WO2020071532A1 - Method for manufacturing coil component, method for manufacturing electric machine, coil component, and electric machine - Google Patents

Method for manufacturing coil component, method for manufacturing electric machine, coil component, and electric machine

Info

Publication number
WO2020071532A1
WO2020071532A1 PCT/JP2019/039282 JP2019039282W WO2020071532A1 WO 2020071532 A1 WO2020071532 A1 WO 2020071532A1 JP 2019039282 W JP2019039282 W JP 2019039282W WO 2020071532 A1 WO2020071532 A1 WO 2020071532A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
mold
wire portion
coil wire
coil component
Prior art date
Application number
PCT/JP2019/039282
Other languages
French (fr)
Japanese (ja)
Inventor
啓生 大藤
興起 仲
橋本 昭
行庸 唐田
和明 廣田
辰郎 日野
隆之 鬼橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020551108A priority Critical patent/JPWO2020071532A1/en
Publication of WO2020071532A1 publication Critical patent/WO2020071532A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines

Definitions

  • the present invention relates to a method for manufacturing a coil component for manufacturing a coil component constituting a coil, a method for manufacturing an electric machine, a coil component, and an electric machine.
  • coils used in electric motors are formed by winding a conductive wire around a core to which an insulator is attached or a core to which an insulating paint is applied.
  • a rectangular wire that is difficult to wind around a core is inserted into a slot of the core in a state where the wire is formed in a coil shape by performing a bending process in advance (for example, see Patent Document 1).
  • the present invention has been made in order to solve the above-described problems, and has a method for manufacturing a coil component, a method for manufacturing an electric machine, a coil component, and an electric machine capable of manufacturing a coil component with high shape accuracy. What you get.
  • the method for manufacturing a coil component according to the present invention includes an injection step of injecting a molten metal into a mold, and after the injection step, a mold removal step of removing a molded product obtained by curing the molten metal in the mold from the mold.
  • the mold has a first mold and a second mold that are relatively movable in a direction intersecting a specific axis, and the mold has a first coil wire portion and a first coil wire portion. , A second coil wire portion, and a linear third coil wire portion connecting the respective ends of the first coil wire portion and the second coil wire portion.
  • Each of the second coil wire portions intersects in the axis intersecting direction, and the third coil wire portion is disposed along the axis intersecting direction.
  • the coil component When the coil component is viewed along the axis intersecting direction, The area of the one coil wire part is out of the area of the second coil wire part, and the first coil wire part and the Of the surfaces formed on each of the coil wire portions, the surface facing the first mold side is formed by the first mold, and the surface formed on each of the first coil wire portion and the second coil wire portion is formed.
  • the surface facing the second mold is molded by the second mold.
  • the coil component according to the present invention includes a first coil wire portion, a second coil wire portion, and a straight third wire connecting end portions of the first coil wire portion and the second coil wire portion.
  • a first coil wire portion and a second coil wire portion are disposed apart from each other in an axis crossing direction along the third coil wire portion, and the first coil wire portion and the second coil wire portion are arranged along the axis crossing direction. When the wire portion and the second coil wire portion are viewed, the region of the first coil wire portion is out of the region of the second coil wire portion.
  • a coil component with high shape accuracy can be manufactured.
  • FIG. 3 is a perspective view illustrating an example of a coil component manufactured using the method for manufacturing a coil component according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating an example of a mold used for manufacturing the coil component of FIG. 1.
  • FIG. 3 is a sectional perspective view showing the mold of FIG. 2.
  • FIG. 3 is a sectional perspective view showing a state in which the mold of FIG. 2 is closed.
  • 2 is a flowchart illustrating a procedure for manufacturing the coil component of FIG. 1.
  • FIG. 5 is a sectional view showing a state where the mold of FIG. 4 is opened.
  • FIG. 7 is a cross-sectional view illustrating a state where a molded product is extruded from the state of FIG. 6.
  • FIG. 9 is a perspective view showing a molded product taken out of the state of FIG. 8.
  • FIG. 10 is a perspective view showing a state where an unnecessary portion is separated from the molded product of FIG. 9.
  • FIG. 10 is a perspective view showing a state in which burrs are formed on the molded product of FIG. 9.
  • FIG. 10 is a cross-sectional view showing a mold used in the method for manufacturing a coil component according to the second embodiment of the present invention.
  • FIG. 13 is a cross-sectional view showing a state in which a plunger of the type shown in FIG. 12 is advanced.
  • FIG. 14 is a cross-sectional view illustrating a state in which the mold is opened after the plunger is retracted from the state of FIG. 13.
  • FIG. 15 is a cross-sectional view illustrating a state in which a molded product has been extruded by an extrusion pin from the state of FIG. It is a perspective view which shows the state of FIG.
  • FIG. 13 is a perspective view showing a mold used in the method for manufacturing a coil component according to the third embodiment of the present invention.
  • FIG. 18 is a perspective view showing a state where the mold of FIG. 17 is opened after molding.
  • FIG. 19 is a perspective view showing a state in which a molded product is extruded by an extrusion pin from the state of FIG. 18.
  • FIG. 20 is a perspective view showing a molded product taken out of the mold in the state of FIG. 19.
  • FIG. 21 is a perspective view showing a state where an unnecessary portion is separated from the molded product of FIG. 20.
  • FIG. 9 is a perspective view showing an example of another coil component manufactured by the method for manufacturing a coil component according to the first to third embodiments of the present invention.
  • FIG. 14 is a perspective view showing a mold used in the method for manufacturing a coil component according to the fourth embodiment of the present invention. It is a perspective view showing other examples of a coil part manufactured by a manufacturing method of a coil part of Embodiment 4 of the present invention.
  • FIG. 25 is a perspective view showing a coil component as a modification of the coil component of FIG. 24.
  • FIG. 13 is a perspective view showing another example of the coil component manufactured by the method for manufacturing a coil component according to the first to third embodiments of the present invention. It is the schematic which shows the manufacturing method of the coil component of Embodiment 5 of this invention.
  • FIG. 15 is a partial cross-sectional view showing a rotating electric machine as an electric machine according to a sixth embodiment.
  • FIG. 15 is a perspective view showing a rotating electric machine according to a sixth embodiment.
  • FIG. 21 is a perspective view showing a stator core of a rotary electric machine according to Embodiment 6.
  • FIG. 15 is a partially broken enlarged view showing a stator of a rotating electric machine according to a sixth embodiment.
  • FIG. 15 is a perspective view showing a linear motor as an electric machine according to a seventh embodiment.
  • FIG. 19 is a schematic partial cross-sectional view showing a transformer as an electric machine according to an eighth embodiment.
  • FIG. 40 is a perspective view showing a main part of the transformer excluding the tank, the iron core spacer and the coil spacer of FIG. 39.
  • FIG. 41 is a perspective view showing a state when a main part of the transformer of FIG. 40 is viewed from a different direction.
  • FIG. 1 is a perspective view showing a coil component manufactured using the method for manufacturing a coil component according to the first embodiment of the present invention.
  • the coil component 10 is a coil element that constitutes a coil used in an electric machine such as a motor or a generator.
  • a coil element constituting an armature coil of the electric motor is a coil component 10.
  • the coil component 10 is made of a conductive metal.
  • the coil component 10 has a plurality of straight portions 12 and a plurality of corner portions 11 individually formed between the ends of the plurality of straight portions 12.
  • the shape of the coil component 10 is a hexagonal ring by the six straight portions 12 and the six corner portions 11.
  • the cross-sectional shape of the linear portion 12 is rectangular. Note that the cross-sectional shape of the linear portion 12 may be circular, square, or the like.
  • the coil component 10 is manufactured by casting using a mold.
  • copper for casting, aluminum for casting, etc. are used as the material of the coil component 10.
  • a copper-based material is used as the material for the coil component 10
  • a material having a conductivity of 60% to 85% with respect to soft copper is used as the material for the coil component 10.
  • CAC101, CAC103, and the like as the material of the coil component 10.
  • an aluminum-based material is used as the material for the coil component 10
  • a material having a conductivity of 20% to 40% with respect to soft copper is preferably used as the material for the coil component 10.
  • ADC1, ADC3, ADC5, ADC6, ADC10, ADC10Z, ADC12, ADC12Z, ADC14, and the like is used as the material of the coil component 10.
  • the fluidity of the material of the coil component 10 at the time of casting can be improved. Therefore, even if the coil component 10 has a complicated shape, the coil component 10 can be easily manufactured. Further, the electric resistance of the coil component 10 can be reduced. Therefore, by using the coil component 10 for the coil included in the electric machine, the electric resistance of the coil can be suppressed, and the efficiency of the electric machine can be increased. Examples of the electric machine in which the coil component 10 is used include a rotating electric machine used as an electric motor, a generator, and the like.
  • FIG. 2 is a perspective view showing a mold used in the method of manufacturing the coil component 10 of FIG.
  • FIG. 3 is a sectional perspective view showing the mold of FIG.
  • the mold 1 used for manufacturing the coil component 10 is a mold.
  • the coil component 10 is manufactured by die casting. Therefore, mold 1 is a die-cast type.
  • the mold 1 has a fixed mold 20 as a first mold and a movable mold 30 as a second mold.
  • the fixed mold 20 has a fixed side mating surface 21 which is a flat surface.
  • the fixed mold 20 is provided with an air vent 22 and a fixed-side recess 23.
  • the air vent 22 is a through hole extending from the fixed side mating surface 21 to the outer surface of the fixed mold 20.
  • the fixed-side recess 23 is a recess located at the boundary between the upper surface of the fixed mold 20 and the fixed-side mating surface 21.
  • the movable die 30 has a movable side mating surface 31 which is a flat surface facing the fixed side mating surface 21 of the fixed die 20.
  • the movable die 30 is moved relative to the fixed die 20 between an operating position where the movable side mating surface 31 contacts the fixed side mating surface 21 and an open position where the movable side mating surface 31 is separated from the fixed side mating surface 21. It is movable.
  • the movable die 30 is movable with respect to the fixed die 20 in a specific axis crossing direction intersecting each of the fixed side mating surface 21 and the movable side mating surface 31. That is, the mold 1 has the fixed mold 20 and the movable mold 30 that are relatively movable in the axis crossing direction. The mold 1 closes when the movable mold 30 reaches the operating position. The mold 1 is opened when the movable mold 30 reaches the open position.
  • the movable mold 30 is provided with a cavity 32, a movable side concave portion 33 and an injection path 34.
  • the cavity 32 is a groove formed on the movable side mating surface 31.
  • the cavity 32 is open to the fixed mold 20 side.
  • the shape of the cavity 32 is a hexagonal ring.
  • the movable concave portion 33 is a concave portion located at the boundary between the upper surface of the movable mold 30 and the movable side mating surface 31.
  • the injection path 34 is a groove formed in the movable side mating surface 31. Therefore, similarly to the cavity 32, the injection path 34 is also opened to the fixed mold 20 side.
  • the movable-side concave portion 33 is connected to the cavity 32 via an injection path 34.
  • FIG. 4 is a cross-sectional perspective view showing a state in which the mold 1 of FIG. 3 is closed.
  • the open portions of the cavity 32 and the injection path 34 are closed by the fixed side mating surface 21 when the mold 1 is closed.
  • the gate 1A formed by the fixed recess 23 and the movable recess 33 is formed in the mold 1.
  • the gate 1A formed in the mold 1 is open upward.
  • An extruding member 36 having a plurality of pins 35 is attached to the movable mold 30.
  • the plurality of pins 35 pass through the movable mold 30.
  • Each of the pins 35 projects into the space in the cavity 32 or retreats from the space in the cavity 32 when the pushing member 36 moves with respect to the movable mold 30.
  • FIG. 5 is a flowchart showing a procedure for manufacturing the coil component 10 of FIG.
  • a molten metal is produced by melting a metal that is a material of the coil component 10.
  • the metal used as the material of the coil component 10 include aluminum, copper, and alloys containing these metals.
  • various metals can be used as the metal as the material of the coil component 10. For this reason, the kind of metal used as the material of the coil component 10 can be properly used according to the capacity or cost of the electric machine.
  • step S2 as an injection step, molten metal is injected into the mold 1 from the gate 1A with the mold 1 closed. Thereby, the molten metal is filled into the cavity 32 of the mold 1 through the injection path 34. At this time, excess molten metal overflows from the cavity 32 into the injection path 34 and the air vent 22.
  • step S3 As a cooling step, the mold 1 is cooled.
  • the molten metal is cured to form the molded product 2.
  • the molded product 2 extends not only to the cavity 32 but also to the injection path 34 and the air vent 22.
  • FIG. 6 is a sectional perspective view showing a state where the mold 1 of FIG. 4 is opened.
  • the mold 1 is opened in a state where the molded article 2 has been molded in the mold 1, the molded article 2 comes off the fixed mold 20 integrally with the movable mold 30.
  • FIG. 7 is a cross-sectional perspective view showing a state where the molded product 2 is pushed out by the plurality of pins 35 of FIG.
  • FIG. 8 is a perspective view showing the mold 1 and the molded product 2 of FIG. The molded product 2 is detached from the movable mold 30 by being pushed out by the plurality of pins 35. Thus, the molded product 2 comes off the mold 1.
  • FIG. 9 is a perspective view showing the molded product 2 removed from the mold 1 of FIG.
  • the molded product 2 removed from the mold 1 includes not only the coil component 10 but also a plurality of projections 2A molded by the injection path 34 and the air vent 22, respectively. Each projection 2A is an unnecessary part for the coil component 10.
  • FIG. 10 is a perspective view showing a state in which each protrusion 2A is removed from the molded product 2 of FIG.
  • the coil component 10 is obtained. That is, a part of the molded product 2 becomes the coil component 10.
  • Each projection 2A is removed from the molded product 2 by, for example, a cutter.
  • step S6 the coil component 10 is subjected to insulating processing.
  • the insulating processing include plating using an insulating material, painting using an insulating material, and the like. Thus, the coil component 10 is manufactured.
  • the coil component 10 In the method of manufacturing the coil component 10, a part of the molded product 2 formed by curing the molten metal in the mold 1 is the coil component 10. For this reason, the coil component 10 can be manufactured without performing bending. Thereby, generation of residual stress in the coil component 10 can be suppressed. Therefore, a change in the shape of the coil component 10 due to the residual stress can be reduced, and the coil component 10 with high shape accuracy can be manufactured. In addition, a large number of molded products 2 can be manufactured using the mold 1. For this reason, the productivity of the coil component 10 can be improved. Furthermore, if there is a metal which is a material of the coil component 10, the coil component 10 can be manufactured without obtaining a conductive wire.
  • step S2 as an injection step, a part of the molten metal filled in the cavity 32 easily flows into the gap between the movable side mating surface 31 and the fixed side mating surface 21. Therefore, when the molten metal is cooled in a state where the molten metal is partially interposed in the gap between the movable side mating surface 31 and the fixed side mating surface 21, the molten metal is removed from the mold 1 in step S4 as a mold releasing step. A plate-shaped burr is formed on the molded product 2.
  • FIG. 11 is a perspective view showing a state in which burrs 90 are formed on the molded product 2 of FIG.
  • a molding position forming surface 100 molded by the fixed-side mating surface 21 is formed.
  • the burrs 90 are formed on the inner periphery and the outer periphery of the molding position forming surface 100, respectively.
  • the burrs 90 formed on the inner periphery of the mold position forming surface 100 project from the mold position forming surface 100 to the inside of the coil component 10.
  • the burrs 90 formed on the outer periphery of the molding position forming surface 100 project from the molding position forming surface 100 to the outside of the coil component 10.
  • the burr 90 is an unnecessary part for the coil component 10.
  • step S5 as a removing step, the burr 90 may be shaved and removed from the molded product 2.
  • the accuracy of the shape of the coil component 10 can be further improved.
  • the shape of the coil component 10 can be determined with higher accuracy.
  • the surface of the part where the burr 90 is formed in the molded product 2 is a casting surface.
  • the surface roughness of the casting surface is generally about Rz80.
  • the surface roughness of the surface of the coil component 10 becomes, for example, about Rz10.
  • the groove width of the cavity 32 is continuously increased from the bottom of the cavity 32 toward the opening of the cavity 32. Is also good. That is, the gradient of both sides of the cavity 32 with respect to the movable side mating surface 31 may be set as the draft. In this case, the width of each linear portion 12 of the coil component 10 included in the molded product 2 also increases continuously from the bottom side of the cavity 32 toward the open side of the cavity 32 in accordance with the groove width of the cavity 32. . By doing so, the molded article 2 can be easily removed from the cavity 32 in the mold removing step.
  • the width of each linear portion 12 changes in the thickness direction of the coil component 10.
  • the die 1 used in the method for manufacturing the coil component 10 is a die-cast type.
  • the mold 1 used in the method for manufacturing the coil component 10 is not limited to this.
  • the mold 1 used in the method for manufacturing the coil component 10 may be a sand mold or a plaster mold.
  • Embodiment 2 FIG. Next, a method for manufacturing a coil component according to the second embodiment of the present invention will be described.
  • FIG. 12 is a sectional perspective view showing a mold 1 used in the method for manufacturing a coil component according to the second embodiment of the present invention.
  • the mold 1 according to the second embodiment differs from the mold 1 according to the first embodiment in that a fixed gate 20 is provided with a gate 1A and a runner 24.
  • the mold 1 according to the second embodiment is different from the mold 1 according to the first embodiment in that the movable mold 30 is provided with an air vent 37.
  • the mold 1 according to the second embodiment is different from the mold 1 according to the first embodiment in that the plunger 25 is attached to the fixed mold 20.
  • Other configurations are the same as those of the first embodiment.
  • the gate 1A is provided on the upper surface of the fixed mold 20.
  • a runner 24 connecting the gate 1A and the cavity 32 is provided below the gate 1A.
  • a plunger 25 is inserted into the runner 24. The plunger 25 can move forward and backward along the runner 24. The plunger 25 pushes the molten metal filled in the runner 24 into the cavity 32 by moving forward along the runner 24.
  • a method for manufacturing a coil component according to the second embodiment will be described with reference to FIGS.
  • a molten metal is prepared as in the first embodiment, and then the molten metal is injected into the mold 1 in an injection step.
  • FIG. 13 is a sectional perspective view showing a state in which the plunger 25 has moved forward in the mold 1 of FIG.
  • the plunger 25 moves forward in the direction indicated by the arrow A in FIG. 13 and pushes the molten metal in the runner 24 into the cavity 32 of the movable mold 30.
  • the cavity 32 is filled with the molten metal.
  • excess molten metal overflows from inside the cavity 32 into the air vent 37.
  • the mold 1 is cooled, and the molten metal in the mold 1 is hardened.
  • a molded product 2 is formed in the mold 1.
  • the molded product 2 extends not only to the cavity 32 but also to the runner 24 and the air vent 37.
  • FIG. 14 is a sectional perspective view showing a state where the mold 1 of FIG. 13 is opened.
  • the mold 1 is opened in a state where the molded article 2 has been molded in the mold 1, the molded article 2 comes off the fixed mold 20 integrally with the movable mold 30.
  • FIG. 15 is a cross-sectional perspective view showing a state where the molded product 2 is pushed out by the plurality of pins 35 of FIG.
  • FIG. 16 is a perspective view showing the mold 1 and the molded product 2 of FIG. The molded product 2 is detached from the movable mold 30 by being pushed out by the plurality of pins 35. Thus, the molded product 2 comes off the mold 1.
  • the molded product 2 removed from the mold 1 includes not only the coil component 10 but also a plurality of protrusions 2A molded by the runner 24 and the air vent 37, respectively. Have been. Therefore, after the molded article 2 is removed from the mold 1, the projections 2A, which are unnecessary portions, are removed from the molded article 2 in the removing step. When each projection 2A is removed from the molded product 2, the coil component 10 is obtained. That is, a part of the molded product 2 becomes the coil component 10. Each projection 2A is removed from the molded product 2 by, for example, a cutter. Subsequent steps are the same as in the first embodiment.
  • Embodiment 3 a method for manufacturing a coil component according to the third embodiment of the present invention will be described.
  • the mold 1 used in the method for manufacturing a coil component according to the third embodiment is different from the first embodiment in that a movable mold 30 is provided with a plurality of cavities 32 filled with molten metal.
  • Other configurations are the same as those of the first embodiment.
  • FIG. 17 is a perspective view showing a mold 1 used in the method for manufacturing a coil component according to the third embodiment of the present invention.
  • the mold 1 of the third embodiment has a shape in which a plurality of the molds 1 of the first embodiment are connected.
  • the movable side mating surface 31 of the movable mold 30 is provided with one gate 1A into which molten metal is injected and a plurality of cavities 32.
  • An injection path 34 is provided in each of the plurality of cavities 32.
  • Each injection path 34 is connected to each other via a runner 38.
  • the molten metal injected from the gate 1A is filled into each cavity 32 via the runner 38.
  • the shapes of the plurality of cavities 32 are all the same.
  • a molten metal is prepared in the same manner as in the first embodiment. Thereafter, the mold 1 is closed from the state in which the mold 1 in FIG. 17 is opened, and molten metal is injected from the gate 1A in an injection step. As a result, the molten metal is filled into each cavity 32 of the mold 1 via the injection path 34 and the runner 38. At this time, excess molten metal overflows from the cavity 32 into the injection path 34 and the air vent 22.
  • the mold 1 is cooled.
  • the molten metal is cured to form the molded product 2.
  • the molded product 2 extends not only to each cavity 32 but also to the injection path 34, the runner 38 and the air vent 22.
  • FIG. 18 is a cross-sectional perspective view showing a state in which the mold 1 is opened while the movable mold 30 and the molded product 2 in FIG. 17 are integrated.
  • the mold 1 is opened in a state where the molded article 2 has been molded in the mold 1, the molded article 2 comes off the fixed mold 20 integrally with the movable mold 30.
  • FIG. 19 is a sectional perspective view showing a state where the molded product 2 is pushed out by the plurality of pins 35.
  • the molded product 2 is detached from the movable mold 30 by being pushed out by the plurality of pins 35.
  • the molded product 2 comes off the mold 1.
  • FIG. 20 is a perspective view showing the molded product 2 removed from the mold 1 in FIG.
  • the molded product 2 removed from the mold 1 includes not only the coil component 10 but also a plurality of protrusions 2A molded by the injection path 34, the runner 38, and the air vent 22, respectively.
  • Each projection 2A is an unnecessary part for the coil component 10.
  • FIG. 21 is a perspective view showing a state in which each protrusion 2A has been removed from the molded product 2 of FIG.
  • a plurality of coil components 10 are obtained. That is, a part of the molded product 2 becomes a plurality of coil components 10.
  • Each projection 2A is removed from the molded product 2 by, for example, a cutter. Subsequent steps are the same as in the first embodiment.
  • the configuration of the mold 1 is not limited to this.
  • the number of cavities 32 provided in the mold 1 may be less than six, or may be seven or more.
  • the shape of the coil component 10 is an annular shape with no steps.
  • the shape of the coil component 10 is not limited to this.
  • the shape of the coil component 10 may be a shape like the coil component 10A shown in FIG.
  • the coil component 10A positions two portions having three linear portions 12A and two corner portions 11A formed between the linear portions 12A in the axial direction at the two end portions 16. Are shifted and connected. Even with the coil component 10A having such a shape, the coil component 10A can be manufactured by one molding.
  • all of the cavities 32 have the same shape.
  • the shapes of the plurality of cavities 32 may be different from each other.
  • a molded product 2 including a plurality of coil components 10 molded according to the shape of each cavity 32 is obtained. By doing so, the coil components 10 having different shapes can be manufactured at the same time.
  • Embodiment 4 a method for manufacturing a coil component according to the fourth embodiment of the present invention will be described.
  • the coil manufacturing method according to the fourth embodiment is different from the first to third embodiments in that the entire molded product 2 is the coil component 10B.
  • the mold 1 used in the method for manufacturing a coil component according to the fourth embodiment differs from the first embodiment in that the movable mold 30 moves up and down with respect to the fixed mold 20 to open and close the mold 1. Is different.
  • FIG. 23 is a perspective view showing a mold 1 used in the method for manufacturing a coil component according to the fourth embodiment.
  • a coil component 10B having a shape different from an annular shape can be formed.
  • the corner 11C is provided with the ridgeline 122 formed by intersecting the respective coil outer peripheral surfaces 121 of the two straight portions 12C. For this reason, the corner 11C of the coil component 10C can be prevented from being rounded. Thereby, the space in which the coil component 10C is arranged can be effectively used.
  • a spiral space may be formed as a cavity between the fixed mold 20 and the movable mold 30 when the mold 1 is closed.
  • FIG. 25 is a perspective view showing a coil component 10D as a modification of the coil component 10C in FIG.
  • FIG. 26 is a top view showing the coil component 10D when viewed along the arrow XXVI in FIG.
  • FIG. 27 is a bottom view showing the coil component 10D as viewed along arrow XXVII in FIG.
  • the coil component 10D is a spiral coil component having the coil axis P.
  • the coil component 10D has a plurality of first coil wire portions 101, a plurality of second coil wire portions 102, a plurality of third coil wire portions 103, and a plurality of fourth coil wire portions 104.
  • the coil component 10D is formed in a spiral shape by continuously connecting the first coil wire portion 101, the second coil wire portion 102, the third coil wire portion 103, and the fourth coil wire portion 104.
  • Each third coil wire portion 103 is a straight coil wire portion along a specific axis crossing direction Q intersecting the coil axis P.
  • the direction orthogonal to the coil axis P is the axis crossing direction Q.
  • the plurality of third coil wire portions 103 are arranged at intervals in the direction along the coil axis P.
  • the side 101c of the first coil wire portion 101 on the side of the second coil wire portion 102 and the side 102c of the second coil wire portion 102 on the side of the first coil wire portion 101 are located at the position of the third coil wire portion 103. Cross each other.
  • the plurality of second teeth 302 are arranged at intervals in the direction along the coil axis P. Further, the plurality of second teeth 302 are respectively arranged along the axis cross direction Q.
  • each second tooth 302 includes a second parallel surface 303 along the axis crossing direction Q and a second crossing surface 304 intersecting with the axis crossing direction Q. .
  • the second parallel surface 303 is formed at an end on the same side of the plurality of second teeth 302.
  • the end of the second tooth 302 on which the second parallel surface 303 is formed is an end opposite to the end of the first tooth 202 on which the first parallel surface 203 is formed.
  • the second intersection plane 304 is formed toward the fixed mold 20.
  • the surface facing the fixed die 20 side that is, the first coil inner surface 101a and the second coil outer surface 102b are fixed die 20 molded.
  • the first coil inner surface 101a is molded by the first crossing surface 204 of the first tooth 202
  • the second coil outer surface 102b is molded by the first mold body 201.
  • the surface facing the movable die 30 side that is, the first coil outer surface 101b and the second coil inner surface 102a are: Molded by the movable mold 30.
  • the second coil inner surface 102a is molded by the second intersecting surface 304 of the second tooth 302
  • the first coil outer surface 101b is molded by the second mold body 301.
  • each third coil wire portion 103 is molded between the second parallel surface 303 of the second tooth 302 and the inner surface of the first mold recess of the first mold body 201.
  • Each fourth coil wire portion 104 is molded between the first parallel surface 203 of the first tooth 202 and the inner surface of the first mold recess of the first mold body 201.
  • step S4 as the mold release step, the fixed mold 20 moves in the first mold-releasing direction Q1 with respect to the coil component 10D without the fixed mold 20 hanging on the coil component 10D. Further, in the mold releasing step, the movable die 30 moves in the second die-releasing direction Q2 with respect to the coil component 10D without the movable die 30 hanging on the coil component 10D.
  • the region of the first coil wire portion 101 is out of the region of the second coil wire portion 102. Therefore, each of the fixed mold 20 and the movable mold 30 can be moved along the axis crossing direction Q with respect to the coil component 10D. Thereby, the coil component 10D can be removed from each of the fixed mold 20 and the movable mold 30 without the coil component 10D interfering with each of the fixed mold 20 and the movable mold 30. Therefore, even if the shape of the coil component 10D is a complicated shape such as a spiral shape, the coil component 10D can be manufactured without performing a bending process on a conductive wire. Thereby, the shape accuracy of the coil component 10D can be improved. Further, the entire molded product 2 can be used as the coil component 10D, and the productivity of the coil component 10D can be improved.
  • a ridge formed by intersecting the outer peripheral surfaces of the coils is provided at a corner of the coil component 10D. Therefore, similarly to Embodiment 4, the space in which coil component 10D is arranged can be effectively used.
  • the coil component 10D is made of copper for casting or aluminum for casting. For this reason, even if the shape of the coil component 10D is a complicated shape, the coil component 10D can be easily manufactured.
  • the first mold body 201 has a first mold recess
  • the second mold body 301 is a plate-like member.
  • the first mold body 201 may be a plate-shaped member
  • the second mold body 301 may be formed with a second mold recess.
  • a plurality of second teeth 302 project from the first mold body 201 toward the movable mold 30.
  • a plurality of second teeth 302 are arranged in the second mold recess of the second mold body 301.
  • a spiral cavity can be formed in the closed mold 1, and the spiral coil component 10D can be molded.
  • each second tooth 302 projecting from the second mold recess is inserted into the first mold recess, and the portion of each first tooth 202 projecting from the first mold recess is inserted into the second mold recess. Inserted into the recess. Also in this case, a spiral cavity can be formed in the closed mold 1, and the spiral coil component 10D can be molded.
  • each of the third coil wire portions 103 and each of the fourth coil wire portions of the coil component 10D are provided. Traces of the split surface of the mold 1 are formed on each of the molds 104.
  • a split surface of the mold 1 is formed at the boundary between the first mold body 201 and the second mold body 301. The split surface of the mold 1 is formed at a position corresponding to each of the third coil wire portions 103 and each of the fourth coil wire portions 104 of the coil component 10D.
  • traces are formed on each of the third coil wire portions 103 and each of the fourth coil wire portions 104 according to the shape of the boundary between the first mold body 201 and the second mold body 301.
  • the coil component 10 has six straight portions 12 and six corner portions 11 formed individually between the ends of the six straight portions 12, and has a hexagonal annular shape. Ridge lines 122 are formed at the six corners 11 of the coil component 10.
  • FIG. 33 is a schematic diagram showing a manufacturing apparatus for performing the method for manufacturing a coil component according to the fifth embodiment of the present invention.
  • the mold 1 is provided with a gate 1A at the lower part of the fixed mold 20 for injecting molten metal from the side.
  • the hot chamber type die casting apparatus 80 includes a pot 81 in which molten metal is stored, a pipe 82 arranged in the pot 81, a nozzle 83 provided at a tip of the pipe 82, and a nozzle 83 provided in the pipe 82. And a plunger 84 pushed out of the plunger.
  • the pipe 82 is provided with a gate 82A.
  • the stator 111 has an annular stator core 111a through which magnetic flux passes, and a stator coil 111b provided on the stator core 111a. Between the stator core 111a and the stator coil 111b, insulating paper (not shown) for electrically insulating the stator core 111a and the stator coil 111b is provided. When power is supplied to the stator coil 111b, the stator coil 111b generates a magnetic field.
  • the longitudinal direction of the rotor shaft 112a is defined as an axial direction
  • the radial direction of the rotor shaft 112a is defined as a radial direction
  • the rotational direction about the axis of the rotor shaft 112a is defined as a circumferential direction.
  • FIG. 36 is a perspective view showing a stator core 111a of the rotating electric machine according to the sixth embodiment.
  • FIG. 37 is a partially broken enlarged view showing stator 111 of the rotary electric machine according to Embodiment 6.
  • the stator core 111a has a plurality of magnetic pole pieces 1111 arranged in an annular shape.
  • the stator core 111a is constituted by the 48 magnetic pole pieces 1111.
  • Each pole piece 1111 is a laminated body in which a plurality of thin plates are laminated in the axial direction and integrated.
  • the thin plate constituting the pole piece 1111 is formed by punching out a T-shape from an electromagnetic steel plate.
  • the thickness of the electromagnetic steel sheet is set, for example, in the range of 0.1 mm to 1.0 mm.
  • the magnetic pole piece 1111 has a back yoke portion 1111a and a tooth portion 1111b protruding from the back yoke portion 1111a radially inward of the stator 111.
  • the stator core 111a is inserted into the housing 113 by press fitting, shrink fitting, or the like in a state in which a plurality of magnetic pole pieces 1111 are arranged in an annular shape with the circumferential sides of the back yoke portion 1111a facing each other.
  • the stator core 111a is held in the housing 113.
  • a space as a slot 111c is formed between the adjacent tooth portions 1111b.
  • Stator coil 111b is arranged in slot 111c.
  • the number of poles of the rotor 112 is 8
  • the number of slots 111c in the stator core 111a is 48
  • the stator coil 111b is a three-phase winding. That is, the slots 111c are formed in the stator core 111a at a rate of two per phase for each pole.
  • the stator core 111a is obtained by fixing a plurality of magnetic pole pieces 1111 in an annular shape.
  • 48 magnetic pole pieces 1111 are fixed in an annular shape.
  • As a method of circularizing the plurality of pole pieces 1111 it is conceivable to fix the plurality of pole pieces 1111 arranged in a ring by welding, bonding, resin molding, or the like.
  • the rotating electric machine 110 is obtained by disposing the rotor 112 inside the stator 111 fixed in the housing 113.
  • a pair of movers 120b are arranged on both sides in the width direction of the stator 120a.
  • the width direction of the stator 120a is a direction orthogonal to the traveling direction A1.
  • Each of the pair of movers 120b faces the stator 120a via a gap.
  • the pair of movers 120b can move integrally with the stator 120a along the traveling direction A1.
  • Each of the pair of movers 120b has a core 125 along the traveling direction A1, and a plurality of windings 126 provided on the core 125.
  • the core 125 is made of a magnetic material.
  • a laminated iron core made of an electromagnetic steel sheet is used as the core 125.
  • the lamination direction of the electromagnetic steel sheets of the core 125 is a thickness direction B1 orthogonal to both the traveling direction A1 and the width direction of the stator 120a.
  • the core 125 has a plurality of pole pieces 127 arranged linearly along the traveling direction A1.
  • Each pole piece 127 has a core back 127a and a tooth 127b.
  • the core back 127a is arranged outside the stator 120a in the width direction.
  • the teeth 127b protrude from the core back 127a toward the stator 120a.
  • Each winding 126 includes a plurality of coil components obtained by any of the manufacturing methods described in the first to fifth embodiments. Each winding 126 is individually provided to each tooth 127b via an insulator (not shown) as an insulating member.
  • a pair of movers 120b are arranged at positions symmetrical with respect to a plane passing through the axis of the stator 120a and orthogonal to the width direction of the stator 120a. That is, the pair of movers 120b are arranged at positions that are plane-symmetric with respect to the stator 120a.
  • the winding 126 is obtained by connecting a plurality of coil components obtained by any of the manufacturing methods described in the first to fifth embodiments.
  • the mover 120b is obtained by manufacturing the core 125 and then providing the windings 126 on the plurality of teeth 127b of the core 125.
  • the windings 126 are arranged on the respective tooth portions 127b, and then the core 125 is manufactured by arranging the plurality of pole pieces 127 in a straight line.
  • the movable element 120b can also be obtained.
  • the linear motor 120 is obtained by disposing a pair of movers 120b on both sides in the width direction of the stator 120a.
  • the linear motor 120 is used as an electric machine including a coil component.
  • the method for manufacturing the linear motor 120 includes the method for manufacturing a coil component according to any of the first to fifth embodiments. Therefore, in addition to the effects of any of the first to fifth embodiments, the linear motor 120 can be easily manufactured. Thereby, the cost of the linear motor 120 can be reduced.
  • FIG. 39 is a schematic partial sectional view showing a transformer as an electric machine according to the eighth embodiment.
  • the transformer 130 according to the present embodiment has two iron cores 131, a coil 132 provided on the two iron cores 131, and a tank 133 that hermetically stores the two iron cores 131 and the coils 132.
  • the inside of the tank 133 is filled with insulating oil 134.
  • the insulating oil 134 is an oil that cools the iron core 131 and the coil 132 and maintains electrical insulation for the tank 133.
  • Each iron core 131 is configured by stacking a plurality of thin plates.
  • the thin plate constituting the iron core 131 is obtained, for example, by punching a silicon steel plate.
  • the lamination direction of the iron core 131 is defined as the x-axis direction.
  • the coil 132 is formed by alternately stacking a plurality of coil layers 135 and a plurality of insulating spacers 136.
  • a high-voltage side coil and a low-voltage side coil for causing the electric machine to function as a transformer are alternately stacked as a coil layer 135.
  • the coil layer 135 includes a plurality of coil components obtained by any of the manufacturing methods described in the first to fifth embodiments.
  • Coil 132 is obtained by connecting a plurality of coil components obtained by any of the manufacturing methods described in the first to fifth embodiments.
  • the coil on the high voltage side and the coil on the low voltage side may be arranged concentrically.
  • the lamination direction of the coil layer 135 in the coil 132 is the y-axis direction.
  • the y-axis direction is orthogonal to the x-axis direction.
  • a direction orthogonal to each of the x-axis direction and the y-axis direction is defined as a z-axis direction.
  • the plurality of first coil holding members 139, the plurality of second coil holding members 140, and the guides 141 are arranged between the two iron cores 131.
  • the plurality of first coil holding members 139 are arranged on one side in the stacking direction of the coil layers 135, that is, in the y-axis direction when viewed from the coil 132.
  • the plurality of second coil holding members 140 are arranged on the other side in the stacking direction of the coil layers 135, that is, the y-axis direction when viewed from the coil 132.
  • Each first coil holding member 139 is a plate-shaped member arranged between the first facing surface 133a of the tank 133 and the coil 132. One end of the first coil holding member 139 is in contact with the coil 132. The other end of the first coil holding member 139 is in contact with the first facing surface 133a of the tank 133.
  • Each second coil holding member 140 is a plate-shaped member arranged between the second facing surface 133b of the tank 133 and the coil 132. One end of the second coil holding member 140 is in contact with the coil 132. The other end of the second coil holding member 140 is separated from the second facing surface 133b of the tank 133.
  • Guide 141 is sandwiched between two iron cores 131.
  • the guide 141 is fixed to each iron core 131.
  • the second coil holding member 140 penetrates the guide 141.
  • the second coil holding member 140 is movable in the y-axis direction with respect to the guide 141.
  • the tank 133 is provided with a pressing mechanism 142 that presses the plurality of second coil holding members 140 against the coil 132.
  • the coil 132 is held between the first coil holding member 139 and the second coil holding member 140 by the pressing force of the pressing mechanism 142.
  • the pressing mechanism 142 has a screw 143 and a pressing plate 144.
  • the pressing plate 144 is arranged inside the tank 133 in parallel with the second facing surface 133b.
  • a screw hole 145 is provided in a wall of the tank 133 where the second facing surface 133b is formed.
  • the screw 143 is inserted into the screw hole 145.
  • the screw 143 is arranged coaxially with the guide 141. One end of the screw 143 is in contact with the pressing plate 144, and the other end of the screw 143 projects outside the tank 133.
  • FIG. 40 is a perspective view showing a main part of the transformer 130 excluding the tank 133, the iron core spacer 137, and the coil spacer 138 in FIG.
  • FIG. 41 is a perspective view showing a state where a main part of transformer 130 of FIG. 40 is viewed from a different direction.
  • the display of the pressing mechanism 142 is also omitted.
  • two first coil holding members 139 are arranged in the z-axis direction.
  • two second coil holding members 140 are arranged in the z-axis direction in accordance with the position of first coil holding member 139.
  • two second coil holding members 140 are in contact with one pressing plate 144.
  • the space closer to the coil 132 than the pressing plate 144 is filled with the insulating oil 134.
  • the outer peripheral portion of the pressing plate 144 is air-tightly fixed to the inner surface of the tank 133.
  • the insulating oil 134 does not leak from between the outer peripheral portion of the pressing plate 144 and the inner surface of the tank 133. Therefore, of the space in the tank 133, the space on the second opposing surface 133b side with respect to the pressing plate 144 is filled with the atmosphere.
  • the rigidity of the pressing plate 144 is smaller than the rigidity of each of the tank 133 and the screw 143.
  • the pressing plate 144 is elastically deformable. When the screw 143 is tightened, the pressing plate 144 bends toward the coil 132 while being elastically deformed. Thereby, the second coil holding member 140 is pressed against the coil 132 by the pressing plate 144. That is, the pressing mechanism 142 presses the plurality of second coil holding members 140 against the coil 132 via the pressing plate 144 by tightening the screw 143.
  • the coil 132 is compressed between the first coil holding members 139 and the second coil holding members 140 in the direction in which the coils 132 are stacked.
  • the transformer 130 is used as an electric machine including a coil component. Further, the method of manufacturing transformer 130 includes the method of manufacturing a coil component according to any of the first to fifth embodiments. Therefore, in addition to the effects of any of the first to fifth embodiments, transformer 130 can be easily manufactured. Thereby, the cost of the transformer 130 can be reduced.

Abstract

A method for manufacturing a coil component, provided with an injection step for injecting a molten metal into a mold. The mold has a first mold and a second mold capable of moving relative to each other in a specific axial intersection direction. The coil component has a first coil wire part, a second coil wire part, and a third coil wire part. When the coil component is viewed along the axial intersection direction, the region of the first coil wire part is outside of the region of the second coil wire part. From among the surfaces formed on each of the first coil wire part and the second coil wire part, the surfaces facing the first mold side are molded by the first mold. From among the surfaces formed on each of the first coil wire part and the second coil wire part, the surfaces facing the second mold side are molded by the second mold.

Description

コイル部品の製造方法、電気機械の製造方法、コイル部品及び電気機械Method for manufacturing coil component, method for manufacturing electric machine, coil component, and electric machine
 本発明は、コイルを構成するコイル部品を製造するコイル部品の製造方法、電気機械の製造方法、コイル部品及び電気機械に関する。 The present invention relates to a method for manufacturing a coil component for manufacturing a coil component constituting a coil, a method for manufacturing an electric machine, a coil component, and an electric machine.
 従来、電動機に使用されるコイルは、絶縁体を取り付けたコア、または絶縁塗料を塗布したコアに導線を巻き付けて形成される。コアに巻き付けることが難しい例えば平角線は、予め曲げ加工を施してコイル状に形成した状態でコアのスロットに挿入される(例えば、特許文献1参照)。 Conventionally, coils used in electric motors are formed by winding a conductive wire around a core to which an insulator is attached or a core to which an insulating paint is applied. For example, a rectangular wire that is difficult to wind around a core is inserted into a slot of the core in a state where the wire is formed in a coil shape by performing a bending process in advance (for example, see Patent Document 1).
特開2017-038474号公報JP 2017-038474 A
 特許文献1に記載された従来の方法では、導線をコイル状に形成するために複数の曲げ加工工程が必要である。このため、曲げ加工を施した部分の残留応力によって、コイル状に形成した後にコイル部品の形状が変化するおそれがある。 (4) In the conventional method described in Patent Document 1, a plurality of bending steps are required to form a conductive wire into a coil shape. For this reason, there is a possibility that the shape of the coil component may change after being formed in a coil shape due to the residual stress in the bent portion.
 本発明は、上記のような課題を解決するためになされたものであり、形状精度の高いコイル部品を製造することのできるコイル部品の製造方法、電気機械の製造方法、コイル部品及び電気機械を得るものである。 The present invention has been made in order to solve the above-described problems, and has a method for manufacturing a coil component, a method for manufacturing an electric machine, a coil component, and an electric machine capable of manufacturing a coil component with high shape accuracy. What you get.
 本発明に係るコイル部品の製造方法は、型に溶融金属を注入する注入工程と、注入工程の後、型において溶融金属が硬化してできた成型品を前記型から外す型外し工程とを備え、成型品の少なくとも一部をコイル部品とし、型は、特定の軸交差方向へ相対的に移動可能な第1型及び第2型を有しており、コイル部品は、第1コイル線部と、第2コイル線部と、第1コイル線部及び第2コイル線部のそれぞれの端部同士を繋いでいる直線状の第3コイル線部とを有しており、第1コイル線部及び第2コイル線部のそれぞれは、軸交差方向に交差しており、第3コイル線部は、軸交差方向に沿って配置されており、軸交差方向に沿ってコイル部品を見たとき、第1コイル線部の領域が第2コイル線部の領域から外れており、第1コイル線部及び第2コイル線部のそれぞれに形成された面のうち、第1型側に向いた面は、第1型によって成型され、第1コイル線部及び第2コイル線部のそれぞれに形成された面のうち、第2型側に向いた面は、第2型によって成型される。
 また、本発明に係るコイル部品は、第1コイル線部と、第2コイル線部と、第1コイル線部及び第2コイル線部のそれぞれの端部同士を繋いでいる直線状の第3コイル線部とを備え、第1コイル線部と第2コイル線部とは、第3コイル線部に沿った軸交差方向に互いに離れて配置されており、軸交差方向に沿って第1コイル線部及び第2コイル線部を見たとき、第1コイル線部の領域は、第2コイル線部の領域から外れている。
The method for manufacturing a coil component according to the present invention includes an injection step of injecting a molten metal into a mold, and after the injection step, a mold removal step of removing a molded product obtained by curing the molten metal in the mold from the mold. The mold has a first mold and a second mold that are relatively movable in a direction intersecting a specific axis, and the mold has a first coil wire portion and a first coil wire portion. , A second coil wire portion, and a linear third coil wire portion connecting the respective ends of the first coil wire portion and the second coil wire portion. Each of the second coil wire portions intersects in the axis intersecting direction, and the third coil wire portion is disposed along the axis intersecting direction. When the coil component is viewed along the axis intersecting direction, The area of the one coil wire part is out of the area of the second coil wire part, and the first coil wire part and the Of the surfaces formed on each of the coil wire portions, the surface facing the first mold side is formed by the first mold, and the surface formed on each of the first coil wire portion and the second coil wire portion is formed. The surface facing the second mold is molded by the second mold.
In addition, the coil component according to the present invention includes a first coil wire portion, a second coil wire portion, and a straight third wire connecting end portions of the first coil wire portion and the second coil wire portion. A first coil wire portion and a second coil wire portion are disposed apart from each other in an axis crossing direction along the third coil wire portion, and the first coil wire portion and the second coil wire portion are arranged along the axis crossing direction. When the wire portion and the second coil wire portion are viewed, the region of the first coil wire portion is out of the region of the second coil wire portion.
 本発明に係るコイル部品の製造方法、電気機械の製造方法、コイル部品及び電気機械によれば、形状精度の高いコイル部品を製造することができる。 According to the method for manufacturing a coil component, the method for manufacturing an electric machine, the coil component, and the electric machine according to the present invention, a coil component with high shape accuracy can be manufactured.
本発明の実施の形態1によるコイル部品の製造方法を用いて製造されるコイル部品の例を示す斜視図である。FIG. 3 is a perspective view illustrating an example of a coil component manufactured using the method for manufacturing a coil component according to the first embodiment of the present invention. 図1のコイル部品の製造に用いられる型の例を示す斜視図である。FIG. 2 is a perspective view illustrating an example of a mold used for manufacturing the coil component of FIG. 1. 図2の型を示す断面斜視図である。FIG. 3 is a sectional perspective view showing the mold of FIG. 2. 図2の型が閉じた状態を示す断面斜視図である。FIG. 3 is a sectional perspective view showing a state in which the mold of FIG. 2 is closed. 図1のコイル部品を製造するときの手順を示すフローチャートである。2 is a flowchart illustrating a procedure for manufacturing the coil component of FIG. 1. 図4の型が開いた状態を示す断面図である。FIG. 5 is a sectional view showing a state where the mold of FIG. 4 is opened. 図6の状態から、成型品を押し出した状態を示す断面図である。FIG. 7 is a cross-sectional view illustrating a state where a molded product is extruded from the state of FIG. 6. 図7の状態を示す斜視図である。It is a perspective view which shows the state of FIG. 図8の状態から取り出された成型品を示す斜視図である。FIG. 9 is a perspective view showing a molded product taken out of the state of FIG. 8. 図9の成型品から、不要部分を分離した状態を示す斜視図である。FIG. 10 is a perspective view showing a state where an unnecessary portion is separated from the molded product of FIG. 9. 図9の成型品にバリが形成された状態を示す斜視図である。FIG. 10 is a perspective view showing a state in which burrs are formed on the molded product of FIG. 9. 本発明の実施の形態2によるコイル部品の製造方法で使用される型を示す断面図である。FIG. 10 is a cross-sectional view showing a mold used in the method for manufacturing a coil component according to the second embodiment of the present invention. 図12の型のプランジャを前進させた状態を示す断面図である。FIG. 13 is a cross-sectional view showing a state in which a plunger of the type shown in FIG. 12 is advanced. 図13の状態からプランジャを後退させた後、型を開いた状態を示す断面図である。FIG. 14 is a cross-sectional view illustrating a state in which the mold is opened after the plunger is retracted from the state of FIG. 13. 図14の状態から押し出しピンによって成型品を押し出した状態を示す断面図である。FIG. 15 is a cross-sectional view illustrating a state in which a molded product has been extruded by an extrusion pin from the state of FIG. 図15の状態を示す斜視図である。It is a perspective view which shows the state of FIG. 本発明の実施の形態3によるコイル部品の製造方法で使用される型を示す斜視図である。FIG. 13 is a perspective view showing a mold used in the method for manufacturing a coil component according to the third embodiment of the present invention. 図17の型を成型後に開いた状態を示す斜視図である。FIG. 18 is a perspective view showing a state where the mold of FIG. 17 is opened after molding. 図18の状態から押し出しピンによって成型品を押し出した状態を示す斜視図である。FIG. 19 is a perspective view showing a state in which a molded product is extruded by an extrusion pin from the state of FIG. 18. 図19の状態の型から取り出された成型品を示す斜視図である。FIG. 20 is a perspective view showing a molded product taken out of the mold in the state of FIG. 19. 図20の成型品から不要部分を分離した状態を示す斜視図である。FIG. 21 is a perspective view showing a state where an unnecessary portion is separated from the molded product of FIG. 20. 本発明の実施の形態1~3のコイル部品の製造方法によって製造される他のコイル部品の例を示す斜視図である。FIG. 9 is a perspective view showing an example of another coil component manufactured by the method for manufacturing a coil component according to the first to third embodiments of the present invention. 本発明の実施の形態4のコイル部品の製造方法で使用される型を示す斜視図である。FIG. 14 is a perspective view showing a mold used in the method for manufacturing a coil component according to the fourth embodiment of the present invention. 本発明の実施の形態4のコイル部品の製造方法によって製造されるコイル部品の他の例を示す斜視図である。It is a perspective view showing other examples of a coil part manufactured by a manufacturing method of a coil part of Embodiment 4 of the present invention. 図24のコイル部品の変形例としてのコイル部品を示す斜視図である。FIG. 25 is a perspective view showing a coil component as a modification of the coil component of FIG. 24. 図25の矢印XXVIに沿って見たときのコイル部品を示す上面図である。FIG. 26 is a top view showing the coil component as viewed along arrow XXVI in FIG. 25. 図25の矢印XXVIIに沿って見たときのコイル部品を示す下面図である。FIG. 26 is a bottom view showing the coil component as viewed along arrow XXVII of FIG. 25. 図25のコイル部品を製造するときの型を示す斜視図である。FIG. 26 is a perspective view showing a mold when the coil component of FIG. 25 is manufactured. 図28の型を別の方向から見たときの状態を示す斜視図である。FIG. 29 is a perspective view showing a state when the mold of FIG. 28 is viewed from another direction. 図28の固定型からコイル部品が外れている状態を示す斜視図である。FIG. 29 is a perspective view showing a state where the coil component is detached from the fixed mold of FIG. 28. 図28の可動型からコイル部品が外れている状態を示す斜視図である。FIG. 29 is a perspective view showing a state where the coil component is detached from the movable mold of FIG. 28. 本発明の実施の形態1~3のコイル部品の製造方法によって製造されるコイル部品の他の例を示す斜視図である。FIG. 13 is a perspective view showing another example of the coil component manufactured by the method for manufacturing a coil component according to the first to third embodiments of the present invention. 本発明の実施の形態5のコイル部品の製造方法を示す概略図である。It is the schematic which shows the manufacturing method of the coil component of Embodiment 5 of this invention. 実施の形態6による電気機械としての回転電機を示す一部断面図である。FIG. 15 is a partial cross-sectional view showing a rotating electric machine as an electric machine according to a sixth embodiment. 実施の形態6による回転電機を示す斜視図である。FIG. 15 is a perspective view showing a rotating electric machine according to a sixth embodiment. 実施の形態6による回転電機の固定子鉄心を示す斜視図である。FIG. 21 is a perspective view showing a stator core of a rotary electric machine according to Embodiment 6. 実施の形態6による回転電機の固定子を示す一部破断拡大図である。FIG. 15 is a partially broken enlarged view showing a stator of a rotating electric machine according to a sixth embodiment. 実施の形態7による電気機械としてのリニアモータを示す斜視図である。FIG. 15 is a perspective view showing a linear motor as an electric machine according to a seventh embodiment. 実施の形態8による電気機械としての変圧器を示す模式的な一部断面図である。FIG. 19 is a schematic partial cross-sectional view showing a transformer as an electric machine according to an eighth embodiment. 図39のタンク、鉄心用スペーサ及びコイル用スペーサを除いた変圧器の要部を示す斜視図である。FIG. 40 is a perspective view showing a main part of the transformer excluding the tank, the iron core spacer and the coil spacer of FIG. 39. 図40の変圧器の要部を異なる方向から見たときの状態を示す斜視図である。FIG. 41 is a perspective view showing a state when a main part of the transformer of FIG. 40 is viewed from a different direction.
 以下、この発明を実施するための形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 実施の形態1.
 図1は、本発明の実施の形態1によるコイル部品の製造方法を用いて製造されるコイル部品を示す斜視図である。コイル部品10は、電動機、発電機などの電気機械に用いられるコイルを構成するコイル要素である。この例では、電動機の電機子コイルを構成するコイル要素がコイル部品10とされている。また、コイル部品10は、導電性を持つ金属によって構成されている。
Embodiment 1 FIG.
FIG. 1 is a perspective view showing a coil component manufactured using the method for manufacturing a coil component according to the first embodiment of the present invention. The coil component 10 is a coil element that constitutes a coil used in an electric machine such as a motor or a generator. In this example, a coil element constituting an armature coil of the electric motor is a coil component 10. The coil component 10 is made of a conductive metal.
 コイル部品10は、複数の直線部12と、複数の直線部12の端部間に個別に形成された複数の角部11とを有している。この例では、6個の直線部12と6個の角部11とによってコイル部品10の形状が六角形の環状になっている。また、この例では、直線部12の断面形状が長方形になっている。なお、直線部12の断面形状は、円形、正方形などでもよい。コイル部品10は、型を用いた鋳造によって製造されている。 The coil component 10 has a plurality of straight portions 12 and a plurality of corner portions 11 individually formed between the ends of the plurality of straight portions 12. In this example, the shape of the coil component 10 is a hexagonal ring by the six straight portions 12 and the six corner portions 11. Further, in this example, the cross-sectional shape of the linear portion 12 is rectangular. Note that the cross-sectional shape of the linear portion 12 may be circular, square, or the like. The coil component 10 is manufactured by casting using a mold.
 コイル部品10の材料の性質としては、導電率が高いほど良く、流動性が良好なほど良い。従って、例えば、鋳造用の銅、鋳造用のアルミニウム等がコイル部品10の材料として用いられる。銅系の材料をコイル部品10の材料とする場合、軟銅に対して導電率が60%~85%となる材料をコイル部品10の材料として用いるのが望ましい。具体的には、CAC101、CAC103等をコイル部品10の材料とするのが望ましい。アルミニウム系の材料をコイル部品10の材料とする場合、軟銅に対して導電率が20%~40%となる材料をコイル部品10の材料として用いるのが望ましい。具体的には、ADC1、ADC3、ADC5、ADC6、ADC10、ADC10Z、ADC12、ADC12Z、ADC14等をコイル部品10の材料とするのが望ましい。 材料 As for the properties of the material of the coil component 10, the higher the conductivity, the better, and the better the fluidity, the better. Therefore, for example, copper for casting, aluminum for casting, etc. are used as the material of the coil component 10. When a copper-based material is used as the material for the coil component 10, it is desirable to use a material having a conductivity of 60% to 85% with respect to soft copper as the material for the coil component 10. Specifically, it is desirable to use CAC101, CAC103, and the like as the material of the coil component 10. When an aluminum-based material is used as the material for the coil component 10, a material having a conductivity of 20% to 40% with respect to soft copper is preferably used as the material for the coil component 10. Specifically, it is desirable to use ADC1, ADC3, ADC5, ADC6, ADC10, ADC10Z, ADC12, ADC12Z, ADC14, and the like as the material of the coil component 10.
 従って、鋳造用の銅、又は鋳造用のアルミニウムをコイル部品10の材料とすることにより、鋳造時におけるコイル部品10の材料の流動性を向上させることができる。このため、複雑な形状を持つコイル部品10であっても、コイル部品10を容易に製造することができる。また、コイル部品10の電気抵抗も低くすることができる。従って、電気機械に含まれているコイルにコイル部品10を用いることにより、コイルの電気抵抗を抑制することができ、電気機械の高効率化を図ることができる。コイル部品10が用いられる電気機械としては、例えば、電動機、発電機等として用いられる回転電機が挙げられる。 Therefore, by using copper for casting or aluminum for casting as the material of the coil component 10, the fluidity of the material of the coil component 10 at the time of casting can be improved. Therefore, even if the coil component 10 has a complicated shape, the coil component 10 can be easily manufactured. Further, the electric resistance of the coil component 10 can be reduced. Therefore, by using the coil component 10 for the coil included in the electric machine, the electric resistance of the coil can be suppressed, and the efficiency of the electric machine can be increased. Examples of the electric machine in which the coil component 10 is used include a rotating electric machine used as an electric motor, a generator, and the like.
 図2は、図1のコイル部品10の製造方法で用いられる型を示す斜視図である。また、図3は、図2の型を示す断面斜視図である。この例では、コイル部品10の製造に用いられる型1が金型とされている。また、この例では、コイル部品10がダイカストによって製造される。従って、型1は、ダイカスト型である。また、型1は、第1型としての固定型20と、第2型としての可動型30とを有している。 FIG. 2 is a perspective view showing a mold used in the method of manufacturing the coil component 10 of FIG. FIG. 3 is a sectional perspective view showing the mold of FIG. In this example, the mold 1 used for manufacturing the coil component 10 is a mold. In this example, the coil component 10 is manufactured by die casting. Therefore, mold 1 is a die-cast type. The mold 1 has a fixed mold 20 as a first mold and a movable mold 30 as a second mold.
 固定型20には、平面である固定側合わせ面21が形成されている。また、固定型20には、エアベント22及び固定側凹部23が設けられている。エアベント22は、固定側合わせ面21から固定型20の外面に達する貫通孔である。固定側凹部23は、固定型20の上面と固定側合わせ面21との境界に位置する凹部である。 The fixed mold 20 has a fixed side mating surface 21 which is a flat surface. The fixed mold 20 is provided with an air vent 22 and a fixed-side recess 23. The air vent 22 is a through hole extending from the fixed side mating surface 21 to the outer surface of the fixed mold 20. The fixed-side recess 23 is a recess located at the boundary between the upper surface of the fixed mold 20 and the fixed-side mating surface 21.
 可動型30には、固定型20の固定側合わせ面21に対向する平面である可動側合わせ面31が形成されている。また、可動型30は、可動側合わせ面31が固定側合わせ面21に接触する作動位置と、可動側合わせ面31が固定側合わせ面21から離れる開放位置との間で固定型20に対して移動可能になっている。可動型30は、固定側合わせ面21及び可動側合わせ面31のそれぞれに交差する特定の軸交差方向へ固定型20に対して移動可能になっている。即ち、型1は、軸交差方向へ相対的に移動可能な固定型20及び可動型30を有している。型1は、可動型30が作動位置に達することにより閉じる。また、型1は、可動型30が開放位置に達することにより開く。 The movable die 30 has a movable side mating surface 31 which is a flat surface facing the fixed side mating surface 21 of the fixed die 20. In addition, the movable die 30 is moved relative to the fixed die 20 between an operating position where the movable side mating surface 31 contacts the fixed side mating surface 21 and an open position where the movable side mating surface 31 is separated from the fixed side mating surface 21. It is movable. The movable die 30 is movable with respect to the fixed die 20 in a specific axis crossing direction intersecting each of the fixed side mating surface 21 and the movable side mating surface 31. That is, the mold 1 has the fixed mold 20 and the movable mold 30 that are relatively movable in the axis crossing direction. The mold 1 closes when the movable mold 30 reaches the operating position. The mold 1 is opened when the movable mold 30 reaches the open position.
 可動型30には、キャビティ32、可動側凹部33及び注入路34が設けられている。 The movable mold 30 is provided with a cavity 32, a movable side concave portion 33 and an injection path 34.
 キャビティ32は、可動側合わせ面31に形成された溝である。キャビティ32は、固定型20側に開放されている。この例では、キャビティ32の形状が六角形の環状になっている。 The cavity 32 is a groove formed on the movable side mating surface 31. The cavity 32 is open to the fixed mold 20 side. In this example, the shape of the cavity 32 is a hexagonal ring.
 可動側凹部33は、可動型30の上面と可動側合わせ面31との境界に位置する凹部である。注入路34は、可動側合わせ面31に形成された溝である。従って、注入路34も、キャビティ32と同様に、固定型20側に開放されている。可動側凹部33は、注入路34を介してキャビティ32に繋がっている。 The movable concave portion 33 is a concave portion located at the boundary between the upper surface of the movable mold 30 and the movable side mating surface 31. The injection path 34 is a groove formed in the movable side mating surface 31. Therefore, similarly to the cavity 32, the injection path 34 is also opened to the fixed mold 20 side. The movable-side concave portion 33 is connected to the cavity 32 via an injection path 34.
 図4は、図3の型1が閉じた状態を示す断面斜視図である。キャビティ32及び注入路34のそれぞれの開放部は、型1が閉じることにより固定側合わせ面21によって塞がれる。また、型1には、型1が閉じることにより、固定側凹部23及び可動側凹部33によって構成された湯口1Aが形成される。型1に形成された湯口1Aは、上方へ開放されている。 FIG. 4 is a cross-sectional perspective view showing a state in which the mold 1 of FIG. 3 is closed. The open portions of the cavity 32 and the injection path 34 are closed by the fixed side mating surface 21 when the mold 1 is closed. When the mold 1 is closed, the gate 1A formed by the fixed recess 23 and the movable recess 33 is formed in the mold 1. The gate 1A formed in the mold 1 is open upward.
 可動型30には、複数のピン35を有する押出部材36が取り付けられている。複数のピン35は、可動型30を貫通している。また、各ピン35は、押出部材36が可動型30に対して移動することにより、キャビティ32内の空間に突出したりキャビティ32内の空間から退避したりする。 押出 An extruding member 36 having a plurality of pins 35 is attached to the movable mold 30. The plurality of pins 35 pass through the movable mold 30. Each of the pins 35 projects into the space in the cavity 32 or retreats from the space in the cavity 32 when the pushing member 36 moves with respect to the movable mold 30.
 次に、コイル部品10の製造方法について説明する。図5は、図1のコイル部品10を製造するときの手順を示すフローチャートである。コイル部品10を製造するときには、まず、溶融工程としてのステップS1において、コイル部品10の材料となる金属を溶融することにより溶融金属を作製する。コイル部品10の材料となる金属としては、アルミニウム、銅、これらの金属を含む合金などが挙げられる。このように、コイル部品10の材料となる金属としては、種々の金属を用いることができる。このため、電気機械の能力又はコストに応じてコイル部品10の材料となる金属の種類を使い分けることができる。 Next, a method for manufacturing the coil component 10 will be described. FIG. 5 is a flowchart showing a procedure for manufacturing the coil component 10 of FIG. When manufacturing the coil component 10, first, in step S1 as a melting process, a molten metal is produced by melting a metal that is a material of the coil component 10. Examples of the metal used as the material of the coil component 10 include aluminum, copper, and alloys containing these metals. As described above, various metals can be used as the metal as the material of the coil component 10. For this reason, the kind of metal used as the material of the coil component 10 can be properly used according to the capacity or cost of the electric machine.
 この後、注入工程としてのステップS2において、型1を閉じた状態で型1に湯口1Aから溶融金属を注入する。これにより、溶融金属は、注入路34を通って型1のキャビティ32に充填される。このとき、注入路34及びエアベント22には、余剰分の溶融金属がキャビティ32から溢れる。 後 Thereafter, in step S2 as an injection step, molten metal is injected into the mold 1 from the gate 1A with the mold 1 closed. Thereby, the molten metal is filled into the cavity 32 of the mold 1 through the injection path 34. At this time, excess molten metal overflows from the cavity 32 into the injection path 34 and the air vent 22.
 この後、冷却工程としてのステップS3において、型1を冷却する。これにより、型1では、溶融金属が硬化して成型品2ができる。成型品2は、キャビティ32だけでなく注入路34及びエアベント22にも及んでいる。 後 Thereafter, in step S3 as a cooling step, the mold 1 is cooled. Thus, in the mold 1, the molten metal is cured to form the molded product 2. The molded product 2 extends not only to the cavity 32 but also to the injection path 34 and the air vent 22.
 この後、型外し工程としてのステップS4において、型1から成型品2を外す。型1から成型品2を外すときには、まず可動型30を開放位置へ移動させて型1を開く。図6は、図4の型1が開いた状態を示す断面斜視図である。型1に成型品2が成型された状態で型1を開くと、成型品2が可動型30と一体になって固定型20から外れる。 後 Thereafter, the molded article 2 is removed from the mold 1 in step S4 as a mold removing step. When removing the molded product 2 from the mold 1, the movable mold 30 is first moved to the open position to open the mold 1. FIG. 6 is a sectional perspective view showing a state where the mold 1 of FIG. 4 is opened. When the mold 1 is opened in a state where the molded article 2 has been molded in the mold 1, the molded article 2 comes off the fixed mold 20 integrally with the movable mold 30.
 この後、各ピン35がキャビティ32内に突出する方向へ、可動型30に対して押出部材36を移動させる。これにより、成型品2が各ピン35によってキャビティ32から押し出される。図7は、図6の複数のピン35によって成型品2が押し出された状態を示す断面斜視図である。また、図8は、図7の型1及び成型品2を示す斜視図である。成型品2は、複数のピン35によって押し出されることにより可動型30から外れる。このようにして、成型品2が型1から外れる。 Then, the extruding member 36 is moved with respect to the movable mold 30 in a direction in which each pin 35 projects into the cavity 32. Thus, the molded product 2 is pushed out of the cavity 32 by each pin 35. FIG. 7 is a cross-sectional perspective view showing a state where the molded product 2 is pushed out by the plurality of pins 35 of FIG. FIG. 8 is a perspective view showing the mold 1 and the molded product 2 of FIG. The molded product 2 is detached from the movable mold 30 by being pushed out by the plurality of pins 35. Thus, the molded product 2 comes off the mold 1.
 図9は、図8の型1から外された成型品2を示す斜視図である。型1から外された成型品2には、コイル部品10だけでなく、注入路34及びエアベント22のそれぞれで成型された複数の突起部2Aが含まれている。各突起部2Aは、コイル部品10にとって不要部分である。 FIG. 9 is a perspective view showing the molded product 2 removed from the mold 1 of FIG. The molded product 2 removed from the mold 1 includes not only the coil component 10 but also a plurality of projections 2A molded by the injection path 34 and the air vent 22, respectively. Each projection 2A is an unnecessary part for the coil component 10.
 従って、型1から成型品2を外した後、除去工程としてのステップS5において、不要部分である各突起部2Aを成型品2から除去する。図10は、図9の成型品2から各突起部2Aを除去した状態を示す斜視図である。各突起部2Aが成型品2から除去されると、コイル部品10が得られる。即ち、成型品2の一部がコイル部品10となる。各突起部2Aは、例えば裁断機によって成型品2から除去される。 Therefore, after the molded product 2 is removed from the mold 1, in step S5 as a removing step, each of the protrusions 2A, which are unnecessary portions, is removed from the molded product 2. FIG. 10 is a perspective view showing a state in which each protrusion 2A is removed from the molded product 2 of FIG. When each projection 2A is removed from the molded product 2, the coil component 10 is obtained. That is, a part of the molded product 2 becomes the coil component 10. Each projection 2A is removed from the molded product 2 by, for example, a cutter.
 この後、絶縁工程としてのステップS6において、コイル部品10に絶縁加工を施す。絶縁加工としては、絶縁材料を用いためっき、絶縁材料を用いた塗装などが挙げられる。このようにして、コイル部品10が製造される。 後 Thereafter, in step S6 as an insulating process, the coil component 10 is subjected to insulating processing. Examples of the insulating processing include plating using an insulating material, painting using an insulating material, and the like. Thus, the coil component 10 is manufactured.
 このようなコイル部品10の製造方法では、型1において溶融金属が硬化してできた成型品2の一部がコイル部品10になっている。このため、曲げ加工を行うことなくコイル部品10を製造することができる。これにより、コイル部品10に残留応力が生じることを抑制することができる。従って、残留応力によるコイル部品10の形状の変化を小さくすることができ、形状精度の高いコイル部品10を製造することができる。また、型1を用いて大量の成型品2を製造することができる。このため、コイル部品10の生産性を向上させることができる。さらに、コイル部品10の材料となる金属があれば、導線を入手しなくてもコイル部品10を製造することができる。 In the method of manufacturing the coil component 10, a part of the molded product 2 formed by curing the molten metal in the mold 1 is the coil component 10. For this reason, the coil component 10 can be manufactured without performing bending. Thereby, generation of residual stress in the coil component 10 can be suppressed. Therefore, a change in the shape of the coil component 10 due to the residual stress can be reduced, and the coil component 10 with high shape accuracy can be manufactured. In addition, a large number of molded products 2 can be manufactured using the mold 1. For this reason, the productivity of the coil component 10 can be improved. Furthermore, if there is a metal which is a material of the coil component 10, the coil component 10 can be manufactured without obtaining a conductive wire.
 ここで、型1が閉じている状態では、可動側合わせ面31と固定側合わせ面21との間に隙間が部分的に生じることがある。この場合、注入工程としてのステップS2では、キャビティ32に充填された溶融金属の一部が可動側合わせ面31と固定側合わせ面21との間の隙間に流れやすくなる。従って、可動側合わせ面31と固定側合わせ面21との間の隙間に溶融金属が部分的に介在した状態で溶融金属が冷却されると、型外し工程としてのステップS4において型1から外された成型品2に板状のバリが形成される。 Here, when the mold 1 is closed, a gap may be partially formed between the movable side mating surface 31 and the fixed side mating surface 21. In this case, in step S2 as an injection step, a part of the molten metal filled in the cavity 32 easily flows into the gap between the movable side mating surface 31 and the fixed side mating surface 21. Therefore, when the molten metal is cooled in a state where the molten metal is partially interposed in the gap between the movable side mating surface 31 and the fixed side mating surface 21, the molten metal is removed from the mold 1 in step S4 as a mold releasing step. A plate-shaped burr is formed on the molded product 2.
 図11は、図9の成型品2にバリ90が形成された状態を示す斜視図である。成型品2に含まれているコイル部品10には、固定側合わせ面21によって成型された型合わせ位置形成面100が形成されている。バリ90は、型合わせ位置形成面100の内周辺及び外周辺のそれぞれに形成されている。型合わせ位置形成面100の内周辺に形成されたバリ90は、型合わせ位置形成面100からコイル部品10の内側へ張り出している。型合わせ位置形成面100の外周辺に形成されたバリ90は、型合わせ位置形成面100からコイル部品10の外側へ張り出している。バリ90は、コイル部品10にとって不要部分である。 FIG. 11 is a perspective view showing a state in which burrs 90 are formed on the molded product 2 of FIG. On the coil component 10 included in the molded product 2, a molding position forming surface 100 molded by the fixed-side mating surface 21 is formed. The burrs 90 are formed on the inner periphery and the outer periphery of the molding position forming surface 100, respectively. The burrs 90 formed on the inner periphery of the mold position forming surface 100 project from the mold position forming surface 100 to the inside of the coil component 10. The burrs 90 formed on the outer periphery of the molding position forming surface 100 project from the molding position forming surface 100 to the outside of the coil component 10. The burr 90 is an unnecessary part for the coil component 10.
 従って、除去工程としてのステップS5では、バリ90を削って成型品2から除去するようにしてもよい。このようにすれば、コイル部品10の形状の精度の向上をさらに図ることができる。また、バリ90だけでなく成型品2の表面を削ることによりコイル部品10の形状をさらに精度よく決めることができる。 Therefore, in step S5 as a removing step, the burr 90 may be shaved and removed from the molded product 2. By doing so, the accuracy of the shape of the coil component 10 can be further improved. Further, by shaving not only the burr 90 but also the surface of the molded product 2, the shape of the coil component 10 can be determined with higher accuracy.
 成型品2においてバリ90が形成されている部分の表面は、鋳肌である。鋳肌の面粗度は、一般的にRz80程度である。これに対して、除去工程において成型品2の表面を削ると、コイル部品10の表面の面粗度は例えばRz10程度になる。このように、除去工程において成型品2の表面を削ることにより、コイル部品10の表面の面粗度を小さくすることができる。 表面 The surface of the part where the burr 90 is formed in the molded product 2 is a casting surface. The surface roughness of the casting surface is generally about Rz80. On the other hand, when the surface of the molded product 2 is shaved in the removing step, the surface roughness of the surface of the coil component 10 becomes, for example, about Rz10. Thus, by shaving the surface of the molded product 2 in the removing step, the surface roughness of the surface of the coil component 10 can be reduced.
 また、キャビティ32を構成する溝の両側面を可動側合わせ面31に対して傾斜させることにより、キャビティ32の底部からキャビティ32の開放部に向かってキャビティ32の溝幅を連続的に大きくしてもよい。即ち、可動側合わせ面31に対するキャビティ32の両側面の勾配を抜き勾配としてもよい。この場合、成型品2に含まれているコイル部品10の各直線部12の幅もキャビティ32の溝幅に合わせてキャビティ32の底部側からキャビティ32の開放部側に向かって連続的に大きくなる。このようにすれば、型外し工程においてキャビティ32から成型品2を外しやすくすることができる。従って、成型品2が型1に引っ掛かったり、成型品2が落下したりすることを防止することができ、製造設備の運転が停止してしまう不具合の防止を図ることができる。さらに、この場合、コイル部品10では、各直線部12の幅がコイル部品10の厚さ方向において変化している。これにより、例えば、コイル部品10を含むコイルを電気機械のコアのスロットに配置した場合、コイル部品10の側面とスロットの内面との間に隙間を生じさせることができる。従って、コイル部品10の側面とスロットの内面との間の隙間に冷却風を通過させやすくすることができ、電気機械の冷却効率を向上させることができる。 Also, by inclining both side surfaces of the groove constituting the cavity 32 with respect to the movable side mating surface 31, the groove width of the cavity 32 is continuously increased from the bottom of the cavity 32 toward the opening of the cavity 32. Is also good. That is, the gradient of both sides of the cavity 32 with respect to the movable side mating surface 31 may be set as the draft. In this case, the width of each linear portion 12 of the coil component 10 included in the molded product 2 also increases continuously from the bottom side of the cavity 32 toward the open side of the cavity 32 in accordance with the groove width of the cavity 32. . By doing so, the molded article 2 can be easily removed from the cavity 32 in the mold removing step. Therefore, it is possible to prevent the molded article 2 from being caught on the mold 1 and to prevent the molded article 2 from dropping, and to prevent a problem that the operation of the manufacturing equipment is stopped. Further, in this case, in the coil component 10, the width of each linear portion 12 changes in the thickness direction of the coil component 10. Thereby, for example, when the coil including the coil component 10 is arranged in the slot of the core of the electric machine, a gap can be generated between the side surface of the coil component 10 and the inner surface of the slot. Therefore, the cooling air can be easily passed through the gap between the side surface of the coil component 10 and the inner surface of the slot, and the cooling efficiency of the electric machine can be improved.
 なお、上記の例では、コイル部品10の製造方法で用いられる型1がダイカスト型とされている。しかし、コイル部品10の製造方法に用いられる型1は、これに限定されない。例えば、コイル部品10の製造方法に用いられる型1を砂型又は石膏型にしてもよい。 In the above example, the die 1 used in the method for manufacturing the coil component 10 is a die-cast type. However, the mold 1 used in the method for manufacturing the coil component 10 is not limited to this. For example, the mold 1 used in the method for manufacturing the coil component 10 may be a sand mold or a plaster mold.
 実施の形態2.
 次に、本発明の実施の形態2によるコイル部品の製造方法について説明する。
Embodiment 2 FIG.
Next, a method for manufacturing a coil component according to the second embodiment of the present invention will be described.
 図12は、本発明の実施の形態2によるコイル部品の製造方法で用いられる型1を示す断面斜視図である。実施の形態2の型1は、固定型20に湯口1Aと湯道24とが設けられている点が、実施の形態1の型1とは異なる。また、実施の形態2の型1は、可動型30にエアベント37が設けられている点が、実施の形態1の型1とは異なる。さらに、実施の形態2の型1は、固定型20にプランジャ25が取り付けられている点が、実施の形態1の型1とは異なる。他の構成は、実施の形態1と同様である。 FIG. 12 is a sectional perspective view showing a mold 1 used in the method for manufacturing a coil component according to the second embodiment of the present invention. The mold 1 according to the second embodiment differs from the mold 1 according to the first embodiment in that a fixed gate 20 is provided with a gate 1A and a runner 24. The mold 1 according to the second embodiment is different from the mold 1 according to the first embodiment in that the movable mold 30 is provided with an air vent 37. Further, the mold 1 according to the second embodiment is different from the mold 1 according to the first embodiment in that the plunger 25 is attached to the fixed mold 20. Other configurations are the same as those of the first embodiment.
 図12に示すように、実施の形態2の型1では、固定型20の上面に湯口1Aが設けられている。湯口1Aの下部には、湯口1Aとキャビティ32とをつなぐ湯道24が設けられている。湯道24には、プランジャ25が挿入されている。プランジャ25は、湯道24に沿って進退移動可能になっている。プランジャ25は、湯道24に沿って前進移動することにより、湯道24内に充填された溶融金属をキャビティ32内に押し込む。 型 As shown in FIG. 12, in the mold 1 of the second embodiment, the gate 1A is provided on the upper surface of the fixed mold 20. A runner 24 connecting the gate 1A and the cavity 32 is provided below the gate 1A. A plunger 25 is inserted into the runner 24. The plunger 25 can move forward and backward along the runner 24. The plunger 25 pushes the molten metal filled in the runner 24 into the cavity 32 by moving forward along the runner 24.
 次に、実施の形態2によるコイル部品の製造方法について、図12から図16を用いて説明する。実施の形態2において、コイル部品10を製造するときには、実施の形態1と同様に溶融金属を作成した後、注入工程において型1に溶融金属を注入する。 Next, a method for manufacturing a coil component according to the second embodiment will be described with reference to FIGS. In the second embodiment, when manufacturing the coil component 10, a molten metal is prepared as in the first embodiment, and then the molten metal is injected into the mold 1 in an injection step.
 型1に溶融金属を注入するときには、まず、図12の型1が閉じた状態で湯口1Aから湯道24内に溶融金属を流し込む。
 次に、プランジャ25を前進移動させて可動型30のキャビティ32内に湯道24から溶融金属を充填する。
 図13は、図12の型1においてプランジャ25が前進移動した状態を示す断面斜視図である。プランジャ25は、図13に矢印Aで示す方向に前進移動して、湯道24内の溶融金属を可動型30のキャビティ32内に押し込む。これにより、キャビティ32には、溶融金属が充填される。このとき、余剰分の溶融金属がキャビティ32内からエアベント37内に溢れる。
When pouring the molten metal into the mold 1, first, the molten metal is poured from the gate 1A into the runner 24 with the mold 1 in FIG. 12 closed.
Next, the plunger 25 is moved forward to fill the cavity 32 of the movable mold 30 with the molten metal from the runner 24.
FIG. 13 is a sectional perspective view showing a state in which the plunger 25 has moved forward in the mold 1 of FIG. The plunger 25 moves forward in the direction indicated by the arrow A in FIG. 13 and pushes the molten metal in the runner 24 into the cavity 32 of the movable mold 30. Thereby, the cavity 32 is filled with the molten metal. At this time, excess molten metal overflows from inside the cavity 32 into the air vent 37.
 この後、冷却工程において、型1を冷却して、型1における溶融金属を硬化させる。これにより、型1には成型品2ができる。成型品2は、キャビティ32だけでなく湯道24及びエアベント37にも及んでいる。 Then, in the cooling step, the mold 1 is cooled, and the molten metal in the mold 1 is hardened. Thus, a molded product 2 is formed in the mold 1. The molded product 2 extends not only to the cavity 32 but also to the runner 24 and the air vent 37.
 次に、型外し工程において、型1から成型品を外す。型1から成型品を外すときには、まずプランジャ25を後退させる。次に可動型30を開放位置へ移動させて型1を開く。図14は、図13の型1が開いた状態を示す断面斜視図である。型1に成型品2が成型された状態で型1を開くと、成型品2が可動型30と一体になって固定型20から外れる。 Next, in the mold removing step, the molded product is removed from the mold 1. When removing the molded product from the mold 1, the plunger 25 is first retracted. Next, the movable mold 30 is moved to the open position to open the mold 1. FIG. 14 is a sectional perspective view showing a state where the mold 1 of FIG. 13 is opened. When the mold 1 is opened in a state where the molded article 2 has been molded in the mold 1, the molded article 2 comes off the fixed mold 20 integrally with the movable mold 30.
 この後、可動型30に対して押出部材36を移動させて複数のピン35によって成型品2を押し出す。図15は、図14の複数のピン35によって成型品2が押し出された状態を示す断面斜視図である。また、図16は、図15の型1及び成型品2を示す斜視図である。成型品2は、複数のピン35によって押し出されることにより可動型30から外れる。このようにして、成型品2が型1から外れる。 後 Thereafter, the extruding member 36 is moved with respect to the movable mold 30, and the molded product 2 is extruded by the plurality of pins 35. FIG. 15 is a cross-sectional perspective view showing a state where the molded product 2 is pushed out by the plurality of pins 35 of FIG. FIG. 16 is a perspective view showing the mold 1 and the molded product 2 of FIG. The molded product 2 is detached from the movable mold 30 by being pushed out by the plurality of pins 35. Thus, the molded product 2 comes off the mold 1.
 型1から外された成型品2には、実施の形態1の成型品2と同様に、コイル部品10だけでなく、湯道24及びエアベント37のそれぞれで成型された複数の突起部2Aが含まれている。従って、型1から成型品2を外した後、除去工程において不要部分である各突起部2Aを成型品2から除去する。各突起部2Aが成型品2から除去されると、コイル部品10が得られる。即ち、成型品2の一部がコイル部品10となる。各突起部2Aは、例えば裁断機によって成型品2から除去される。この後の工程は、実施の形態1と同様である。 Similarly to the molded product 2 of the first embodiment, the molded product 2 removed from the mold 1 includes not only the coil component 10 but also a plurality of protrusions 2A molded by the runner 24 and the air vent 37, respectively. Have been. Therefore, after the molded article 2 is removed from the mold 1, the projections 2A, which are unnecessary portions, are removed from the molded article 2 in the removing step. When each projection 2A is removed from the molded product 2, the coil component 10 is obtained. That is, a part of the molded product 2 becomes the coil component 10. Each projection 2A is removed from the molded product 2 by, for example, a cutter. Subsequent steps are the same as in the first embodiment.
 実施の形態3.
 次に、本発明の実施の形態3によるコイル部品の製造方法について説明する。
 実施の形態3によるコイル部品の製造方法で用いられる型1は、可動型30に、溶融金属が充填される複数のキャビティ32が設けられている点が、実施の形態1とは異なる。他の構成は、実施の形態1と同様である。
Embodiment 3 FIG.
Next, a method for manufacturing a coil component according to the third embodiment of the present invention will be described.
The mold 1 used in the method for manufacturing a coil component according to the third embodiment is different from the first embodiment in that a movable mold 30 is provided with a plurality of cavities 32 filled with molten metal. Other configurations are the same as those of the first embodiment.
 図17は、本発明の実施の形態3によるコイル部品の製造方法で使用される型1を示す斜視図である。図17に示すように、実施の形態3の型1は、実施の形態1の型1を複数個接続したような形状を有している。 FIG. 17 is a perspective view showing a mold 1 used in the method for manufacturing a coil component according to the third embodiment of the present invention. As shown in FIG. 17, the mold 1 of the third embodiment has a shape in which a plurality of the molds 1 of the first embodiment are connected.
 この例では、可動型30の可動側合わせ面31には、溶融金属が注入される1つの湯口1Aと複数のキャビティ32とが設けられている。複数のキャビティ32のそれぞれには、注入路34が設けられている。各注入路34は、湯道38を介して互いに繋がっている。湯口1Aから注入された溶融金属は、湯道38を介して各キャビティ32内に充填される。この例では、複数のキャビティ32の形状が全て同一の形状である。 In this example, the movable side mating surface 31 of the movable mold 30 is provided with one gate 1A into which molten metal is injected and a plurality of cavities 32. An injection path 34 is provided in each of the plurality of cavities 32. Each injection path 34 is connected to each other via a runner 38. The molten metal injected from the gate 1A is filled into each cavity 32 via the runner 38. In this example, the shapes of the plurality of cavities 32 are all the same.
 次に、実施の形態3によるコイル部品の製造方法について、図17から図21を用いて説明する。 Next, a method for manufacturing a coil component according to the third embodiment will be described with reference to FIGS.
 実施の形態3でも、実施の形態1と同様にして溶融金属を作成する。この後、図17の型1が開いた状態から型1を閉じて、注入工程において湯口1Aから溶融金属を注入する。これにより、溶融金属は、注入路34及び湯道38を介して型1の各キャビティ32に充填される。このとき、注入路34及びエアベント22には、余剰分の溶融金属がキャビティ32から溢れる。 で も Also in the third embodiment, a molten metal is prepared in the same manner as in the first embodiment. Thereafter, the mold 1 is closed from the state in which the mold 1 in FIG. 17 is opened, and molten metal is injected from the gate 1A in an injection step. As a result, the molten metal is filled into each cavity 32 of the mold 1 via the injection path 34 and the runner 38. At this time, excess molten metal overflows from the cavity 32 into the injection path 34 and the air vent 22.
 次に、冷却工程において、型1を冷却する。これにより、型1では、溶融金属が硬化して成型品2ができる。成型品2は、各キャビティ32だけでなく注入路34、湯道38及びエアベント22にも及んでいる。 Next, in the cooling step, the mold 1 is cooled. Thus, in the mold 1, the molten metal is cured to form the molded product 2. The molded product 2 extends not only to each cavity 32 but also to the injection path 34, the runner 38 and the air vent 22.
 この後、型外し工程において、型1から成型品を外す。型1から成型品を外すときには、まず可動型30を開放位置へ移動させて型1を開く。図18は、図17の可動型30と成型品2とが一体になったまま型1が開いた状態を示す断面斜視図である。型1に成型品2が成型された状態で型1を開くと、成型品2が可動型30と一体になって固定型20から外れる。 後 Thereafter, the molded article is removed from the mold 1 in the mold removing step. When removing the molded product from the mold 1, the movable mold 30 is first moved to the open position and the mold 1 is opened. FIG. 18 is a cross-sectional perspective view showing a state in which the mold 1 is opened while the movable mold 30 and the molded product 2 in FIG. 17 are integrated. When the mold 1 is opened in a state where the molded article 2 has been molded in the mold 1, the molded article 2 comes off the fixed mold 20 integrally with the movable mold 30.
 この後、可動型30に対して図示しない押出部材36を移動させて複数のピン35によって成型品2を押し出す。図19は、複数のピン35によって成型品2が押し出された状態を示す断面斜視図である。成型品2は、複数のピン35によって押し出されることにより可動型30から外れる。このようにして、成型品2が型1から外れる。 Thereafter, the extruded member 36 (not shown) is moved with respect to the movable mold 30 and the molded product 2 is extruded by the plurality of pins 35. FIG. 19 is a sectional perspective view showing a state where the molded product 2 is pushed out by the plurality of pins 35. The molded product 2 is detached from the movable mold 30 by being pushed out by the plurality of pins 35. Thus, the molded product 2 comes off the mold 1.
 図20は、図19の型1から外された成型品2を示す斜視図である。型1から外された成型品2には、コイル部品10だけでなく、注入路34、湯道38及びエアベント22のそれぞれで成型された複数の突起部2Aが含まれている。各突起部2Aは、コイル部品10にとって不要部分である。 FIG. 20 is a perspective view showing the molded product 2 removed from the mold 1 in FIG. The molded product 2 removed from the mold 1 includes not only the coil component 10 but also a plurality of protrusions 2A molded by the injection path 34, the runner 38, and the air vent 22, respectively. Each projection 2A is an unnecessary part for the coil component 10.
 従って、型1から成型品2を外した後、除去工程において、不要部分である各突起部2Aを成型品2から除去する。図21は、図20の成型品2から各突起部2Aを除去した状態を示す斜視図である。各突起部2Aが成型品2から除去されると、複数のコイル部品10が得られる。即ち、成型品2の一部が複数のコイル部品10となる。各突起部2Aは、例えば裁断機によって成型品2から除去される。この後の工程は、実施の形態1と同様である。 Therefore, after removing the molded product 2 from the mold 1, in the removing step, the respective projections 2A, which are unnecessary portions, are removed from the molded product 2. FIG. 21 is a perspective view showing a state in which each protrusion 2A has been removed from the molded product 2 of FIG. When each projection 2A is removed from the molded product 2, a plurality of coil components 10 are obtained. That is, a part of the molded product 2 becomes a plurality of coil components 10. Each projection 2A is removed from the molded product 2 by, for example, a cutter. Subsequent steps are the same as in the first embodiment.
 なお、実施の形態3では、型1に6つのキャビティ32を設けている。しかし、型1の構成は、これに限るものではない。例えば、型1に設けられるキャビティ32の数は、6つよりも少なくてもよいし、7つ以上であってもよい。 In the third embodiment, six cavities 32 are provided in the mold 1. However, the configuration of the mold 1 is not limited to this. For example, the number of cavities 32 provided in the mold 1 may be less than six, or may be seven or more.
 また、実施の形態1~3では、コイル部品10の形状は、段差のない環状になっている。しかし、コイル部品10の形状は、これに限るものではない。例えば、コイル部品10の形状は、図22に示すコイル部品10Aのような形状であってもよい。 In the first to third embodiments, the shape of the coil component 10 is an annular shape with no steps. However, the shape of the coil component 10 is not limited to this. For example, the shape of the coil component 10 may be a shape like the coil component 10A shown in FIG.
 図22の例では、コイル部品10Aは、3つの直線部12Aと各直線部12Aの間に形成された2つの角部11Aとを有する2つの部分を、2つの端部16において軸方向に位置をずらして接続した形状を有している。このような形状のコイル部品10Aであっても、1回の成型によってコイル部品10Aを製造することができる。 In the example of FIG. 22, the coil component 10A positions two portions having three linear portions 12A and two corner portions 11A formed between the linear portions 12A in the axial direction at the two end portions 16. Are shifted and connected. Even with the coil component 10A having such a shape, the coil component 10A can be manufactured by one molding.
 なお、上記の例では、複数のキャビティ32の形状が全て同一の形状になっている。しかし、複数のキャビティ32の形状を互いに異なる形状としてもよい。この場合、キャビティ32ごとの形状に合わせて成型された複数のコイル部品10が含まれた成型品2ができる。このようにすれば、互いに異なる形状のコイル部品10を同時に製造することができる。 In the above example, all of the cavities 32 have the same shape. However, the shapes of the plurality of cavities 32 may be different from each other. In this case, a molded product 2 including a plurality of coil components 10 molded according to the shape of each cavity 32 is obtained. By doing so, the coil components 10 having different shapes can be manufactured at the same time.
 実施の形態4.
 次に、本発明の実施の形態4によるコイル部品の製造方法について説明する。実施の形態4によるコイルの製造方法では、成型品2の全部がコイル部品10Bである点が、実施の形態1~3とは異なる。また、実施の形態4によるコイル部品の製造方法で用いられる型1は、可動型30が、固定型20に対して、上下方向に移動して型1を開閉する点が、実施の形態1とは異なる。
Embodiment 4 FIG.
Next, a method for manufacturing a coil component according to the fourth embodiment of the present invention will be described. The coil manufacturing method according to the fourth embodiment is different from the first to third embodiments in that the entire molded product 2 is the coil component 10B. The mold 1 used in the method for manufacturing a coil component according to the fourth embodiment differs from the first embodiment in that the movable mold 30 moves up and down with respect to the fixed mold 20 to open and close the mold 1. Is different.
 図23は、実施の形態4によるコイル部品の製造方法で用いられる型1を示す斜視図である。図23に示す型1では、例えば、環状とは異なる形状のコイル部品10Bを成型することが可能である。 FIG. 23 is a perspective view showing a mold 1 used in the method for manufacturing a coil component according to the fourth embodiment. In the mold 1 shown in FIG. 23, for example, a coil component 10B having a shape different from an annular shape can be formed.
 コイル部品10Bは、連続して配置された複数の直線部12Bと、複数の直線部12Bの端部間に形成された複数の角部11Bと、両端に配置された2つの直線部12Bに設けられた2つの端子部18とを有している。コイル部品10Bは、軸方向に沿ってみたときに、全体としてδ形状となっている。この例では、コイル部品10Bは、1つの直線部12Bが、間隔を空けて他の直線部12Bと重なっている。他の構成及び製造方法は、実施の形態1と同様である。 The coil component 10B is provided on a plurality of linear portions 12B arranged continuously, a plurality of corner portions 11B formed between ends of the plurality of linear portions 12B, and two linear portions 12B arranged on both ends. And two terminal portions 18 provided. The coil component 10B has a δ shape as a whole when viewed along the axial direction. In this example, in the coil component 10B, one linear portion 12B overlaps with another linear portion 12B at an interval. Other configurations and manufacturing methods are the same as in the first embodiment.
 なお、図23に示すような型1に、水平方向に移動するスライド型を追加することによって、図24に示すような、らせん状のコイル部品10Cを成型することも可能である。また、コイル部品10Cは、砂型を用いることによっても成型することが可能である。 By adding a slide die that moves in the horizontal direction to the die 1 as shown in FIG. 23, a spiral coil component 10C as shown in FIG. 24 can be formed. Also, the coil component 10C can be molded by using a sand mold.
 らせん状のコイル部品10Cは、連続して配置された複数の直線部12Cと、複数の直線部12Cの端部間に形成された複数の角部11Cと、両端に配置された2つの直線部12Cに設けられた2つの端子部18とを有している。各角部11Cを介して連結された2つの直線部12Cは、互いに直交している。 The helical coil component 10C includes a plurality of linear portions 12C arranged continuously, a plurality of corner portions 11C formed between ends of the plurality of linear portions 12C, and two linear portions arranged at both ends. 12C. The two straight portions 12C connected via each corner 11C are orthogonal to each other.
 各直線部12Cのそれぞれには、コイル部品10Cの外側に面する平面がコイル外周面121として形成されている。各角部11Cのそれぞれには、コイル部品10Cの軸線に沿った稜線122が形成されている。稜線122は、角部11Cを介して互いに隣り合う2つの直線部12Cのそれぞれのコイル外周面121同士が交わって形成された境界線である。 平面 A plane facing the outside of the coil component 10C is formed as a coil outer peripheral surface 121 on each of the linear portions 12C. Each of the corners 11C has a ridge 122 formed along the axis of the coil component 10C. The ridge line 122 is a boundary line formed by intersecting the respective coil outer peripheral surfaces 121 of two linear portions 12C adjacent to each other via the corner portion 11C.
 このように、角部11Cには、2つの直線部12Cのそれぞれのコイル外周面121同士が交わって形成された稜線122が設けられている。このため、コイル部品10Cの角部11Cが丸まらないようにすることができる。これにより、コイル部品10Cが配置される空間を有効に利用することができる。 As described above, the corner 11C is provided with the ridgeline 122 formed by intersecting the respective coil outer peripheral surfaces 121 of the two straight portions 12C. For this reason, the corner 11C of the coil component 10C can be prevented from being rounded. Thereby, the space in which the coil component 10C is arranged can be effectively used.
 また、型1が閉じた状態で固定型20と可動型30との間にらせん状の空間部がキャビティとして形成されるようにしてもよい。 In addition, a spiral space may be formed as a cavity between the fixed mold 20 and the movable mold 30 when the mold 1 is closed.
 即ち、図25は、図24のコイル部品10Cの変形例としてのコイル部品10Dを示す斜視図である。また、図26は、図25の矢印XXVIに沿って見たときのコイル部品10Dを示す上面図である。さらに、図27は、図25の矢印XXVIIに沿って見たときのコイル部品10Dを示す下面図である。コイル部品10Dは、コイル軸線Pを持つらせん状のコイル部品である。コイル部品10Dは、複数の第1コイル線部101と、複数の第2コイル線部102と、複数の第3コイル線部103と、複数の第4コイル線部104とを有している。コイル部品10Dは、第1コイル線部101、第2コイル線部102、第3コイル線部103及び第4コイル線部104が連続して繋がることによりらせん状に形成されている。 FIG. 25 is a perspective view showing a coil component 10D as a modification of the coil component 10C in FIG. FIG. 26 is a top view showing the coil component 10D when viewed along the arrow XXVI in FIG. FIG. 27 is a bottom view showing the coil component 10D as viewed along arrow XXVII in FIG. The coil component 10D is a spiral coil component having the coil axis P. The coil component 10D has a plurality of first coil wire portions 101, a plurality of second coil wire portions 102, a plurality of third coil wire portions 103, and a plurality of fourth coil wire portions 104. The coil component 10D is formed in a spiral shape by continuously connecting the first coil wire portion 101, the second coil wire portion 102, the third coil wire portion 103, and the fourth coil wire portion 104.
 各第3コイル線部103は、コイル軸線Pに交差する特定の軸交差方向Qに沿った直線状のコイル線部である。図25の例では、コイル軸線Pに直交する方向が軸交差方向Qとなっている。複数の第3コイル線部103は、コイル軸線Pに沿った方向へ互いに間隔をあけて並んでいる。 Each third coil wire portion 103 is a straight coil wire portion along a specific axis crossing direction Q intersecting the coil axis P. In the example of FIG. 25, the direction orthogonal to the coil axis P is the axis crossing direction Q. The plurality of third coil wire portions 103 are arranged at intervals in the direction along the coil axis P.
 各第4コイル線部104は、コイル軸線P及び軸交差方向Qのそれぞれに直交する方向へ各第3コイル線部103から離れた位置に配置されている。各第4コイル線部104は、軸交差方向Qに沿った直線状のコイル線部である。即ち、各第4コイル線部104は、各第3コイル線部103と平行に配置されている。また、複数の第4コイル線部104は、コイル軸線Pに沿った方向へ互いに間隔をあけて並んでいる。 Each fourth coil wire portion 104 is arranged at a position distant from each third coil wire portion 103 in a direction orthogonal to each of the coil axis P and the axis cross direction Q. Each fourth coil wire portion 104 is a straight coil wire portion along the axis cross direction Q. That is, each fourth coil wire portion 104 is arranged in parallel with each third coil wire portion 103. Further, the plurality of fourth coil wire portions 104 are arranged at intervals in the direction along the coil axis P.
 各第3コイル線部103及び各第4コイル線部104のそれぞれには、コイル部品10Dの内側に面するコイル内周面と、コイル部品10Dの外側に面するコイル外周面とが形成されている。 Each of the third coil wire portions 103 and the fourth coil wire portions 104 is formed with a coil inner circumferential surface facing the inside of the coil component 10D and a coil outer circumferential surface facing the outside of the coil component 10D. I have.
 複数の第1コイル線部101は、コイル軸線Pに沿った方向へ互いに間隔をあけて並んでいる。各第1コイル線部101は、コイル軸線P及び軸交差方向Qのそれぞれに交差するコイル線部である。この例では、コイル軸線P及び軸交差方向Qのそれぞれに直交する直線状のコイル線部が第1コイル線部101となっている。軸交差方向Qに沿ってコイル部品10Dを見たとき、図26及び図27に示すように、複数の第1コイル線部101は、コイル軸線Pに対して同じ方向へ傾斜している。 The plurality of first coil wire portions 101 are arranged at intervals in the direction along the coil axis P. Each of the first coil wire portions 101 is a coil wire portion that intersects the coil axis P and the axis crossing direction Q, respectively. In this example, a linear coil wire portion orthogonal to each of the coil axis P and the axis cross direction Q is the first coil wire portion 101. When the coil component 10D is viewed along the axis crossing direction Q, the plurality of first coil wire portions 101 are inclined in the same direction with respect to the coil axis P as shown in FIGS.
 各第2コイル線部102は、各第1コイル線部101から軸交差方向Qへ離れた位置に配置されている。即ち、複数の第1コイル線部101と、複数の第2コイル線部102とは、軸交差方向Qにおいて互いに離して配置されている。また、複数の第2コイル線部102は、コイル軸線Pに沿った方向へ互いに間隔をあけて並んでいる。 Each second coil wire portion 102 is arranged at a position away from each first coil wire portion 101 in the axis crossing direction Q. That is, the plurality of first coil wire portions 101 and the plurality of second coil wire portions 102 are arranged apart from each other in the axis cross direction Q. Further, the plurality of second coil wire portions 102 are arranged at intervals in the direction along the coil axis P.
 各第2コイル線部102は、コイル軸線P及び軸交差方向Qのそれぞれに交差するコイル線部である。この例では、コイル軸線P及び軸交差方向Qのそれぞれに直交する直線状のコイル線部が第2コイル線部102となっている。軸交差方向Qに沿ってコイル部品10Dを見たとき、図26及び図27に示すように、複数の第2コイル線部102は、各第1コイル線部101とは逆方向へコイル軸線Pに対して傾斜している。 Each of the second coil wire portions 102 is a coil wire portion that intersects with each of the coil axis P and the axis cross direction Q. In this example, a linear coil wire portion orthogonal to each of the coil axis P and the axis cross direction Q is the second coil wire portion 102. When the coil component 10D is viewed along the axis crossing direction Q, as shown in FIGS. 26 and 27, the plurality of second coil wire portions 102 Inclined to
 各第3コイル線部103は、第1コイル線部101及び第2コイル線部102のそれぞれの一端部同士を繋いでいる。軸交差方向Qに沿ってコイル部品10Dを見たとき、図26及び図27に示すように、各第3コイル線部103は、互いに隣り合う第1コイル線部101及び第2コイル線部102のそれぞれの一端部同士を繋いでいる。 Each third coil wire portion 103 connects one end of each of the first coil wire portion 101 and the second coil wire portion 102. When the coil component 10D is viewed along the axis crossing direction Q, as shown in FIGS. 26 and 27, each of the third coil wire portions 103 is composed of a first coil wire portion 101 and a second coil wire portion 102 adjacent to each other. Are connected to each other at one end.
 各第4コイル線部104は、第1コイル線部101及び第2コイル線部102のそれぞれの他端部同士を繋いでいる。軸交差方向Qに沿ってコイル部品10Dを見たとき、図26及び図27に示すように、各第4コイル線部104は、互いに隣り合う第1コイル線部101及び第2コイル線部102のそれぞれの他端部同士を繋いでいる。 Each fourth coil wire portion 104 connects the other end portions of the first coil wire portion 101 and the second coil wire portion 102 to each other. When the coil component 10D is viewed along the axis crossing direction Q, as shown in FIGS. 26 and 27, each of the fourth coil wire portions 104 is composed of the first coil wire portion 101 and the second coil wire portion 102 adjacent to each other. Are connected to each other.
 軸交差方向Qに沿ってコイル部品10Dを見たとき、第1コイル線部101と第2コイル線部102とは、コイル軸線Pに沿った方向へ交互に並んでいる。また、軸交差方向Qに沿ってコイル部品10Dを見たとき、図26及び図27に示すように、各第1コイル線部101の領域は、各第2コイル線部102の領域から外れている。 When the coil component 10D is viewed along the axis crossing direction Q, the first coil wire portions 101 and the second coil wire portions 102 are alternately arranged in a direction along the coil axis P. When the coil component 10D is viewed along the axis crossing direction Q, as shown in FIGS. 26 and 27, the region of each first coil wire portion 101 deviates from the region of each second coil wire portion 102. I have.
 各第1コイル線部101には、図25に示すように、コイル部品10Dの内側に面するコイル内周面としての第1コイル内面101aと、コイル部品10Dの外側に面するコイル外周面としての第1コイル外面101bとが形成されている。各第2コイル線部102には、コイル部品10Dの内側に面するコイル内周面としての第2コイル内面102aと、コイル部品10Dの外側に面するコイル外周面としての第2コイル外面102bとが形成されている。 As shown in FIG. 25, each first coil wire portion 101 has a first coil inner surface 101a as an inner circumferential surface of the coil facing the inside of the coil component 10D, and a coil outer circumferential surface facing the outside of the coil component 10D. And the first coil outer surface 101b. Each second coil wire portion 102 has a second coil inner surface 102a as an inner circumferential surface of the coil facing the inside of the coil component 10D, and a second coil outer surface 102b as a coil outer circumferential surface facing the outside of the coil component 10D. Are formed.
 第3コイル線部103を介して互いに繋がっている第1コイル線部101及び第2コイル線部102では、軸交差方向Qに沿ってコイル部品10Dを見たとき、図26及び図27に示すように、第1コイル線部101における第2コイル線部102側の辺101cと、第2コイル線部102における第1コイル線部101側の辺102cとが第3コイル線部103の位置で互いに交差している。 In the first coil wire portion 101 and the second coil wire portion 102 connected to each other via the third coil wire portion 103, when the coil component 10D is viewed along the axis cross direction Q, it is shown in FIGS. 26 and 27. As described above, the side 101c of the first coil wire portion 101 on the side of the second coil wire portion 102 and the side 102c of the second coil wire portion 102 on the side of the first coil wire portion 101 are located at the position of the third coil wire portion 103. Cross each other.
 第4コイル線部104を介して互いに繋がっている第1コイル線部101及び第2コイル線部102では、軸交差方向Qに沿ってコイル部品10Dを見たとき、図26及び図27に示すように、第1コイル線部101における第2コイル線部102側の辺101dと、第2コイル線部102における第1コイル線部101側の辺102dとが第4コイル線部104の位置で互いに交差している。 In the first coil wire portion 101 and the second coil wire portion 102 connected to each other via the fourth coil wire portion 104, when the coil component 10D is viewed along the axis cross direction Q, it is shown in FIGS. 26 and 27. As described above, the side 101d of the first coil wire portion 101 on the side of the second coil wire portion 102 and the side 102d of the second coil wire portion 102 on the side of the first coil wire portion 101 are located at the position of the fourth coil wire portion 104. Cross each other.
 図25の例では、各第1コイル線部101、各第2コイル線部102、各第3コイル線部103及び各第4コイル線部104が複数の直線部となっている。また、図25の例では、各第1コイル線部101、各第2コイル線部102、各第3コイル線部103及び各第4コイル線部104のそれぞれの端部間に角部が形成されている。各角部には、角部を介して互いに隣り合う2つの直線部のそれぞれのコイル外周面同士が交わる境界線が稜線として形成されている。 In the example of FIG. 25, each of the first coil wire portions 101, each of the second coil wire portions 102, each of the third coil wire portions 103, and each of the fourth coil wire portions 104 are a plurality of linear portions. In the example of FIG. 25, a corner is formed between each end of each of the first coil wire portions 101, each of the second coil wire portions 102, each of the third coil wire portions 103, and each of the fourth coil wire portions 104. Have been. At each corner, a boundary line at which the respective coil outer peripheral surfaces of two linear portions adjacent to each other via the corner intersect is formed as a ridge line.
 図28は、図25のコイル部品10Dを製造するときの型1を示す斜視図である。また、図29は、図28の型1を別の方向から見たときの状態を示す斜視図である。さらに、図30は、図28の固定型20からコイル部品10Dが外れている状態を示す斜視図である。また、図31は、図28の可動型30からコイル部品10Dが外れている状態を示す斜視図である。 FIG. 28 is a perspective view showing the mold 1 when manufacturing the coil component 10D of FIG. FIG. 29 is a perspective view showing a state when the mold 1 of FIG. 28 is viewed from another direction. FIG. 30 is a perspective view showing a state where the coil component 10D is detached from the fixed mold 20 of FIG. FIG. 31 is a perspective view showing a state where the coil component 10D is detached from the movable mold 30 in FIG.
 固定型20及び可動型30は、軸交差方向Qへ相対的に移動可能になっている。図28の例では、可動型30が固定型20に対して上下方向へ移動することにより、固定型20及び可動型30が相対的に移動する。型1は、固定型20と可動型30とが互いに接触することにより閉じる。また、型1は、固定型20と可動型30とが互いに離れることにより開く。 The fixed mold 20 and the movable mold 30 are relatively movable in the axis cross direction Q. In the example of FIG. 28, the movable mold 30 moves vertically with respect to the fixed mold 20, so that the fixed mold 20 and the movable mold 30 move relatively. The mold 1 closes when the fixed mold 20 and the movable mold 30 come into contact with each other. The mold 1 is opened when the fixed mold 20 and the movable mold 30 are separated from each other.
 固定型20は、第1型本体201と、第1型本体201に設けられた複数の第1歯202とを有している。 The fixed mold 20 has a first mold body 201 and a plurality of first teeth 202 provided on the first mold body 201.
 第1型本体201には、複数の第1歯202が配置された第1型凹部が形成されている。また、第1型本体201には、可動型30に面する固定側合わせ面205が第1合わせ面として形成されている。固定側合わせ面205は、第1型凹部の周囲に形成されている。 1The first mold body 201 has a first mold recess in which a plurality of first teeth 202 are arranged. Further, a fixed side mating surface 205 facing the movable mold 30 is formed on the first mold body 201 as a first mating surface. The fixed side mating surface 205 is formed around the first mold recess.
 複数の第1歯202は、コイル軸線Pに沿った方向へ互いに間隔をあけて並んでいる。また、複数の第1歯202は、コイル軸線Pに交差する軸交差方向Qに沿ってそれぞれ配置されている。 The plurality of first teeth 202 are arranged at intervals in the direction along the coil axis P. Further, the plurality of first teeth 202 are respectively arranged along an axis intersecting direction Q intersecting the coil axis P.
 可動型30は、第2型本体301と、第2型本体301に設けられた複数の第2歯302とを有している。 The movable mold 30 has a second mold body 301 and a plurality of second teeth 302 provided on the second mold body 301.
 図28の例では、第2型本体301が板状部材となっている。第2型本体301からは、固定型20に向けて複数の第2歯302が突出している。第2型本体301には、固定型20に面する可動側合わせ面305が第2合わせ面として形成されている。可動側合わせ面305は、複数の第2歯302が設けられた領域の周囲に形成されている。 で は In the example of FIG. 28, the second die body 301 is a plate-like member. A plurality of second teeth 302 project from the second mold body 301 toward the fixed mold 20. A movable side mating surface 305 facing the fixed mold 20 is formed on the second mold body 301 as a second mating surface. The movable side mating surface 305 is formed around a region where the plurality of second teeth 302 are provided.
 複数の第2歯302は、コイル軸線Pに沿った方向へ互いに間隔をあけて並んでいる。また、複数の第2歯302は、軸交差方向Qに沿ってそれぞれ配置されている。 The plurality of second teeth 302 are arranged at intervals in the direction along the coil axis P. Further, the plurality of second teeth 302 are respectively arranged along the axis cross direction Q.
 固定側合わせ面205及び可動側合わせ面305のそれぞれは、軸交差方向Qに交差する面である。図28の例では、固定側合わせ面205及び可動側合わせ面305が軸交差方向Qに直交している。 Each of the fixed-side mating surface 205 and the movable-side mating surface 305 is a surface that intersects in the axis intersecting direction Q. In the example of FIG. 28, the fixed side mating surface 205 and the movable side mating surface 305 are orthogonal to the axis crossing direction Q.
 型1が閉じた状態では、複数の第1歯202と複数の第2歯302とが交互に噛み合っている。また、型1が閉じた状態では、固定側合わせ面205と可動側合わせ面305とが互いに接触している。さらに、型1が閉じた状態では、各第1歯202と第2型本体301との間、及び各第2歯302と第1型本体201との間に、空間部がキャビティとして形成されている。型1に形成されたキャビティの形状は、第1歯202の外周面に沿った形状と、第2歯302の外周面に沿った形状とが交互に連続するらせん状となっている。 When the mold 1 is closed, the plurality of first teeth 202 and the plurality of second teeth 302 are alternately meshed. When the mold 1 is closed, the fixed side mating surface 205 and the movable side mating surface 305 are in contact with each other. Further, when the mold 1 is closed, spaces are formed as cavities between each first tooth 202 and the second mold body 301 and between each second tooth 302 and the first mold body 201. I have. The shape of the cavity formed in the mold 1 is a spiral shape in which the shape along the outer peripheral surface of the first tooth 202 and the shape along the outer peripheral surface of the second tooth 302 are alternately continuous.
 各第1歯202の外周面には、図28に示すように、軸交差方向Qに沿った第1平行面203と、軸交差方向Qに交差する第1交差面204とが含まれている。第1平行面203は、複数の第1歯202の同じ側の端部に形成されている。第1交差面204は、可動型30に向けて形成されている。 As shown in FIG. 28, the outer peripheral surface of each first tooth 202 includes a first parallel surface 203 along the axis crossing direction Q and a first crossing surface 204 intersecting with the axis crossing direction Q. . The first parallel surface 203 is formed at an end on the same side of the plurality of first teeth 202. The first intersection plane 204 is formed toward the movable mold 30.
 各第2歯302の外周面には、図29に示すように、軸交差方向Qに沿った第2平行面303と、軸交差方向Qに交差する第2交差面304とが含まれている。第2平行面303は、複数の第2歯302の同じ側の端部に形成されている。第2平行面303が形成された第2歯302の端部は、第1平行面203が形成された第1歯202の端部とは反対側の端部となっている。第2交差面304は、固定型20に向けて形成されている。 As shown in FIG. 29, the outer peripheral surface of each second tooth 302 includes a second parallel surface 303 along the axis crossing direction Q and a second crossing surface 304 intersecting with the axis crossing direction Q. . The second parallel surface 303 is formed at an end on the same side of the plurality of second teeth 302. The end of the second tooth 302 on which the second parallel surface 303 is formed is an end opposite to the end of the first tooth 202 on which the first parallel surface 203 is formed. The second intersection plane 304 is formed toward the fixed mold 20.
 コイル部品10Dは、実施の形態1の各工程と同様の工程によって製造される。従って、コイル部品10Dの製造方法には、実施の形態1におけるステップS1~ステップS6の各工程が含まれている。注入工程としてのステップS2では、型1が閉じた状態で型1に形成されたらせん状のキャビティに溶融金属が充填される。型外し工程としてのステップS4では、型1が開くことによりらせん状の成型品2がコイル部品10Dとして成型される。 The coil component 10D is manufactured by the same steps as those in the first embodiment. Therefore, the method for manufacturing the coil component 10D includes the steps S1 to S6 in the first embodiment. In step S2 as an injection step, a spiral cavity formed in the mold 1 with the mold 1 closed is filled with molten metal. In step S4 as a mold removing step, the spiral molded article 2 is molded as the coil component 10D by opening the mold 1.
 型外し工程としてのステップS4においてコイル部品10Dが型1から外れるときには、図30の第1型抜きの向きQ1へ固定型20がコイル部品10Dに対して移動し、図31の第2型抜きの向きQ2へ可動型30がコイル部品10Dに対して移動する。ここで、第1型抜きの向きQ1及び第2型抜きの向きQ2は、軸交差方向Qに沿った直線上において互いに離れる逆の向きである。 When the coil component 10D comes off from the mold 1 in step S4 as a mold release process, the fixed mold 20 moves with respect to the coil component 10D in the first mold release direction Q1 in FIG. 30, and the second mold release in FIG. The movable mold 30 moves with respect to the coil component 10D in the direction Q2. Here, the first die-cutting direction Q1 and the second die-cutting direction Q2 are opposite directions apart from each other on a straight line along the axis crossing direction Q.
 各第1コイル線部101は、第1歯202の第1交差面204と第2型本体301との間で成型される。各第2コイル線部102は、第2歯302の第2交差面304と第1型本体201との間で成型される。 Each first coil wire portion 101 is molded between the first crossing surface 204 of the first tooth 202 and the second mold body 301. Each second coil wire portion 102 is molded between the second intersecting surface 304 of the second tooth 302 and the first mold body 201.
 各第1コイル線部101及び各第2コイル線部102のそれぞれに形成された面のうち、固定型20側に向いた面、即ち第1コイル内面101a及び第2コイル外面102bは、固定型20によって成型される。具体的には、第1コイル内面101aが第1歯202の第1交差面204によって成型され、第2コイル外面102bが第1型本体201によって成型される。 Of the surfaces formed on each of the first coil wire portion 101 and each of the second coil wire portions 102, the surface facing the fixed die 20 side, that is, the first coil inner surface 101a and the second coil outer surface 102b are fixed die 20 molded. Specifically, the first coil inner surface 101a is molded by the first crossing surface 204 of the first tooth 202, and the second coil outer surface 102b is molded by the first mold body 201.
 また、各第1コイル線部101及び各第2コイル線部102のそれぞれに形成された面のうち、可動型30側に向いた面、即ち第1コイル外面101b及び第2コイル内面102aは、可動型30によって成型される。具体的には、第2コイル内面102aが第2歯302の第2交差面304によって成型され、第1コイル外面101bが第2型本体301によって成型される。 Also, of the surfaces formed on each of the first coil wire portion 101 and each of the second coil wire portions 102, the surface facing the movable die 30 side, that is, the first coil outer surface 101b and the second coil inner surface 102a are: Molded by the movable mold 30. Specifically, the second coil inner surface 102a is molded by the second intersecting surface 304 of the second tooth 302, and the first coil outer surface 101b is molded by the second mold body 301.
 さらに、各第3コイル線部103は、第2歯302の第2平行面303と、第1型本体201の第1型凹部の内面との間で成型される。各第4コイル線部104は、第1歯202の第1平行面203と、第1型本体201の第1型凹部の内面との間で成型される。 Furthermore, each third coil wire portion 103 is molded between the second parallel surface 303 of the second tooth 302 and the inner surface of the first mold recess of the first mold body 201. Each fourth coil wire portion 104 is molded between the first parallel surface 203 of the first tooth 202 and the inner surface of the first mold recess of the first mold body 201.
 型外し工程としてのステップS4では、固定型20がコイル部品10Dに掛かることなく固定型20がコイル部品10Dに対して第1型抜きの向きQ1へ移動する。また、型外し工程では、可動型30がコイル部品10Dに掛かることなく可動型30がコイル部品10Dに対して第2型抜きの向きQ2へ移動する。 In step S4 as the mold release step, the fixed mold 20 moves in the first mold-releasing direction Q1 with respect to the coil component 10D without the fixed mold 20 hanging on the coil component 10D. Further, in the mold releasing step, the movable die 30 moves in the second die-releasing direction Q2 with respect to the coil component 10D without the movable die 30 hanging on the coil component 10D.
 このようなコイル部品10Dの製造方法では、軸交差方向Qに沿ってコイル部品10Dを見たとき、第1コイル線部101の領域が第2コイル線部102の領域から外れている。このため、コイル部品10Dに対して固定型20及び可動型30のそれぞれを軸交差方向Qに沿って移動させることができる。これにより、固定型20及び可動型30のそれぞれにコイル部品10Dが干渉することなく、固定型20及び可動型30のそれぞれからコイル部品10Dを外すことができる。従って、コイル部品10Dの形状が、らせん状のような複雑な形状であっても、導線の曲げ加工を行うことなくコイル部品10Dを製造することができる。これにより、コイル部品10Dの形状精度の向上を図ることができる。また、成型品2の全部をコイル部品10Dとして用いることができ、コイル部品10Dの生産性の向上も図ることができる。 In the method of manufacturing the coil component 10D, when the coil component 10D is viewed along the axis crossing direction Q, the region of the first coil wire portion 101 is out of the region of the second coil wire portion 102. Therefore, each of the fixed mold 20 and the movable mold 30 can be moved along the axis crossing direction Q with respect to the coil component 10D. Thereby, the coil component 10D can be removed from each of the fixed mold 20 and the movable mold 30 without the coil component 10D interfering with each of the fixed mold 20 and the movable mold 30. Therefore, even if the shape of the coil component 10D is a complicated shape such as a spiral shape, the coil component 10D can be manufactured without performing a bending process on a conductive wire. Thereby, the shape accuracy of the coil component 10D can be improved. Further, the entire molded product 2 can be used as the coil component 10D, and the productivity of the coil component 10D can be improved.
 また、コイル部品10Dの角部には、コイル外周面同士が交わって形成された稜線が設けられている。このため、実施の形態4と同様に、コイル部品10Dが配置される空間を有効に利用することができる。 稜 A ridge formed by intersecting the outer peripheral surfaces of the coils is provided at a corner of the coil component 10D. Therefore, similarly to Embodiment 4, the space in which coil component 10D is arranged can be effectively used.
 また、コイル部品10Dは、鋳造用の銅又は鋳造用のアルミニウムによって構成されている。このため、コイル部品10Dの形状が複雑な形状であっても、コイル部品10Dを容易に製造することができる。 コ イ ル The coil component 10D is made of copper for casting or aluminum for casting. For this reason, even if the shape of the coil component 10D is a complicated shape, the coil component 10D can be easily manufactured.
 なお、図28の型1を複数個接続したような形状を持つ連結タイプの型をコイル部品の製造に用いてもよい。この場合、閉じた状態の型には、1つの湯口に湯道を介して繋がった複数のキャビティが形成される。また、この場合、湯口から注入された溶融金属は、湯道を介して各キャビティ内に充填される。さらに、この場合、連結タイプの型によって成型された成型品には、キャビティごとの形状に合わせて成型された複数のコイル部品10Dが含まれる。これにより、除去工程としてのステップS5では、連結タイプの型によって成型された成型品における不要部分が除去され、複数のコイル部品10Dが得られる。このようにすれば、複数のコイル部品10Dを同時に製造することができ、コイル部品10Dの生産性の向上をさらに図ることができる。 Note that a connection type mold having a shape in which a plurality of molds 1 shown in FIG. 28 are connected may be used for manufacturing a coil component. In this case, the closed mold has a plurality of cavities connected to one gate via a runner. In this case, the molten metal injected from the gate is filled into each cavity via the runner. Further, in this case, the molded product molded by the connection type mold includes a plurality of coil components 10D molded according to the shape of each cavity. Thereby, in step S5 as a removing step, unnecessary portions in the molded product molded by the connection type mold are removed, and a plurality of coil components 10D are obtained. In this way, a plurality of coil components 10D can be manufactured at the same time, and the productivity of the coil components 10D can be further improved.
 また、連結タイプの型をコイル部品の製造に用いる場合、型に形成されている複数のキャビティの形状を互いに異なる形状にしてもよい。このようにすれば、互いに異なる形状の複数のコイル部品10Dを同時に製造することができ、コイル部品10Dの生産性の向上をさらに図ることができる。 In the case where the connection type mold is used for manufacturing the coil component, the shapes of the plurality of cavities formed in the mold may be different from each other. In this manner, a plurality of coil components 10D having different shapes can be manufactured at the same time, and the productivity of the coil components 10D can be further improved.
 また、図28の型1では、第1型本体201に第1型凹部が形成されており、第2型本体301が板状部材となっている。しかし、第1型本体201を板状部材とし、第2型本体301に第2型凹部を形成してもよい。この場合、第1型本体201から可動型30に向けて複数の第2歯302が突出する。また、この場合、第2型本体301の第2型凹部に複数の第2歯302が配置される。このようにしても、閉じた状態の型1にらせん状のキャビティを形成することができ、らせん状のコイル部品10Dを成型することができる。 In the mold 1 shown in FIG. 28, the first mold body 201 has a first mold recess, and the second mold body 301 is a plate-like member. However, the first mold body 201 may be a plate-shaped member, and the second mold body 301 may be formed with a second mold recess. In this case, a plurality of second teeth 302 project from the first mold body 201 toward the movable mold 30. In this case, a plurality of second teeth 302 are arranged in the second mold recess of the second mold body 301. Also in this case, a spiral cavity can be formed in the closed mold 1, and the spiral coil component 10D can be molded.
 また、第1型本体201に第1型凹部を形成するとともに、第2型本体301に第2型凹部を形成してもよい。この場合、第1型凹部に配置された複数の第1歯202のそれぞれの一部が第1型凹部から突出する。また、この場合、第2型凹部に配置された複数の第2歯302のそれぞれの一部が第2型凹部から突出する。さらに、この場合、固定側合わせ面205が第1型凹部の周囲に形成され、可動側合わせ面305が第2型凹部の周囲に形成される。型1が閉じた状態では、第2型凹部から突出した各第2歯302の部分が第1型凹部に挿入され、かつ第1型凹部から突出した各第1歯202の部分が第2型凹部に挿入される。このようにしても、閉じた状態の型1にらせん状のキャビティを形成することができ、らせん状のコイル部品10Dを成型することができる。 Also, the first mold recess may be formed in the first mold body 201 and the second mold recess may be formed in the second mold body 301. In this case, a part of each of the plurality of first teeth 202 arranged in the first mold recess projects from the first mold recess. In this case, a part of each of the plurality of second teeth 302 arranged in the second mold recess projects from the second mold recess. Further, in this case, the fixed side mating surface 205 is formed around the first mold concave portion, and the movable side mating surface 305 is formed around the second mold concave portion. When the mold 1 is closed, the portion of each second tooth 302 projecting from the second mold recess is inserted into the first mold recess, and the portion of each first tooth 202 projecting from the first mold recess is inserted into the second mold recess. Inserted into the recess. Also in this case, a spiral cavity can be formed in the closed mold 1, and the spiral coil component 10D can be molded.
 第1型本体201に第1型凹部を形成するとともに、第2型本体301に第2型凹部を形成した場合には、コイル部品10Dの各第3コイル線部103及び各第4コイル線部104のそれぞれに型1の割面の跡が形成される。型1が閉じると、第1型本体201と第2型本体301との境界に型1の割面が形成される。型1の割面は、コイル部品10Dの各第3コイル線部103及び各第4コイル線部104のそれぞれに対応する位置に形成される。従って、この場合、各第3コイル線部103及び各第4コイル線部104のそれぞれには、第1型本体201と第2型本体301との境界の形状に合わせた跡が形成される。このようにすれば、固定型20及び可動型30のそれぞれに対するコイル部品10Dの外しやすさを同程度にすることができ、型外し工程において固定型20及び可動型30のそれぞれからコイル部品10Dを外しやすくすることができる。 When the first mold recess is formed in the first mold body 201 and the second mold recess is formed in the second mold body 301, each of the third coil wire portions 103 and each of the fourth coil wire portions of the coil component 10D are provided. Traces of the split surface of the mold 1 are formed on each of the molds 104. When the mold 1 is closed, a split surface of the mold 1 is formed at the boundary between the first mold body 201 and the second mold body 301. The split surface of the mold 1 is formed at a position corresponding to each of the third coil wire portions 103 and each of the fourth coil wire portions 104 of the coil component 10D. Accordingly, in this case, traces are formed on each of the third coil wire portions 103 and each of the fourth coil wire portions 104 according to the shape of the boundary between the first mold body 201 and the second mold body 301. By doing so, the ease of removing the coil component 10D with respect to each of the fixed mold 20 and the movable mold 30 can be made equal, and the coil component 10D can be removed from each of the fixed mold 20 and the movable mold 30 in the mold removing step. It can be easily removed.
 また、実施の形態1~3によるコイル部品の製造方法で用いられる型1を用いて、図32に示すようなコイル部品10を成型することも可能である。コイル部品10は、6つの直線部12と、6つの直線部12の端部間に個別に形成された6つの角部11とを有しており、六角形の環状になっている。コイル部品10の6つの角部11には、稜線122が形成されている。 コ イ ル Also, it is possible to mold the coil component 10 as shown in FIG. 32 using the mold 1 used in the coil component manufacturing method according to the first to third embodiments. The coil component 10 has six straight portions 12 and six corner portions 11 formed individually between the ends of the six straight portions 12, and has a hexagonal annular shape. Ridge lines 122 are formed at the six corners 11 of the coil component 10.
 実施の形態5.
 次に、実施の形態5によるコイル部品の製造方法について説明する。図33は、本発明の実施の形態5によるコイル部品の製造方法を実施する製造装置を示す概略図である。
Embodiment 5 FIG.
Next, a method for manufacturing a coil component according to the fifth embodiment will be described. FIG. 33 is a schematic diagram showing a manufacturing apparatus for performing the method for manufacturing a coil component according to the fifth embodiment of the present invention.
 図33に示すように、実施の形態5のコイル部品の製造方法では、型1と、型1に溶融金属を供給するホットチャンバー式ダイカスト装置80とを用いている。 As shown in FIG. 33, in the method for manufacturing a coil component of the fifth embodiment, a mold 1 and a hot-chamber die-casting apparatus 80 for supplying molten metal to the mold 1 are used.
 型1には、固定型20の下部に、側方から溶融金属を注入する湯口1Aが設けられている。ホットチャンバー式ダイカスト装置80は、溶融金属が蓄えられたポット81と、ポット81内に配置される配管82と、配管82の先端に設けられたノズル83と、配管82内の溶融金属をノズル83から押し出すプランジャ84とを有している。配管82には、湯口82Aが設けられている。 The mold 1 is provided with a gate 1A at the lower part of the fixed mold 20 for injecting molten metal from the side. The hot chamber type die casting apparatus 80 includes a pot 81 in which molten metal is stored, a pipe 82 arranged in the pot 81, a nozzle 83 provided at a tip of the pipe 82, and a nozzle 83 provided in the pipe 82. And a plunger 84 pushed out of the plunger. The pipe 82 is provided with a gate 82A.
 次に、実施の形態5によるコイル部品の製造方法について説明する。 Next, a method for manufacturing a coil component according to the fifth embodiment will be described.
 まず、図33に示すように、固定型20の湯口1Aに、ホットチャンバー式ダイカスト装置80のノズル83を取り付ける。
 次に、ポット81を溶融金属で満たす。ポット81に蓄えられた溶融金属は、配管82の湯口82Aを介して、配管82内に自動的に流し込まれる。配管82内の溶融金属は、ノズル83の近くまで到達する。
 次に、注入工程において、プランジャ84を下降させて、配管82内の溶融金属を、ノズル83から吐出させる。ノズル83から吐出した溶融金属は、固定型20の湯口1Aに注入される。湯口1Aに注入された溶融金属は、可動型30のキャビティ32内に充填される。
 この後の手順は、実施の形態1~3と同様である。
First, as shown in FIG. 33, the nozzle 83 of the hot chamber type die casting device 80 is attached to the gate 1A of the fixed mold 20.
Next, the pot 81 is filled with molten metal. The molten metal stored in the pot 81 is automatically poured into the pipe 82 via the gate 82A of the pipe 82. The molten metal in the pipe 82 reaches near the nozzle 83.
Next, in the pouring step, the plunger 84 is lowered, and the molten metal in the pipe 82 is discharged from the nozzle 83. The molten metal discharged from the nozzle 83 is injected into the gate 1A of the fixed mold 20. The molten metal injected into the gate 1A is filled into the cavity 32 of the movable mold 30.
The subsequent procedure is the same as in the first to third embodiments.
 このように、実施の形態5のコイル部品の製造方法によれば、ホットチャンバー式ダイカスト装置80を用いることによって、配管82内に自動的に溶融金属を供給することができる。これにより、コイル部品10の成型を、速やかに連続して行うことが可能となる。 As described above, according to the method for manufacturing a coil component of the fifth embodiment, the molten metal can be automatically supplied into the pipe 82 by using the hot chamber die casting apparatus 80. Thereby, the molding of the coil component 10 can be performed quickly and continuously.
 実施の形態6.
 図34は、実施の形態6による電気機械としての回転電機を示す一部断面図である。また、図35は、実施の形態6による回転電機を示す斜視図である。回転電機110は、回転磁界を発生する環状の固定子111と、固定子111の内側に空隙を介して回転可能に設けられた回転子112と、固定子111および回転子112を支持するハウジング113とを有している。
Embodiment 6 FIG.
FIG. 34 is a partial cross-sectional view showing a rotating electric machine as an electric machine according to a sixth embodiment. FIG. 35 is a perspective view showing a rotating electric machine according to the sixth embodiment. The rotating electric machine 110 includes an annular stator 111 that generates a rotating magnetic field, a rotor 112 rotatably provided inside the stator 111 via a gap, and a housing 113 that supports the stator 111 and the rotor 112. And
 固定子111は、磁束を通す環状の固定子鉄心111aと、固定子鉄心111aに設けられた固定子コイル111bとを有している。固定子鉄心111aと固定子コイル111bとの間には、固定子鉄心111aと固定子コイル111bとを電気的に絶縁する図示しない絶縁紙が設けられている。固定子コイル111bへの通電が行われると、固定子コイル111bが磁界を発生する。 The stator 111 has an annular stator core 111a through which magnetic flux passes, and a stator coil 111b provided on the stator core 111a. Between the stator core 111a and the stator coil 111b, insulating paper (not shown) for electrically insulating the stator core 111a and the stator coil 111b is provided. When power is supplied to the stator coil 111b, the stator coil 111b generates a magnetic field.
 回転子112は、固定子111の内側で回転自在となるように軸受114を介してハウジング113に支持されている。回転子112は、磁束を通す回転子鉄心112bと、回転子鉄心112bに固定された回転子シャフト112aと、回転子鉄心112bの中に埋め込まれた複数の永久磁石112cとを有している。回転子シャフト112aは、固定子コイル111bへの通電により、回転子鉄心112bと一体に回転する。これにより、回転子シャフト112aは、トルクを外部に伝達する。 The rotor 112 is supported by a housing 113 via a bearing 114 so as to be rotatable inside the stator 111. The rotor 112 has a rotor core 112b through which magnetic flux passes, a rotor shaft 112a fixed to the rotor core 112b, and a plurality of permanent magnets 112c embedded in the rotor core 112b. The rotor shaft 112a rotates integrally with the rotor core 112b by energizing the stator coil 111b. Thus, the rotor shaft 112a transmits the torque to the outside.
 なお、回転子112は、永久磁石式回転子に限定されず、絶縁しない複数の回転子導体を回転子鉄心のスロットに収納して各回転子導体の両端部を短絡環で短絡したかご形回転子、又は絶縁した導線を回転子鉄心のスロットに装着した巻線形回転子を用いてもよい。 The rotor 112 is not limited to a permanent magnet type rotor, and a plurality of rotor conductors which are not insulated are housed in slots of a rotor core, and both ends of each rotor conductor are short-circuited by a short-circuit ring. Alternatively, a winding type rotor in which an insulated wire or an insulated conductor is attached to a slot of the rotor core may be used.
 次に、固定子111について具体的に説明する。なお、説明の便宜上、回転子シャフト112aの長手方向を軸線方向、回転子シャフト112aの半径方向を径方向、回転子シャフト112aの軸心を中心とする回転方向を周方向とする。 Next, the stator 111 will be specifically described. For convenience of description, the longitudinal direction of the rotor shaft 112a is defined as an axial direction, the radial direction of the rotor shaft 112a is defined as a radial direction, and the rotational direction about the axis of the rotor shaft 112a is defined as a circumferential direction.
 図36は、実施の形態6による回転電機の固定子鉄心111aを示す斜視図である。また、図37は、実施の形態6による回転電機の固定子111を示す一部破断拡大図である。固定子鉄心111aは、円環状に並べられた複数の磁極片1111を有している。実施の形態6では、48個の磁極片1111から固定子鉄心111aが構成されている。各磁極片1111は、複数の薄板を軸線方向に積層して一体化された積層体である。磁極片1111を構成する薄板は、電磁鋼板からT字状に打ち抜かれることにより形成されている。電磁鋼板の板厚は、例えば0.1mmから1.0mmの範囲に設定される。 FIG. 36 is a perspective view showing a stator core 111a of the rotating electric machine according to the sixth embodiment. FIG. 37 is a partially broken enlarged view showing stator 111 of the rotary electric machine according to Embodiment 6. The stator core 111a has a plurality of magnetic pole pieces 1111 arranged in an annular shape. In the sixth embodiment, the stator core 111a is constituted by the 48 magnetic pole pieces 1111. Each pole piece 1111 is a laminated body in which a plurality of thin plates are laminated in the axial direction and integrated. The thin plate constituting the pole piece 1111 is formed by punching out a T-shape from an electromagnetic steel plate. The thickness of the electromagnetic steel sheet is set, for example, in the range of 0.1 mm to 1.0 mm.
 磁極片1111は、バックヨーク部1111aと、バックヨーク部1111aから固定子111の径方向内側に向けて突出しているティース部1111bとを有している。固定子鉄心111aは、バックヨーク部1111aの周方向の側面同士を突き合わせて複数の磁極片1111を円環状に配列した状態で、圧入、焼き嵌めなどによってハウジング113内に挿入されている。これにより、固定子鉄心111aは、ハウジング113内に保持されている。互いに隣り合うティース部1111b間には、スロット111cとしての空間が形成されている。固定子コイル111bは、スロット111c内に配置されている。 The magnetic pole piece 1111 has a back yoke portion 1111a and a tooth portion 1111b protruding from the back yoke portion 1111a radially inward of the stator 111. The stator core 111a is inserted into the housing 113 by press fitting, shrink fitting, or the like in a state in which a plurality of magnetic pole pieces 1111 are arranged in an annular shape with the circumferential sides of the back yoke portion 1111a facing each other. Thus, the stator core 111a is held in the housing 113. A space as a slot 111c is formed between the adjacent tooth portions 1111b. Stator coil 111b is arranged in slot 111c.
 実施の形態6では、説明の便宜上、回転子112の極数を8、固定子鉄心111aにおけるスロット111cの数を48、固定子コイル111bを三相巻線とする。即ち、スロット111cは、毎極毎相当たり2個の割合で固定子鉄心111aに形成されている。 In the sixth embodiment, for convenience of explanation, the number of poles of the rotor 112 is 8, the number of slots 111c in the stator core 111a is 48, and the stator coil 111b is a three-phase winding. That is, the slots 111c are formed in the stator core 111a at a rate of two per phase for each pole.
 ハウジング113は、鉄系材料により円筒形に形成されている。ハウジング113には、ハウジング113の取付部を軸線方向に貫通しているボルト挿通穴115が形成されている。 The housing 113 is formed in a cylindrical shape from an iron-based material. The housing 113 is formed with a bolt insertion hole 115 penetrating the mounting portion of the housing 113 in the axial direction.
 なお、実施の形態6では、ハウジング113の材料として鉄が用いられている。しかし、アルミニウム、ステンレスなどの非磁性材料によってハウジング113を構成してもよい。また、実施の形態6では、磁極片1111の材料として電磁鋼板が用いられている。しかし、他の磁性薄板を用いてもよい。例えばSPCCを磁極片1111の材料としてもよい。さらに、実施の形態6では、ティース部1111bが円弧状のバックヨーク部1111aの周方向の中央部に配置されている。しかし、ティース部1111bは、バックヨーク部1111aの周方向の中央部から周方向の端部にシフトして配置されてもよい。 In the sixth embodiment, iron is used as the material of the housing 113. However, the housing 113 may be made of a nonmagnetic material such as aluminum or stainless steel. In the sixth embodiment, an electromagnetic steel plate is used as the material of the pole piece 1111. However, other magnetic thin plates may be used. For example, SPCC may be used as the material of the pole piece 1111. Further, in the sixth embodiment, the teeth portion 1111b is arranged at the center in the circumferential direction of the arc-shaped back yoke portion 1111a. However, the teeth portion 1111b may be shifted from the central portion in the circumferential direction of the back yoke portion 1111a to the circumferential end portion.
 固定子鉄心111aは、複数の磁極片1111を環状に固定することにより得られる。実施の形態6では、48個の磁極片1111を環状に固定する。複数の磁極片1111を環状化する方法としては、環状に並べられた複数の磁極片1111同士を溶接、接着、樹脂成形などによって固定することが考えられる。 The stator core 111a is obtained by fixing a plurality of magnetic pole pieces 1111 in an annular shape. In the sixth embodiment, 48 magnetic pole pieces 1111 are fixed in an annular shape. As a method of circularizing the plurality of pole pieces 1111, it is conceivable to fix the plurality of pole pieces 1111 arranged in a ring by welding, bonding, resin molding, or the like.
 固定子コイル111bは、実施の形態1~5において説明した製造方法のいずれかによって得られた複数のコイル部品同士を接続することにより得られる。固定子111は、固定子鉄心111aを作製した後、複数のコイル部品をスロット111c内に入れるとともに複数のコイル部品同士を接続することにより得られる。 The stator coil 111b is obtained by connecting a plurality of coil components obtained by any of the manufacturing methods described in the first to fifth embodiments. The stator 111 is obtained by preparing the stator core 111a, inserting a plurality of coil components into the slot 111c, and connecting the plurality of coil components.
 なお、複数の磁極片1111を環状に並べて固定子鉄心111aを作製する前にコイル部品を各磁極片1111に配置させ、その後、複数の磁極片1111を環状に並べて固定子鉄心111aを作製することによっても固定子111を得ることができる。 Before the stator core 111a is manufactured by arranging the plurality of magnetic pole pieces 1111 in an annular shape, the coil component is arranged on each magnetic pole piece 1111. Thereafter, the stator core 111a is manufactured by arranging the magnetic pole pieces 1111 in an annular shape. Thus, the stator 111 can be obtained.
 回転電機110は、ハウジング113内に固定された固定子111の内側に回転子112を配置することによって得られる。 The rotating electric machine 110 is obtained by disposing the rotor 112 inside the stator 111 fixed in the housing 113.
 このように、コイル部品を含む電気機械として回転電機110が用いられている。また、回転電機110の製造方法は、実施の形態1~5のいずれかにおけるコイル部品の製造方法を有している。このため、実施の形態1~5のいずれかの効果に加え、固定子コイル111bの形状が複雑であっても、固定子コイル111bを容易に製造することができる。これにより、回転電機110を容易に製造することができ、回転電機110のコストの低減化を図ることができる。 As described above, the rotating electric machine 110 is used as an electric machine including a coil component. The method for manufacturing rotating electric machine 110 includes the method for manufacturing a coil component according to any of the first to fifth embodiments. Therefore, in addition to the effects of any of the first to fifth embodiments, even if the shape of the stator coil 111b is complicated, the stator coil 111b can be easily manufactured. Accordingly, rotating electric machine 110 can be easily manufactured, and cost reduction of rotating electric machine 110 can be achieved.
 実施の形態7.
 図38は、実施の形態7による電気機械としてのリニアモータ120を示す斜視図である。リニアモータ120は、固定子120aと、一対の可動子120bとを備えている。なお、図38では、構成の理解を容易にするために、固定子120a及び可動子120bのそれぞれの一部の構成要素のみを図示している。
Embodiment 7 FIG.
FIG. 38 is a perspective view showing a linear motor 120 as an electric machine according to the seventh embodiment. The linear motor 120 includes a stator 120a and a pair of movers 120b. In FIG. 38, only a part of each of the stator 120a and the mover 120b is illustrated for easy understanding of the configuration.
 固定子120aは、予め設定された進行方向A1に沿って配置されている。固定子120aは、複数の第1磁石123及び複数の第2磁石124を有している。第1磁石123及び第2磁石124は、進行方向A1へ交互に並べられている。第1磁石123の磁極の向きと、第2磁石124の磁極の向きとは、互いに逆になっている。 The stator 120a is arranged along a preset traveling direction A1. The stator 120a has a plurality of first magnets 123 and a plurality of second magnets 124. The first magnet 123 and the second magnet 124 are alternately arranged in the traveling direction A1. The direction of the magnetic pole of the first magnet 123 and the direction of the magnetic pole of the second magnet 124 are opposite to each other.
 一対の可動子120bは、固定子120aの幅方向両側に配置されている。固定子120aの幅方向は、進行方向A1に直交する方向である。一対の可動子120bのそれぞれは、固定子120aと隙間を介して対向している。一対の可動子120bは、進行方向A1に沿って固定子120aに対して一体に移動可能となっている。 A pair of movers 120b are arranged on both sides in the width direction of the stator 120a. The width direction of the stator 120a is a direction orthogonal to the traveling direction A1. Each of the pair of movers 120b faces the stator 120a via a gap. The pair of movers 120b can move integrally with the stator 120a along the traveling direction A1.
 一対の可動子120bのそれぞれは、進行方向A1に沿ったコア125と、コア125に設けられた複数の巻線126とを有している。コア125は、磁性体によって構成されている。コア125としては、例えば電磁鋼板の積層鉄心が用いられる。コア125の電磁鋼板の積層方向は、進行方向A1及び固定子120aの幅方向の両方に直交する厚さ方向B1となっている。 Each of the pair of movers 120b has a core 125 along the traveling direction A1, and a plurality of windings 126 provided on the core 125. The core 125 is made of a magnetic material. As the core 125, for example, a laminated iron core made of an electromagnetic steel sheet is used. The lamination direction of the electromagnetic steel sheets of the core 125 is a thickness direction B1 orthogonal to both the traveling direction A1 and the width direction of the stator 120a.
 コア125は、進行方向A1に沿って直線状に並べられた複数の磁極片127を有している。各磁極片127は、コアバック127aと、歯部127bとを有している。コアバック127aは、固定子120aの幅方向外側に配置されている。歯部127bは、コアバック127aから固定子120aに向けて突出している。 The core 125 has a plurality of pole pieces 127 arranged linearly along the traveling direction A1. Each pole piece 127 has a core back 127a and a tooth 127b. The core back 127a is arranged outside the stator 120a in the width direction. The teeth 127b protrude from the core back 127a toward the stator 120a.
 互いに隣り合う2つのコアバック127a同士は、接触している。複数の歯部127bは、進行方向A1に沿って互いに間隔をあけて配置されている。各巻線126には、実施の形態1~5において説明した製造方法のいずれかによって得られた複数のコイル部品が含まれている。各巻線126は、図示しない絶縁部材としてのインシュレータを介して各歯部127bに個別に設けられている。 2Two core backs 127a adjacent to each other are in contact with each other. The plurality of teeth 127b are arranged at an interval from each other along the traveling direction A1. Each winding 126 includes a plurality of coil components obtained by any of the manufacturing methods described in the first to fifth embodiments. Each winding 126 is individually provided to each tooth 127b via an insulator (not shown) as an insulating member.
 リニアモータ120では、固定子120aの軸線を通りかつ固定子120aの幅方向に直交する平面に関して対称となる位置に一対の可動子120bが配置されている。即ち、一対の可動子120bは、固定子120aに関して面対称となる位置に配置されている。 In the linear motor 120, a pair of movers 120b are arranged at positions symmetrical with respect to a plane passing through the axis of the stator 120a and orthogonal to the width direction of the stator 120a. That is, the pair of movers 120b are arranged at positions that are plane-symmetric with respect to the stator 120a.
 一対の可動子120bの一方と他方とを比べると、進行方向A1の同じ位置にそれぞれ配置された2つの歯部127bに設けられた巻線126の位相は、同位相となっている。 一方 Comparing one of the pair of movers 120b with the other, the phases of the windings 126 provided on the two tooth portions 127b arranged at the same position in the traveling direction A1 are the same.
 巻線126は、実施の形態1~5において説明した製造方法のいずれかによって得られた複数のコイル部品同士を接続することにより得られる。可動子120bは、コア125を作製した後、コア125の複数の歯部127bに巻線126を設けることにより得られる。 The winding 126 is obtained by connecting a plurality of coil components obtained by any of the manufacturing methods described in the first to fifth embodiments. The mover 120b is obtained by manufacturing the core 125 and then providing the windings 126 on the plurality of teeth 127b of the core 125.
 なお、複数の磁極片127を直線状に並べてコア125を作製する前に巻線126を各歯部127bに配置させ、その後、複数の磁極片127を直線状に並べてコア125を作製することによっても可動子120bを得ることができる。 Before the core 125 is manufactured by arranging the plurality of pole pieces 127 in a straight line, the windings 126 are arranged on the respective tooth portions 127b, and then the core 125 is manufactured by arranging the plurality of pole pieces 127 in a straight line. The movable element 120b can also be obtained.
 リニアモータ120は、固定子120aの幅方向両側に一対の可動子120bを配置することによって得られる。 The linear motor 120 is obtained by disposing a pair of movers 120b on both sides in the width direction of the stator 120a.
 このように、コイル部品を含む電気機械としてリニアモータ120が用いられている。また、リニアモータ120の製造方法は、実施の形態1~5のいずれかにおけるコイル部品の製造方法を有している。このため、実施の形態1~5のいずれかの効果に加え、リニアモータ120を容易に製造することができる。これにより、リニアモータ120のコストの低減化を図ることができる。 As described above, the linear motor 120 is used as an electric machine including a coil component. The method for manufacturing the linear motor 120 includes the method for manufacturing a coil component according to any of the first to fifth embodiments. Therefore, in addition to the effects of any of the first to fifth embodiments, the linear motor 120 can be easily manufactured. Thereby, the cost of the linear motor 120 can be reduced.
 実施の形態8.
 図39は、実施の形態8による電気機械としての変圧器を示す模式的な一部断面図である。本実施の形態による変圧器130は、2つの鉄心131と、2つの鉄心131に設けられたコイル132と、2つの鉄心131及びコイル132を密閉収納するタンク133とを有している。タンク133の内部には、絶縁油134が充填されている。絶縁油134は、鉄心131及びコイル132を冷却するとともにタンク133に対する電気的絶縁を保つ油である。
Embodiment 8 FIG.
FIG. 39 is a schematic partial sectional view showing a transformer as an electric machine according to the eighth embodiment. The transformer 130 according to the present embodiment has two iron cores 131, a coil 132 provided on the two iron cores 131, and a tank 133 that hermetically stores the two iron cores 131 and the coils 132. The inside of the tank 133 is filled with insulating oil 134. The insulating oil 134 is an oil that cools the iron core 131 and the coil 132 and maintains electrical insulation for the tank 133.
 各鉄心131は、複数の薄板が積層されることによって構成されている。鉄心131を構成する薄板は、例えば珪素鋼板を打ち抜くことによって得られる。図39において、鉄心131の積層方向をx軸方向とする。コイル132は、複数のコイル層135と、複数の絶縁性スペーサ136とが交互に積層されることによって構成されている。 Each iron core 131 is configured by stacking a plurality of thin plates. The thin plate constituting the iron core 131 is obtained, for example, by punching a silicon steel plate. In FIG. 39, the lamination direction of the iron core 131 is defined as the x-axis direction. The coil 132 is formed by alternately stacking a plurality of coil layers 135 and a plurality of insulating spacers 136.
 コイル層135は、渦巻状の導体によって構成されている。コイル層135としては、例えば渦巻状に形成された帯状の銅板を用いることができる。また、絶縁性スペーサ136としては、ブレスボードと呼ばれる絶縁紙、強化木と呼ばれるベニヤ合板等を用いることができる。 The coil layer 135 is formed of a spiral conductor. As the coil layer 135, for example, a strip-shaped copper plate formed in a spiral shape can be used. Further, as the insulating spacer 136, insulating paper called breath board, veneer plywood called reinforced wood, or the like can be used.
 コイル132では、電気機械を変圧器として機能させるための高電圧側のコイル及び低電圧側のコイルがコイル層135として交互に積層されている。コイル層135には、実施の形態1~5において説明した製造方法のいずれかによって得られた複数のコイル部品が含まれている。コイル132は、実施の形態1~5において説明した製造方法のいずれかによって得られた複数のコイル部品同士を接続することにより得られる。 In the coil 132, a high-voltage side coil and a low-voltage side coil for causing the electric machine to function as a transformer are alternately stacked as a coil layer 135. The coil layer 135 includes a plurality of coil components obtained by any of the manufacturing methods described in the first to fifth embodiments. Coil 132 is obtained by connecting a plurality of coil components obtained by any of the manufacturing methods described in the first to fifth embodiments.
 なお、コイル132において高電圧側のコイルと低電圧側のコイルとが同芯軸状に配置されていてもよい。図39では、コイル132におけるコイル層135の積層方向をy軸方向とする。y軸方向は、x軸方向に直交している。また、図39では、x軸方向およびy軸方向のそれぞれと直交する方向をz軸方向とする。 In the coil 132, the coil on the high voltage side and the coil on the low voltage side may be arranged concentrically. In FIG. 39, the lamination direction of the coil layer 135 in the coil 132 is the y-axis direction. The y-axis direction is orthogonal to the x-axis direction. In FIG. 39, a direction orthogonal to each of the x-axis direction and the y-axis direction is defined as a z-axis direction.
 2つの鉄心131は、鉄心131の薄板の積層方向、即ちx軸方向へ並んで配置されている。2つの鉄心131は、図示しないボルトによって鉄心131の薄板の積層方向に締め付けられることにより、複数の鉄心用スペーサ137を介してタンク133に固定されている。コイル132は、図示しないボルトによってコイル層135の積層方向、即ちy軸方向に締め付けられることにより、複数のコイル用スペーサ138を介してタンク133に固定されている。 The two iron cores 131 are arranged side by side in the stacking direction of the thin plates of the iron cores 131, that is, in the x-axis direction. The two iron cores 131 are fixed to the tank 133 via a plurality of iron core spacers 137 by being tightened in the stacking direction of the thin plates of the iron cores 131 by bolts (not shown). The coil 132 is fixed to the tank 133 via a plurality of coil spacers 138 by being tightened by a bolt (not shown) in the laminating direction of the coil layers 135, that is, in the y-axis direction.
 本実施の形態では、複数の第1コイル保持部材139、複数の第2コイル保持部材140及びガイド141が2つの鉄心131の間に配置されている。複数の第1コイル保持部材139は、コイル132からみてコイル層135の積層方向、即ちy軸方向の一方側に配置されている。複数の第2コイル保持部材140は、コイル132からみてコイル層135の積層方向、即ちy軸方向の他方側に配置されている。 In the present embodiment, the plurality of first coil holding members 139, the plurality of second coil holding members 140, and the guides 141 are arranged between the two iron cores 131. The plurality of first coil holding members 139 are arranged on one side in the stacking direction of the coil layers 135, that is, in the y-axis direction when viewed from the coil 132. The plurality of second coil holding members 140 are arranged on the other side in the stacking direction of the coil layers 135, that is, the y-axis direction when viewed from the coil 132.
 タンク133の内側には、コイル層135の積層方向、即ちy軸方向に鉄心131を介して互いに対向する第1対向面133a及び第2対向面133bが形成されている。各第1コイル保持部材139は、タンク133の第1対向面133aとコイル132との間に配置された板状部材である。第1コイル保持部材139の一端部は、コイル132に接触している。第1コイル保持部材139の他端部は、タンク133の第1対向面133aに接触している。各第2コイル保持部材140は、タンク133の第2対向面133bとコイル132との間に配置された板状部材である。第2コイル保持部材140の一端部は、コイル132に接触している。第2コイル保持部材140の他端部は、タンク133の第2対向面133bから離れている。 Inside the tank 133, a first opposing surface 133a and a second opposing surface 133b that are opposed to each other via the iron core 131 in the stacking direction of the coil layers 135, that is, the y-axis direction, are formed. Each first coil holding member 139 is a plate-shaped member arranged between the first facing surface 133a of the tank 133 and the coil 132. One end of the first coil holding member 139 is in contact with the coil 132. The other end of the first coil holding member 139 is in contact with the first facing surface 133a of the tank 133. Each second coil holding member 140 is a plate-shaped member arranged between the second facing surface 133b of the tank 133 and the coil 132. One end of the second coil holding member 140 is in contact with the coil 132. The other end of the second coil holding member 140 is separated from the second facing surface 133b of the tank 133.
 ガイド141は、2つの鉄心131の間に挟まれている。ガイド141は、各鉄心131に固定されている。第2コイル保持部材140は、ガイド141を貫通している。第2コイル保持部材140は、ガイド141に対してy軸方向へ移動可能となっている。 Guide 141 is sandwiched between two iron cores 131. The guide 141 is fixed to each iron core 131. The second coil holding member 140 penetrates the guide 141. The second coil holding member 140 is movable in the y-axis direction with respect to the guide 141.
 タンク133には、複数の第2コイル保持部材140をコイル132に押し付ける押付機構142が設けられている。コイル132は、押付機構142の押し付け力によって第1コイル保持部材139と第2コイル保持部材140との間に保持されている。 The tank 133 is provided with a pressing mechanism 142 that presses the plurality of second coil holding members 140 against the coil 132. The coil 132 is held between the first coil holding member 139 and the second coil holding member 140 by the pressing force of the pressing mechanism 142.
 押付機構142は、ねじ143と、押付板144とを有している。押付板144は、タンク133の内部において第2対向面133bと平行に配置されている。タンク133の壁のうち、第2対向面133bが形成された壁には、ねじ穴145が設けられている。ねじ143は、ねじ穴145に挿入されている。ねじ143は、ガイド141と同軸に配置されている。ねじ143の一端部は押付板144に接触しており、ねじ143の他端部はタンク133の外部に突出している。 The pressing mechanism 142 has a screw 143 and a pressing plate 144. The pressing plate 144 is arranged inside the tank 133 in parallel with the second facing surface 133b. A screw hole 145 is provided in a wall of the tank 133 where the second facing surface 133b is formed. The screw 143 is inserted into the screw hole 145. The screw 143 is arranged coaxially with the guide 141. One end of the screw 143 is in contact with the pressing plate 144, and the other end of the screw 143 projects outside the tank 133.
 図40は、図39のタンク133、鉄心用スペーサ137及びコイル用スペーサ138を除いた変圧器130の要部を示す斜視図である。また、図41は、図40の変圧器130の要部を異なる方向から見たときの状態を示す斜視図である。図41では、押付機構142の表示も省略している。本実施の形態では、2つの第1コイル保持部材139がz軸方向へ並んでいる。また、本実施の形態では、2つの第2コイル保持部材140が第1コイル保持部材139の位置に合わせてz軸方向へ並んでいる。本実施の形態では、2つの第2コイル保持部材140が1つの押付板144に接触している。 FIG. 40 is a perspective view showing a main part of the transformer 130 excluding the tank 133, the iron core spacer 137, and the coil spacer 138 in FIG. FIG. 41 is a perspective view showing a state where a main part of transformer 130 of FIG. 40 is viewed from a different direction. In FIG. 41, the display of the pressing mechanism 142 is also omitted. In the present embodiment, two first coil holding members 139 are arranged in the z-axis direction. In the present embodiment, two second coil holding members 140 are arranged in the z-axis direction in accordance with the position of first coil holding member 139. In the present embodiment, two second coil holding members 140 are in contact with one pressing plate 144.
 本実施の形態では、タンク133内の空間のうち、押付板144よりもコイル132側の空間に絶縁油134が充填されている。また、本実施の形態では、図39に示すように、押付板144の外周部がタンク133の内面に気密に固定されている。これにより、押付板144の外周部とタンク133の内面との間から絶縁油134が漏れないようになっている。従って、タンク133内の空間のうち、押付板144よりも第2対向面133b側の空間には、大気が充填されている。 In the present embodiment, of the space in the tank 133, the space closer to the coil 132 than the pressing plate 144 is filled with the insulating oil 134. In the present embodiment, as shown in FIG. 39, the outer peripheral portion of the pressing plate 144 is air-tightly fixed to the inner surface of the tank 133. Thereby, the insulating oil 134 does not leak from between the outer peripheral portion of the pressing plate 144 and the inner surface of the tank 133. Therefore, of the space in the tank 133, the space on the second opposing surface 133b side with respect to the pressing plate 144 is filled with the atmosphere.
 押付板144の剛性は、タンク133及びねじ143のそれぞれの剛性に比べて小さくなっている。また、押付板144は、弾性変形可能になっている。ねじ143を締めると、押付板144が弾性変形しながらコイル132に向けて撓む。これにより、第2コイル保持部材140が押付板144によってコイル132に押し付けられる。即ち、押付機構142は、ねじ143を締め付けることにより、押付板144を介してコイル132に複数の第2コイル保持部材140を押し付ける。コイル132は、各第1コイル保持部材139と各第2コイル保持部材140との間でコイル132の積層方向に圧縮されている。 剛性 The rigidity of the pressing plate 144 is smaller than the rigidity of each of the tank 133 and the screw 143. The pressing plate 144 is elastically deformable. When the screw 143 is tightened, the pressing plate 144 bends toward the coil 132 while being elastically deformed. Thereby, the second coil holding member 140 is pressed against the coil 132 by the pressing plate 144. That is, the pressing mechanism 142 presses the plurality of second coil holding members 140 against the coil 132 via the pressing plate 144 by tightening the screw 143. The coil 132 is compressed between the first coil holding members 139 and the second coil holding members 140 in the direction in which the coils 132 are stacked.
 このように、コイル部品を含む電気機械として変圧器130が用いられている。また、変圧器130の製造方法は、実施の形態1~5のいずれかにおけるコイル部品の製造方法を有している。このため、実施の形態1~5のいずれかの効果に加え、変圧器130を容易に製造することができる。これにより、変圧器130のコストの低減化を図ることができる。 Thus, the transformer 130 is used as an electric machine including a coil component. Further, the method of manufacturing transformer 130 includes the method of manufacturing a coil component according to any of the first to fifth embodiments. Therefore, in addition to the effects of any of the first to fifth embodiments, transformer 130 can be easily manufactured. Thereby, the cost of the transformer 130 can be reduced.
 1 型、1A 湯口、2 成型品、2A 突起部、10,10A~10D コイル部品、11,11A~11C 角部、12,12A~12C 直線部、16 端部、18 端子部、20 固定型(第1型)、21 固定側合わせ面、22 エアベント、23 固定側凹部、24 湯道、25 プランジャ、30 可動型(第2型)、31 可動側合わせ面、32 キャビティ、33 可動側凹部、34 注入路、35 ピン、36 押出部材、37 エアベント、38 湯道、80 ホットチャンバー式ダイカスト装置、101 第1コイル線部、102 第2コイル線部、103 第3コイル線部、101a 第1コイル内面、101b 第1コイル外面、102a 第2コイル内面、102b 第2コイル外面、121 コイル外周面、122 稜線。 1 type, 1A gate, 2 molded product, 2A projection, 10, 10A to 10D coil part, 11, 11A to 11C corner, 12, 12A to 12C linear part, 16 end, 18 terminal, 20 fixed type ( 1st type), 21 ° fixed side mating surface, 22 ° air vent, 23 ° fixed side concave portion, 24 ° runner, 25 ° plunger, 30 ° movable type (second type), 31 ° movable side mating surface, 32 ° cavity, 33 ° movable side concave portion, 34 Injection path, 35-pin, 36-extrusion member, 37-air vent, 38-runner, 80-hot-chamber die-casting apparatus, 101 first coil wire section, 102 second coil wire section, 103 third coil wire section, 101a inner surface of first coil , 101b {first coil outer surface, 102a} second coil inner surface, 102b {second coil outer surface, 121} coil outer periphery , 122 ridgeline.

Claims (9)

  1.  型に溶融金属を注入する注入工程と、
     前記注入工程の後、前記型において溶融金属が硬化してできた成型品を前記型から外す型外し工程と
     を備え、
     前記成型品の少なくとも一部をコイル部品とし、
     前記型は、特定の軸交差方向へ相対的に移動可能な第1型及び第2型を有しており、
     前記コイル部品は、第1コイル線部と、第2コイル線部と、前記第1コイル線部及び前記第2コイル線部のそれぞれの端部同士を繋いでいる直線状の第3コイル線部とを有しており、
     前記第1コイル線部及び前記第2コイル線部のそれぞれは、前記軸交差方向に交差しており、
     前記第3コイル線部は、前記軸交差方向に沿って配置されており、
     前記軸交差方向に沿って前記コイル部品を見たとき、前記第1コイル線部の領域が前記第2コイル線部の領域から外れており、
     前記第1コイル線部及び前記第2コイル線部のそれぞれに形成された面のうち、前記第1型側に向いた面は、前記第1型によって成型され、
     前記第1コイル線部及び前記第2コイル線部のそれぞれに形成された面のうち、前記第2型側に向いた面は、前記第2型によって成型されるコイル部品の製造方法。
    An injection step of injecting molten metal into the mold,
    After the pouring step, a mold removing step of removing the molded product formed by curing the molten metal in the mold from the mold,
    At least a part of the molded product is a coil component,
    The mold has a first mold and a second mold that are relatively movable in a specific axis crossing direction,
    The coil component includes a first coil wire portion, a second coil wire portion, and a straight third coil wire portion connecting the respective ends of the first coil wire portion and the second coil wire portion. And has
    Each of the first coil wire portion and the second coil wire portion crosses in the axis crossing direction,
    The third coil wire portion is disposed along the axis crossing direction,
    When viewing the coil component along the axis crossing direction, the area of the first coil wire part is out of the area of the second coil wire part,
    Of the surfaces formed on each of the first coil wire portion and the second coil wire portion, a surface facing the first mold side is molded by the first mold,
    A method of manufacturing a coil component in which a surface facing the second mold side among surfaces formed on each of the first coil wire portion and the second coil wire portion is molded by the second mold.
  2.  前記型には、湯道を介して繋がった複数のキャビティが設けられており、
     前記成型品は、前記キャビティごとの形状に合わせて成型された複数の前記コイル部品を有している請求項1に記載のコイル部品の製造方法。
    The mold is provided with a plurality of cavities connected via a runner,
    The method for manufacturing a coil component according to claim 1, wherein the molded product has a plurality of the coil components molded according to the shape of each cavity.
  3.  前記複数のキャビティのそれぞれの形状は、互いに異なっている請求項2に記載のコイル部品の製造方法。 The method according to claim 2, wherein the shapes of the plurality of cavities are different from each other.
  4.  前記第1コイル線部、前記第2コイル線部及び前記第3コイル線部のそれぞれは、複数の直線部として前記コイル部品に含まれており、
     前記複数の直線部の端部間には、角部が形成されており、
     前記複数の直線部のそれぞれには、前記コイル部品の外側に面するコイル外周面が形成されており、
     前記角部には、前記角部を介して互いに隣り合う2つの前記直線部のそれぞれの前記コイル外周面同士が交わる境界線が稜線として形成されている請求項1から請求項3のいずれか一項に記載のコイル部品の製造方法。
    Each of the first coil wire portion, the second coil wire portion, and the third coil wire portion is included in the coil component as a plurality of straight portions,
    Corners are formed between the ends of the plurality of straight portions,
    In each of the plurality of straight portions, a coil outer peripheral surface facing the outside of the coil component is formed,
    4. The corner according to claim 1, wherein a boundary line at which the coil outer peripheral surfaces of the two linear portions adjacent to each other via the corner intersect is formed as a ridge line. 13. The method for manufacturing a coil component according to the above section.
  5.  請求項1から請求項4のいずれか一項に記載のコイル部品の製造方法を有する電気機械の製造方法。 (5) A method for manufacturing an electric machine having the method for manufacturing a coil component according to any one of (1) to (4).
  6.  第1コイル線部と、
     第2コイル線部と、
     前記第1コイル線部及び前記第2コイル線部のそれぞれの端部同士を繋いでいる直線状の第3コイル線部と
     を備え、
     前記第1コイル線部と前記第2コイル線部とは、前記第3コイル線部に沿った軸交差方向に互いに離れて配置されており、
     前記軸交差方向に沿って前記第1コイル線部及び前記第2コイル線部を見たとき、前記第1コイル線部の領域は、前記第2コイル線部の領域から外れているコイル部品。
    A first coil wire portion;
    A second coil wire portion;
    A straight third coil wire portion connecting the respective ends of the first coil wire portion and the second coil wire portion,
    The first coil wire portion and the second coil wire portion are spaced apart from each other in an axis crossing direction along the third coil wire portion,
    A coil component in which a region of the first coil wire portion is deviated from a region of the second coil wire portion when the first coil wire portion and the second coil wire portion are viewed along the axis crossing direction.
  7.  前記第3コイル線部には、型の割面の跡が形成されている請求項6に記載のコイル部品。 7. The coil component according to claim 6, wherein the third coil wire portion has a trace of a mold split surface.
  8.  鋳造用の銅又は鋳造用のアルミニウムによって構成されている請求項6又は請求項7に記載のコイル部品。 8. The coil component according to claim 6, wherein the coil component is made of copper for casting or aluminum for casting.
  9.  請求項6から請求項8のいずれか一項に記載のコイル部品を有する電気機械。 An electric machine having the coil component according to any one of claims 6 to 8.
PCT/JP2019/039282 2018-10-04 2019-10-04 Method for manufacturing coil component, method for manufacturing electric machine, coil component, and electric machine WO2020071532A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020551108A JPWO2020071532A1 (en) 2018-10-04 2019-10-04 Manufacturing method of coil parts, manufacturing method of electric machines, coil parts and electric machines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-189129 2018-10-04
JP2018189129 2018-10-04

Publications (1)

Publication Number Publication Date
WO2020071532A1 true WO2020071532A1 (en) 2020-04-09

Family

ID=70055240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039282 WO2020071532A1 (en) 2018-10-04 2019-10-04 Method for manufacturing coil component, method for manufacturing electric machine, coil component, and electric machine

Country Status (2)

Country Link
JP (1) JPWO2020071532A1 (en)
WO (1) WO2020071532A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336969A (en) * 2003-05-12 2004-11-25 Fuji Heavy Ind Ltd Casting device
JP2015002614A (en) * 2013-06-14 2015-01-05 アイシン・エィ・ダブリュ株式会社 Coil casting device and coil casting method
JP2015009259A (en) * 2013-06-28 2015-01-19 アイシン・エィ・ダブリュ株式会社 Coil casting device, coil casting method, and metal mold
WO2018135086A1 (en) * 2017-01-18 2018-07-26 パナソニックIpマネジメント株式会社 Molded coil body, method for producing same, motor, and method for assembling stator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016202657A1 (en) * 2016-02-22 2017-08-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for casting a component of complex geometry with a segmented casting mold
JP7122505B2 (en) * 2017-04-13 2022-08-22 パナソニックIpマネジメント株式会社 Coil and motor using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336969A (en) * 2003-05-12 2004-11-25 Fuji Heavy Ind Ltd Casting device
JP2015002614A (en) * 2013-06-14 2015-01-05 アイシン・エィ・ダブリュ株式会社 Coil casting device and coil casting method
JP2015009259A (en) * 2013-06-28 2015-01-19 アイシン・エィ・ダブリュ株式会社 Coil casting device, coil casting method, and metal mold
WO2018135086A1 (en) * 2017-01-18 2018-07-26 パナソニックIpマネジメント株式会社 Molded coil body, method for producing same, motor, and method for assembling stator

Also Published As

Publication number Publication date
JPWO2020071532A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
CN111837314B (en) Radial gap type rotating electrical machine
JP5043313B2 (en) Outer stator of reciprocating motor and manufacturing method thereof
CN110199458B (en) Coil molded body, method for manufacturing same, motor, and method for assembling stator
JP6299729B2 (en) Rotating electrical machine stator
CN106663980B (en) Axial air gap type rotating electrical machine and bobbin for rotating electrical machine
US20090015094A1 (en) Electrical rotary machine and method of manufacturing the same
US20180323663A1 (en) Axial gap rotating electrical machine and manufacturing method for the same
JPWO2015060058A1 (en) Bus bar unit and motor
JP5731338B2 (en) Rotating electric machine
JP2010263675A (en) Armature
JP2014023387A (en) Motor and manufacturing method of the same
JP2016086508A (en) Armature core and method of manufacturing armature core
JP2006042500A (en) Rotary electric machine
WO2019121327A1 (en) Stator tooth and stator having good electrical insulation and, at the same time, very high thermal conductivity for increasing the performance of electric motors
JP2006217702A (en) Manufacturing method of motor stator , motor rotor, and motor core
JP2018026930A (en) Lamination iron core and manufacturing method for the same
WO2020071532A1 (en) Method for manufacturing coil component, method for manufacturing electric machine, coil component, and electric machine
JP2004040871A (en) Stator core and motor
JP2006211828A (en) Stator and its manufacturing method
JP2018143049A (en) Method of manufacturing motor and motor
Kim et al. Plastic injection molded rotor of concentrated flux-type ferrite magnet motor for dual-clutch transmission
JP7363295B2 (en) Holder, rotor, motor, and rotor manufacturing method
JP2018143048A (en) Method for molding resin casing and motor
JP6818900B2 (en) Manufacturing method of stator and stator of rotary electric machine
Jordan et al. Construction methods for modulated pole machines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020551108

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19869031

Country of ref document: EP

Kind code of ref document: A1