image portion to improve the display quality.
  • the display parameters specifically include the display gray scale of each sub-pixel in the main pixel 110 or the sub-pixel 120.
  • the hue, saturation, brightness, and Chroma and other information In this embodiment, the main pixel 110 is displayed in a bright state, and the sub-pixel 120 is displayed in a dark state, to simulate the curves of parts A and B in FIG. 3, respectively, to increase the viewing angle of the display device and reduce the color cast .
  • the hue of a pixel corresponds to the above-mentioned special object, or when the saturation before pixel correction is large, the brightness difference between the main pixel and the sub-pixel after correction is also large.
  • the absolute value of the change in the sum of the brightness of the main pixel 110 and the sub-pixel 120 before and after the correction is less than or equal to
  • the preset brightness difference is a very small value, that is, the value of the increased brightness of the main pixel after correction is substantially equal to the value of the reduced brightness of the sub-pixel after correction.
  • the absolute value of the change in pixel chromaticity before and after correction is less than or equal to the preset chromaticity difference, where the preset chromaticity difference is a very small value.
  • the display device includes a display panel.
  • the display panel includes a plurality of pixels arranged in an array. At least some of the pixels are main pixels 110 and at least some of the pixels are sub-pixels 120.
  • the driving method of the display device includes the following steps: At least one of pixel color parameters, image frequency, and image isolation.
  • the color parameters include at least one of hue and saturation; according to the color parameters, image frequency, and / or image isolation, determine the pixel correction coefficient; Determine the display parameters of the pixels according to the correction coefficient; control the pixels to display according to the display parameters; wherein, the corrected brightness of the main pixel 110 is greater than the brightness before correction, the corrected brightness of the sub-pixel 120 is less than the brightness before correction, and the main pixel before and after correction
  • the absolute value of the change in the luminance sum of 110 and the sub-pixel 120 is less than or equal to the preset luminance difference, and the absolute value of the change in the chromaticity of the pixel 110 before and after correction is less than or equal to the preset chromaticity difference.
  • the display parameters of the main pixel 110 and the sub-pixel 120 are controlled so that the main pixel 110 is displayed in a bright state and the sub-pixel 120 is displayed in a dark state,
  • the overall brightness and the overall chromaticity of the display device before and after the correction are basically constant, thereby ensuring the penetration rate of the display device, increasing the viewing angle, reducing the color shift, and improving the display quality.
  • the pixel includes at least one sub-pixel, and the step of acquiring the image frequency of the pixel includes:
  • Step S111 Obtain the first gray level pixel 0 of each sub-pixel in the pixel before correction
  • Step S112 Obtain the second grayscale pixel m of each sub-pixel in the neighboring pixels within the first preset distance adjacent to the pixel before correction;
  • Step S114 Normalize the maximum relative gray level among the relative gray levels within the adjacent first preset distance, and record the normalized maximum relative gray level ⁇ 1 max ( ⁇ m ) as the image frequency T of the pixel, Among them, ⁇ 1 is the frequency normalization coefficient.
  • the calculation process of the image frequency T (i, j) of the pixel (i, j) is as follows:
  • the pixel (i, j) has eight adjacent neighbor pixels, and each of the nine pixels in FIG. 6 includes three sub-pixels of red, green, and blue sub-pixels (not shown in the figure). Pixels, in each pixel, the arrangement of sub-pixels is usually the same. Among the eight neighboring pixels of the pixel (i, j), the absolute value of the grayscale difference before correction of each corresponding sub-pixel is:
  • ⁇ 1
  • , ⁇ 2
  • , ⁇ 3
  • , ⁇ 4
  • , ⁇ 5
  • , ⁇ 6
  • , ⁇ 7
  • , ⁇ 8
  • , ⁇ 9
  • i, i + 1, i-1 represents the horizontal coordinate of the pixel
  • j, j + 1, j-1 represents the vertical coordinate of the pixel
  • R, G, B represent the red sub-pixel, green sub-pixel and Blue sub-pixel
  • pixel (i, j, R) is equivalent to pixel 0 (due to the existence of multiple sub-pixels, each seed pixel has a corresponding pixel 0 )
  • ⁇ 1 is the frequency normalization coefficient.
  • other neighbor pixels may also be selected to calculate the image frequency, that is, the first preset distance is changed, which is not repeated here.
  • the pixel includes at least one sub-pixel, and the step of obtaining the image isolation of the pixel includes:
  • Step S121 Obtain the first gray level pixel 0 of each sub-pixel in the pixel before correction
  • Step S122 Obtain the second gray level pixel m of each sub-pixel in the neighboring pixels within the first preset distance adjacent to the pixel before correction;
  • Step S124 the ratio of the relative gray level gray scale ⁇ m and a preset threshold value ⁇ 0, and the cumulative relative neighboring pixel gray scale ⁇ m is greater than or equal to a preset threshold value [Delta] neighboring pixel gray level 0 the number N ( ⁇ n ⁇ 0 );
  • step S125 the normalized number of neighboring pixels ⁇ 2 N ( ⁇ n ⁇ 0 ) is the image isolation of the pixel, where ⁇ 2 is the isolation normalization coefficient.
  • the calculation process of the image isolation U (i, j) of the pixel (i, j) is as follows:
  • the absolute value of the gray level difference between the red sub-pixel in the pixel (i, j) and the red sub-pixel in 20 neighboring pixels, and the gray of the green sub-pixel in the pixel (i, j) and the green sub-pixel in the 20 neighboring pixels gives the relative gray levels ⁇ 1 , ⁇ 2 , ..., ⁇ 60 .
  • step S300 includes:
  • Step S311 Determine the first gamma level of the sub-pixel according to the first gamma value and the gray level of the sub-pixel before correction;
  • Step S312 Determine the second gamma level of the sub-pixel according to the second gamma value and the gray level of the sub-pixel before correction;
  • Step S313 Determine the first data level of the sub-pixel in the main pixel according to the correction coefficient, the first gamma level and the second gamma level;
  • Step S314 Determine the third gamma level of the sub-pixel according to the third gamma value and the gray level of the sub-pixel before correction;
  • Step S315 Determine the second data level of the sub-pixel in the sub-pixel according to the correction coefficient, the first gamma level and the third gamma level;
  • the gamma response corresponding to the mixture of the second gamma value and the third gamma value is equivalent to the gamma response corresponding to the first gamma value, and the second gamma value is not equal to the third gamma value.
  • the sub-pixels are electrically connected to their corresponding data lines, and driven by the data level signal of the data lines, the liquid crystals in the sub-pixels are deflected, causing the light transmittance to change, thereby displaying different gray levels.
  • the data level signal of the driving sub-pixel is directly determined according to the original picture signal, then the data level signal and the gray level of the final display have a nonlinear gamma response. Therefore, in the driving process, it is necessary to perform inverse gamma correction on the original picture signal to obtain a corrected data level signal to compensate for the nonlinear characteristics of the display device and achieve a distortion-free display. As shown in FIG.
  • the corrected gamma value in the inverse gamma correction process is determined according to the gamma value corresponding to the gamma response of the display device. Specifically, the corrected gamma There is usually a reciprocal relationship between the horse value and the gamma value.
  • the gamma value reflects the characteristics of the display device itself.
  • the first gamma value ⁇ 1 corresponds to the normal display state
  • the typical first gamma value ⁇ 1 is 2.2 to 2.5
  • the commonly used first gamma value ⁇ 1 is 2.2
  • the second gamma value ⁇ 2 corresponds to the display of brighter The display state, and the second gamma value ⁇ 2 is less than the first gamma value ⁇ 1
  • the third gamma value ⁇ 3 corresponds to the display state where the display is dark, and the third gamma value ⁇ 3 is greater than the first gamma value ⁇ 1.
  • the first gamma level in the normal display state of the sub-pixel can be calculated; according to the second gamma value and the gray level before correction, it can be calculated The second gamma level in the sub-pixel bright display state; according to the third gamma value and the gray level before correction, the third gamma level in the sub-pixel dark display state can be calculated.
  • the gamma response corresponding to the mixture of the second gamma value ⁇ 2 and the third gamma value ⁇ 3 is equivalent to the gamma response corresponding to the first gamma value ⁇ 1, that is, the second gamma value ⁇ 2
  • the third gamma value ⁇ 3 is symmetrical with respect to the first gamma value ⁇ 1.
  • the difference in display gray levels between the sub-pixels of the main pixel 110 and the sub-pixel 120 is controlled by the correction coefficients to improve the viewing angle of the display device.
  • the deflection angle of the liquid crystal is related to the gray scale before correction. As the deflection angle of the liquid crystal increases, the color shift under the deviated viewing angle becomes more serious.
  • the difference in display gray scale between the sub-pixels 120 that is, increasing the second gamma level at the first data level of the main pixel 110, and the third gamma level at the second data level of the sub-pixel 120 While reducing the weight of the first gamma level in the first data level of the main pixel 110 and the second data level of the sub-pixel 120 to increase the viewing angle.
  • the correction coefficient K increases, the weight of the second gamma level U 2 in the first data level U d1 increases, and the third gamma level U 3 in the second data level U d2 The weight occupied increases, and the weight of the first gamma level U 1 in the first data level U d1 and the second data level U d2 decreases accordingly.
  • the correction coefficient K and each The calculation relationship between levels is used as an example to further elaborate on the technical solution of the present application. If other calculation relationships are used, those skilled in the art can make corresponding adjustments, which will not be repeated here.
  • the isolation correction coefficient determined according to the image isolation of the pixel be K U
  • the frequency correction coefficient determined according to the image frequency of the pixel be K T
  • the tone correction coefficient determined according to the hue of the pixel be K H
  • the hue correction coefficient is determined according to the range of the hue before pixel correction. For special display objects, such as human faces, plants, animals, etc., they often correspond to a certain preset tone range.
  • the above-mentioned special display objects are the part that is most easily noticed by the user in the entire display screen. Therefore, optimizing these display objects helps to improve the user experience.
  • the human face includes a Caucasian face, a yellow face, and a black face, which respectively correspond to different tones.
  • the saturation before the pixel correction increases, the minimum deflection of the liquid crystal in the pixel increases, and the possible color shift also increases. Accordingly, by setting a larger saturation correction factor, Improve the correction intensity of the display parameters of the main pixels and sub-pixels, thereby increasing the viewing angle and reducing the color cast.
  • the correction coefficient of the pixel is reduced, that is, the difference in display brightness between adjacent main pixels and sub-pixels is reduced to
  • the correction coefficient should be reduced accordingly to reduce the display brightness between adjacent main pixels and sub pixels The difference, thereby improving the display quality.
  • the main pixel includes a red subpixel, a green subpixel, and a blue subpixel; step S300 includes:
  • Step S321 Adjust the ratio of the gray scale of the red sub-pixel to the gray scale of the blue sub-pixel according to the chromaticity before pixel correction, so that the absolute value of the change in the chromaticity of the pixel before and after correction is less than or equal to the preset chromaticity difference.
  • RGB color mode what affects the chromaticity is the ratio of red (R) and blue (B). Therefore, when adjusting the chromaticity of the main pixel and the sub-pixel, by adjusting the red sub-pixel and blue sub-pixel The gray scale ratio of pixels is realized.
  • step S300 includes:
  • Step S332 Compare the corrected brightness and maximum brightness of the main pixel
  • Step S334 Update the corrected brightness of the sub-pixel according to the updated brightness of the updated main pixel
  • Step S335 Compare the corrected brightness and minimum brightness of the sub-pixel
  • Step S337 Update the corrected brightness of the main pixel according to the updated brightness of the updated sub-pixel.
  • the brightness of the main pixel after the brightness correction is updated to the maximum brightness, and in order to ensure that the overall brightness of the display device is substantially constant, the corrected brightness of the sub-pixel is updated according to the updated brightness of the main pixel after the update, so that the secondary The value of the reduced brightness of the pixel relative to the brightness before the correction is substantially equal to the value of the updated brightness of the updated main pixel relative to the brightness before the correction.
  • the corrected brightness of the sub-pixels obtained according to theoretical calculations may also be lower than the minimum brightness that the display device can display.
  • the structures of the first gamma unit 231, the second gamma unit 232, and the third gamma unit 233 are similar to obtain the gamma level after gamma correction according to the original signal of the display screen.
  • the correction coefficient module 220 may include a comparison circuit, a calculation circuit, etc. to obtain the corresponding correction coefficient.
  • the selection unit 234 includes a selection circuit to select corresponding gamma levels for the main pixel and the sub-pixel, respectively. In a specific example, when the value of the correction coefficient K is only 0 or 1, the data level unit 234 includes a selection circuit to select the corresponding gamma level as the first data level or the second data level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示装置的驱动方法,包括:获取像素的颜色参数,图像频率和图像孤立度中的至少一种(S100);根据颜色参数,图像频率和/或图像孤立度确定修正系数(S200);根据修正系数确定显示参数(S300);控制像素按照显示参数显示(S400)。

Description

显示装置的驱动方法和显示装置 技术领域
本申请涉及显示技术领域,特别涉及一种显示装置的驱动方法和显示装置。
背景技术
在显示装置,特别是液晶显示装置中,由于受到液晶偏转的限制,在不同视角下,显示装置的穿透率与驱动电压之间的关系将发生变化,导致显示画面的对比度降低,可视角变小,产生色偏。
申请内容
本申请的主要目的是提出一种显示装置的驱动方法,旨在解决上述显示装置中可视角变小,产生色偏的技术问题,改善显示装置的显示质量。
为实现上述目的,本申请提出的显示装置的驱动方法中,显示装置包括显示面板,所述显示面板包括呈阵列排布的多个像素,至少部分所述像素为主像素,至少部分所述像素为次像素;
所述显示装置的驱动方法包括以下步骤:
获取所述像素的颜色参数,图像频率和图像孤立度中的至少一种,其中,所述颜色参数包括色调和饱和度中的至少一种;
根据所述颜色参数,所述图像频率和/或所述图像孤立度,确定所述像素的修正系数;
根据所述修正系数,确定所述像素的显示参数;以及,
控制所述像素按照所述显示参数显示;
其中,所述主像素修正后的亮度大于修正前的亮度,所述次像素修正后的亮度小于修正前的亮度,且修正前后所述主像素与所述次像素的亮度和的变化绝对值小于或等于预设亮度差,修正前后所述像素的色度的变化绝对值小于或等于预设色度差。
本申请技术方案中,显示装置包括显示面板,显示面板包括呈阵列排布的多 个像素,至少部分像素为主像素,至少部分像素为次像素;显示装置的驱动方法包括以下步骤:获取像素的颜色参数,图像频率和图像孤立度中的至少一种,其中,颜色参数包括色调和饱和度中的至少一种;根据颜色参数,图像频率和/或图像孤立度,确定像素的修正系数;根据修正系数,确定像素的显示参数;以及,控制像素按照显示参数显示;其中,主像素修正后的亮度大于修正前的亮度,次像素修正后的亮度小于修正前的亮度,且修正前后主像素与次像素的亮度和的变化绝对值小于或等于预设亮度差,修正前后像素的色度的变化绝对值小于或等于预设色度差。根据显示画面的颜色参数,图像频率和图像孤立度中的至少一种,控制主像素和次像素的显示参数,使主像素以偏亮状态显示,次像素以偏暗状态显示,同时保证显示装置修正前后的整体亮度和整体色度基本恒定,从而在保障了显示装置的穿透率的同时,增大了可视角,减小了色偏,改善了显示质量。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为一范例中显示装置在不同视角下的穿透率-驱动电压示意图;
图2为一范例中偏视角下的归一化亮度-正视角下的归一化亮度关系示意图;
图3为另一范例中偏视角下的归一化亮度-正视角下的归一化亮度关系示意图;
图4为本申请显示装置的驱动方法一实施例中显示面板的结构示意图;
图5为图4中显示装置的驱动方法的流程示意图;
图6为一具体示例中计算图像频率的像素结构示意图;
图7为一具体示例中计算图像孤立度的像素结构示意图;
图8为显示装置的驱动方法一实施例中第一伽马值、第二伽马值和第三伽马值对应的伽马响应示意图;
图9为显示装置的驱动方法另一具体示例中饱和度修正系数-饱和度关系示意图;
图10为显示装置的驱动方法又一具体示例中频率修正系数-图像频率关系示 意图;
图11为显示装置的驱动方法再一具体示例中孤立度修正系数-图像孤立度关系示意图;
图12为本申请显示装置一实施例的结构示意图;
图13为图12中显示装置的修正系数模块和显示参数模块的结构示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
后文中将以液晶显示装置为例,对本申请的技术方案详细阐述。如图1所示,在一范例中,由于受到液晶偏转的限制,在偏视角情况下,显示装置的穿透率-驱动电压曲线相对正视角情况下的穿透率-驱动电压曲线将发生漂移,导致显示画面的对比度降低,可视角变小,同时产生色偏。如图2中和图3中虚线所示,在理想情况下,偏视角下的归一化亮度和正视角下的归一化亮度呈线性关系,然而,如图2中实线所示,在实际情况下,偏视角下的归一化亮度和正视角下的归一化 亮度呈非线性关系。如图3所示,在另一范例中,为了纠正显示装置的可视角变小和出现色偏的现象,将像素或子像素拆分为A和B两部分,并控制A部分和B部分显示不同的亮度。在图3中,两条点划线分别对应A部分和B部分的归一化亮度在偏视角和正视角下的关系,其中,A部分实际显示的亮度偏高,B部分实际显示的亮度偏低,而A部分和B部分最终混合的效果如图3中实线所示,接近于图3中虚线所示的理想情况,从而提高了显示装置的可视角,减小了色偏。然而,这种对像素或子像素本身进行分区的方式,同时会导致显示装置中像素或子像素的穿透率下降,当采用这种方式将显示装置的色度可视角从45°提高至63°时,其穿透率从5.1%降低至3.7%,显示质量变差。
本申请提出一种显示装置的驱动方法,根据显示画面的颜色参数,图像频率和图像孤立度中的至少一种,控制主像素和次像素的显示参数,从而在保障显示装置的穿透率的同时,提高显示装置的可视角,减小色偏,改善显示质量。
在本申请的一实施例中,如图4所示,显示装置包括显示面板,显示面板包括呈阵列排布的多个像素,至少部分像素为主像素110(main pixel),至少部分像素为次像素120(sub pixel);如图5所示,显示装置的驱动方法包括以下步骤:
步骤S100、获取像素的颜色参数,图像频率和图像孤立度中的至少一种,其中,颜色参数包括色调和饱和度中的至少一种;
步骤S200、根据颜色参数,图像频率和/或图像孤立度,确定像素的修正系数;
步骤S300、根据修正系数,确定像素的显示参数;以及,
步骤S400、控制像素按照显示参数显示;
其中,主像素110修正后的亮度大于修正前的亮度,次像素120修正后的亮度小于修正前的亮度,且修正前后主像素110与次像素120的亮度和的变化绝对值小于或等于预设亮度差,修正前后像素110的色度的变化绝对值小于或等于预设色度差。
具体的,显示面板上的像素通常呈矩形阵列状排列,其中,部分像素为主像素110,部分像素为次像素120,主像素110和次像素120可以按照一定的规律排布,在图4所示的示例中,主像素110和次像素120交叉排布,即主像素110的上、下、左、右相邻的像素均为次像素120,次像素120的上、下、左、右相邻的像素均为主像素110,从而有助于使整个显示面板的亮度和色度均匀。当然, 在另一些具体示例中,也可以根据视角将显示面板分为不同的显示区域,在偏视角对应的显示区域中设置主像素110和次像素120,按照后文所述的驱动方法进行驱动;而在正视角对应的显示区域中,不再区分主像素和次像素,直接按照上述范例中的驱动方法驱动。
像素的颜色参数是根据原始的画面信号所确定的,颜色参数具体包括色调和/或饱和度。在显示装置中,一个像素(主像素110或次像素120)通常包括红子像素、绿子像素和蓝子像素共三种子像素,从而在空间混色原理下实现多种色彩的显示,相应的,显示装置中所采用的色彩模式通常为红绿蓝色彩模式(RGB色彩模式)。为了得到像素的色调和/或饱和度,可以将RGB色彩模式转换为色调饱和度亮度色彩模式(HSV色彩模式)。其中,H对应于色调,S对应于饱和度,具体换算关系如下:
当max(R,G,B)=min(R,G,B)时,H=0°;
当R=max(R,G,B)时,H=(((G-B)/(max(R,G,B)-min(R,G,B)))mod6)*60°;
当G=max(R,G,B)时,H=(2+(B-R)/(max(R,G,B)-min(R,G,B)))*60°;
当B=max(R,G,B)时,H=(4+(R-G)/((max(R,G,B)-min(R,G,B)))*60°;
当max(R,G,B)=0时,S=0;
当max(R,G,B)≠0时,S=(max(R,G,B)-min(R,G,B))/max(R,G,B)。
根据上述RGB色彩模式和HSV色彩模式之间的转换公式,可以分别得出主像素110和次像素120修正前的色调和/或饱和度。
颜色参数中的色调可以反映出被显示的对象的类别,对于某些特别的对象,用户可能会给予更多的关注,因此,对这些特别的对象位置上的像素的显示参数进行调节,可以获得更好的显示效果。例如,当根据色调确定被显示的对象为人脸时,由于用户通常会更加关注显示画面中的人脸部分,若这部分处于偏视角位置上,将产生较大的色偏,对显示质量产生较为明显的影响。为了使人脸的显示效果更好,可以通过修正系数为具有相应色调的显示区域确定更大的修正强度,并进一步根据修正系数对该显示区域中主像素的第一显示参数和次像素的第二显示参数进行修正,以增大可视角,减小色偏。当然,特别的对象也可以是植物、动物等其它对象,可以通过在显示装置中预先设置不同的显示模式,给出各个模式下色调和修正系数之间的对应关系,由用户自主进行模式选择,或者通过对显示画面的自动识别,实现模式的自动切换。
颜色参数中的饱和度反映了显示画面中颜色的鲜艳程度,通常,像素的饱和度越大,在大视角下可能产生的色偏也越大,相应的,需要更大的修正强度以纠正色偏。具体的,根据像素修正前的饱和度确定其修正系数,进一步根据修正系数确定主像素的第一显示参数和次像素的第二显示参数,使主像素110按照第一显示参数显示,次像素120按照第二显示参数显示。
像素的图像频率反映了显示画面的边缘特征。通常,显示画面中的边缘部分对应于高频图像,而其它部分对应于低频图像。在高频图像处,相邻像素之间的显示参数往往存在较大的差别,此时,如果仅仅根据显示画面的色调、饱和度等颜色参数确定修正系数时,很可能导致显示画面的失真。因此,随着图像频率的增大,应相应调整修正系数,减弱高频图像部分的修正强度或者对高频图像部分不做额外修正,以提高显示质量。
像素的图像孤立度反映了显示画面中对应的区域是否为小物体,例如光标等。当图像孤立度较高时,相邻像素之间的显示参数往往存在较大的差别,此时,如果仅仅根据显示画面的色调、饱和度等颜色参数确定修正系数时,很可能导致显示画面的失真。因此,随着图像孤立度的增大,应相应调整修正系数,减弱小物体图像部分的修正强度或者对小物体图像部分不做额外修正,以提高显示质量。
其中,显示参数具体包括主像素110或次像素120中各子像素的显示灰阶,根据各子像素的显示灰阶,可以进一步得出主像素110或次像素120的色调、饱和度、亮度、色度等信息。在本实施例中,主像素110以偏亮状态显示,次像素120以偏暗状态显示,以分别模拟图3中的A部分和B部分曲线,增大显示装置的可视角,减小色偏。通常,当像素的色调对应于上述特别的对象时,或者像素修正前的饱和度较大时,修正后主像素和次像素之间的亮度差也较大。同时,为了保持显示画面的整体亮度恒定,当主像素110以第一显示参数、次像素120以第二显示参数显示时,修正前后主像素110与次像素120的亮度和的变化绝对值小于或等于预设亮度差,预设亮度差是一很小的值,即修正后主像素的亮度所增加的值基本等于修正后次像素的亮度所减小的值。为了保持显示画面整体无色偏,修正前后像素色度的变化绝对值小于或等于预设色度差,其中,预设色度差为很小的值。
在本实施例中,显示装置包括显示面板,显示面板包括呈阵列排布的多个像素,至少部分像素为主像素110,至少部分像素为次像素120;显示装置的驱动 方法包括以下步骤:获取像素的颜色参数,图像频率和图像孤立度中的至少一种其中,颜色参数包括色调和饱和度中的至少一种;根据颜色参数,图像频率和/或图像孤立度,确定像素的修正系数;根据修正系数,确定像素的显示参数;控制像素按照显示参数显示;其中,主像素110修正后的亮度大于修正前的亮度,次像素120修正后的亮度小于修正前的亮度,且修正前后主像素110与次像素120的亮度和的变化绝对值小于或等于预设亮度差,修正前后像素110的色度的变化绝对值小于或等于预设色度差。根据显示画面的颜色参数,具体包括色调和饱和度中的至少一种,控制主像素110和次像素120的显示参数,使主像素110以偏亮状态显示,次像素120以偏暗状态显示,同时保证显示装置修正前后的整体亮度和整体色度基本恒定,从而在保障了显示装置的穿透率的同时,增大了可视角,减小了色偏,改善了显示质量。
其中,像素包括至少一个子像素,获取像素的图像频率的步骤包括:
步骤S111、获取像素中各子像素修正前的第一灰阶pixel 0
步骤S112、获取与像素相邻第一预设距离以内的近邻像素中各子像素修正前的第二灰阶pixel m
步骤S113、计算近邻像素中子像素的第二灰阶与像素中对应的子像素的第一灰阶的差的绝对值Δ m=|pixel 0-pixel m|,记为近邻像素的相对灰阶Δ m
步骤S114、归一化相邻第一预设距离以内的相对灰阶中的最大相对灰阶,将归一化后的最大相对灰阶η 1max(Δ m)记为像素的图像频率T,其中,η 1为频率归一化系数。
如图6所示,在一具体示例中,像素(i,j)的图像频率T(i,j)的计算过程如下:
像素(i,j)具有八个相邻的近邻像素,且图6中的九个像素中,每个像素均包括红子像素、绿子像素和蓝子像素(图中未示出)三种子像素,在每个像素中,子像素的排布方式通常也是相同的。像素(i,j)的八个近邻像素中,各对应子像素修正前的灰阶差的绝对值为:
Δ 1=|pixel(i,j,R)-pixel(i-1,j-1,R)|,Δ 2=|pixel(i,j,R)-pixel(i-1,j,R)|,Δ 3=|pixel(i,j,R)-pixel(i-1,j+1,R)|,Δ 4=|pixel(i,j,R)-pixel(i,j-1,R)|,Δ 5=|pixel(i,j,R)-pixel(i,j+1,R)|,Δ 6=|pixel(i,j,R)-pixel(i+1,j-1,R)|,Δ 7=|pixel(i,j,R)-pixel(i+1,j,R)|,Δ 8=|pixel(i,j,R)-pixel(i+1,j+1,R)|,Δ 9=|pixel(i,j,G)-pixel(i-1,j-1,G)|,Δ 10=|pixel(i,j,G)-pixel(i-1,j,G)|, Δ 11=|pixel(i,j,G)-pixel(i-1,j+1,G)|,Δ 12=|pixel(i,j,G)-pixel(i,j-1,G)|,Δ 13=|pixel(i,j,G)-pixel(i,j+1,G)|,Δ 14=|pixel(i,j,G)-pixel(i+1,j-1,G)|,Δ 15=|pixel(i,j,G)-pixel(i+1,j,G)|,Δ 16=|pixel(i,j,G)-pixel(i+1,j+1,G)|,Δ 17=|pixel(i,j,B)-pixel(i-1,j-1,B)|,Δ 18=|pixel(i,j,B)-pixel(i-1,j,B)|,Δ 19=|pixel(i,j,B)-pixel(i-1,j+1,B)|,Δ 20=|pixel(i,j,B)-pixel(i,j-1,B)|,Δ 21=|pixel(i,j,B)-pixel(i,j+1,B)|,Δ 22=|pixel(i,j,B)-pixel(i+1,j-1,B)|,Δ 23=|pixel(i,j,B)-pixel(i+1,j,B)|,Δ 24=|pixel(i,j,B)-pixel(i+1,j+1,B)|;
其中,i,i+1,i-1表示像素的横坐标,j,j+1,j-1表示像素的纵坐标,R、G、B分别表示像素中的红子像素、绿子像素和蓝子像素,pixel(i,j,R),pixel(i,j,G),pixel(i,j,B)相当于pixel 0(由于存在多种子像素,每一种子像素均有对应的pixel 0),其它对应于pixel m,坐标为(i,j)的像素的图像频率T(i,j)满足T(i,j)=η 1max(Δ 12,…,Δ 24),η 1为频率归一化系数。需要注意的是,在其他具体示例中,也可以选择其它的近邻像素实现图像频率的计算,即改变第一预设距离,在此不再赘述。
其中,像素包括至少一个子像素,获取像素的图像孤立度的步骤包括:
步骤S121、获取像素中各子像素修正前的第一灰阶pixel 0
步骤S122、获取与像素相邻第一预设距离以内的近邻像素中各子像素修正前的第二灰阶pixel m
步骤S123、计算近邻像素中子像素的第二灰阶与像素中对应的子像素的第一灰阶的差的绝对值Δ m=|pixel 0-pixel m|,记为近邻像素的相对灰阶Δ m
步骤S124、比对相对灰阶Δ m和预设灰阶阈值Δ 0,并累计近邻像素中相对灰阶Δ m大于或等于预设灰阶阈值Δ 0的近邻像素的数目N(Δ n≥Δ 0);
步骤S125、记归一化后的近邻像素的数目η 2N(Δ n≥Δ 0)为像素的图像孤立度,其中,η 2为孤立度归一化系数。
如图7所示,在一具体示例中,像素(i,j)的图像孤立度U(i,j)的计算过程如下:
在像素(i,j)的左右方向上各选择三个近邻像素,上下方向上各选择两个近邻像素,其中,假设像素(i,j)和其近邻像素均包括红子像素、绿子像素和蓝子像素,且各个像素中子像素的排布方式相同,那么,计算像素(i,j)与其周围的20个近邻像素中,各对应子像素的灰阶差的绝对值,即分别计算像素(i,j)中的红子 像素与20个近邻像素中红子像素的灰阶差的绝对值,像素(i,j)中的绿子像素与20个近邻像素中绿子像素的灰阶差的绝对值,像素(i,j)中的蓝子像素与20个近邻像素中蓝子像素的灰阶差的绝对值,得到相对灰阶Δ 1,Δ 2,…,Δ 60。进一步的,累计20个近邻像素中,与像素(i,j)的相对灰阶大于或等于预设灰阶阈值Δ 0的近邻像素的数目N(Δ n≥Δ 0),则坐标为(i,j)的像素的图像孤立度U(i,j)满足U(i,j)=η 2N(Δ n≥Δ 0),其中,η 2为孤立度归一化系数。需要注意的是,在其他具体示例中,也可以选择其它的近邻像素实现图像孤立度的计算,即改变第一预设距离,在此不再赘述。
进一步的,像素包括至少一个子像素,显示参数包括主像素中子像素的第一数据电平和次像素中子像素的第二数据电平;步骤S300包括:
步骤S311、根据第一伽马值和修正前子像素的灰阶,确定子像素的第一伽马电平;
步骤S312、根据第二伽马值和修正前子像素的灰阶,确定子像素的第二伽马电平;
步骤S313、根据修正系数、第一伽马电平和第二伽马电平,确定主像素中子像素的第一数据电平;
步骤S314、根据第三伽马值和修正前子像素的灰阶,确定子像素的第三伽马电平;
步骤S315、根据修正系数、第一伽马电平和第三伽马电平,确定次像素中子像素的第二数据电平;
其中,第二伽马值和第三伽马值混合对应的伽马响应等效于第一伽马值对应的伽马响应,且第二伽马值不等于第三伽马值。
在显示面板中,子像素与其对应的数据线电连接,在数据线的数据电平信号驱动下,子像素中的液晶发生偏转,导致透光率发生变化,从而显示出不同的灰阶。然而,由于液晶光电特性的影响,若直接根据原始的画面信号确定驱动子像素的数据电平信号,那么数据电平信号和最终显示的灰阶之间具有非线性的伽马响应。因此,在驱动过程中,需要对原始的画面信号进行反伽马校正,得到校正后的数据电平信号,以补偿显示装置的非线性特性,实现无失真的显示。如图8所示,在对原始的画面信号进行反伽马校正时,根据与显示装置的伽马响应对应的伽马值确定反伽马校正过程中的校正伽马值,具体的,校正伽马值和伽马值之 间通常呈倒数关系。伽马值反映了显示装置本身的特性。其中,第一伽马值γ1对应于正常显示状态,典型的第一伽马值γ1为2.2~2.5,常用的第一伽马值γ1为2.2;第二伽马值γ2对应于显示偏亮的显示状态,且第二伽马值γ2小于第一伽马值γ1;第三伽马值γ3对应于显示偏暗的显示状态,且第三伽马值γ3大于第一伽马值γ1。因此,根据第一伽马值和修正前的灰阶,可计算得出子像素正常显示状态下的第一伽马电平;根据第二伽马值和修正前的灰阶,可计算得出子像素偏亮显示状态下的第二伽马电平;根据第三伽马值和修正前的灰阶,可计算得出子像素偏暗显示状态下的第三伽马电平。进一步的,为了避免显示的失真,第二伽马值γ2和第三伽马值γ3混合对应的伽马响应等效于第一伽马值γ1对应的伽马响应,即第二伽马值γ2和第三伽马值γ3相对第一伽马值γ1对称。通过修正系数控制主像素110的子像素和次像素120的子像素之间的显示灰阶的差别,以提高显示装置的可视角。通常,液晶的偏转角度与修正前的灰阶有关,随着液晶偏转角度的增大,在偏视角下的色偏更加严重,此时,为了保障可视角,通过修正系数增大主像素110和次像素120之间的显示灰阶的差别,即增大第二伽马电平在主像素110的第一数据电平,以及第三伽马电平在次像素120的第二数据电平中的权重,同时减小第一伽马电平在主像素110的第一数据电平,以及次像素120的第二数据电平中的权重,以提高可视角。
进一步的,修正系数K、第一伽马电平U 1、第二伽马电平U 2和第一数据电平U d1之间满足U d1=(1-K)*U 1+K*U 2;修正系数K、第一伽马电平U 1、第三伽马电平U 3和第二数据电平U d2之间满足U d2=(1-K)*U 1+K*U 3;其中,修正系数K满足0≤K≤1。随着修正系数K的增大,第二伽马电平U 2在第一数据电平U d1中所占的权重增大,第三伽马电平U 3在第二数据电平U d2中所占的权重增大,第一伽马电平U 1在第一数据电平U d1和第二数据电平U d2中所占的权重相应减小,后文中将以上述修正系数K以及各电平之间的计算关系为例,对本申请的技术方案进一步阐述。若采用其它计算关系,本领域技术人员可作相应的调整,在此不再赘述。
在显示装置中,令根据像素的图像孤立度确定的孤立度修正系数为K U,根据像素的图像频率确定的频率修正系数为K T,根据像素的色调确定的色调修正系数为K H,根据像素的饱和度确定的饱和度修正系数为K S,则像素的修正系数K满足K=K U·K T·K H·K S,且0≤K U≤1,0≤K T≤1,0≤K H≤1, 0≤K S≤1。在一较为简单的示例中,若仅根据颜色参数确定修正系数时,则像素的修正系数K满足K=K H·K S;若仅根据色调确定修正系数时,则K=K H;若仅根据饱和度确定修正系数时,则K=K S
其中,在一具体示例中,当像素修正前的色调处于预设色调范围内时,色调修正系数K H满足K H=K H1;当像素修正前的色调处于预设色调范围外时,色调修正系数K H满足K H=K H2;其中,预设色调范围的最小色调大于8°,预设色调范围的最大色调小于或等于24°,且K H1>K H2。色调修正系数是根据像素修正前的色调所处的范围确定的。对于特别的显示对象,例如人脸、植物、动物等,其往往对应于一定的预设色调范围。而上述特别的显示对象是整个显示画面中用户最容易关注到的部分,因此,对这些显示对象进行优化处理,有助于改善用户体验。以人脸这一显示对象为例,人脸包括白种人脸、黄种人脸和黑种人脸,分别对应于不同的色调。在根据像素修正前的色调确定色调修正参数时,通过比对像素的色调和预存的对应于各人种人脸的色调,即预设色调范围,当像素修正前的色调处于预设色调范围以内时,判定该像素对应显示人脸的至少一部分,通过增大色调修正系数,以改善显示效果。
在另一具体示例中,如图9所示,当像素修正前的饱和度S小于或等于第一预设饱和度S 1时,饱和度修正系数K S满足K S=0;当像素修正前的饱和度S大于第一预设饱和度S 1,且像素修正前的饱和度S小于或等于第二预设饱和度S 2时,饱和度修正系数K S满足K S=a+b*S;当像素修正前的饱和度S大于第二预设饱和度S 2时,饱和度修正系数K S满足K S=1;其中,第一预设饱和度S 1小于或等于第二预设饱和度S 2,第一系数a满足a≤0,第二系数b满足b>0。在显示装置中,随着像素修正前的饱和度的增大,该像素中液晶的最小偏转程度增大,可能产生的色偏也增大,相应的,通过设置更大的饱和度修正系数,提高对主像素和次像素的显示参数的修正强度,从而增大可视角,减小色偏。
在又一具体示例中,如图10所示,当像素的图像频率T小于或等于第一预设频率时,像素的频率修正系数K T满足K T=1;当像素的图像频率T大于第一预设频率,且像素的图像频率T小于或等于第二预设频率时,像素的修正系数K T满足K T=cT+d;当像素的图像频率T大于第二预设频率时,像素的修正系数K T满足K T=0;其中,第一预设频率T 1小于或等于第二预设频率T 1,第三系数系数c满足c<0,第四系数d满足d>0。在显示装置中,随着像素的图像频 率的增大,减小该像素的修正系数,也就是减小相邻的主像素和次像素的显示亮度差,以保障高频图像的正常显示。
在再一具体示例中,如图11所示,当像素的图像孤立度U小于或等于第一预设孤立度时,像素的孤立度修正系数K U满足K U=1;当像素的图像孤立度U大于第一预设孤立度,且像素的图像孤立度小于或等于第二预设孤立度时,像素的孤立度修正系数K U满足K U=eU+f;当像素的图像孤立度U大于第二预设孤立度时,像素的孤立度修正系数K U满足K U=0;其中,第一预设孤立度U 1小于或等于第二预设孤立度U 2,第五系数e满足e<0,第六系数f满足f>0。图像孤立度越大,表明此时显示画面中对应位置显示的为光标等小物体,为了避免图像失真,应相应减小修正系数,以减小相邻的主像素和次像素之间的显示亮度的差,从而改善显示质量。
在本申请的又一实施例中,主像素包括红子像素、绿子像素和蓝子像素;步骤S300包括:
步骤S321、根据像素修正前的色度,调节红子像素的灰阶与蓝子像素的灰阶的比例,以使修正前后像素的色度的变化绝对值小于或等于预设色度差。
在确定各个子像素的显示灰阶时,采用RGB色彩模式比较方便。而在RGB色彩模式中,对色度起影响作用的是其中红(R)和蓝(B)的比例,因此,在调节主像素和次像素的色度时,通过调节红子像素和蓝子像素的灰阶的比例实现。具体的,使修正后的红子像素和蓝子像素的灰阶的比例基本等于修正前的红子像素和蓝子像素的灰阶的比例,即当修正后的色度偏冷时,增大红子像素的灰阶相对蓝子像素的灰阶的比值;当修正后的色度偏暖时,减小红子像素的灰阶相对蓝子像素的灰阶的比值,从而保持整个显示面板的色度恒定。这种调节方式计算简单,且通过限定红子像素的灰阶和蓝子像素的灰阶之间的关系,还可以避免对像素的亮度造成连带影响,从而提高了调节效率。在实际的调节过程中,由于各子像素灰阶的可取值是离散的,因此,选择能够实现最接近比例的灰阶的值,以尽量减小色度的变化。
在本申请的再一实施例中,步骤S300包括:
步骤S331、根据修正系数,确定主像素修正后的亮度和次像素修正后的亮度;
步骤S332、比对主像素修正后的亮度和最大亮度;
步骤S333、当主像素修正后的亮度大于最大亮度时,更新主像素修正后的亮度为最大亮度;
步骤S334、根据更新后的主像素修正后的亮度,更新次像素修正后的亮度;
步骤S335、比对次像素修正后的亮度和最小亮度;
步骤S336、当次像素修正后的亮度小于最小亮度时,更新次像素修正后的亮度为最小亮度;
步骤S337、根据更新后的次像素修正后的亮度,更新主像素修正后的亮度。
在本实施例中,考虑到在获取主像素的第一显示参数和次像素的第二显示参数的过程中,可能出现根据理论计算获取到的主像素的亮度超过了显示装置所能显示的最大亮度,那么,实际上是无法按照理论计算的结果控制主像素的第一显示参数和次像素的第二显示参数的。此时,将主像素修正亮度后的亮度更新为最大亮度,并且,为了保障显示装置的整体亮度基本恒定,根据更新后的主像素修正后的亮度,更新次像素修正后的亮度,以使次像素修正后的亮度相对其修正前的亮度减小的值基本等于更新后的主像素的修正后的亮度相对其修正前的亮度增加的值。同样的,根据理论计算获取到的次像素修正后的亮度也可能低于显示装置所能显示的最小亮度,此时,将次像修正后的亮度更新为显示装置的最小亮度,并且,为了保障显示装置的整体亮度基本不变,根据更新后次像素的修正后的亮度,更新主像素修正后的亮度,以使更新后主像素的修正后亮度相对其修正前亮度增加的值基本等于更新后次像素修正后的亮度相对其修正前的亮度减小的值。其中,步骤S332至步骤S334整体和步骤S335至步骤S337整体之间并无确定的顺序关系,即可以先对主像素进行修正,也可以先对次像素进行修正。
本申请还提出一种显示装置,如图4和图12所示,显示装置包括显示面板和驱动组件,显示面板包括呈阵列排布的多个像素,至少部分像素为主像素110,至少部分像素为次像素120;驱动组件与显示面板电连接,驱动组件包括参数获取模块210,修正系数模块220,显示参数模块230和显示控制模块240,其中,参数获取模块210设置为获取像素的颜色参数,图像频率和/或图像孤立度中的至少一种,其中,颜色参数包括色调和饱和度中的至少一种;修正系数模块220与参数获取模块210电连接,修正系数模块220设置为根据颜色参数,图像频率和/或图像孤立度确定像素的修正系数;显示参数模块230与修正系数模块220电连接,显示参数模块230设置为根据修正系数,确定像素的显示参数;显示控 制模块240与显示参数模块230电连接,显示控制模块240设置为控制像素按照显示参数显示;其中,主像素修正后的亮度大于修正前的亮度,次像素修正后的亮度小于修正前的亮度,且修正前后主像素与次像素的亮度和的变化绝对值小于或等于预设亮度差,修正前后像素的色度的变化绝对值小于或等于预设色度差。
进一步的,如图13所示,像素包括至少一个子像素,第一显示参数包括主像素中子像素的第一数据电平和次像素中子像素的第二数据电平;显示参数模块230包括第一伽马单元231,第二伽马单元232,第三伽马单元233,选择单元234和数据电平单元235,第一伽马单元231设置为根据第一伽马值和修正前子像素的灰阶,确定子像素的第一伽马电平;第二伽马单元232设置为根据第二伽马值和修正前子像素的灰阶,确定子像素的第二伽马电平;第三伽马单元233设置为根据第三伽马值和修正前子像素的灰阶,确定子像素的第三伽马电平;选择单元234与第二伽马单元232和第三伽马单元233电连接,设置为当像素为主像素时,选择获取第二伽马电平,当像素为次像素时,选择获取第三伽马电平;数据电平单元235与修正系数模块220、第一伽马单元231和选择单元234电连接,设置为根据修正系数、第一伽马电平和第二伽马电平,确定主像素中子像素的第一数据电平;或根据修正系数,第一伽马电平和第三伽马电平,确定次像素中子像素的第二数据电平;其中,第二伽马值和第三伽马值混合对应的伽马响应等效于第一伽马值对应的伽马响应,且第二伽马值不等于第三伽马值。第一伽马单元231、第二伽马单元232和第三伽马单元233的架构相类似,以根据显示画面原始的信号得到经过伽马校正后的伽马电平。修正系数模块220可以包括比较电路、计算电路等,以获取对应的修正系数。选择单元234包括选择电路,以分别为主像素和次像素选择对应的伽马电平。在一具体示例中,当修正系数K的取值仅为0或1时,数据电平单元234包括选择电路,以选择对应的伽马电平作为第一数据电平或第二数据电平。显示装置的结构和其中信号的流转可参考本申请显示装置的驱动方法各实施例中的阐述,在此不再赘述。
所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (20)

  1. 一种显示装置的驱动方法,其中,显示装置包括显示面板,所述显示面板包括呈阵列排布的多个像素,至少部分所述像素为主像素,至少部分所述像素为次像素;
    所述显示装置的驱动方法包括以下步骤:
    获取所述像素的颜色参数,图像频率和图像孤立度中的至少一种,其中,所述颜色参数包括色调和饱和度中的至少一种;
    根据所述颜色参数,所述图像频率和/或所述图像孤立度,确定所述像素的修正系数;
    根据所述修正系数,确定所述像素的显示参数;以及,
    控制所述像素按照所述显示参数显示;
    其中,所述主像素修正后的亮度大于修正前的亮度,所述次像素修正后的亮度小于修正前的亮度,且修正前后所述主像素与所述次像素的亮度和的变化绝对值小于或等于预设亮度差,修正前后所述像素的色度的变化绝对值小于或等于预设色度差。
  2. 如权利要求1所述的显示装置的驱动方法,其中,所述像素包括至少一个子像素;
    获取所述像素的图像频率的步骤包括:
    获取所述像素中各子像素修正前的第一灰阶pixel 0
    获取与所述像素相邻第一预设距离以内的近邻像素中各子像素修正前的第二灰阶pixel m
    计算所述近邻像素中子像素的第二灰阶与所述像素中对应的子像素的第一灰阶的差的绝对值Δ m=|pixel 0-pixel m|,记为所述近邻像素的相对灰阶Δ m;以及,
    归一化相邻第一预设距离以内的所述相对灰阶中的最大相对灰阶,将归一化后的所述最大相对灰阶η 1max(Δ m)记为所述像素的图像频率T,其中,η 1为频率归一化系数。
  3. 如权利要求1所述的显示装置的驱动方法,其中,所述像素包括至少一个子像素;
    获取所述像素的图像孤立度的步骤包括:
    获取所述像素中各子像素修正前的第一灰阶pixel 0
    获取与所述像素相邻第一预设距离以内的近邻像素中各子像素修正前的第二灰阶pixel m
    计算所述近邻像素中子像素的第二灰阶与所述像素中对应的子像素的第一灰阶的差的绝对值Δ m=|pixel 0-pixel m|,记为所述近邻像素的相对灰阶Δ m
    比对所述相对灰阶Δ m和预设灰阶阈值Δ 0,并累计所述近邻像素中所述相对灰阶Δ m大于或等于所述预设灰阶阈值Δ 0的近邻像素的数目N(Δ n≥Δ 0);以及,
    记归一化后的近邻像素的数目η 2N(Δ n≥Δ 0)为所述像素的图像孤立度,其中,η 2为孤立度归一化系数。
  4. 如权利要求1所述的显示装置的驱动方法,其中,所述像素包括至少一个子像素,所述显示参数包括所述主像素中子像素的第一数据电平和所述次像素中子像素的第二数据电平;
    根据所述修正系数,确定所述像素的显示参数的步骤包括:
    根据第一伽马值和修正前所述子像素的灰阶,确定所述子像素的第一伽马电平;
    根据第二伽马值和修正前所述子像素的灰阶,确定所述子像素的第二伽马电平;
    根据所述修正系数、所述第一伽马电平和所述第二伽马电平,确定所述主像素中子像素的第一数据电平;
    根据第三伽马值和修正前所述子像素的灰阶,确定所述子像素的第三伽马电平;以及,
    根据所述修正系数、所述第一伽马电平和所述第三伽马电平,确定所述次像素中子像素的第二数据电平;
    其中,所述第二伽马值和所述第三伽马值混合对应的伽马响应等效于所述第一伽马值对应的伽马响应,且所述第二伽马值不等于所述第三伽马值。
  5. 如权利要求4所述的显示装置的驱动方法,其中,所述修正系数K、所述第一伽马电平U 1、所述第二伽马电平U 2和所述第一数据电平U d1之间满足U d1=(1-K)*U 1+K*U 2;所述修正系数K、所述第一伽马电平U 1、所述第三伽马电平U 3和所述第二数据电平U d2之间满足U d2=(1-K)*U 1+K*U 3;其中,所述修正系数K满足0≤K≤1。
  6. 如权利要求5所述的显示装置的驱动方法,其中,所述像素的修正系数K满足K=K H·K S
    其中,K H为根据所述像素的色调确定的色调修正系数,K S为根据所述像素的饱和度确定的饱和度修正系数,且0≤K H≤1,0≤K S≤1。
  7. 如权利要求6所述的显示装置的驱动方法,其中,当所述像素修正前的色调处于预设色调范围内时,所述色调修正系数K H满足K H=K H1;当所述像素修正前的色调处于预设色调范围外时,所述色调修正系数K H满足K H=K H2;其中,所述预设色调范围的最小色调大于8°,所述预设色调范围的最大色调小于或等于24°,且K H1>K H2
  8. 如权利要求6所述的显示装置的驱动方法,其中,当所述像素修正前的饱和度S小于或等于第一预设饱和度S 1时,所述饱和度修正系数K S满足K S=0;当所述像素修正前的饱和度S大于所述第一预设饱和度S 1,且所述像素修正前的饱和度S小于或等于第二预设饱和度S 2时,所述饱和度修正系数K S满足K S=a+b*S;当所述像素修正前的饱和度S大于所述第二预设饱和度S 2时,所述饱和度修正系数K S满足K S=1;其中,所述第一预设饱和度S 1小于或等于所述第二预设饱和度S 2,第一系数a满足a≤0,第二系数b满足b>0。
  9. 如权利要求5所述的显示装置的驱动方法,其中,所述像素的修正系数K满足K=K T·K U·K H·K S
    其中,K T为根据所述像素的图像频率确定的频率修正系数,K U为根据所述像素的图像孤立度确定的孤立度修正系数,K H为根据所述像素的色调确定的色调修正系数,K S为根据所述像素的饱和度确定的饱和度修正系数,且0≤K T≤1,0≤K U≤1,0≤K H≤1,0≤K S≤1。
  10. 如权利要求9所述的显示装置的驱动方法,其中,当所述像素修正前的色调处于预设色调范围内时,所述色调修正系数K H满足K H=K H1;当所述像素修正前的色调处于预设色调范围外时,所述色调修正系数K H满足K H=K H2;其中,所述预设色调范围的最小色调大于8°,所述预设色调范围的最大色调小于或等于24°,且K H1>K H2
  11. 如权利要求9所述的显示装置的驱动方法,其中,当所述像素修正前的饱和度S小于或等于第一预设饱和度S 1时,所述饱和度修正系数K S满足K S=0;当所述像素修正前的饱和度S大于所述第一预设饱和度S 1,且所述像素修正前 的饱和度S小于或等于第二预设饱和度S 2时,所述饱和度修正系数K S满足K S=a+b*S;当所述像素修正前的饱和度S大于所述第二预设饱和度S 2时,所述饱和度修正系数K S满足K S=1;其中,所述第一预设饱和度S 1小于或等于所述第二预设饱和度S 2,第一系数a满足a≤0,第二系数b满足b>0。
  12. 如权利要求9所述的显示装置的驱动方法,其中,获取所述像素的图像频率的步骤包括:
    获取所述像素中各子像素修正前的第一灰阶pixel 0
    获取与所述像素相邻第一预设距离以内的近邻像素中各子像素修正前的第二灰阶pixel m
    计算所述近邻像素中子像素的第二灰阶与所述像素中对应的子像素的第一灰阶的差的绝对值Δ m=|pixel 0-pixel m|,记为所述近邻像素的相对灰阶Δ m;以及,
    归一化相邻第一预设距离以内的所述相对灰阶中的最大相对灰阶,将归一化后的所述最大相对灰阶η 1max(Δ m)记为所述像素的图像频率T,其中,η 1为频率归一化系数。
  13. 如权利要求12所述的显示装置的驱动方法,其中,当所述像素的图像频率T小于或等于第一预设频率时,所述像素的频率修正系数K T满足K T=1;当所述像素的图像频率T大于所述第一预设频率,且所述像素的图像频率T小于或等于第二预设频率时,所述像素的修正系数K T满足K T=cT+d;当所述像素的图像频率T大于所述第二预设频率时,所述像素的修正系数K T满足K T=0;其中,所述第一预设频率小于或等于所述第二预设频率,第三系数c满足c<0,第四系数d满足d>0。
  14. 如权利要求9所述的显示装置的驱动方法,其中,获取所述像素的图像孤立度的步骤包括:
    获取所述像素中各子像素修正前的第一灰阶pixel 0
    获取与所述像素相邻第一预设距离以内的近邻像素中各子像素修正前的第二灰阶pixel m
    计算所述近邻像素中子像素的第二灰阶与所述像素中对应的子像素的第一灰阶的差的绝对值Δ m=|pixel 0-pixel m|,记为所述近邻像素的相对灰阶Δ m
    比对所述相对灰阶Δ m和预设灰阶阈值Δ 0,并累计所述近邻像素中所述相对灰阶Δ m大于或等于所述预设灰阶阈值Δ 0的近邻像素的数目N(Δ n≥Δ 0);以及,
    记归一化后的近邻像素的数目η 2N(Δ n≥Δ 0)为所述像素的图像孤立度,其中,η 2为孤立度归一化系数。
  15. 如权利要求14所述的显示装置的驱动方法,其中,当所述像素的图像孤立度U小于或等于第一预设孤立度时,所述像素的孤立度修正系数K U满足K U=1;当所述像素的图像孤立度U大于所述第一预设孤立度,且所述像素的图像孤立度小于或等于第二预设孤立度时,所述像素的孤立度修正系数K U满足K U=eU+f;当所述像素的图像孤立度U大于所述第二预设孤立度时,所述像素的孤立度修正系数K U满足K U=0;其中,所述第一预设孤立度小于或等于所述第二预设孤立度。
  16. 如权利要求1所述的显示装置的驱动方法,其中,所述像素包括红子像素、绿子像素和蓝子像素;
    根据所述修正系数,确定所述像素的显示参数的步骤包括:
    根据所述像素修正前的色度,调节所述红子像素的灰阶与所述蓝子像素的灰阶的比例,以使修正前后所述像素的色度的变化绝对值小于或等于预设色度差。
  17. 如权利要求1所述的显示装置的驱动方法,其中,根据所述修正系数,确定所述像素的显示参数的步骤包括:
    根据所述修正系数,确定所述主像素修正后的亮度和所述次像素修正后的亮度;
    比对所述主像素修正后的亮度和最大亮度;
    当所述主像素修正后的亮度大于所述最大亮度时,更新所述主像素修正后的亮度为所述最大亮度;
    根据更新后的所述主像素修正后的亮度,更新所述次像素修正后的亮度;
    比对所述次像素修正后的亮度和最小亮度;
    当所述次像素修正后的亮度小于所述最小亮度时,更新所述次像素修正后的亮度为所述最小亮度;以及,
    根据更新后的所述次像素修正后的亮度,更新所述主像素修正后的亮度。
  18. 一种显示装置的驱动方法,其中,显示装置包括显示面板,所述显示面板包括呈阵列排布的多个像素,至少部分所述像素为主像素,至少部分所述像素为次像素;
    所述显示装置的驱动方法包括以下步骤:
    获取所述像素的颜色参数,图像频率和图像孤立度,其中,所述颜色参数包括色调和饱和度中的至少一种;
    根据获取到的所述颜色参数,所述图像频率和所述图像孤立度,确定所述像素的修正系数,其中,所述修正系数K满足0≤K≤1;
    根据所述修正系数,确定所述像素的显示参数;以及,
    控制所述像素按照所述显示参数显示;
    其中,所述主像素修正后的亮度大于修正前的亮度,所述次像素修正后的亮度小于修正前的亮度,且修正前后所述主像素与所述次像素的亮度和的变化绝对值小于或等于预设亮度差,修正前后所述像素的色度的变化绝对值小于或等于预设色度差。
  19. 一种显示装置,其中,所述显示装置包括:
    显示面板,所述显示面板包括呈阵列排布的多个像素,至少部分所述像素为主像素,至少部分所述像素为次像素;
    驱动组件,所述驱动组件与所述显示面板电连接,所述驱动组件包括参数获取模块,修正系数模块,显示参数模块和显示控制模块,其中,所述参数获取模块设置为获取所述像素的颜色参数,所述图像频率和所述图像孤立度中的至少一种,所述颜色参数包括色调和饱和度中的至少一种;所述修正系数模块与所述参数获取模块电连接,所述修正系数模块设置为根据所述颜色参数、所述图像频率和/或所述图像孤立度,确定所述像素的修正系数;所述显示参数模块与所述修正系数模块电连接,所述显示参数模块设置为根据所述修正系数,确定所述像素的显示参数;所述显示控制模块与所述显示参数模块电连接,所述显示控制模块设置为控制所述像素按照所述显示参数显示;
    其中,所述主像素修正后的亮度大于修正前的亮度,所述次像素修正后的亮度小于修正前的亮度,且修正前后所述主像素与所述次像素的亮度和的变化绝对值小于或等于预设亮度差,修正前后所述像素的色度的变化绝对值小于或等于预设色度差。
  20. 如权利要求19所述的显示装置,其中,所述像素包括至少一个子像素,所述第一显示参数包括所述主像素中子像素的第一数据电平和所述次像素中子像素的第二数据电平;
    所述显示参数模块包括:
    第一伽马单元,设置为根据第一伽马值和修正前所述子像素的灰阶,确定所述子像素的第一伽马电平;
    第二伽马单元,设置为根据第二伽马值和修正前所述子像素的灰阶,确定所述子像素的第二伽马电平;
    第三伽马单元,设置为根据第三伽马值和修正前所述子像素的灰阶,确定所述子像素的第三伽马电平;
    选择单元,与所述第二伽马单元和所述第三伽马单元电连接,设置为当像素为主像素时,选择获取所述第二伽马电平,当像素为次像素时,选择获取所述第三伽马电平;以及,
    数据电平单元,与所述修正系数模块、所述第一伽马单元和所述选择单元电连接,设置为根据所述修正系数、所述第一伽马电平和所述第二伽马电平,确定所述主像素中子像素的第一数据电平;或根据所述修正系数,所述第一伽马电平和所述第三伽马电平,确定所述次像素中子像素的第二数据电平;
    其中,所述第二伽马值和所述第三伽马值混合对应的伽马响应等效于所述第一伽马值对应的伽马响应,且所述第二伽马值不等于所述第三伽马值。
PCT/CN2018/119046 2018-10-10 2018-12-04 显示装置的驱动方法和显示装置 WO2020073464A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/245,521 US10777151B2 (en) 2018-10-10 2019-01-11 Driving method of display device and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811182963.2 2018-10-10
CN201811182963.2A CN109166550B (zh) 2018-10-10 2018-10-10 显示装置的驱动方法和显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/245,521 Continuation US10777151B2 (en) 2018-10-10 2019-01-11 Driving method of display device and display device

Publications (1)

Publication Number Publication Date
WO2020073464A1 true WO2020073464A1 (zh) 2020-04-16

Family

ID=64877777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119046 WO2020073464A1 (zh) 2018-10-10 2018-12-04 显示装置的驱动方法和显示装置

Country Status (2)

Country Link
CN (1) CN109166550B (zh)
WO (1) WO2020073464A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710311A (zh) * 2020-07-01 2020-09-25 深圳市华星光电半导体显示技术有限公司 显示面板的调节方法及其装置
US11308288B2 (en) 2003-02-21 2022-04-19 Motionpoint Corporation Automation tool for web site content language translation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111862877B (zh) * 2020-07-28 2021-06-04 惠科股份有限公司 广视角的调整方法、显示面板和计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080068314A1 (en) * 2006-09-18 2008-03-20 Ming-Cheng Hsieh Liquid crystal displays having wide viewing angles
CN102254535A (zh) * 2011-08-15 2011-11-23 深圳市华星光电技术有限公司 像素驱动方法及系统
CN104166258A (zh) * 2014-08-18 2014-11-26 深圳市华星光电技术有限公司 液晶面板的灰阶值设定方法以及液晶显示器
CN107068102A (zh) * 2017-05-22 2017-08-18 惠科股份有限公司 一种图像处理方法、图像处理装置及显示装置
CN107230446A (zh) * 2017-07-05 2017-10-03 深圳市华星光电技术有限公司 显示装置的驱动方法及系统
CN107529049A (zh) * 2017-08-28 2017-12-29 惠科股份有限公司 显示装置图像处理方法、图像处理结构及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101399017B1 (ko) * 2006-11-15 2014-05-28 삼성디스플레이 주식회사 표시장치 및 이의 구동방법
KR20080068477A (ko) * 2007-01-19 2008-07-23 삼성전자주식회사 색상 수정 방법 및 장치
CN102054420B (zh) * 2009-10-30 2013-06-19 群康科技(深圳)有限公司 伽马校正电路、伽马校正方法及相关显示器
CN104299592B (zh) * 2014-11-07 2016-11-23 深圳市华星光电技术有限公司 液晶面板及其驱动方法
CN107863085B (zh) * 2017-12-20 2019-08-06 惠科股份有限公司 一种显示装置的驱动方法及显示装置
CN107993624B (zh) * 2017-12-21 2019-12-03 惠科股份有限公司 显示装置的驱动方法、驱动装置及显示装置
CN107967899B (zh) * 2017-12-21 2020-03-27 惠科股份有限公司 显示装置的驱动方法、驱动装置及显示装置
CN108133691B (zh) * 2017-12-21 2020-08-11 惠科股份有限公司 显示装置的驱动方法、驱动装置及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080068314A1 (en) * 2006-09-18 2008-03-20 Ming-Cheng Hsieh Liquid crystal displays having wide viewing angles
CN102254535A (zh) * 2011-08-15 2011-11-23 深圳市华星光电技术有限公司 像素驱动方法及系统
CN104166258A (zh) * 2014-08-18 2014-11-26 深圳市华星光电技术有限公司 液晶面板的灰阶值设定方法以及液晶显示器
CN107068102A (zh) * 2017-05-22 2017-08-18 惠科股份有限公司 一种图像处理方法、图像处理装置及显示装置
CN107230446A (zh) * 2017-07-05 2017-10-03 深圳市华星光电技术有限公司 显示装置的驱动方法及系统
CN107529049A (zh) * 2017-08-28 2017-12-29 惠科股份有限公司 显示装置图像处理方法、图像处理结构及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11308288B2 (en) 2003-02-21 2022-04-19 Motionpoint Corporation Automation tool for web site content language translation
CN111710311A (zh) * 2020-07-01 2020-09-25 深圳市华星光电半导体显示技术有限公司 显示面板的调节方法及其装置

Also Published As

Publication number Publication date
CN109166550A (zh) 2019-01-08
CN109166550B (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
EP2367348B1 (en) Method for generating a lookup table for color correction for an image display device
US7248271B2 (en) Sub-pixel rendering system and method for improved display viewing angles
US10777151B2 (en) Driving method of display device and display device
TWI388220B (zh) 可降低色偏之影像處理方法
US9196204B2 (en) Image processing apparatus and image processing method
WO2020073464A1 (zh) 显示装置的驱动方法和显示装置
WO2020077900A1 (zh) 驱动电压补偿方法、灰阶补偿方法以及显示装置
WO2019041397A1 (zh) 显示装置图像处理方法、图像处理结构及显示装置
KR101319321B1 (ko) 액정 표시장치의 구동장치와 그 구동방법
CN109686323B (zh) 一种显示装置及其驱动方法以及电子设备
CN102394040A (zh) 色彩调整装置、色彩调整方法以及显示器
CN109246405B (zh) 影像色调的均匀度的调整方法及其系统
TWI588814B (zh) 像素驅動方法
WO2018040227A1 (zh) 显示装置及其亮度调整方法
CN105282531A (zh) 控制低灰阶白平衡的方法及装置
US20190206344A1 (en) Liquid crystal display panel driving method, driving device and display apparatus
WO2016131216A1 (zh) 校正液晶面板的子像素的成像时灰阶的方法
CN109166549B (zh) 显示装置的驱动方法和显示装置
CN109192166B (zh) 显示装置的驱动方法和显示装置
KR20180062123A (ko) 표시장치 및 그의 영상 처리방법
KR20180063611A (ko) 표시 장치 및 이의 영상 데이터 처리 방법
US20130155120A1 (en) Color Adjustment Device, Method for Adjusting Color, and Display for the Same
US20120133681A1 (en) Gamma correction method
US20240087495A1 (en) Compensation method and compensation apparatus for display panel, and display apparatus and storage medium
KR20070000029A (ko) 반투과형 액정 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18936437

Country of ref document: EP

Kind code of ref document: A1