WO2020073201A1 - Method and system for circuit breaker condition monitoring - Google Patents

Method and system for circuit breaker condition monitoring Download PDF

Info

Publication number
WO2020073201A1
WO2020073201A1 PCT/CN2018/109525 CN2018109525W WO2020073201A1 WO 2020073201 A1 WO2020073201 A1 WO 2020073201A1 CN 2018109525 W CN2018109525 W CN 2018109525W WO 2020073201 A1 WO2020073201 A1 WO 2020073201A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit breaker
features
image
images
condition monitoring
Prior art date
Application number
PCT/CN2018/109525
Other languages
French (fr)
Inventor
Niya CHEN
Jiayang RUAN
Rongrong Yu
Zhijian ZHUANG
Original Assignee
Abb Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Schweiz Ag filed Critical Abb Schweiz Ag
Priority to CN201880085814.6A priority Critical patent/CN111566493B/en
Priority to EP18936444.1A priority patent/EP3864424A4/en
Priority to PCT/CN2018/109525 priority patent/WO2020073201A1/en
Publication of WO2020073201A1 publication Critical patent/WO2020073201A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/26Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
    • G06V10/267Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/06Recognition of objects for industrial automation

Definitions

  • Example embodiments of the present disclosure generally relate to circuit breaker monitoring and more particularly, to a method and system for circuit breaker condition monitoring.
  • Circuit breakers are widely used in an electrical grid. Circuit breakers are designed to protect an electrical circuit or electrical devices from damage caused by excess current from an overload or short circuit. When circuit breakers fail to operate during such an adverse electrical condition, catastrophic results may arise. However, the circuit breakers may be subject to various failures over time, which will threaten security of the electrical circuit. It is desirable to carry out condition monitoring of the circuit breakers so as to track the operation conditions of the circuit breakers and to enable the indication of potential failure occurrences and preventive maintenance.
  • Circuit breakers are generally enclosed in a casing and their conditions cannot be easily monitored.
  • Conventional circuit breaker monitoring systems typically comprises a measuring device that measures parameters associated with the circuit breaker.
  • a measuring device that measures parameters associated with the circuit breaker.
  • such a system can only monitor limited states of circuit breaker and cannot provide a comprehensive condition monitoring and diagnosis of the circuit breakers.
  • a camera is provided to take pictures of the circuit breaker.
  • the pictures taken are typically transmitted to a remote control center where technical engineers check and diagnose the pictures taken one by one to carry out condition monitoring. This is time-consuming and inefficient.
  • CN106526467A discloses a high voltage circuit breaker which can measure a closing and opening speeds of the movable contact based on machine vision. A reference point is predetermined, and positions of an object in a series of images are identified and the closing and opening speeds of the movable contact then can be calculated.
  • Example embodiments of the present disclosure propose a solution for circuit breaker condition monitoring.
  • example embodiments of the present disclosure provide a method for circuit breaker condition monitoring.
  • the method comprises: obtaining an image of a circuit breaker; extracting from the image one or more features related to a state of the circuit breaker; comparing the extracted one or more features with benchmark data characterizing a predetermined state of the circuit breaker; determining a health condition of the circuit breaker based on the comparison.
  • the health condition of the circuit breaker can be reliably and accurately determined in a simply way. Moreover, since the condition monitoring of the circuit breakers is carried out by machine vision method, any number of predetermined states of the circuit breaker can be monitored without adding substantial burden. Accordingly, some unhealthy conditions such as conductor corrosion, dust pollution, which are difficult to be monitored using conventional methods, can be monitored in a simple way.
  • extracting the one or more features comprises at least one of the following: obtaining a binary image or a grayscale histogram of the image; extracting from the image key feature points describing features of components of the circuit breaker; and segmenting the image to identify positions and grayscale data of components of the circuit breaker. Accordingly, computation complexity is simplified.
  • the components of the circuit breaker comprise at least one of the following: a stationary contact, a movable contact, and a grounding contact.
  • the comparing comprises: determining a metric including at least one of the following: a distance between the one or more features and the benchmark data, and a correlation coefficient between one or more features and the benchmark data; and determining a dissimilarity between the one or more features and the benchmark data based on the metric. Accordingly, the health condition of the circuit breaker can be determined by image processing methods.
  • the method further comprises: obtaining groups of images, each group including a plurality of images for one of predetermined states of the circuit breaker; for each group of images, extracting features characterizing the respective predetermined state from the plurality of images; and training a classifier based on the extracted features.
  • the classifier can be well trained. The reliability and accuracy of determination can be improved.
  • the one or more extracted features are classified by the classifier.
  • the computation is reduced and the health condition of the circuit breaker can be determined in a convenient and efficient manner.
  • the predetermined states comprise at least one of the following: normal closed, defective closed, normal opening, defective opening, normal grounding, defective grounding, conductor corrosion, and dust pollution.
  • example embodiments of the present disclosure a system for circuit breaker condition monitoring.
  • the system comprises: a camera configured to take a picture of the circuit breaker; and at least one processor communicatively coupled to the camera and configured to perform the method of the first aspect.
  • the at least one processor may be local.
  • the at least one processor may be remote.
  • example embodiments of the present disclosure provide a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, cause the at least one processor to perform the method according to any of the first aspect.
  • example embodiments of the present disclosure provide a computer program product being tangibly stored on a computer readable storage medium and comprising instructions which, when executed on at least one processor, cause the at least one processor to perform the method according to any of the first aspect.
  • example embodiments of the present disclosure provide an Internet of Things (IoT) system.
  • the system comprise: a circuit breaker; and a system for circuit breaker condition monitoring according the second aspect.
  • IoT Internet of Things
  • Figs. 1 illustrate a schematic view of a circuit breaker in accordance with some example embodiments of the present disclosure
  • Fig. 2 illustrates a flowchart of a method for circuit breaker condition monitoring in accordance with some example embodiments of the present disclosure
  • Fig. 3 illustrates a schematic diagram of feature extraction processes in accordance with some example embodiments of the present disclosure
  • Fig. 4 illustrates images showing various predetermined states of the circuit breaker in accordance with some example embodiments of the present disclosure
  • Fig. 5 illustrates grayscale histograms corresponding to the images in Fig. 4 in accordance with some example embodiments of the present disclosure
  • Fig. 6 illustrates two dimensional feature vectors extracted from images of the circuit breaker in accordance with some example embodiments of the present disclosure.
  • Fig. 7 illustrates a test image and its grayscale histogram in accordance with some example embodiments of the present disclosure.
  • Fig. 8 illustrates a block diagram of a system 800 for circuit breaker condition monitoring in accordance with embodiments of the present disclosure.
  • the term “comprises” or “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ”
  • the term “or” is to be read as “and/or” unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “being operable to” is to mean a function, an action, a motion or a state can be achieved by an operation induced by a user or an external mechanism.
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”
  • Figs. 1 illustrate a schematic view of a circuit breaker in accordance with some example embodiments of the present disclosure. The view is merely shows its main components, and other components are omitted.
  • the circuit breaker 10 comprises a fixed contact 14, a movable contact 12, and a ground contact 16.
  • the movable contact 12 may include many operation states. For example, the movable contract 12 may move to a first position where it contacts the fixed contact 14. In this case, the circuit including the circuit breaker 10 is closed and current can flow thorough the circuit breaker 10. The movable contract 12 may move to a second position where it separates from the fixed contact 14 and the ground contact 16. In this case, the circuit including the circuit breaker 10 is open and current cannot flow thorough the circuit breaker 10. The movable contract 12 may also move to a third position where it contacts the ground contact 16, so that the circuit breaker 10 is grounded so as to protect the circuit breaker 10 from damage.
  • the circuit breaker 10 is important for the circuit protection and thus its operation states should be well monitored. As mentioned above, some conventional condition monitoring methods can only detect a limited number of states of the circuit breaker, and some conventional condition monitoring methods deeply need human participation and cannot be automatically carried out, which is inefficient and inconvenient.
  • the present disclosure proposes a novel solution for circuit breaker condition monitoring and diagnosis based on image processing or analyzing techniques.
  • Fig. 2 illustrates a flowchart of a method for circuit breaker condition monitoring 200 in accordance with some example embodiments of the present disclosure.
  • the method 200 can be implemented to carry out condition monitoring of the circuit breaker efficiently in a simply way and without any influence on the operations of the circuit breaker.
  • one or more images of a circuit breaker are taken.
  • At least one camera or the like can be fixedly amounted at proper positions within the circuit breaker. It is preferred that the position of the camera can ensure that the images taken by the camera include the key features for condition monitoring or diagnosis of the circuit breaker. In some embodiments, only one camera is provided which can meet the requirements of condition monitoring. In some embodiments, two or more cameras are provided so as to more data for condition monitoring.
  • one or more features related to a state of the circuit breaker are extracted from the image.
  • the pictures that are taken by the camera are colored. In some embodiments, these pictures are recorded as 3 matrices in computer. The data are generally very big and is hard to be directly used. The pictures have to be compressed or processed to extract key or essential features that are associated with condition monitoring or diagnosis of the circuit breaker. There are many methods for extracting features from the images, which will be described below, for example with reference to Figs. 3 and 4.
  • the extracted one or more features are compared with benchmark data characterizing a predetermined state of the circuit breaker.
  • benchmark data are created for characterizing predetermined states of the circuit breaker.
  • these benchmark data are stored in a database accessible to a processor.
  • data related to predetermined states of the circuit breaker have to be collected. For example, the images which record the predetermined states of the circuit breaker are collected, and these collected images are processed to extract key features or essential features. These extracted features are used as benchmark data for characterizing a predetermined state of the circuit breaker.
  • the method can determine at least one predetermined state of the circuit breaker When a plurality of predetermined state of the circuit breaker are to be determined, for each predetermined state, at least one image which records or describes the predetermined states of the circuit breaker is collected to form the benchmark data.
  • a health condition of the circuit breaker can be determined based on the comparison.
  • the health condition for example, is displayed to the user via a display.
  • the system comprises a number of circuit breakers
  • the states of the circuit breakers can be reviewed at the same time.
  • proper actions for example, replacement or maintenance of the circuit breaker, can be taken.
  • the health condition of the circuit breaker can be reliably and accurately determined in a simply way. Moreover, since the condition monitoring of the circuit breakers is carried out by machine vision method, any number of predetermined states of the circuit breaker can be monitored without adding substantial burden. Accordingly, some unhealthy conditions such as conductor corrosion, dust pollution, which are difficult to be monitored using conventional methods, can be monitored in a simple way.
  • the pictures taken by the camera typically can be compressed or processed to extract key or essential features. There are many methods for extracting features from the images. When the pictures are further processed, computation complexity is simplified and the burden on the hardware can be reduced.
  • Fig. 3 illustrates schematic diagrams of feature extraction in accordance with some example embodiments of the present disclosure.
  • the original colored image 301 taken by the camera is transferred to a grayscale image 302. Since a grayscale image is typically recorded by 1 matrix, the original colored image 301 can be compressed.
  • the greyscale image can be further compressed to reduce computation complexity of image processing.
  • the grayscale image 302 can be transferred to a binary image 303 using various binaryzation methods.
  • an Otsu method is used for binaryzation.
  • Otsu′s method the threshold that minimizes an intra-class variance (i.e., variance within the class) , is exhaustively searched for.
  • the intra-class variance is defined as a weighted sum of variances of the two classes:
  • weights ⁇ 0 and ⁇ 1 represent the probabilities of the two classes separated by a threshold t, respectively, and and represent variances of these two classes, respectively.
  • the grayscale image 302 can be transferred to a grayscale histogram 304.
  • a grayscale histogram is a type of histogram that acts as a graphical representation of the grayscale distribution in a digital image. It plots the number of pixels for each grayscale value.
  • the grayscale histogram for a specific image records the grayscale distribution of the image.
  • the grayscale histogram vector can then be used as vector features for calculation.
  • feature points in image are extracted using image processing algorisms.
  • interest of points on the objects in image can be extracted.
  • These features may characterize the essential features of the circuit breaker.
  • the characterized features can be used to identify the key objects in different images can be used to compare with the benchmark data.
  • the features extracted from the images be detectable even under changes in noise and illumination. For example, such points typically lie on high-contrast regions of the image, such as object edges.
  • these features include edges, corners, or the like of the components in the image.
  • the image processing algorisms may include SIFT (Scale-invariant feature transform) , corner detection, etc.
  • image segmentation method is used to locate key components.
  • a location and surface state of key components can reflect the state of the circuit breaker. When the location and the surface state of key components in the image are identified, this information can be used to determine the states of the circuit breaker.
  • the location of a movable contact can be used to determine the open and closed states of the circuit breaker, the erosion feature in copper contacts can represent defective characteristics.
  • domain-knowledge database can be created in advance.
  • Image segmentation methods can be used in combination with domain-knowledge to locate the key components and abstract the corresponding part in figure as input for diagnosis model.
  • a movable contact can be localized by image segmentation in combination with domain knowledge as a circle inside a rectangle. The location and surface state of a movable contact can then be used for the circuit breaker state determination.
  • Image segmentation method can be carried out in various algorithms, including but not limited to K-means, Watershed, GraphCut, etc.
  • a method for creating the benchmark data is described. For example, images related to predetermined states of the circuit breaker are collected. Benchmark data characterizing the key features associated the predetermined states of the circuit breaker are extracted from these images using the extracting methods mentioned above. These benchmark data are then stored in the database.
  • the predetermined states comprise but not limited to normal closed, defective closed, normal opening, defective opening, normal grounding, defective grounding, conductor corrosion, and dust pollution.
  • Fig. 4 merely illustrates four predetermined states of the circuit breaker in accordance with some example embodiments of the present disclosure.
  • the circuit breaker is closed, and the movable contact contacts the fixed contract.
  • the circuit breaker is grounded, and the movable contact contacts the grounding contract.
  • the circuit breaker is open, and the movable contact is located between the fixed contact and the grounding contract and does not contact any of them.
  • the circuit breaker is defectively closed, and the movable contact is close to or partially contacts the fixed contract.
  • the collected images that represent the predetermined states of the circuit breaker can be compressed to extract key features for characterizing the predetermined states.
  • Fig. 5 illustrates grayscale histograms corresponding to the images in Fig. 4 in accordance with some example embodiments of the present disclosure.
  • the grayscale histograms associated with the predetermined states of the circuit breaker can be stored, as benchmark data, in the database.
  • the grayscale histogram 501 is corresponding to the closing state of the circuit breaker in Fig. 4
  • the grayscale histogram 502 is corresponding to the grounding state of the circuit breaker in Fig. 4
  • the grayscale histogram 503 is corresponding to the opening state of the circuit breaker in Fig. 4
  • the grayscale histogram 504 is corresponding to the defective closing state of the circuit breaker in Fig. 4.
  • Fig. 6 illustrates two dimensional feature vectors extracted from images of the circuit breaker in accordance with some example embodiments of the present disclosure. Since the vector is two dimensional, it can be represented as a dot in two-dimensional coordinate frame. As shown, each dot in the figure represents feature vector extracted from one figure of the circuit breaker. Different types of benchmark data are collected as reference data. In the shown example, three types of known normal circuit breaker state and a possible defective closing type are shown.
  • the reference signs 601 ( “ ⁇ ” ) represents that the circuit breaker can be normally opened.
  • the reference signs 602 ( “ ⁇ ” ) represents that the circuit breaker can be normally closed.
  • the reference signs 603 “ ⁇ ” represents that the circuit breaker can be normally grounded.
  • the reference signs 604 “ ⁇ ” represents one type of defectiveness. For example, the circuit breaker cannot be normally closed or opened, i.e., defective opening or defective closing.
  • the reference signs 605 represents another type of defectiveness. For example, the circuit breaker cannot be normally grounded, i.e, defective grounding.
  • the reference signs 606 “*” represents the extracted test feature vector. As shown, as for each signs of benchmark data, a plurality of points is shown.
  • Test feature vector can be classified based on benchmark data using multiple methods, e.g. K-nearest neighbor, support vector machine, classical image processing methods such as similarity calculation, and the like.
  • test image or picture is taken by a camera and features for characterizing the state of the target circuit breaker are extracted.
  • the extracted test features or vector can be classified based on benchmark data using multiple methods.
  • the methods include but are not limited to classical image processing methods and machine learning algorisms.
  • classical image processing methods are used. For example, a metric, such as a distance between the one or more features and the benchmark data, and a correlation coefficient between one or more features and the benchmark data is determined, and dissimilarity between the one or more features and the benchmark data based on the metric is determined. Then, the state of a target circuit breaker can be determined.
  • a metric such as a distance between the one or more features and the benchmark data, and a correlation coefficient between one or more features and the benchmark data is determined, and dissimilarity between the one or more features and the benchmark data based on the metric is determined. Then, the state of a target circuit breaker can be determined.
  • Fig. 7 illustrates a test image 701 and its grayscale histogram 702 in accordance with some example embodiments of the present disclosure.
  • the original colored image 701 taken by the camera is transferred to a grayscale histogram 702 using the above mentioned method.
  • the grayscale histograms shown in Fig. 5 are stored as benchmark data.
  • dissimilarity or/and distance may be calculated so as to classify the test image as one class in the benchmark data.
  • the benchmark feature vectors to which the feature vector of the test image is most similar or the nearest can indicate the state of the circuit breaker.
  • the Euclidean distance d j between feature vector of test image and each benchmark feature vector can be calculated using the following equation.
  • test image can be classified or determined as “OPEN” .
  • the correlation coefficient between feature vector of test image and each benchmark feature vector can be calculated.
  • machine learning algorisms are used. For example, in one embodiment, groups of images, each group including a plurality of images for one of predetermined states of the circuit breaker, are obtained. For each group of images, features characterizing the respective predetermined state from the plurality of images are extracted. A classifier based on the extracted features is trained. Then, the state of a target circuit breaker can be determined by the classifier. When a group of images are provided for one of predetermined states of the circuit breaker, the classifier can be well trained. This can improve the reliability and accuracy of determination. There is a plurality of machine learning methods can be used to train a classifier based on benchmark data, e.g.
  • KNN K Nearest Neighbor
  • SVM Support Vector Machine
  • the input is the extracted test feature
  • the output is a class membership.
  • the test image taken by the camera is classified by a majority vote of its neighbors in the benchmark database and the test data is assigned to the class most common among its k nearest neighbors (k is a positive integer, typically small) .
  • the benchmark data is denoted as (X 1 , y 1 ) , (X 2 , y 2 ) , ..., (X n , y n )
  • the state feature is denoted as X i
  • y i is the state class of the state feature X i
  • distance definition e.g. Euclidean distance
  • the nearest k samples in benchmark dataset can be determined. The majority vote of these k samples indicates the state or the class of test image.
  • a threshold can be set for classification. That is, if the distance between the test feature vector and the nearest benchmark neighbor is larger than the threshold, the state of test image can be determined as “other” , meaning that no known benchmark is similar to test image. This may be a new defective type. In some embodiments, in this event, an alert can be sent to the user.
  • a SVM method may be used to train the classifier model can be trained based on, creating a representation of the benchmark points that the separate categories are divided by a clear gap that is as wide as possible.
  • the state of the circuit breaker is the calculated output y * by trained classifier.
  • Fig. 8 shows a block diagram of a system 800 for circuit breaker condition monitoring in accordance with embodiments of the present disclosure.
  • the system 800 comprises a camera 805 and at least one processor 810.
  • the camera 805 is configured to take a picture of the circuit breaker.
  • the at least one processor 810 is communicatively coupled to the camera 805 and configured to perform the method 200 as described above.
  • the health condition of the circuit breaker can be reliably and accurately determined in a simply way. All advantages with regard to the method 200 can be analogously achieved, which will not be repeatedly described herein.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to Fig. 2.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine readable medium may be a machine readable signal medium or a machine readable storage medium.
  • a machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • machine readable storage medium More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM portable compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

A method and system for circuit breaker condition monitoring are disclosed. The method comprises: obtaining an image of a circuit breaker(202); extracting from the image one or more features related to a state of the circuit breaker(204); comparing the extracted one or more features with benchmark data characterizing a predetermined state of the circuit breaker(206); determining a health condition of the circuit breaker based on the comparison(208).

Description

METHOD AND SYSTEM FOR CIRCUIT BREAKER CONDITION MONITORING TECHNICAL FIELD
Example embodiments of the present disclosure generally relate to circuit breaker monitoring and more particularly, to a method and system for circuit breaker condition monitoring.
BACKGROUND
Circuit breakers are widely used in an electrical grid. Circuit breakers are designed to protect an electrical circuit or electrical devices from damage caused by excess current from an overload or short circuit. When circuit breakers fail to operate during such an adverse electrical condition, catastrophic results may arise. However, the circuit breakers may be subject to various failures over time, which will threaten security of the electrical circuit. It is desirable to carry out condition monitoring of the circuit breakers so as to track the operation conditions of the circuit breakers and to enable the indication of potential failure occurrences and preventive maintenance.
Circuit breakers are generally enclosed in a casing and their conditions cannot be easily monitored. Conventional circuit breaker monitoring systems typically comprises a measuring device that measures parameters associated with the circuit breaker. However, such a system can only monitor limited states of circuit breaker and cannot provide a comprehensive condition monitoring and diagnosis of the circuit breakers.
In some circuit breakers, a camera is provided to take pictures of the circuit breaker. However, the pictures taken are typically transmitted to a remote control center where technical engineers check and diagnose the pictures taken one by one to carry out condition monitoring. This is time-consuming and inefficient.
Additionally, in some circuit breakers, a machine vision method is used, but it is irrelative to condition monitoring and diagnosis of the circuit breakers. For example, CN106526467A discloses a high voltage circuit breaker which can measure a closing and opening speeds of the movable contact based on machine vision. A reference point is predetermined, and positions of an object in a series of images are identified and the closing and opening speeds of the movable contact then can be calculated.
SUMMARY
Example embodiments of the present disclosure propose a solution for circuit breaker condition monitoring.
In a first aspect, example embodiments of the present disclosure provide a method for circuit breaker condition monitoring. The method comprises: obtaining an image of a circuit breaker; extracting from the image one or more features related to a state of the circuit breaker; comparing the extracted one or more features with benchmark data characterizing a predetermined state of the circuit breaker; determining a health condition of the circuit breaker based on the comparison.
With the method for circuit breaker condition monitoring, the health condition of the circuit breaker can be reliably and accurately determined in a simply way. Moreover, since the condition monitoring of the circuit breakers is carried out by machine vision method, any number of predetermined states of the circuit breaker can be monitored without adding substantial burden. Accordingly, some unhealthy conditions such as conductor corrosion, dust pollution, which are difficult to be monitored using conventional methods, can be monitored in a simple way.
In some embodiments, extracting the one or more features comprises at least one of the following: obtaining a binary image or a grayscale histogram of the image; extracting from the image key feature points describing features of components of the circuit breaker; and segmenting the image to identify positions and grayscale data of components of the circuit breaker. Accordingly, computation complexity is simplified.
In some embodiments, the components of the circuit breaker comprise at least one of the following: a stationary contact, a movable contact, and a grounding contact.
In some embodiments, the comparing comprises: determining a metric including at least one of the following: a distance between the one or more features and the benchmark data, and a correlation coefficient between one or more features and the benchmark data; and determining a dissimilarity between the one or more features and the benchmark data based on the metric. Accordingly, the health condition of the circuit breaker can be determined by image processing methods.
In some embodiments, the method further comprises: obtaining groups of images, each group including a plurality of images for one of predetermined states of the  circuit breaker; for each group of images, extracting features characterizing the respective predetermined state from the plurality of images; and training a classifier based on the extracted features. When a group of images are provided for one of predetermined states of the circuit breaker, the classifier can be well trained. The reliability and accuracy of determination can be improved.
In some embodiments, the one or more extracted features are classified by the classifier. When the classifier is used, the computation is reduced and the health condition of the circuit breaker can be determined in a convenient and efficient manner.
In some embodiments, the predetermined states comprise at least one of the following: normal closed, defective closed, normal opening, defective opening, normal grounding, defective grounding, conductor corrosion, and dust pollution.
In a second aspect, example embodiments of the present disclosure a system for circuit breaker condition monitoring. The system comprises: a camera configured to take a picture of the circuit breaker; and at least one processor communicatively coupled to the camera and configured to perform the method of the first aspect. In some embodiments, the at least one processor may be local. In some embodiments, the at least one processor may be remote. With the system for circuit breaker condition monitoring, the health condition of the circuit breaker can be reliably and accurately determined in a simply way. All advantages with regard to the method can be analogously achieved.
In a third aspect, example embodiments of the present disclosure provide a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, cause the at least one processor to perform the method according to any of the first aspect.
In a fourth aspect, example embodiments of the present disclosure provide a computer program product being tangibly stored on a computer readable storage medium and comprising instructions which, when executed on at least one processor, cause the at least one processor to perform the method according to any of the first aspect.
In a fifth aspect, example embodiments of the present disclosure provide an Internet of Things (IoT) system. The system comprise: a circuit breaker; and a system for circuit breaker condition monitoring according the second aspect.
BRIEF DESCRIPTION OF THE DRAWINGS
Through the following detailed descriptions with reference to the accompanying drawings, the above and other objectives, features and advantages of the example embodiments disclosed herein will become more comprehensible. In the drawings, several example embodiments disclosed herein will be illustrated in an example and in a non-limiting manner, wherein:
Figs. 1 illustrate a schematic view of a circuit breaker in accordance with some example embodiments of the present disclosure;
Fig. 2 illustrates a flowchart of a method for circuit breaker condition monitoring in accordance with some example embodiments of the present disclosure;
Fig. 3 illustrates a schematic diagram of feature extraction processes in accordance with some example embodiments of the present disclosure;
Fig. 4 illustrates images showing various predetermined states of the circuit breaker in accordance with some example embodiments of the present disclosure;
Fig. 5 illustrates grayscale histograms corresponding to the images in Fig. 4 in accordance with some example embodiments of the present disclosure;
Fig. 6 illustrates two dimensional feature vectors extracted from images of the circuit breaker in accordance with some example embodiments of the present disclosure; and
Fig. 7 illustrates a test image and its grayscale histogram in accordance with some example embodiments of the present disclosure.
Fig. 8 illustrates a block diagram of a system 800 for circuit breaker condition monitoring in accordance with embodiments of the present disclosure.
Throughout the drawings, the same or corresponding reference symbols refer to the same or corresponding parts.
DETAILED DESCRIPTION
The subject matter described herein will now be discussed with reference to several example embodiments. These embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the subject matter described herein, rather than suggesting any limitations on the scope of the subject matter.
The term “comprises” or “includes” and its variants are to be read as open terms  that mean “includes, but is not limited to. ” The term “or” is to be read as “and/or” unless the context clearly indicates otherwise. The term “based on” is to be read as “based at least in part on. ” The term “being operable to” is to mean a function, an action, a motion or a state can be achieved by an operation induced by a user or an external mechanism. The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ”
Unless specified or limited otherwise, the terms “mounted, ” “connected, ” “supported, ” and “coupled” and variations thereof are used broadly and encompass direct and indirect mountings, connections, supports, and couplings. Furthermore, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings. In the description below, like reference numerals and labels are used to describe the same, similar or corresponding parts in the Figures. Other definitions, explicit and implicit, may be included below.
Figs. 1 illustrate a schematic view of a circuit breaker in accordance with some example embodiments of the present disclosure. The view is merely shows its main components, and other components are omitted.
As shown, the circuit breaker 10 comprises a fixed contact 14, a movable contact 12, and a ground contact 16. The movable contact 12 may include many operation states. For example, the movable contract 12 may move to a first position where it contacts the fixed contact 14. In this case, the circuit including the circuit breaker 10 is closed and current can flow thorough the circuit breaker 10. The movable contract 12 may move to a second position where it separates from the fixed contact 14 and the ground contact 16. In this case, the circuit including the circuit breaker 10 is open and current cannot flow thorough the circuit breaker 10. The movable contract 12 may also move to a third position where it contacts the ground contact 16, so that the circuit breaker 10 is grounded so as to protect the circuit breaker 10 from damage.
The circuit breaker 10 is important for the circuit protection and thus its operation states should be well monitored. As mentioned above, some conventional condition monitoring methods can only detect a limited number of states of the circuit breaker, and some conventional condition monitoring methods deeply need human participation and cannot be automatically carried out, which is inefficient and  inconvenient. The present disclosure proposes a novel solution for circuit breaker condition monitoring and diagnosis based on image processing or analyzing techniques.
Fig. 2 illustrates a flowchart of a method for circuit breaker condition monitoring 200 in accordance with some example embodiments of the present disclosure. The method 200 can be implemented to carry out condition monitoring of the circuit breaker efficiently in a simply way and without any influence on the operations of the circuit breaker.
At block 202, one or more images of a circuit breaker are taken. At least one camera or the like can be fixedly amounted at proper positions within the circuit breaker. It is preferred that the position of the camera can ensure that the images taken by the camera include the key features for condition monitoring or diagnosis of the circuit breaker. In some embodiments, only one camera is provided which can meet the requirements of condition monitoring. In some embodiments, two or more cameras are provided so as to more data for condition monitoring.
At block 204, one or more features related to a state of the circuit breaker are extracted from the image. Generally, the pictures that are taken by the camera are colored. In some embodiments, these pictures are recorded as 3 matrices in computer. The data are generally very big and is hard to be directly used. The pictures have to be compressed or processed to extract key or essential features that are associated with condition monitoring or diagnosis of the circuit breaker. There are many methods for extracting features from the images, which will be described below, for example with reference to Figs. 3 and 4.
At block 206, the extracted one or more features are compared with benchmark data characterizing a predetermined state of the circuit breaker. In the method 200 in accordance with some example embodiments of the present disclosure, benchmark data are created for characterizing predetermined states of the circuit breaker. In some embodiments, these benchmark data are stored in a database accessible to a processor. Before benchmark data are created, data related to predetermined states of the circuit breaker have to be collected. For example, the images which record the predetermined states of the circuit breaker are collected, and these collected images are processed to extract key features or essential features. These extracted features are used as benchmark data for characterizing a predetermined state of the circuit breaker. In some  embodiments, the method can determine at least one predetermined state of the circuit breaker When a plurality of predetermined state of the circuit breaker are to be determined, for each predetermined state, at least one image which records or describes the predetermined states of the circuit breaker is collected to form the benchmark data.
At block 208, a health condition of the circuit breaker can be determined based on the comparison. When the health condition of the circuit breaker is determined, the health condition, for example, is displayed to the user via a display. In some embodiments, when the system comprises a number of circuit breakers, the states of the circuit breakers can be reviewed at the same time. In some embodiments, when the condition of the circuit breaker is unhealthy, an alarmed is sent to the user, and proper actions, for example, replacement or maintenance of the circuit breaker, can be taken.
According to the method for circuit breaker condition monitoring, the health condition of the circuit breaker can be reliably and accurately determined in a simply way. Moreover, since the condition monitoring of the circuit breakers is carried out by machine vision method, any number of predetermined states of the circuit breaker can be monitored without adding substantial burden. Accordingly, some unhealthy conditions such as conductor corrosion, dust pollution, which are difficult to be monitored using conventional methods, can be monitored in a simple way.
In some embodiments, the pictures taken by the camera typically can be compressed or processed to extract key or essential features. There are many methods for extracting features from the images. When the pictures are further processed, computation complexity is simplified and the burden on the hardware can be reduced.
Fig. 3 illustrates schematic diagrams of feature extraction in accordance with some example embodiments of the present disclosure. As shown in Fig. 3, the original colored image 301 taken by the camera is transferred to a grayscale image 302. Since a grayscale image is typically recorded by 1 matrix, the original colored image 301 can be compressed.
In the embodiments shown, the greyscale image can be further compressed to reduce computation complexity of image processing.
In one example embodiment, the grayscale image 302 can be transferred to a binary image 303 using various binaryzation methods. As an example, an Otsu method is used for binaryzation. In Otsu′s method the threshold that minimizes an intra-class  variance (i.e., variance within the class) , is exhaustively searched for. The intra-class variance is defined as a weighted sum of variances of the two classes:
Figure PCTCN2018109525-appb-000001
where weights ω 0 and ω 1 represent the probabilities of the two classes separated by a threshold t, respectively, and
Figure PCTCN2018109525-appb-000002
and
Figure PCTCN2018109525-appb-000003
represent variances of these two classes, respectively.
In another example embodiment, the grayscale image 302 can be transferred to a grayscale histogram 304. A grayscale histogram is a type of histogram that acts as a graphical representation of the grayscale distribution in a digital image. It plots the number of pixels for each grayscale value. The grayscale histogram for a specific image records the grayscale distribution of the image. The grayscale histogram vector can then be used as vector features for calculation.
In some example embodiments, feature points in image are extracted using image processing algorisms. As an example, interest of points on the objects in image can be extracted. These features may characterize the essential features of the circuit breaker. The characterized features can be used to identify the key objects in different images can be used to compare with the benchmark data. As noted, to perform reliable recognition, the features extracted from the images be detectable even under changes in noise and illumination. For example, such points typically lie on high-contrast regions of the image, such as object edges. In some example embodiments, these features include edges, corners, or the like of the components in the image. The image processing algorisms may include SIFT (Scale-invariant feature transform) , corner detection, etc.
In some example embodiments, image segmentation method is used to locate key components. A location and surface state of key components can reflect the state of the circuit breaker. When the location and the surface state of key components in the image are identified, this information can be used to determine the states of the circuit breaker. For example, the location of a movable contact can be used to determine the open and closed states of the circuit breaker, the erosion feature in copper contacts can represent defective characteristics. Typically, domain-knowledge database can be created in advance. Image segmentation methods can be used in combination with domain-knowledge to locate the key components and abstract the corresponding part in  figure as input for diagnosis model. As an example, a movable contact can be localized by image segmentation in combination with domain knowledge as a circle inside a rectangle. The location and surface state of a movable contact can then be used for the circuit breaker state determination. Image segmentation method can be carried out in various algorithms, including but not limited to K-means, Watershed, GraphCut, etc.
With reference to Figs. 4-6, a method for creating the benchmark data is described. For example, images related to predetermined states of the circuit breaker are collected. Benchmark data characterizing the key features associated the predetermined states of the circuit breaker are extracted from these images using the extracting methods mentioned above. These benchmark data are then stored in the database. The predetermined states comprise but not limited to normal closed, defective closed, normal opening, defective opening, normal grounding, defective grounding, conductor corrosion, and dust pollution.
In one example, Fig. 4 merely illustrates four predetermined states of the circuit breaker in accordance with some example embodiments of the present disclosure. As shown at 401 in Fig. 4, the circuit breaker is closed, and the movable contact contacts the fixed contract. At 402 in Fig. 4, the circuit breaker is grounded, and the movable contact contacts the grounding contract. At 403 in Fig. 4, the circuit breaker is open, and the movable contact is located between the fixed contact and the grounding contract and does not contact any of them. At 404 in Fig. 4, the circuit breaker is defectively closed, and the movable contact is close to or partially contacts the fixed contract.
The collected images that represent the predetermined states of the circuit breaker can be compressed to extract key features for characterizing the predetermined states.
Fig. 5 illustrates grayscale histograms corresponding to the images in Fig. 4 in accordance with some example embodiments of the present disclosure. The grayscale histograms associated with the predetermined states of the circuit breaker can be stored, as benchmark data, in the database. As shown in Fig. 5, the grayscale histogram 501 is corresponding to the closing state of the circuit breaker in Fig. 4; the grayscale histogram 502 is corresponding to the grounding state of the circuit breaker in Fig. 4; the grayscale histogram 503 is corresponding to the opening state of the circuit breaker in Fig. 4; and the grayscale histogram 504 is corresponding to the defective closing state of the circuit  breaker in Fig. 4.
Fig. 6 illustrates two dimensional feature vectors extracted from images of the circuit breaker in accordance with some example embodiments of the present disclosure. Since the vector is two dimensional, it can be represented as a dot in two-dimensional coordinate frame. As shown, each dot in the figure represents feature vector extracted from one figure of the circuit breaker. Different types of benchmark data are collected as reference data. In the shown example, three types of known normal circuit breaker state and a possible defective closing type are shown.
As shown, the reference signs 601 ( “×” ) represents that the circuit breaker can be normally opened. The reference signs 602 ( “△” ) represents that the circuit breaker can be normally closed. The reference signs 603 “☆” represents that the circuit breaker can be normally grounded. The reference signs 604 “○” represents one type of defectiveness. For example, the circuit breaker cannot be normally closed or opened, i.e., defective opening or defective closing. The reference signs 605
Figure PCTCN2018109525-appb-000004
represents another type of defectiveness. For example, the circuit breaker cannot be normally grounded, i.e, defective grounding. The reference signs 606 “*” represents the extracted test feature vector. As shown, as for each signs of benchmark data, a plurality of points is shown. That means, there is a plurality of images which are collected to indicate each predetermined state. In some embodiments, when only one image for each predetermined state is collected, only one dot is shown for each predetermined state. Test feature vector can be classified based on benchmark data using multiple methods, e.g. K-nearest neighbor, support vector machine, classical image processing methods such as similarity calculation, and the like.
In order to determine the state of a target circuit breaker, a test image or picture is taken by a camera and features for characterizing the state of the target circuit breaker are extracted. The extracted test features or vector can be classified based on benchmark data using multiple methods. The methods include but are not limited to classical image processing methods and machine learning algorisms.
Now embodiments of the method for determining the state of a target circuit breaker will be described. The main principle of these methods is to determine to which type of benchmark the test data is the most similar.
In some example embodiments, classical image processing methods are used.  For example, a metric, such as a distance between the one or more features and the benchmark data, and a correlation coefficient between one or more features and the benchmark data is determined, and dissimilarity between the one or more features and the benchmark data based on the metric is determined. Then, the state of a target circuit breaker can be determined.
Fig. 7 illustrates a test image 701 and its grayscale histogram 702 in accordance with some example embodiments of the present disclosure. The original colored image 701 taken by the camera is transferred to a grayscale histogram 702 using the above mentioned method. In some example embodiments, the grayscale histograms shown in Fig. 5 are stored as benchmark data.
Grayscale histogram is recorded as one feature vector, for example, including 256 elements, corresponding to the number of pixels in the image at each grayscale value (grayscale = 1~256) . It is to be understood that length of grayscale histogram vector does not have to be 256, the length can be determined as other values. Accordingly, the benchmark data shown in Fig. 5 represent four classes i.e., predetermined states of the circuit breaker, each denoted as benchmark feature vector expressed by x j (j = 1, 2, 3, 4) , and the extracted feature vector of the test image is denoted as x t.
In some embodiments, dissimilarity or/and distance may be calculated so as to classify the test image as one class in the benchmark data. The benchmark feature vectors to which the feature vector of the test image is most similar or the nearest can indicate the state of the circuit breaker. As an example, the Euclidean distance d jbetween feature vector of test image and each benchmark feature vector can be calculated using the following equation.
Figure PCTCN2018109525-appb-000005
The results Euclidean distance from the feature vector of test image to each benchmark feature vector are in table 1 as below:
TABLE 1
Figure PCTCN2018109525-appb-000006
Figure PCTCN2018109525-appb-000007
It can be seen from above that d3 is the minimum and therefore the test image can be classified or determined as “OPEN” .
There is a plurality of ways of calculating dissimilarity or distance. For example, in some example embodiments, the correlation coefficient between feature vector of test image and each benchmark feature vector can be calculated.
In some example embodiments, machine learning algorisms are used. For example, in one embodiment, groups of images, each group including a plurality of images for one of predetermined states of the circuit breaker, are obtained. For each group of images, features characterizing the respective predetermined state from the plurality of images are extracted. A classifier based on the extracted features is trained. Then, the state of a target circuit breaker can be determined by the classifier. When a group of images are provided for one of predetermined states of the circuit breaker, the classifier can be well trained. This can improve the reliability and accuracy of determination. There is a plurality of machine learning methods can be used to train a classifier based on benchmark data, e.g. K Nearest Neighbor (KNN) , Support Vector Machine (SVM) , neural network, logistic regression, etc. As an example, the principle of classification using KNN and SVM methods are given here as below. It is to be understood the following examples are merely illustrative.
In a KNN method, the input is the extracted test feature, and the output is a class membership. The test image taken by the camera is classified by a majority vote of its neighbors in the benchmark database and the test data is assigned to the class most common among its k nearest neighbors (k is a positive integer, typically small) .
It is assumed that the benchmark data is denoted as (X 1, y 1) , (X 2, y 2) , ..., (X n, y n) , where the state feature is denoted as X i, and y i is the state class of the state feature X i. Given distance definition (e.g. Euclidean distance) , the nearest k samples in benchmark dataset can be determined. The majority vote of these k samples indicates the state or the class of test image.
In some embodiments, a threshold can be set for classification. That is, if the  distance between the test feature vector and the nearest benchmark neighbor is larger than the threshold, the state of test image can be determined as “other” , meaning that no known benchmark is similar to test image. This may be a new defective type. In some embodiments, in this event, an alert can be sent to the user.
In some example embodiments, a SVM method may be used to train the classifier model can be trained based on, creating a representation of the benchmark points that the separate categories are divided by a clear gap that is as wide as possible.
For example, given benchmark data (X 1, y 1) , (X 2, y 2) ..., (X n, y n) , where the state feature is denoted as X i, and y i is the state class of the state feature X i. The target of training using SVM is to obtain a classifier or a model.
Figure PCTCN2018109525-appb-000008
that can minimize loss function R [f]
Figure PCTCN2018109525-appb-000009
subject to
Figure PCTCN2018109525-appb-000010
where
Figure PCTCN2018109525-appb-000011
represents a mapping function from a lower dimensional space to a higher dimensional space, w represents weight of the mapping function, and b represents bias. By the loss function R [f] in equation (4) and constraints in equation (5) , the value of w in equation (3) can be determined. Thus, the classifier or a model can be obtained in equation (3) .
Accordingly, for any test data x *, the state of the circuit breaker is the calculated output y *by trained classifier.
Fig. 8 shows a block diagram of a system 800 for circuit breaker condition monitoring in accordance with embodiments of the present disclosure. The system 800 comprises a camera 805 and at least one processor 810. The camera 805 is configured to take a picture of the circuit breaker. The at least one processor 810 is communicatively coupled to the camera 805 and configured to perform the method 200 as described above. With the system for circuit breaker condition monitoring, the health condition of the circuit breaker can be reliably and accurately determined in a simply way. All advantages with regard to the method 200 can be analogously achieved, which will not be repeatedly described herein.
Generally, various embodiments of the present disclosure may be implemented  in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to Fig. 2. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
The above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in  connection with an instruction execution system, apparatus, or device. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. A machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. On the other hand, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (11)

  1. A method for circuit breaker condition monitoring, comprising:
    obtaining an image of a circuit breaker;
    extracting from the image one or more features related to a state of the circuit breaker;
    comparing the extracted one or more features with benchmark data characterizing a predetermined state of the circuit breaker;
    determining a health condition of the circuit breaker based on the comparison.
  2. The method according to claim 1, wherein extracting the one or more features comprises at least one of the following:
    obtaining a binary image or a grayscale histogram of the image;
    extracting from the image key feature points describing features of components of the circuit breaker; and
    segmenting the image to identify positions and grayscale data of components of the circuit breaker.
  3. The method according to any one of preceding claims, wherein the components of the circuit breaker comprise at least one of the following: a stationary contact, a movable contact, and a grounding contact.
  4. The method according to any one of preceding claims, wherein the comparing comprises:
    determining a metric including at least one of the following: a distance between the one or more features and the benchmark data, and a correlation coefficient between one or more features and the benchmark data; and
    determining a dissimilarity between the one or more features and the benchmark data based on the metric.
  5. The method according to any one of preceding claims, further comprising:
    obtaining groups of images, each group including a plurality of images for one of predetermined states of the circuit breaker; and
    for each group of images,
    extracting features characterizing the respective predetermined state from the plurality of images; and
    training a classifier based on the extracted features.
  6. The method according to claim 5, wherein the one or more extracted features are classified by the classifier.
  7. The method according to any of the preceding claims, wherein the predetermined states comprise at least one of the following: normal closed, defective closed, normal opening, defective opening, normal grounding, defective grounding, conductor corrosion, and dust pollution.
  8. A system for circuit breaker condition monitoring comprising:
    a camera configured to take a picture of the circuit breaker; and
    at least one processor communicatively coupled to the camera and configured to perform the method of any of claims 1 to 7.
  9. A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, cause the at least one processor to perform the method according to any of claims 1 to 7.
  10. A computer program product being tangibly stored on a computer readable storage medium and comprising instructions which, when executed on at least one processor, cause the at least one processor to perform the method according to any of claims 1 to 7.
  11. An Intemet of Things (IoT) system comprising:
    a circuit breaker; and
    a system for circuit breaker condition monitoring according to claim 8.
PCT/CN2018/109525 2018-10-09 2018-10-09 Method and system for circuit breaker condition monitoring WO2020073201A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880085814.6A CN111566493B (en) 2018-10-09 2018-10-09 Method and system for circuit breaker condition monitoring
EP18936444.1A EP3864424A4 (en) 2018-10-09 2018-10-09 Method and system for circuit breaker condition monitoring
PCT/CN2018/109525 WO2020073201A1 (en) 2018-10-09 2018-10-09 Method and system for circuit breaker condition monitoring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/109525 WO2020073201A1 (en) 2018-10-09 2018-10-09 Method and system for circuit breaker condition monitoring

Publications (1)

Publication Number Publication Date
WO2020073201A1 true WO2020073201A1 (en) 2020-04-16

Family

ID=70164427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109525 WO2020073201A1 (en) 2018-10-09 2018-10-09 Method and system for circuit breaker condition monitoring

Country Status (3)

Country Link
EP (1) EP3864424A4 (en)
CN (1) CN111566493B (en)
WO (1) WO2020073201A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111950606A (en) * 2020-07-28 2020-11-17 北京恒通智控机器人科技有限公司 Disconnecting link state identification method, device, equipment and storage medium
CN113780191A (en) * 2021-09-14 2021-12-10 西安西电开关电气有限公司 Method and system for identifying opening and closing state image of starting drag switch of power station
CN116026292A (en) * 2023-03-29 2023-04-28 国网天津市电力公司电力科学研究院 Breaker travel track reproduction device and method based on three-eye imaging principle
CN116754934A (en) * 2023-05-22 2023-09-15 杭州轨物科技有限公司 Mechanical characteristic fault diagnosis method for high-voltage circuit breaker

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112419232A (en) * 2020-10-16 2021-02-26 国网天津市电力公司电力科学研究院 Method for detecting state of low-voltage circuit breaker by integrating YOLOv3 with attention module
CN112763904A (en) * 2020-12-29 2021-05-07 广州航天海特系统工程有限公司 Circuit breaker detection method, device, equipment and storage medium
CN114325451B (en) * 2022-01-17 2022-10-25 广州地铁集团有限公司 Method and device for estimating residual life of relay, computer equipment and medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437576B2 (en) * 1996-12-10 2002-08-20 Abb Research Ltd. Method for detecting short-circuit conditions and device which uses this method
CN1845605A (en) * 2006-05-15 2006-10-11 华北电力大学(北京) Image processing and recognizing method for real-time monitoring power high voltage circuit breaker switch state
CN104849654A (en) * 2015-04-09 2015-08-19 广州供电局有限公司 Method for online monitoring breaker
CN106093773A (en) * 2016-08-26 2016-11-09 张振堂 A kind of zone isolation on off state based on Internet of Things monitoring system
CN106371013A (en) * 2016-11-08 2017-02-01 广东电网有限责任公司电力科学研究院 Picture identification-based GIS switch fault automatic identification system
CN106526467A (en) * 2016-10-14 2017-03-22 西安交通大学 High voltage circuit breaker switch-on and switch-off speed characteristic measurement method based on machine vision
CN106680705A (en) * 2017-02-20 2017-05-17 中国神华能源股份有限公司 Disconnector monitoring system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698694A (en) * 2012-09-28 2014-04-02 四川奥格科技有限公司 Online monitoring system for high-voltage circuit breaker
CN206057508U (en) * 2016-09-30 2017-03-29 国家电网公司 A kind of primary cut-out on-line monitoring system
CN106840406B (en) * 2016-11-29 2019-08-16 浙江中新电力工程建设有限公司自动化分公司 Isolation switch method for diagnosing faults based on matrix neural network

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437576B2 (en) * 1996-12-10 2002-08-20 Abb Research Ltd. Method for detecting short-circuit conditions and device which uses this method
CN1845605A (en) * 2006-05-15 2006-10-11 华北电力大学(北京) Image processing and recognizing method for real-time monitoring power high voltage circuit breaker switch state
CN104849654A (en) * 2015-04-09 2015-08-19 广州供电局有限公司 Method for online monitoring breaker
CN106093773A (en) * 2016-08-26 2016-11-09 张振堂 A kind of zone isolation on off state based on Internet of Things monitoring system
CN106526467A (en) * 2016-10-14 2017-03-22 西安交通大学 High voltage circuit breaker switch-on and switch-off speed characteristic measurement method based on machine vision
CN106371013A (en) * 2016-11-08 2017-02-01 广东电网有限责任公司电力科学研究院 Picture identification-based GIS switch fault automatic identification system
CN106680705A (en) * 2017-02-20 2017-05-17 中国神华能源股份有限公司 Disconnector monitoring system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3864424A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111950606A (en) * 2020-07-28 2020-11-17 北京恒通智控机器人科技有限公司 Disconnecting link state identification method, device, equipment and storage medium
CN111950606B (en) * 2020-07-28 2023-11-07 北京恒通智控机器人科技有限公司 Knife switch state identification method, device, equipment and storage medium
CN113780191A (en) * 2021-09-14 2021-12-10 西安西电开关电气有限公司 Method and system for identifying opening and closing state image of starting drag switch of power station
CN113780191B (en) * 2021-09-14 2024-05-10 西安西电开关电气有限公司 Method and system for identifying opening and closing state image of power station start dragging switch
CN116026292A (en) * 2023-03-29 2023-04-28 国网天津市电力公司电力科学研究院 Breaker travel track reproduction device and method based on three-eye imaging principle
CN116754934A (en) * 2023-05-22 2023-09-15 杭州轨物科技有限公司 Mechanical characteristic fault diagnosis method for high-voltage circuit breaker
CN116754934B (en) * 2023-05-22 2024-02-23 杭州轨物科技有限公司 Mechanical characteristic fault diagnosis method for high-voltage circuit breaker

Also Published As

Publication number Publication date
CN111566493B (en) 2022-01-28
EP3864424A1 (en) 2021-08-18
EP3864424A4 (en) 2022-05-18
CN111566493A (en) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2020073201A1 (en) Method and system for circuit breaker condition monitoring
Gou et al. Dukemtmc4reid: A large-scale multi-camera person re-identification dataset
CN112669316B (en) Power production abnormality monitoring method, device, computer equipment and storage medium
US9824296B2 (en) Event detection apparatus and event detection method
US8565538B2 (en) Detecting and labeling places using runtime change-point detection
CN109740609B (en) Track gauge detection method and device
Gómez et al. Cutting Sayre's Knot: reading scene text without segmentation. application to utility meters
CN111950566A (en) Rotation-invariant HOG infrared image power equipment identification method
CN111079621B (en) Method, device, electronic equipment and storage medium for detecting object
Liao et al. A flexible PCB inspection system based on statistical learning
Bharadwaj et al. Can holistic representations be used for face biometric quality assessment?
CN116596875A (en) Wafer defect detection method and device, electronic equipment and storage medium
CN111985333A (en) Behavior detection method based on graph structure information interaction enhancement and electronic device
Gao et al. Sea ice change detection in SAR images based on collaborative representation
Zhang et al. Rethinking unsupervised texture defect detection using PCA
CN112686122A (en) Human body and shadow detection method, device, electronic device and storage medium
Khan et al. Review on moving object detection in video surveillance
CN116152576A (en) Image processing method, device, equipment and storage medium
Zhang et al. Visual extraction system for insulators on power transmission lines from UAV photographs using support vector machine and color models
Jaiswal et al. Classification Of Violent Videos Using Ensemble Boosting Machine Learning Approach With Low Level Features
CN114842295A (en) Method and device for obtaining insulator fault detection model and electronic equipment
Loderer et al. Optimization of LBP parameters
US20240265551A1 (en) Apparatus, method and system for generating models for identifying objects of interest from images
Mahadeo et al. Predicting segmentation errors in an iris recognition system
JP7540500B2 (en) GROUP IDENTIFICATION DEVICE, GROUP IDENTIFICATION METHOD, AND PROGRAM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018936444

Country of ref document: EP

Effective date: 20210510