WO2020071480A1 - Device and method for measuring pulse wave velocity - Google Patents

Device and method for measuring pulse wave velocity

Info

Publication number
WO2020071480A1
WO2020071480A1 PCT/JP2019/039091 JP2019039091W WO2020071480A1 WO 2020071480 A1 WO2020071480 A1 WO 2020071480A1 JP 2019039091 W JP2019039091 W JP 2019039091W WO 2020071480 A1 WO2020071480 A1 WO 2020071480A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse wave
piezoelectric vibration
vibration sensor
heart
velocity
Prior art date
Application number
PCT/JP2019/039091
Other languages
French (fr)
Japanese (ja)
Inventor
新一郎 勝田
隆 石黒
Original Assignee
公立大学法人福島県立医科大学
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人福島県立医科大学, 太陽誘電株式会社 filed Critical 公立大学法人福島県立医科大学
Priority to JP2020550538A priority Critical patent/JPWO2020071480A1/en
Publication of WO2020071480A1 publication Critical patent/WO2020071480A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure

Definitions

  • the present invention relates to a pulse wave velocity measuring apparatus and method for measuring and analyzing a pulse wave velocity (PWV), which is a change in blood pressure and volume in a vascular system accompanying a heartbeat.
  • PWV pulse wave velocity
  • the pulse wave propagation speed is a speed at which a pulse wave generated by the pulsation of the heart propagates toward the periphery, and is known to increase in patients with diseases such as hypertension, diabetes, and cerebral infarction.
  • Atherosclerotic lesions mainly form in the aorta and extend to peripheral artery sites such as the carotid and femoral arteries. Because arteriosclerosis is a risk factor for serious diseases such as ischemic heart disease, cerebrovascular disease, and aortic aneurysm, it is important to diagnose it at an early stage. Pulse wave velocity is attracting attention as an index.
  • FIG. 10 shows a principle method of measuring the pulse wave velocity.
  • the pulse waves WA and WB at the proximal point PA and the distal point PB of the artery BV are respectively measured or measured, and their rises are measured.
  • the time difference T is obtained.
  • the pulse wave propagation velocity PWV is obtained by L / T.
  • Patent Document based on the ankle pulse wave WL L brachial - calculate the ankle between pulse-wave propagation velocity baPWV, lower limb limb blood-pressure index which is adapted to diagnose the stenosis of the lower limb arteries (ankle-brachial index; ABI )
  • a measuring device is disclosed.
  • the present invention focuses on this point, and an object of the present invention is to accurately detect the pulse wave propagation velocity on one path including the aorta by a simple configuration and by a non-invasive method. Another object is to use the detected pulse wave velocity to assess the likelihood of arteriosclerosis.
  • the pulse wave propagation velocity measuring apparatus of the present invention is installed on the body surface side of a living body and detects a pulse wave by installing a first piezoelectric vibration sensor that detects a heart wave and a body.
  • a pulse wave propagation velocity is calculated by using a second piezoelectric vibration sensor, a heart wave obtained by the first piezoelectric vibration sensor, and a pulse wave obtained by the second piezoelectric vibration sensor. Calculation means.
  • the first piezoelectric vibration sensor is characterized in that the first piezoelectric vibration sensor is installed on a body surface side of a skeleton or a skeletal muscle connected without including a joint.
  • the skeleton is any one of a sternum, a spine, and a tail base.
  • the second piezoelectric vibration sensor is characterized in that the second piezoelectric vibration sensor is disposed in a lower body of a living body and at a site where an artery is near the body surface.
  • the second piezoelectric vibration sensor is installed on a thigh or the back of a knee.
  • the calculating means includes a heart departure time of a pulse wave obtained from a cardiac oscillating wave obtained by the first piezoelectric vibration sensor and a pulse departure time obtained by the second piezoelectric vibration sensor.
  • the pulse wave propagation velocity is calculated from the arrival time of the wave and the distance of the propagation path of the pulse wave from the heart to the measurement site of the second piezoelectric vibration sensor.
  • the aorta is included in the propagation path of the pulse wave detected by the second piezoelectric vibration sensor.
  • the arterial stiffness evaluation device of the present invention is an arterial stiffness evaluation device using the pulse wave velocity measuring device, wherein the pulse wave propagation speed of the living body measured by the pulse wave velocity measuring device and the arteriosclerosis determined in advance.
  • the method of measuring a pulse wave velocity includes the steps of: installing a first piezoelectric vibration sensor for detecting a cardiac elastic wave and a second piezoelectric vibration sensor for detecting a pulse wave on a body surface of a living body; Obtaining a heart departure time of a pulse wave from a heart trajectory obtained by a first piezoelectric vibration sensor; obtaining a arrival time of the pulse wave from a pulse wave obtained by the second piezoelectric vibration sensor; Calculating a pulse wave propagation velocity from the pulse wave heart departure time, the arrival time of the pulse wave, and the distance of the pulse wave propagation path from the heart to the measurement site of the second piezoelectric vibration sensor. It is characterized by including.
  • a pulse wave and a heart elastic wave are measured from the output vibration waveform of the piezoelectric vibration sensor installed on the body surface side of the living body, and the pulse wave propagation velocity is calculated by using them.
  • the pulse wave propagation velocity of the aorta on one path in which the blood flow is one-way can be favorably obtained by a non-invasive method, and it is effective for evaluating arteriosclerosis.
  • FIG. 2 is a diagram illustrating a specific example of the circuit configuration of FIG. 1.
  • FIG. 3 is a diagram showing a pulse wave measurement site in a human in the embodiment. It is a figure showing a sensor part and a measuring device of a pulse wave measurement using a rabbit. It is a figure showing an example of a measurement waveform in the example of the above-mentioned rabbit. It is a figure which shows the example of a measurement of the pulse-wave propagation speed by two paths
  • FIG. 3 is a graph showing pulse wave velocity measured using WHHLMI rabbits (which genetically develop hyperlipidemia, coronary artery disease and atherosclerosis) and normal rabbits. It is a figure showing the principle of the measuring technique of a pulse wave propagation velocity.
  • FIG. 1 shows the configuration of the pulse wave velocity measuring device according to the first embodiment of the present invention.
  • two piezoelectric vibration sensors are mounted on the body surface of the subject.
  • the piezoelectric vibration sensor 10A is fixed to the sternum with a belt 12A
  • the piezoelectric vibration sensor 10B is fixed to the groin with a belt 12B.
  • the piezoelectric vibration sensor 10B may be fixed to the sole of the knee, the instep of the foot, or the like.
  • Sensor outputs of the piezoelectric vibration sensors 10A and 10B are input to sensor modules 100A and 100B, respectively, and the output sides of the sensor modules 100A and 100B are connected to a waveform analyzer 300 via output controllers 200A and 200B. .
  • the piezoelectric vibration sensors 10A and 10B include, for example, a vibration waveform sensor disclosed in WO 2016/167202 and a sensor module disclosed in WO 2017/187710. It is. As the piezoelectric vibration sensors 10A and 10B, the same ones may be used, or ones having characteristics according to the vibration waveform to be detected may be used. In this embodiment, the piezoelectric vibration sensor 10A is a heart wave sensor, and the piezoelectric vibration sensor 10B is a pulse wave sensor.
  • a cardiac trajectory is a minute vibration of the human body that accompanies pulsation, which is a physical movement caused by contraction and relaxation of the heart muscle, and the vibration associated with the pulsation of the heart is transmitted using the skeleton and skeletal muscle as a medium. Therefore, there is a feature that the pulse wave is transmitted at a higher speed than the pulse wave.
  • a pulse wave propagating through an artery as a medium has a propagation velocity of about 5-20 m / s, whereas a heart bullet has a propagation velocity of the order of km / s. Can be considered transmitted.
  • the time when the pulse wave departs from the heart can be known from the cardiac trajectory, so that the pulse wave can be obtained from the arrival time of the pulse wave at the measurement site and the distance of the propagation path of the pulse wave from the heart to the measurement site.
  • the wave propagation velocity can be determined.
  • the peak of the heart elastic wave (heart elastic wave signal generated when the heart valve closes) is detected near the sternum, utilizing the fact that the piezoelectric vibration sensors 10A and 10B can detect the heart elastic wave and the pulse wave, respectively.
  • a pulse wave is detected in the vicinity of the femoral artery, and the time difference between the two is taken to realize the time difference measurement of the path including the aorta.
  • the piezoelectric vibration sensor 10A is installed at a position on the chest wall corresponding to the ascending aorta region SB 5 to 10 mm distal from this position.
  • the piezoelectric vibration sensor 10B is installed at a position near the bifurcation SC of the abdominal aorta.
  • the sensor modules 100A, 100B, the output controllers 200A, 200B, and the waveform analyzer 300 is shown in FIG.
  • those disclosed in the pamphlet of International Publication No. 2016/167202 or the pamphlet of International Publication No. 2017/187710 described above may be used.
  • the sensor modules 100A and 100B and the output controllers 200A and 200B have the same configuration in the present embodiment, the sensor module 100A and the output controller 200A will be described.
  • the sensor module 100A is provided with an instrumentation amplifier 102 on the input side, and an analog switch 104 is connected to the instrumentation amplifier 102.
  • the analog switch 104 and the resistor array 105 are for controlling the driving of the instrumentation amplifier 102 based on the signal from the waveform analyzer 300, and combine on / off of the analog switch 104 connected to the resistor array 105.
  • the resistance value can be changed, and the amplification factor of the instrumentation amplifier 102 can be changed.
  • the output side of the instrumentation amplifier 102 is connected to a signal converter 108 via a low-pass filter 106 for extracting low-frequency components, so that an analog signal is converted to a digital signal and output.
  • the output controller 200A is for outputting an input signal as a wireless signal such as BLE (Bluetooth (registered trademark) Low Energy), and has an input terminal 202 such as a 4-pin jack, a USB connector 204, a low-pass filter 206,
  • the communication module 210 mainly includes a USB serial converter 208 and BLE.
  • the power supply is a lithium ion rechargeable battery 220 charged by the charge control circuit 216, and is provided with a discharge protection circuit 218.
  • the communication module 210 is provided with a three-axis acceleration sensor 214.
  • the input terminal 202 is used for signal input from the sensor module 100A.
  • the low-pass component of the input signal is extracted by the low-pass filter 206 and input to the communication module 210.
  • the USB connector 204 is used not only for signal output to an external device such as a PC, but also for charging a power source. Output from the USB connector 204.
  • the piezoelectric vibration sensor 10A, the sensor module 100A, and the output controller 200A may be individually configured, or may be integrated and attached to a human body by the belts 12A, 12B. In this case, the movement of the human body is detected and transmitted by the above-described three-axis acceleration sensor 214.
  • the waveform analyzer 300 is constituted by a PC (personal computer), a smart phone, a tablet PC, or the like, and includes a CPU 302, a data memory 310, a program memory 320, and a display 304.
  • the programs stored in the program memory 320 are executed by the CPU 302.
  • the data stored in the data memory 310 is referred to.
  • the calculation result is stored in the data memory 310 and displayed on the display 304.
  • Such basic operations are general and well-known.
  • the data memory 310 stores the waveform data 312 received from the output controllers 200A and 200B by wire or wirelessly. Further, operation data 314 which is an operation result by the CPU 302 is also stored. If necessary, data in the middle of the calculation is also stored in the data memory 310 as appropriate.
  • a PWV calculation program 322 is prepared in the program memory 320. In the case of a smartphone, the program is prepared as an application. The arteriosclerosis evaluation program 324 will be described later.
  • FIG. 4 shows a sensor arrangement for a rabbit.
  • a piezoelectric vibration sensor 20A corresponding to the above-described piezoelectric vibration sensor 10A is mounted on the fourth intercostal portion of the chest wall near the apex near the ascending aorta UA. Detects bullet waves.
  • the piezoelectric vibration sensor 20B corresponding to the piezoelectric vibration sensor 10B is installed on the skin of the left knee joint, and is located at the proximal part of the left saphenous artery UD passing from the ascending aorta UA to the abdominal aorta UB and the left femoral pulse UC. Detect pulse wave vibration. 1, the sensor modules 100A and 100B are connected to the output sides of the piezoelectric vibration sensors 20A and 20B, respectively, and both are connected to the waveform analyzer 301 via the output controller 200.
  • the catheter tip type pressure transducer (hereinafter referred to as “catheter pressure sensor”) 22A, 22B is separately installed.
  • catheter pressure sensors 22A and 22B for example, "SPS-320" manufactured by Mirror is used.
  • the catheter pressure sensor 22A is installed near the aortic valve of the ascending aorta UA, for example, at the ascending aortic site 5 to 10 mm distal from the aortic valve, and the catheter pressure sensor 22B is installed at the distal end of the abdominal aorta UB.
  • a polygraph system 402 is connected to signal output sides of the catheter pressure sensors 22A and 22B via sensor controllers 400A and 400B, respectively. The polygraph system 402 measures pressure changes at the catheter pressure sensors 22A and 22B.
  • the measurement results of the catheter pressure sensors 22A and 22B by the polygraph system 402 are input to the above-described waveform analyzer 301 via an appropriate I / F (interface) 404.
  • the waveform analyzer 301 has the same basic configuration as the waveform analyzer 300 of FIG. 1, but differs in that it performs signal analysis on the catheter pressure sensors 22A and 22B.
  • FIG. 4 shows examples of these measurements.
  • Graph ch1 heart wave caused by the piezoelectric vibration sensor 20A installed on the chest
  • Graph ch2 pressure pulse wave by catheter pressure sensor 22A installed in the ascending aorta
  • Graph ch3 pulse wave by the piezoelectric vibration sensor 20B installed on the skin of the left knee joint
  • Graph ch4 pressure pulse wave by catheter pressure sensor 22B installed at the distal end of abdominal aorta, Are shown. Note that the horizontal axis in FIG. 5 indicates time (seconds), and the vertical axis indicates signal intensity.
  • the pressure change waveform of the catheter pressure sensor 22A is a pressure change of the blood sent out by the operation of the heart valve, and shows a pulse wave starting from the heart. Therefore, a heart trajectory detected by the piezoelectric vibration sensor 20A is a pulse wave. It can be considered that the wave is a good indicator of the timing of departure from the heart. If this result is applied to the case of the human body shown in FIG. 1, the timing at which the pulse wave departs from the heart can be known by detecting the cardiac elastic wave by the piezoelectric vibration sensor 10A fixed to the sternum by the belt 12A. Can be done.
  • the heart trajectory is a waveform transmitted at a higher speed than the pulse wave because the vibration of the heart valve operation is transmitted through a skeleton or the like. Can be known. That is, the use of the cardiac trajectory makes it possible to accurately determine the propagation speed of the pulse wave, thereby improving the accuracy of the arteriosclerosis diagnosis.
  • the pulse wave is measured by the piezoelectric vibration sensor 10B fixed to the groin by the belt 12B.
  • the measurement data of the piezoelectric vibration sensors 10A and 10B are input to the waveform analyzer 300 via the sensor modules 100A and 100B and the output controllers 200A and 200B, respectively, and stored in the data memory 310 as waveform data 312.
  • the CPU 302 executes the PWV calculation program 322 in the program memory 320, and calculates the pulse wave propagation velocity with reference to the waveform data 312.
  • the calculation result is stored in the data memory 310 as calculation data 314 and displayed on the display 304. If necessary, it is output to a printer.
  • the distance between the position of the piezoelectric vibration sensor 10A for the cardiac elastic wave and the position of the piezoelectric vibration sensor 10B for the pulse wave is calculated together with the time difference between the cardiac elastic wave and the pulse wave. It is necessary to know the blood vessel length, which can be generally estimated from the height of the subject.
  • the pulse wave velocity thus obtained is the pulse wave velocity including the entire aorta and a part of the lower limb artery.
  • FIG. 6 shows a measurement example of the pulse wave velocity in a rabbit (the same applies to a human body).
  • FIG. 7A shows an example of measurement of pulse wave propagation velocities by two routes such as upper arm-ankle pulse wave propagation velocity baPWV, and FIG. The example of measuring the pulse wave propagation velocity of one path is shown.
  • the horizontal axis of the graph indicates time (msec), the vertical axis indicates distance (mm), and the slope of the graph indicates speed.
  • # 0 to # 3 indicate the installation site of the sensor, and are as follows.
  • the piezoelectric vibration sensor 20A was mounted on the upper right arm skin when measuring the pulse wave propagation velocity baPWV between the upper arm and the ankle, and was mounted on the fourth intercostal skin on the left chest wall when measuring the heart trajectory.
  • Upper arm PWV Propagation velocity of pulse wave from aortic root # 1 to upper arm # 0
  • baPWV Propagation velocity of pulse wave from upper arm # 0 to ankle # 3
  • aoPWV Pulse wave propagation velocity including aorta from aortic root # 1 to common iliac artery branch # 2
  • Lower leg PWV Pulse wave propagation velocity from common iliac artery branch # 2 to ankle # 3, aorta
  • the propagation speed of the pulse wave from the origin # 1 to the ankle # 3 is upper arm PWV + baPWV or aoPWV + lower limb PWV.
  • the pulse wave propagation velocity baPWV between the upper arm and the ankle which is a two-path PWV, greatly changes depending on the length of the lower limb and the upper limb (or the degree of arteriosclerosis thereof).
  • Heart wave PWV The propagation speed of the pulse wave from the upper arm # 0 to the ankle # 3 measured using the heart wave is obtained.
  • the effect of the lower limb remains even with the heart trajectory PWV, which is a one-path PWV, but if the lower limb is short, the lower limb PWV is shortened, and the heart trajectory PWV can be made as close as possible to the pulse wave velocity aoPWV including the aorta. Therefore, if the lower limb PWV is separately measured, the pulse wave propagation velocity aoPWV including the aorta can be accurately estimated from the cardiac oscillating wave PWV.
  • the time difference between the peaks of the two lower left portions # 0 and # 1 is about 2 ms. If the distance between the aortic valve inserted in the rabbit heart and the catheter tip is 10 mm, the PWV during this period is 5 m / s, and the value of the pulse wave propagation velocity aoPWV including the aorta measured by the catheter pressure sensor 22A (4.93 m / s) ) Matches well.
  • FIG. 7 shows the pulse wave propagation velocity aoPWV (horizontal axis) including the aorta calculated from the catheter pressure sensors 22A and 22B attached to the rabbit, and BCGaoPWV (calculated from the time difference between the piezoelectric vibration sensor 20A and the catheter pressure sensor 22B). (Vertical axis). Note that “BCG” is an abbreviation of the heart trajectory in English, and the pulse wave velocity aoPWV including the aorta obtained using the heart trajectory is described as “BCGaoPWV”. As a result of performing a regression analysis by the least squares method etc.
  • FIG. 8 shows pulse wave propagation velocity aoPWV including the aorta obtained from the catheter pressure sensors 22A and 22B (horizontal axis) and BCGaoPWV + lower limb PWV obtained non-invasively from the time difference between the piezoelectric vibration sensors 20A and 20B (vertical axis). ) Are shown.
  • aoPWV pulse wave propagation velocity aoPWV including the aorta obtained from the catheter pressure sensors 22A and 22B (horizontal axis) and BCGaoPWV + lower limb PWV obtained non-invasively from the time difference between the piezoelectric vibration sensors 20A and 20B (vertical axis).
  • the pulse wave propagation velocity including the aorta can be measured by the time difference of one path including the aorta, not the time difference of two paths from the heart like the conventional brachial-ankle pulse wave propagation velocity baPWV or cfPWV. . b. It becomes possible to accurately detect the pulse wave velocity by a very simple and non-invasive technique.
  • a cardiac trajectory signal corresponding to a pulse wave signal near the ascending aortic bifurcation position can be easily obtained.
  • the pulse wave propagation velocity on one path from the heart including the aorta can be simplified. And can be accurately detected by a non-invasive technique.
  • FIG. 9 shows a graph comparing an example of a pulse wave velocity measured using a disease model animal in which an arteriosclerotic lesion appears with a normal case.
  • Normal rabbits and WHHLMI rabbits were used, and are known as models for spontaneously developing myocardial infarction in addition to hyperlipidemia and arteriosclerosis.
  • the rabbits to be tested were supine fixed under pentobarbital (30 mg / kg) anesthesia, and intramuscularly administered butorphanol tartrate (0.3 mg) as an analgesic. Then, the piezoelectric vibration sensor 20A shown in FIG. 4 was mounted between the third ribs on the left chest wall, and the piezoelectric vibration sensor 20B was mounted on the left knee inner skin. The distance between the sensors was measured by moving the thread along the artery.
  • FIG. 9 is a graph of the measurement results, showing Mean ⁇ SD (mean (standard deviation)) of BCGaoPWV + PWV of the lower limb.
  • Mean ⁇ SD mean (standard deviation)
  • the arteriosclerosis evaluation program 324 shown in FIG. 2 has a function of comparing the value of the pulse wave velocity calculated from the measured waveform data with the normal value.
  • the normal value can be obtained in advance by measuring a large number of people.
  • the value of the pulse wave propagation velocity of the subject is compared with the normal value, and when it exceeds the normal value, it is evaluated that there is a possibility of an arteriosclerotic lesion.
  • the evaluation result is displayed on the display 304.
  • the piezoelectric vibration sensor 10A for cardiac elastic wave is arranged on the sternum side.
  • the skeletal or skeletal muscles such as the spine and the tail base that are connected without including the joint when viewed from the heart. May be installed on any of the body surfaces.
  • the piezoelectric vibration sensor 10B for pulse wave is arranged on the thigh.
  • the piezoelectric vibration sensor 10B may be installed on any part of the body such as the back of the knee where the artery of the lower body is near the body surface.
  • the piezoelectric vibration sensors 10A and 10B can be attached to various objects such as armrests and backrests of chairs, mattresses and pillows of beds, etc., as long as they come into contact with humans. May be.
  • the piezoelectric vibration sensors 10A and 10B may be installed so as to be in direct contact with the body surface. However, the piezoelectric vibration sensors 10A and 10B are installed via an intermediate medium that transmits vibration, for example, urethane or a fiber compression body (such as Airweave (registered trademark)). You may make it.
  • the circuit configurations shown in FIG. 1, FIG. 2, and FIG. 4 are also examples, and various modes having the same operation can be considered.
  • any two or more of the sensor module, the output controller, and the waveform analyzer may be integrally configured, or may be integrally configured with the piezoelectric vibration sensor.
  • the piezoelectric vibration sensors 10A and 10B the same ones may be used, but those having characteristics according to the vibration waveform to be detected may be used.
  • the above embodiment is an example in which the present invention is applied to the detection of the pulse wave velocity of a human, but is applicable to general living organisms.
  • a pulse wave and a heart elastic wave are measured from the output vibration waveform of the piezoelectric vibration sensor installed on the body surface side of the living body, and the pulse wave propagation velocity is calculated by using them.
  • the simple structure it is possible to obtain a good pulse wave velocity of the aorta on one path where blood flow is one-way by a non-invasive method, and it is also effective for evaluating arteriosclerosis. It is suitable for.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

[Problem] To accurately detect a pulse wave velocity in one path in the same blood flow direction that includes the aorta, by means of a simple structure and by noninvasive means. [Solution] A piezoelectric vibration sensor 10A serves as a ballistocardiac wave sensor, and piezoelectric vibration sensor 10B serves as a pulse wave sensor. Ballistocardiac waves are a propagation of vibration from heart valve actuation through the medium of the skeleton or skeletal muscles, and are propagated at a higher velocity than pulse waves, and when compared with pulse waves, ballistocardiac waves can be considered to be propagated substantially instantaneously. This being the case, since the time that pulse waves leave the heart can be known from the ballistocardiac waves, the pulse wave velocity can be determined from the time that a pulse wave reaches the measurement site and the distance from the heart to the measurement site.

Description

脈波伝播速度測定装置及びその方法Pulse wave velocity measuring device and method
 本発明は、心臓の拍動に伴う血管系内の血圧・体積の変化である脈波の伝播速度(PWV:Pulse wave velocity)を測定して解析する脈波伝播速度測定装置及びその方法に関する。 {Circle around (1)} The present invention relates to a pulse wave velocity measuring apparatus and method for measuring and analyzing a pulse wave velocity (PWV), which is a change in blood pressure and volume in a vascular system accompanying a heartbeat.
 脈波伝播速度は、心臓の拍動によって生ずる脈波が末梢に向かって伝播する速度であり、高血圧,糖尿病,脳梗塞などの疾患を有する患者では高くなることが知られている。動脈硬化病変は、主に大動脈において形成され、頸動脈や大腿動脈などの末梢動脈部位へと進展する。動脈硬化は、虚血性心疾患や脳血管障害、大動脈瘤などの重篤な疾患の危険因子であるため、早期に診断することが重要であり、最近の医療の分野では、動脈の硬さの指標として脈波伝播速度が注目されている。 The pulse wave propagation speed is a speed at which a pulse wave generated by the pulsation of the heart propagates toward the periphery, and is known to increase in patients with diseases such as hypertension, diabetes, and cerebral infarction. Atherosclerotic lesions mainly form in the aorta and extend to peripheral artery sites such as the carotid and femoral arteries. Because arteriosclerosis is a risk factor for serious diseases such as ischemic heart disease, cerebrovascular disease, and aortic aneurysm, it is important to diagnose it at an early stage. Pulse wave velocity is attracting attention as an index.
 図10には、脈波伝播速度の原理的な測定方法が示されており、動脈BVの近位点PAと遠位点PBとにおける脈波WA,WBをそれぞれ測定ないし測定し、それらの立ち上がり時間差Tを求める。一方、近位点PAと遠位点PBとの動脈長をLとすると、脈波伝播速度PWVは、L/Tで求められる。 FIG. 10 shows a principle method of measuring the pulse wave velocity. The pulse waves WA and WB at the proximal point PA and the distal point PB of the artery BV are respectively measured or measured, and their rises are measured. The time difference T is obtained. On the other hand, assuming that the artery length between the proximal point PA and the distal point PB is L, the pulse wave propagation velocity PWV is obtained by L / T.
 動脈硬化病変が顕著な大動脈の脈波伝播速度を測定することが理想的であるが、現在の医学では非侵襲的かつ簡便に測定することは困難である。そこで、末梢動脈で非侵襲的に脈波を検出し、大動脈と末梢動脈を含めた動脈における脈波速度の測定法が考案されている。このような脈波伝播速度の具体例としては、例えば、下記非特許文献の「血管機能の非侵襲的評価法に関するガイドライン」のp121以降に記載された頸動脈-大腿動脈間脈波伝播速度cfPWV(carotid-femoral PWV)や上腕-足首間脈波伝播速度baPWV(brachial-ankle PWV)などの大動脈を含む脈波伝播速度の測定技術があり、大動脈解離などの重篤な循環器疾患の早期発見の必要性から、循環器の医療分野で普及してきている。例えば、下記特許文献には、足首脈波WLLに基づいて上腕-足首間脈波伝播速度baPWVを算出し、下肢動脈の狭窄を診断するようにした下肢上肢血圧指数(ankle-brachial index; ABI)測定装置が開示されている。 Although it is ideal to measure the pulse wave velocity of the aorta where atherosclerotic lesions are remarkable, it is difficult to measure noninvasively and simply with current medicine. Therefore, a method of non-invasively detecting a pulse wave in a peripheral artery and measuring a pulse wave velocity in an artery including the aorta and the peripheral artery has been devised. As a specific example of such a pulse wave velocity, for example, the pulse wave velocity cfPWV between the carotid artery and the femoral artery described in p. 121 and later of “Guidelines on Noninvasive Evaluation Method of Vascular Function” in the following non-patent document: Technology for measuring pulse wave velocities including aorta such as (carotid-femoral PWV) and brachial-ankle PWV (brachial-ankle PWV), and early detection of serious cardiovascular diseases such as aortic dissection Due to the necessity of circulatory organs, it has become widespread in the field of cardiovascular medicine. For example, the following Patent Document, based on the ankle pulse wave WL L brachial - calculate the ankle between pulse-wave propagation velocity baPWV, lower limb limb blood-pressure index which is adapted to diagnose the stenosis of the lower limb arteries (ankle-brachial index; ABI ) A measuring device is disclosed.
 循環器病の診断と治療に関するガイドライン(2011-2012年度合同研究班報告)のP113~P145「ダイジェスト版 血管機能の非侵襲的評価法に関するガイドライン」 ガ イ ド ラ イ ン Guidelines on Diagnosis and Treatment of Cardiovascular Diseases (Report of the Joint Research Group 2011-2012) P113-P145 “Digest Version Guidelines on Non-Invasive Evaluation of Vascular Function”
 特開2002-272688号公報 JP 2002-272688 A
 しかしながら、心臓からの血流が一方向の一つの経路上における脈波の到達時間差ではなく、血流の方向が異なる二つの経路上における脈波の到着時間差を利用する場合、血管部位よって脈波伝播速度が大きく異なることに鑑みると、大動脈の脈波伝播速度(aortic PWV; aoPWV)を反映したものとはいい難いのが現状である。 However, in the case where the difference in the arrival time of the pulse wave on two paths having different blood flow directions is used instead of the arrival time difference of the pulse wave on one path in one direction, In view of the fact that the propagation velocities differ greatly, it is difficult at present to reflect pulse wave velocities (aortic PWV; aoPWV) of the aorta.
 大動脈の脈波伝播速度aoPWVのような心臓からの1つの経路上の時間差を検出するためには、圧変化検出センサを組み込んだカテーテルを大動脈内の2箇所に挿入するといった侵襲的な手法か、あるいは、超音波診断装置やMRI(磁気共鳴装置)ないしCT(コンピューター断層撮影装置)を使用するといった大掛かりな手法しか報告されていない。 In order to detect the time difference on one path from the heart such as the aortic pulse wave velocity aoPWV, an invasive method such as inserting a catheter incorporating a pressure change detection sensor at two places in the aorta, Alternatively, only large-scale techniques such as the use of an ultrasonic diagnostic apparatus, MRI (magnetic resonance apparatus) or CT (computed tomography apparatus) have been reported.
 本発明は、かかる点に着目したもので、その目的は、大動脈を含む一つの経路上の脈波伝播速度を、簡易な構成で、かつ、非侵襲な手法で正確に検出することである。他の目的は、検出した脈波伝播速度を利用して動脈硬化の可能性を評価することである。 The present invention focuses on this point, and an object of the present invention is to accurately detect the pulse wave propagation velocity on one path including the aorta by a simple configuration and by a non-invasive method. Another object is to use the detected pulse wave velocity to assess the likelihood of arteriosclerosis.
 本発明の脈波伝播速度測定装置は、生体の体表側に設置されており、心弾波を検出する第1の圧電振動センサと、生体の体表側に設置されており、脈波を検出する第2の圧電振動センサと、前記第1の圧電振動センサで得られた心弾波と、前記第2の圧電振動センサで得られた脈波とを利用して、脈波伝播速度を演算する演算手段と、を備えている。 The pulse wave propagation velocity measuring apparatus of the present invention is installed on the body surface side of a living body and detects a pulse wave by installing a first piezoelectric vibration sensor that detects a heart wave and a body. A pulse wave propagation velocity is calculated by using a second piezoelectric vibration sensor, a heart wave obtained by the first piezoelectric vibration sensor, and a pulse wave obtained by the second piezoelectric vibration sensor. Calculation means.
 主要な形態の一つによれば、前記第1の圧電振動センサを、関節を含まずに結合している骨格ないし骨格筋の体表側に設置したことを特徴とする。他の形態の一つによれば、前記骨格が、胸骨,背骨,尾底骨のいずれかであることを特徴とする。更に他の形態によれば、前記第2の圧電振動センサを、生体の下半身であって、動脈が体表面近くにある部位に設置したことを特徴とする。あるいは、前記第2の圧電振動センサを、大腿もしくは膝裏に設置したことを特徴とする。 According to one of the main aspects, the first piezoelectric vibration sensor is characterized in that the first piezoelectric vibration sensor is installed on a body surface side of a skeleton or a skeletal muscle connected without including a joint. According to another aspect, the skeleton is any one of a sternum, a spine, and a tail base. According to still another aspect, the second piezoelectric vibration sensor is characterized in that the second piezoelectric vibration sensor is disposed in a lower body of a living body and at a site where an artery is near the body surface. Alternatively, the second piezoelectric vibration sensor is installed on a thigh or the back of a knee.
 更に他の形態によれば、前記演算手段は、前記第1の圧電振動センサで得られた心弾波から得た脈波の心臓出発時刻と、前記第2の圧電振動センサで得られた脈波の到達時刻と、心臓から前記第2の圧電振動センサの測定部位までの脈波の伝播経路の距離とから、脈波伝播速度を演算することを特徴とする。更には、前記第2の圧電振動センサによって検出される脈波の伝播経路中に大動脈が含まれていることを特徴とする。 According to still another mode, the calculating means includes a heart departure time of a pulse wave obtained from a cardiac oscillating wave obtained by the first piezoelectric vibration sensor and a pulse departure time obtained by the second piezoelectric vibration sensor. The pulse wave propagation velocity is calculated from the arrival time of the wave and the distance of the propagation path of the pulse wave from the heart to the measurement site of the second piezoelectric vibration sensor. Further, the aorta is included in the propagation path of the pulse wave detected by the second piezoelectric vibration sensor.
 本発明の動脈硬化評価装置は、前記脈波伝播速度測定装置を使用する動脈硬化評価装置であって、前記脈波伝播速度測定装置で測定した生体の脈波伝播速度と、予め求めた動脈硬化が生じていない通常の生体における脈波伝播速度とを比較し、前記生体の脈波伝播速度が前記通常の脈波伝播速度を超えるときは、動脈硬化病変の可能性があると評価する評価手段を備えたことを特徴とする。 The arterial stiffness evaluation device of the present invention is an arterial stiffness evaluation device using the pulse wave velocity measuring device, wherein the pulse wave propagation speed of the living body measured by the pulse wave velocity measuring device and the arteriosclerosis determined in advance. Evaluation means for comparing the pulse wave propagation velocity in a normal living body in which no occurrence has occurred, and evaluating that there is a possibility of an arteriosclerotic lesion when the pulse wave propagation velocity of the living body exceeds the normal pulse wave propagation velocity It is characterized by having.
 本発明の脈波伝播速度測定方法は、心弾波を検出する第1の圧電振動センサと、脈波を検出する第2の圧電振動センサを、生体の体表側にそれぞれ設置するステップと、前記第1の圧電振動センサで得られた心弾波から、脈波の心臓出発時刻を得るステップと、前記第2の圧電振動センサで得られた脈波から、その到達時刻を得るステップと、前記脈波の心臓出発時刻と、前記脈波の到達時刻と、心臓から前記第2の圧電振動センサの測定部位までの脈波の伝播経路の距離から、脈波伝播速度を演算するステップと、を含むことを特徴とする。本発明の前記及び他の目的,特徴,利点は、以下の詳細な説明及び添付図面から明瞭になろう。 The method of measuring a pulse wave velocity according to the present invention includes the steps of: installing a first piezoelectric vibration sensor for detecting a cardiac elastic wave and a second piezoelectric vibration sensor for detecting a pulse wave on a body surface of a living body; Obtaining a heart departure time of a pulse wave from a heart trajectory obtained by a first piezoelectric vibration sensor; obtaining a arrival time of the pulse wave from a pulse wave obtained by the second piezoelectric vibration sensor; Calculating a pulse wave propagation velocity from the pulse wave heart departure time, the arrival time of the pulse wave, and the distance of the pulse wave propagation path from the heart to the measurement site of the second piezoelectric vibration sensor. It is characterized by including. The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
 本発明によれば、生体の体表側に設置した圧電振動センサの出力振動波形から、脈波及び心弾波を測定し、それらを利用して脈波伝播速度を演算することとしたので、簡易な構成でありながら、非侵襲な手法で、血流が一方向である一つの経路上における大動脈の脈波伝播速度を良好に得ることができ、更には動脈硬化の評価に有効である。 According to the present invention, a pulse wave and a heart elastic wave are measured from the output vibration waveform of the piezoelectric vibration sensor installed on the body surface side of the living body, and the pulse wave propagation velocity is calculated by using them. In spite of the simple configuration, the pulse wave propagation velocity of the aorta on one path in which the blood flow is one-way can be favorably obtained by a non-invasive method, and it is effective for evaluating arteriosclerosis.
本発明の実施例における圧電振動センサの設置と回路構成を示す図である。It is a figure showing installation and circuit composition of a piezoelectric vibration sensor in an example of the present invention. 前記図1の回路構成の具体例を示す図である。FIG. 2 is a diagram illustrating a specific example of the circuit configuration of FIG. 1. 前記実施例におけるヒトにおける脈波の測定部位を示す図である。FIG. 3 is a diagram showing a pulse wave measurement site in a human in the embodiment. ウサギを利用した脈波測定のセンサ部位と測定装置を示す図である。It is a figure showing a sensor part and a measuring device of a pulse wave measurement using a rabbit. 前記ウサギの例における測定波形の一例を示す図である。It is a figure showing an example of a measurement waveform in the example of the above-mentioned rabbit. 前記ウサギの例における2経路による脈波伝播速度と、心弾波を利用した1経路の脈波伝播速度の測定例を示す図である。It is a figure which shows the example of a measurement of the pulse-wave propagation speed by two paths | paths in the example of the said rabbit, and the pulse-wave propagation velocity of one path | route using a heart bullet. 前記ウサギの例においてカテーテル圧センサから求めた大動脈を含む脈波伝播速度と圧電振動センサとカテーテル圧センサの時間差から求めた脈波伝播速度の相関関係を示す図である。It is a figure which shows the correlation of the pulse wave propagation speed containing the aorta calculated | required from the catheter pressure sensor in the example of the said rabbit, and the pulse wave propagation speed calculated | required from the time difference of the piezoelectric vibration sensor and the catheter pressure sensor. 前記ウサギの例においてカテーテル圧センサから求めた大動脈を含む脈波伝播速度と、圧電振動センサの時間差から求めた脈波伝播速度との相関関係を示す図である。It is a figure which shows the correlation of the pulse wave propagation speed containing the aorta calculated | required from the catheter pressure sensor in the example of the said rabbit, and the pulse wave propagation speed calculated from the time difference of the piezoelectric vibration sensor. WHHLMIウサギ(遺伝的に高脂血症、冠動脈疾患および動脈硬化を発症する)と正常ウサギを用いて測定した脈波伝播速度を示すグラフである。FIG. 3 is a graph showing pulse wave velocity measured using WHHLMI rabbits (which genetically develop hyperlipidemia, coronary artery disease and atherosclerosis) and normal rabbits. 脈波伝播速度の測定手法の原理を示す図である。It is a figure showing the principle of the measuring technique of a pulse wave propagation velocity.
 以下、本発明を実施するための最良の形態を、実施例に基づいて詳細に説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail based on examples.
 図1には、本発明の実施例1による脈波伝播速度測定装置の構成が示されている。同図に示すように、本実施例では、圧電振動センサが被測定者の体表面に二つ装着される。これらのうち、胸骨部には圧電振動センサ10Aがベルト12Aで固定され、鼠径部には圧電振動センサ10Bがベルト12Bで固定される。圧電振動センサ10Bは、膝裏や足の甲などに固定してもよい。圧電振動センサ10A,10Bのセンサ出力は、それぞれセンサモジュール100A,100Bに入力されており、これらセンサモジュール100A,100Bの出力側は出力コントローラ200A,200Bを介して波形解析装置300に接続されている。 FIG. 1 shows the configuration of the pulse wave velocity measuring device according to the first embodiment of the present invention. As shown in the figure, in the present embodiment, two piezoelectric vibration sensors are mounted on the body surface of the subject. Of these, the piezoelectric vibration sensor 10A is fixed to the sternum with a belt 12A, and the piezoelectric vibration sensor 10B is fixed to the groin with a belt 12B. The piezoelectric vibration sensor 10B may be fixed to the sole of the knee, the instep of the foot, or the like. Sensor outputs of the piezoelectric vibration sensors 10A and 10B are input to sensor modules 100A and 100B, respectively, and the output sides of the sensor modules 100A and 100B are connected to a waveform analyzer 300 via output controllers 200A and 200B. .
 これらのうち、圧電振動センサ10A,10Bとしては、例えば、国際公開2016/167202号パンフレットに開示されている振動波形センサや、国際公開2017/187710号パンフレットに開示されているセンサモジュールが好適な例である。圧電振動センサ10A,10Bとしては、同一のものを使用してもよいが、検出する振動波形に応じた特性のものをそれぞれ使用してもよい。本実施例では、圧電振動センサ10Aは心弾波用センサであり、圧電振動センサ10Bは脈波用センサである。心弾波は、心筋の収縮と弛緩による物理的な動きである拍動に伴って生ずる微細な人体の振動を示し、心臓の拍動に伴う振動が骨格や骨格筋を媒質として伝達されるもので、脈波に比べて高速で伝達されるという特長がある。動脈を媒質として伝播する脈波が、5-20m/s程度の伝播速度であるのに対し、心弾波はkm/sオーダーの伝播速度を有するため、脈波と比較した場合、ほぼ瞬間で伝達されるとみなすことができる。してみると、脈波が心臓を出発した時刻を心弾波から知ることができるので、測定部位における脈波の到達時刻と、心臓から測定部位までの脈波の伝播経路の距離から、脈波伝播速度を求めることができる。 Among these, preferred examples of the piezoelectric vibration sensors 10A and 10B include, for example, a vibration waveform sensor disclosed in WO 2016/167202 and a sensor module disclosed in WO 2017/187710. It is. As the piezoelectric vibration sensors 10A and 10B, the same ones may be used, or ones having characteristics according to the vibration waveform to be detected may be used. In this embodiment, the piezoelectric vibration sensor 10A is a heart wave sensor, and the piezoelectric vibration sensor 10B is a pulse wave sensor. A cardiac trajectory is a minute vibration of the human body that accompanies pulsation, which is a physical movement caused by contraction and relaxation of the heart muscle, and the vibration associated with the pulsation of the heart is transmitted using the skeleton and skeletal muscle as a medium. Therefore, there is a feature that the pulse wave is transmitted at a higher speed than the pulse wave. A pulse wave propagating through an artery as a medium has a propagation velocity of about 5-20 m / s, whereas a heart bullet has a propagation velocity of the order of km / s. Can be considered transmitted. As a result, the time when the pulse wave departs from the heart can be known from the cardiac trajectory, so that the pulse wave can be obtained from the arrival time of the pulse wave at the measurement site and the distance of the propagation path of the pulse wave from the heart to the measurement site. The wave propagation velocity can be determined.
 本実施例では、圧電振動センサ10A,10Bによってそれぞれ心弾波と脈波を検出できることを利用し、胸骨付近で心弾波のピーク(心臓弁が閉じる時に発生する心弾波信号)を検出するとともに、太腿動脈付近で脈波を検出し、両者の時間差を取ることで大動脈を含む経路の時間差測定を実現している。 In the present embodiment, the peak of the heart elastic wave (heart elastic wave signal generated when the heart valve closes) is detected near the sternum, utilizing the fact that the piezoelectric vibration sensors 10A and 10B can detect the heart elastic wave and the pulse wave, respectively. At the same time, a pulse wave is detected in the vicinity of the femoral artery, and the time difference between the two is taken to realize the time difference measurement of the path including the aorta.
 図3に示すように、心弾波のピークは基本的に3つあり、大動脈弁と肺動脈弁の閉じるときの血液の振動が発生する位置SAの振動はその一つに含まれると考えられる。この位置から5~10mm末梢側の上行大動脈部位SBに対応する胸壁上の部位に圧電振動センサ10Aを設置している。また、圧電振動センサ10Bは、腹部大動脈の分岐部SCに近い位置に設置している。 心 As shown in FIG. 3, there are basically three peaks of the cardiac trajectory, and it is considered that the vibration at the position SA where the blood vibration occurs when the aortic valve and the pulmonary valve close is included in one of them. The piezoelectric vibration sensor 10A is installed at a position on the chest wall corresponding to the ascending aorta region SB 5 to 10 mm distal from this position. The piezoelectric vibration sensor 10B is installed at a position near the bifurcation SC of the abdominal aorta.
 次に、センサモジュール100A,100B,出力コントローラ200A,200B,波形解析装置300の一例を示すと、図2に示すようになる。もちろん、上述した国際公開2016/167202号パンフレットもしくは国際公開2017/187710号パンフレットに開示されているものを用いてもよい。センサモジュール100Aと100B,出力コントローラ200Aと200Bは、本実施例では同一の構成となっているので、センサモジュール100A,出力コントローラ200Aについて説明する。まず、センサモジュール100Aは、入力側に計装アンプ102が設けられており、計装アンプ102にはアナログスイッチ104が接続されている。アナログスイッチ104及び抵抗アレイ105は、波形解析装置300からの信号に基づいて計装アンプ102の駆動を制御するためのもので、抵抗アレイ105に接続しているアナログスイッチ104のon/offを組み合わせることで抵抗値を可変し、計装アンプ102の増幅率を可変することができる。計装アンプ102の出力側は、低域成分を取り出すためのローパスフィルタ106を介して信号変換部108に接続されており、アナログ信号がデジタル信号に変換されて出力されるようになっている。 Next, an example of the sensor modules 100A, 100B, the output controllers 200A, 200B, and the waveform analyzer 300 is shown in FIG. Of course, those disclosed in the pamphlet of International Publication No. 2016/167202 or the pamphlet of International Publication No. 2017/187710 described above may be used. Since the sensor modules 100A and 100B and the output controllers 200A and 200B have the same configuration in the present embodiment, the sensor module 100A and the output controller 200A will be described. First, the sensor module 100A is provided with an instrumentation amplifier 102 on the input side, and an analog switch 104 is connected to the instrumentation amplifier 102. The analog switch 104 and the resistor array 105 are for controlling the driving of the instrumentation amplifier 102 based on the signal from the waveform analyzer 300, and combine on / off of the analog switch 104 connected to the resistor array 105. Thus, the resistance value can be changed, and the amplification factor of the instrumentation amplifier 102 can be changed. The output side of the instrumentation amplifier 102 is connected to a signal converter 108 via a low-pass filter 106 for extracting low-frequency components, so that an analog signal is converted to a digital signal and output.
 次に、出力コントローラ200Aは、入力信号をBLE(Bluetooth(登録商標) Low Energy)などの無線信号として出力するためのもので、4ピンジャックなどの入力端子202,USBコネクタ204,ローパスフィルタ206,USBシリアルコンバータ208,BLEなどの通信モジュール210を中心に構成されている。電源は、充電制御回路216によって充電されるリチウムイオン充電池220であり、放電保護回路218が設けられている。通信モジュール210には、3軸加速度センサ214が設けられている。 Next, the output controller 200A is for outputting an input signal as a wireless signal such as BLE (Bluetooth (registered trademark) Low Energy), and has an input terminal 202 such as a 4-pin jack, a USB connector 204, a low-pass filter 206, The communication module 210 mainly includes a USB serial converter 208 and BLE. The power supply is a lithium ion rechargeable battery 220 charged by the charge control circuit 216, and is provided with a discharge protection circuit 218. The communication module 210 is provided with a three-axis acceleration sensor 214.
 これらのうち、入力端子202は、センサモジュール100Aからの信号入力に使用される。入力信号は、ローパスフィルタ206で低域成分が取り出されて、通信モジュール210に入力されている。USBコネクタ204は、PCなど外部機器への信号出力の他、電源の充電にも使用されるようになっており、外部機器への出力信号はUSBシリアルコンバータ208で信号変換が行われた後、USBコネクタ204から出力される。 の う ち Of these, the input terminal 202 is used for signal input from the sensor module 100A. The low-pass component of the input signal is extracted by the low-pass filter 206 and input to the communication module 210. The USB connector 204 is used not only for signal output to an external device such as a PC, but also for charging a power source. Output from the USB connector 204.
 圧電振動センサ10A,センサモジュール100A,出力コントローラ200Aは、それぞれ個別に構成してもよいが、一体化してベルト12A,12Bで人体に取り付けるようにしてもよい。この場合、上述した3軸加速度センサ214で人体の動きが検出されて送信されるようになる。 The piezoelectric vibration sensor 10A, the sensor module 100A, and the output controller 200A may be individually configured, or may be integrated and attached to a human body by the belts 12A, 12B. In this case, the movement of the human body is detected and transmitted by the above-described three-axis acceleration sensor 214.
 次に、波形解析装置300は、PC(パソコン),スマートホン,タブレット型PCなどによって構成されており、CPU302,データメモリ310,プログラムメモリ320,ディスプレイ304を備えている。プログラムメモリ320に格納されているプログラムはCPU302で実行される。このとき、データメモリ310に格納されているデータが参照される。演算結果は、データメモリ310に格納されるとともに、ディスプレイ304に表示される。このような基本的な動作は、一般的なものでいずれも公知である。 Next, the waveform analyzer 300 is constituted by a PC (personal computer), a smart phone, a tablet PC, or the like, and includes a CPU 302, a data memory 310, a program memory 320, and a display 304. The programs stored in the program memory 320 are executed by the CPU 302. At this time, the data stored in the data memory 310 is referred to. The calculation result is stored in the data memory 310 and displayed on the display 304. Such basic operations are general and well-known.
 データメモリ310には、出力コントローラ200A,200Bから有線もしくは無線で受信した波形データ312が格納される。また、CPU302による演算結果である演算データ314も格納される。必要があれば、演算途中のデータも適宜データメモリ310に格納される。プログラムメモリ320には、PWV演算プログラム322が用意されている。スマートホンの場合、プログラムはアプリとして用意される。なお、動脈硬化評価プログラム324については後述する。 The data memory 310 stores the waveform data 312 received from the output controllers 200A and 200B by wire or wirelessly. Further, operation data 314 which is an operation result by the CPU 302 is also stored. If necessary, data in the middle of the calculation is also stored in the data memory 310 as appropriate. A PWV calculation program 322 is prepared in the program memory 320. In the case of a smartphone, the program is prepared as an application. The arteriosclerosis evaluation program 324 will be described later.
 ところで、本発明によって大動脈を含む血流が一方向の一つの経路上の脈波伝播速度aoPWVを良好に測定できるかどうかを、実際の人体を使用して検証することはできないので、以下、ウサギを利用して測定を行うことで実証することにする。図4には、ウサギに対するセンサ配置が示されており、上述した圧電振動センサ10Aに対応する圧電振動センサ20Aは、上行大動脈UAに近い心尖部近傍の胸壁の第4肋間部に装着し、心弾波を検出する。また、圧電振動センサ10Bに対応する圧電振動センサ20Bは、左膝関節部の皮膚上に設置し、上行大動脈UAから腹部大動脈UB及び左大腿脈UCを経た左伏在動脈UDの近位部の脈波振動を検出する。圧電振動センサ20A,20Bの出力側には、図1と同様に、センサモジュール100A,100Bが接続されており、いずれも出力コントローラ200を介して波形解析装置301に接続されている。 By the way, it is not possible to verify whether the blood flow including the aorta can properly measure the pulse wave propagation velocity aoPWV on one path in one direction by using the present invention. It will be demonstrated by performing measurement using. FIG. 4 shows a sensor arrangement for a rabbit. A piezoelectric vibration sensor 20A corresponding to the above-described piezoelectric vibration sensor 10A is mounted on the fourth intercostal portion of the chest wall near the apex near the ascending aorta UA. Detects bullet waves. The piezoelectric vibration sensor 20B corresponding to the piezoelectric vibration sensor 10B is installed on the skin of the left knee joint, and is located at the proximal part of the left saphenous artery UD passing from the ascending aorta UA to the abdominal aorta UB and the left femoral pulse UC. Detect pulse wave vibration. 1, the sensor modules 100A and 100B are connected to the output sides of the piezoelectric vibration sensors 20A and 20B, respectively, and both are connected to the waveform analyzer 301 via the output controller 200.
 更に、本例では、カテーテル先端型圧トンラスデューサ(以下「カテーテル圧センサ」という)22A,22Bを別途設置する。カテーテル圧センサ22A,22Bとしては、例えばミラー社製の「SPS-320」を使用する。カテーテル圧センサ22Aは上行大動脈UAの大動脈弁近傍、例えば大動脈弁から5~10mm末梢側の上行大動脈部位に設置され、カテーテル圧センサ22Bは腹部大動脈UBの遠位端に設置される。これらカテーテル圧センサ22A,22Bの信号出力側には、センサコントローラ400A,400Bをそれぞれ介して、ポリグラフシステム402が接続されている。このポリグラフシステム402によって、カテーテル圧センサ22A,22Bにおける圧変化が測定されるようになている。 Further, in this example, the catheter tip type pressure transducer (hereinafter referred to as “catheter pressure sensor”) 22A, 22B is separately installed. As the catheter pressure sensors 22A and 22B, for example, "SPS-320" manufactured by Mirror is used. The catheter pressure sensor 22A is installed near the aortic valve of the ascending aorta UA, for example, at the ascending aortic site 5 to 10 mm distal from the aortic valve, and the catheter pressure sensor 22B is installed at the distal end of the abdominal aorta UB. A polygraph system 402 is connected to signal output sides of the catheter pressure sensors 22A and 22B via sensor controllers 400A and 400B, respectively. The polygraph system 402 measures pressure changes at the catheter pressure sensors 22A and 22B.
 ポリグラフシステム402によるカテーテル圧センサ22A,22Bの測定結果は、適宜のI/F(インターフェース)404を介して、上述した波形解析装置301に入力されている。波形解析装置301は、図1の波形解析装置300と基本的な構成は同じであるが、カテーテル圧センサ22A,22Bに対する信号解析を行う点で異なる。 The measurement results of the catheter pressure sensors 22A and 22B by the polygraph system 402 are input to the above-described waveform analyzer 301 via an appropriate I / F (interface) 404. The waveform analyzer 301 has the same basic configuration as the waveform analyzer 300 of FIG. 1, but differs in that it performs signal analysis on the catheter pressure sensors 22A and 22B.
 次に、図5~図8も参照しながら、本実施例の動作を説明する。図4に示したように、ウサギの例では、圧電振動センサ20A,20Bによって心弾波,脈波がそれぞれ検出され、カテーテル圧センサ22A,22Bでは、それぞれ設置位置における血管内の圧変化が検出される。図5には、それらの測定例が示されており、
グラフch1:胸部に設置した圧電振動センサ20Aによる心弾波,
グラフch2:上行大動脈内に設置したカテーテル圧センサ22Aによる圧脈波,
グラフch3:左膝関節部の皮膚上に設置した圧電振動センサ20Bによる脈波,
グラフch4:腹部大動脈遠位端に設置したカテーテル圧センサ22Bによる圧脈波,
の各波形が示されている。なお、図5の横軸は時間(秒)を示し、縦軸は信号強度を示す。
Next, the operation of this embodiment will be described with reference to FIGS. As shown in FIG. 4, in the rabbit example, the oscillating heart wave and the pulse wave are respectively detected by the piezoelectric vibration sensors 20A and 20B, and the catheter pressure sensors 22A and 22B detect the pressure change in the blood vessel at the installation position. Is done. FIG. 5 shows examples of these measurements.
Graph ch1: heart wave caused by the piezoelectric vibration sensor 20A installed on the chest,
Graph ch2: pressure pulse wave by catheter pressure sensor 22A installed in the ascending aorta,
Graph ch3: pulse wave by the piezoelectric vibration sensor 20B installed on the skin of the left knee joint,
Graph ch4: pressure pulse wave by catheter pressure sensor 22B installed at the distal end of abdominal aorta,
Are shown. Note that the horizontal axis in FIG. 5 indicates time (seconds), and the vertical axis indicates signal intensity.
 これらのグラフのうち、ch1,ch2に着目すると、胸部に非侵襲的に設置した圧電振動センサ20Aによるグラフch1のピークと、上行大動脈内に設置したカテーテル圧センサ22のグラフch2の立ち上がりポイントとが正確に一致している(図中のPG参照)。してみると、胸部に非侵襲的に設置した圧電振動センサ20Aによる検出波形を検出することで、上行大動脈内に設置したカテーテル圧センサ22による波形検出と同等の結果を得ることができると考えられる。 Focusing on ch1 and ch2 among these graphs, the peak of graph ch1 by the piezoelectric vibration sensor 20A non-invasively installed on the chest and the rising point of the graph ch2 of the catheter pressure sensor 22 installed in the ascending aorta are shown. They match exactly (see PG in the figure). In conclusion, it is considered that the same result as the waveform detection by the catheter pressure sensor 22 installed in the ascending aorta can be obtained by detecting the detection waveform by the piezoelectric vibration sensor 20A installed non-invasively on the chest. Can be
 カテーテル圧センサ22Aの圧変化波形は、心臓弁の作動によって送り出される血液の圧変化であり、心臓を出発する脈波を示しており、従って、圧電振動センサ20Aで検出する心弾波は、脈波が心臓を出発したタイミングを良好に表していると考えることができる。この結果を、図1に示した人体の場合に当てはめると、胸骨部にベルト12Aで固定された圧電振動センサ10Aによって心弾波を検出することで、脈波が心臓を出発したタイミングを知ることができることになる。心弾波は、心臓弁作動の振動が骨格等を通じて伝達されるものであることから、脈波に比べて高速で伝達される波形であり、心弾波を測定することで、脈波が心臓で発生したタイミングを知ることができる。すなわち、心弾波を利用することで、脈波の伝播速度を正確に求めることが可能となり、動脈硬化診断の精度の向上を図ることができる。 The pressure change waveform of the catheter pressure sensor 22A is a pressure change of the blood sent out by the operation of the heart valve, and shows a pulse wave starting from the heart. Therefore, a heart trajectory detected by the piezoelectric vibration sensor 20A is a pulse wave. It can be considered that the wave is a good indicator of the timing of departure from the heart. If this result is applied to the case of the human body shown in FIG. 1, the timing at which the pulse wave departs from the heart can be known by detecting the cardiac elastic wave by the piezoelectric vibration sensor 10A fixed to the sternum by the belt 12A. Can be done. The heart trajectory is a waveform transmitted at a higher speed than the pulse wave because the vibration of the heart valve operation is transmitted through a skeleton or the like. Can be known. That is, the use of the cardiac trajectory makes it possible to accurately determine the propagation speed of the pulse wave, thereby improving the accuracy of the arteriosclerosis diagnosis.
 図1に戻って、鼠径部にベルト12Bで固定された圧電振動センサ10Bでは、脈波が測定される。圧電振動センサ10A,10Bの測定データは、センサモジュール100A,100B及び出力コントローラ200A,200Bをそれぞれ介して、波形解析装置300に入力され、波形データ312としてデータメモリ310に格納される。CPU302では、プログラムメモリ320のPWV演算プログラム322が実行され、波形データ312を参照して、脈波伝播速度が演算される。演算結果は、演算データ314として、データメモリ310に格納されるとともに、ディスプレイ304に表示される。また、必要があれば、プリンタに出力される。 に Returning to FIG. 1, the pulse wave is measured by the piezoelectric vibration sensor 10B fixed to the groin by the belt 12B. The measurement data of the piezoelectric vibration sensors 10A and 10B are input to the waveform analyzer 300 via the sensor modules 100A and 100B and the output controllers 200A and 200B, respectively, and stored in the data memory 310 as waveform data 312. The CPU 302 executes the PWV calculation program 322 in the program memory 320, and calculates the pulse wave propagation velocity with reference to the waveform data 312. The calculation result is stored in the data memory 310 as calculation data 314 and displayed on the display 304. If necessary, it is output to a printer.
 この場合において、脈波伝播速度を演算するためには、心弾波と脈波の時間差とともに、心弾波用の圧電振動センサ10Aの位置から脈波用の圧電振動センサ10Bの位置までの距離である血管長を知る必要があるが、一般的には、被測定者の身長から推定することができる。このようにして得た脈波伝播速度は、大動脈全体と下肢動脈の一部を含む脈波伝播速度となる。 In this case, in order to calculate the pulse wave propagation velocity, the distance between the position of the piezoelectric vibration sensor 10A for the cardiac elastic wave and the position of the piezoelectric vibration sensor 10B for the pulse wave is calculated together with the time difference between the cardiac elastic wave and the pulse wave. It is necessary to know the blood vessel length, which can be generally estimated from the height of the subject. The pulse wave velocity thus obtained is the pulse wave velocity including the entire aorta and a part of the lower limb artery.
 図6には、ウサギ(人体でも同じ)における脈波伝播速度の測定例が示されている。同図(A)は、上腕-足首間脈波伝播速度baPWVなどの2経路による脈波伝播速度の測定例を示しており、同図(B)は、本実施例による心弾波を利用した1経路の脈波伝播速度の測定例を示している。なお、グラフの横軸は時間(msec),縦軸は距離(mm)を示しており、グラフの傾きが速度を示す。これらのグラフにおいて、#0~#3は、センサの設置部位を示し、以下のとおりである。なお、圧電振動センサ20Aは、上腕-足首間脈波伝播速度baPWVの測定時には右上腕部皮膚上に装着し、心弾波測定時には左胸壁第4肋間部皮膚上に装着した。
#0:上腕
#1:大動脈起始部
#2:総腸骨動脈分岐てい
#3:足首
FIG. 6 shows a measurement example of the pulse wave velocity in a rabbit (the same applies to a human body). FIG. 7A shows an example of measurement of pulse wave propagation velocities by two routes such as upper arm-ankle pulse wave propagation velocity baPWV, and FIG. The example of measuring the pulse wave propagation velocity of one path is shown. The horizontal axis of the graph indicates time (msec), the vertical axis indicates distance (mm), and the slope of the graph indicates speed. In these graphs, # 0 to # 3 indicate the installation site of the sensor, and are as follows. The piezoelectric vibration sensor 20A was mounted on the upper right arm skin when measuring the pulse wave propagation velocity baPWV between the upper arm and the ankle, and was mounted on the fourth intercostal skin on the left chest wall when measuring the heart trajectory.
# 0: Upper arm # 1: Aortic root # 2: Common iliac bifurcation # 3: Ankle
 まず、同図(A)から説明すると、
上腕PWV:大動脈起始部#1から上腕#0に至る脈波の伝播速度
baPWV:上腕#0から足首#3に至る脈波の伝播速度
aoPWV:大動脈起始部#1から総腸骨動脈分岐#2に至る大動脈を含む脈波伝播速度
下肢PWV:総腸骨動脈分岐#2から足首#3に至る脈波の伝播速度
であり、大動脈起始部#1から足首#3に至る脈波の伝播速度は、上腕PWV+baPWV,もしくは、aoPWV+下肢PWVとなる。これらのうち、2経路PWVである上腕-足首間脈波伝播速度baPWVは、下肢や上肢の長さ(あるいはそれらの動脈硬化の程度)により値が大きく変わってしまう。
First, referring to FIG.
Upper arm PWV: Propagation velocity of pulse wave from aortic root # 1 to upper arm # 0
baPWV: Propagation velocity of pulse wave from upper arm # 0 to ankle # 3
aoPWV: Pulse wave propagation velocity including aorta from aortic root # 1 to common iliac artery branch # 2 Lower leg PWV: Pulse wave propagation velocity from common iliac artery branch # 2 to ankle # 3, aorta The propagation speed of the pulse wave from the origin # 1 to the ankle # 3 is upper arm PWV + baPWV or aoPWV + lower limb PWV. Of these, the pulse wave propagation velocity baPWV between the upper arm and the ankle, which is a two-path PWV, greatly changes depending on the length of the lower limb and the upper limb (or the degree of arteriosclerosis thereof).
 一方、同図(B)では、前記上腕PWV+baPWVの代わりに、
心弾波PWV:心弾波を利用して測定した上腕#0から足首#3に至る脈波の伝播速度
が得られる。1経路PWVである心弾波PWVでも下肢の影響は残るが、下肢部分が短ければ、下肢PWVが短くなり、心弾波PWVを、大動脈を含む脈波伝播速度aoPWVに限りなく近づけることが可能であり、従って、下肢PWVを別途測定すれば、心弾波PWVから大動脈を含む脈波伝播速度aoPWVを正確に推定することができる。
On the other hand, in the same figure (B), instead of the upper arm PWV + baPWV,
Heart wave PWV: The propagation speed of the pulse wave from the upper arm # 0 to the ankle # 3 measured using the heart wave is obtained. The effect of the lower limb remains even with the heart trajectory PWV, which is a one-path PWV, but if the lower limb is short, the lower limb PWV is shortened, and the heart trajectory PWV can be made as close as possible to the pulse wave velocity aoPWV including the aorta. Therefore, if the lower limb PWV is separately measured, the pulse wave propagation velocity aoPWV including the aorta can be accurately estimated from the cardiac oscillating wave PWV.
 更に、同図(B)において、左下の2つの部位#0と#1のピークの時間差は約2msである。ウサギの心臓に挿入した大動脈弁とカテーテル先端間の距離が10mmだとすると、この間のPWVは5m/sであり、カテーテル圧センサ22Aで測定した大動脈を含む脈波伝播速度aoPWVの値(4.93m/s)とよく一致する。 {Circle around (2)}, the time difference between the peaks of the two lower left portions # 0 and # 1 is about 2 ms. If the distance between the aortic valve inserted in the rabbit heart and the catheter tip is 10 mm, the PWV during this period is 5 m / s, and the value of the pulse wave propagation velocity aoPWV including the aorta measured by the catheter pressure sensor 22A (4.93 m / s) ) Matches well.
 図7には、ウサギに取り付けたカテーテル圧センサ22A,22Bから求められた大動脈を含む脈波伝播速度aoPWV(横軸)と、圧電振動センサ20Aとカテーテル圧センサ22Bの時間差から求められたBCGaoPWV(縦軸)との相関関係が示されている。なお、「BCG」は心弾波の英語略称であり、心弾波を利用して得た大動脈を含む脈波伝播速度aoPWVを「BCGaoPWV」と表記している。黒丸で示す測定値から最小二乗法などによる回帰分析を行った結果、
a,回帰直線G20:BCGaoPWV=1.0021・aoPWV
b,相関係数R2乗値:R2=0.9517
となり、大動脈を含む脈波伝播速度aoPWVとBCGaoPWVとの間に極めて強い相関関係のあることが判明した。
FIG. 7 shows the pulse wave propagation velocity aoPWV (horizontal axis) including the aorta calculated from the catheter pressure sensors 22A and 22B attached to the rabbit, and BCGaoPWV (calculated from the time difference between the piezoelectric vibration sensor 20A and the catheter pressure sensor 22B). (Vertical axis). Note that “BCG” is an abbreviation of the heart trajectory in English, and the pulse wave velocity aoPWV including the aorta obtained using the heart trajectory is described as “BCGaoPWV”. As a result of performing a regression analysis by the least squares method etc. from the measurement values indicated by black circles,
a, Regression line G20: BCGaoPWV = 1.0021 · aoPWV
b, Correlation coefficient R square value: R 2 = 0.9517
It was found that there was a very strong correlation between the pulse wave velocity aoPWV including the aorta and BCGaoPWV.
 図8には、カテーテル圧センサ22A,22Bから求められた大動脈を含む脈波伝播速度aoPWV(横軸)と、圧電振動センサ20A,20Bの時間差から非侵襲で求められたBCGaoPWV+下肢PWV(縦軸)との相関関係が示されている。黒丸で示す測定値から最小二乗法などによる回帰分析を行った結果、
a,回帰直線G30:BCGaoPWV+下肢PWV=1.516・aoPWV-169.82
b,相関係数R2乗値:R2=0.9465
となり、大動脈を含む脈波伝播速度aoPWVとBCGaoPWV+下肢PWVとの間に極めて強い相関関係のあることが判明した。これら図7,図8の結果は、いずれもウサギの場合であるが、ヒトに対しても、同様の結果が得られるものと考えられる。
FIG. 8 shows pulse wave propagation velocity aoPWV including the aorta obtained from the catheter pressure sensors 22A and 22B (horizontal axis) and BCGaoPWV + lower limb PWV obtained non-invasively from the time difference between the piezoelectric vibration sensors 20A and 20B (vertical axis). ) Are shown. As a result of performing a regression analysis by the least squares method etc. from the measurement values indicated by black circles,
a, Regression line G30: BCGaoPWV + lower limb PWV = 1.516 · aoPWV-169.82
b, Correlation coefficient R square value: R 2 = 0.9465
It was found that there was an extremely strong correlation between the pulse wave velocity aoPWV including the aorta and BCGaoPWV + lower limb PWV. These results in FIGS. 7 and 8 are for rabbits, but it is considered that similar results can be obtained for humans.
 以上のように、本実施例によれば、次のような効果がある。
a,大動脈を含む脈波伝播速度を、従来の上腕-足首間脈波伝播速度baPWVやcfPWVのような心臓からの2経路の時間差ではなく、大動脈を含む1経路の時間差で測定することができる。
b,非常に簡易で非侵襲な手法で正確に脈波伝播速度を検出することが可能になる。
c,心弾波を胸骨で検出するとともに、上行大動脈分岐位置近傍の脈波信号に相当する心弾波信号容易に得ることができる。これと、太腿や膝裏など下半身の動脈が体表面近くにある部位で検出できる脈波信号との時間差を求めることで、大動脈を含む心臓からの1つの経路上の脈波伝播速度を簡易で非侵襲な手法で正確に検出することができる。
As described above, according to the present embodiment, the following effects can be obtained.
a, The pulse wave propagation velocity including the aorta can be measured by the time difference of one path including the aorta, not the time difference of two paths from the heart like the conventional brachial-ankle pulse wave propagation velocity baPWV or cfPWV. .
b. It becomes possible to accurately detect the pulse wave velocity by a very simple and non-invasive technique.
(c) While detecting a cardiac trajectory by the sternum, a cardiac trajectory signal corresponding to a pulse wave signal near the ascending aortic bifurcation position can be easily obtained. By calculating the time difference between this and a pulse wave signal that can be detected at a site where the lower body artery such as the thigh or the back of the knee is near the body surface, the pulse wave propagation velocity on one path from the heart including the aorta can be simplified. And can be accurately detected by a non-invasive technique.
 次に、図9も参照しながら、本発明の実施例2について説明する。図9には、動脈硬化病変が現れる疾患モデル動物を用いて測定した脈波伝播速度の一例を正常な場合と比較したグラフが示されている。用いたのは、正常なウサギとWHHLMIウサギであり、高脂血症や動脈硬化に加え心筋梗塞を自然発症するモデルとして知られている。
a,正常コントロール群:日本白色種ウサギ,雄性,12月齢,N=7
b,動脈硬化症群:WHHLMIウサギ,雄性,12月齢,N=5
なお、Nは例数である。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 9 shows a graph comparing an example of a pulse wave velocity measured using a disease model animal in which an arteriosclerotic lesion appears with a normal case. Normal rabbits and WHHLMI rabbits were used, and are known as models for spontaneously developing myocardial infarction in addition to hyperlipidemia and arteriosclerosis.
a, normal control group: Japanese white rabbit, male, 12 months old, N = 7
b, arteriosclerosis group: WHHLMI rabbit, male, 12 months old, N = 5
Note that N is the number of cases.
 被検対象のウサギは、ペントバルビタール(30mg/kg)麻酔下で仰臥位固定するとともに、鎮痛薬として酒石酸ブトルファノール(0.3mg)を筋肉内に投与した。そして、図4に示した圧電振動センサ20Aを左胸壁第3肋間に装着し、圧電振動センサ20Bを左膝内側部皮膚上に装着した。センサー間距離は、糸を動脈に沿わせて計測した。 (4) The rabbits to be tested were supine fixed under pentobarbital (30 mg / kg) anesthesia, and intramuscularly administered butorphanol tartrate (0.3 mg) as an analgesic. Then, the piezoelectric vibration sensor 20A shown in FIG. 4 was mounted between the third ribs on the left chest wall, and the piezoelectric vibration sensor 20B was mounted on the left knee inner skin. The distance between the sensors was measured by moving the thread along the artery.
 図9は計測結果のグラフであり、BCGaoPWV+下肢PWVのMean±SD(平均(標準偏差))を示している。同図のように、非侵襲で求めた大動脈を含む脈波伝播速度は、正常ウサギよりWHHLMIウサギが速いことが分かる。これは、WHHLMIウサギの大動脈の血管壁が硬化していることを示唆している。してみれば、脈波伝播速度の値が正常な値よりも大きいときは、動脈硬化病変の可能性があると考えることができ、本発明を動脈硬化病変の存在予測や動脈硬化症の診断補助に使用できる。 FIG. 9 is a graph of the measurement results, showing Mean ± SD (mean (standard deviation)) of BCGaoPWV + PWV of the lower limb. As shown in the figure, the pulse wave velocity including the aorta obtained non-invasively is higher in the WHHLMI rabbit than in the normal rabbit. This suggests that the aortic vascular wall of the WHHLMI rabbit is stiffened. Therefore, when the value of the pulse wave velocity is larger than the normal value, it can be considered that there is a possibility of an arteriosclerotic lesion. Can be used for assistance.
 図2に示した動脈硬化評価プログラム324は、計測した波形データから演算した脈波伝播速度の値を正常値と比較する機能を備えている。なお、正常値は、多数の人に対して計測を行うことで、予め得ることができる。この動脈硬化評価プログラム324をCPU302で実行することで、被験者の脈波伝播速度の値を正常値と比較し、正常値を超えるときは、動脈硬化病変の可能性があると評価される。評価結果は、ディスプレイ304に表示される。 動脈 The arteriosclerosis evaluation program 324 shown in FIG. 2 has a function of comparing the value of the pulse wave velocity calculated from the measured waveform data with the normal value. The normal value can be obtained in advance by measuring a large number of people. By executing the arteriosclerosis evaluation program 324 by the CPU 302, the value of the pulse wave propagation velocity of the subject is compared with the normal value, and when it exceeds the normal value, it is evaluated that there is a possibility of an arteriosclerotic lesion. The evaluation result is displayed on the display 304.
 なお、本発明は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えることができる。例えば、以下のものも含まれる。
(1)上述した実施例では、心弾波用の圧電振動センサ10Aを胸骨側に配置したが、背骨,尾底骨など、心臓から見て関節を含まずに結合している骨格ないし骨格筋の体表側であれば、いずれに設置してもよい。また、前記実施例では、脈波用の圧電振動センサ10Bを大腿に配置したが、膝裏など下半身の動脈が体表面近くにある部位であれば、いずれに設置してもよい。このように、体表側で振動を検出することができれば、圧電振動センサ10A,10Bを、椅子の肘掛や背もたれ,ベッドのマットレスや枕など、人が接触する面であれば、各種のものに取り付けてよい。
(2)圧電振動センサ10A,10Bは、直接体表に接するように設置してもよいが、振動を伝達する中間媒質、例えばウレタンやファイバー圧縮体(エアウィーヴ(登録商標)など)を介して設置するようにしてもよい。
(3)図1,図2,図4に示した回路構成も一例であり、同様の作用を奏する各種の形態が考えられる。また、センサモジュール,出力コントローラ,波形解析装置のいずれか2つ以上を一体に構成してもよいし、圧電振動センサと一体の構成としてもよい。
(4)圧電振動センサ10A,10Bとしては、同一のものを使用してもよいが、検出する振動波形に応じた特性のものを使用してよい。
(5)前記実施例は、本発明のヒトの脈波伝播速度の検出に適用した例であるが、生体一般に適用可能である。
The present invention is not limited to the embodiments described above, and various changes can be made without departing from the spirit of the present invention. For example, the following are also included.
(1) In the above-described embodiment, the piezoelectric vibration sensor 10A for cardiac elastic wave is arranged on the sternum side. However, the skeletal or skeletal muscles such as the spine and the tail base that are connected without including the joint when viewed from the heart. May be installed on any of the body surfaces. In the above-described embodiment, the piezoelectric vibration sensor 10B for pulse wave is arranged on the thigh. However, the piezoelectric vibration sensor 10B may be installed on any part of the body such as the back of the knee where the artery of the lower body is near the body surface. As described above, if the vibration can be detected on the body surface side, the piezoelectric vibration sensors 10A and 10B can be attached to various objects such as armrests and backrests of chairs, mattresses and pillows of beds, etc., as long as they come into contact with humans. May be.
(2) The piezoelectric vibration sensors 10A and 10B may be installed so as to be in direct contact with the body surface. However, the piezoelectric vibration sensors 10A and 10B are installed via an intermediate medium that transmits vibration, for example, urethane or a fiber compression body (such as Airweave (registered trademark)). You may make it.
(3) The circuit configurations shown in FIG. 1, FIG. 2, and FIG. 4 are also examples, and various modes having the same operation can be considered. In addition, any two or more of the sensor module, the output controller, and the waveform analyzer may be integrally configured, or may be integrally configured with the piezoelectric vibration sensor.
(4) As the piezoelectric vibration sensors 10A and 10B, the same ones may be used, but those having characteristics according to the vibration waveform to be detected may be used.
(5) The above embodiment is an example in which the present invention is applied to the detection of the pulse wave velocity of a human, but is applicable to general living organisms.
 本発明によれば、生体の体表側に設置した圧電振動センサの出力振動波形から、脈波及び心弾波を測定し、それらを利用して脈波伝播速度を演算することとしたので、簡易な構成でありながら、非侵襲な手法で、血流が一方向である一つの経路上における大動脈の脈波伝播速度を良好に得ることができ、動脈硬化の評価にも有効で、医療の分野に好適である。 According to the present invention, a pulse wave and a heart elastic wave are measured from the output vibration waveform of the piezoelectric vibration sensor installed on the body surface side of the living body, and the pulse wave propagation velocity is calculated by using them. Despite the simple structure, it is possible to obtain a good pulse wave velocity of the aorta on one path where blood flow is one-way by a non-invasive method, and it is also effective for evaluating arteriosclerosis. It is suitable for.
10A,10B,20A,20B:圧電振動センサ
12A,12B:ベルト
22A,22B:カテーテル圧センサ
100A,100B:センサモジュール
102:計装アンプ
104:アナログスイッチ
105:抵抗アレイ
106:ローパスフィルタ
108:信号変換部
200,200A,200B:出力コントローラ
202:入力端子
204:USBコネクタ
206:ローパスフィルタ
208:USBシリアルコンバータ
210:通信モジュール
214:軸加速度センサ
216:充電制御回路
218:放電保護回路
220:リチウムイオン充電池
300,301:波形解析装置
302:CPU
304:ディスプレイ
310:データメモリ
312:波形データ
314:演算データ
320:プログラムメモリ
322:演算プログラム
324:動脈硬化評価プログラム
400A,400B:センサコントローラ
402:ポリグラフシステム
404:I/F
10A, 10B, 20A, 20B: Piezoelectric vibration sensors 12A, 12B: Belts 22A, 22B: Catheter pressure sensors 100A, 100B: Sensor module 102: Instrumentation amplifier 104: Analog switch 105: Resistance array 106: Low pass filter 108: Signal conversion Units 200, 200A, 200B: output controller 202: input terminal 204: USB connector 206: low-pass filter 208: USB serial converter 210: communication module 214: axial acceleration sensor 216: charge control circuit 218: discharge protection circuit 220: lithium ion charging Battery 300, 301: Waveform analyzer 302: CPU
304: display 310: data memory 312: waveform data 314: operation data 320: program memory 322: operation program 324: arteriosclerosis evaluation program 400A, 400B: sensor controller 402: polygraph system 404: I / F

Claims (9)

  1.  生体の体表側に設置されており、心弾波を検出する第1の圧電振動センサと、
     生体の体表側に設置されており、脈波を検出する第2の圧電振動センサと、
     前記第1の圧電振動センサで得られた心弾波と、前記第2の圧電振動センサで得られた脈波とを利用して、脈波伝播速度を演算する演算手段と、
    を備えた脈波伝播速度測定装置。
    A first piezoelectric vibration sensor that is installed on the body surface side of a living body and detects a heart bullet wave;
    A second piezoelectric vibration sensor that is installed on the body surface side of the living body and detects a pulse wave;
    Calculating means for calculating a pulse wave propagation velocity using a heart elastic wave obtained by the first piezoelectric vibration sensor and a pulse wave obtained by the second piezoelectric vibration sensor;
    A pulse wave velocity measuring device provided with:
  2.  前記第1の圧電振動センサを、関節を含まずに結合している骨格ないし骨格筋の体表側に設置したことを特徴とする請求項1記載の脈波伝播速度測定装置。 4. The pulse wave velocity measuring device according to claim 1, wherein the first piezoelectric vibration sensor is installed on a body surface side of a skeleton or a skeletal muscle connected without including a joint.
  3. 前記骨格が、胸骨,背骨,尾底骨のいずれかであることを特徴とする請求項2記載の脈波伝播速度測定装置。 The pulse wave velocity measuring device according to claim 2, wherein the skeleton is any one of a sternum, a spine, and a tail base.
  4.  前記第2の圧電振動センサを、生体の下半身であって、動脈が体表面近くにある部位に設置したことを特徴とする請求項1~3のいずれか一項に記載の脈波伝播速度測定装置。 The pulse wave velocity measurement according to any one of claims 1 to 3, wherein the second piezoelectric vibration sensor is installed in a lower body of a living body and at a site where an artery is near a body surface. apparatus.
  5.  前記第2の圧電振動センサを、大腿もしくは膝裏に設置したことを特徴とする請求項4記載の脈波伝播速度測定装置。 5. The pulse wave velocity measuring device according to claim 4, wherein the second piezoelectric vibration sensor is installed on a thigh or a back of a knee.
  6.  前記演算手段は、
     前記第1の圧電振動センサで得られた心弾波から得た脈波の心臓出発時刻と、
     前記第2の圧電振動センサで得られた脈波の到達時刻と、
     心臓から前記第2の圧電振動センサの測定部位までの脈波の伝播経路の距離とから、
    脈波伝播速度を演算することを特徴とする請求項1~5のいずれか一項に記載の脈波伝播速度測定装置。
    The arithmetic means is
    A heart departure time of a pulse wave obtained from a heart trajectory obtained by the first piezoelectric vibration sensor;
    Arrival time of the pulse wave obtained by the second piezoelectric vibration sensor;
    From the distance of the propagation path of the pulse wave from the heart to the measurement site of the second piezoelectric vibration sensor,
    The pulse wave velocity measuring device according to any one of claims 1 to 5, wherein the pulse wave velocity is calculated.
  7.  前記第2の圧電振動センサによって検出される脈波の伝播経路中に大動脈が含まれていることを特徴とする請求項1~6のいずれか一項に記載の脈波伝播速度測定装置。 The pulse wave propagation velocity measuring device according to any one of claims 1 to 6, wherein the aorta is included in the propagation path of the pulse wave detected by the second piezoelectric vibration sensor.
  8.  請求項1~7の脈波伝播速度測定装置を使用する動脈硬化評価装置であって、
     前記脈波伝播速度測定装置で測定した生体の脈波伝播速度と、予め求めた動脈硬化が生じていない通常の生体における脈波伝播速度とを比較し、前記生体の脈波伝播速度が前記通常の脈波伝播速度を超えるときは、動脈硬化病変の可能性があると評価する評価手段を備えたことを特徴とする動脈硬化評価装置。
    An arterial stiffness evaluation device using the pulse wave velocity measuring device according to any one of claims 1 to 7,
    The pulse wave velocity of the living body measured by the pulse wave velocity measuring apparatus is compared with a pulse wave propagation velocity of a normal living body in which atherosclerosis has not been determined in advance, and the pulse wave propagation velocity of the living body is the normal. An arteriosclerosis evaluation device comprising an evaluation means for evaluating that there is a possibility of an arteriosclerotic lesion when the pulse wave velocity exceeds the pulse wave propagation velocity.
  9.  心弾波を検出する第1の圧電振動センサと、脈波を検出する第2の圧電振動センサを、生体の体表側にそれぞれ設置するステップと、
     前記第1の圧電振動センサで得られた心弾波から、脈波の心臓出発時刻を得るステップと、
     前記第2の圧電振動センサで得られた脈波から、その到達時刻を得るステップと、
     前記脈波の心臓出発時刻と、前記脈波の到達時刻と、心臓から前記第2の圧電振動センサの測定部位までの脈波の伝播経路の距離から、脈波伝播速度を演算するステップと、
    を含む脈波伝播速度測定方法。
    Installing a first piezoelectric vibration sensor for detecting a heart wave and a second piezoelectric vibration sensor for detecting a pulse wave on the body surface of a living body,
    Obtaining a heart departure time of a pulse wave from a heart trajectory obtained by the first piezoelectric vibration sensor;
    Obtaining a time of arrival from a pulse wave obtained by the second piezoelectric vibration sensor;
    Calculating the pulse wave propagation velocity from the heart departure time of the pulse wave, the arrival time of the pulse wave, and the distance of the propagation path of the pulse wave from the heart to the measurement site of the second piezoelectric vibration sensor;
    A pulse wave velocity measuring method including:
PCT/JP2019/039091 2018-10-05 2019-10-03 Device and method for measuring pulse wave velocity WO2020071480A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020550538A JPWO2020071480A1 (en) 2018-10-05 2019-10-03 Pulse wave velocity measuring device and its method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-190509 2018-10-05
JP2018190509 2018-10-05

Publications (1)

Publication Number Publication Date
WO2020071480A1 true WO2020071480A1 (en) 2020-04-09

Family

ID=70055265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039091 WO2020071480A1 (en) 2018-10-05 2019-10-03 Device and method for measuring pulse wave velocity

Country Status (2)

Country Link
JP (1) JPWO2020071480A1 (en)
WO (1) WO2020071480A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113827197A (en) * 2020-06-08 2021-12-24 华为技术有限公司 Pulse detection method, terminal equipment and intelligent shoe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050546A (en) * 2009-09-01 2011-03-17 National Institute Of Advanced Industrial Science & Technology Artery propagation rate measuring instrument enabling regular measurement
JP2016101504A (en) * 2011-01-27 2016-06-02 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Bodyweight measuring scale and pulse wave velocity capturing method
CN108186000A (en) * 2018-02-07 2018-06-22 河北工业大学 Real-time blood pressure monitor system and method based on heart impact signal and photosignal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050546A (en) * 2009-09-01 2011-03-17 National Institute Of Advanced Industrial Science & Technology Artery propagation rate measuring instrument enabling regular measurement
JP2016101504A (en) * 2011-01-27 2016-06-02 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Bodyweight measuring scale and pulse wave velocity capturing method
CN108186000A (en) * 2018-02-07 2018-06-22 河北工业大学 Real-time blood pressure monitor system and method based on heart impact signal and photosignal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113827197A (en) * 2020-06-08 2021-12-24 华为技术有限公司 Pulse detection method, terminal equipment and intelligent shoe

Also Published As

Publication number Publication date
JPWO2020071480A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
US9833151B2 (en) Systems and methods for monitoring the circulatory system
Shriram et al. Continuous cuffless blood pressure monitoring based on PTT
JP5756244B2 (en) Measurement system and storage medium for changes in arterial volume of limbs
JP3290176B2 (en) Detection of atherosclerosis in humans
JP6789280B2 (en) Systems and methods for assessing endothelial function
JP4789203B2 (en) Blood pressure reflex function measuring device
JP2012531944A (en) Monitoring cardiovascular symptoms using signal transit time
Zheng et al. Peripheral arterial volume distensibility: significant differences with age and blood pressure measured using an applied external pressure
WO2012015426A1 (en) Diagnostic support apparatus
KR20180081138A (en) And apparatus for estimating arterial pulse delivery time from end-region measurement
Carek et al. Robust sensing of distal pulse waveforms on a modified weighing scale for ubiquitous pulse transit time measurement
JP2009000388A (en) Vascular endothelial function measurement apparatus
WO2020071480A1 (en) Device and method for measuring pulse wave velocity
US20100262022A1 (en) Detection of Progressive Central Hypovolemia using the System of the present invention with Pulse-Decomposition Analysis (PDA)
US20150148694A1 (en) Detection of progressive central hypovolemia
Kim et al. Brachial-ankle pulse wave velocity as a screen for arterial stiffness: a comparison with cardiac magnetic resonance
JP2008307307A (en) Evaluation method of blood vessel function, and apparatus for the same
Salvi et al. Pulse wave velocity and arterial stiffness assessment
JP5993226B2 (en) Pulse wave propagation information measuring device
Baktash Ratio-independent arterial stiffness-based blood pressure estimation
Saxton et al. Peripheral circulatory disorders
Kim et al. An Influence Analysis of a Measurement Posture Artifact of the Wrist Type Automatic Sphymomnometer
Hirano et al. Noninvasive estimation of arterial viscoelastic indices using a foil-type flexible pressure sensor and a photoplethysmogram
Mandel Changes in Conduit Artery Blood Flow and Diameter Post Blood Flow Restriction
Kim et al. A Vascular Characteristic Index of Blood Pressure Variation using the Pulse Wave Signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550538

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19869901

Country of ref document: EP

Kind code of ref document: A1