WO2020071463A1 - Method for inducing production of iga targeting ilc2 - Google Patents

Method for inducing production of iga targeting ilc2

Info

Publication number
WO2020071463A1
WO2020071463A1 PCT/JP2019/039036 JP2019039036W WO2020071463A1 WO 2020071463 A1 WO2020071463 A1 WO 2020071463A1 JP 2019039036 W JP2019039036 W JP 2019039036W WO 2020071463 A1 WO2020071463 A1 WO 2020071463A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacterium
nucleotide
stomach
seq
ilc2
Prior art date
Application number
PCT/JP2019/039036
Other languages
French (fr)
Japanese (ja)
Inventor
尚子 佐藤
大野 博司
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to JP2020550524A priority Critical patent/JP7444459B2/en
Publication of WO2020071463A1 publication Critical patent/WO2020071463A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to an IgA production inducer targeting ILC2 present in the stomach.
  • H. pylori also referred to as "H. pylori”, “H. pylori”, etc.
  • H. pylori has begun to focus on the relationship between the stomach and H. pylori, starting with reports of engraftment in the stomach. Most of the research is about the "stomach as tissue.”
  • ILC Innate Lymphoid cells
  • Non-Patent Document 7 Non-Patent Document 7
  • the stomach is not just an organ for decomposing and disinfecting food, but it is important to screen flora before it reaches the intestinal tract by chemically and immunologically controlling the risk of infection that rises with food intake It is suggested that it is a healthy organ. However, at present, it is not clear which bacteria induces ILC2.
  • An object of the present invention is to elucidate the role of immunocompetent cells (especially ILC2) present in the stomach and its relation to the symbiotic bacterial flora of the stomach, thereby leading to the development of a novel anti-infective therapeutic agent and the like. I do.
  • the present inventors have conducted intensive studies on the above problems and found that (1) the presence of commensal bacteria in the stomach can affect the abundance of ILC2 in the stomach; (3) Bacteria that cause the induction of ILC2 in the stomach are sensitive to vancomycin and are affected by ampicillin, colistin, neomycin, and metronidazole. (4) that the bacterium that mainly induces the induction of ILC2 in the stomach is a bacterium belonging to the family S24-7; (5) that the bacterium that belongs to the family of the S24-7 family that mainly produces the induction of ILC2 in the stomach is And a bacterium having a nucleotide sequence represented by SEQ ID NO: 28 (eg, Muribaculum intestinale) and the like. This has led to the completion of the present invention by further research Te. That is, the present invention is as follows.
  • An ILC2 inducer in the stomach comprising at least one bacterium having the following properties: (1) sensitivity to vancomycin, and (2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
  • the inducer according to [A1], wherein the bacterium further has the following properties: (3) It has the nucleotide sequence shown in SEQ ID NO: 1.
  • [A6] The production inducer according to [A5], wherein the bacterium further has the following properties: (3) It has the nucleotide sequence shown in SEQ ID NO: 1.
  • [A7] The production inducer according to [A5] or [A6], wherein the bacterium belongs to the family S24-7.
  • [A8] The production inducer according to any one of [A5] to [A7], wherein the bacterium contains the following nucleotide (1) or (2): (1) a nucleotide represented by SEQ ID NO: 28, or (2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28; [A9]
  • a therapeutic or prophylactic agent for oral infection comprising a bacterium having the following properties: (1) sensitivity to vancomycin, and (2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
  • the therapeutic or prophylactic agent according to [A9], wherein the bacterium further has the following properties: (3) It has the nucleotide sequence shown in SEQ ID NO: 1.
  • the therapeutic or prophylactic agent according to [A9] or [A10], wherein the bacterium is a bacterium belonging to the family S24-7.
  • [A12] The therapeutic or prophylactic agent according to any one of [A9] to [A11], wherein the bacterium contains the following nucleotide (1) or (2): (1) a nucleotide represented by SEQ ID NO: 28, or (2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28; [A13] The therapeutic or prophylactic agent according to any one of [A9] to [A12], wherein the oral infection is at least one of infections selected from the following groups: H. pylori infections, O: 157 infections, and Salmonella infections.
  • [B1] A method for inducing ILC2 in the stomach, comprising orally administering to a subject at least one bacterium having the following properties: (1) sensitivity to vancomycin, and (2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
  • [B3] The induction method according to [B1] or [B2], wherein the bacterium is a bacterium belonging to the family S24-7.
  • [B4] The induction method according to any one of [B1] to [B3], wherein the bacterium contains the following nucleotide (1) or (2): (1) a nucleotide represented by SEQ ID NO: 28, or (2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28; [B5] A method for inducing IgA production in the stomach, comprising orally administering to a subject at least one bacterium having the following properties: (1) sensitivity to vancomycin, and (2) resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
  • [B6] The production induction method according to [B5], wherein the bacterium further has the following characteristics: (3) It has the nucleotide sequence shown in SEQ ID NO: 1.
  • [B7] The production induction method according to [B5] or [B6], wherein the bacterium is a bacterium belonging to the family S24-7.
  • [B8] The production induction method according to any one of [B5] to [B7], wherein the bacterium contains the following nucleotide (1) or (2): (1) a nucleotide represented by SEQ ID NO: 28, or (2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28; [B9] A method for treating or preventing an oral infection, comprising orally administering a bacterium having the following properties to a subject: (1) sensitivity to vancomycin, and (2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
  • [B10] The treatment or prevention method according to [B9], wherein the bacterium further has the following properties: (3) It has the nucleotide sequence shown in SEQ ID NO: 1.
  • [B11] The method according to [B9] or [B10], wherein the bacterium is a bacterium belonging to the family S24-7.
  • [B12] The treatment or prevention method according to any of [B9] to [B11], wherein the bacterium comprises the following nucleotide (1) or (2): (1) a nucleotide represented by SEQ ID NO: 28, or (2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28; [B13] The treatment or prevention method according to any of [B9] to [B12], wherein the oral infection is at least one of infections selected from the following groups: H. pylori infections, O: 157 infections, and Salmonella infections.
  • [C4] The bacterium according to any one of [C1] to [C3], wherein the bacterium comprises the following nucleotide (1) or (2): (1) a nucleotide represented by SEQ ID NO: 28, or (2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28; [C5] At least one bacterium having the following properties for use in a method for inducing the production of IgA in the stomach: (1) sensitivity to vancomycin, and (2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
  • [C6] The bacterium according to [C5], wherein the bacterium further has the following properties: (3) It has the nucleotide sequence shown in SEQ ID NO: 1.
  • [C7] The bacterium according to [C5] or [C6], wherein the bacterium is a bacterium belonging to the family S24-7.
  • [C10] The bacterium according to [C9], wherein the bacterium further has the following properties: (3) It has the nucleotide sequence shown in SEQ ID NO: 1.
  • [C11] The bacterium according to [C9] or [10], wherein the bacterium is a bacterium belonging to the family S24-7.
  • [C12] The bacterium according to any one of [C9] to [C11], wherein the bacterium comprises the following nucleotide (1) or (2): (1) a nucleotide represented by SEQ ID NO: 28, or (2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28; [C13] The bacterium according to any one of [C9] to [C12], wherein the oral infection is at least one of infections selected from the following group: H. pylori infections, O: 157 infections, and Salmonella infections.
  • [D1] Use of at least one bacterium having the following properties for producing a medicament for inducing ILC2 in the stomach: (1) sensitivity to vancomycin, and (2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
  • [D2] Use according to [D1], wherein the bacterium further has the following properties: (3) It has the nucleotide sequence shown in SEQ ID NO: 1.
  • [D3] The use according to [D1] or [D2], wherein the bacterium is a bacterium belonging to the family S24-7.
  • [D4] Use according to any one of [D1] to [D3], wherein the bacterium comprises the following nucleotides (1) or (2): (1) a nucleotide represented by SEQ ID NO: 28, or (2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28; [D5] Use of at least one bacterium having the following properties for producing a medicament for inducing IgA production in the stomach: (1) sensitivity to vancomycin, and (2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
  • [D6] Use according to [D5], wherein the bacterium further has the following properties: (3) It has the nucleotide sequence shown in SEQ ID NO: 1.
  • [D7] The use according to [D5] or [D6], wherein the bacterium is a bacterium belonging to the family S24-7.
  • [D8] Use according to any one of [D5] to [D7], wherein the bacterium comprises the following nucleotides (1) or (2): (1) a nucleotide represented by SEQ ID NO: 28, or (2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28; [D9] Use of oral infections, including bacteria having the following properties: (1) sensitivity to vancomycin, and (2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole. [D10] Use according to [D9], wherein the bacterium further has the following properties: (3) It has the nucleotide sequence shown in SEQ ID NO: 1.
  • [D11] The use according to [D9] or [D10], wherein the bacterium is a bacterium belonging to the family S24-7.
  • [D12] Use according to any one of [D9] to [D11], wherein the bacterium comprises the following nucleotides (1) or (2): (1) a nucleotide represented by SEQ ID NO: 28, or (2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28; [D13]
  • ILC2 can be induced in the stomach of a mammal.
  • IgA production in the stomach can be enhanced as a result of induction of ILC2. This makes it possible to treat and / or prevent diseases and the like caused by infection with microorganisms that can be removed by IgA, such as H. pylori.
  • FIG. 1 is a diagram showing the results of studies on the proportions of various ILCs in the stomach of mice.
  • A Outline of the present embodiment.
  • B (c) and (d) Cell numbers or percentages of various ILCs in the small intestine and stomach.
  • FIG. 2 shows the expression of IL-33Ra in mouse gastric ILC2.
  • A Number of KLRG1 and Sca1 expressing cells in small intestine and stomach.
  • B Percentage of cells expressing IL-33R ⁇ in the small intestine and stomach.
  • FIG. 3 is a diagram showing the effect of commensal bacteria on gastric ILC2.
  • A Outline of the present embodiment.
  • B and (c) ILC2 cell numbers in SPF and GF mice.
  • FIG. 4 shows the effect of commensal bacteria on the function of gastric ILC2.
  • A and (b) Cell numbers of IL-5 or IL-13 expressing cells in the stomach in SPF and GF mice.
  • C and (d) Cell numbers of CD3 and CD4 positive cells (ie, T cells) and CD19 and B220 positive cells (ie, B cells) in SPF and GF mice. Under normal conditions, there was no change in the number of T cells and B cells in the stomach.
  • FIG. 5 is a diagram showing induction of gastric ILC2 in GF mice by oral ingestion of gastric microbiota from SPF mice.
  • A Outline of the present embodiment.
  • FIG. 6 is a graph showing the time course of the bacterial flora in the stomach or feces of a GF mouse due to oral ingestion of the gastric flora of the SPF mouse.
  • A Changes over time in the percentage of bacterial species present in the stomach or feces of GF mice.
  • B Time-dependent change in the proportion of Bacteroidetes present.
  • C Changes over time in the proportion of S24-7 families.
  • FIG. 7 is a view showing characteristics of a symbiotic bacterium group affecting the induction of gastric ILC2 concerning drug resistance.
  • A Outline of the present embodiment.
  • B and (c) Changes in ILC2 cell number after antibiotic treatment.
  • FIG. 8 is a diagram showing characteristics of various bacterial groups related to drug resistance.
  • A Changes in the numbers of various bacterial groups after antibiotic treatment.
  • B Changes in abundance ratio of Actinobacteria and Bacteroidetes after antibiotic treatment.
  • FIG. 9 is a diagram showing the localization of S24-7 in the stomach.
  • FIG. 10 is a diagram showing the relationship between the number of ILC2 in the stomach and the number of bacteria.
  • FIG. 11-A shows various data on the immune response to Helicobacter pylori infection.
  • A Detection of CagA protein in H. pylori-infected mice.
  • B Time course of the number of ILC2 cells after infection with H. pylori.
  • C H. pylori CFU present in mouse stomach tissue after H. pylori infection.
  • FIG. 11-B shows various data on the immune response to Helicobacter pylori infection.
  • A and (b) Changes over time in the number of ILC2 cells in the stomach after H. pylori infection.
  • C Time course of B and T cell numbers in the stomach after H. pylori infection.
  • D Changes over time in the amount of IgA due to anti-IL-5 antibody treatment.
  • E Temporal change in IgA level after H. pylori infection.
  • FIG. 11-C is a diagram showing various data on an immune response to infection with Helicobacter pylori.
  • FIG. 12 is a diagram showing the amount of bacterial-bound IgA in the stomach of vancomycin-treated mice.
  • FIG. 13 is a diagram showing various data relating to an immune response to infection with Muribaculum intestinale (YL27).
  • FIG. 14 is a diagram showing changes in the expression level of pIgR in response to YL27 infection and IgA production in the stomach contents or feces.
  • FIG. 15 is a photograph showing that YL27 infected to GF mice adheres to the stomach of GF mice.
  • FIG. 16 is a diagram illustrating an outline of the twelfth embodiment.
  • FIG. 17 is a diagram showing IgA production in stomach contents or feces in mice infected with H. pylori after being infected with YL27.
  • FIG. 18 is a diagram showing changes in the expression level of pIgR in the stomach of mice infected with H. pylori after being infected with YL27.
  • FIG. 19 is a diagram showing suppression of H. pylori infection by YL27 based on measurement of the amount of H. pylori present in the stomach.
  • the present invention provides an ILC2 inducer in the stomach (hereinafter sometimes referred to as "the ILC2 inducer of the present invention") comprising at least one bacterium having the following properties: (1) sensitivity to vancomycin, and (2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
  • the ILC2 inducer of the present invention can induce the expression of ILC2, which is a kind of immunocompetent cell, in the stomach of an application subject by the function of the specific bacteria to be added.
  • the bacterium to be combined with the ILC2 inducer of the present invention is characterized as a bacterium having sensitivity to vancomycin and resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole. Attached.
  • the bacterium formulated in the ILC2 inducer of the present invention is susceptible to vancomycin and resistant to at least two drugs selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
  • a bacterium preferably a bacterium that is sensitive to vancomycin and resistant to at least three drugs selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole, more preferably, The bacterium may be a bacterium that is sensitive to vancomycin and resistant to at least three drugs selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole. It has that sensitivity, and can be a bacterium having ampicillin, colistin, neomycin, and resistance to all metronidazole.
  • the bacterium formulated in the ILC2 inducer of the present invention has a nucleotide sequence represented by SEQ ID NO: 1.
  • the bacterium contained in the ILC2 inducer of the present invention is a bacterium belonging to the family S24-7.
  • a bacterium belonging to the family S24-7 refers to a gram-negative bacterium belonging to the order Bacteroidetes Bacteroidales, S24-7 family. It has been reported that bacteria belonging to the S24-7 family widely coexist with homeothermic animals (Ormerod ⁇ KL ⁇ et al., Microbiome. 2016 ⁇ Jul ⁇ 7; 4 (1): 36.).
  • the term “thermophilic animal” refers to mice, rats, hamsters, guinea pigs, rabbits, cats, dogs, cows, horses, sheep, monkeys, humans, and the like.
  • thermophilic animal refers to mice, rats, hamsters, guinea pigs, rabbits, cats, dogs, cows, horses, sheep, monkeys, humans, and the like.
  • bacteria belonging to the family S24-7 have sensitivity to vancomycin and resistance to all of ampicillin, colistin, neomycin, and metronidazole, as shown in the following Examples. Can be confirmed on the basis of.
  • bacteria belonging to the family S24-7 may have the nucleic acid sequence shown in SEQ ID NO: 1. Therefore, in some cases, its presence can be confirmed by using the nucleic acid sequence shown in SEQ ID NO: 1 as a probe.
  • the bacterium may be, but is not limited to, Muribulculum intestinale (also referred to as “YL27” or the like).
  • YL27 has 16s ⁇ rRNA consisting of the sequence represented by SEQ ID NO: 28. Therefore, in one embodiment, the bacterium used in the present invention is (1) a bacterium containing the nucleotide shown in SEQ ID NO: 28, or (2) at least 90% or more (more preferably 91% or more) the nucleotide shown in SEQ ID NO: 28 %, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more).
  • Bacteria to be incorporated in the ILC2 inducer of the present invention are bacteria that coexist with homeostatic animals and are present in the stomach, small intestine, large intestine, feces, and the like. Therefore, bacteria mixed with the ILC2 inducer of the present invention can be easily obtained by collecting bacteria from such a bacterial source.
  • a bacterium collected from such a bacterium source is suspended in pure water or a buffer to form a bacterial suspension, a method known per se (for example, JP-A-2015-188407, JP-A-2012-175973, 2010-041967, International Publication WO2007 / 023711, JP-A-2005-229837, etc.).
  • the bacterium contained in the ILC2 inducer of the present invention has resistance to ampicillin, colistin, neomycin, and metronidazole. Therefore, at least one of them, preferably at least two, more preferably By adding at least three, particularly preferably these four types of drugs during the culture, the purity of the bacteria to be added to the inducer of the present invention can be increased.
  • a method for preparing a bacterium to be mixed with the ILC2 inducer of the present invention a method of laparotomy of a constant temperature animal (for example, a mouse) and collecting contents and / or mucus contained in the gastrointestinal tract is exemplified.
  • the collected contents and / or mucus include bacteria that are sensitive to vancomycin and resistant to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole. .
  • the content and / or the mucus can be used as an active ingredient as it is, and among the bacteria contained therein, the bacterium is sensitive to vancomycin and is selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole. Bacteria having resistance to at least one selected agent may be isolated and / or cultured using the above-described method, and then blended as an active ingredient.
  • isolated means that an operation for removing a factor other than the target bacterium has been performed and the state of the bacterium other than the target bacterium has been removed.
  • the number of target bacteria occupies the majority other embodiments in which a small amount of other bacteria are present may be included in addition to the embodiment in which the bacteria are completely removed.
  • the amount of the bacterium to be added to the ILC2 inducer of the present invention is not particularly limited as long as a desired effect can be obtained, and is usually 0.001 to 100% by weight based on the total weight of the ILC2 inducer of the present invention. It can be preferably 0.01 to 100% by weight, more preferably 1 to 100% by weight, particularly preferably 10 to 100% by weight, but is not particularly limited thereto.
  • the subject to which the ILC2 inducer of the present invention can be suitably applied is not particularly limited as long as it is a constant temperature animal having ILC2 as an immunocompetent cell in the stomach, but preferably is mouse, rat, hamster, guinea pig, rabbit, cat, dog, Cattle, horses, sheep, monkeys, and humans, most preferably humans.
  • the dosage form of the ILC2 inducer of the present invention is not particularly limited as long as a desired effect can be obtained, and can be made into an oral administration preparation together with excipients and the like usually used in medicine.
  • the dosage form of the oral administration preparation is not particularly limited as long as the desired effect can be obtained, but it is semi-solid or liquid so that the bacteria mixed with the ILC2 inducer of the present invention can remain alive in the preparation. Preferably, there is.
  • the preparation for oral administration may contain excipients and / or additives commonly used in medicine.
  • the ILC2 inducer of the present invention may be provided in the form of a food composition.
  • the food composition may also be semi-solid or liquid so that the bacteria incorporated in the ILC2 inducer of the present invention can maintain a viable state in the food composition.
  • examples of such food compositions include, but are not limited to, yogurt, jelly, beverages, and the like.
  • the present invention provides a method for inducing ILC2 in the stomach of a subject, comprising orally administering the ILC2 inducer of the present invention to the subject.
  • the method can be performed by orally administering to the subject an ILC2 inducer described above.
  • the present invention also provides a gastric IgA production inducer (hereinafter sometimes referred to as "the IgA production inducer of the present invention"), comprising at least one bacterium having the following properties: (1) sensitivity to vancomycin, and (2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
  • the IgA production inducer of the present invention can induce the expression of ILC2, which is a type of immunocompetent cell, in the stomach of an application subject by the function of the specific bacteria to be incorporated.
  • the induced ILC2 produces / secretes cytokines such as IL-5 and IL-13 and stimulates B cells present in the stomach.
  • the stimulated B cells differentiate into antibody-producing cells, and as a result, can induce and enhance IgA production in the stomach of the application target.
  • ILC2 inducer Can be the same as described above.
  • the present invention provides a method for inducing IgA production in the stomach of a subject, comprising orally administering the IgA production-inducing agent of the present invention to the subject. This method can be carried out by orally administering the above-mentioned IgA production inducer to a subject.
  • the IgA production inducer of the present invention can be provided in the form of a pharmaceutical or a food.
  • the food composition When provided in the form of a food composition, the food composition must be semi-solid or liquid so that the bacteria contained in the IgA production-inducing agent of the present invention can remain alive in the food composition. Is preferred. Examples of such food compositions include, but are not limited to, yogurt, jelly, beverages, and the like.
  • the present invention also relates to a therapeutic or prophylactic agent for oral infection (hereinafter referred to as "the therapeutic or prophylactic agent of the present invention") comprising at least one bacterium having the following characteristics. May provide): (1) sensitivity to vancomycin, and (2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
  • the therapeutic or prophylactic agent of the present invention can induce the expression of ILC2, which is a type of immunocompetent cell, in the stomach of a subject by the function of the specific bacterium to be added.
  • the induced ILC2 produces / secretes cytokines such as IL-5 and IL-13 and stimulates B cells present in the stomach.
  • the stimulated B cells differentiate into antibody-producing cells, and as a result, IgA production in the stomach of the target is induced / enhanced, and the treatment and / or prevention of oral infections including H. pylori is achieved.
  • the drug characteristics thereof, the preparation method thereof, the amount of the bacterium, the application target and the dosage form of the IgA production inducer of the present invention, etc. refer to “1. Can be the same as described above.
  • the therapeutic or prophylactic agent of the present invention promotes the elimination of pathogenic microorganisms present in the stomach by inducing and enhancing the production of secretory IgA antibodies in the gastric mucosa.
  • the therapeutic or prophylactic agent of the present invention can be suitably used for oral infections, especially for H. pylori infections. Since S24-7 is also detected as a major bacterium in the intestinal tract, it is possible that the intestinal tract may be protected from infectious enteritis caused by infectious bacterial species such as O: 157 and Salmonella infection. Therefore, in one aspect, the therapeutic or prophylactic agent of the present invention can be used for treating or preventing H. pylori infection, O: 157 infection, and Salmonella infection.
  • the therapeutic or prophylactic agent of the present invention can be provided in the form of a medicament or food.
  • the food composition When provided in a food composition, the food composition must be semi-solid or liquid so that the bacteria to be added to the therapeutic or prophylactic agent of the present invention can maintain a viable state in the food composition. Is preferred. Examples of such food compositions include, but are not limited to, yogurt, jelly, beverages, and the like.
  • the therapeutic agent of the present invention is applied to the above-mentioned oral infection patients.
  • the subject to which the prophylactic agent of the present invention is applied is a healthy subject or a subject who has cured the above-mentioned oral infection.
  • the therapeutic agent of the present invention is administered in such an amount that the subject can ingest a therapeutically effective amount of bacteria of the family S24-7.
  • the therapeutically effective amount can vary depending on the height, weight, sex, administration route, administration schedule, and the like of the subject to which the therapeutic agent is administered, but can be appropriately determined by those skilled in the art.
  • the prophylactic agent of the present invention is administered in such an amount that a subject can take a prophylactically effective amount of bacteria of the S24-7 family.
  • the prophylactically effective amount can vary depending on the height, weight, sex, administration route, administration schedule, and the like of the subject to which the prophylactic agent is administered, but can be appropriately determined by those skilled in the art.
  • the present invention provides a method for treating or preventing an oral infection, comprising orally administering a therapeutic or prophylactic agent of the present invention to a subject.
  • the present method can be carried out by orally administering the above-mentioned agent for treating or preventing oral infection to a subject.
  • treatment in the present specification may include not only cure of the disease but also remission of the disease and improvement of the degree of the disease.
  • prevention includes, in addition to preventing the onset of the disease, delaying the onset of the disease, and comparing the state of the subject at the time of the onset of the disease with the normal state of onset of the disease. And mild.
  • prevention includes preventing the recurrence of the disease after treatment, delaying the recurrence of the disease after treatment, and usually controlling the condition of the subject at the time of recurrence of the disease after treatment. Of the disease as compared to the state at the time of recurrence of the disease.
  • mice [Materials and methods] 1.
  • Mouse C57BL / 6N mice were purchased from CLEA (CLEA JAPAN, INC) and bred at RIKEN under specific pathogen-free (SPF) conditions for at least 4 weeks.
  • Sterile (GF) mice with a C57BL / 6N background were purchased from CLEA and maintained on a sterile vinyl isolator at RIKEN or Yokohama City University.
  • Rag2 - / - mice (..
  • N.Satoh-Takayama et al Microbial flora drives interleukin 22 production in intestinal NKp46 + cells that provide innate mucosal immune defense Immunity 29, 958-970 (2008)), Il-33 gfp / gfp mice (.. K.Oboki et al, IL -33 is a crucial amplifier of innate rather than acquired immunity Proc Natl Acad Sci U S A 107, 18581-18586 (2010)), CD3 ⁇ - / - mice (M.Malissen et al . , Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene.
  • the anti-mouse DCLK antibody was labeled with alexa488 according to the manufacturer's instructions (Thermo Fisher scientific).
  • isolated cells were incubated with PMA (50 ng / ml) and ionomycin (2 ⁇ g / ml) or without PMA and ionomycin for 2 hours at 37 ° C. in the presence of GolgiPlug (BD biosciences). did. After staining with the surface antibody, the incubated cells were fixed with PBS containing 4% PFA for 15 minutes at room temperature.
  • the fixed cells were permeabilized with 1 ⁇ permeabilization buffer (included in Foxp3 / TF buffer set (Thermo Fisher Scientific)) at 4 ° C. for 60 minutes.
  • 1 ⁇ permeabilization buffer included in Foxp3 / TF buffer set (Thermo Fisher Scientific)
  • isolated cells were stained with intracellular antibodies using Foxp3 / TF staining buffer set according to the manufacturer's instructions (Thermo Fisher Scientific).
  • For cell analysis and sorting cells were analyzed with FACSAria III (BD Biosciences).
  • RNA-seq and quantitative PCR For RNA-seq, 1000 cells extracted from stomach or small intestine with FACS Aria III (BD Biosciences) at 98% or better purity were directly sorted into 50 ⁇ l lysis buffer (QIAGEN). All steps after sorting followed the Quartz-seq method (library; KAPA library preparation kit, illumina. Adapter; Next Multiplex Oligo for illumina, NEB) with some modifications (see Y. Sasagawa. , Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reviews non-genetic gene-exposure gene. All samples were sequenced in HiSeq 1500, rapid mode.
  • RNA total RNA was extracted from purified gastric or intestinal cell preparations using RNeasy micro kit (QIAGEN).
  • QIAGEN RNeasy micro kit
  • the stomach or intestine was frozen in liquid nitrogen. Frozen tissue was triturated in liquid nitrogen and RNA was extracted from powdered tissue using lysis buffer (QIAGEN).
  • the cDNA is generated using reverse transcriptase (Revatra Ace, TOYOBO) according to the manufacturer's instructions, followed by primers (Eurofins genomics; see Table 2) or TaqMan probes for Il25 and Il33 (Thermo Fisher Scientific; see Table 3).
  • RT SYBR Green qPCR Master Mix TAKARA SYBR Premix ExTaq II
  • RNA-seq Read Alignment and Gene Qualification Differential gene expression was analyzed using the DEseq package in the R software, and in each analysis these genes were identified by log2 fold change Value, p-Value and FDR correction value. P-Value and FDR correction value for multiple tests were calculated using the Benjamini-Hochberg method. Biological replicates include each cell type or condition.
  • V4 variable region (515F-806R) was sequenced with the Illumina Miseq library prepared according to the manufacturer's (Takara Bio, Inc) protocol.
  • Taxonomic assignments of sequenced data and estimation of relative abundance were performed using the analysis pipeline of the QIIME software package. The chimera check was performed using UCHIME.
  • Operational taxonomic units were defined with 97% similarity. OTU is based on T.A. Kato et al. , Multiple omics councovers host-gut microbial mutualism during prebiotics fructooligosaccharide supplementation. Taxonomies were assigned based on comparisons in the Greengenes database using the RDP classifier described in ⁇ DNA Res 21,469-480 (2014).
  • the cells were suspended in 4 ml of 40% Percoll and transferred to a 15 ml Falcon tube. Thereafter, an equal volume of 70% Percoll was slowly added using a Pasteur pipette, and the mixture was layered downward at 2000 rpm at 20 ° C. Centrifugation was performed for 20 minutes. After centrifugation, the intermediate layer generated by the density gradient was collected and suspended in a 2% FBS / RPMI-1640 medium to isolate lymphocytes. On the other hand, cells collected from the stomach were filtered using a 40 ⁇ m Cell strainer to remove mucus and the like.
  • the lymphocytes collected by the above method were suspended in an appropriate amount of 2% FBS / RPMI-1640 medium, and seeded at 1 ⁇ 10 6 cells / well on a Tissue Culture Plate (96 Well, Flat Butt with Low Evaporation Lid, FALCON). . After centrifugation, Purified Rat Anti-mouse CD16 adjusted to a final concentration of 0.1 mg / ml with a 1/500 volume of Zombie Aqua Fixable Viability Kit (Biolegend) and FACS buffer (2% FBS / D-PBS (-)). / CD32 (BD Biosciences) was added, and the mixture was allowed to stand at 4 ° C for 15 minutes to perform blocking and staining of dead cells.
  • each antibody diluent CD3, CD45, TCRb, CD19, CD127, CD90.2 was added to the cells, and the cells were allowed to stand at 4 ° C. for 20 minutes, and the cell surface was removed.
  • a fluorescently labeled antibody was expressed with a fluorescently labeled antibody.
  • ⁇ Antigen expressed in cells was stained by intracellular staining. After staining with a cell surface antibody, the cells were washed with D-PBS (-). After centrifugation, Fixation / Permeabilization solution (Foxp3 / Transscription Factor Staining Buffer Set, ThermoFisher) was added, and the mixture was allowed to stand at 4 ° C. for 30 minutes in a light-shielded state to perform cell fixing and cell membrane permeation. After the cells were fixed, the cells were washed with D-PBS (-), and the supernatant was removed by centrifugation.
  • Fixation / Permeabilization solution Fraxp3 / Transscription Factor Staining Buffer Set, ThermoFisher
  • the cells were washed again with Permeabilization buffer (Foxp3 / Transscription Factor Factor Staining Buffer Set, ThermoFisher). After centrifugation, each of the nuclear staining antibodies (GATA3 and RORgt) diluted with Permeabilization @ buffer was added to each well, and the cells were allowed to stand at 4 ° C. for 30 minutes in the light-shielded state to perform staining. After staining, the cells were washed with Permeabilization buffer and Facs buffer, then suspended in an appropriate amount in FACS buffer, and used for flow cytometry analysis. FACSAria III (BD @ Biosciences) was used for the stained cells, and flow cytometry analysis was performed. Analysis of the obtained data was performed using FlowJo (Tree @ Star, Inc.). The obtained flow cytometry results show only a cell population that does not express CD3, TCRb, and CD19 but expresses CD45.
  • Permeabilization buffer Foxp3 /
  • ILC2 was extremely predominant in the stomach (ILC 1: 5%, ILC2: 94%, ILC3: 0.6%) as compared to the small intestine.
  • the small intestine of the SPF mouse used Collagenase (Wako) adjusted to a concentration of 1 mg / L in a 2% FBS / RPMI-1640 medium, and the large intestine was similarly treated in Collagenase (SIGMA) adjusted to a concentration of 1 mg / L at 37 ° C. And stirred for 15 minutes. Fifteen minutes later, only the supernatant was recovered, and then Collagenase was added to the remaining intestinal fragments, and the same procedure was repeated twice to recover the supernatant. The collected supernatant was filtered using a 100 ⁇ m CellStrainer (BD Bioscience), centrifuged, and used for lymphocyte isolation.
  • SIGMA Collagenase
  • the cell suspension was suspended in 4 ml of 40% Percoll and transferred to a 15 ml Falcon tube. Then, an equivalent volume of 70% percoll was slowly added using a Pasteur pipette, and the mixture was layered downward at 2000 rpm at 20 ° C. Centrifugation was performed for 20 minutes. After centrifugation, the intermediate layer generated by the density gradient was collected and suspended in a 2% FBS / RPMI-1640 medium to isolate lymphocytes. On the other hand, cells collected from the stomach were filtered using a 40 ⁇ m Cell strainer to remove mucus and the like.
  • the lymphocytes collected by the above method were suspended in an appropriate amount of a 2% FBS / RPMI-1640 medium, and seeded at 1 ⁇ 10 6 cells / well on a Tissue Culture Plate (96 Well, Flat Butt with Low Evaporation Lid, FALCON). After centrifugation, Purified Rat Anti-mouse CD16 adjusted to a final concentration of 0.1 mg / ml with a 1/500 volume of Zombie Aqua Fixable Viability Kit (Biolegend) and FACS buffer (2% FBS / D-PBS (-)). / CD32 (BD Biosciences) was added, and the mixture was allowed to stand at 4 ° C. for 15 minutes to perform blocking and staining of dead cells.
  • the cells were washed with Facs buffer, and after centrifugation, the respective antibody diluents (CD3, CD45, TCRb, CD19, CD127, CD90.2, Sca1, KLRG1, and IL33Ra) were added to the cells according to Table 3 or 4. Then, the mixture was allowed to stand at 4 ° C. for 20 minutes, and the antigen expressed on the cell surface was stained with a fluorescently labeled antibody.
  • the obtained flow cytometry results show only a cell population that does not express CD3, TCRb, and CD19 but expresses CD45.
  • IL33Ra expression is further shown for cells that express both Sca1 and KLRG1.
  • ILAs shown in FIG. 2 it was shown that IL-33Ra was highly expressed in gastric ILC2 as compared with small intestine ILC2 (SI PLL: 5.6, Stomach: 24).
  • Example 1 Investigation of the effect of commensal bacteria on gastric ILC2 In the small intestine of SPF mice and germ-free (GF) mice, Collagenase (Wako) adjusted to a concentration of 1 mg / L with 2% FBS / RPMI-1640 medium was used. The large intestine was also stirred at 37 ° C. for 15 minutes in Collagenase (SIGMA) adjusted to a concentration of 1 mg / L. Fifteen minutes later, only the supernatant was recovered, and then Collagenase was added to the remaining intestinal fragments, and the same procedure was repeated twice to recover the supernatant.
  • SIGMA Collagenase
  • the collected supernatant was filtered using a 100 ⁇ m Cell strainer (BD Bioscience), and used for lymphocyte isolation after centrifugation. After centrifugation of the cell suspension, the cells were suspended in 4 ml of 40% Percoll, transferred to a 15 ml Falcon tube, and then slowly added with an equal volume of 70% Percoll using a Pasteur pipette, and overlaid at 2000 rpm at 20 ° C. Centrifugation was performed for 20 minutes. After centrifugation, the intermediate layer generated by the density gradient was collected and suspended in a 2% FBS / RPMI-1640 medium to isolate lymphocytes. On the other hand, cells collected from the stomach were filtered using a 40 ⁇ m Cell strainer to remove mucus and the like.
  • the lymphocytes collected by the above method were suspended in an appropriate amount of 2% FBS / RPMI-1640 medium, and seeded at 1 ⁇ 10 6 cells / well on a Tissue Culture Plate (96 Well, Flat Butt with Low Evaporation Lid, FALCON). . After centrifugation, Purified Rat Anti-mouse CD16 adjusted to a final concentration of 0.1 mg / ml with a 1/500 volume of Zombie Aqua Fixable Viability Kit (Biolegend) and FACS buffer (2% FBS / D-PBS (-)). / CD32 (BD Biosciences) was added, and the mixture was allowed to stand at 4 ° C for 15 minutes to perform blocking and staining of dead cells.
  • the cells were washed with Facs buffer, and after centrifugation, the respective antibody diluents (CD3, CD45, TCRb, CD19, CD127, CD90.2, Sca1, KLRG1, and IL33Ra) were added to the cells according to Table 3 or 4. Then, the mixture was allowed to stand at 4 ° C. for 20 minutes, and the antigen expressed on the cell surface was stained with a fluorescently labeled antibody.
  • the obtained flow cytometry results show only a cell population that does not express CD3, TCRb, and CD19 but expresses CD45.
  • IL33Ra expression is further shown for cells that express both Sca1 and KLRG1 (ie, ILC2).
  • the abundance of gastric ILC2 was significantly different between the SPF mouse and the GF mouse, indicating that symbiotic bacteria affect the abundance of gastric ILC2.
  • Example 2 Investigation of the effect of commensal bacteria on the function of gastric ILC2 Lymphocytes collected by the above-described method were suspended in a complete buffer containing 10% FBS / RPMI-1640 medium supplemented with L-glutamine, penicillin, and streptomycin. Was used to confirm some cytokine production. Lymphocytes were seeded on a Tissue Culture Plate (96 Well, Flat Butt with Low Evaporation Lid) at 1 ⁇ 10 6 cells / well.
  • Golgi Plug (Biosciences), which is an inhibitor of intracellular protein transport, was added without stimulation or together with PMA (50 ng / ml) and Ionomycin (1 ig / ml), and the mixture was allowed to stand at 37 ° C. in a 25% CO 2 incubator for 2 hours. . After standing for 2 hours, centrifugation was performed, and cell surface molecules were stained as described above. The stained cells were washed twice with D-PBS (-), centrifuged, added with 4% PFA / D-PBS (-), and allowed to stand at room temperature for 15 minutes to fix the cells. After centrifugation, the cells were washed with Permeabilization Buffer.
  • each of the IL-5 and IL-13 antibodies was diluted with Permeabilization Buffer, the diluted solution was added to each well, and the plate was allowed to stand still at 4 ° C. for 60 minutes in a light-shielded state to perform staining.
  • FACSAria III (BD Biosciences) was used for the stained cells, and flow cytometry analysis was performed. Analysis of the obtained data was performed using FlowJo (Tree Star, Inc).
  • FIG. 4 compares the production of IL-5 and IL-13 for cells that do not express CD3, TCRb, and CD19 but that express CD45, Scal, and KLRG1 (ie, ILC2).
  • FIG. 4 it was shown that there was a large difference in the amount of IL-5 and IL-13 expressing cells between the SPF mouse and the GF mouse.
  • T cells and B cells which are cells that mainly produce IL-5 and / or IL-13 other than ILC2 in the stomach. That is, it was shown that the presence or absence of symbiotic bacteria did not affect T cells or B cells, but only affected the number and function of ILC2 in the stomach.
  • Example 3 Induction of Gastric ILC2 by Oral Intake of Stomach-Derived Microbiota
  • Stomach contents and gastric mucosal tissue of SPF mice were scraped, suspended in PBS, and filtered using 100 ⁇ m Cell strainer (BD Bioscience) for a total of 3 ml. , And 300 ⁇ l thereof was orally administered. Mice that received a single dose and mice that were repeated once a week four times were used for analysis one week after the last oral dose.
  • the stomach was removed from the orally administered mouse and a germ-free mouse as a control, and an experiment was performed using an intracellular cytokine production detection method.
  • lymphocytes collected by the above-described method were suspended in a complete buffer obtained by adding L-glutamine, penicillin, and streptomycin to 10% FBS / RPMI-1640 medium, and partially used for confirming cytokine production. Lymphocytes were seeded on a Tissue Culture Plate (96 Well, Flat Butt with Low Evaporation Lid) at 1 ⁇ 10 6 cells / well. The collected lymphocytes were added with Golgi Plug (Biosciences), an intracellular protein transport inhibitor, and allowed to stand at 37 ° C. in a 25% CO 2 incubator for 2 hours. After standing for 2 hours, centrifugation was performed, and cell surface molecules were stained as described above.
  • the stained cells were washed twice with D-PBS (-), centrifuged, added with 4% PFA / D-PBS (-), and allowed to stand at room temperature for 15 minutes to fix the cells. After centrifugation, the cells were washed with Permeabilization Buffer. After the permeation treatment, each of the IL-5 and IL-13 antibodies was diluted with Permeabilization Buffer, the diluted solution was added to each well, and the plate was allowed to stand still at 4 ° C. for 60 minutes in a light-shielded state to perform staining.
  • FACSAria III (BD Biosciences) was used for the stained cells, and flow cytometry analysis was performed. Analysis of the obtained data was performed using FlowJo (Tree Star, Inc).
  • FIG. 5A is a diagram illustrating an outline of the present embodiment.
  • FIGS. 5 (b) and (d) show that for cells expressing CD45, Scal, and KLRG1 that do not express CD3, TCRb, or CD19 (ie, ILC2), IL-5 or IL-13 production was determined using FACS.
  • FIG. 5 (b)) and further quantified FIG. 5 (d)).
  • FIG. 5C is a diagram showing the relationship between the number of times of oral ingestion and the number of cells.
  • Example 4 Analysis of bacterial flora by oral ingestion of gastric microbial flora
  • mice to which stool, stomach contents and gastric mucosal layer were orally administered were analyzed.
  • Feces and stomach contents were weighed at 10 mg and used for DNA extraction.
  • Tris-10 ⁇ EDTA (10 mmol / l Tris-HCl, 10 mmol / l EDTA, pH 8.0
  • a 10 mg stool sample suspending with vortex
  • the pellet was centrifuged again at 15000 rpm at 4 ° C. for 10 minutes, and the pellet was dried at 40 ° C. for 10 minutes and suspended in 250 ⁇ l of TE.
  • 2 ⁇ l of RNase (10 mg / ml) was added and incubated at 37 ° C. for 1 hour.
  • 200 ⁇ l of 10% PEG6000-2.5M NaCl was added and incubated for 30 minutes.
  • washing with 1000 ⁇ l of 70% EtOH centrifuging again at 15000 rpm at 4 ° C.
  • Thermo Thermo
  • the extracted DNA was diluted to 5 ng / ⁇ l, and the V4 region of 16S rRNA was amplified using primers of 515F (GTGCCAGCMGCCGCGGTAA: SEQ ID NO: 26) and 806R (GGACTACHVGGGGTWTCTAAT: SEQ ID NO: 27).
  • the PCR product was purified using AMPure beads, and a barcode sequence was provided by a PCR reaction using Nextra XT Index Kit v2 (Illumina).
  • the PCR product was purified again using AMPure beads, and the DNA concentration was measured using PicoGreen (Invitrogen). From the results of the concentration measurement, all the samples were diluted to 1 ng / ⁇ l, and after confirming the size and concentration of the DNA by TapeStation (Agilent), KAPA qPCR was performed.
  • Gene sequences are sequenced by Miseq (Illumina), and the gene sequences obtained using the package software QIIME (http://qime.org/) are clustered with a sequence similarity of 97% to create an Operational taxonomic unit (OTU). After that, the obtained OTU was searched for a database using Ribosomal Database Project (https://rdp.cme.msu.edu) to identify the bacterial species.
  • the amount of bacteria belonging to the S24-7 family increased in the stomach and feces of the GF mouse. Indicated. That is, it was shown that an increase in the amount of bacteria belonging to the family S24-7 in the stomach may have a great effect on the induction of ILC2 in the stomach.
  • Example 5 Identification of symbiotic bacteria affecting the induction of gastric ILC2 1
  • ampicillin 0.1 g / L
  • colistin 1 g / L
  • neomycin 1 g / L
  • metronidazole 1 g / L
  • vancomycin 0.5 g / L
  • Example 6 Identification of symbiotic bacteria affecting the induction of gastric ILC2 2 Gene sequences are sequenced by Miseq (Illumina), and the gene sequences obtained using the package software QIIME (http://qime.org/) are clustered with a sequence similarity of 97% to create an Operational taxonomic unit (OTU). After that, the obtained OTU was searched for a database using Ribosomal Database Project (https://rdp.cme.msu.edu) to identify the bacterial species. The flora information was appropriately normalized by the above-described method, and the ratio of various flora to each antibiotic administration group was calculated. FIG. 8 shows the results.
  • the symbiotic bacteria that are sensitive to vancomycin and resistant to ampicillin, colistin, neomycin, and metronidazole include bacteria belonging to the family S14-7. Was.
  • Example 7 Examination of localization of S24-7 To a sample excised from a mouse, 1 ml of Carnoy's fixative (60% methanol, 30% chloroform, 10% acetic anhydride) was added and fixed for 6 hours. After the fixation, the solution was replaced with 1 ml of methanol, and left at room temperature for 30 minutes. After 30 minutes, methanol was added again, and the mixture was left at room temperature for 30 minutes. After 30 minutes, the mixture was replaced with dehydrated ethanol and allowed to stand at room temperature for 20 minutes.
  • Carnoy's fixative 60% methanol, 30% chloroform, 10% acetic anhydride
  • the sample was placed in a cassette, and a program for ethanol (1 hour), xylene (2 hours, 3 times) and paraffin (3 hours, 3 times) was performed using a Laica tissue processor, and embedded in paraffin after completion of the program.
  • the block was sliced to 5 ⁇ m and attached to a slide glass. After stretching at 37 ° C., it was dried in an oven at 60 ° C. for 10 minutes.
  • the slide glass was placed in xylene and dipped for 10 minutes, and then the slide glass was placed in 99.5% ethanol for 5 minutes. Then it was air-dried.
  • the probe was diluted with a pre-warmed hybridization buffer (0.9 M NaCl, 20 mM pH 7.4 Tris-HCl, 0.1% SDS) to 10 nM.
  • the sample was overlaid and reacted at 48 ° C. for 2 hours. After completion of the reaction, 100 ⁇ l of a hybridization buffer (0.9 M NaCl, 20 mM pH 7.4 Tris-HCl, 10% formamide) was added thereto, and the mixture was reacted at 48 ° C. for 5 minutes. After completion of the reaction, the plate was washed three times with PBS, and detection was performed with Laica SP8.
  • a hybridization buffer 0.9 M NaCl, 20 mM pH 7.4 Tris-HCl, 10% formamide
  • the probe used above was prepared as follows. Attached to the stomach contents of control (SPF mice), ampicillin-treated mice, colistin-treated mice, neomycin-treated mice, and metronidazole-treated mice, but not decreased, but vancomycin-treated mice had decreased.
  • the amount of the nucleic acid sequence of the bacteria to be treated was determined using Miseq (Illumina). As a result of the analysis, it was confirmed that the sequence of bacteria belonging to the family S24-7 satisfies this condition (11 types of sequences were determined).
  • the nucleic acid sequence (SEQ ID NO: 1) common to these 11 types of sequences was determined.
  • a probe was prepared by labeling the 3 'end of SEQ ID NO: 1 with a fluorescent protein (A555). FIG. 9 shows the results.
  • Example 8 Investigation on correlation between the number of ILC2 cells in the stomach and the number of S24-7 individuals In mice under SPF condition, ampicillin (0.1 g / L), colistin (1 g / L), neomycin were added to drinking water. (1 g / L), metronidazole (1 g / L) or vancomycin (0.5 g / L), and orally taken for 3 weeks. Thereafter, the stomach contents and feces of the mice were collected and analyzed as described in Examples 4 and 6. At the same time, lymphocytes collected from the stomach were analyzed by flow cytometry according to the above-described procedure. With the upper limit of the value of 1% or more for each bacterial count obtained by the microflora analysis, a correlation diagram between the bacterial species (family) and the flow cytometry analysis results was created as a heat map and a scatter plot.
  • Example 9 Detailed Examination of Immune Response to Helicobacter pylori Infection
  • mice were orally administered at 1 ⁇ 10 9 CFU / 300 ⁇ l PBS.
  • Two weeks after the infection when the number of Helicobacter pylori was highest, and nine weeks after the stomach exhibited inflammatory symptoms were examined.
  • Bacterial binding IgA was detected by the method described above.
  • the stomach 2 weeks and 9 weeks after the infection was removed, the stomach was opened, and the contents were lightly washed with PBS.
  • the powdered stomach was suspended in Lysis buffer attached to QIAGEN RNAeasy kit, and RNA was extracted according to the attached protocol. The extracted RNA was reverse-transcribed using a SuperScript III enzyme to obtain cDNA.
  • the cDNA was examined by performing quantitative PCR using pIgR-specific primers.
  • the stomach two weeks after infection was compared with a germ-free mouse according to the above-described intracellular cytokine production protocol. The results are shown in FIGS. 11A to 11C.
  • Example 10 Investigation of the amount of bacterial-bound IgA in the stomach of vancomycin-treated mice The stomach contents and the gastric mucus layer of SPF mice treated with vancomycin-administered mice for 3 weeks and SPF mice were collected as described above. The collected sample was suspended by adding 1 ml of sterile PBS to 1 g, and then centrifuged at 8000 g for 5 minutes. The supernatant was collected as a bacterial layer and centrifuged again at 15,000 g for 15 minutes. The precipitate was collected as IgA-bound bacteria, washed with 1% FBS / PBS, and blocked with 2.4G2 antibody for 15 minutes.
  • the cells were stained four times with an anti-IgA antibody conjugated with PE as a fluorescent dye for 30 minutes. After staining, the cells were washed three times with PBS, stained with DAPI for 5 minutes, and finally washed once again with PBS, and subjected to flow cytometry analysis.
  • Example 11 Induction of gastric ILC2 and IgA by Muribabaculum intestinale A type strain, Muribaculum intestinale (also referred to as “YL27”), was orally administered once to a GF mouse once at 1 ⁇ 10 8 CFU / mouse, and two weeks after the infection, Mice were dissected and stomach cells were analyzed by flow cytometry.
  • FIG. 13A shows an outline of this experiment, and FIGS. 13B to 13D show the experimental results.
  • YL27 was shown to be a bacterium capable of inducing ILC2 in the stomach.
  • FIG. 14 shows the results.
  • Example 12 Confirmation of presence of YL27 in stomach It was confirmed that YL27 was present in the stomach of a mouse infected with YL27.
  • a fluorescent dye Alexa488 was bound to a probe (EUB338 (5′-GCTGCCTCCCGTAGGAGT-3 ′: SEQ ID NO: 29)) for detecting 338-355 of the 16s rRNA of Y27, and YL27 was obtained by the FISH method (see above for details of the protocol).
  • EUB338 5′-GCTGCCTCCCGTAGGAGT-3 ′: SEQ ID NO: 29
  • Example 13 Examination of YL27 Infection Prevention Effect on H. pylori Infection was performed by orally administering YL27 (1 ⁇ 10 8 / mouse) to sterile mice. One week after the administration, YL27 (1 ⁇ 10 8 / mouse) was administered again. The day after the second administration of YL27, H. pylori was orally infected. Two weeks after H. pylori infection, the infected mice were dissected, and (1) IgA production in the stomach contents or feces of the infected mice, (2) mRNA expression of pIgR in the stomach of the infected mice, and (3) The amount of H. pylori in the stomach tissue of infected mice was analyzed.
  • the analysis method used in (1) and (2) is as described above.
  • the outline of the analysis method (3) is as follows: Two weeks after the infection with H. pylori, the mice were sacrificed and the stomach was collected. The contents of the collected stomach were removed, and the weight of the stomach tissue was measured, cut into small pieces with scissors, and suspended in a H. pylori (PMSS1) culture liquid medium. The suspension was allowed to stand for a while, and after removing large tissues, the suspension was cultured for 2 days on an agar medium for culturing H. pylori (BD BBLPlate).
  • PMSS1 H. pylori
  • the IgA production was not significantly different in the stomach contents, but the IgA amount was increased, and the IgA amount in feces was significantly increased.
  • the expression of pIgR in gastric tissue was also significantly induced by administration of YL27 before infection.
  • ILC2 a type of immunocompetent cell
  • the induced ILC2 produces / secretes cytokines such as IL-5 and IL-13 and stimulates B cells present in the stomach.
  • the stimulated B cells are differentiated into antibody-producing cells, and as a result, IgA production in the stomach of the subject is induced and enhanced, so that oral infections including H. pylori can be treated and / or prevented. Therefore, the present invention is very useful in the field of medicine and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Provided is an agent for inducing ILC2 in the stomach, said agent comprising at least one kind of bacterium having the following characteristics: (1) sensitivity to vancomycin; and (2) tolerance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin and metronidazole.

Description

ILC2を標的としたIgA産生誘導方法Method for inducing IgA production targeting ILC2
 本発明は、胃に存在するILC2を標的としたIgA産生誘導剤等に関する。 The present invention relates to an IgA production inducer targeting ILC2 present in the stomach.
 胃は強酸性が維持されており、これまでは臓器としての役割は食物の消化および殺菌を行うのみであると考えられてきた。Helicobacter pylori(「H.pylori」、「ピロリ菌」等とも称する)が胃に生着する報告を皮切りに、胃とピロリ菌との関連性が着目され始めたが、現在までに行われている研究は、「組織としての胃」に関するものがほとんどである。 The stomach is maintained strongly acidic, and until now it was thought that its role as an organ was only to digest and kill food. Helicobacter pylori (also referred to as "H. pylori", "H. pylori", etc.) has begun to focus on the relationship between the stomach and H. pylori, starting with reports of engraftment in the stomach. Most of the research is about the "stomach as tissue."
 実際に、様々な科学系雑誌で報告されている胃と細菌に関する研究は、主にピロリ菌感染による胃がん発症メカニズムや、ピロリ菌自体の構造からの感染機構解明などに関する研究である。免疫応答に限れば、T細胞応答とがんに関する研究を行っているグループは少数存在するが、胃に存在する共生細菌と免疫担当細胞との関連性については今のところ報告はほとんどない。 研究 In fact, research on stomach and bacteria reported in various scientific journals is mainly concerned with elucidation of the mechanism of gastric cancer onset by H. pylori infection and the elucidation of the infection mechanism from the structure of H. pylori itself. As far as the immune response is concerned, there are a few groups that are studying T cell responses and cancer, but there are few reports of the relationship between commensal bacteria present in the stomach and immunocompetent cells so far.
 また、近年、自然リンパ球(Innate Lymphoid cell:ILC)が、体内の様々な組織で恒常性を維持する重要な役割を担っていることが判明した。このILCは細胞の性質や転写因子の発現の違いなどにより、ILC1、ILC2、ILC3の3つのサブセットに分類されている(非特許文献2~6)。これらILCの研究により、今まで獲得免疫だけでは説明できなかった疾患の発症メカニズムが初めて明らかになる等、現在では世界中で注目されている細胞群である(非特許文献1)。 近年 In recent years, natural lymphocytes (Innate Lymphoid cells) (ILC) have been found to play an important role in maintaining homeostasis in various tissues in the body. The ILCs are classified into three subsets, ILC1, ILC2, and ILC3, depending on the properties of cells and differences in expression of transcription factors (Non-Patent Documents 2 to 6). These ILC studies have elucidated, for the first time, the pathogenesis of diseases that could not be explained by acquired immunity alone, and are now a group of cells that have attracted attention worldwide (Non-Patent Document 1).
 しかしながら本発明者らの研究により、胃にも免疫学的に重要な役割が存在し(非特許文献7)、そしてこの応答は主に細菌によって誘導されるILC2によるものであることも明らかになってきた。胃は食物を分解および殺菌するためだけの臓器ではなく、食事摂取と同時に上昇する感染のリスクを化学的及び免疫学的に制御することで、腸管に到達する前に細菌叢の選別を行う重要な臓器であることが示唆された。しかしながら、現時点においていかなる細菌によりILC2が誘導されるかは明らかとはなっていない。 However, our studies also reveal that the stomach also has an important immunological role (Non-Patent Document 7), and that this response is mainly due to bacterial-induced ILC2. Have been. The stomach is not just an organ for decomposing and disinfecting food, but it is important to screen flora before it reaches the intestinal tract by chemically and immunologically controlling the risk of infection that rises with food intake It is suggested that it is a healthy organ. However, at present, it is not clear which bacteria induces ILC2.
 本発明は、胃に存在する免疫担当細胞(特にILC2)の役割や胃の共生細菌叢との関わりを明らかにすることで、新規の抗感染症治療薬等の開発へつなげることをその目的とする。 An object of the present invention is to elucidate the role of immunocompetent cells (especially ILC2) present in the stomach and its relation to the symbiotic bacterial flora of the stomach, thereby leading to the development of a novel anti-infective therapeutic agent and the like. I do.
 本発明者らは、上記課題に対して鋭意検討した結果、(1)胃における共生細菌の存在が、胃におけるILC2の存在量に影響を与え得ること、(2)共生細菌が胃におけるILC2の機能(IL-5およびIL-13の産生能)に影響を与え得ること、(3)胃におけるILC2の誘導をもたらす細菌は、バンコマイシンに感受性であり、且つ、アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールに耐性を有すること、(4)胃におけるILC2の誘導を主にもたらす細菌がS24-7科に属する細菌であること、(5)胃におけるILC2の誘導を主にもたらすS24-7科に属する細菌が、配列番号28で表されるヌクレオチド配列を有する細菌(例、Muribaculum intestinale)であること等を見出し、かかる知見に基づいてさらに研究を進めることによって本発明を完成するに至った。すなわち、本発明は以下の通りである。 The present inventors have conducted intensive studies on the above problems and found that (1) the presence of commensal bacteria in the stomach can affect the abundance of ILC2 in the stomach; (3) Bacteria that cause the induction of ILC2 in the stomach are sensitive to vancomycin and are affected by ampicillin, colistin, neomycin, and metronidazole. (4) that the bacterium that mainly induces the induction of ILC2 in the stomach is a bacterium belonging to the family S24-7; (5) that the bacterium that belongs to the family of the S24-7 family that mainly produces the induction of ILC2 in the stomach is And a bacterium having a nucleotide sequence represented by SEQ ID NO: 28 (eg, Muribaculum intestinale) and the like. This has led to the completion of the present invention by further research Te. That is, the present invention is as follows.
[A1]以下の特性を有する少なくとも1種の細菌を含む、胃におけるILC2誘導剤:
(1)バンコマイシンに対する感受性、および、
(2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。
[A2]細菌が、さらに以下の特性を有する、[A1]記載の誘導剤:
(3)配列番号1に示されるヌクレオチド配列を有する。
[A3]細菌が、S24-7科に属する細菌である、[A1]または[A2]記載の誘導剤。
[A4]細菌が、以下の(1)または(2)のヌクレオチドを含む、[A1]~[A3]のいずれか記載の誘導剤:
(1)配列番号28に示されるヌクレオチド、または、
(2)配列番号28に示されるヌクレオチドと少なくとも90%以上の同一性を有するヌクレオチド。
[A5]以下の特性を有する少なくとも1種の細菌を含む、胃におけるIgA産生誘導剤:
(1)バンコマイシンに対する感受性、および、
(2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。
[A6]細菌が、さらに以下の特性を有する、[A5]記載の産生誘導剤:
(3)配列番号1に示されるヌクレオチド配列を有する。
[A7]細菌が、S24-7科に属する細菌である、[A5]または[A6]記載の産生誘導剤。
[A8]細菌が、以下の(1)または(2)のヌクレオチドを含む、[A5]~[A7]のいずれか記載の産生誘導剤:
(1)配列番号28に示されるヌクレオチド、または、
(2)配列番号28に示されるヌクレオチドと少なくとも90%以上の同一性を有するヌクレオチド。
[A9]以下の特性を有する細菌を含む、経口感染症の治療または予防剤:
(1)バンコマイシンに対する感受性、および、
(2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。
[A10]細菌が、さらに以下の特性を有する、[A9]記載の治療または予防剤:
(3)配列番号1に示されるヌクレオチド配列を有する。
[A11]細菌が、S24-7科の細菌である、[A9]または[A10]記載の治療または予防剤。
[A12]細菌が、以下の(1)または(2)のヌクレオチドを含む、[A9]~[A11]のいずれか記載の治療または予防剤:
(1)配列番号28に示されるヌクレオチド、または、
(2)配列番号28に示されるヌクレオチドと少なくとも90%以上の同一性を有するヌクレオチド。
[A13]経口感染症が、以下の群から選択される感染の少なくとも1つである、[A9]~[A12]のいずれか記載の治療または予防剤:
 ピロリ菌感染症、O:157感染症、およびサルモネラ感染症。
[B1]以下の特性を有する少なくとも1種の細菌を対象に経口投与することを含む、胃におけるILC2誘導方法:
(1)バンコマイシンに対する感受性、および、
(2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。
[B2]細菌が、さらに以下の特性を有する、[B1]記載の誘導方法:
(3)配列番号1に示されるヌクレオチド配列を有する。
[B3]細菌が、S24-7科に属する細菌である、[B1]または[B2]記載の誘導方法。
[B4]細菌が、以下の(1)または(2)のヌクレオチドを含む、[B1]~[B3]のいずれか記載の誘導方法:
(1)配列番号28に示されるヌクレオチド、または、
(2)配列番号28に示されるヌクレオチドと少なくとも90%以上の同一性を有するヌクレオチド。
[B5]以下の特性を有する少なくとも1種の細菌を対象に経口投与することを含む、胃におけるIgA産生誘導方法:
(1)バンコマイシンに対する感受性、および、(2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。
[B6]細菌が、さらに以下の特性を有する、[B5]記載の産生誘導方法:
(3)配列番号1に示されるヌクレオチド配列を有する。
[B7]細菌が、S24-7科に属する細菌である、[B5]または[B6]記載の産生誘導方法。
[B8]細菌が、以下の(1)または(2)のヌクレオチドを含む、[B5]~[B7]のいずれか記載の産生誘導方法:
(1)配列番号28に示されるヌクレオチド、または、
(2)配列番号28に示されるヌクレオチドと少なくとも90%以上の同一性を有するヌクレオチド。
[B9]以下の特性を有する細菌を対象に経口投与することを含む、経口感染症の治療または予防方法:
(1)バンコマイシンに対する感受性、および、
(2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。
[B10]細菌が、さらに以下の特性を有する、[B9]記載の治療または予防方法:
(3)配列番号1に示されるヌクレオチド配列を有する。
[B11]細菌が、S24-7科の細菌である、[B9]または[B10]記載の治療または予防方法。
[B12]細菌が、以下の(1)または(2)のヌクレオチドを含む、[B9]~[B11]のいずれか記載の治療または予防方法:
(1)配列番号28に示されるヌクレオチド、または、
(2)配列番号28に示されるヌクレオチドと少なくとも90%以上の同一性を有するヌクレオチド。
[B13]経口感染症が、以下の群から選択される感染の少なくとも1つである、[B9]~[B12]のいずれか記載の治療または予防方法:
 ピロリ菌感染症、O:157感染症、およびサルモネラ感染症。
[C1]胃におけるILC2を誘導するための方法における使用のための、以下の特性を有する少なくとも1種の細菌:
(1)バンコマイシンに対する感受性、および、
(2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。
[C2]細菌が、さらに以下の特性を有する、[C1]記載の細菌:
(3)配列番号1に示されるヌクレオチド配列を有する。
[C3]細菌が、S24-7科に属する細菌である、[C1]または[C2]記載の細菌。
[C4]細菌が、以下の(1)または(2)のヌクレオチドを含む、[C1]~[C3]のいずれか記載の細菌:
(1)配列番号28に示されるヌクレオチド、または、
(2)配列番号28に示されるヌクレオチドと少なくとも90%以上の同一性を有するヌクレオチド。
[C5]胃におけるIgAの産生を誘導するための方法における使用のための、以下の特性を有する少なくとも1種の細菌:
(1)バンコマイシンに対する感受性、および、
(2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。
[C6]細菌が、さらに以下の特性を有する、[C5]記載の細菌:
(3)配列番号1に示されるヌクレオチド配列を有する。
[C7]細菌が、S24-7科に属する細菌である、[C5]または[C6]記載の細菌。
[C8]細菌が、以下の(1)または(2)のヌクレオチドを含む、[C5]~[C7]のいずれか記載の細菌:
(1)配列番号28に示されるヌクレオチド、または、
(2)配列番号28に示されるヌクレオチドと少なくとも90%以上の同一性を有するヌクレオチド。
[C9]経口感染症を治療または予防するための方法における使用のための、以下の特性を有する細菌:
(1)バンコマイシンに対する感受性、および、
(2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。
[C10]細菌が、さらに以下の特性を有する、[C9]記載の細菌:
(3)配列番号1に示されるヌクレオチド配列を有する。
[C11]細菌が、S24-7科の細菌である、[C9]または[10]記載の細菌。
[C12]細菌が、以下の(1)または(2)のヌクレオチドを含む、[C9]~[C11]のいずれか記載の細菌:
(1)配列番号28に示されるヌクレオチド、または、
(2)配列番号28に示されるヌクレオチドと少なくとも90%以上の同一性を有するヌクレオチド。
[C13]経口感染症が、以下の群から選択される感染の少なくとも1つである、[C9]~[C12]のいずれか記載の細菌:
 ピロリ菌感染症、O:157感染症、およびサルモネラ感染症。
[D1]胃におけるILC2の誘導用医薬を製造するための以下の特性を有する少なくとも1種の細菌の使用:
(1)バンコマイシンに対する感受性、および、
(2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。
[D2]細菌が、さらに以下の特性を有する、[D1]記載の使用:
(3)配列番号1に示されるヌクレオチド配列を有する。
[D3]細菌が、S24-7科に属する細菌である、[D1]または[D2]記載の使用。
[D4]細菌が、以下の(1)または(2)のヌクレオチドを含む、[D1]~[D3]のいずれか記載の使用:
(1)配列番号28に示されるヌクレオチド、または、
(2)配列番号28に示されるヌクレオチドと少なくとも90%以上の同一性を有するヌクレオチド。
[D5]胃におけるIgA産生誘導用医薬を製造するための、以下の特性を有する少なくとも1種の細菌の使用:
(1)バンコマイシンに対する感受性、および、
(2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。
[D6]細菌が、さらに以下の特性を有する、[D5]記載の使用:
(3)配列番号1に示されるヌクレオチド配列を有する。
[D7]細菌が、S24-7科に属する細菌である、[D5]または[D6]記載の使用。
[D8]細菌が、以下の(1)または(2)のヌクレオチドを含む、[D5]~[D7]のいずれか記載の使用:
(1)配列番号28に示されるヌクレオチド、または、
(2)配列番号28に示されるヌクレオチドと少なくとも90%以上の同一性を有するヌクレオチド。
[D9]以下の特性を有する細菌を含む、経口感染症の使用:
(1)バンコマイシンに対する感受性、および、
(2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。
[D10]細菌が、さらに以下の特性を有する、[D9]記載の使用:
(3)配列番号1に示されるヌクレオチド配列を有する。
[D11]細菌が、S24-7科の細菌である、[D9]または[D10]記載の使用。
[D12]細菌が、以下の(1)または(2)のヌクレオチドを含む、[D9]~[D11]のいずれか記載の使用:
(1)配列番号28に示されるヌクレオチド、または、
(2)配列番号28に示されるヌクレオチドと少なくとも90%以上の同一性を有するヌクレオチド。
[D13]経口感染症が、以下の群から選択される感染の少なくとも1つである、[D9]~[D12]のいずれか記載の使用:
 ピロリ菌感染症、O:157感染症、およびサルモネラ感染症。
[A1] An ILC2 inducer in the stomach comprising at least one bacterium having the following properties:
(1) sensitivity to vancomycin, and
(2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
[A2] The inducer according to [A1], wherein the bacterium further has the following properties:
(3) It has the nucleotide sequence shown in SEQ ID NO: 1.
[A3] The inducer according to [A1] or [A2], wherein the bacterium is a bacterium belonging to the family S24-7.
[A4] The inducing agent according to any one of [A1] to [A3], wherein the bacterium contains the following nucleotide (1) or (2):
(1) a nucleotide represented by SEQ ID NO: 28, or
(2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28;
[A5] An agent for inducing stomach IgA production, comprising at least one bacterium having the following properties:
(1) sensitivity to vancomycin, and
(2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
[A6] The production inducer according to [A5], wherein the bacterium further has the following properties:
(3) It has the nucleotide sequence shown in SEQ ID NO: 1.
[A7] The production inducer according to [A5] or [A6], wherein the bacterium belongs to the family S24-7.
[A8] The production inducer according to any one of [A5] to [A7], wherein the bacterium contains the following nucleotide (1) or (2):
(1) a nucleotide represented by SEQ ID NO: 28, or
(2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28;
[A9] A therapeutic or prophylactic agent for oral infection, comprising a bacterium having the following properties:
(1) sensitivity to vancomycin, and
(2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
[A10] The therapeutic or prophylactic agent according to [A9], wherein the bacterium further has the following properties:
(3) It has the nucleotide sequence shown in SEQ ID NO: 1.
[A11] The therapeutic or prophylactic agent according to [A9] or [A10], wherein the bacterium is a bacterium belonging to the family S24-7.
[A12] The therapeutic or prophylactic agent according to any one of [A9] to [A11], wherein the bacterium contains the following nucleotide (1) or (2):
(1) a nucleotide represented by SEQ ID NO: 28, or
(2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28;
[A13] The therapeutic or prophylactic agent according to any one of [A9] to [A12], wherein the oral infection is at least one of infections selected from the following groups:
H. pylori infections, O: 157 infections, and Salmonella infections.
[B1] A method for inducing ILC2 in the stomach, comprising orally administering to a subject at least one bacterium having the following properties:
(1) sensitivity to vancomycin, and
(2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
[B2] The induction method according to [B1], wherein the bacterium further has the following properties:
(3) It has the nucleotide sequence shown in SEQ ID NO: 1.
[B3] The induction method according to [B1] or [B2], wherein the bacterium is a bacterium belonging to the family S24-7.
[B4] The induction method according to any one of [B1] to [B3], wherein the bacterium contains the following nucleotide (1) or (2):
(1) a nucleotide represented by SEQ ID NO: 28, or
(2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28;
[B5] A method for inducing IgA production in the stomach, comprising orally administering to a subject at least one bacterium having the following properties:
(1) sensitivity to vancomycin, and (2) resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
[B6] The production induction method according to [B5], wherein the bacterium further has the following characteristics:
(3) It has the nucleotide sequence shown in SEQ ID NO: 1.
[B7] The production induction method according to [B5] or [B6], wherein the bacterium is a bacterium belonging to the family S24-7.
[B8] The production induction method according to any one of [B5] to [B7], wherein the bacterium contains the following nucleotide (1) or (2):
(1) a nucleotide represented by SEQ ID NO: 28, or
(2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28;
[B9] A method for treating or preventing an oral infection, comprising orally administering a bacterium having the following properties to a subject:
(1) sensitivity to vancomycin, and
(2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
[B10] The treatment or prevention method according to [B9], wherein the bacterium further has the following properties:
(3) It has the nucleotide sequence shown in SEQ ID NO: 1.
[B11] The method according to [B9] or [B10], wherein the bacterium is a bacterium belonging to the family S24-7.
[B12] The treatment or prevention method according to any of [B9] to [B11], wherein the bacterium comprises the following nucleotide (1) or (2):
(1) a nucleotide represented by SEQ ID NO: 28, or
(2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28;
[B13] The treatment or prevention method according to any of [B9] to [B12], wherein the oral infection is at least one of infections selected from the following groups:
H. pylori infections, O: 157 infections, and Salmonella infections.
[C1] At least one bacterium having the following properties for use in a method for inducing ILC2 in the stomach:
(1) sensitivity to vancomycin, and
(2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
[C2] The bacterium according to [C1], wherein the bacterium further has the following properties:
(3) It has the nucleotide sequence shown in SEQ ID NO: 1.
[C3] The bacterium according to [C1] or [C2], wherein the bacterium is a bacterium belonging to the family S24-7.
[C4] The bacterium according to any one of [C1] to [C3], wherein the bacterium comprises the following nucleotide (1) or (2):
(1) a nucleotide represented by SEQ ID NO: 28, or
(2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28;
[C5] At least one bacterium having the following properties for use in a method for inducing the production of IgA in the stomach:
(1) sensitivity to vancomycin, and
(2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
[C6] The bacterium according to [C5], wherein the bacterium further has the following properties:
(3) It has the nucleotide sequence shown in SEQ ID NO: 1.
[C7] The bacterium according to [C5] or [C6], wherein the bacterium is a bacterium belonging to the family S24-7.
[C8] The bacterium according to any one of [C5] to [C7], wherein the bacterium comprises the following nucleotide (1) or (2):
(1) a nucleotide represented by SEQ ID NO: 28, or
(2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28;
[C9] A bacterium having the following properties for use in a method for treating or preventing an oral infection:
(1) sensitivity to vancomycin, and
(2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
[C10] The bacterium according to [C9], wherein the bacterium further has the following properties:
(3) It has the nucleotide sequence shown in SEQ ID NO: 1.
[C11] The bacterium according to [C9] or [10], wherein the bacterium is a bacterium belonging to the family S24-7.
[C12] The bacterium according to any one of [C9] to [C11], wherein the bacterium comprises the following nucleotide (1) or (2):
(1) a nucleotide represented by SEQ ID NO: 28, or
(2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28;
[C13] The bacterium according to any one of [C9] to [C12], wherein the oral infection is at least one of infections selected from the following group:
H. pylori infections, O: 157 infections, and Salmonella infections.
[D1] Use of at least one bacterium having the following properties for producing a medicament for inducing ILC2 in the stomach:
(1) sensitivity to vancomycin, and
(2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
[D2] Use according to [D1], wherein the bacterium further has the following properties:
(3) It has the nucleotide sequence shown in SEQ ID NO: 1.
[D3] The use according to [D1] or [D2], wherein the bacterium is a bacterium belonging to the family S24-7.
[D4] Use according to any one of [D1] to [D3], wherein the bacterium comprises the following nucleotides (1) or (2):
(1) a nucleotide represented by SEQ ID NO: 28, or
(2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28;
[D5] Use of at least one bacterium having the following properties for producing a medicament for inducing IgA production in the stomach:
(1) sensitivity to vancomycin, and
(2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
[D6] Use according to [D5], wherein the bacterium further has the following properties:
(3) It has the nucleotide sequence shown in SEQ ID NO: 1.
[D7] The use according to [D5] or [D6], wherein the bacterium is a bacterium belonging to the family S24-7.
[D8] Use according to any one of [D5] to [D7], wherein the bacterium comprises the following nucleotides (1) or (2):
(1) a nucleotide represented by SEQ ID NO: 28, or
(2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28;
[D9] Use of oral infections, including bacteria having the following properties:
(1) sensitivity to vancomycin, and
(2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
[D10] Use according to [D9], wherein the bacterium further has the following properties:
(3) It has the nucleotide sequence shown in SEQ ID NO: 1.
[D11] The use according to [D9] or [D10], wherein the bacterium is a bacterium belonging to the family S24-7.
[D12] Use according to any one of [D9] to [D11], wherein the bacterium comprises the following nucleotides (1) or (2):
(1) a nucleotide represented by SEQ ID NO: 28, or
(2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28;
[D13] The use according to any one of [D9] to [D12], wherein the oral infection is at least one of infections selected from the following groups:
H. pylori infections, O: 157 infections, and Salmonella infections.
 本発明によれば、哺乳動物の胃においてILC2を誘導することができる。また、ILC2が誘導される結果として、胃におけるIgA産生を亢進することができる。これにより、ピロリ菌をはじめとした、IgAにより除去可能な微生物の感染に起因する疾患等を治療および/または予防することができる。 According to the present invention, ILC2 can be induced in the stomach of a mammal. In addition, IgA production in the stomach can be enhanced as a result of induction of ILC2. This makes it possible to treat and / or prevent diseases and the like caused by infection with microorganisms that can be removed by IgA, such as H. pylori.
図1は、マウスの胃における各種ILCの存在割合の検討結果を示す図である。(a)本実施例の概要。(b)、(c)および(d)小腸および胃における各種ILCの細胞数又は細胞の割合。FIG. 1 is a diagram showing the results of studies on the proportions of various ILCs in the stomach of mice. (A) Outline of the present embodiment. (B), (c) and (d) Cell numbers or percentages of various ILCs in the small intestine and stomach. 図2は、マウスの胃ILC2におけるIL-33Raの発現を示す図である。(a)小腸および胃におけるKLRG1およびSca1発現細胞数。(b)小腸および胃におけるIL-33Rα発現細胞の割合。FIG. 2 shows the expression of IL-33Ra in mouse gastric ILC2. (A) Number of KLRG1 and Sca1 expressing cells in small intestine and stomach. (B) Percentage of cells expressing IL-33Rα in the small intestine and stomach. 図3は、共生細菌による胃ILC2への影響を示す図である。(a)本実施例の概要。(b)および(c)SPFマウスおよびGFマウスにおけるILC2の細胞数。(d)SPFマウスおよびGFマウスにおけるIL-33Rα発現細胞の割合。FIG. 3 is a diagram showing the effect of commensal bacteria on gastric ILC2. (A) Outline of the present embodiment. (B) and (c) ILC2 cell numbers in SPF and GF mice. (D) Percentage of cells expressing IL-33Rα in SPF and GF mice. 図4は、共生細菌による胃ILC2の機能への影響を示すである。(a)および(b)SPFマウスおよびGFマウスにおける、胃中のIL-5発現細胞またはIL-13発現細胞の細胞数。(c)および(d)SPFマウスおよびGFマウスにおける、胃中のCD3およびCD4陽性細胞(即ち、T細胞)並びにCD19およびB220陽性細胞(即ち、B細胞) の細胞数。通常状態下において、胃におけるT細胞およびB細胞数に変化が見られなかった。FIG. 4 shows the effect of commensal bacteria on the function of gastric ILC2. (A) and (b) Cell numbers of IL-5 or IL-13 expressing cells in the stomach in SPF and GF mice. (C) and (d) Cell numbers of CD3 and CD4 positive cells (ie, T cells) and CD19 and B220 positive cells (ie, B cells) in SPF and GF mice. Under normal conditions, there was no change in the number of T cells and B cells in the stomach. 図5は、SPFマウスの胃由来微生物叢の経口摂取による、GFマウスの胃ILC2の誘導を示す図である。(a)本実施例の概要。(b)、(c)および(d)SPFマウスの胃由来微生物叢を経口摂取したGFマウスの胃におけるIL-5発現細胞またはIL-13発現細胞の細胞数の経時的変化。FIG. 5 is a diagram showing induction of gastric ILC2 in GF mice by oral ingestion of gastric microbiota from SPF mice. (A) Outline of the present embodiment. (B), (c) and (d) Time course of the number of IL-5 expressing cells or IL-13 expressing cells in the stomach of GF mice orally ingesting the stomach-derived microflora of SPF mice. 図6は、SPFマウスの胃由来微生物叢の経口摂取による、GFマウスの胃または糞便中の細菌叢の経時的変化を示す図である。(a)GFマウスの胃または糞便中の細菌種の存在割合の経時的変化。(b)Bacteroidetesの存在割合の経時的変化。(c)S24-7科の存在割合の経時的変化。FIG. 6 is a graph showing the time course of the bacterial flora in the stomach or feces of a GF mouse due to oral ingestion of the gastric flora of the SPF mouse. (A) Changes over time in the percentage of bacterial species present in the stomach or feces of GF mice. (B) Time-dependent change in the proportion of Bacteroidetes present. (C) Changes over time in the proportion of S24-7 families. 図7は、胃ILC2の誘導に影響を与える共生細菌群の薬剤耐性にかかる特性を示す図である。(a)本実施例の概要。(b)および(c)抗生物質処理後のILC2細胞数の変化。FIG. 7 is a view showing characteristics of a symbiotic bacterium group affecting the induction of gastric ILC2 concerning drug resistance. (A) Outline of the present embodiment. (B) and (c) Changes in ILC2 cell number after antibiotic treatment. 図8は、各種細菌群が有する薬剤耐性にかかる特性を示す図である。(a)抗生物質処理後の各種細菌群の存在数の変化。(b)抗生物質処理後のActinobacteriaおよびBacteroidetesの存在割合の変化。FIG. 8 is a diagram showing characteristics of various bacterial groups related to drug resistance. (A) Changes in the numbers of various bacterial groups after antibiotic treatment. (B) Changes in abundance ratio of Actinobacteria and Bacteroidetes after antibiotic treatment. 図9は、胃におけるS24-7の局在を示す図である。FIG. 9 is a diagram showing the localization of S24-7 in the stomach. 図10は、胃におけるILC2数と各細菌の個体数の関係を示す図である。(a)各抗生物質で処理されたマウス由来の胃内容物中における、科レベルでの各細菌の相対的な個体数のヒートマッププロファイル。(b)抗生物質(アンピシリン、ネオマイシン、メトロニダゾール、およびコリスチン)で処理されたマウス又はSPFマウス(対照)由来の胃内容物における、科レベルでの各細菌の個体数とILC2数のスキャッタープロファイル。FIG. 10 is a diagram showing the relationship between the number of ILC2 in the stomach and the number of bacteria. (A) Heatmap profile of the relative population of each bacterium at the family level in gastric contents from mice treated with each antibiotic. (B) Scatter profile of each bacterial population and ILC2 count at the family level in gastric contents from mice treated with antibiotics (ampicillin, neomycin, metronidazole, and colistin) or SPF mice (control). . 図11-Aは、ヘリコバクターピロリの感染に対する免疫応答に関する各種データを示す図である。(a)ピロリ菌感染マウスにおけるCagAタンパク質の検出。(b)ピロリ菌感染後のILC2細胞数の経時的変化。(c)ピロリ菌感染後のマウス胃組織に存在するピロリ菌CFU。(d)から(f)ピロリ菌感染後のB細胞およびT細胞数の経時的変化。FIG. 11-A shows various data on the immune response to Helicobacter pylori infection. (A) Detection of CagA protein in H. pylori-infected mice. (B) Time course of the number of ILC2 cells after infection with H. pylori. (C) H. pylori CFU present in mouse stomach tissue after H. pylori infection. (D) to (f) Changes over time in the numbers of B cells and T cells after infection with H. pylori. 図11-Bは、ヘリコバクターピロリの感染に対する免疫応答に関する各種データを示す図である。(a)および(b)ピロリ菌感染後の胃におけるILC2の細胞数の経時的変化。(c)ピロリ菌感染後の胃におけるB細胞およびT細胞の細胞数の経時的変化。(d)抗IL-5抗体処理によるIgA量の経時的変化。(e)ピロリ菌感染後のIgA量の経時的変化。FIG. 11-B shows various data on the immune response to Helicobacter pylori infection. (A) and (b) Changes over time in the number of ILC2 cells in the stomach after H. pylori infection. (C) Time course of B and T cell numbers in the stomach after H. pylori infection. (D) Changes over time in the amount of IgA due to anti-IL-5 antibody treatment. (E) Temporal change in IgA level after H. pylori infection. 図11-Cは、ヘリコバクターピロリの感染に対する免疫応答に関する各種データを示す図である。(a)および(b)ピロリ菌感染後のIL-5またはIL-13産生ILC2の細胞数の経時的変化。(c)ピロリ菌感染後の胃におけるIL-33の量の経時的変化。(d)および(e)抗IL-5抗体処理による、IgA産生細胞の減少。(f)ピロリ菌感染後のpLgRの発現量の経時的変化。FIG. 11-C is a diagram showing various data on an immune response to infection with Helicobacter pylori. (A) and (b) Time course of the number of IL-5 or IL-13 producing ILC2 cells after H. pylori infection. (C) Time course of the amount of IL-33 in the stomach after H. pylori infection. (D) and (e) Reduction of IgA producing cells by anti-IL-5 antibody treatment. (F) Changes over time in the expression level of pLgR after infection with H. pylori. 図12は、バンコマイシン処理マウスの胃におけるバクテリア結合IgA量を示す図である。(a)および(b)SPFマウスおよびバンコマイシン処理マウスにおける胃内容物および胃粘液中のバクテリアに結合するIgA抗体の量。FIG. 12 is a diagram showing the amount of bacterial-bound IgA in the stomach of vancomycin-treated mice. (A) and (b) Amount of IgA antibodies binding to bacteria in gastric contents and gastric mucus in SPF and vancomycin treated mice. 図13は、Muribaculum intestinale(YL27)の感染に対する免疫応答に関する各種データを示す図である。(a)本実施例の概要。(b)および(c)YL27感染後の胃におけるILC2の細胞数の経時的変化。(d)IL-5またはIL-13を産生するILC2の細胞数の経時的変化。FIG. 13 is a diagram showing various data relating to an immune response to infection with Muribaculum intestinale (YL27). (A) Outline of the present embodiment. (B) and (c) Time course of the number of ILC2 cells in the stomach after YL27 infection. (D) Time course of the number of cells of ILC2 producing IL-5 or IL-13. 図14は、YL27感染に対するpIgRの発現量の変化、および、胃内容物または糞便におけるIgA産生量を示す図である。FIG. 14 is a diagram showing changes in the expression level of pIgR in response to YL27 infection and IgA production in the stomach contents or feces. 図15は、GFマウスに感染させたYL27が、GFマウスの胃に接着していることを示す写真図である。FIG. 15 is a photograph showing that YL27 infected to GF mice adheres to the stomach of GF mice. 図16は、実施例12の概要を示す図である。FIG. 16 is a diagram illustrating an outline of the twelfth embodiment. 図17は、YL27を感染させた後にピロリ菌を感染させたマウスにおける胃内容物または糞便におけるIgA産生量を示す図である。FIG. 17 is a diagram showing IgA production in stomach contents or feces in mice infected with H. pylori after being infected with YL27. 図18は、YL27を感染させた後にピロリ菌を感染させたマウスの胃におけるpIgRの発現量の変化を示す図である。FIG. 18 is a diagram showing changes in the expression level of pIgR in the stomach of mice infected with H. pylori after being infected with YL27. 図19は、胃に存在するピロリ菌量の測定に基づく、YL27のピロリ菌感染の抑制を示す図である。FIG. 19 is a diagram showing suppression of H. pylori infection by YL27 based on measurement of the amount of H. pylori present in the stomach.
1.ILC2誘導剤
 本発明は、以下の特性を有する少なくとも1種の細菌を含む、胃におけるILC2誘導剤(以下、「本発明のILC2誘導剤」と称することがある)を提供する:
(1)バンコマイシンに対する感受性、および、
(2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。本発明のILC2誘導剤は、配合される特定細菌の機能により、適用対象における胃において免疫担当細胞の一種であるILC2の発現を誘導することができる。
1. The present invention provides an ILC2 inducer in the stomach (hereinafter sometimes referred to as "the ILC2 inducer of the present invention") comprising at least one bacterium having the following properties:
(1) sensitivity to vancomycin, and
(2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole. The ILC2 inducer of the present invention can induce the expression of ILC2, which is a kind of immunocompetent cell, in the stomach of an application subject by the function of the specific bacteria to be added.
 本発明のILC2誘導剤に配合される細菌は、バンコマイシンに対する感受性を有し、且つ、アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対して耐性を有する細菌として特徴づけられる。一態様において、本発明のILC2誘導剤に配合される細菌は、バンコマイシンに対する感受性を有し、且つ、アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも2つの薬剤に対して耐性を有する細菌で有り得、好ましくは、バンコマイシンに対する感受性を有し、且つ、アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも3つの薬剤に対して耐性を有する細菌で有り得、より好ましくは、バンコマイシンに対する感受性を有し、且つ、アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも3つの薬剤に対して耐性を有する細菌で有り得、特に好ましくは、バンコマイシンに対する感受性を有し、且つ、アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールの全てに対して耐性を有する細菌で有り得る。一態様において、本発明のILC2誘導剤に配合される細菌は、配列番号1に示されるヌクレオチド配列を有することを特徴とする。また、別の一態様において、本発明のILC2誘導剤に配合される細菌は、S24-7科に属する細菌であることを特徴とする。 The bacterium to be combined with the ILC2 inducer of the present invention is characterized as a bacterium having sensitivity to vancomycin and resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole. Attached. In one embodiment, the bacterium formulated in the ILC2 inducer of the present invention is susceptible to vancomycin and resistant to at least two drugs selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole. A bacterium, preferably a bacterium that is sensitive to vancomycin and resistant to at least three drugs selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole, more preferably, The bacterium may be a bacterium that is sensitive to vancomycin and resistant to at least three drugs selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole. It has that sensitivity, and can be a bacterium having ampicillin, colistin, neomycin, and resistance to all metronidazole. In one embodiment, the bacterium formulated in the ILC2 inducer of the present invention has a nucleotide sequence represented by SEQ ID NO: 1. In another aspect, the bacterium contained in the ILC2 inducer of the present invention is a bacterium belonging to the family S24-7.
 S24-7科に属する細菌とは、Bacteroidetes門Bacteroidales目S24-7科に属するグラム陰性細菌を意味する。S24-7科に属する細菌は、広く恒温動物と共生することが報告されている(Ormerod KL et al.,Microbiome.2016 Jul 7;4(1):36.)。なお、本明細書において恒温動物とは、マウス、ラット、ハムスター、モルモット、ウサギ、ネコ、イヌ、ウシ、ウマ、ヒツジ、サル、及びヒト等が例示されるが、S24-7科に属する細菌をはじめとし、上記した薬剤特性を有する細菌が共生し得る恒温動物であれば特に限定されない。なお、S24-7科に属する細菌は、以下の実施例に示される通り、バンコマイシンに対する感受性を有し、且つ、アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールの全てに対して耐性を有することから、かかる特性を基準として存在を確認することができる。或いは、以下の実施例に示される通り、S24-7科に属する細菌は、配列番号1に示される核酸配列を有する場合がある。従って、配列番号1に示される核酸配列をプローブとして用いることによってもその存在を確認することができる場合がある。 細菌 A bacterium belonging to the family S24-7 refers to a gram-negative bacterium belonging to the order Bacteroidetes Bacteroidales, S24-7 family. It has been reported that bacteria belonging to the S24-7 family widely coexist with homeothermic animals (Ormerod {KL} et al., Microbiome. 2016 {Jul} 7; 4 (1): 36.). As used herein, the term “thermophilic animal” refers to mice, rats, hamsters, guinea pigs, rabbits, cats, dogs, cows, horses, sheep, monkeys, humans, and the like. First, there is no particular limitation as long as it is a constant-temperature animal in which bacteria having the above-mentioned drug characteristics can coexist. The bacteria belonging to the family S24-7 have sensitivity to vancomycin and resistance to all of ampicillin, colistin, neomycin, and metronidazole, as shown in the following Examples. Can be confirmed on the basis of. Alternatively, as shown in the examples below, bacteria belonging to the family S24-7 may have the nucleic acid sequence shown in SEQ ID NO: 1. Therefore, in some cases, its presence can be confirmed by using the nucleic acid sequence shown in SEQ ID NO: 1 as a probe.
 本発明の一態様において、細菌は、Muribaculum intestinale(「YL27」等とも称される)であり得るが、これに限定されない。尚、YL27は、配列番号28で表される配列からなる16s rRNAを有する。従って、一態様において、本発明に用いられる細菌は、(1)配列番号28に示されるヌクレオチドを含む細菌、または、(2)配列番号28に示されるヌクレオチドと少なくとも90%以上(より好ましくは91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、または99%以上)の同一性を有するヌクレオチドを含む細菌であり得る。 に お い て In one embodiment of the present invention, the bacterium may be, but is not limited to, Muribulculum intestinale (also referred to as “YL27” or the like). In addition, YL27 has 16sΔrRNA consisting of the sequence represented by SEQ ID NO: 28. Therefore, in one embodiment, the bacterium used in the present invention is (1) a bacterium containing the nucleotide shown in SEQ ID NO: 28, or (2) at least 90% or more (more preferably 91% or more) the nucleotide shown in SEQ ID NO: 28 %, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more).
 本発明のILC2誘導剤に配合される細菌は、恒温動物と共生し、その胃、小腸、大腸、および糞便等に存在する細菌である。従って、本発明のILC2誘導剤に配合される細菌は、かかる細菌源より細菌を採取することにより容易に入手することができる。一態様において、かかる細菌源より採取した細菌を純水や緩衝液に懸濁させ細菌懸濁液とした後、自体公知の方法(例えば、特開2015-188407、特開2012-175973、特開2010-041967、国際公開WO2007/023711、特開2005-229837等)を用いて培養してもよい。また、これらの培養の際に、適切な抗生物質等を添加することにより、不要な微生物のコンタミネーションを除去してもよい。具体的には、本発明のILC2誘導剤に配合される細菌は、アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールに耐性を有することから、これらのうちの少なくとも1つ、好ましくは少なくとも2つ、より好ましくは少なくとも3つ、特に好ましくはこれら4種類の薬剤を培養の際に添加することで、本発明の誘導剤に配合される細菌の純度を高めることができる。 細菌 Bacteria to be incorporated in the ILC2 inducer of the present invention are bacteria that coexist with homeostatic animals and are present in the stomach, small intestine, large intestine, feces, and the like. Therefore, bacteria mixed with the ILC2 inducer of the present invention can be easily obtained by collecting bacteria from such a bacterial source. In one embodiment, after a bacterium collected from such a bacterium source is suspended in pure water or a buffer to form a bacterial suspension, a method known per se (for example, JP-A-2015-188407, JP-A-2012-175973, 2010-041967, International Publication WO2007 / 023711, JP-A-2005-229837, etc.). In addition, during the culture, unnecessary microorganism contamination may be removed by adding an appropriate antibiotic or the like. Specifically, the bacterium contained in the ILC2 inducer of the present invention has resistance to ampicillin, colistin, neomycin, and metronidazole. Therefore, at least one of them, preferably at least two, more preferably By adding at least three, particularly preferably these four types of drugs during the culture, the purity of the bacteria to be added to the inducer of the present invention can be increased.
 本発明のILC2誘導剤に配合される細菌の調製方法の一具体例としては、恒温動物(例えば、マウス)を開腹し、その胃腸に含まれる内容物および/または粘液を採取する方法が例示される。採取された内容物および/または粘液には、バンコマイシンに対する感受性を有し、且つ、アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対して耐性を有する細菌が含まれる。従って、該内容物および/または粘液をそのまま有効成分とすることもできるし、これらに含有される細菌のうち、バンコマイシンに対する感受性を有し、且つ、アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対して耐性を有する細菌を上述した方法を用いて単離および/または培養した後に、有効成分として配合することもできる。なお、本明細書において「単離」とは、目的とする細菌以外の因子を除去する操作がなされ、天然に存在する状態を脱していることを意味するが、目的とする細菌以外の細菌が完全に除去されている態様の他、目的とする細菌数が過半数を占め、それ以外の細菌が微量に存在している態様も含まれ得る。 As a specific example of a method for preparing a bacterium to be mixed with the ILC2 inducer of the present invention, a method of laparotomy of a constant temperature animal (for example, a mouse) and collecting contents and / or mucus contained in the gastrointestinal tract is exemplified. You. The collected contents and / or mucus include bacteria that are sensitive to vancomycin and resistant to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole. . Therefore, the content and / or the mucus can be used as an active ingredient as it is, and among the bacteria contained therein, the bacterium is sensitive to vancomycin and is selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole. Bacteria having resistance to at least one selected agent may be isolated and / or cultured using the above-described method, and then blended as an active ingredient. In this specification, the term "isolated" means that an operation for removing a factor other than the target bacterium has been performed and the state of the bacterium other than the target bacterium has been removed. In addition to the embodiment in which the number of target bacteria occupies the majority, other embodiments in which a small amount of other bacteria are present may be included in addition to the embodiment in which the bacteria are completely removed.
 本発明のILC2誘導剤に配合される細菌の配合量は、所望の効果を得られる限り特に限定されず、本発明のILC2誘導剤の総重量に対して、通常0.001~100重量%、好ましくは0.01~100重量%、より好ましくは1~100重量%、特に好ましくは10~100重量%であり得るが、特にこれに限定されない。 The amount of the bacterium to be added to the ILC2 inducer of the present invention is not particularly limited as long as a desired effect can be obtained, and is usually 0.001 to 100% by weight based on the total weight of the ILC2 inducer of the present invention. It can be preferably 0.01 to 100% by weight, more preferably 1 to 100% by weight, particularly preferably 10 to 100% by weight, but is not particularly limited thereto.
 本発明のILC2誘導剤の好適な適用対象としては、胃における免疫担当細胞としてILC2を有する恒温動物であれば特に限定されないが、好ましくは、マウス、ラット、ハムスター、モルモット、ウサギ、ネコ、イヌ、ウシ、ウマ、ヒツジ、サル、及びヒトであり、最も好ましくはヒトである。 The subject to which the ILC2 inducer of the present invention can be suitably applied is not particularly limited as long as it is a constant temperature animal having ILC2 as an immunocompetent cell in the stomach, but preferably is mouse, rat, hamster, guinea pig, rabbit, cat, dog, Cattle, horses, sheep, monkeys, and humans, most preferably humans.
 本発明のILC2誘導剤の剤型は、所望の効果が得られる限り特に限定されるものではなく、医薬に通常用いられる賦形剤などと共に、経口投与製剤とすることができる。経口投与製剤の剤型は、所望の効果を得られる限り特に限定されないが、本発明のILC2誘導剤に配合される細菌が製剤中で生存した状態を維持できるよう、半固体状または液体状であることが好ましい。経口投与製剤は、医薬に通常用いられる賦形剤および/または添加剤を配合してもよい。 The dosage form of the ILC2 inducer of the present invention is not particularly limited as long as a desired effect can be obtained, and can be made into an oral administration preparation together with excipients and the like usually used in medicine. The dosage form of the oral administration preparation is not particularly limited as long as the desired effect can be obtained, but it is semi-solid or liquid so that the bacteria mixed with the ILC2 inducer of the present invention can remain alive in the preparation. Preferably, there is. The preparation for oral administration may contain excipients and / or additives commonly used in medicine.
 或いは、本発明のILC2誘導剤は、食品組成物の形態で提供されてもよい。食品組成物で提供する場合もまた、本発明のILC2誘導剤に配合される細菌が食品組成物中で生存した状態を維持できるよう、当該食品組成物は半固体状または液体状であることが好ましい。このような食品組成物の例としては、ヨーグルト、ゼリー、飲料等が例示されるが、これらに限定されない。 Alternatively, the ILC2 inducer of the present invention may be provided in the form of a food composition. When provided in a food composition, the food composition may also be semi-solid or liquid so that the bacteria incorporated in the ILC2 inducer of the present invention can maintain a viable state in the food composition. preferable. Examples of such food compositions include, but are not limited to, yogurt, jelly, beverages, and the like.
 一態様において、本発明は、本発明のILC2誘導剤を対象に経口投与することを含む、対象の胃におけるILC2の誘導方法を提供する。本方法は、上述したILC2誘導剤を対象に経口投与することにより実施され得る。 In one aspect, the present invention provides a method for inducing ILC2 in the stomach of a subject, comprising orally administering the ILC2 inducer of the present invention to the subject. The method can be performed by orally administering to the subject an ILC2 inducer described above.
2.IgA産生誘導剤
 本発明はまた、以下の特性を有する少なくとも1種の細菌を含む、胃におけるIgA産生誘導剤(以下、「本発明のIgA産生誘導剤」と称することがある)を提供する:
(1)バンコマイシンに対する感受性、および、
(2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。本発明のIgA産生誘導剤は、配合される特定細菌の機能により、適用対象における胃において免疫担当細胞の一種であるILC2の発現を誘導することができる。誘導されたILC2はIL-5やIL-13等のサイトカインを産生/分泌し、胃に存在するB細胞を刺激する。刺激されたB細胞は抗体産生細胞に分化し、その結果として、適用対象の胃におけるIgA産生を誘導・亢進することができる。
2. IgA production inducer The present invention also provides a gastric IgA production inducer (hereinafter sometimes referred to as "the IgA production inducer of the present invention"), comprising at least one bacterium having the following properties:
(1) sensitivity to vancomycin, and
(2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole. The IgA production inducer of the present invention can induce the expression of ILC2, which is a type of immunocompetent cell, in the stomach of an application subject by the function of the specific bacteria to be incorporated. The induced ILC2 produces / secretes cytokines such as IL-5 and IL-13 and stimulates B cells present in the stomach. The stimulated B cells differentiate into antibody-producing cells, and as a result, can induce and enhance IgA production in the stomach of the application target.
 本発明のIgA産生誘導剤に配合される細菌、その薬剤特性、その調製方法、その配合量、ならびに本発明のIgA産生誘導剤の適用対象および剤型等については、「1.ILC2誘導剤」に説明したものと同様とすることができる。 Regarding bacteria to be blended with the IgA production inducer of the present invention, its drug characteristics, its preparation method, its blending amount, and the application target and dosage form of the IgA production inducer of the present invention, "1. ILC2 inducer" Can be the same as described above.
 一態様において、本発明は、本発明のIgA産生誘導剤を対象に経口投与することを含む、対象の胃におけるIgA産生誘導方法を提供する。本方法は、上述したIgA産生誘導剤を対象に経口投与することにより実施され得る。 In one aspect, the present invention provides a method for inducing IgA production in the stomach of a subject, comprising orally administering the IgA production-inducing agent of the present invention to the subject. This method can be carried out by orally administering the above-mentioned IgA production inducer to a subject.
 一態様において、本発明のIgA産生誘導剤は、医薬品または食品の形態で提供することができる。食品組成物で提供する場合もまた、本発明のIgA産生誘導剤に配合される細菌が食品組成物中で生存した状態を維持できるよう、当該食品組成物は半固体状または液体状であることが好ましい。このような食品組成物の例としては、ヨーグルト、ゼリー、飲料等が例示されるが、これらに限定されない。 In one embodiment, the IgA production inducer of the present invention can be provided in the form of a pharmaceutical or a food. When provided in the form of a food composition, the food composition must be semi-solid or liquid so that the bacteria contained in the IgA production-inducing agent of the present invention can remain alive in the food composition. Is preferred. Examples of such food compositions include, but are not limited to, yogurt, jelly, beverages, and the like.
3.経口感染症の治療および/または予防剤
 本発明はまた、以下の特性を有する少なくとも1種の細菌を含む、経口感染症の治療または予防剤(以下、「本発明の治療または予防剤」と称することがある)を提供する:
(1)バンコマイシンに対する感受性、および、
(2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。本発明の治療または予防剤は、配合される特定細菌の機能により、適用対象における胃において免疫担当細胞の一種であるILC2の発現を誘導することができる。誘導されたILC2はIL-5やIL-13等のサイトカインを産生/分泌し、胃に存在するB細胞を刺激する。刺激されたB細胞は抗体産生細胞に分化し、その結果として、適用対象の胃におけるIgA産生が誘導・亢進され、ピロリ菌をはじめとする経口感染症の治療および/または予防が達成される。
3. Therapeutic and / or prophylactic agent for oral infection The present invention also relates to a therapeutic or prophylactic agent for oral infection (hereinafter referred to as "the therapeutic or prophylactic agent of the present invention") comprising at least one bacterium having the following characteristics. May provide):
(1) sensitivity to vancomycin, and
(2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole. The therapeutic or prophylactic agent of the present invention can induce the expression of ILC2, which is a type of immunocompetent cell, in the stomach of a subject by the function of the specific bacterium to be added. The induced ILC2 produces / secretes cytokines such as IL-5 and IL-13 and stimulates B cells present in the stomach. The stimulated B cells differentiate into antibody-producing cells, and as a result, IgA production in the stomach of the target is induced / enhanced, and the treatment and / or prevention of oral infections including H. pylori is achieved.
 本発明の治療または予防剤に配合される細菌、その薬剤特性、その調製方法、その配合量、ならびに本発明のIgA産生誘導剤の適用対象および剤型等については、「1.ILC2誘導剤」に説明したものと同様とすることができる。 Regarding the bacteria to be incorporated into the therapeutic or prophylactic agent of the present invention, the drug characteristics thereof, the preparation method thereof, the amount of the bacterium, the application target and the dosage form of the IgA production inducer of the present invention, etc., refer to “1. Can be the same as described above.
 本発明の治療または予防剤は、胃粘膜における分泌型IgA抗体の産生を誘導・亢進することにより、胃に存在する病原性微生物の排除を促進する。かかる観点を考慮すると、本発明の治療または予防剤は、経口感染症のなかでも、とりわけ、ピロリ菌感染症に好適に使用され得る。尚、S24-7は腸管においてもメジャーな菌として検出されることから、O:157やサルモネラ感染などの感染性の菌種が引き起こす感染性腸炎から腸管を防御する可能性が考えられる。従って、一態様において、本発明の治療または予防剤は、ピロリ菌感染症、O:157感染症、およびサルモネラ感染症の治療または予防に用いることができる。 治療 The therapeutic or prophylactic agent of the present invention promotes the elimination of pathogenic microorganisms present in the stomach by inducing and enhancing the production of secretory IgA antibodies in the gastric mucosa. In view of such viewpoints, the therapeutic or prophylactic agent of the present invention can be suitably used for oral infections, especially for H. pylori infections. Since S24-7 is also detected as a major bacterium in the intestinal tract, it is possible that the intestinal tract may be protected from infectious enteritis caused by infectious bacterial species such as O: 157 and Salmonella infection. Therefore, in one aspect, the therapeutic or prophylactic agent of the present invention can be used for treating or preventing H. pylori infection, O: 157 infection, and Salmonella infection.
 一態様において、本発明の治療または予防剤は、医薬品または食品の形態で提供することができる。食品組成物で提供する場合もまた、本発明の治療または予防剤に配合される細菌が食品組成物中で生存した状態を維持できるよう、当該食品組成物は半固体状または液体状であることが好ましい。このような食品組成物の例としては、ヨーグルト、ゼリー、飲料等が例示されるが、これらに限定されない。 In one aspect, the therapeutic or prophylactic agent of the present invention can be provided in the form of a medicament or food. When provided in a food composition, the food composition must be semi-solid or liquid so that the bacteria to be added to the therapeutic or prophylactic agent of the present invention can maintain a viable state in the food composition. Is preferred. Examples of such food compositions include, but are not limited to, yogurt, jelly, beverages, and the like.
 本発明の治療剤の適用対象は、上記した経口感染症の患者である。また、本発明の予防剤の適用対象は、健常者または上記した経口感染症が治癒した対象である。 対 象 The therapeutic agent of the present invention is applied to the above-mentioned oral infection patients. The subject to which the prophylactic agent of the present invention is applied is a healthy subject or a subject who has cured the above-mentioned oral infection.
 本発明の治療剤は、治療有効量のS24-7科の細菌を対象が摂取し得るような量で投与される。該治療有効量は、治療剤が投与される対象の身長、体重、性別、投与経路、投与スケジュール等によって異なり得るが、当業者であれば適宜決定することができる。 The therapeutic agent of the present invention is administered in such an amount that the subject can ingest a therapeutically effective amount of bacteria of the family S24-7. The therapeutically effective amount can vary depending on the height, weight, sex, administration route, administration schedule, and the like of the subject to which the therapeutic agent is administered, but can be appropriately determined by those skilled in the art.
 また、本発明の予防剤は、予防有効量のS24-7科の細菌を対象が摂取し得るような量で投与される。予防有効量は、予防剤が投与される対象の身長、体重、性別、投与経路、投与スケジュール等によって異なり得るが、当業者であれば適宜決定することができる。 The prophylactic agent of the present invention is administered in such an amount that a subject can take a prophylactically effective amount of bacteria of the S24-7 family. The prophylactically effective amount can vary depending on the height, weight, sex, administration route, administration schedule, and the like of the subject to which the prophylactic agent is administered, but can be appropriately determined by those skilled in the art.
 一態様において、本発明は、本発明の治療または予防剤を対象に経口投与することを含む、経口感染症の治療または予防方法を提供する。本方法は、上述した経口感染症の治療または予防剤を対象に経口投与することにより実施され得る。 In one aspect, the present invention provides a method for treating or preventing an oral infection, comprising orally administering a therapeutic or prophylactic agent of the present invention to a subject. The present method can be carried out by orally administering the above-mentioned agent for treating or preventing oral infection to a subject.
 なお、本明細書における「治療」には、疾患の治癒のみならず、疾患の寛解および疾患の程度の改善も含まれ得る。 In addition, “treatment” in the present specification may include not only cure of the disease but also remission of the disease and improvement of the degree of the disease.
 また、本明細書における「予防」には、疾患の発症を防ぐことに加えて、疾患の発症を遅らせること、疾患の発症時の対象の状態が、通常の該疾患の発症の状態と比較して軽度であることが含まれる。加えて、本明細書における「予防」には、治療後の該疾患の再発を防ぐこと、治療後の該疾患の再発を遅らせること、治療後の該疾患の再発時の対象の状態が、通常の該疾患の再発時の状態と比較して軽度であることも含まれる。 As used herein, the term "prevention" includes, in addition to preventing the onset of the disease, delaying the onset of the disease, and comparing the state of the subject at the time of the onset of the disease with the normal state of onset of the disease. And mild. In addition, the term "prevention" as used herein includes preventing the recurrence of the disease after treatment, delaying the recurrence of the disease after treatment, and usually controlling the condition of the subject at the time of recurrence of the disease after treatment. Of the disease as compared to the state at the time of recurrence of the disease.
 以下の実施例において本発明を更に具体的に説明するが、本発明はこれらの例によってなんら限定されるものではない。 The present invention will be described more specifically in the following examples, but the present invention is not limited to these examples.
[材料と方法]
1.マウス
 C57BL/6NマウスはCLEA(CLEA JAPAN,INC)より購入し、理化学研究所において特定病原体フリー(SPF)条件下で4週間以上飼育した。C57BL/6Nバックグラウンドを有する無菌(GF)マウスはCLEAより購入し、理化学研究所または横浜市立大学における滅菌ビニルアイソレーターで維持した。Rag2-/-マウス(N.Satoh-Takayama et al.,Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958-970 (2008))、Il-33gfp/gfpマウス(K.Oboki et al.,IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc Natl Acad Sci U S A 107, 18581-18586(2010))、CD3ε-/-マウス(M.Malissen et al.,Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene. EMBO J 14, 4641-4653(1995))、RORγtgfp/tマウス(G.Eberl et al.,An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 5, 64-73 (2004))は、Di Santo博士、Nakae博士、Malissen博士、およびLittman博士より、それぞれ提供された。全てのマウス(8~18週齢)は、理化学研究所横浜ブランチの動物実験委員会または横浜市立大学の調査委員会により提供されたガイドラインを順守した実験に用いられ、且つ日本の法律に沿って行われた。
[Materials and methods]
1. Mouse C57BL / 6N mice were purchased from CLEA (CLEA JAPAN, INC) and bred at RIKEN under specific pathogen-free (SPF) conditions for at least 4 weeks. Sterile (GF) mice with a C57BL / 6N background were purchased from CLEA and maintained on a sterile vinyl isolator at RIKEN or Yokohama City University. Rag2 - / - mice (.. N.Satoh-Takayama et al , Microbial flora drives interleukin 22 production in intestinal NKp46 + cells that provide innate mucosal immune defense Immunity 29, 958-970 (2008)), Il-33 gfp / gfp mice (.. K.Oboki et al, IL -33 is a crucial amplifier of innate rather than acquired immunity Proc Natl Acad Sci U S A 107, 18581-18586 (2010)), CD3ε - / - mice (M.Malissen et al . , Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene. EMBO J 14, 4641-4653 (1995), RORγt gfp / t mice. RORgamma (t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 5, 64-73 (2004)) was provided by Dr. Di Santo, Dr. Nakae, and Dr. Marissen, respectively. All mice (8-18 weeks of age) were used for experiments that adhered to guidelines provided by the Animal Research Committee of the RIKEN Yokohama Branch or the Research Committee of Yokohama City University, and were in accordance with Japanese law. It was conducted.
2.細胞調製、フローサイトメトリー解析および細胞内染色
 胃組織をマウスの体内からピックアップした後速やかに開き、次いで、冷PBSバッファーまたはRPMI培地で穏やかに胃内容物を洗浄した。胃組織を小片にカットし、1.0mg/mlコラゲナーゼ(Wako Pure Chemical Industries Ltd)で消化した。結果として得られた上清をプールし、最後に40μmメッシュフィルターを通過させた。小腸粘膜固有層リンパ球(LPL)の単離およびフローサイトメトリー解析は、N.Satoh-Takayama et al.,Lymphotoxin-beta receptor-independent development of intestinal IL-22-producing NKp46(+) innate lymphoid cells. Eur J Immunol 41,780-786(2011)およびY.Sasagawa et al.,Quartz-Seq:a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol 14,R31(2013)に記載される方法を用いて行った。フローサイトメトリー解析については、2.4G2mAb(BioLegend)でFcレセプターをブロッキングした後、各表面抗体を用いて4℃で全ての細胞を染色し、死細胞はLIVE/DEAD fixable Aqua Dead Cell Stain(Thermo Fisher)で染色した。表面または細胞内の染色は、特定の蛍光色素を連結した抗体(BioLegend,eBioScienceおよびSouthernBiothech、以下の表1参照)を用いて行った。抗マウスDCLK抗体は製造業者(Thermo Fisher scientific)の説明書に従ってalexa488で標識した。細胞内サイトカイン染色については、GolgiPlug(BD biosciences)存在下、単離した細胞を、PMA(50ng/ml)およびイオノマイシン(2μg/ml)とともに、又はPMAおよびイオノマイシンなしで、2時間、37℃でインキュベートした。表面抗体で染色した後、インキュベートした細胞を4%PFA含有PBSで15分室温で固定した。固定した細胞を1×透過化バッファー(Foxp3/TFバッファーセット(Thermo Fisher Scientific)に含まれる)を用いて60分間、4℃で透過化した。細胞における転写因子検出については、単離された細胞を製造業者(Thermo Fisher Scientific)の説明書に従ってFoxp3/TF染色バッファーセットを用いて細胞内抗体で染色した。細胞解析およびソーティングについては、細胞は、FACSAriaIII(BD Biosciences)で解析した。フローサイトメトリーによる全てのリンパ球解析については、リンパ球はまずFSCおよびSSC強度により定義され、次いでCD45発現に基づいて慎重にゲーティングした。データはFlowJo software(TreeStar)で解析した。
2. Cell preparation, flow cytometry open cytometry analysis and intracellular staining stomach tissue quickly after picked up from the body of the mouse, then washed gently gastric contents with cold PBS buffer or RPMI medium. Stomach tissue was cut into small pieces and digested with 1.0 mg / ml collagenase (Wako Pure Chemical Industries Ltd). The resulting supernatants were pooled and finally passed through a 40 μm mesh filter. Isolation and flow cytometric analysis of small intestinal lamina propria lymphocytes (LPL) is described in N.W. Satoh-Takayama et al. , Lymphotoxin-beta receptor-independent development of intestinal IL-22-producing NKp46 (+) innate lymphoid cells. Eur J Immunol 41, 780-786 (2011) and Y. Sasagawa et al. , Quartz-Seq: a high reproducible and sensitive single-cell RNA sequencing method, reviews non-genetic gene-expression heterogeneity. This was performed using the method described in Genome Biol 14, R31 (2013). For flow cytometry analysis, after blocking the Fc receptor with 2.4G2 mAb (BioLegend), all cells were stained at 4 ° C. using each surface antibody, and dead cells were LIVE / DEAD fixable Aqua Dead Cell Stain (Thermo). Fisher). Surface or intracellular staining was performed using specific fluorescent dye-linked antibodies (BioLegend, eBioScience and Southern Biotech, see Table 1 below). The anti-mouse DCLK antibody was labeled with alexa488 according to the manufacturer's instructions (Thermo Fisher scientific). For intracellular cytokine staining, isolated cells were incubated with PMA (50 ng / ml) and ionomycin (2 μg / ml) or without PMA and ionomycin for 2 hours at 37 ° C. in the presence of GolgiPlug (BD biosciences). did. After staining with the surface antibody, the incubated cells were fixed with PBS containing 4% PFA for 15 minutes at room temperature. The fixed cells were permeabilized with 1 × permeabilization buffer (included in Foxp3 / TF buffer set (Thermo Fisher Scientific)) at 4 ° C. for 60 minutes. For transcription factor detection in cells, isolated cells were stained with intracellular antibodies using Foxp3 / TF staining buffer set according to the manufacturer's instructions (Thermo Fisher Scientific). For cell analysis and sorting, cells were analyzed with FACSAria III (BD Biosciences). For all lymphocyte analysis by flow cytometry, lymphocytes were first defined by FSC and SSC intensity, and then carefully gated based on CD45 expression. Data was analyzed with FlowJosoftware (TreeStar).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
3.RNA-seqおよび量的PCR
 RNA-seqについては、FACS AriaIII(BD Biosciences)を用いて、98%またはそれ以上の純度で、胃または小腸から抽出された1000細胞を50μlの溶解バッファー(QIAGEN)へ直接ソーティングした。ソーティング後のすべてのステップは、若干の改変を有するQuartz-seq法(ライブラリ;KAPA library preparation kit,illumina.アダプタ;Next Multiplex Oligo for illumina,NEB)に従った(詳細は、Y.Sasagawa et al.,Quartz-Seq:a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol 14, R31 (2013)を参照されたい)。全てのサンプルは、HiSeq1500、ラピッドモードで配列決定された。量的PCR解析については、RNeasy micro kit(QIAGEN)を用いて、RNAトータルRNAを精製した胃細胞または腸細胞調製物より抽出した。全組織RNA発現解析については、胃または腸は液体窒素中に凍結した。凍結した組織を液体窒素中で摩砕し、RNAを、溶解バッファー(QIAGEN)を用いて粉末化組織から抽出した。cDNAを製造業者の説明書に従って、逆転写酵素(Revatra Ace、TOYOBO)を用いて生成し、次いで、プライマー(Eurofins genomics;表2参照)またはIl25およびIl33に対するTaqManプローブ(Thermo Fisher Scientific;表3参照)を用いて、RT SYBR Green qPCR MasterMix(TAKARA SYBR Premix ExTaq II)を用いて、量的PCR解析を行った。
3. RNA-seq and quantitative PCR
For RNA-seq, 1000 cells extracted from stomach or small intestine with FACS Aria III (BD Biosciences) at 98% or better purity were directly sorted into 50 μl lysis buffer (QIAGEN). All steps after sorting followed the Quartz-seq method (library; KAPA library preparation kit, illumina. Adapter; Next Multiplex Oligo for illumina, NEB) with some modifications (see Y. Sasagawa. , Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reviews non-genetic gene-exposure gene. All samples were sequenced in HiSeq 1500, rapid mode. For quantitative PCR analysis, RNA total RNA was extracted from purified gastric or intestinal cell preparations using RNeasy micro kit (QIAGEN). For total tissue RNA expression analysis, the stomach or intestine was frozen in liquid nitrogen. Frozen tissue was triturated in liquid nitrogen and RNA was extracted from powdered tissue using lysis buffer (QIAGEN). The cDNA is generated using reverse transcriptase (Revatra Ace, TOYOBO) according to the manufacturer's instructions, followed by primers (Eurofins genomics; see Table 2) or TaqMan probes for Il25 and Il33 (Thermo Fisher Scientific; see Table 3). ) Was used to perform quantitative PCR analysis using RT SYBR Green qPCR Master Mix (TAKARA SYBR Premix ExTaq II).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
4.RNA-seqのリードアライメントおよびGene Qualification
 差次的遺伝子発現はRソフトウェアにおけるDEseqパッケージを用いて解析し、各解析において、これらの遺伝子をlog2 fold change Value、p-ValueおよびFDR correction valeにより同定した。複数の試験に対するp-ValueおよびFDR correction valueは、Benjamini-Hochberg法を用いて計算した。Biological replicatesには、各細胞タイプまたはコンディションを含む。
4. RNA-seq Read Alignment and Gene Qualification
Differential gene expression was analyzed using the DEseq package in the R software, and in each analysis these genes were identified by log2 fold change Value, p-Value and FDR correction value. P-Value and FDR correction value for multiple tests were calculated using the Benjamini-Hochberg method. Biological replicates include each cell type or condition.
5.16S rRNAのサンプル調製並びにデータ処理および解析
 胃内容物および粘液サンプルは、遠心および上清の除去後速やかに-80℃でストックした。DNA抽出は、T.Jinnohara et al.,IL-22BP dictates characteristics of Peyer’s patch follicle-associated epithelium for antigen uptake. J Exp Med,(2017)およびT.Kato et al.,Multiple omics uncovers host-gut microbial mutualism during prebiotic fructooligosaccharide supplementation. DNA Res 21, 469-480(2014)に記載される方法に若干の変更を加えた方法を用いて行った。解析については、V4可変領域(515F-806R)を、製造業者(Takara Bio,Inc)の手順書に従って調製されたイルミナMiseqライブラリで配列決定した。20%変性PhiX(spike-in)を有するサンプルライブラリーは、Miseq 500サイクルキットを用いて配列決定し、2×250bpペアエンドリードを得た。
5.16S rRNA Sample Preparation and Data Processing and Analysis Gastric contents and mucus samples were stocked at -80 ° C immediately after centrifugation and removal of supernatant. DNA extraction was performed by T.I. Jinnohara et al. , IL-22BP dictates characteristics of Peyer's patch follicle-associated epithelium for antigen uptake. J Exp Med, (2017) and T.M. Kato et al. , Multiple omics uncovers host-gut microbiological mutulims dur ing prebiotic fructooligosaccharide supplementation. DNA Res 21, 469-480 (2014) was performed using a slightly modified method. For analysis, the V4 variable region (515F-806R) was sequenced with the Illumina Miseq library prepared according to the manufacturer's (Takara Bio, Inc) protocol. The sample library with 20% denatured PhiX (spike-in) was sequenced using the Miseq 500 cycle kit to obtain 2 × 250 bp paired-end reads.
 配列決定したデータの分類学的割り当ておよび相対存在量の推定は、QIIME softwareパッケージの解析パイプラインを用いて行った。キメラチェックはUCHIMEを用いて行った。操作的分類単位(OTU)は、97%類似性で定義した。OTUは、T.Kato et al.,Multiple omics uncovers host-gut microbial mutualism during prebiotic fructooligosaccharide supplementation. DNA Res 21,469-480(2014)に記載されるRDPclassifierを用いたGreengenesデータベースでの比較に基づいたタキソノミーを割り当てた。 分類 Taxonomic assignments of sequenced data and estimation of relative abundance were performed using the analysis pipeline of the QIIME software package. The chimera check was performed using UCHIME. Operational taxonomic units (OTUs) were defined with 97% similarity. OTU is based on T.A. Kato et al. , Multiple omics councovers host-gut microbial mutualism during prebiotics fructooligosaccharide supplementation. Taxonomies were assigned based on comparisons in the Greengenes database using the RDP classifier described in {DNA Res 21,469-480 (2014).
6.抗生物質処理、胃内容物および粘液調製、並びに移植実験
 SPFコンディションのマウスに、飲料水にアンピシリン(0.1g/L)、コリスチン(1g/L)またはバンコマイシン(0.5g/L)を添加し、3週間、経口的に摂取させた。対照とするSPF条件のC57BL/6Nマウスまたは抗生物質処理マウスから、胃の内容物および粘液を得た。開いた胃は滅菌したPBS中で穏やかに洗浄した。回収した内容物をホモジナイズし、十分にボルテックスした。大粒子を除去するため、チューブを30秒間静置した。粘液領域の解析については、胃内容物を洗浄後の胃組織を湾曲針で擦り取った。上皮および大粒子を除去するためのスピンダウン後、上清を胃粘液解析に用いた。経口移植実験については、300μlの胃内容物及び粘液の混合物をGFマウスに1回または週1回で4週間、経口的に摂取させた。腸内微生物叢を減少させるため、同腹仔のCD3ε+/+およびCD3ε-/-の妊娠雌マウスを、アンピシリン(0.1g/L)、バンコマイシン(1g/L)、ネオマイシン(1g/L)、およびメタロニダゾール(1g/L)を含む抗生物質カクテルを飲料水に添加して、子マウスの離乳(出産後21日)まで経口的に摂取させることで、抗生物質処理した。
6. Antibiotic treatment, stomach contents and mucus preparation, and transplantation experiments Mice in SPF condition were added with ampicillin (0.1 g / L), colistin (1 g / L) or vancomycin (0.5 g / L) to drinking water. Orally for 3 weeks. Stomach contents and mucus were obtained from C57BL / 6N mice or antibiotic-treated mice under SPF conditions as controls. The open stomach was gently washed in sterile PBS. The collected contents were homogenized and vortexed sufficiently. The tube was allowed to stand for 30 seconds to remove large particles. For analysis of the mucus area, the gastric tissue after washing the gastric contents was scraped with a curved needle. After spin down to remove epithelium and large particles, the supernatant was used for gastric mucus analysis. For oral transplantation experiments, 300 μl of a mixture of gastric contents and mucus was orally ingested once or once a week for 4 weeks in GF mice. To reduce intestinal microbiota, litter CD3ε + / + and CD3ε − / − pregnant female mice were treated with ampicillin (0.1 g / L), vancomycin (1 g / L), neomycin (1 g / L), Antibiotics were added to the drinking water by adding an antibiotic cocktail containing and metalonidazole (1 g / L) to the pups and orally ingested until weaning (21 days after delivery).
7.フローサイトメトリー解析によるIgAコートされた細菌の評価
 対照GFマウスまたはH.ピロリ菌感染マウスから胃内容物を得た。開いた胃を滅菌されたPBS1mlで穏やかに洗浄した。該内容物を700g、5分間遠心し、この上清をさらに12000g、5分間遠心することで、非結合性のIgAを除去した。細菌を、S.Kawamoto et al.,Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41, 152-165(2014)に記載されるように、PEコンジュゲート抗マウスIgA抗体およびDAPIで染色した。PBSでの洗浄後、細菌をFACSバッファーに懸濁し、FACSAriaIIIを用いて解析した。
7. Evaluation of IgA-Coated Bacteria by Flow Cytometry Analysis Stomach contents were obtained from control GF mice or H. pylori infected mice. The open stomach was gently washed with 1 ml of sterile PBS. The contents were centrifuged at 700 g for 5 minutes, and the supernatant was further centrifuged at 12,000 g for 5 minutes to remove unbound IgA. The bacteria are Kawamoto et al. , Foxp3 (+) T cells regulatory immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune. Stained with PE-conjugated anti-mouse IgA antibody and DAPI as described in Immunity 41, 152-165 (2014). After washing with PBS, the bacteria were suspended in FACS buffer and analyzed using FACSAria III.
8.ピロリ菌の培養、感染および感染チェック
 本明細書において用いたH.ピロリ株;PMSS1をsheep blood agar plateで増殖させ、N.Satoh-Takayama et al.,Lymphotoxin-beta receptor-independent development of intestinal IL-22-producing NKp46+ innate lymphoid cells. Eur J Immunol 41, 780-786(2011)に記載される液体培地において培養した。1×10 CFU/マウスでマウスに経口的に感染させ、感染後2週間または9週間の時点で解析のためにマウスを屠殺した。これらのマウスのすべての胃腸に対して、PMSS株のCagA遺伝子発現によりピロリ菌感染を確認した。
8. H. pylori culture, infection and infection check H. pylori strain used herein; PMSS1 was grown on a sheep blood agar plate and Satoh-Takayama et al. , Lymphotoxin-beta-receptor-independent development of intestinal IL-22-producing NKp46 + internal lymphoid cells. The cells were cultured in a liquid medium described in Eur J Immunol 41, 780-786 (2011). Mice were infected orally with 1 × 10 9 CFU / mouse and mice were sacrificed for analysis at 2 or 9 weeks post-infection. In all the gastrointestinal tracts of these mice, infection with H. pylori was confirmed by expression of the CagA gene of the PMSS strain.
9.免疫組織学
 胃の8μmの凍結切片の免疫組織学的解析は、N.Satoh-Takayama et al.,Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29,958-970(2008)およびN.Satoh-Takayama et al.,Lymphotoxin-beta receptor-independent development of intestinal IL-22-producing NKp46+ innate lymphoid cells. Eur J Immunol 41,780-786(2011)に記載される方法で行った。一次抗体としては、ラット抗B220抗体(RA3-62B;BioLegend)を使用した。切片は、DAPIを用いて染色した。スライドはLeica AF6000を用いて観察した。
9. Immunohistology Immunohistological analysis of 8 μm frozen sections of the stomach was performed as described by N.W. Satoh-Takayama et al. , Microflora drives interleukin 22 production in intestinal NKp46 + cells that provide innate mucosal immune defense. Immunity 29, 958-970 (2008) and N.I. Satoh-Takayama et al. , Lymphotoxin-beta-receptor-independent development of intestinal IL-22-producing NKp46 + internal lymphoid cells. Eur J Immunol 41, 780-786 (2011). As the primary antibody, a rat anti-B220 antibody (RA3-62B; BioLegend) was used. Sections were stained using DAPI. Slides were viewed using a Leica AF6000.
10.統計解析
 実験結果は平均±s.e.m.で示す。グループ間の統計学的な差は、対応のないスチューデントt検定を用いて決定した。2者間以上のグループ間の統計学的な比較は、一元配置分散分析(one-way ANOVA)を使用した。P値<0.05を統計学的に有意とした。全てのデータはGraph-pad Prism softwareを用いて解析した。
10. Statistical analysis experimental results are means ± s. e. m. Indicated by Statistical differences between groups were determined using the unpaired Student's t-test. Statistical comparisons between two or more groups used one-way analysis of variance (one-way ANOVA). P values <0.05 were considered statistically significant. All data was analyzed using Graph-pad Prism software.
[参考例1]胃における各種ILCの存在割合の検討
 SPFマウスの小腸は2%FBS/RPMI-1640培地で1mg/Lの濃度に調整したCollagenase(Wako)を使用し、大腸も同様に1mg/L濃度に調整したCollagenase(SIGMA)中で37℃,15分間攪拌した。15分後に上清のみを回収し、その後残った腸断片にCollagenaseを加えて同様の作業を2回繰り返し行い上清を回収した。回収した上清は100μm Cellstrainer(BD Bioscience)を用いてろ過を行い、遠心分離後リンパ球単離に使用した。細胞懸濁液の遠心分離後、4mlの40%Percollに懸濁し15ml Falcon tubeに移した後、パスツールピペットを用い等量の70% Percollをゆっくり加えて下方へ重層させ、2000rpm,20℃で20分間遠心分離を行った。遠心分離後は、密度勾配によって生じた中間層を採取し2%FBS/RPMI-1640培地に懸濁することでリンパ球を単離した。一方、胃から回収した細胞は40μm Cellstrainerを用いてろ過を行うことで粘液などを取り除いた。
[Reference Example 1] Examination of the ratio of various ILCs present in the stomach The small intestine of SPF mice used Collagenase (Wako) adjusted to a concentration of 1 mg / L with 2% FBS / RPMI-1640 medium, and the large intestine was similarly used at 1 mg / L. The mixture was stirred at 37 ° C for 15 minutes in Collagenase (SIGMA) adjusted to L concentration. Fifteen minutes later, only the supernatant was recovered, and then Collagenase was added to the remaining intestinal fragments, and the same procedure was repeated twice to recover the supernatant. The collected supernatant was filtered using a 100 μm Cell strainer (BD Bioscience), and used for lymphocyte isolation after centrifugation. After centrifugation of the cell suspension, the cells were suspended in 4 ml of 40% Percoll and transferred to a 15 ml Falcon tube. Thereafter, an equal volume of 70% Percoll was slowly added using a Pasteur pipette, and the mixture was layered downward at 2000 rpm at 20 ° C. Centrifugation was performed for 20 minutes. After centrifugation, the intermediate layer generated by the density gradient was collected and suspended in a 2% FBS / RPMI-1640 medium to isolate lymphocytes. On the other hand, cells collected from the stomach were filtered using a 40 μm Cell strainer to remove mucus and the like.
 上述の手法により回収したリンパ球を適量の2%FBS/RPMI-1640培地で懸濁し、Tissue Culture Plate(96 Well,Flat Buttom with Low Evaporation Lid,FALCON)に1×10cells/wellずつ播種した。遠心分離後、1/500量のZombie Aqua Fixable Viability Kit(Biolegend)とFACS buffer(2%FBS/D-PBS(-))にて最終濃度0.1mg/mlに調整したPurified Rat Anti-mouse CD16/CD32(BD Biosciences)を添加し4℃で15分間静置してブロッキングと死細胞の染色を行った。その後Facs bufferにて細胞を洗浄し、遠心分離後にそれぞれの抗体希釈液(CD3、CD45、TCRb、CD19、CD127、CD90.2)を細胞に添加して4℃で20分間静置させ、細胞表面に発現されている抗原を蛍光標識された抗体で染色した。 The lymphocytes collected by the above method were suspended in an appropriate amount of 2% FBS / RPMI-1640 medium, and seeded at 1 × 10 6 cells / well on a Tissue Culture Plate (96 Well, Flat Butt with Low Evaporation Lid, FALCON). . After centrifugation, Purified Rat Anti-mouse CD16 adjusted to a final concentration of 0.1 mg / ml with a 1/500 volume of Zombie Aqua Fixable Viability Kit (Biolegend) and FACS buffer (2% FBS / D-PBS (-)). / CD32 (BD Biosciences) was added, and the mixture was allowed to stand at 4 ° C for 15 minutes to perform blocking and staining of dead cells. Thereafter, the cells were washed with Facs buffer, and after centrifugation, each antibody diluent (CD3, CD45, TCRb, CD19, CD127, CD90.2) was added to the cells, and the cells were allowed to stand at 4 ° C. for 20 minutes, and the cell surface was removed. Was expressed with a fluorescently labeled antibody.
 細胞内に発現している抗原に関しては、細胞内染色法により染色を行った。細胞表面抗体により染色後、D-PBS(-)で細胞を洗浄した。遠心分離後、Fixation/ Permeabilization液(Foxp3/Transcription Factor Staining Buffer Set,ThermoFisher)を添加して、遮光状態下にて4℃で30分間静置することで細胞固定と細胞膜透過を行った。細胞固定後D-PBS(-)で細胞洗浄を行い、遠心分離にて上清を除去した。次に、Permeabilization buffer (Foxp3/Transcription Factor Staining Buffer Set,ThermoFisher)で再度細胞の洗浄を行った。遠心分離後Permeabilization bufferで希釈したそれぞれの核内染色抗体(GATA3およびRORgt)を各wellに添加し、遮光をした状態で4℃で30分静置し染色を行った。染色後はPermeabilization bufferとFacs bufferで細胞洗浄後、FACS bufferに適量懸濁しフローサイトメトリー解析に使用した。染色細胞はFACSAriaIII(BD Biosciences)を使用し、フローサイトメトリー解析を行った。得られたデータの解析は、FlowJo(Tree Star,Inc)を使用し行った。取得したフローサイトメトリー結果は、CD3、TCRb、CD19を発現しておらずCD45を発現する細胞集団のみを示している。 抗原 Antigen expressed in cells was stained by intracellular staining. After staining with a cell surface antibody, the cells were washed with D-PBS (-). After centrifugation, Fixation / Permeabilization solution (Foxp3 / Transscription Factor Staining Buffer Set, ThermoFisher) was added, and the mixture was allowed to stand at 4 ° C. for 30 minutes in a light-shielded state to perform cell fixing and cell membrane permeation. After the cells were fixed, the cells were washed with D-PBS (-), and the supernatant was removed by centrifugation. Next, the cells were washed again with Permeabilization buffer (Foxp3 / Transscription Factor Factor Staining Buffer Set, ThermoFisher). After centrifugation, each of the nuclear staining antibodies (GATA3 and RORgt) diluted with Permeabilization @ buffer was added to each well, and the cells were allowed to stand at 4 ° C. for 30 minutes in the light-shielded state to perform staining. After staining, the cells were washed with Permeabilization buffer and Facs buffer, then suspended in an appropriate amount in FACS buffer, and used for flow cytometry analysis. FACSAria III (BD @ Biosciences) was used for the stained cells, and flow cytometry analysis was performed. Analysis of the obtained data was performed using FlowJo (Tree @ Star, Inc.). The obtained flow cytometry results show only a cell population that does not express CD3, TCRb, and CD19 but expresses CD45.
 図1に示される通り、小腸と比較して、胃ではILC2が極めて優勢(ILC1:5%、ILC2:94%、ILC3:0.6%)であることが示された。 通 り As shown in FIG. 1, it was shown that ILC2 was extremely predominant in the stomach (ILC 1: 5%, ILC2: 94%, ILC3: 0.6%) as compared to the small intestine.
[参考例2]胃ILC2におけるIL-33Raの発現の確認 [Reference Example 2] Confirmation of expression of IL-33Ra in gastric ILC2
 SPFマウスの小腸は2%FBS/RPMI-1640培地で1mg/Lの濃度に調整したCollagenase(Wako)を使用し、大腸も同様に1 mg/L濃度に調整したCollagenase(SIGMA)中で37℃,15分間攪拌した。15分後に上清のみを回収し、その後残った腸断片にCollagenaseを加えて同様の作業を2回繰り返し行い上清を回収した。回収した上清は100μm Cellstrainer(BD Bioscience)を用いてろ過を行い、遠心分離後リンパ球単離に使用した。細胞懸濁液の遠心分離後、4mlの40%Percollに懸濁し15ml Falcon tubeに移した後、パスツールピペットを用い等量の70% Percollをゆっくり加えて下方へ重層させ、2000rpm,20℃で20分間遠心分離を行った。遠心分離後は、密度勾配によって生じた中間層を採取し2%FBS/RPMI-1640培地に懸濁することでリンパ球を単離した。一方、胃から回収した細胞は40μm Cellstrainerを用いてろ過を行うことで粘液などを取り除いた。 The small intestine of the SPF mouse used Collagenase (Wako) adjusted to a concentration of 1 mg / L in a 2% FBS / RPMI-1640 medium, and the large intestine was similarly treated in Collagenase (SIGMA) adjusted to a concentration of 1 mg / L at 37 ° C. And stirred for 15 minutes. Fifteen minutes later, only the supernatant was recovered, and then Collagenase was added to the remaining intestinal fragments, and the same procedure was repeated twice to recover the supernatant. The collected supernatant was filtered using a 100 μm CellStrainer (BD Bioscience), centrifuged, and used for lymphocyte isolation. After centrifugation of the cell suspension, the cell suspension was suspended in 4 ml of 40% Percoll and transferred to a 15 ml Falcon tube. Then, an equivalent volume of 70% percoll was slowly added using a Pasteur pipette, and the mixture was layered downward at 2000 rpm at 20 ° C. Centrifugation was performed for 20 minutes. After centrifugation, the intermediate layer generated by the density gradient was collected and suspended in a 2% FBS / RPMI-1640 medium to isolate lymphocytes. On the other hand, cells collected from the stomach were filtered using a 40 μm Cell strainer to remove mucus and the like.
 上述の手法により回収したリンパ球を適量の2%FBS/RPMI-1640培地で懸濁し、Tissue Culture Plate(96Well, Flat Buttom with Low Evaporation Lid,FALCON)に1×10cells/wellずつ播種した。遠心分離後、1/500量のZombie Aqua Fixable Viability Kit(Biolegend)とFACS buffer(2%FBS/D-PBS(-))にて最終濃度0.1mg/mlに調整したPurified Rat Anti-mouse CD16/CD32(BD Biosciences)を添加し、4℃で15分間静置してブロッキングと死細胞の染色を行った。その後Facs bufferにて細胞を洗浄し、遠心分離後に表3または4に沿ってそれぞれの抗体希釈液(CD3、CD45、TCRb、CD19、CD127、CD90.2、Sca1、KLRG1およびIL33Ra)を細胞に添加して4℃で20分間静置させ、細胞表面に発現されている抗原を蛍光標識された抗体で染色した。取得したフローサイトメトリー結果は、CD3、TCRb、CD19を発現しておらずCD45を発現する細胞集団のみを示している。IL33Raの発現は、さらにSca1、KLRG1を共に発現する細胞に関して示している。 The lymphocytes collected by the above method were suspended in an appropriate amount of a 2% FBS / RPMI-1640 medium, and seeded at 1 × 10 6 cells / well on a Tissue Culture Plate (96 Well, Flat Butt with Low Evaporation Lid, FALCON). After centrifugation, Purified Rat Anti-mouse CD16 adjusted to a final concentration of 0.1 mg / ml with a 1/500 volume of Zombie Aqua Fixable Viability Kit (Biolegend) and FACS buffer (2% FBS / D-PBS (-)). / CD32 (BD Biosciences) was added, and the mixture was allowed to stand at 4 ° C. for 15 minutes to perform blocking and staining of dead cells. Thereafter, the cells were washed with Facs buffer, and after centrifugation, the respective antibody diluents (CD3, CD45, TCRb, CD19, CD127, CD90.2, Sca1, KLRG1, and IL33Ra) were added to the cells according to Table 3 or 4. Then, the mixture was allowed to stand at 4 ° C. for 20 minutes, and the antigen expressed on the cell surface was stained with a fluorescently labeled antibody. The obtained flow cytometry results show only a cell population that does not express CD3, TCRb, and CD19 but expresses CD45. IL33Ra expression is further shown for cells that express both Sca1 and KLRG1.
 図2に示される通り、IL-33Raは小腸ILC2と比較して、胃ILC2において高発現していることが示された(SI LPL:5.6、Stomach:24)。 ILAs shown in FIG. 2, it was shown that IL-33Ra was highly expressed in gastric ILC2 as compared with small intestine ILC2 (SI PLL: 5.6, Stomach: 24).
[実施例1]共生細菌による胃ILC2への影響の検討
 SPFマウスおよび無菌(GF)マウスの小腸は2%FBS/RPMI-1640培地で1mg/Lの濃度に調整したCollagenase(Wako)を使用し、大腸も同様に1mg/L濃度に調整したCollagenase(SIGMA)中で37℃,15分間攪拌した。15分後に上清のみを回収し、その後残った腸断片にCollagenaseを加えて同様の作業を2回繰り返し行い上清を回収した。回収した上清は100μm Cellstrainer(BD Bioscience)を用いてろ過を行い、遠心分離後リンパ球単離に使用した。細胞懸濁液の遠心分離後、4mlの40%Percollに懸濁し15ml Falcon tubeに移した後、パスツールピペットを用い等量の70% Percollをゆっくり加えて下方へ重層させ、2000rpm、20℃で20分間遠心分離を行った。遠心分離後は、密度勾配によって生じた中間層を採取し2%FBS/RPMI-1640培地に懸濁することでリンパ球を単離した。一方、胃から回収した細胞は40μm Cellstrainerを用いてろ過を行うことで粘液などを取り除いた。
[Example 1] Investigation of the effect of commensal bacteria on gastric ILC2 In the small intestine of SPF mice and germ-free (GF) mice, Collagenase (Wako) adjusted to a concentration of 1 mg / L with 2% FBS / RPMI-1640 medium was used. The large intestine was also stirred at 37 ° C. for 15 minutes in Collagenase (SIGMA) adjusted to a concentration of 1 mg / L. Fifteen minutes later, only the supernatant was recovered, and then Collagenase was added to the remaining intestinal fragments, and the same procedure was repeated twice to recover the supernatant. The collected supernatant was filtered using a 100 μm Cell strainer (BD Bioscience), and used for lymphocyte isolation after centrifugation. After centrifugation of the cell suspension, the cells were suspended in 4 ml of 40% Percoll, transferred to a 15 ml Falcon tube, and then slowly added with an equal volume of 70% Percoll using a Pasteur pipette, and overlaid at 2000 rpm at 20 ° C. Centrifugation was performed for 20 minutes. After centrifugation, the intermediate layer generated by the density gradient was collected and suspended in a 2% FBS / RPMI-1640 medium to isolate lymphocytes. On the other hand, cells collected from the stomach were filtered using a 40 μm Cell strainer to remove mucus and the like.
 上述の手法により回収したリンパ球を適量の2%FBS/RPMI-1640培地で懸濁し、Tissue Culture Plate(96 Well, Flat Buttom with Low Evaporation Lid,FALCON)に1×10cells/wellずつ播種した。遠心分離後、1/500量のZombie Aqua Fixable Viability Kit(Biolegend)とFACS buffer(2%FBS/D-PBS(-))にて最終濃度0.1mg/mlに調整したPurified Rat Anti-mouse CD16/CD32(BD Biosciences)を添加し4℃で15分間静置してブロッキングと死細胞の染色を行った。その後Facs bufferにて細胞を洗浄し、遠心分離後に表3または4に沿ってそれぞれの抗体希釈液(CD3、CD45、TCRb、CD19、CD127、CD90.2、Sca1、KLRG1およびIL33Ra)を細胞に添加して4℃で20分間静置させ、細胞表面に発現されている抗原を蛍光標識された抗体で染色した。取得したフローサイトメトリー結果は、CD3、TCRb、CD19を発現しておらずCD45を発現する細胞集団のみを示している。IL33Raの発現は、さらにSca1、KLRG1を共に発現する細胞(即ち、ILC2)に関して示している。 The lymphocytes collected by the above method were suspended in an appropriate amount of 2% FBS / RPMI-1640 medium, and seeded at 1 × 10 6 cells / well on a Tissue Culture Plate (96 Well, Flat Butt with Low Evaporation Lid, FALCON). . After centrifugation, Purified Rat Anti-mouse CD16 adjusted to a final concentration of 0.1 mg / ml with a 1/500 volume of Zombie Aqua Fixable Viability Kit (Biolegend) and FACS buffer (2% FBS / D-PBS (-)). / CD32 (BD Biosciences) was added, and the mixture was allowed to stand at 4 ° C for 15 minutes to perform blocking and staining of dead cells. Thereafter, the cells were washed with Facs buffer, and after centrifugation, the respective antibody diluents (CD3, CD45, TCRb, CD19, CD127, CD90.2, Sca1, KLRG1, and IL33Ra) were added to the cells according to Table 3 or 4. Then, the mixture was allowed to stand at 4 ° C. for 20 minutes, and the antigen expressed on the cell surface was stained with a fluorescently labeled antibody. The obtained flow cytometry results show only a cell population that does not express CD3, TCRb, and CD19 but expresses CD45. IL33Ra expression is further shown for cells that express both Sca1 and KLRG1 (ie, ILC2).
 図3に示される通り、SPFマウスとGFマウスでは、胃ILC2の存在量が大きく異なっており、共生細菌が胃ILC2の存在量に影響を与えることが示された。 通 り As shown in FIG. 3, the abundance of gastric ILC2 was significantly different between the SPF mouse and the GF mouse, indicating that symbiotic bacteria affect the abundance of gastric ILC2.
[実施例2]共生細菌による胃ILC2の機能への影響の検討
 上述した手法により回収したリンパ球は10%FBS/RPMI-1640培地にL-グルタミン、ペニシリン、ストレプトマイシンを加えたComplete Bufferに懸濁し、一部サイトカイン産生確認に使用した。リンパ球は1×10cells/wellになるようにTissue Culture Plate(96Well,Flat Buttom with Low Evaporation Lid)に播種した。無刺激またはPMA(50ng/ml)およびIonomycin(1ig/ml)と共に、細胞内タンパク質輸送阻害剤であるGolgi Plug(Biosciences)を添加し、37℃、25%COインキュベータ内で2時間静置した。2時間の静置後に遠心分離を行い、上述同様に細胞表面分子の染色を行った。染色した細胞はD-PBS(-)で2回洗浄し、遠心分離後4%PFA/D-PBS(-)を添加して常温、15分間静置し細胞固定を行った。遠心分離後、Permeabilization Bufferで細胞を洗浄した。透過処理後、それぞれのIL-5とIL-13抗体をPermeabilization Bufferで希釈し、その希釈液を各wellに添加し、遮光をした状態で4℃で60分静置し染色を行った。染色細胞はFACSAriaIII(BD Biosciences)を使用し、フローサイトメトリー解析を行った。得られたデータの解析は、FlowJo(Tree Star,Inc)を使用し行った。図4は、CD3、TCRb、CD19を発現せず、CD45、Sca1、KLRG1を発現する細胞(即ち、ILC2)についてIL-5とIL-13の産生について比較を行った。
[Example 2] Investigation of the effect of commensal bacteria on the function of gastric ILC2 Lymphocytes collected by the above-described method were suspended in a complete buffer containing 10% FBS / RPMI-1640 medium supplemented with L-glutamine, penicillin, and streptomycin. Was used to confirm some cytokine production. Lymphocytes were seeded on a Tissue Culture Plate (96 Well, Flat Butt with Low Evaporation Lid) at 1 × 10 6 cells / well. Golgi Plug (Biosciences), which is an inhibitor of intracellular protein transport, was added without stimulation or together with PMA (50 ng / ml) and Ionomycin (1 ig / ml), and the mixture was allowed to stand at 37 ° C. in a 25% CO 2 incubator for 2 hours. . After standing for 2 hours, centrifugation was performed, and cell surface molecules were stained as described above. The stained cells were washed twice with D-PBS (-), centrifuged, added with 4% PFA / D-PBS (-), and allowed to stand at room temperature for 15 minutes to fix the cells. After centrifugation, the cells were washed with Permeabilization Buffer. After the permeation treatment, each of the IL-5 and IL-13 antibodies was diluted with Permeabilization Buffer, the diluted solution was added to each well, and the plate was allowed to stand still at 4 ° C. for 60 minutes in a light-shielded state to perform staining. FACSAria III (BD Biosciences) was used for the stained cells, and flow cytometry analysis was performed. Analysis of the obtained data was performed using FlowJo (Tree Star, Inc). FIG. 4 compares the production of IL-5 and IL-13 for cells that do not express CD3, TCRb, and CD19 but that express CD45, Scal, and KLRG1 (ie, ILC2).
 図4に示される通り、SPFマウスとGFマウスでは、IL-5およびIL-13発現細胞の存在量に大きな差があることが示された。また、胃において、ILC2以外のIL-5および/またはIL-13を主に産生する細胞であるT細胞およびB細胞の細胞数には差がないことが確認された(図4(c)および(d))。即ち、共生細菌の存在の有無が、T細胞やB細胞には影響を与えず、胃におけるILC2の数およびその機能にのみ影響を与えることが示された。 通 り As shown in FIG. 4, it was shown that there was a large difference in the amount of IL-5 and IL-13 expressing cells between the SPF mouse and the GF mouse. In addition, it was confirmed that there was no difference in the number of T cells and B cells, which are cells that mainly produce IL-5 and / or IL-13 other than ILC2 in the stomach (FIG. 4 (c) and FIG. (D)). That is, it was shown that the presence or absence of symbiotic bacteria did not affect T cells or B cells, but only affected the number and function of ILC2 in the stomach.
[実施例3]胃由来微生物叢の経口摂取による胃ILC2の誘導
 SPFマウスの胃内容物および胃の粘膜組織をこすり取り、PBSで懸濁後に100μm Cellstrainer(BD Bioscience)を用いてろ過し計3mlに調整して、そのうち300μlを経口投与した。一回の投与を行ったマウスと、一週間に1回を4度繰り返したマウスは、最後の経口投与から1週間後に同時に解析に使用した。経口投与を行ったマウスおよびコントロールとして無菌マウスから胃を摘出し、細胞内サイトカイン産生検出法を用いて実験をおこなった。上述した手法により回収したリンパ球は10% FBS/RPMI-1640培地にL-グルタミン、ペニシリン、ストレプトマイシンを加えたComplete Bufferに懸濁し、一部サイトカイン産生確認に使用した。リンパ球は1×10cells/wellになるようにTissue Culture Plate(96Well,Flat Buttom with Low Evaporation Lid)に播種した。回収したリンパ球は、細胞内タンパク質輸送阻害剤であるGolgi Plug(Biosciences)を添加し、37℃、25%COインキュベータ内で2時間静置した。2時間の静置後に遠心分離を行い、上述同様に細胞表面分子の染色を行った。染色した細胞はD-PBS(-)で2回洗浄し、遠心分離後4%PFA/D-PBS(-)を添加して常温、15分間静置し細胞固定を行った。遠心分離後、Permeabilization Bufferで細胞を洗浄した。透過処理後、それぞれのIL-5とIL-13抗体をPermeabilization Bufferで希釈し、その希釈液を各wellに添加し、遮光をした状態で4℃で60分静置し染色を行った。染色細胞はFACSAriaIII(BD Biosciences)を使用し、フローサイトメトリー解析を行った。得られたデータの解析は、FlowJo(Tree Star,Inc)を使用し行った。図5(a)は、本実施例の概要を示す図である。図5(b)および(d)は、CD3、TCRb、CD19を発現せず、CD45、Sca1、KLRG1を発現する細胞(即ち、ILC2)について、IL-5またはIL-13産生を、FACSを用いて比較し(図5(b))、さらに定量した(図5(d))図である。図5(c)は、経口摂取の回数と細胞数の関係を示す図である。
Example 3 Induction of Gastric ILC2 by Oral Intake of Stomach-Derived Microbiota Stomach contents and gastric mucosal tissue of SPF mice were scraped, suspended in PBS, and filtered using 100 μm Cell strainer (BD Bioscience) for a total of 3 ml. , And 300 μl thereof was orally administered. Mice that received a single dose and mice that were repeated once a week four times were used for analysis one week after the last oral dose. The stomach was removed from the orally administered mouse and a germ-free mouse as a control, and an experiment was performed using an intracellular cytokine production detection method. The lymphocytes collected by the above-described method were suspended in a complete buffer obtained by adding L-glutamine, penicillin, and streptomycin to 10% FBS / RPMI-1640 medium, and partially used for confirming cytokine production. Lymphocytes were seeded on a Tissue Culture Plate (96 Well, Flat Butt with Low Evaporation Lid) at 1 × 10 6 cells / well. The collected lymphocytes were added with Golgi Plug (Biosciences), an intracellular protein transport inhibitor, and allowed to stand at 37 ° C. in a 25% CO 2 incubator for 2 hours. After standing for 2 hours, centrifugation was performed, and cell surface molecules were stained as described above. The stained cells were washed twice with D-PBS (-), centrifuged, added with 4% PFA / D-PBS (-), and allowed to stand at room temperature for 15 minutes to fix the cells. After centrifugation, the cells were washed with Permeabilization Buffer. After the permeation treatment, each of the IL-5 and IL-13 antibodies was diluted with Permeabilization Buffer, the diluted solution was added to each well, and the plate was allowed to stand still at 4 ° C. for 60 minutes in a light-shielded state to perform staining. FACSAria III (BD Biosciences) was used for the stained cells, and flow cytometry analysis was performed. Analysis of the obtained data was performed using FlowJo (Tree Star, Inc). FIG. 5A is a diagram illustrating an outline of the present embodiment. FIGS. 5 (b) and (d) show that for cells expressing CD45, Scal, and KLRG1 that do not express CD3, TCRb, or CD19 (ie, ILC2), IL-5 or IL-13 production was determined using FACS. FIG. 5 (b)) and further quantified (FIG. 5 (d)). FIG. 5C is a diagram showing the relationship between the number of times of oral ingestion and the number of cells.
 図5に示される通り、SPFマウスの胃由来の内容物および/または粘液をGFマウスに経口摂取させると、摂取回数に比例して、GFマウスの胃における細菌存在量が増加し、且つ、IL-5またはIL-13を分泌する細胞(即ち、ILC2)の細胞数が増加した。これは、SPFマウスの胃由来の内容物および/または粘液に含まれる共生細菌がGFマウスの胃に生着することで、GFマウスの胃におけるILC2が誘導されたことを示す。換言すれば、図5の結果は、胃の共生細菌がILC2の数及びその機能に影響を与えることを示すものといえる。 As shown in FIG. 5, when the contents and / or mucus from the stomach of the SPF mouse were orally ingested into the GF mouse, the bacterial abundance in the stomach of the GF mouse increased in proportion to the number of ingestions, and the IL content increased. The number of cells secreting -5 or IL-13 (ie, ILC2) increased. This indicates that ILC2 in the stomach of the GF mouse was induced by the symbiotic bacterium contained in the contents and / or mucus from the stomach of the SPF mouse engrafted in the stomach of the GF mouse. In other words, the results in FIG. 5 indicate that gastric commensal bacteria affect the number and function of ILC2.
[実施例4]胃由来微生物叢の経口摂取による細菌叢の解析
 糞便、胃内容物および胃粘膜層を経口投与したマウスの菌叢解析を行った。糞便および胃内容物は10mgを測り取りDNA抽出に使用した。10mgの糞便サンプルに450μlのTris-10×EDTA(10mmol/l Tris-HCl、10mmol/l EDTA、pH8.0)を添加後vortexで懸濁し、Lysozyme stock(wako)300mg/mlを25μl添加、37℃で1時間、1000rpmで振盪させながらインキュベートした。その後Achromopeptidase stock(wako)20,000U/mlを55μl添加し、37℃で0.5時間、1000rpmで振盪させながらインキュベートした。10%SDSを61.5μl添加し、Proteinase K stock(メルク)25mg/mlを25.7μl添加した後、55℃で1時間、1000rpmで振盪しながらインキュベートした。650μlのphenol/CHCl/IAA(ナカライ)を添加し、5分間rotatorで振盪させた。その後13000rpm、5分間遠心分離し、上清を回収した。回収した上清に650μlのphenol/CHCl/IAAを添加し、5分間rotatorで振盪させた。その後13000rpm、5分間遠心分離し、上清を300μl回収した。回収した上清に50μlの3M-CHCOONa(ナカライ)、1000μlの100%EtOHを添加し懸濁した。-20℃で静置した後、15000rpm、4℃、10分間遠心後上清を吸引しPelletに70%EtOHを1000μl添加した。その後再び15000rpm、4℃、10分間遠心分離後Pelletを40℃で10分間乾燥させ、250μlのTEに懸濁した。250μlのうち200μlにRNase(10mg/ml)を2μl添加し、37℃、1時間インキュベートした。200μlの10%PEG6000-2.5M NaClを添加し、30分間インキュベートした。15000rpm、4℃、20分間遠心分離し上清を取り除いた後1000μlの70%EtOHで洗浄した後再び15000rpm、4℃、20分間遠心分離し上清を取り除いた後Pelletを40℃で10分間乾燥させた。その後50 μlのTEに懸濁し、Nanodrop(Thermo)でDNA濃度を測定した。抽出したDNAは5ng/μlに希釈し、515F(GTGCCAGCMGCCGCGGTAA:配列番号26)と806R(GGACTACHVGGGTWTCTAAT:配列番号27)のプライマーを使用して16S rRNAのV4領域を増幅させた。PCR産物はAMPure beadsを用いて精製し、Nextra XT Index Kit v2(Illumina)を用いてPCR反応でバーコード配列を付与した。PCRの後再びAMPure beadsを用いてPCR産物を精製し、PicoGreen(Invitrogen)を使用してDNA濃度を測定した。濃度測定の結果から全サンプルを1ng/μlに希釈し、TapeStation(Agilent)でDNAのサイズと濃度を確認後KAPA qPCRを行った。Miseq(Illumina)により遺伝子配列をシーケンスし、パッケージソフトウェアQIIME(http://qiime.org/)を使って得られた遺伝子配列を97%の配列類似度でクラスタリングしOperational taxonomic unit(OTU)を作成した後、得られたOTUをRibosomal Database Project(https://rdp.cme.msu.edu)を用いてデータベース検索し細菌種を同定した。
[Example 4] Analysis of bacterial flora by oral ingestion of gastric microbial flora Microflora of mice to which stool, stomach contents and gastric mucosal layer were orally administered were analyzed. Feces and stomach contents were weighed at 10 mg and used for DNA extraction. After adding 450 μl of Tris-10 × EDTA (10 mmol / l Tris-HCl, 10 mmol / l EDTA, pH 8.0) to a 10 mg stool sample, suspending with vortex, adding 25 μl of Lysozyme stock (wako) 300 mg / ml, 37 Incubate for 1 hour at 1000C with shaking at 1000 rpm. Thereafter, 55 μl of 20,000 U / ml of Achromopeptidase stock (wako) was added, and the mixture was incubated at 37 ° C. for 0.5 hour with shaking at 1000 rpm. After 61.5 μl of 10% SDS was added, and 25.7 μl of Proteinase K stock (Merck) 25 mg / ml was added, the mixture was incubated at 55 ° C. for 1 hour with shaking at 1000 rpm. 650 μl of phenol / CHCl 3 / IAA (Nacalai) was added and shaken on a rotator for 5 minutes. Thereafter, the mixture was centrifuged at 13000 rpm for 5 minutes, and the supernatant was recovered. 650 μl of phenol / CHCl 3 / IAA was added to the collected supernatant and shaken with a rotator for 5 minutes. Thereafter, the mixture was centrifuged at 13000 rpm for 5 minutes, and 300 µl of the supernatant was recovered. To the collected supernatant, 50 μl of 3M-CH 3 COONa (Nakarai) and 1000 μl of 100% EtOH were added and suspended. After standing at −20 ° C., the mixture was centrifuged at 15000 rpm and 4 ° C. for 10 minutes, and the supernatant was aspirated, and 1000 μl of 70% EtOH was added to Pellet. Thereafter, the pellet was centrifuged again at 15000 rpm at 4 ° C. for 10 minutes, and the pellet was dried at 40 ° C. for 10 minutes and suspended in 250 μl of TE. To 200 μl of 250 μl, 2 μl of RNase (10 mg / ml) was added and incubated at 37 ° C. for 1 hour. 200 μl of 10% PEG6000-2.5M NaCl was added and incubated for 30 minutes. After centrifuging at 15000 rpm at 4 ° C. for 20 minutes to remove the supernatant, washing with 1000 μl of 70% EtOH, centrifuging again at 15000 rpm at 4 ° C. for 20 minutes, removing the supernatant, and drying the pellet at 40 ° C. for 10 minutes I let it. Thereafter, the cells were suspended in 50 μl of TE, and the DNA concentration was measured with Nanodrop (Thermo). The extracted DNA was diluted to 5 ng / μl, and the V4 region of 16S rRNA was amplified using primers of 515F (GTGCCAGCMGCCGCGGTAA: SEQ ID NO: 26) and 806R (GGACTACHVGGGGTWTCTAAT: SEQ ID NO: 27). The PCR product was purified using AMPure beads, and a barcode sequence was provided by a PCR reaction using Nextra XT Index Kit v2 (Illumina). After the PCR, the PCR product was purified again using AMPure beads, and the DNA concentration was measured using PicoGreen (Invitrogen). From the results of the concentration measurement, all the samples were diluted to 1 ng / μl, and after confirming the size and concentration of the DNA by TapeStation (Agilent), KAPA qPCR was performed. Gene sequences are sequenced by Miseq (Illumina), and the gene sequences obtained using the package software QIIME (http://qime.org/) are clustered with a sequence similarity of 97% to create an Operational taxonomic unit (OTU). After that, the obtained OTU was searched for a database using Ribosomal Database Project (https://rdp.cme.msu.edu) to identify the bacterial species.
 図6に示される通り、SPFマウスの胃由来の内容物および/または粘液を経口摂取させるにつれ、GFマウスの胃および糞便中には、S24-7科に属する細菌の存在量が増加することが示された。即ち、S24-7科に属する細菌量の胃における増加が、胃におけるILC2の誘導に大きな影響を与える可能性が示された。 As shown in FIG. 6, as the content and / or mucus from the stomach of the SPF mouse was orally ingested, the amount of bacteria belonging to the S24-7 family increased in the stomach and feces of the GF mouse. Indicated. That is, it was shown that an increase in the amount of bacteria belonging to the family S24-7 in the stomach may have a great effect on the induction of ILC2 in the stomach.
[実施例5]胃ILC2の誘導に影響を与える共生細菌群の同定1
 SPFコンディションのマウスに、飲料水にアンピシリン(0.1g/L)、コリスチン(1g/L)、ネオマイシン(1g/L)、メトロニダゾール(1g/L)またはバンコマイシン(0.5g/L)を添加し、3週間、経口的に摂取させた。対照とするSPF条件のC57BL/6Nマウスまたは抗生物質処理マウスの胃からリンパ球を回収し、上述の手順にてフローサイトメトリー解析をおこなった。
[Example 5] Identification of symbiotic bacteria affecting the induction of gastric ILC2 1
To mice in SPF condition, drinking water was added with ampicillin (0.1 g / L), colistin (1 g / L), neomycin (1 g / L), metronidazole (1 g / L) or vancomycin (0.5 g / L). Orally for 3 weeks. Lymphocytes were collected from the stomach of C57BL / 6N mice or antibiotic-treated mice under SPF conditions as a control, and subjected to flow cytometry analysis according to the above-described procedure.
 図7に示される通り、アンピシリン(Amp)、コリスチン(Colistin)、ネオマイシン(Neo)、メトロニダゾール(MNZ)を摂取させたマウスにおいては、対照(SPF)と比較して胃ILC2の細胞数に大きな変化は見られなかった。一方で、バンコマイシンを摂取させたマウスにおいては、胃ILC2の細胞数が減少していた。従って、胃ILC2の誘導に影響を与える共生細菌は、アンピシリン、コリスチン、ネオマイシン、メトロニダゾールには耐性を有するが、バンコマイシンに対しては感受性であることが示された。 As shown in FIG. 7, in mice fed ampicillin (Amp), colistin (Colistin), neomycin (Neo), and metronidazole (MNZ), the cell number of gastric ILC2 was significantly changed as compared with the control (SPF). Was not seen. On the other hand, in the mice to which vancomycin was taken, the number of cells of gastric ILC2 was decreased. Therefore, it was shown that commensal bacteria that affect the induction of gastric ILC2 are resistant to ampicillin, colistin, neomycin, and metronidazole but sensitive to vancomycin.
[実施例6]胃ILC2の誘導に影響を与える共生細菌群の同定2
 Miseq(Illumina)により遺伝子配列をシーケンスし、パッケージソフトウェアQIIME(http://qiime.org/)を使って得られた遺伝子配列を97%の配列類似度でクラスタリングしOperational taxonomic unit(OTU)を作成した後、得られたOTUをRibosomal Database Project(https://rdp.cme.msu.edu)を用いてデータベース検索し細菌種を同定した。菌叢情報は上述の方法にて適切に正規化を行い、それぞれの抗生物質投与群に関して、各種菌叢が占める割合を算出した。結果を図8に示す。
[Example 6] Identification of symbiotic bacteria affecting the induction of gastric ILC2 2
Gene sequences are sequenced by Miseq (Illumina), and the gene sequences obtained using the package software QIIME (http://qime.org/) are clustered with a sequence similarity of 97% to create an Operational taxonomic unit (OTU). After that, the obtained OTU was searched for a database using Ribosomal Database Project (https://rdp.cme.msu.edu) to identify the bacterial species. The flora information was appropriately normalized by the above-described method, and the ratio of various flora to each antibiotic administration group was calculated. FIG. 8 shows the results.
 図8に示される通り、バンコマイシンに対しては感受性であり、且つ、アンピシリン、コリスチン、ネオマイシン、メトロニダゾールに対して耐性を有する共生細菌には、S14-7科に属する細菌が含まれることが示された。 As shown in FIG. 8, the symbiotic bacteria that are sensitive to vancomycin and resistant to ampicillin, colistin, neomycin, and metronidazole include bacteria belonging to the family S14-7. Was.
[実施例7]S24-7の局在の検討
 マウスから摘出したサンプルにカルノア固定液(60%メタノール、30%クロロフォルム、10%無水酢酸)を1ml加えて、6時間固定した。固定後は1mlメタノールに置換し、30分室温に静置した。30分後にもう一度メタノールを加え30分室温に静置した。30分後、脱水したエタノールに交換し20分室温で静置した。サンプルをカセットにいれLaica tissue processorでエタノール(1時間)キシレン(2時間・3回)パラフィン(3時間・3回)のプログラムを行い、プログラム終了後パラフィンに包埋した。ブロックは5umに薄切しスライドガラスに貼り付けた。37℃で伸張したあと、60℃のオーブンに10分間いれて乾燥させた。キシレンにスライドガラスを入れ10分間ひたし、その後99.5%エタノールにスライドガラスを5分間いれた。その後風乾させた。プローブを10nMになるように予め温めたハイブリ緩衝液(0.9M NaCl、20mM pH7.4 Tris-HCl、0.1%SDS)で希釈した。サンプルに重層し48℃で2時間反応させた。反応終了後、ハイブリ緩衝液(0.9M NaCl、20mM pH7.4 Tris-HCl、10%フォルムアミド)を100μlのせ、48℃で5分間反応させた。反応終了後、PBSで3回洗浄し、Laica SP8にて検出を行った。
[Example 7] Examination of localization of S24-7 To a sample excised from a mouse, 1 ml of Carnoy's fixative (60% methanol, 30% chloroform, 10% acetic anhydride) was added and fixed for 6 hours. After the fixation, the solution was replaced with 1 ml of methanol, and left at room temperature for 30 minutes. After 30 minutes, methanol was added again, and the mixture was left at room temperature for 30 minutes. After 30 minutes, the mixture was replaced with dehydrated ethanol and allowed to stand at room temperature for 20 minutes. The sample was placed in a cassette, and a program for ethanol (1 hour), xylene (2 hours, 3 times) and paraffin (3 hours, 3 times) was performed using a Laica tissue processor, and embedded in paraffin after completion of the program. The block was sliced to 5 μm and attached to a slide glass. After stretching at 37 ° C., it was dried in an oven at 60 ° C. for 10 minutes. The slide glass was placed in xylene and dipped for 10 minutes, and then the slide glass was placed in 99.5% ethanol for 5 minutes. Then it was air-dried. The probe was diluted with a pre-warmed hybridization buffer (0.9 M NaCl, 20 mM pH 7.4 Tris-HCl, 0.1% SDS) to 10 nM. The sample was overlaid and reacted at 48 ° C. for 2 hours. After completion of the reaction, 100 μl of a hybridization buffer (0.9 M NaCl, 20 mM pH 7.4 Tris-HCl, 10% formamide) was added thereto, and the mixture was reacted at 48 ° C. for 5 minutes. After completion of the reaction, the plate was washed three times with PBS, and detection was performed with Laica SP8.
 なお、上記で用いたプローブの作成は以下の通り行った。対照(SPFマウス)、アンピシリン処理マウス、コリスチン処理マウス、ネオマイシン処理マウス、メトロニダゾール処理マウスでは減少していないが、バンコマイシン処理マウスにおいては減少している細菌を決定するため、これらの胃内容物に付着する細菌の核酸配列量を、Miseq(イルミナ社)を用いて決定した。解析の結果、S24-7科に属する細菌が有する配列がこの条件を満たすことを確認した(11種類の配列を決定した)。これら11種類の配列に共通する核酸配列(配列番号1)を決定した。配列番号1の3’末端を蛍光タンパク質(A555)で標識してプローブを作成した。結果を図9に示す。 プ ロ ー ブ The probe used above was prepared as follows. Attached to the stomach contents of control (SPF mice), ampicillin-treated mice, colistin-treated mice, neomycin-treated mice, and metronidazole-treated mice, but not decreased, but vancomycin-treated mice had decreased. The amount of the nucleic acid sequence of the bacteria to be treated was determined using Miseq (Illumina). As a result of the analysis, it was confirmed that the sequence of bacteria belonging to the family S24-7 satisfies this condition (11 types of sequences were determined). The nucleic acid sequence (SEQ ID NO: 1) common to these 11 types of sequences was determined. A probe was prepared by labeling the 3 'end of SEQ ID NO: 1 with a fluorescent protein (A555). FIG. 9 shows the results.
 図9に示される通り、S24-7は胃の上皮に存在することが示された。本結果からも、S24-7が胃に生着して細菌叢を構成し、胃におけるILC2の誘導に大きな影響を与えていることが強く示唆された。 SAs shown in FIG. 9, S24-7 was found to be present in the epithelium of the stomach. These results also strongly suggested that S24-7 engrafted in the stomach and constituted a bacterial flora, and had a great effect on the induction of ILC2 in the stomach.
[実施例8]胃におけるILC2の細胞数とS24-7の個体数の相関関係についての検討
 SPFコンディションのマウスに、飲料水にアンピシリン(0.1g/L)、コリスチン(1g/L)、ネオマイシン(1g/L)、メトロニダゾール(1g/L)またはバンコマイシン(0.5g/L)を添加し、3週間、経口的に摂取させた。その後、マウスの胃内容物および糞便を回収し、実施例4および6で示された通りに解析した。また、同時期に胃から回収したリンパ球を上述の手順の通りフローサイトメトリー解析を行った。菌叢解析により得られたそれぞれの菌数について1%以上の値を上限として、菌種(科)とフローサイトメトリー解析結果との相関図をヒートマップおよびスキャッタープロットとして作成した。
[Example 8] Investigation on correlation between the number of ILC2 cells in the stomach and the number of S24-7 individuals In mice under SPF condition, ampicillin (0.1 g / L), colistin (1 g / L), neomycin were added to drinking water. (1 g / L), metronidazole (1 g / L) or vancomycin (0.5 g / L), and orally taken for 3 weeks. Thereafter, the stomach contents and feces of the mice were collected and analyzed as described in Examples 4 and 6. At the same time, lymphocytes collected from the stomach were analyzed by flow cytometry according to the above-described procedure. With the upper limit of the value of 1% or more for each bacterial count obtained by the microflora analysis, a correlation diagram between the bacterial species (family) and the flow cytometry analysis results was created as a heat map and a scatter plot.
 図10に示される通り、S24-7の細菌の個体数と、ILC2の細胞数とには強い正の相関関係が示された(r=0.8、p=0.03)。一方で、S24-7科以外の細菌の個体数とILC2の細胞数との間にはそのような関係は認められなかった。本結果から、S24-7の細菌が、胃におけるILC2の増加を誘導することが示された。 通 り As shown in FIG. 10, a strong positive correlation was shown between the bacterial population of S24-7 and the number of ILC2 cells (r = 0.8, p = 0.03). On the other hand, such a relationship was not found between the number of bacteria other than S24-7 family and the number of ILC2 cells. The results showed that the S24-7 bacteria induced an increase in ILC2 in the stomach.
[実施例9]ヘリコバクターピロリの感染に対する免疫応答の詳細な検討
 無菌マウスは1x10CFU/300μl PBSに調整したものを経口投与した。ヘリコバクターピロリ数が最も多い時期である感染2週間後と胃に炎症症状を呈する9週間後について検討した。バクテリア結合性IgAは上述の方法で検出を行った。つぎに感染後2週間および9週間後の胃を摘出し、胃を開いてPBSで内容物を軽く洗浄後、組織を凍結破砕した。粉末状にした胃にQIAGEN RNAeasy kitに添付されているLysis bufferに懸濁し、添付プロトコルに従ってRNAを抽出した。抽出したRNAはSuperScriptIII酵素を用いて逆転写しcDNAを得た。cDNAはpIgR特異的プライマーを用いて、定量的PCRを行い検討した。また、感染後2週間の胃は上述した細胞内サイトカイン産生プロトコルに従い無菌マウスと比較検討した。結果を図11-Aから図11-Cに示す。
Example 9 Detailed Examination of Immune Response to Helicobacter pylori Infection Sterile mice were orally administered at 1 × 10 9 CFU / 300 μl PBS. Two weeks after the infection, when the number of Helicobacter pylori was highest, and nine weeks after the stomach exhibited inflammatory symptoms were examined. Bacterial binding IgA was detected by the method described above. Next, the stomach 2 weeks and 9 weeks after the infection was removed, the stomach was opened, and the contents were lightly washed with PBS. The powdered stomach was suspended in Lysis buffer attached to QIAGEN RNAeasy kit, and RNA was extracted according to the attached protocol. The extracted RNA was reverse-transcribed using a SuperScript III enzyme to obtain cDNA. The cDNA was examined by performing quantitative PCR using pIgR-specific primers. The stomach two weeks after infection was compared with a germ-free mouse according to the above-described intracellular cytokine production protocol. The results are shown in FIGS. 11A to 11C.
 ヘリコバクターピロリの感染を確認するため、該細菌が分泌するCagAタンパク質を検出を行ったところ、感染後2週間の時点においては明確な存在が確認された一方で、感染後9週間の時点では該タンパク質は検出されず、また、小腸(SI)においてはいかなる時点においてもCagAタンパク質は検出されなかった((図11-A(a))。また、ヘリコバクターピロリ感染マウスにおける胃中ILC2の細胞数は、感染後2週間の時点で最大化した(図11-A(b)、図11-B(a)および(b))。一方で、図11-A(c)に示される通り、胃におけるPMSS1 CFUは感染後1週間の時点でピークとなった。B細胞は感染後2週間の時点で有意に増加しており、且つ、感染後9週間の時点において細胞数は増加したままを維持していた。一方で、T細胞は感染後3週間の時点まで増加しなかった(図11-A(d)、(e)、(f)および図11-B(c))。また、感染後2週間の時点において、IL-5またはIL-13を発現するILC2が顕著に増加していた(図11-C(a)および(b))。感染後2週間の時点では、胃組織中のIL-33の産生量が顕著に増加しており(図11-C(c))、ヘリコバクターピロリへの応答免疫として、ILC2によるサイトカイン産生が重要であることが強く示唆された。さらに、ヘリコバクターピロリ感染GFマウスを抗IL-5抗体で処理すると、胃におけるCD19B220IgAプラズマB細胞およびCD19B220IgAプラズマブラストB細胞が、感染後2週間の時点で大きく減少し(図11-C(d)および(e))、付随して胃組織におけるIgA分泌の低下がもたらされることが示された(図11-B(d))。図11-B(e)に示される通り、ヘリコバクターピロリに結合するIgAは感染後2週間の時点で最も高くなり、その後減少した。感染後9週間の時点におけるヘリコバクターピロリの顕著な減少は、IgAによる該細菌のクリアランスによるものであると考えられる。また、図11-C(f)に示される通り、IgAを分泌型にする際に重要なpIgRは、腸管での発現量と比較して胃における発現量が増強しており、これもまたヘリコバクターピロリの排除にIgAが関与していることを間接的に示す証拠と考えられる。 In order to confirm the infection of Helicobacter pylori, the CagA protein secreted by the bacterium was detected, and it was confirmed that the protein was clearly present at 2 weeks after the infection, whereas the protein was confirmed at 9 weeks after the infection. No CagA protein was detected in the small intestine (SI) at any time point (FIG. 11-A (a)), and the number of ILC2 cells in the stomach of Helicobacter pylori-infected mice was Maximized at 2 weeks post-infection (FIGS. 11-A (b), 11-B (a) and (b)), while PMSS1 in the stomach as shown in FIG. 11-A (c). CFU peaked at 1 week post-infection, B cells increased significantly at 2 weeks post-infection, and cell numbers remained elevated at 9 weeks post-infection. Was On the other hand, T cells did not increase until 3 weeks after infection (FIGS. 11-A (d), (e), (f) and FIG. 11-B (c)). At the time point, ILC2 expressing IL-5 or IL-13 was significantly increased (Fig. 11-C (a) and (b)). At two weeks after infection, IL- The production amount of Helicobacter pylori was significantly increased (FIG. 11-C (c)), and it was strongly suggested that cytokine production by ILC2 is important as a response immunity to Helicobacter pylori. When mice were treated with anti-IL-5 antibody, CD19 B220 IgA + plasma B cells and CD19 + B220 IgA + plasmablast B cells in the stomach were significantly reduced at 2 weeks post infection ( Figures 11-C (d) and (e)) have been shown to result in a concomitant reduction in IgA secretion in gastric tissue (Figure 11-B (d)). As shown, IgA binding to Helicobacter pylori was highest at 2 weeks post infection and then decreased, with a significant decrease in Helicobacter pylori at 9 weeks post infection due to clearance of the bacteria by IgA. In addition, as shown in Fig. 11-C (f), the expression level of pIgR, which is important for making IgA secretory, is enhanced in the stomach as compared with the expression level in the intestinal tract. This is also considered to be indirect evidence that IgA is involved in eliminating Helicobacter pylori.
 以上から、ヘリコバクターピロリの感染に対して、次のような防御応答が起こることが示唆される:(1)胃組織によりIL-33の産生、(2)IL-33によるILC2の活性化、(3)ILC2によるIL-5および/またはIL-13の産生、(4)ILC2により産生されたIL-5および/またはIL-13によるB細胞の活性化、(5)B細胞によるIgAの産生、並びに、(6)IgAによるヘリコバクターピロリへの結合およびクリアランス。 The above suggests that the following protective responses to Helicobacter pylori infection occur: (1) production of IL-33 by gastric tissue, (2) activation of ILC2 by IL-33, ( 3) production of IL-5 and / or IL-13 by ILC2, (4) activation of B cells by IL-5 and / or IL-13 produced by ILC2, (5) production of IgA by B cells, And (6) binding and clearance of Helicobacter pylori by IgA.
[実施例10]バンコマイシン処理マウスの胃におけるバクテリア結合IgA量の検討
 バンコマイシン投与を3週間行ったマウスおよびコントロールとしてSPFマウスの胃内容物と胃粘液層を上述の方法で回収した。回収したサンプルは1gに対して1mlの無菌PBSを加え良く懸濁した後、8000gで5分遠心を行った。上清をバクテリア層として回収し、再度15000gで15分遠心を行った。沈殿物をIgAが結合したバクテリアとして回収し、1%FBS/PBSで洗浄後、2.4G2抗体で15分ブロッキングを行った。1%FBS/PBSで洗浄後、蛍光色素であるPEを結合した抗IgA抗体で4度、30分染色した。染色後はPBSで3度洗浄し、DAPIで5分染色し、最後にもう一度PBSにて洗浄してフローサイトメトリー解析を行った。
[Example 10] Investigation of the amount of bacterial-bound IgA in the stomach of vancomycin-treated mice The stomach contents and the gastric mucus layer of SPF mice treated with vancomycin-administered mice for 3 weeks and SPF mice were collected as described above. The collected sample was suspended by adding 1 ml of sterile PBS to 1 g, and then centrifuged at 8000 g for 5 minutes. The supernatant was collected as a bacterial layer and centrifuged again at 15,000 g for 15 minutes. The precipitate was collected as IgA-bound bacteria, washed with 1% FBS / PBS, and blocked with 2.4G2 antibody for 15 minutes. After washing with 1% FBS / PBS, the cells were stained four times with an anti-IgA antibody conjugated with PE as a fluorescent dye for 30 minutes. After staining, the cells were washed three times with PBS, stained with DAPI for 5 minutes, and finally washed once again with PBS, and subjected to flow cytometry analysis.
 図12に示される通り、対照(バンコマイシン未処理のSPFマウス)と比較して、バンコマイシン処理したSPFマウスの胃内容物および胃粘液(バイオフィルム)においては、バクテリアに結合しているIgA量の減少が示された。これは即ち、バンコマイシン処理により胃におけるS24-7の固体数が減少し、付随してILC2の細胞数が減少する。ILC2の減少により、IL-5および/またはIL-13の産生量が低下し、B細胞の活性化が低減される。その結果、胃において分泌されるIgA量が減少したと考えられる。従って、本実施例は、S24-7科の共生細菌が胃における分泌型IgA量に直接的に影響を与え得ることを実証するものである。 As shown in FIG. 12, the amount of IgA bound to bacteria in the stomach contents and gastric mucus (biofilm) of vancomycin-treated SPF mice was lower than that of control (vancomycin-untreated SPF mice). It has been shown. This means that vancomycin treatment reduces the number of S24-7 individuals in the stomach and concomitantly reduces the number of ILC2 cells. The decrease in ILC2 reduces the production of IL-5 and / or IL-13 and reduces B cell activation. As a result, it is considered that the amount of IgA secreted in the stomach was reduced. Thus, this example demonstrates that commensal bacteria of the family S24-7 can directly affect secretory IgA levels in the stomach.
[実施例11]Muribaculum intestinaleによる胃ILC2およびIgAの誘導
 Type strainであるMuribaculum intestinale(「YL27」とも称する)を1x10CFU/マウスをGFマウスに一度だけ経口投与で感染させ、2週間後に当該感染マウスを解剖して、胃の細胞を、フローサイトメトリーで解析した。本実験の概要を図13(a)に、実験結果を図13(b)~(d)にそれぞれ示す。
[Example 11] Induction of gastric ILC2 and IgA by Muribabaculum intestinale A type strain, Muribaculum intestinale (also referred to as “YL27”), was orally administered once to a GF mouse once at 1 × 10 8 CFU / mouse, and two weeks after the infection, Mice were dissected and stomach cells were analyzed by flow cytometry. FIG. 13A shows an outline of this experiment, and FIGS. 13B to 13D show the experimental results.
 図13に示される通り、YL27を感染させたGFマウスでは、胃に存在するILC2が有意に増加していた。また、2型のサイトカイン(IL-5およびIL-13)も増加していた。従って、YL27は、胃におけるILC2を誘導することができる細菌であることが示された。 さ れ る As shown in FIG. 13, in GF mice infected with YL27, ILC2 present in the stomach was significantly increased. Type 2 cytokines (IL-5 and IL-13) were also increased. Therefore, YL27 was shown to be a bacterium capable of inducing ILC2 in the stomach.
 さらに、感染したマウスの胃の組織におけるplgRの発現をqPCRで確認した。同時に、胃内容物および糞便に含まれるIgAの量をELISAで確認した。結果を図14に示す。 Furthermore, the expression of plgR in the stomach tissue of the infected mouse was confirmed by qPCR. At the same time, the amount of IgA contained in the stomach contents and feces was confirmed by ELISA. FIG. 14 shows the results.
 図14に示される通り、Y27に感染したマウスの胃の組織においては、plgRの発現量が有意に増加していた(図14(a))。また、Y27に感染したマウスの胃内容物および糞便のいずれにおいても、IgA量が増加していた。 PAs shown in FIG. 14, in the stomach tissue of the mouse infected with Y27, the expression level of plgR was significantly increased (FIG. 14 (a)). In addition, IgA levels were increased in both the stomach contents and feces of the mice infected with Y27.
[実施例12]胃におけるYL27の存在の確認
 YL27を感染させたマウスの胃において、当該YL27が存在することを確認した。Y27の16s rRNAの338-355を検出するプローブ(EUB338(5'-GCTGCCTCCCGTAGGAGT-3':配列番号29)に、蛍光色素(Alexa488)を結合させ、FISH法(プロトコールの詳細は上記参照)によりYL27の胃における存在を確認した。結果を図15に示す。
[Example 12] Confirmation of presence of YL27 in stomach It was confirmed that YL27 was present in the stomach of a mouse infected with YL27. A fluorescent dye (Alexa488) was bound to a probe (EUB338 (5′-GCTGCCTCCCGTAGGAGT-3 ′: SEQ ID NO: 29)) for detecting 338-355 of the 16s rRNA of Y27, and YL27 was obtained by the FISH method (see above for details of the protocol). Was confirmed in the stomach, and the results are shown in FIG.
 図15に示される通り、YL27感染マウスの胃中には、YL27が存在することが示された。 通 り As shown in FIG. 15, it was shown that YL27 was present in the stomach of YL27-infected mice.
[実施例13]YL27によるピロリ菌の感染予防効果の検討
 無菌マウスにYL27(1x10/mouse)を経口投与した。該投与後1週間の時点において再度YL27(1x10/mouse)を投与した。2回目のYL27の投与の翌日に、ピロリ菌を経口感染させた。ピロリ菌感染後2週間の時点で感染マウスを解剖し、(1)感染マウスの胃内容物又は糞便におけるIgA産生量、(2)感染マウスの胃におけるpIgRのmRNA発現量、及び、(3)感染マウスの胃組織中のピロリ菌量を解析した。尚、(1)および(2)に用いた解析方法は上述のとおりである。また、(3)の解析方法の概要は次の通りである:ピロリ菌感染後2週間の時点のマウスを屠殺し、胃を採取した。採取した胃から内容物を取り除き、胃組織の重量を測定後にハサミで細断し、ピロリ菌(PMSS1)培養液体培地に懸濁した。懸濁液はしばらく静置して、次いで大きな組織を除いた後に、ピロリ菌培養用寒天培地(BD BBLPlate)で2日間培養した。
Example 13 Examination of YL27 Infection Prevention Effect on H. pylori Infection was performed by orally administering YL27 (1 × 10 8 / mouse) to sterile mice. One week after the administration, YL27 (1 × 10 8 / mouse) was administered again. The day after the second administration of YL27, H. pylori was orally infected. Two weeks after H. pylori infection, the infected mice were dissected, and (1) IgA production in the stomach contents or feces of the infected mice, (2) mRNA expression of pIgR in the stomach of the infected mice, and (3) The amount of H. pylori in the stomach tissue of infected mice was analyzed. The analysis method used in (1) and (2) is as described above. The outline of the analysis method (3) is as follows: Two weeks after the infection with H. pylori, the mice were sacrificed and the stomach was collected. The contents of the collected stomach were removed, and the weight of the stomach tissue was measured, cut into small pieces with scissors, and suspended in a H. pylori (PMSS1) culture liquid medium. The suspension was allowed to stand for a while, and after removing large tissues, the suspension was cultured for 2 days on an agar medium for culturing H. pylori (BD BBLPlate).
 本実施例の実験スケジュールの概要を図16に示し、(1)~(3)の結果を図17~19にそれぞれ示す。 実 験 The outline of the experiment schedule of this example is shown in FIG. 16, and the results of (1) to (3) are shown in FIGS. 17 to 19, respectively.
 図17に示される通り、IgA産生量は、胃内容物では有意差はないもののIgA量は増加しており、糞便中のIgA量は有意に増加していた。また、図18に示される通り、胃組織におけるpIgR発現も、YL27の感染前投与により有意に発現が誘導されていた。 さ れ る As shown in FIG. 17, the IgA production was not significantly different in the stomach contents, but the IgA amount was increased, and the IgA amount in feces was significantly increased. In addition, as shown in FIG. 18, the expression of pIgR in gastric tissue was also significantly induced by administration of YL27 before infection.
 さらに、図19に示される通り、YL27を事前に投与したマウスでは、対照と比較して有意に胃に存在するピロリ菌数が減少していた。 Furthermore, as shown in FIG. 19, the number of H. pylori present in the stomach of the mice to which YL27 had been administered in advance was significantly reduced as compared with the control.
 以上の結果から、YL27はピロリ菌感染を抑制し得ることが示された。換言すれば、YL27の摂取により、ピロリ菌感染を予防し得ることが示された。 The above results indicate that YL27 can suppress H. pylori infection. In other words, it was shown that ingestion of YL27 could prevent H. pylori infection.
 本発明によれば、対象における胃において免疫担当細胞の一種であるILC2の発現を誘導することができる。誘導されたILC2はIL-5やIL-13等のサイトカインを産生/分泌し、胃に存在するB細胞を刺激する。刺激されたB細胞は抗体産生細胞に分化し、その結果として対象の胃におけるIgA産生が誘導・亢進され、ピロリ菌をはじめとする経口感染症の治療および/または予防することができる。従って、本発明は、医薬分野等において非常に有用である。 According to the present invention, it is possible to induce the expression of ILC2, a type of immunocompetent cell, in the stomach of a subject. The induced ILC2 produces / secretes cytokines such as IL-5 and IL-13 and stimulates B cells present in the stomach. The stimulated B cells are differentiated into antibody-producing cells, and as a result, IgA production in the stomach of the subject is induced and enhanced, so that oral infections including H. pylori can be treated and / or prevented. Therefore, the present invention is very useful in the field of medicine and the like.
 本出願は、日本で出願された特願2018-189489(出願日:2018年10月4日)を基礎としており、その内容は本明細書に全て包含されるものである。 This application is based on Japanese Patent Application No. 2018-189489 filed in Japan (filing date: October 4, 2018), the contents of which are incorporated in full herein.

Claims (26)

  1.  以下の特性を有する少なくとも1種の細菌を含む、胃におけるILC2誘導剤:
    (1)バンコマイシンに対する感受性、および、
    (2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。
    An ILC2 inducer in the stomach comprising at least one bacterium having the following properties:
    (1) sensitivity to vancomycin, and
    (2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
  2.  細菌が、さらに以下の特性を有する、請求項1記載の誘導剤:
    (3)配列番号1に示されるヌクレオチド配列を有する。
    2. The inducer of claim 1, wherein the bacterium further has the following properties:
    (3) It has the nucleotide sequence shown in SEQ ID NO: 1.
  3.  細菌が、S24-7科に属する細菌である、請求項1または2記載の誘導剤。 誘導 The inducer according to claim 1 or 2, wherein the bacterium is a bacterium belonging to the family S24-7.
  4.  細菌が、以下の(1)または(2)のヌクレオチドを含む、請求項1~3のいずれか一項記載の誘導剤:
    (1)配列番号28に示されるヌクレオチド、または、
    (2)配列番号28に示されるヌクレオチドと少なくとも90%以上の同一性を有するヌクレオチド。
    The inducer according to any one of claims 1 to 3, wherein the bacterium comprises the following nucleotides (1) or (2):
    (1) a nucleotide represented by SEQ ID NO: 28, or
    (2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28;
  5.  以下の特性を有する少なくとも1種の細菌を含む、胃におけるIgA産生誘導剤:
    (1)バンコマイシンに対する感受性、および、
    (2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。
    An inducer of IgA production in the stomach comprising at least one bacterium having the following properties:
    (1) sensitivity to vancomycin, and
    (2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
  6.  細菌が、さらに以下の特性を有する、請求項5記載の産生誘導剤:
    (3)配列番号1に示されるヌクレオチド配列を有する。
    The production inducer according to claim 5, wherein the bacterium further has the following properties:
    (3) It has the nucleotide sequence shown in SEQ ID NO: 1.
  7.  細菌が、S24-7科に属する細菌である、請求項5または6記載の産生誘導剤。 7. The production inducer according to claim 5, wherein the bacterium is a bacterium belonging to the family S24-7.
  8.  細菌が、以下の(1)または(2)のヌクレオチドを含む、請求項5~7のいずれか一項記載の産生誘導剤:
    (1)配列番号28に示されるヌクレオチド、または、
    (2)配列番号28に示されるヌクレオチドと少なくとも90%以上の同一性を有するヌクレオチド。
    The production inducer according to any one of claims 5 to 7, wherein the bacterium comprises the following nucleotide (1) or (2):
    (1) a nucleotide represented by SEQ ID NO: 28, or
    (2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28;
  9.  以下の特性を有する細菌を含む、経口感染症の治療または予防剤:
    (1)バンコマイシンに対する感受性、および、
    (2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。
    An agent for treating or preventing an oral infection, comprising a bacterium having the following properties:
    (1) sensitivity to vancomycin, and
    (2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
  10.  細菌が、さらに以下の特性を有する、請求項9記載の治療または予防剤:
    (3)配列番号1に示されるヌクレオチド配列を有する。
    The therapeutic or prophylactic agent according to claim 9, wherein the bacterium further has the following properties:
    (3) It has the nucleotide sequence shown in SEQ ID NO: 1.
  11.  細菌が、S24-7科の細菌である、請求項9または10記載の治療または予防剤。 治療 The therapeutic or preventive agent according to claim 9 or 10, wherein the bacterium is a bacterium belonging to the family S24-7.
  12.  細菌が、以下の(1)または(2)のヌクレオチドを含む、請求項9~11のいずれか一項記載の治療または予防剤:
    (1)配列番号28に示されるヌクレオチド、または、
    (2)配列番号28に示されるヌクレオチドと少なくとも90%以上の同一性を有するヌクレオチド。
    The therapeutic or prophylactic agent according to any one of claims 9 to 11, wherein the bacterium comprises the following nucleotide (1) or (2):
    (1) a nucleotide represented by SEQ ID NO: 28, or
    (2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28;
  13.  経口感染症が、以下の群から選択される感染の少なくとも1つである、請求項9~12のいずれか一項記載の治療または予防剤:
     ピロリ菌感染症、O:157感染症、およびサルモネラ感染症。
    The therapeutic or prophylactic agent according to any one of claims 9 to 12, wherein the oral infection is at least one of infections selected from the following group:
    H. pylori infections, O: 157 infections, and Salmonella infections.
  14.  以下の特性を有する少なくとも1種の細菌を対象に経口投与することを含む、胃におけるILC2誘導方法:
    (1)バンコマイシンに対する感受性、および、
    (2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。
    A method for inducing ILC2 in the stomach, comprising orally administering to a subject at least one bacterium having the following properties:
    (1) sensitivity to vancomycin, and
    (2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
  15.  細菌が、さらに以下の特性を有する、請求項14記載の誘導方法:
    (3)配列番号1に示されるヌクレオチド配列を有する。
    15. The method according to claim 14, wherein the bacterium further has the following properties:
    (3) It has the nucleotide sequence shown in SEQ ID NO: 1.
  16.  細菌が、S24-7科に属する細菌である、請求項14または15記載の誘導方法。 誘導 The induction method according to claim 14 or 15, wherein the bacterium is a bacterium belonging to the family S24-7.
  17.  細菌が、以下の(1)または(2)のヌクレオチドを含む、請求項14~16のいずれか一項記載の誘導方法:
    (1)配列番号28に示されるヌクレオチド、または、
    (2)配列番号28に示されるヌクレオチドと少なくとも90%以上の同一性を有するヌクレオチド。
    The induction method according to any one of claims 14 to 16, wherein the bacterium comprises the following nucleotide (1) or (2):
    (1) a nucleotide represented by SEQ ID NO: 28, or
    (2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28;
  18.  以下の特性を有する少なくとも1種の細菌を対象に経口投与することを含む、胃におけるIgA産生誘導方法:
    (1)バンコマイシンに対する感受性、および、(2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。
    A method for inducing IgA production in the stomach, comprising orally administering to a subject at least one bacterium having the following properties:
    (1) sensitivity to vancomycin, and (2) resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
  19.  細菌が、さらに以下の特性を有する、請求項18記載の産生誘導方法:
    (3)配列番号1に示されるヌクレオチド配列を有する。
    19. The method of inducing production according to claim 18, wherein the bacterium further has the following properties:
    (3) It has the nucleotide sequence shown in SEQ ID NO: 1.
  20.  細菌が、S24-7科に属する細菌である、請求項18または19記載の産生誘導方法。 The production induction method according to claim 18 or 19, wherein the bacterium is a bacterium belonging to the family S24-7.
  21.  細菌が、以下の(1)または(2)のヌクレオチドを含む、請求項18~20のいずれか一項記載の産生誘導方法:
    (1)配列番号28に示されるヌクレオチド、または、
    (2)配列番号28に示されるヌクレオチドと少なくとも90%以上の同一性を有するヌクレオチド。
    The production induction method according to any one of claims 18 to 20, wherein the bacterium comprises the following nucleotides (1) or (2):
    (1) a nucleotide represented by SEQ ID NO: 28, or
    (2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28;
  22.  以下の特性を有する細菌を対象に経口投与することを含む、経口感染症の治療または予防方法:
    (1)バンコマイシンに対する感受性、および、
    (2)アンピシリン、コリスチン、ネオマイシン、およびメトロニダゾールからなる群から選択される少なくとも1つの薬剤に対する耐性。
    A method for treating or preventing an oral infection comprising orally administering to a subject a bacterium having the following properties:
    (1) sensitivity to vancomycin, and
    (2) Resistance to at least one drug selected from the group consisting of ampicillin, colistin, neomycin, and metronidazole.
  23.  細菌が、さらに以下の特性を有する、請求項22記載の治療または予防方法:
    (3)配列番号1に示されるヌクレオチド配列を有する。
    23. The method of treatment or prevention according to claim 22, wherein the bacterium further has the following properties:
    (3) It has the nucleotide sequence shown in SEQ ID NO: 1.
  24.  細菌が、S24-7科の細菌である、請求項22または23記載の治療または予防方法。 24. The method according to claim 22 or 23, wherein the bacterium is a bacterium belonging to the family S24-7.
  25.  細菌が、以下の(1)または(2)のヌクレオチドを含む、請求項22~24のいずれか一項記載の治療または予防方法:
    (1)配列番号28に示されるヌクレオチド、または、
    (2)配列番号28に示されるヌクレオチドと少なくとも90%以上の同一性を有するヌクレオチド。
    The treatment or prevention method according to any one of claims 22 to 24, wherein the bacterium comprises the following nucleotide (1) or (2):
    (1) a nucleotide represented by SEQ ID NO: 28, or
    (2) a nucleotide having at least 90% or more identity to the nucleotide shown in SEQ ID NO: 28;
  26.  経口感染症が、以下の群から選択される感染の少なくとも1つである、請求項22~25のいずれか一項記載の治療または予防方法:
     ピロリ菌感染症、O:157感染症、およびサルモネラ感染症。
    The treatment or prevention method according to any one of claims 22 to 25, wherein the oral infection is at least one of infections selected from the following group:
    H. pylori infections, O: 157 infections, and Salmonella infections.
PCT/JP2019/039036 2018-10-04 2019-10-03 Method for inducing production of iga targeting ilc2 WO2020071463A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020550524A JP7444459B2 (en) 2018-10-04 2019-10-03 Method for inducing IgA production targeting ILC2

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018189489 2018-10-04
JP2018-189489 2018-10-04

Publications (1)

Publication Number Publication Date
WO2020071463A1 true WO2020071463A1 (en) 2020-04-09

Family

ID=70054806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039036 WO2020071463A1 (en) 2018-10-04 2019-10-03 Method for inducing production of iga targeting ilc2

Country Status (2)

Country Link
JP (1) JP7444459B2 (en)
WO (1) WO2020071463A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016530239A (en) * 2013-07-09 2016-09-29 ピュアテック ベンチャーズ、エルエルシー Disease treatment composition comprising a combination of microbiota-derived bioactive molecules
JP2017515890A (en) * 2014-04-10 2017-06-15 国立研究開発法人理化学研究所 Compositions and methods for the induction of Th17 cells
JP2018039833A (en) * 2011-12-01 2018-03-15 国立大学法人 東京大学 Human-derived bacteria that induce proliferation or accumulation of regulatory T cells
WO2019017389A1 (en) * 2017-07-18 2019-01-24 学校法人慶應義塾 Anti-bacterial composition against th1 cell-inducing bacteria

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018039833A (en) * 2011-12-01 2018-03-15 国立大学法人 東京大学 Human-derived bacteria that induce proliferation or accumulation of regulatory T cells
JP2016530239A (en) * 2013-07-09 2016-09-29 ピュアテック ベンチャーズ、エルエルシー Disease treatment composition comprising a combination of microbiota-derived bioactive molecules
JP2017515890A (en) * 2014-04-10 2017-06-15 国立研究開発法人理化学研究所 Compositions and methods for the induction of Th17 cells
WO2019017389A1 (en) * 2017-07-18 2019-01-24 学校法人慶應義塾 Anti-bacterial composition against th1 cell-inducing bacteria

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ATARASHI, K. ET AL.: "Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota", NATURE, vol. 500, 2013, pages 232 - 236, XP055178303, DOI: 10.1038/nature12331 *
HONDA, K. ET AL.: "The microbiota in adaptive immune homeostasis and disease", NATURE, vol. 535, 2016, pages 75 - 84, XP055704338 *
LAGKOUVARDOS, I. ET AL.: "The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota", NATURE MICROBIOLOGY, vol. 1, no. 16131, 2016, pages 1 - 15, XP055704332 *
NOTO, DAISUKE ET AL.: "Gut microbiota and immune disease", JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, vol. 258, no. 10, 2016, pages 909 - 914 *
SATO, NAOKO ET AL.: "Natural lymphocytes controlled by symbiotic bacteria and disease induction", EXPERIMENTAL MEDICINE, vol. 37, no. 2, January 2019 (2019-01-01), pages 61 - 66 *
SATO, NAOKO: "Study on localizationand role of ILCs in stomach", RESEARCH REPORT OF GRANT-IN-AID FOR SCIENTIFIC RESEARCH, 2017 *
SATOH, N. ET AL.: "Identification of an ILC2 population in the stmach which responds to commensal and pathogenic bacteria", THE 46TH ANNUAL MEETING OF THE JAPANESE SOCIETY FOR IMMUNOLOGY, vol. 46, 2017 *
UBEDA, C. ET AL.: "Roles of the intestinal microbiota in pathogen protection", CLINICAL & TRANSLATIONAL IMMUNOLOGY, vol. 6, e128, 2017, XP055704335 *

Also Published As

Publication number Publication date
JP7444459B2 (en) 2024-03-06
JPWO2020071463A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
Toubal et al. Mucosal-associated invariant T cells promote inflammation and intestinal dysbiosis leading to metabolic dysfunction during obesity
Pelly et al. IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection
Omenetti et al. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells
Garidou et al. The gut microbiota regulates intestinal CD4 T cells expressing RORγt and controls metabolic disease
Horai et al. Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site
Korn et al. Conventional CD4+ T cells regulate IL-22-producing intestinal innate lymphoid cells
Goto et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation
Wu et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells
Peng et al. Long term effect of gut microbiota transfer on diabetes development
Stanisavljević et al. Gut microbiota confers resistance of albino oxford rats to the induction of experimental autoimmune encephalomyelitis
Dhawan et al. Acetylcholine-producing T cells in the intestine regulate antimicrobial peptide expression and microbial diversity
Chen et al. Diet modifies colonic microbiota and CD4+ T-cell repertoire to induce flares of colitis in mice with myeloid-cell expression of interleukin 23
Shen et al. Roseburia intestinalis stimulates TLR5-dependent intestinal immunity against Crohn's disease
JP2022133363A (en) Bacteria that induce Th1 cells
JP2021118687A (en) Novel bifidobacterium bifidum strains and polysaccharides derived therefrom
Wiechers et al. The microbiota is dispensable for the early stages of peripheral regulatory T cell induction within mesenteric lymph nodes
Breyner et al. Oral delivery of pancreatitis‐associated protein by Lactococcus lactis displays protective effects in dinitro‐benzenesulfonic‐acid‐induced colitis model and is able to modulate the composition of the microbiota
Xu et al. Mediation of mucosal immunoglobulins in buccal cavity of teleost in antibacterial immunity
Nakajima et al. Commensal bacteria regulate thymic Aire expression
de Aguiar et al. Fecal IgA levels and gut microbiota composition are regulated by invariant natural killer T cells
Lee et al. Intestinal antiviral signaling is controlled by autophagy gene Epg5 independent of the microbiota
Wah-Suárez et al. Inflammatory bowel disease: The role of commensal microbiome in immune regulation
Metwaly et al. Diet prevents the expansion of segmented filamentous bacteria and ileo-colonic inflammation in a model of Crohn’s disease
Chen et al. The intracellular innate immune sensor NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth
JP7444459B2 (en) Method for inducing IgA production targeting ILC2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868574

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550524

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19868574

Country of ref document: EP

Kind code of ref document: A1