WO2020073298A1 - Niobium and vanadium-doped titanium tantalate-based photocatalyst, preparation method therefor and use thereof - Google Patents

Niobium and vanadium-doped titanium tantalate-based photocatalyst, preparation method therefor and use thereof Download PDF

Info

Publication number
WO2020073298A1
WO2020073298A1 PCT/CN2018/109921 CN2018109921W WO2020073298A1 WO 2020073298 A1 WO2020073298 A1 WO 2020073298A1 CN 2018109921 W CN2018109921 W CN 2018109921W WO 2020073298 A1 WO2020073298 A1 WO 2020073298A1
Authority
WO
WIPO (PCT)
Prior art keywords
niobium
vanadium
ion
compound containing
doped titanium
Prior art date
Application number
PCT/CN2018/109921
Other languages
French (fr)
Chinese (zh)
Inventor
黄彦林
米龙庆
刘宣宣
魏东磊
Original Assignee
南通纺织丝绸产业技术研究院
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通纺织丝绸产业技术研究院, 苏州大学 filed Critical 南通纺织丝绸产业技术研究院
Priority to PCT/CN2018/109921 priority Critical patent/WO2020073298A1/en
Publication of WO2020073298A1 publication Critical patent/WO2020073298A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light

Abstract

A niobium and vanadium-doped titanium tantalate-based photocatalyst, a preparation method therefor and a use thereof, which belong to the field of inorganic photocatalytic materials. According to the stoichiometric ratio of TiTa18-x-yNbxVyO47, x and y being respectively the molar weight of Ta doped and substituted with niobium Nb5+ ions and Ta doped and substituted with vanadium V5+ ions, x being 0.1-5.4, and y being 0.1-2, raw materials containing Ti4+, Nb5+, Ta5+ and V5+ ions are weighed and taken; an appropriate amount of a compound containing Li+ ions is weighed and taken as a sintering aid; and a stepwise sintering process is adopted, so as to obtain a pure-phase niobium and vanadium-doped titanium tantalate-based photocatalyst. The titanium tantalate photocatalyst obtained by doping with niobium Nb and vanadium V enhances the absorption in the visible light range; in addition, lattice disturbance greatly improves the separation efficiency of photoinduced charges, and enhances the photocatalytic ability. The photocatalyst has a simple preparation process, low costs and good photocatalytic material stability, and is able to degrade organic pollutants under the irradiation of ultraviolet light and near ultraviolet light, and particularly, is able to degrade organic pollutants in water, facilitating environmental protection.

Description

一种掺杂铌、 钒的钽酸钛基光催化剂、 制备方法及应用 技术领域  Titanium tantalate-based photocatalyst doped with niobium and vanadium, preparation method and application
[0001] 本发明涉及一种无机光催化剂及其制备方法, 特别涉及一种掺杂铌、 钒的钽酸 钛基光催化剂、 制备方法及其应用, 属于无机光催化材料领域。  [0001] The present invention relates to an inorganic photocatalyst and a preparation method thereof, in particular to a niobium and vanadium-doped titanium tantalate-based photocatalyst, preparation method and application thereof, and belongs to the field of inorganic photocatalytic materials.
背景技术  Background technique
[0002] 当今世界工业的发展带来了严重的环境污染和能源危机, 并严重影响着可持续 发展和人们生活质量的提高。 例如, 近年来, 染料污水问题非常突出, 已经成 水体污染的重大忧患。 如何在绿色环保的条件下高效无残留的去除水中染料, 成为了研究者们解决水体污染的关键技术, 其中, 利用光催化技术解决染料引 起的水体污染是其中具有希望的技术方案之一。  [0002] The development of industry in the world today brings serious environmental pollution and energy crisis, and seriously affects sustainable development and the improvement of people's quality of life. For example, in recent years, the problem of dye wastewater has become very prominent and has become a major concern for water pollution. How to remove dyes in water efficiently and without residues under green and environmental conditions has become a key technology for researchers to solve water pollution. Among them, using photocatalytic technology to solve water pollution caused by dyes is one of the promising technical solutions.
[0003] 光催化指的是一种或者几种半导体材料, 在一定能量光子的照射下, 电子吸收 一定的能量后, 便会从价带跃迁, 吸收能量到导带, 而原本在价带电子存在的 地方就会出现一个带正电的空穴, 也就是说, 光的照射产生光生电子和光生空 穴。 这种光生电荷具有较强的还原性或者氧化性, 因此能使半导体上的物质发 生氧化还原反应, 从而将光能转换为化学能。 这些半导体物质被称为光催化剂 。 因此, 光生电子和空穴的分离效率在光催化中起至关重要的作用, 为提高电 荷的分离效率, 研究人员实施了一些方法, 例如杂质掺杂、 表面处理、 异质结 等; 在晶格中实现多元素掺杂, 可以产生结构的畸变或者缺陷, 是改善光吸收 、 提高光生电子和空穴分离能力的有效手段。  [0003] Photocatalysis refers to one or several semiconductor materials. Under the irradiation of a certain energy photon, electrons absorb a certain amount of energy, then they will jump from the valence band and absorb energy to the conduction band, which was originally in the valence band. A positively charged hole will appear where it exists, that is, light irradiation generates photo-generated electrons and photo-generated holes. This photo-generated charge has a strong reducing or oxidizing property, so that the substances on the semiconductor can undergo an oxidation-reduction reaction, thereby converting light energy into chemical energy. These semiconductor substances are called photocatalysts. Therefore, the separation efficiency of photogenerated electrons and holes plays a crucial role in photocatalysis. To improve the separation efficiency of charges, the researchers implemented some methods, such as impurity doping, surface treatment, heterojunction, etc .; Multi-element doping in the lattice can produce structural distortions or defects, and is an effective means to improve light absorption and enhance the ability to separate photogenerated electrons and holes.
发明概述  Summary of the invention
技术问题  technical problem
问题的解决方案  Solution to the problem
技术解决方案  Technical solution
[0004] 本发明的目的在于提供一种制备方法简单、 光催化效率高, 掺杂铌、 钒的钽酸 钛基新型光催化剂、 制备方法及应用。  [0004] The object of the present invention is to provide a simple preparation method, high photocatalytic efficiency, niobium, vanadium doped titanium tantalate-based new photocatalyst, preparation method and application.
[0005] 实现本发明目的的技术方案是提供一种掺杂铌、 钒的钽酸钛基光催化剂, 它的 化学式为 TiTa ^NUO ^ 其中, JC、 y分别是铌 Nb 和钒 V 5+ 离子掺杂取代 Ta的摩尔量, 掺杂的范围 JC为 0.1〜 5.4, 为 0.1〜 2。 [0005] The technical solution to achieve the object of the present invention is to provide a niobium and vanadium-doped titanium tantalate-based photocatalyst, which The chemical formula is TiTa ^ NUO ^ where JC and y are the molar amounts of Ta replaced by niobium Nb and vanadium V 5+ ions, respectively, and the doping range JC is 0.1 to 5.4 and 0.1 to 2.
[0006] 本发明技术方案还包括一种掺杂铌、 钒的钽酸钛基光催化剂的制备方法, 采用 固相合成法, 包括如下步骤:  [0006] The technical solution of the present invention also includes a method for preparing a niobium and vanadium-doped titanium tantalate-based photocatalyst, using a solid-phase synthesis method, including the following steps:
[0007] ( 1) 按化学式 TiTa uNb ^ yCU中各元素的化学计量比, 其中, JC = 0.1〜 5.4[0007] (1) According to the stoichiometric ratio of each element in the chemical formula TiTa uNb ^ y CU, where, JC = 0.1 ~ 5.4
Figure imgf000004_0001
分别称取含有钛离子 Ti 4+的化合物、 含有铌离子 Nb 5+的化合物、 含有钽离子 Ta 5+的化合物、 含有钒 V 5+离子的化合物; 称取适量含有 Li +离子的 化合物为烧结助剂, 研磨并混合均匀, 得到混合物;
,
Figure imgf000004_0001
Weigh the compound containing titanium ion Ti 4+ , the compound containing niobium ion Nb 5+ , the compound containing tantalum ion Ta 5+ , the compound containing vanadium V 5+ ion; the compound containing Li + ion in proper amount is called sintering Auxiliaries, grind and mix well to obtain a mixture;
[0008] (2) 将步骤 ( 1) 得到的混合物在空气气氛下预烧结, 烧结温度为 400〜 750°C [0008] (2) The mixture obtained in step (1) is pre-sintered in an air atmosphere at a sintering temperature of 400 to 750 ° C
, 烧结时间为 1〜 15小时, 自然冷却后, 研磨并混合均匀, 得到混合物; , The sintering time is 1 ~ 15 hours, after natural cooling, grinding and mixing to obtain a mixture;
[0009] (3) 将步骤 (2) 得到的混合物在空气气氛中煅烧, 煅烧温度为 1000〜 1100°C [0009] (3) The mixture obtained in step (2) is calcined in an air atmosphere, the calcination temperature is 1000 ~ 1100 ° C
, 煅烧时间为 1〜 15小时, 自然冷却后, 研磨并混合均匀, 得到混合物; The calcination time is 1 ~ 15 hours, after natural cooling, grinding and mixing to obtain a mixture;
[0010] (4) 将步骤 (3) 得到的混合物在空气气氛中煅烧, 煅烧温度为 950〜 1250°C [0010] (4) The mixture obtained in step (3) is calcined in an air atmosphere at a calcination temperature of 950 to 1250 ° C
, 煅烧时间为 1〜 15小时, 冷却至室温, 研磨均匀后得到粉末状铌 Nb和钒 V掺杂 钽酸钛光催化剂。 The calcination time is 1 to 15 hours, cooled to room temperature, and ground uniformly to obtain powdered niobium Nb and vanadium V-doped titanium tantalate photocatalyst.
[0011] 本发明技术方案中所述的含有钛离子 Ti 4+的化合物为二氧化钛 Ti0 2; 所述的含 有铌离子 Nb 5+的化合物为五氧化二铌 Nb 20 5, 五氯化铌 NbCl 5中的一种; 所述的 含有钽离子 Ta 5+的化合物为五氧化二钽 Ta 20 5, 五氯化钽 TaCl 5中的一种; 所述 含有钒离子 V 5+的化合物为五氧化二钒 20 5、 钒酸铵 NH 4VO 3中的一种。 [0011] The compound containing titanium ion Ti 4+ in the technical solution of the present invention is titanium dioxide Ti0 2; the compound containing niobium ion Nb 5+ is niobium pentoxide Nb 2 0 5 , niobium pentachloride NbCl One of 5 ; the compound containing tantalum ion Ta 5+ is one of tantalum pentoxide Ta 2 0 5 and tantalum pentachloride TaCl 5 ; the compound containing vanadium ion V 5+ is five One of vanadium oxide 2 0 5 and ammonium vanadate NH 4 VO 3 .
[0012] 所述的含有 Li +离子的化合物为氧化锂 Li 20, 碳酸锂 Li 2CO 3或1^中的一种; 按质量百分比, 烧结助剂为 TiTa mvNb xV v0 47 i〜5%, 其中, JC = 0.1〜 5.4,[0012] The compound containing Li + ions is one of lithium oxide Li 2 0, lithium carbonate Li 2 CO 3 or 1 ^; according to the mass percentage, the sintering aid is TiTa m v Nb x V v 0 47 i ~ 5%, where, JC = 0.1 ~ 5.4,
: V = 0.1 2 : V = 0.1 2
[0013] 本发明步骤 (3) 的烧结工艺的一个优选方案是: 烧结温度为 750〜 950°C, 烧 结时间为 5〜 8小时。  [0013] A preferred solution of the sintering process of step (3) of the present invention is: the sintering temperature is 750 ~ 950 ° C, and the sintering time is 5 ~ 8 hours.
[0014] 本发明所提供的一种掺杂铌、 钒的钽酸钛基光催化剂的应用, 在紫外光或近紫 外光照射下, 用于降解有机污染物, 尤其是用于降解水中的有机污染物。  [0014] The application of a niobium and vanadium-doped titanium tantalate-based photocatalyst provided by the present invention is used to degrade organic pollutants under ultraviolet or near ultraviolet light irradiation, especially to degrade organic matter in water Pollutants.
发明的有益效果  Beneficial effects of invention
有益效果 [0015] 与现有技术方案相比, 本发明技术方案的显著优点在于: Beneficial effect [0015] Compared with the existing technical solutions, the significant advantages of the technical solutions of the present invention are:
[0016] 1.本发明提供的铌 Nb和钒 V掺杂钽酸钛基光催化剂, 其基质是由 Ta0 6A面体构 建而成的基本框架, 这种过渡金属多面体具有天然的极化效应, 本发明在晶格 之中实现了多元素的掺杂, 八面体受到了强烈的扰动, 因此, 能产生很强的静 电场, 在晶格之中产生定向的极化, 有利于光生电荷的分离和传输, 增加了载 流子的寿命, 提高光催化的效率; 同时, 多种掺杂能很好地改善光吸收, 实现 了在可见光的吸收, 具备了优异的光催化性能。 [0016] 1. The niobium Nb and vanadium V-doped titanium tantalate-based photocatalyst provided by the present invention, the matrix of which is a basic framework constructed from a Ta0 6 A polyhedron, this transition metal polyhedron has a natural polarization effect, The invention realizes the doping of multiple elements in the crystal lattice, the octahedron is strongly disturbed, therefore, it can generate a strong electrostatic field, and generate directional polarization in the crystal lattice, which is conducive to the separation of photogenerated charges And transmission, increase the life of the carrier, improve the efficiency of photocatalysis; At the same time, a variety of doping can improve light absorption, achieve absorption of visible light, and has excellent photocatalytic performance.
[0017] 2.本发明提供的掺杂铌、 钒的钽酸钛基光催化剂, 制备工艺简单, 生产成本低 [0017] 2. The niobium and vanadium doped titanium tantalate-based photocatalyst provided by the present invention has simple preparation process and low production cost
; 作为光催化材料, 能在紫外光或近紫外光照射下降解有机污染物, 尤其适用 于降解水中有机污染物, 有利于保护环境。 As a photocatalytic material, it can degrade organic pollutants under ultraviolet or near-ultraviolet light. It is especially suitable for degrading organic pollutants in water and is conducive to environmental protection.
对附图的简要说明  Brief description of the drawings
附图说明  BRIEF DESCRIPTION
[0018] 图 1是按本发明实施例 1技术方案所制备样品 TiTa„.7Nb 4.5V i.80 47的 射线粉末 衍射图谱; [0018] FIG. 1 is a ray powder diffraction pattern of a sample TiTa „ .7 Nb 4.5 V i .8 0 47 prepared according to the technical scheme of Example 1 of the present invention;
[0019] 图 2是按本发明实施例 1技术方案所制备样品 TiTa„.7Nb 4.5V i.80 47的扫描电镜图 谱; [0019] FIG. 2 is a scanning electron microscope pattern of the sample TiTa „ .7 Nb 4.5 V i .8 0 47 prepared according to the technical solution of Example 1 of the present invention;
[0020] 图 3是按本发明实施例 1技术方案所制备样品 TiTa„.7Nb 4.5V i.80 47的紫外可见吸 收光谱; [0020] FIG. 3 is an ultraviolet-visible absorption spectrum of a sample TiTa prepared in accordance with the technical solution of Example 1 of the present invention. .7 Nb 4.5 V i .8 0 47 ;
[0021] 图 4是按本发明实施例 1技术方案所制备样品对有机染料亚甲基蓝的降解曲; [0021] FIG. 4 is the degradation curve of the organic dye methylene blue prepared by the sample prepared according to the technical solution of Example 1 of the present invention;
[0022] 图 5是按本发明实施例 4技术方案所制备样品 TiTa 12.5Nb 4V 1.5O 47的扫描电镜图谱 [0022] FIG. 5 is a scanning electron micrograph of the sample TiTa 12.5 Nb 4 V 1.5 O 47 prepared according to the technical solution of Example 4 of the present invention
[0023] 图 6是按本发明实施例 4技术方案所制备样品 TiTa 12.5Nb 4V 1.5O 47的紫外可见吸收 光谱; [0023] FIG. 6 is an ultraviolet-visible absorption spectrum of a sample TiTa 12.5 Nb 4 V 1.5 O 47 prepared according to the technical solution of Example 4 of the present invention;
[0024] 图 7是按本发明实施例 4技术方案所制备样品 TiTa 12.5Nb 4V 1.5O 47对有机染料亚甲 基蓝的降解曲线。 [0024] FIG. 7 is a degradation curve of the organic dye methylene blue of the sample TiTa 12.5 Nb 4 V 1.5 O 47 prepared according to the technical scheme of Example 4 of the present invention.
发明实施例  Invention Example
本发明的实施方式  Embodiments of the invention
[0025] 下面结合附图和实施例对本发明技术方案作进一步的阐述。 [0026] 实施例 1 : [0025] The technical solution of the present invention will be further described below in conjunction with the accompanying drawings and embodiments. [0026] Embodiment 1:
[0027] 按化学式 TiTa„.7Nb 45V uO 47中各元素的化学计量比, 分别称取 0.2克 TiO 2 [0027] According to the stoichiometric ratio of each element in the chemical formula TiTa, .7 Nb 45 V uO 47 , weigh 0.2 g TiO 2
, 6.486克 Ta 20 5, 1.49克 Nb 20 5, 0.526克 NH 4VO 3 ; 称取 0.348克 Li 20作为烧结 助剂, 研磨并混合均匀。 , 6.486 g Ta 2 0 5 , 1.49 g Nb 2 0 5 , 0.526 g NH 4 VO 3; Weigh 0.348 g Li 2 0 as a sintering aid, grind and mix well.
[0028] 将得到的混合物在空气气氛下第一次预烧结, 烧结温度为 650°C, 烧结时间为 6 小时, 自然冷却, 研磨并混合均匀。  [0028] The obtained mixture was pre-sintered for the first time in an air atmosphere, with a sintering temperature of 650 ° C and a sintering time of 6 hours, naturally cooled, ground and mixed evenly.
[0029] 将一次预烧结后得到的混合物继续在空气气氛中进行第二次煅烧, 煅烧温度为 850°C, 煅烧时间为 5小时, 自然冷却, 研磨并混合均匀。  [0029] The mixture obtained after the first pre-sintering continues to be calcined a second time in an air atmosphere, the calcination temperature is 850 ° C., the calcination time is 5 hours, natural cooling, grinding and mixing are uniform.
[0030] 将经第二次煅烧后得到的混合物在空气气氛中进行第三次煅烧, 煅烧温度为 11 00°C, 煅烧时间为 8小时, 冷却至室温, 得到粉末状铌 Nb和钒 V掺杂钽酸钛光催 化剂。  [0030] The mixture obtained after the second calcination was calcined a third time in an air atmosphere, the calcination temperature was 1 100 ° C, the calcination time was 8 hours, and cooled to room temperature to obtain powdered niobium Nb and vanadium V doped Titanium heterotantalate photocatalyst.
[0031] 参见附图 1, 是按本实施例技术方案所制备的铌 Nb和钒 V掺杂钽酸钛 TiTa„.7Nb 4.5 180 47的 射线粉末衍射图谱, 测试结果显示, 样品是单一物相, 结晶度较好 [0031] Referring to FIG. 1, is the ray powder diffraction pattern of niobium Nb and vanadium V-doped titanium tantalate TiTa „ .7 Nb 4.5 5 18 0 47 prepared according to the technical scheme of this embodiment, the test results show that the sample It is a single phase with good crystallinity
[0032] 参见附图 2, 是按本实施例技术方案所制样品的扫描电子显微镜图谱, 从图中 可以看出样品颗粒均匀, 分散较好。 [0032] Referring to FIG. 2, which is a scanning electron microscope pattern of a sample prepared according to the technical solution of this embodiment, it can be seen from the figure that the sample particles are uniform and well dispersed.
[0033] 参见附图 3, 是按本实施例技术方案所制备样品 TiTa„.7Nb 45V i80 47的紫外可见 吸收光谱, 为了进行比较, 其中列出了没有掺杂的样品 TiTa 180 47的光吸收谱, 从图中可以看出, 掺杂样品的吸收实现大大红移, 在可见光区间具有很强的吸 收。 [0033] Referring to FIG. 3, is the UV-Vis absorption spectrum of the sample TiTa prepared in accordance with the technical scheme of this embodiment, .7 Nb 45 V i 8 0 47. For comparison, the undoped sample TiTa 18 is listed The light absorption spectrum of 0 47 can be seen from the figure. The absorption of the doped sample is greatly red-shifted and has a strong absorption in the visible light range.
[0034] 本实施例以光降解亚甲基蓝活性为例, 对光催化剂的性能作出评价。 光催化反 应装置的光源灯为 500瓦圆柱形形氙灯, 反应槽是硼硅酸玻璃制成的圆柱形光催 化反应仪器, 将光源灯插入到反应槽中, 并通入冷凝水降温, 反应时温度为室 温。 催化剂用量 100毫克, 溶液体积 250毫升, 亚甲基蓝的浓度为 10毫克 /升。  [0034] In this embodiment, the photodegradation activity of methylene blue is used as an example to evaluate the performance of the photocatalyst. The light source lamp of the photocatalytic reaction device is a 500-watt cylindrical xenon lamp, the reaction tank is a cylindrical photocatalytic reaction instrument made of borosilicate glass, the light source lamp is inserted into the reaction tank, and condensed water is passed through to cool the temperature. The temperature is room temperature. The amount of catalyst was 100 mg, the volume of solution was 250 ml, and the concentration of methylene blue was 10 mg / L.
[0035] 将本实施例提供的催化剂置于反应液中, 催化时间设定为 120分钟, 打开冷凝 水后开始光照, 光照后每隔一段时间取一次样, 离心, 取其上清液, 用紫外-可 见分光光度计在波长 663〜 665纳米处测定亚甲基蓝溶液的吸光度。 根据朗伯-比 尔定律, 溶液的吸光度与浓度成正比, 因此, 可用吸光度代替浓度计算去除率 , 以此为亚甲基蓝溶液的去除率。 计算公式: 降解率 =(1-C/C Q)X100%=(1-A/A q) X100% , 其中 C p C分别为光催化降解前后的浓度, A p A分别是降解前后的吸 光度值。 [0035] The catalyst provided in this embodiment is placed in the reaction liquid, the catalytic time is set to 120 minutes, the condensed water is turned on, and the light is started. After the light is taken, the sample is taken at intervals, centrifuged, and the supernatant is used The ultraviolet-visible spectrophotometer measures the absorbance of the methylene blue solution at a wavelength of 663 to 665 nanometers. According to Lambert-Beer law, the absorbance of a solution is proportional to the concentration, so the absorbance can be used instead of the concentration to calculate the removal rate This is the removal rate of methylene blue solution. Calculation formula: Degradation rate = (1-C / C Q ) X100% = (1-A / A q ) X100%, where C p C is the concentration before and after photocatalytic degradation, and A p A is the absorbance before and after degradation value.
[0036] 参见附图 4, 是按本实施例技术方案所制样品对有机染料亚甲基蓝的降解曲线 。 从图中可以看出, 与没有掺杂的样品比较, 本发明提供的具有掺杂的样品的 光催化降解亚甲基蓝的降解率 120分钟可以达到 93%, 具有很好的光催化活性。  [0036] Referring to FIG. 4, it is a degradation curve of the organic dye methylene blue prepared by the technical solution of this example. As can be seen from the figure, compared with the undoped sample, the degradation rate of the photocatalytic degradation of methylene blue provided by the present invention can reach 93% in 120 minutes, and has a good photocatalytic activity.
[0037] 实施例 2:  Example 2:
[0038] 按化学式 TiTa ia6Nb 5.4V 20 47中各元素的化学计量比, 分别称取 0.2克 TiO 2 [0038] According to the stoichiometric ratio of each element in the chemical formula TiTa ia6 Nb 5.4 V 2 0 47 , 0.2 grams of TiO 2 were weighed separately
, 9.493克 TaCl 5, 3.588克 NbCl 5, 0.455克 V 20 5 ; 称取 0.13克 Li 2CO 3作为烧结助 齐 1 研磨并混合均匀。 将得到的混合物在空气气氛下第一次预烧结, 烧结温度 为 650°C, 烧结时间为 6小时, 自然冷却, 研磨并混合均匀。 将第一次预烧结后得 到的混合物继续在空气气氛中进行第二次煅烧, 煅烧温度为 850°C, 煅烧时间为 5 小时, 自然冷却, 研磨并混合均匀; 将第二次煅烧后得到的混合物在空气气氛 中进行第三次煅烧, 煅烧温度为 1100°C, 煅烧时间为 8小时, 冷却至室温, 得到 粉末状铌 Nb和钒 V掺杂钽酸钛光催化剂。 其主要的晶体结构、 紫外可见吸收光谱 、 SEM图谱、 对亚甲基蓝的降解曲线与实施例 1相似。 , 9.493 g TaCl 5 , 3.588 g NbCl 5 , 0.455 g V 2 0 5; Weigh 0.13 g Li 2 CO 3 as a sintering aid 1 Grind and mix well. The obtained mixture was pre-sintered for the first time in an air atmosphere, with a sintering temperature of 650 ° C and a sintering time of 6 hours, naturally cooled, ground and mixed evenly. The mixture obtained after the first pre-sintering continues to be calcined for a second time in an air atmosphere, the calcination temperature is 850 ° C, the calcination time is 5 hours, natural cooling, grinding and mixing are uniform; after the second calcination The mixture was calcined a third time in an air atmosphere. The calcination temperature was 1100 ° C, the calcination time was 8 hours, and the mixture was cooled to room temperature to obtain powdered niobium Nb and vanadium V-doped titanium tantalate photocatalyst. Its main crystal structure, ultraviolet-visible absorption spectrum, SEM image, and degradation curve of methylene blue are similar to those in Example 1.
[0039] 实施例 3:  Embodiment 3:
[0040] 按化学式 TiTa 17.8Nb 0.iV o.iO 47中各元素的化学计量比, 分别称取 0.399克 TiO 2 , 19.669克 Ta 20 5, 0.067克 Nb 20 5, 0.0665克 NH 4VO 3 ; 称取 0.196克 LiF作为烧 结助剂, 研磨并混合均匀。 将得到的混合物在空气气氛下第一次预烧结, 烧结 温度为 650°C, 烧结时间为 6小时, 自然冷却, 研磨并混合均匀。 将第一次预烧结 后得到的混合物继续在空气气氛中进行第二次煅烧, 煅烧温度为 850°C, 煅烧时 间为 5小时, 自然冷却, 研磨并混合均匀; 将经第二次煅烧后得到的混合物在空 气气氛中进行第三次煅烧, 煅烧温度为 1100°C, 煅烧时间为 8小时, 冷却至室温 , 得到粉末状铌 Nb和钒 V掺杂钽酸钛光催化剂。 其主要的晶体结构、 紫外可见吸 收光谱、 SEM图谱、 对亚甲基蓝的降解曲线与实施例 1相似。 [0040] According to the stoichiometric ratio of each element in the chemical formula TiTa 17.8 Nb 0.i V o .i O 47 , 0.399 g TiO 2 , 19.669 g Ta 2 0 5 , 0.067 g Nb 2 0 5 , 0.0665 g NH 4 VO 3; Weigh 0.196 g LiF as sintering aid, grind and mix evenly. The obtained mixture was pre-sintered for the first time in an air atmosphere, with a sintering temperature of 650 ° C and a sintering time of 6 hours, naturally cooled, ground and mixed evenly. The mixture obtained after the first pre-sintering continues to be calcined for a second time in an air atmosphere, the calcination temperature is 850 ° C, the calcination time is 5 hours, natural cooling, grinding and mixing are uniform; it will be obtained after the second calcination The mixture was calcined a third time in an air atmosphere at a calcination temperature of 1100 ° C, a calcination time of 8 hours, and cooled to room temperature to obtain powdered niobium Nb and vanadium V-doped titanium tantalate photocatalyst. Its main crystal structure, ultraviolet-visible absorption spectrum, SEM image, and degradation curve of methylene blue are similar to those in Example 1.
[0041] 实施例 4:  [0041] Example 4:
[0042] 按化学式 TiTa mNluV uO ^中各元素的化学计量比, 分别称取 0.2克 TiO 2, 6.9 克 Ta 20 5, 1.325克 Nb 20 5, 0.44克 NH 4V0 3 ; 称取 0.445克 Li 2CO sf乍为烧结助剂[0042] According to the stoichiometric ratio of each element in the chemical formula TiTa mNluV uO ^, weigh 0.2 g TiO 2 , 6.9 G Ta 2 0 5 , 1.325 g Nb 2 0 5 , 0.44 g NH 4 V0 3; weigh 0.445 g Li 2 CO sf as sintering aid
, 研磨并混合均匀。 将得到的混合物在空气气氛下第一次预烧结, 烧结温度为 6 50°C, 烧结时间为 6小时, 自然冷却, 研磨并混合均匀。 将第一次预烧结后得到 的混合物继续在空气气氛中进行第二次煅烧, 煅烧温度为 850°C, 煅烧时间为 5小 时, 自然冷却, 研磨并混合均匀; 将经第二次煅烧后得到的混合物在空气气氛 中进行第三次煅烧, 煅烧温度为 1100°C, 煅烧时间为 8小时, 冷却至室温, 得到 铌 Nb和钒 V掺杂钽酸钛光催化剂。 该样品的结构和实施例 1一样。 , Grind and mix well. The obtained mixture was pre-sintered for the first time in an air atmosphere, with a sintering temperature of 6 50 ° C and a sintering time of 6 hours, naturally cooled, ground and mixed evenly. The mixture obtained after the first pre-sintering continues to be calcined a second time in an air atmosphere, the calcination temperature is 850 ° C, the calcination time is 5 hours, natural cooling, grinding and mixing are uniform; The mixture was calcined a third time in an air atmosphere at a calcination temperature of 1100 ° C, a calcination time of 8 hours, and cooled to room temperature to obtain niobium Nb and vanadium V-doped titanium tantalate photocatalyst. The structure of this sample is the same as in Example 1.
[0043] 参见附图 5, 是按本实施例技术方案所制样品 TiTa 12.5Nb 4V 1.5O 47的扫描电子显 微镜图谱, 从图中可以看出样品颗粒均匀, 分散较好。 [0043] Referring to FIG. 5, it is a scanning electron microscope pattern of the sample TiTa 12.5 Nb 4 V 1.5 O 47 prepared according to the technical solution of this embodiment. From the figure, it can be seen that the sample particles are uniform and well dispersed.
[0044] 参见附图 6 , 是按本实施例技术方案所制备样品的紫外可见吸收光谱, 为了进 行比较, 其中列出了没有掺杂的样品 TiTa 180 47的光吸收谱, 从图中可以看出, 掺杂样品的吸收实现大大红移, 在可见光区间具有很强的吸收。 [0044] Referring to FIG. 6, is the UV-Vis absorption spectrum of the sample prepared according to the technical solution of this embodiment. For comparison, the optical absorption spectrum of the undoped sample TiTa 18 0 47 is listed. It can be seen that the absorption of the doped sample is greatly red-shifted and has strong absorption in the visible range.
[0045] 按实施例 1提供的光催化剂性能评价方法, 对本实施例提供的样品进行有机染 料亚甲基蓝降解处理, 样品对有机染料亚甲基蓝的降解曲线参见附图 7。 从图 7 中可以看出, 与没有掺杂的样品比较, 本实施例制备的掺杂样品光催化降解亚 甲基蓝的降解率 120分钟可以达到 90%, 有较好的光催化活性。  [0045] According to the photocatalyst performance evaluation method provided in Example 1, the sample provided in this example is subjected to organic dye methylene blue degradation treatment, and the degradation curve of the sample to the organic dye methylene blue is shown in FIG. 7. As can be seen from FIG. 7, compared with the undoped sample, the degradation rate of the doped sample prepared in this example for photocatalytic degradation of methylene blue can reach 90% in 120 minutes, and has a good photocatalytic activity.
[0046] 实施例 5:  Example 5:
[0047] 按化学式 TiTa 13.2Nb 3.5V 1.3O 47中各元素的化学计量比, 分别称取 0.2克 TiO 2 [0047] According to the stoichiometric ratio of each element in the chemical formula TiTa 13.2 Nb 3.5 V 1.3 O 47 , 0.2 g TiO 2 was weighed separately
, 7.29克 Ta 20 5, 1.159克 Nb 20 5, 0.38克 NH 4V0 3 ; 称取 0.27克 Li 20作为烧结助 齐 1J, 研磨并混合均匀。 将得到的混合物在空气气氛下第一次预烧结, 烧结温度 为 650°C, 烧结时间为 6小时, 自然冷却, 研磨并混合均匀。 将第一次预烧结后得 到的混合物继续在空气气氛中进行第二次煅烧, 煅烧温度为 850°C, 煅烧时间为 5 小时, 自然冷却, 研磨并混合均匀; 将经第二次煅烧后得到的混合物在空气气 氛中进行第三次煅烧, 煅烧温度为 1100°C, 煅烧时间为 8小时, 冷却至室温, 得 到铌 Nb和钒 V掺杂钽酸钛光催化剂。 该样品的结构和实施例 1一样。 紫外可见吸 收光谱、 SEM图谱、 对亚甲基蓝的降解曲线与实施例 4相似。 , 7.29 g Ta 2 0 5 , 1.159 g Nb 2 0 5 , 0.38 g NH 4 V0 3; Weigh 0.27 g Li 2 0 as sintering aid 1J, grind and mix well. The obtained mixture was pre-sintered for the first time in an air atmosphere, with a sintering temperature of 650 ° C and a sintering time of 6 hours, naturally cooled, ground and mixed evenly. The mixture obtained after the first pre-sintering continues to be calcined for a second time in an air atmosphere, the calcination temperature is 850 ° C, the calcination time is 5 hours, natural cooling, grinding and mixing are uniform; it will be obtained after the second calcination The mixture was calcined a third time in an air atmosphere at a calcination temperature of 1100 ° C, a calcination time of 8 hours, and cooled to room temperature to obtain a niobium Nb and vanadium V-doped titanium tantalate photocatalyst. The structure of this sample is the same as in Example 1. The ultraviolet-visible absorption spectrum, the SEM spectrum, and the degradation curve of methylene blue are similar to those in Example 4.
[0048] 实施例 6:  Example 6:
[0049] 按化学式 TiTa 14.2Nb 2.5V0 47中各元素的化学计量比, 分别称取 0.2克 TiO 2, 8.01 克 Ta 20 5, 1.66克 NbCl 5, 0.293克 NH 4VO 3 ; 称取 0.41克 Li 2CO 3作为烧结助剂, 研磨并混合均匀。 将得到的混合物在空气气氛下第一次预烧结, 烧结温度为 650 °C, 烧结时间为 6小时, 自然冷却, 研磨并混合均匀。 将第一次预烧结后得到的 混合物继续在空气气氛中进行第二次煅烧, 煅烧温度为 850°C, 煅烧时间为 5小时 , 自然冷却, 研磨并混合均匀; 将经第二次煅烧后得到的混合物在空气气氛中 进行第三次煅烧, 煅烧温度为 1100°C, 煅烧时间为 8小时, 冷却至室温, 得到铌 Nb和钒 V掺杂钽酸钛光催化剂。 该样品的结构和实施例 1一样。 紫外可见吸收光 谱、 SEM图谱、 对亚甲基蓝的降解曲线与实施例 4相似。 [0049] According to the stoichiometric ratio of each element in the chemical formula TiTa 14.2 Nb 2.5 V0 47 , 0.2 g of TiO 2 was weighed separately, 8.01 Gram Ta 2 0 5 , 1.66 grams NbCl 5 , 0.293 grams NH 4 VO 3; Weigh 0.41 grams Li 2 CO 3 as a sintering aid, grind and mix well. The obtained mixture was pre-sintered for the first time in an air atmosphere with a sintering temperature of 650 ° C and a sintering time of 6 hours, naturally cooled, ground and mixed evenly. The mixture obtained after the first pre-sintering continues to be calcined for a second time in an air atmosphere, the calcination temperature is 850 ° C, the calcination time is 5 hours, natural cooling, grinding and mixing are uniform; it will be obtained after the second calcination The mixture was calcined a third time in an air atmosphere at a calcination temperature of 1100 ° C, a calcination time of 8 hours, and cooled to room temperature to obtain a niobium Nb and vanadium V-doped titanium tantalate photocatalyst. The structure of this sample is the same as in Example 1. The ultraviolet-visible absorption spectrum, the SEM spectrum, and the degradation curve of methylene blue are similar to those in Example 4.

Claims

权利要求书 [权利要求 1] 一种掺杂铌、 钒的钽酸钛基光催化剂, 其特征在于: 它的化学式为 Ti TamvNbxV v047, 其中, JC、 y分别是铌 Nb 5+和钒 V 5+ 离子掺杂取代 Ta的摩尔量, 掺杂的范围 JC为 0.1〜 5.4, 为 0.1〜 2。 [权利要求 2] 一种掺杂铌、 钒的钽酸钛基光催化剂的制备方法, 其特征在于采用固 相合成法, 包括如下步骤: Claims [Claim 1] A niobium and vanadium-doped titanium tantalate-based photocatalyst, characterized in that its chemical formula is Ti TamvNbxV v047, where JC and y are niobium Nb 5+ and vanadium V 5 respectively + Ion doping replaces the molar amount of Ta, and the doping range JC is 0.1 ~ 5.4, which is 0.1 ~ 2. [Claim 2] A method for preparing titanium tantalate-based photocatalyst doped with niobium and vanadium, characterized in that the solid-phase synthesis method is adopted and includes the following steps:
(1) 按化学式 TiTanNbxVv047中各元素的化学计量比, 其中, JC = 0.1〜 5.4,
Figure imgf000010_0001
分别称取含有钛离子 Ti 4+的化合物、 含有铌 离子 Nb5+的化合物、 含有钽离子 Ta5+的化合物、 含有钒 V5+离子的化 合物; 称取适量含有 Li +离子的化合物为烧结助剂, 研磨并混合均匀
(1) According to the stoichiometric ratio of each element in the chemical formula TiTanNb x V v 0 47 , where JC = 0.1 ~ 5.4,
Figure imgf000010_0001
Weigh the compound containing titanium ion Ti 4+ , the compound containing niobium ion Nb 5+ , the compound containing tantalum ion Ta 5+ , the compound containing vanadium V 5+ ion; the compound containing Li + ion in proper amount is called sintering Additives, grind and mix well
, 得到混合物; , To obtain a mixture;
(2) 将步骤 (1) 得到的混合物在空气气氛下预烧结, 烧结温度为 40 0〜 750°C, 烧结时间为 1〜 15小时, 自然冷却后, 研磨并混合均匀, 得到混合物;  (2) The mixture obtained in step (1) is pre-sintered in an air atmosphere with a sintering temperature of 40 to 750 ° C and a sintering time of 1 to 15 hours. After natural cooling, it is ground and mixed to obtain a mixture;
(3) 将步骤 (2) 得到的混合物在空气气氛中煅烧, 煅烧温度为 1000 〜 1100°C, 煅烧时间为 1〜 15小时, 自然冷却后, 研磨并混合均匀, 得到混合物;  (3) The mixture obtained in step (2) is calcined in an air atmosphere with a calcination temperature of 1000 to 1100 ° C and a calcination time of 1 to 15 hours. After natural cooling, it is ground and mixed to obtain a mixture;
(4) 将步骤 (3) 得到的混合物在空气气氛中煅烧, 煅烧温度为 950 〜 1250°C, 煅烧时间为 1〜 15小时, 冷却至室温, 研磨均匀后得到粉 末状铌 Nb和钒 V掺杂钽酸钛光催化剂。  (4) The mixture obtained in step (3) is calcined in an air atmosphere at a calcination temperature of 950 to 1250 ° C, a calcination time of 1 to 15 hours, cooled to room temperature, and uniformly ground to obtain powdered niobium Nb and vanadium V doped Titanium heterotantalate photocatalyst.
[权利要求 3] 根据权利要求 2所述的一种掺杂铌、 钒的钽酸钛基光催化剂的制备方 法, 其特征在于: 所述的含有钛离子 Ti4+的化合物为二氧化钛 Ti02; 所述的含有铌离子 Nb 5+的化合物为五氧化二铌 Nb 205 [Claim 3] The method for preparing a niobium and vanadium doped titanium tantalate-based photocatalyst according to claim 2, characterized in that: the compound containing titanium ion Ti 4+ is titanium dioxide Ti0 2; The compound containing niobium ion Nb 5+ is niobium pentoxide Nb 2 0 5
, 五氯化铌 NbCl5中的一种; 所述的含有钽离子 Ta5+的化合物为五氧 化二钽 Ta205, 五氯化钽 TaCl5中的一种; 所述含有钒离子 V 5+的化合 物为五氧化二钒 205、 钒酸铵 NH 4VO 3中的一种。 , One of niobium pentachloride NbCl 5 ; said compound containing tantalum ion Ta 5+ is one of tantalum pentoxide Ta 2 0 5 , one of tantalum pentachloride TaCl 5 ; said containing vanadium ion V The 5+ compound is one of vanadium pentoxide 2 0 5 and ammonium vanadate NH 4 VO 3 .
[权利要求 4] 根据权利要求 2所述的一种掺杂铌、 钒的钽酸钛基光催化剂的制备方 法, 其特征在于: 所述的含有 Li +离子的化合物为氧化锂 Li 20, 碳酸 锂 Li 2CO 3或1^中的一种; 按质量百分比, 烧结助剂为 TiTa 18 vNb ,V '0 47的1〜5%, 其中, JC = 0.1〜 5.4, : y = 0.1〜 2。 [Claim 4] The method for preparing a niobium and vanadium doped titanium tantalate-based photocatalyst according to claim 2, wherein the compound containing Li + ion is lithium oxide Li 2 0, Carbonic acid One of lithium Li 2 CO 3 or 1 ^; in terms of mass percentage, the sintering aid is 1 ~ 5% of TiTa 18 v Nb, V '0 47 , where JC = 0.1 ~ 5.4, y = 0.1 ~ 2 .
[权利要求 5] 根据权利要求 2所述的一种掺杂铌、 钒的钽酸钛基光催化剂的制备方 法, 其特征在于: 步骤 (3) 的烧结温度为 750〜 950°C, 烧结时间为 5 〜 8小时。  [Claim 5] The method for preparing a niobium and vanadium doped titanium tantalate-based photocatalyst according to claim 2, characterized in that: the sintering temperature in step (3) is 750 ~ 950 ° C, and the sintering time 5 to 8 hours.
[权利要求 6] 如权利要求 1所述的一种掺杂铌、 钒的钽酸钛基光催化剂的应用, 在 紫外光或近紫外光照射下, 用于降解有机污染物。  [Claim 6] The application of a niobium and vanadium doped titanium tantalate-based photocatalyst according to claim 1 is used to degrade organic pollutants under ultraviolet or near ultraviolet light irradiation.
[权利要求 7] 根据权利要求 6所述的一种掺杂铌、 钒的钽酸钛基光催化剂的应用, 其特征在于: 用于降解水中的有机污染物。  [Claim 7] The application of a niobium and vanadium doped titanium tantalate-based photocatalyst according to claim 6, characterized in that it is used to degrade organic pollutants in water.
PCT/CN2018/109921 2018-10-11 2018-10-11 Niobium and vanadium-doped titanium tantalate-based photocatalyst, preparation method therefor and use thereof WO2020073298A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/109921 WO2020073298A1 (en) 2018-10-11 2018-10-11 Niobium and vanadium-doped titanium tantalate-based photocatalyst, preparation method therefor and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/109921 WO2020073298A1 (en) 2018-10-11 2018-10-11 Niobium and vanadium-doped titanium tantalate-based photocatalyst, preparation method therefor and use thereof

Publications (1)

Publication Number Publication Date
WO2020073298A1 true WO2020073298A1 (en) 2020-04-16

Family

ID=70164168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109921 WO2020073298A1 (en) 2018-10-11 2018-10-11 Niobium and vanadium-doped titanium tantalate-based photocatalyst, preparation method therefor and use thereof

Country Status (1)

Country Link
WO (1) WO2020073298A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080105535A1 (en) * 2004-12-13 2008-05-08 Osaka University Composite Metal Oxide Photocatalyst Exhibiting Responsibility to Visible Light
CN101745378A (en) * 2010-01-02 2010-06-23 桂林理工大学 Visible-light response composite oxide photocatalyst Li9Ti5Nb5-xTaxO27 and preparation method thereof
CN101757904A (en) * 2010-01-02 2010-06-30 桂林理工大学 Visible light responding composite oxide photocatalyst Li8Ti5Nb4-xTaxO24 and preparation method
WO2013155170A1 (en) * 2012-04-10 2013-10-17 Massachusetts Institute Of Technology Biotemplated perovskite nanomaterials
CN105562039A (en) * 2016-01-31 2016-05-11 苏州大学 Titanium tellurate photocatalyst and preparing method and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080105535A1 (en) * 2004-12-13 2008-05-08 Osaka University Composite Metal Oxide Photocatalyst Exhibiting Responsibility to Visible Light
CN101745378A (en) * 2010-01-02 2010-06-23 桂林理工大学 Visible-light response composite oxide photocatalyst Li9Ti5Nb5-xTaxO27 and preparation method thereof
CN101757904A (en) * 2010-01-02 2010-06-30 桂林理工大学 Visible light responding composite oxide photocatalyst Li8Ti5Nb4-xTaxO24 and preparation method
WO2013155170A1 (en) * 2012-04-10 2013-10-17 Massachusetts Institute Of Technology Biotemplated perovskite nanomaterials
CN105562039A (en) * 2016-01-31 2016-05-11 苏州大学 Titanium tellurate photocatalyst and preparing method and application thereof

Similar Documents

Publication Publication Date Title
US20200122130A1 (en) Two-dimensional nitrogen-doped carbon-based titanium dioxide composite material, and preparation method and application thereof for degrading and removing organic pollutants in water
Lv et al. Facile synthesis of CdS/Bi 4 V 2 O 11 photocatalysts with enhanced visible-light photocatalytic activity for degradation of organic pollutants in water
CN108554412B (en) Preparation method and application of large-size high-porosity Fe-doped photocatalytic magnetic porous microspheres
CN104226337A (en) Graphene-supported layered MoS2 (molybdenum disulfide) nanocomposite and preparation method thereof
CN108355669B (en) Magnetic nano onion carbon loaded Bi2WO6Photocatalyst and preparation method and application thereof
CN106268908A (en) A kind of graphite-phase C removing removal organic polluter3n4doping TiO2float type ecological restoration material of load expanded perlite and preparation method thereof
CN103894177A (en) Method for synthesizing rare earth doped potassium titanate powder with photocatalytic activity
CN102527423B (en) Preparation method of molybdenum-nitrogen-codoped TiO2 granule and application thereof
CN108502922B (en) Anatase titanium dioxide microsphere and preparation method thereof
CN109395713B (en) Cerium-titanium-doped bismuth tantalate niobate photocatalytic material and preparation method and application thereof
CN105126823B (en) Tantalum/niobate photocatalyst and preparation method and application thereof
CN109158101B (en) Niobium and vanadium doped titanium-based tantalate photocatalyst, preparation method and application
CN108889289A (en) A kind of titanium dioxide optical catalyst preparation and its application for receiving micron silicon Particles dispersed
CN105688923A (en) Preparing method and application of novel visible-light responding photocatalyst Li3Ni2NbO6
WO2020073298A1 (en) Niobium and vanadium-doped titanium tantalate-based photocatalyst, preparation method therefor and use thereof
CN108298632B (en) Nano TiO (titanium dioxide)2Process for degrading dye wastewater by using photocatalyst
CN110227458A (en) A kind of composite material of Copper-cladding Aluminum Bar mesoporous TiO 2 and its application
CN110013843B (en) Bismuth tantalate niobate/niobium oxide heterojunction, preparation method and application thereof
CN110451559B (en) [111]]Anatase TiO with exposed crystal face2Preparation method and application of nanocrystalline
CN109589964B (en) Rare earth element doped lithium niobate composite photocatalytic material and preparation method and application thereof
Peng et al. Influence of ytterbium doping on the visible light photocatalytic activity of mixed phase TiO2 nanoparticles
CN108404964B (en) Multifunctional photocatalytic high-dispersion titanium dioxide and preparation method thereof
WO2020103062A1 (en) Semiconductor heterojunction photocatalytic material, preparation method therefor, and application thereof
CN115634685B (en) Photocatalytic material responding to visible light and preparation method thereof
WO2020042125A1 (en) Lithium bismuthate-bismuth oxide photocatalytic material and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936377

Country of ref document: EP

Kind code of ref document: A1