WO2020071326A1 - Fluorescent polymer and method for manufacturing fluorescent polymer, and fluorescent polymer particles, liquid dispersion, composite, and fluorescent polymer coating method - Google Patents

Fluorescent polymer and method for manufacturing fluorescent polymer, and fluorescent polymer particles, liquid dispersion, composite, and fluorescent polymer coating method

Info

Publication number
WO2020071326A1
WO2020071326A1 PCT/JP2019/038573 JP2019038573W WO2020071326A1 WO 2020071326 A1 WO2020071326 A1 WO 2020071326A1 JP 2019038573 W JP2019038573 W JP 2019038573W WO 2020071326 A1 WO2020071326 A1 WO 2020071326A1
Authority
WO
WIPO (PCT)
Prior art keywords
derivative
polymer
fluorescent
monomer
fluorescent polymer
Prior art date
Application number
PCT/JP2019/038573
Other languages
French (fr)
Japanese (ja)
Inventor
博隆 伊原
誠 高藤
桑原 穣
広貴 野口
信生 山田
Original Assignee
国立大学法人熊本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人熊本大学 filed Critical 国立大学法人熊本大学
Publication of WO2020071326A1 publication Critical patent/WO2020071326A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the present invention relates to a fluorescent polymer and a method for producing a fluorescent polymer.
  • the present invention relates to a fluorescent polymer particle, a dispersion liquid, and a composite related to the fluorescent polymer.
  • the present invention also relates to a method for coating a fluorescent polymer.
  • Microparticles with fluorescent properties are used in various fields including various sensing materials. Most of the fluorescent fine particles so far have been inorganic nanoparticles having a rare metal or the like as a constituent component, or fluorescent organic molecules introduced into the nanoparticles by a chemical reaction or a doping method.
  • Patent Document 1 discloses a composition for forming a wavelength conversion film for photoelectric conversion containing a polymer or oligomer having a fluorescent site and a solvent.
  • the polymer or oligomer include an acrylic resin, a methacrylic resin, a novolak resin, an aminoplast polymer, a polyamide, a polyimide, and a polyester. It is described that the introduction of a fluorescent site (fluorescent site) into a polymer or oligomer side chain can be performed, for example, by graft polymerization.
  • Patent Document 1 also introduces a side chain, so that there are cases where the number of fluorescent sites is small or dropout from the side chain becomes a problem. Under such circumstances, an object of the present invention is to provide a new fluorescent polymer and a method for producing the same.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the following inventions meet the above-mentioned objects, and have accomplished the present invention. That is, the present invention relates to the following inventions.
  • a fluorescent polymer having a structural unit derived from a first monomer and a structural unit derived from a crosslinking agent The first monomer is a polycyclic fluorescent compound having two or more hydroxy groups, an anthracene derivative, a fluorene derivative, a pyrene derivative, an anthraquinone derivative, a porphyrin derivative, a binaphthalene derivative, a bipyridine derivative, At least one selected from the group consisting of biphenyl derivatives, bisphenol derivatives, xanthene derivatives, dibenzofuran derivatives, and naphthalene derivatives;
  • a fluorescent polymer in which the first monomer is at least a part of a structural unit of a main chain of the fluorescent polymer and is crosslinked by a crosslinking agent.
  • ⁇ 2> The fluorescent polymer according to ⁇ 1>, wherein the crosslinking agent is a triazinan derivative and / or hexamethylenetetramine.
  • ⁇ 4> A dispersion containing the fluorescent polymer according to ⁇ 1> or ⁇ 2>, wherein water and / or an organic solvent is used as a dispersion medium.
  • ⁇ 5> A composite of a fluorescent polymer having a site containing the fluorescent polymer according to ⁇ 1> or ⁇ 2> on a carrier and / or a substrate.
  • a method for producing a fluorescent polymer in which the first monomer is crosslinked with a crosslinking agent is a polycyclic fluorescent compound having two or more hydroxy groups, an anthracene derivative, a fluorene derivative, a pyrene derivative, an anthraquinone derivative, a porphyrin derivative, a binaphthalene derivative, a bipyridine derivative, At least one selected from the group consisting of biphenyl derivatives, bisphenol derivatives, xanthene derivatives, dibenzofuran derivatives, and naphthalene derivatives;
  • ⁇ 7> a mixing step of mixing the first monomer, the crosslinking agent, and the polymerization solvent to prepare a monomer mixture; In the monomer mixture, a reaction step of polymerizing the first monomer and the crosslinking agent to form a polymer solution containing a fluorescent polymer, The method for producing a fluorescent polymer according to ⁇ 6>, further comprising a recovery step of recovering the fluorescent polymer from the polymer solution.
  • the reaction step is a step of copolymerizing by microwave heating.
  • the fluorescent polymer according to the above ⁇ 1> or ⁇ 2> is brought into contact with a carrier and / or a substrate to provide a portion containing the fluorescent polymer on the carrier and / or the substrate.
  • a method for coating a fluorescent polymer is provided.
  • a polymer which is easy to control the production process and exhibits fluorescence.
  • This polymer can also be formed into particles. Further, this polymer has excellent dispersibility, and various liquids such as an aqueous solution and an organic solvent can be used as a solvent.
  • FIG. 5 is an image obtained by TEM observation of the polymer (1) of Example 1.
  • 4 is a graph showing the measurement results of zeta potential when the pH of a liquid containing the polymer (1) of Example 1 was changed.
  • FIG. 3 is a diagram showing a change in color of a liquid containing the polymer (1) of Example 1 when the pH is changed.
  • 3 is a graph showing UV-visible light absorption characteristics (a) and excitation light-fluorescence characteristics (b) of a liquid containing the polymer (1) of Example 1.
  • FIG. 5 is a graph showing UV-visible light absorption characteristics (a) and excitation light-fluorescence characteristics (b) when the pH of a liquid containing the polymer (1) of Example 1 is adjusted to 9; It is a figure which shows the external appearance of the solution which disperse
  • 3 is a graph showing ultraviolet-visible light absorption characteristics (a) and excitation light-fluorescence characteristics (b) of a solution in which the polymer (1) of Example 1 is dispersed in various solvents.
  • FIG. 2 is a diagram showing a structural formula estimated as a polymer (1) of Example 1 and C, H, and N ratios in the estimated structural formula.
  • FIG. 4 is a graph showing UV-visible light absorption characteristics (a) and excitation light-fluorescence characteristics (b) of a liquid containing the polymer (2-1) of Example 2.
  • FIG. 9 is a view showing an observation result when a liquid containing the polymer (2-1) of Example 2 was irradiated with laser light.
  • FIG. 8 is a view showing an observation result when a liquid containing the polymer (2-1) of Example 2 is irradiated with illumination having a wavelength of 364 nm.
  • 5 is a graph showing UV-visible light absorption characteristics (a) and excitation light-fluorescence characteristics (b) when the pH of a liquid containing the polymer (2-2) of Example 2 is changed.
  • 9 is a histogram of a particle size distribution of a polymer (3) of Example 3.
  • 5 is a fluorescence spectrum measured by exciting a solution containing the polymer (3) at 500 nm.
  • 9 is an image obtained by TEM observation of a production example of the polymer particles of Example 4.
  • 9 is a histogram of a particle size distribution of Examples 4-1 and 4-7.
  • FIG. 9 is a view showing the results of observation of a dispersion solution of the fluorescent polymer-coated silica particles of Example 5 under normal light (a) and under excitation light (b).
  • 9 is an SEM observation image of a production example of the polymer particles of Example 6.
  • 9 is a graph showing ultraviolet-visible light absorption characteristics (a) and excitation light-fluorescence characteristics (b) of a solution in which the polymer (6) of Example 6 is dispersed in a solvent.
  • 9 is an SEM observation image of a production example of the polymer particles of Example 7.
  • 9 is a graph showing ultraviolet-visible light absorption characteristics (a) and excitation light-fluorescence characteristics (b) of a solution in which the polymer (7) of Example 7 is dispersed in a solvent.
  • 9 is a graph showing ultraviolet-visible light absorption characteristics (a) and excitation light-fluorescence characteristics (b) of a solution in which the polymer (8) of Example 8 is dispersed in a solvent.
  • the fluorescent polymer of the present invention is a fluorescent polymer having a structural unit derived from a first monomer and a structural unit derived from a crosslinking agent, wherein the first monomer is a polymer having two or more hydroxy groups.
  • Cyclic fluorescent compound anthracene derivative, fluorene derivative, pyrene derivative, anthraquinone derivative, porphyrin derivative, binaphthalene derivative, bipyridine derivative, biphenyl derivative, bisphenol derivative, xanthene derivative, dibenzofuran derivative A derivative, and at least one selected from the group consisting of naphthalene-based derivatives, wherein the first monomer is at least a part of a structural unit of a main chain of the fluorescent polymer and is cross-linked by a cross-linking agent.
  • the method for producing a fluorescent polymer of the present invention is a method for producing a fluorescent polymer in which a first monomer is cross-linked by a cross-linking agent, wherein the first monomer has two or more hydroxy groups.
  • the method for producing a fluorescent polymer of the present invention is a preferred method for producing the fluorescent polymer of the present invention, and the corresponding configurations in the present application can be used mutually.
  • the fluorescent polymer of the present invention shows fluorescence. That is, it is a polymer that emits fluorescence when irradiated with excitation light.
  • This fluorescent polymer has a cross-linked structure, is non-degradable, and does not elute a fluorescent site, and has high stability. Further, it can be dispersed in an aqueous solution having a pH of 0 to 14 without adding a dispersant. Further, the composition can be dispersed in an organic solvent without adding a dispersant.
  • the present inventors use a predetermined polycyclic fluorescent compound as a polymerizable monomer having a fluorescent moiety, and are capable of immobilizing the fluorescent moiety by a covalent bond or a cross-linking reaction in a polymer main chain.
  • the reactive polymer and its production method were studied.
  • a polymer obtained by using a predetermined polycyclic fluorescent compound and further copolymerizing with a crosslinking agent such as a triazinan derivative becomes a fluorescent polymer having fluorescence to visible light. I found that.
  • the polymer particles using the fluorescent polymer of the present invention are spherical and exhibit high monodispersity, are excellent in solvent resistance and weather resistance, etc., and have high stability in the fluorescent polymer particles in which the fluorescent portion is hardly eluted. It can also be.
  • a fluorescent polymer can also be used as a bioanalytical marker in addition to a conventional fluorescent filler and an analytical marker which are used for a fluorescent substance and the like.
  • the first monomer used in the fluorescent polymer of the present invention is a polycyclic fluorescent compound having two or more hydroxy groups.
  • the polycyclic fluorescent compounds include anthracene derivatives, fluorene derivatives, pyrene derivatives, anthraquinone derivatives, porphyrin derivatives, binaphthalene derivatives, bipyridine derivatives, biphenyl derivatives, bisphenol derivatives, xanthene derivatives, and dibenzofuran. And at least one selected from the group consisting of a derivative based on a naphthalene derivative.
  • This first monomer becomes at least a part of the structural unit of the main chain of the fluorescent polymer.
  • any one compound may be used, or two or more compounds may be used in combination.
  • the first monomer is a polycyclic fluorescent compound having two or more hydroxy groups.
  • the polycyclic fluorescent compound is a cyclic compound having fluorescence and having a plurality of closed rings made of carbon or the like.
  • the polycyclic fluorescent compound as the first monomer of the present invention has two or more hydroxy groups (OH groups).
  • OH groups hydroxy groups
  • the polymer is crosslinked by a crosslinking agent to form a polymer having a crosslinked structure or the like. At least one of these hydroxy groups is bonded to the ring structure of a cyclic compound like a phenolic hydroxyl group.
  • These hydroxy groups are preferably those bonded to the ring of a cyclic compound, such as at least two phenolic hydroxyl groups. Further, it is preferable that one or more hydroxy groups are bonded to a plurality of different ring structures.
  • the polymerization reaction of the fluorescent polymer of the present invention can be based on various polymerization reactions that occur depending on the combination of the first monomer and the crosslinking agent, and is not limited.
  • a typical polymerization reaction presumed is, for example, a phenolic hydroxyl group (a phenolic hydroxy group), which reacts with a crosslinking agent by using both a hydroxy group bonded to an aromatic ring and a carbon atom adjacent thereto. It is considered that the polymerization reaction proceeds while the reaction proceeds. Further, a second phenolic hydroxyl group for accelerating the crosslinking reaction is required in order for the polymer to be formed into particles or the like which can be easily collected as a solid. That is, it is considered that the polymerization reaction and the cross-linking reaction can proceed simultaneously by having two or more phenolic hydroxyl groups, and as a result, spherical particles and the like can be obtained.
  • the polycyclic fluorescent compound includes an anthracene derivative (skeleton of formula (A)), a fluorene derivative (skeleton of formula (B)), a pyrene derivative (skeleton of formula (C)), and an anthraquinone derivative (formula (C)).
  • (D) a porphyrin derivative (skeleton of formula (E)), a binaphthalene derivative (skeleton of formula (F)), a bipyridine derivative (skeleton of formula (G), etc.), a biphenyl derivative (formula (G)).
  • a bisphenol derivative skeleton of formula (I)
  • a xanthene derivative skeleton of formula (J)
  • a dibenzofuran derivative skeleton of formula (K)
  • a naphthalene derivative formula (L)
  • substituents are not particularly limited as long as the polycyclic fluorescent compound shows fluorescence and a fluorescent polymer can be obtained, but in addition to the structure serving as a skeleton, the number of other substituents of the hydroxy group is not limited. It may be 5 or less or 3 or less.
  • These polycyclic fluorescent compounds when used as the fluorescent polymer of the present invention, become a part of the main chain of the polymer, and further exhibit a fluorescent property at a wavelength of about visible light (370 to 800 nm). It will be shown. This fluorescent characteristic has a strong fluorescent intensity that can be easily confirmed visually. Further, it is considered that a polymer having a crosslinked structure or the like is likely to be formed as a monomer forming the polymer, and the polymer has high stability. These polycyclic fluorescent compounds tend to exhibit fluorescence in the visible region from ultraviolet light to the compounds themselves, and by using the fluorescent polymer of the present invention, the electronic state is changed or the fused ring structure is enlarged. It is considered that the polymer has a structure in which the fluorescence characteristics easily shift or show fluorescence on the long wavelength side, and a polymer showing fluorescence in the visible light region is easily obtained.
  • the polycyclic fluorescent compound includes an anthracene derivative (skeleton of formula (A)), a fluorene derivative (skeleton of formula (B)), a biphenyl derivative (skeleton of formula (H)), and a bisphenol derivative (skeleton of formula (H)). It is preferably selected from the group consisting of: (skeleton of formula (I)).
  • These derivatives are easy to use in the production of a polymer because the polymerization proceeds easily and the structure of the monomer is easy to adjust, and they are excellent in production efficiency because they are easily available. Among them, it is more preferable to be selected from the group consisting of an anthracene derivative (skeleton of formula (A)) and a fluorene derivative (skeleton of formula (B)).
  • the degree of polymerization can be easily controlled based on the C / N ratio and the like, and it is easy to produce a particulate polymer or a polymer covering a carrier or the like.
  • each polycyclic fluorescent compound includes those having the structure of each skeleton and having fluorescent properties.
  • those containing optical isomers, including compounds specifically exemplified, include any optical isomers exhibiting fluorescent properties.
  • anthracene derivative has an anthracene (formula (A)) structure and has two or more hydroxy groups.
  • anthracene derivatives represented by the following formulas (a-1) to (a-5) can be used.
  • the fluorene derivative has a structure of fluorene (formula (B)) and has two or more hydroxy groups.
  • fluorene derivatives represented by the following formulas (b-1) to (b-5) can be used.
  • the pyrene-based derivative has a structure of pyrene (formula (C)) and has two or more hydroxy groups.
  • pyrene derivatives represented by the following formulas (c-1) to (c-3) can be used.
  • an anthraquinone derivative is one having an anthraquinone skeleton (formula (D)) and having two or more hydroxy groups.
  • anthraquinone derivatives represented by the following formulas (d-1) to (d-2) can be used.
  • porphyrin derivative In the present application, the porphyrin-based derivative has a structure of porphyrin (formula (E)) and has two or more hydroxy groups.
  • porphyrin derivatives represented by the following formulas (e-1) to (e-2) can be used.
  • the binaphthalene derivative has a structure of binaphthalene (chemical formula (F)) and has two or more hydroxy groups.
  • binaphthalene derivatives represented by the following formulas (f-1) to (f-2) can be used.
  • a bipyridine derivative refers to a structure of bipyridine (chemical formula (G)) (more specifically, a chemical formula (G-1) (2,2′-bipyridine) or a chemical formula (G-2) (4, 4′-bipyridine)) and has two or more hydroxy groups.
  • bipyridines of the following formulas (g-1) to (g-2) can be used.
  • biphenyl derivative in the present application, has a structure of biphenyl (chemical formula (H)) and has two or more hydroxy groups.
  • biphenyl derivatives represented by the following formulas (h-1) to (h-2) can be used.
  • the bisphenol derivative is a bisphenol having the structure of the chemical formula (I) and having two or more hydroxy groups.
  • Bisphenol is a compound having two or more hydroxyphenyl groups
  • X in the chemical formula (I) is a portion having a structure to which the two or more hydroxyphenyl groups are bonded.
  • the structure to be bonded include a structure derived from any one selected from the group consisting of acetone, acetophenone, hexafluoroacetone, butanone, benzophenone, dichloroketone, acetaldehyde, formaldehyde, sulfur trioxide, trimethylcyclohexanone, and cyclohexanone.
  • bisphenol of the following formula (i-1) can be used.
  • the xanthene derivative has a structure of xanthene (formula (J)) and has two or more hydroxy groups.
  • the dibenzofuran-based derivative has a structure of dibenzofuran (formula (K)) and has two or more hydroxy groups.
  • a xanthene derivative represented by the following formulas (j-1) to (j-2) can be used as the xanthene derivative.
  • the dibenzofuran-based derivatives also have a similar structure according to these, and those in which any one of the 1- to 9-positions (particularly, one or more of 1-4 and one or more of 6--9) is substituted with an OH group. Can be used.
  • the naphthalene-based derivative has a structure of naphthalene (formula (L)) and has two or more hydroxy groups.
  • a naphthalene derivative represented by the following formula (1-1) can be used. Since 1,5-dihydroxynaphthalene tends to have a low fluorescence intensity of visible light when used as a single compound and the polymer of the present invention, a compound exceeding the fluorescence intensity of 1,5-dihydroxynaphthalene is preferably used.
  • a compound (2,6-dihydroxynaphthalene) represented by (1-1) is preferable.
  • the present invention uses a crosslinking agent.
  • the crosslinking agent used in the present invention reacts with the first monomer having a hydroxy group to form a fluorescent polymer.
  • a crosslinking agent for example, a two-component crosslinking agent using a mixture of formaldehyde and an aliphatic amine can be used. Further, a triazinan derivative can be used as a crosslinking agent as the second monomer. Hexamethylenetetramine can also be used as a crosslinking agent as the second monomer.
  • a triazinan derivative may be used as the second monomer used as a crosslinking agent.
  • the triazinane derivative is a kind of heterocyclic compound and has a skeleton of a six-membered ring structure containing three nitrogen atoms (formula (X)). It is preferable that the triazinan derivative has two or more substituents.
  • triazinan derivatives of the formulas (x-1) to (x-4) can be used.
  • 1,3,5-trimethylhexahydro-1,3,5-triazinan of the formula (x-1) is preferably used.
  • Such a triazinan derivative is particularly suitable for producing the fluorescent copolymer of the present invention by reacting with the first monomer.
  • the molar ratio of the raw materials in the production process of the fluorescent copolymer of the present invention can be easily adjusted with the triazinan derivative.
  • the reaction can be performed without using a polymerization initiator, a metal catalyst, or the like.
  • Formaldehyde and aliphatic amine As the crosslinking agent of the present invention, a two-component type in which formaldehyde and an aliphatic amine are mixed may be used. At this time, the molar ratio of formaldehyde to the aliphatic amine is adjusted in the range of about 1: 3 to 3: 1, preferably about 1: 2 to 2: 1, and it is most preferable to use it at about 1: 1. As formaldehyde, formalin or the like may be used.
  • the aliphatic amine is represented by the general formula R—NH 2, where R is preferably an alkyl group having 5 or less carbon atoms.
  • alkyl group having 5 or less carbon atoms examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, and a cyclobutyl group. , Cyclopropylmethyl, n-pentyl, cyclopentyl, cyclopropylethyl, and cyclobutylmethyl groups.
  • R is preferably a methyl group, an ethyl group, or a propyl group.
  • R is preferably a methyl group, an ethyl group, or a propyl group.
  • Specific examples of such compounds include methylamine, ethylamine, and propylamine. Particularly, methylamine is preferably used.
  • Hexamethylenetetramine can also be used as the crosslinking agent of the present invention. Hexamethylenetetramine is also called hexamine or 1,3,5,7-tetraazaadamantane. Formula (Y) shows the structure of hexamethylenetetramine.
  • the fluorescent polymer of the present invention is a fluorescent polymer having a structural unit derived from a first monomer and a structural unit derived from a crosslinking agent.
  • the fluorescent polymer of the present invention is preferably a fluorescent polymer which is a polymer having a structural unit derived from a first monomer and a structural unit derived from a second monomer. Having a structure derived from each monomer enables the structure to be ascertained from, for example, the result of analyzing the IR spectrum of the polymer.
  • the structural unit derived from the first monomer and the structural unit derived from the second monomer form a three-dimensional crosslinkable polymer.
  • the structural unit derived from the first monomer forms a structure in which a plurality of hydroxy groups are generated by a reaction such as polymerization with each other or with a substituent or the like of a crosslinking agent. Due to this structure, the structural unit derived from the first monomer is a component constituting the main chain of the polymer. Further, a structural unit derived from a crosslinking agent may be polymerized as a component constituting the main chain.
  • the fluorescent polymer of the present invention may be a single first monomer or a polymer obtained by polymerizing two or more first monomers. Further, in addition to the first monomer, the crosslinking agent and the second monomer, another monomer may be further polymerized.
  • the other monomer is not particularly limited as long as it is polymerizable, and examples thereof include a compound having one phenolic hydroxy group.
  • the other monomer may not have a structure showing fluorescence as the monomer.
  • Such other monomers include, for example, phenol, 1-naphthol, and the like.
  • the structure derived from each monomer in the fluorescent polymer of the present invention is preferably at least 10 mol%, more preferably at least 20 mol%, as a percentage of the structure derived from the first monomer.
  • the upper limit of the ratio occupied by the structure derived from the first monomer can be determined within a range in which polymerization is possible. Since crosslinking is carried out by a crosslinking agent for polymerization, the ratio occupied by the structure derived from the first monomer may be set to an upper limit of 90 mol% or less, 80 mol% or less, or 70 mol% or less.
  • the proportion occupied by the structure derived from the cross-linking agent, the second monomer, and the other monomer described above is appropriately set as the balance of the proportion occupied by the structure derived from the first monomer.
  • the proportion occupied by the structure derived from another monomer may have an upper limit of 50 mol% or less, 30 mol% or less, 10 mol% or less.
  • the degree of polymerization can be evaluated by the C / N ratio, which is a quantitative ratio of elements, and the charged amount of the monomer as a raw material can be evaluated. Or the degree of polymerization can be evaluated in comparison with the C / N ratio based on the When the fluorescent polymer of the present invention is crosslinked and polymerized, the C / N ratio of the obtained polymer is changed from the C / N ratio of one raw material or the C / N ratio as the total amount of the raw materials. It will be.
  • the C / N ratio as a polymer is calculated by polymerization including N derived from a crosslinking agent.
  • N in the polymer tends to be lower than the C / N ratio based on the charged amount, and the C / N ratio becomes higher.
  • a C / N ratio of about 3 to 50, about 5 to 30, or about 8 to 20 may be used as an index of the polymer.
  • this numerical range may be an effective index.
  • anthracene-based derivative (the above-described chemical formula (a-1)) and a triazinan-based derivative (the above-mentioned chemical formula (x-1)) are charged and synthesized at an equivalent ratio
  • the C / N ratio of all the monomers based on these charging ratios is about 5.7, and N is not contained in the anthracene-based derivative. Even so, the C / N ratio becomes a very high value.
  • the C / N ratio of the charge ratio is larger than 7 and 8 or more.
  • the upper limit of the C / N ratio varies depending on the degree of polymerization, for example, the upper limit can be controlled to 30 or less or 20 or less.
  • the structure presumed to be the main structure at the time of polymerization has a C / N ratio of about 13.7 or 8.1, and it is considered that these are mixed. Therefore, the C / N ratio as a polymer can be in a preferred range of about 9.0 to 13.0 or 9.5 to 12.5.
  • the fluorescent polymer of the present invention may be used as a substance made of a polymer, or may be used after being complexed with another substance.
  • it can be a particle or pellet substantially composed of a polymer, a dispersion, a solution or a slurry dispersed in a dispersion medium or the like, or a composite with a carrier or a substrate.
  • the fluorescent polymer of the present invention, and a composition, a composite, and the like containing the same can exhibit fluorescence and have a low rare metal content.
  • the content of the rare metal is low, which means that the content of the rare metal is substantially equal to or less than the amount contained as a substantial impurity.
  • An upper limit as described below may be provided or managed, or may not be substantially included as in the detection lower limit or less.
  • This rare metal is a rare metal as a compound having a known fluorescent property.
  • the fluorescent polymer of the present invention has fluorescence.
  • This fluorescent light includes short-lived fluorescent light, which emits light as soon as the electromagnetic wave for excitation is stopped, and phosphorescent light, which has a long light-emitting life, and is irradiated with short-wavelength light (electromagnetic wave) having high energy.
  • the resulting light emission In the present application, the generation of this fluorescence is referred to as fluorescence, and the polymer exhibiting this fluorescence is referred to as a fluorescent polymer.
  • this light emission can generate visible light (wavelength 370 to 800 nm). The emission of this visible light can be strong enough for humans to visually confirm in darkness or the like.
  • the fluorescent polymer of the present invention can be a fluorescent polymer particle having a diameter of 3 to 500 nm.
  • the fluorescent polymer particles can consist essentially of the fluorescent polymer of the present invention. These fluorescent polymer particles can be produced in a granular form together with the polymerization by adjusting the polymerization time, the polymerization temperature, and the monomer amount ratio in the polymerization step of the fluorescent polymer of the present invention. By making the nanoparticles extremely small, having a diameter of 3 to 500 nm, a dispersion or the like containing the particles can be excellent in light transmission and fluorescence.
  • the lower limit of the diameter of the fluorescent polymer particles may be 5 nm or more, 10 nm or more, or 20 nm or more in consideration of ease of handling and ease of production control.
  • the upper limit may be set to 400 nm or less or 300 nm or less so that the transparency and the dispersibility are further improved.
  • these diameters may be the average particle diameter of the primary particles of the polymer particles.
  • Particle size / monodispersibility These particles can be produced and collected as nano-scale particles of about 3 to 500 nm.
  • the particles can have excellent monodispersity in particle size.
  • the monodispersity can be determined using the coefficient of variation (CV value) of the particle size as an index. When the CV value is 20% or less, particles having more excellent handleability and fluorescent properties can be obtained.
  • This CV value is a numerical value calculated as “standard deviation of particle size (nm) / average particle size (nm) ⁇ 100”. The smaller the CV value, the smaller the variation in particle size.
  • the average particle size and the standard deviation of the particle size can be measured by analyzing electron micrographs of the particles taken by FE-TEM or FE-SEM using an image analyzer. These calculations are preferably made from 50 or more randomly selected particles.
  • the particles can be recovered as spherical particles. This spherical shape may be evaluated by average sphericity, and the average sphericity can be 80% or more. The average sphericity can be 90% or more, or 95% or more. The average sphericity can be measured by analyzing the electron micrographs of the particles taken by FE-TEM or FE-SSEM using an image analyzer with the sphericity as the minor axis / major axis. The average sphericity is preferably the average value of the sphericity of 50 or more randomly selected particles.
  • Polymer dispersion It is a dispersion containing the fluorescent polymer of the present invention using the fluorescent polymer of the present invention, and can be a dispersion using water or an organic solvent as a dispersion medium.
  • the term “dispersion” includes a state including any state in which the fluorescent polymer is dispersed or dissolved, and is referred to as a dispersion.
  • the dispersion medium also includes a solvent, and the dispersion includes a solution.
  • the fluorescent polymer of the present invention can be an amphiphilic polymer showing hydrophilicity and hydrophobicity. When prepared as an aqueous dispersion or an aqueous solution, it can be dispersed in a wide range of pH from 0 to 14. From these characteristics, the fluorescent polymer of the present invention can be dispersed in various solvents. As the solvent, water, an organic solvent, a mixed solvent thereof or the like can be used. The color of the dispersion can also be adjusted by adjusting the type of solvent, pH, and the like.
  • the polymer concentration when forming a dispersion can be appropriately set in consideration of the use of the dispersion, the structure and the degree of polymerization of the polymer, and the like.
  • the lower limit of the concentration of the dispersion can be 1 mg / L or more, 5 mg / L or more, and 10 mg / L or more.
  • the upper limit of the concentration of the dispersion can be 1 g / L or less, 500 mg / L or less, or 300 mg / L or less. In such a range of 1 mg / L to 1 g / L or less which is appropriately adjusted, sufficient fluorescence is exhibited in the state of the dispersion liquid.
  • the dispersion may be handled at a higher concentration than these ranges for storage or distribution.
  • a solid exhibiting fluorescence can be obtained, or this dispersion may be contained in a translucent container and used as having a fluorescent content. .
  • a complex of a fluorescent polymer having a site containing the fluorescent polymer of the present invention on a carrier and / or a substrate can be provided.
  • the fluorescent polymer of the present invention is used in a method of coating a fluorescent polymer, in which the fluorescent polymer is brought into contact with a carrier or a substrate to provide a site containing the fluorescent polymer on the carrier or the substrate. be able to.
  • the fluorescent polymer of the present invention can be coated on a carrier or a base material to have a site containing the fluorescent polymer in the pores of the support or the base material or on the surface layer.
  • the fine particles of the fluorescent polymer and the thin film of the fluorescent polymer are widely distributed throughout the carrier and the base material.
  • the coating includes a portion having a polymer and a portion having a layer containing a fluorescent copolymer in a surface layer of a substrate or the like.
  • the polymer formed in the reaction step is applied to the carrier or the base by performing the reaction step as described below in a state where the carrier or the base material is immersed in the solution in which the reaction step is performed.
  • the material may be brought into contact with the material to be coated.
  • the reaction step may be completed, and the fluorescent polymer solution in which the fluorescent polymer is dispersed and dissolved may be coated by bringing it into contact with a carrier or a base material.
  • the collected fluorescent polymer is brought into contact with the collected fluorescent polymer by performing a collecting process described below, or coated, or the collected fluorescent polymer is dissolved and dispersed in a solvent or a dispersion medium, and is brought into contact with a carrier or a base material. Then, drying and the like may be performed as appropriate to coat.
  • carrier porous particles or the like can be used.
  • the polymer dispersed in the solvent penetrates into the pores of the porous particles, or forms a polymer in the pores of the porous particles, thereby providing a polymer layer up to the pores of the porous particles. be able to. Since the polymer can be in the form of small fine particles or a thin film, blockage of the pores of the porous particles can be prevented.
  • the base material can be various molded articles.
  • the fluorescent polymer of the present invention has excellent dispersibility in various solvents such as a hydrophilic solvent and a hydrophobic solvent, and therefore, a polymer that easily adheres to various substrates as a substrate. can do. By immersing the molded body in a polymer solution (dispersion liquid) or coating the polymer solution by various coating methods, a polymer layer can be provided on the molded body to obtain a molded body exhibiting fluorescence. Can be.
  • the present application relates to a method for producing the fluorescent polymer of the present invention.
  • the method for producing the fluorescent polymer of the present invention is a preferable method for producing the fluorescent polymer of the present invention, and the configurations corresponding to each part can be mutually used as described above. .
  • the method for producing the fluorescent polymer of the present invention can be carried out by various methods for copolymerizing the first monomer used in the present invention and a crosslinking agent (preferably the second monomer used in the present invention).
  • the method for producing a fluorescent polymer of the present invention comprises a first monomer used in the present invention, a crosslinking agent, and a mixing step of preparing a monomer mixture by mixing with a solvent for polymerization, and reacting the monomer mixture.
  • the method preferably includes a reaction step of polymerizing the first monomer and the crosslinking agent to form a polymer solution containing a fluorescent polymer, and a recovery step of recovering the fluorescent polymer from the polymer solution.
  • the method for producing a fluorescent polymer of the present invention can include a mixing step of mixing the first monomer used in the present invention, a crosslinking agent, and a solvent for polymerization to prepare a monomer mixture. Based on the mixing ratio and the like in this mixing step, the component ratio and the like of the produced fluorescent polymer can be adjusted.
  • the first monomer and the cross-linking agent used in the present invention the first monomer, the cross-linking agent, and the like that are derived from the structural unit of the fluorescent polymer of the present invention described above can be used. These can be used in accordance with the state of the substance such as each monomer, depending on the temperature and the atmosphere under the mixing conditions and the like. From the viewpoint of operability, it is preferable to use a liquid or solid material at room temperature or about room temperature (eg, about 20 to 30 ° C.). Further, in consideration of volatility and the like, a container or the like used for mixing may be used in a closed state, or may be mixed in an open state.
  • the mixing step according to the present invention uses a polymerization solvent.
  • a solvent capable of dispersing or dissolving the first monomer and the crosslinking agent can be appropriately used.
  • the first monomer and the crosslinking agent used in the present invention include those which are solid at room temperature, but by mixing using a polymerization solvent, the first monomer or the crosslinking agent is highly uniform in the mixed solution.
  • the reaction can be carried out as a dispersion in nature.
  • the polymerization solvent used in the mixing step is, for example, a group consisting of alcohols (preferably lower alcohols having 1 to 5 carbon atoms), tetrahydrofuran, water, ethylene glycol, acetonitrile, ethyl acetate, dimethylformamide, benzene, toluene, and chloroform.
  • One containing one or more solvents selected from the following can be used.
  • the polymerization solvent can be appropriately selected according to the physical properties such as the solubility of the monomer and the particle size of the fluorescent copolymer to be produced.
  • As the solvent a single solvent may be used, or a mixed solvent of a plurality of solvents may be used.
  • the solvent as described above does not inhibit the dispersibility of the first monomer and the second monomer and polymerization as a place where they react, and can be an excellent dispersion medium. Further, in the present invention, it is possible to have a step of recovering the fluorescent polymer, but also in this recovery, separation from centrifugation and the like, from the viewpoint of volatility during drying, these viewpoints Solvents are preferably used. When the reaction proceeds in a solvent, it is considered that the more the hydroxy group (OH) of the monomer is dissociated, the more the reaction proceeds. For this reason, it is preferable to use a protic polar solvent or an aprotic polar solvent.
  • the mixing ratio of the first monomer and the second monomer is 10: 1 to 1:10 or 8: 2 in a molar ratio (the molar amount of the first monomer: the molar amount of the second monomer). 22: 8, 6: 4 ⁇ 4: 6, etc.
  • the concentration in the solution the total molar amount of the first monomer and the second monomer is represented by the mass ratio to the whole solution (“the total molar amount (mol) of the first monomer and the second monomer / mol of the solution).
  • the total amount (L) ) can be about 1 mmol / L to 1 mol / L.
  • the upper limit may be reduced to 0.3 mol / L or less, 0.1 mol / L or less, or 50 mmol / L or less.
  • the lower limit may be set to make the reaction easier, or may be set to 3 mmol / L or more, 5 mmol / L or more, and 10 mmol / L or more depending on the shape (size or the like) of the target polymer.
  • the mixing of the first monomer, the crosslinking agent, and the polymerization solvent can be appropriately set according to the state of the monomer and the like (liquid or solid, etc.).
  • the monomers may be mixed and then the weighed crosslinking agent or the like may be mixed, or the order may be changed as appropriate to mix. Further, the mixture may be mixed little by little while dripping, or may be agitated to make the mixture more uniform.
  • reaction step is a step of reacting a monomer mixture to polymerize a first monomer and a crosslinking agent to obtain a polymer solution containing a fluorescent polymer.
  • the reaction conditions can be appropriately set in consideration of the respective substances of the first monomer and the crosslinking agent, the reactivity, the physical properties of the polymer to be obtained, and the like.
  • Main reaction conditions to be set are a reaction temperature and a reaction time.
  • the polymer formed by the reaction is dissolved and dispersed in the polymerization solvent to form a polymer solution.
  • the polymer may be dissolved in the solvent, dispersed in the form of particles, or may be in a state of being easily precipitated. In the present application, the state of dissolution, dispersion, and the like of the compound is referred to as a polymer solution.
  • the reaction temperature in the reaction step is preferably in the range of 0 ° C to 300 ° C. The higher the reaction temperature, the more the reaction can be promoted. If the reaction temperature is too high, the solvent or monomer may evaporate, making it difficult to adjust the reaction conditions. If the reaction temperature is too low, the polymerization may not proceed or a long time may be required.
  • the reaction step is preferably performed at a temperature higher than room temperature, and the lower limit of the reaction temperature is preferably 20 ° C. or higher, 40 ° C. or higher, 60 ° C. or higher, 80 ° C. or higher.
  • the upper limit of the reaction temperature is preferably 250 ° C. or lower, 200 ° C. or lower, or 180 ° C. or lower so that the volatilization of the solvent and the like can be prevented and the reaction can be easily controlled.
  • the reaction time of the reaction step is preferably one in which the reaction is performed for 1 minute to 48 hours.
  • the reaction time is the time from setting the temperature set as the reaction temperature to stopping the reaction in the polymerization system.
  • the reaction can be stopped when the reaction temperature is lowered from the set temperature or when a recovery step described later is started. If the reaction time is too short, it may not be possible to obtain a polymer having a sufficient degree of fluorescence, stability, shape and the like. Even if the reaction time is too long, the degree of copolymerization such as the degree of polymerization is saturated, and there is a possibility that deterioration or the like may occur due to heating or the like.
  • the lower limit of the reaction time can be set in consideration of the degree of polymerization of the polymer to be obtained, such as 2 minutes or more, 5 minutes or more, and 10 minutes or more, and the particle size at the time of forming particles.
  • the upper limit of the reaction time may be 20 hours or less, 10 hours or less, 1 hour or less, or 30 minutes or less since the fluorescent polymer according to the present invention can be obtained even if the reaction time is short.
  • the reaction process according to the method for producing a fluorescent polymer of the present invention may be carried out while appropriately stirring, applying microwaves, or the like.
  • the heating conditions can be moderated so that the reaction conditions can be easily controlled or the uniformity can be improved.
  • sufficient polymerization can be performed even under atmospheric pressure, and the production conditions can be easily controlled. For example, a polymerization reaction that takes about 6 hours at 70 ° C. in an oil bath or a water bath can be converted into a polymerization reaction of about several minutes by heating to 150 ° C. by applying a microwave.
  • the recovery step according to the method for producing a fluorescent polymer of the present invention is a step of recovering a polymer from a polymer solution.
  • the fluorescent polymer polymerized in the reaction step can form particles. In some cases, the particles are in a state of being easily dispersed or precipitated in the polymerization solvent.
  • the precipitate after centrifugation and removal of the supernatant can be used as a polymer concentrate.
  • drying may be performed. This drying may be performed on the polymer solution after the reaction or on the polymer concentrate after centrifugation.
  • the drying temperature may be appropriately set in consideration of the boiling point and volatility of the liquid used as the solvent, the stability of the polymer, and the like, and may be, for example, about 50 to 300 ° C., preferably about 80 to 150 ° C.
  • drying under reduced pressure may be appropriately performed in combination with drying by heating or the like.
  • the method for producing a fluorescent polymer of the present invention enables so-called one-pot synthesis in which mixing and reaction are performed in a single reaction vessel to obtain a predetermined fluorescent polymer. For this reason, the introduction load of the manufacturing equipment is low, and it is easy to perform various types of production from small-quantity multi-product production to mass production.
  • the present invention is a three-dimensionally crosslinked fluorescent polymer composed of a completely organic polymer and having a fluorescent site incorporated in the polymer main chain.
  • This relates to a fluorescent particle or a luminescent material whose diameter can be made to be a nano size, a method for producing the same, and the like.
  • the fluorescent polymer of the present invention is hardly decomposed and has a structure exhibiting fluorescence in the main chain of the polymer, so that the fluorescent site is hardly eluted and has high stability. In addition, it has high thermal stability and solvent resistance, and its use range is wide. For example, it is expected to be applied as a fluorescent filler or a marker for analysis, or as a marker for biological analysis.
  • -Measuring device spectrofluorometer (JASCO Corporation model number: FP-6500) Measurement conditions: Measurement was performed in an emission mode, with an excitation bandwidth of 3 nm, a fluorescence bandwidth of 3 nm, and a scanning speed of 200 nm / min. An optical cell having an optical path length of 10 mm was used for the measurement.
  • TEM JEOL Ltd. model number: JEM1400-plus
  • Measurement conditions Observation was performed under an acceleration voltage condition of 80 kV.
  • the observation sample used was a TEM grid that had been subjected to a surface hydrophilization treatment at 5.5 mA for 90 seconds using a plasma ion bombarder (Vacuum Device Inc., model number: PIB-10).
  • the sample was cast on a TEM grit and then stained using a 0.1% uranyl acetate aqueous solution.
  • ⁇ Zeta potential> -Measuring device Zeta potential measuring device (MALVERN company model number: Zetasizer Nano ZS) Measurement conditions: Disposable folded capillary cells (MALVERN model number: DTS 1070) were used as measurement cells. The measurement was performed at 25 ° C., and Smoluchowski approximation was used for the F (ka) value.
  • 2,2'-BHPP 2,2'-Bis (4-hydroxyphenyl) propane (Tokyo Chemical Industry, purity:> 99%) (Also known as: 4,4 '-(propane-2,2-diyl) diphenol)
  • Example 1 (DHA-TA) A fluorescent polymer was produced using DHA as the first monomer and TA as the second monomer. Using a mixed solvent of THF: water (volume ratio 8: 2), the concentration of DHA is 10 mmol / L (“mmol / L” may be abbreviated as “mM”), and the concentration of TA is 10 mmol / L. A certain monomer mixture (1) was prepared. This monomer mixture (1) was heated at 150 ° C. for 3 minutes while stirring at 300 rpm using a microwave synthesizer (Anton Paar model: Mono wave 300), and the monomer was copolymerized to obtain a polymer solution (1). Obtained.
  • the polymer solution (1) was diluted with ethanol, centrifuged at 20,000 rpm for 45 minutes, the supernatant was removed, and the dispersion on the precipitate side was collected.
  • This dispersion contains a polymer (1) of DHA and TA.
  • This dispersion was further dried under reduced pressure at room temperature to obtain a polymer (1).
  • the physical properties of the polymer (1) were evaluated.
  • FIG. 1 is a TEM observation image of the obtained polymer (1). As shown in FIG. 1, spherical particles having a diameter of about 30 nm were obtained.
  • FIG. 2 is a graph showing the pH dependence of the charge state at the particle interface of the obtained polymer (1). Under acidic conditions, the lower the pH, the more positive the zeta potential (Zeta Potential). Therefore, it is considered that the polymer (1) has a structure having N. Under basic conditions, the higher the pH, the more negative the zeta potential becomes. Therefore, it is considered that the polymer (1) has a structure having OH. The two electrolytic properties indicate that an anionic dihydroxy compound and a cationic triazinan unit are present at the particle interface.
  • FIG. 3 is a photograph showing a dispersion solution containing water as a dispersion medium containing the polymer (1) at a concentration of about 5 mg / mL.
  • PH was adjusted from 0.1N hydrochloric acid or 0.1N sodium hydroxide aqueous solution to acidic to basic from left to right in FIG. pH 2.5, pH 3.0, pH 3.5, pH 4.0, pH 7.0, and pH 12.0. It was yellow in the acidic state on the left side and red in the basic state on the right side, and it was confirmed that the dispersion medium whose color changes with pH can be adjusted.
  • FIG. 4 confirms the ultraviolet-visible light absorption characteristics (FIG. 4 (a)) and the excitation light-fluorescence characteristics (FIG. 4 (b)) of the polymer (1).
  • 4 shows an ultraviolet-visible spectrum and a fluorescence spectrum when the obtained polymer particles are dispersed in a mixed solution of ethanol and water (volume ratio: 9: 1).
  • the broken line in the graph is a mixture of the monomer (DHA) as it is, and the solid line is the dispersion medium containing the polymer (1).
  • DHA monomer
  • the solid line is the dispersion medium containing the polymer (1).
  • an absorption band not observed in the monomer dispersion medium appears around 500 to 550 nm. Further, when excited at 345 nm, light emission not found in the monomer was observed at 550 to 700 nm in the polymer particle dispersion.
  • FIG. 5 shows the results obtained by changing the pH of the solution of the polymer (1) and confirming the ultraviolet-visible light absorption characteristics (FIG. 5A) and the excitation light-fluorescence characteristics (FIG. 5B).
  • 4 shows an ultraviolet-visible spectrum and a fluorescence spectrum when the obtained polymer particles are dispersed in a mixed solution of ethanol: water (volume ratio: 9: 1) adjusted to pH9.
  • a normal broken line is a mixture of the monomer (DHA) as it is, and a solid line is a dispersion medium of pH 9 containing the polymer (1).
  • the absorption intensity around 500 nm was reduced and changed to a spectrum having a specific absorption maximum at 564 nm.
  • a fluorescence spectrum not observed with the raw material was observed at 500 to 800 nm.
  • FIG. 6 shows observation results of a solution in which the polymer (1) is dispersed in various solvents, (a) excited under normal light and (b) excited at 364 nm.
  • FIG. 7 shows the results of measuring the ultraviolet-visible and fluorescence spectra of a typical solution in FIG. It was confirmed that the optical characteristics, particularly the fluorescence characteristics, changed significantly depending on the dispersion medium.
  • the DHA solution of the monomer has a fluorescence intensity around 420-440 nm and shows bluish fluorescence.
  • the polymer (1) according to the present invention a broad and strong fluorescence intensity around 540-600 nm was exhibited, and a strong yellow fluorescence was exhibited.
  • Example 2 [Production of polymer (2-1) (BHPF-TA)] A fluorescent polymer was produced using BHPF as the first monomer and TA as the second monomer. Ethanol: water (volume ratio 9: 1) was mixed, and mixed with a mixed solvent (2-1) adjusted to pH 12 with a 0.1N NaOH aqueous solution so that BHPF 20 mmol / L and TA 20 mmol / L. A monomer mixture (2-1) was prepared. The monomer mixture (2-1) was heated at 150 ° C. for 30 minutes while stirring at 300 rpm using a microwave synthesizer, and the monomers were copolymerized to obtain a polymer solution (2-1).
  • This dispersion liquid (2-1) contains a polymer (2-1) of a fluorene-based monomer and TA.
  • FIG. 9 confirms the ultraviolet-visible light absorption characteristics (FIG. 9A) and the excitation light-fluorescence characteristics (FIG. 9B).
  • the excitation light in FIG. 9B has a wavelength of 407 nm at which strong absorption of the polymer (2-1) is confirmed.
  • the broken line in the graph is a mixture of the monomer (BHPF) as it is, and the solid line is the dispersion medium containing the polymer (2-1).
  • FIG. 10 shows the observation results when the polymer solution was irradiated with laser light.
  • FIG. 11 shows an observation result obtained when irradiation with light having a wavelength of 364 nm is performed.
  • FIG. 9 confirms the ultraviolet-visible light absorption characteristics (FIG. 9A) and the excitation light-fluorescence characteristics (FIG. 9B).
  • the excitation light in FIG. 9B has a wavelength of 407 nm at which strong absorption of the polymer (2-1) is confirmed.
  • the broken line in the graph is
  • (a) shows the evaluation result of the liquid before polymerization in which the monomer was dispersed in ethanol at the same concentration as the dispersion liquid (2-1).
  • (B) shows the evaluation result of the dispersion liquid (2-1) containing the polymer.
  • the dispersion liquid (2-1) containing the polymer was colored yellow.
  • the dispersion liquid (2-1) exhibited strong fluorescence by excitation at a wavelength of 364 nm or 407 nm (FIGS. 9 and 11). Irradiation of the dispersion liquid (2) with laser light causes light scattering, so that it was confirmed that a very small granular polymer was dispersed (FIG. 10).
  • the polymer solution (2-2) was diluted with acetonitrile, centrifuged at 20,000 rpm for 45 minutes, the supernatant was removed, and the dispersion on the precipitate side was collected.
  • This dispersion contains a polymer (2-2) of DHA and TA.
  • FIG. 12 shows an ultraviolet-visible spectrum and a fluorescence spectrum when the polymer (2-2) is dispersed in a mixed solution of ethanol and water (volume ratio 9: 1) adjusted to pH 13 and pH 2.
  • the ultraviolet-visible spectrum shifts toward the longer wavelength side by about 50 nm.
  • a characteristic fluorescence emission is confirmed when excited at 495 nm.
  • Example 3 (2,6DHN-HMT) A monomer mixture (3) was prepared so that the concentration of 2,6-DHN was 30 mmol / L and the concentration of HMT was 30 mmol / L in ethanol.
  • the monomer mixture (3) was heated at 200 ° C. for 10 minutes while stirring at 300 rpm using a microwave synthesizer, and the monomers were copolymerized to obtain a polymer solution (3).
  • the polymer solution (3) was diluted with ethanol, centrifuged at 20,000 rpm for 30 minutes, and the supernatant was removed to obtain a polymer (3).
  • FIG. 13 is a histogram of the particle size distribution of the polymer (3). Particles having an average particle size of 39 nm and a CV value of 17.5% were observed.
  • FIG. 14 shows the UV spectrum of the ethanol solution (3) and the polymer solution (3) of 2,6-DHN and the result of fluorescence spectrum measurement excited at 500 nm. Polymer solution (3) has an absorption band at 400-500 nm that is not found in 2,6-DHN. Further, when each solution was excited at 500 nm and the fluorescence spectrum was measured, light emission not observed in the ethanol solution of 2,6-DHN was observed.
  • Example 4 Table 1 shows the production conditions of the polymers produced according to Example 1 and Example 2. From Example 4-1 it was confirmed that a fluorescent polymer could be obtained under any of the production conditions of Example 4-8.
  • the average particle size shown in Table 1 is a value obtained by randomly measuring the particle size of 50 or more particles from an image obtained by TEM observation, and dividing the sum of the measured values by the number of measured values.
  • FIG. 15 shows a TEM observation image of the obtained fluorescent polymer. As shown in FIG. 15, it was confirmed that particles having a particle size of about 26 nm to 215 nm can be obtained under these manufacturing conditions. In each case, particles having high monodispersity were obtained, and typically, in Example 4-1 and Example 4-7, CV values of 17.5% and 18.4% were obtained, respectively. .
  • FIG. 16 is a histogram of Example 4-1 and Example 4-7.
  • Example 5 ⁇ Coating of fluorescent polymer> Using DHA as the first monomer and TA as the second monomer, nanosilica (Snowtex S (manufactured by Nissan Chemical Industries, Ltd., 30% aqueous dispersion, average particle size 50 nm)) was coated with a fluorescent polymer. The nanosilica was centrifuged under the conditions of 20,000 rpm for 15 minutes, and the precipitated component was redispersed in ethanol and used (silica content: 40 mg / mL). A mixed solution (5) was prepared by adding 2.6 mL of silica dispersion (105 mg of silica), 10.5 mg of DHA, and 6.45 mg of TA to ethanol. The mixture (5) was heated at 75 ° C.
  • FIG. 17 shows a state where the fluorescent polymer-coated silica particles (5) are dispersed in water and irradiated with ultraviolet light having a wavelength of 364 nm.
  • FIG. 17 shows (a) a sample in which fluorescent polymer-coated silica particles (5) are dispersed in water, a few drops of 0.1N HCl added, (b) nothing added, (c) 0 A few drops of .1N NaOH were added.
  • A) shows a white color
  • (b) shows a red-orange color
  • (c) shows a blue-green color, showing different fluorescent colors by changing pH conditions.
  • Example 6 (2,2'-DHBP-TA) A fluorescent polymer was produced using 2,2′-DHBP as the first monomer and TA as the second monomer. Using a mixed solvent of EtOH: water (volume ratio 9: 1), a monomer mixture (6) was prepared in which each of 2,2′-DHBP and TA had a concentration of 75 mM. The monomer mixture (6) was heated at 150 ° C. for 30 minutes while stirring at 300 rpm using a microwave synthesizer to copolymerize the monomers to obtain a polymer solution (6). This polymer solution was filtered through a membrane filter to recover a yellow polymer (6).
  • FIG. 18 is an SEM observation image of the obtained polymer (6). As shown in FIG. 18, spherical particles having a diameter of about 2.5 ⁇ m were obtained.
  • FIG. 19 shows UV-visible light absorption characteristics (FIG. 19 (a)) and excitation light-fluorescence characteristics (FIG. 19 (A)) of a solution obtained by adding 50 ⁇ L of a 0.1N aqueous sodium hydroxide solution to an ethanol dispersion solution of the polymer (6). b)) was confirmed.
  • the intensity of the absorption band at 330 nm was increased as compared with the monomer solution.
  • Excitation at 281 nm increased the emission intensity around 410 nm.
  • Example 7 (4,4'-DHBP-TA) A fluorescent polymer was produced using 4,4′-DHBP as the first monomer and TA as the second monomer. Using a mixed solvent of EtOH: water (volume ratio 9: 1), a monomer mixture (7) having a concentration of 4,4′-DHBP and TA of 75 mM was prepared. This monomer mixture (7) was heated at 200 ° C. for 30 minutes while stirring at 300 rpm using a microwave synthesizer to copolymerize the monomers to obtain a polymer solution (7). This polymer solution was filtered with a membrane filter to recover a yellow polymer (7).
  • FIG. 20 is an SEM observation image of the obtained polymer (7). As shown in FIG. 20, spherical particles having a diameter of about 2.5 ⁇ m were obtained.
  • FIG. 21 shows UV-visible absorption characteristics (FIG. 21 (a)) and excitation light-fluorescence characteristics (FIG. 21 (A)) of a solution obtained by adding 50 ⁇ L of a 0.1N aqueous sodium hydroxide solution to an ethanol dispersion solution of the polymer (7). b)) was confirmed. In addition, it was confirmed that when excited at 300 nm, the emission spectrum at 400 nm to 550 nm shifted to the longer wavelength side compared to the monomer solution.
  • Example 8 (2,2′-BHPP-TA) A fluorescent polymer was produced using 2,2'-BHPP as the first monomer and TA as the second monomer. Using a mixed solvent of EtOH: water (volume ratio 9: 1), a monomer mixture (8) was prepared in which each of 2,2′-BHPP and TA had a concentration of 75 mM. The monomer mixture (8) was heated at 150 ° C. for 30 minutes while stirring at 300 rpm using a microwave synthesizer to copolymerize the monomers, thereby obtaining a polymer solution (8). This polymer solution was filtered with a membrane filter to recover a white polymer.
  • FIG. 22 shows UV-visible light absorption characteristics (FIG. 22 (a)) and excitation light-fluorescence characteristics (FIG. 22 (A)) of a solution obtained by adding 50 ⁇ L of a 0.1N aqueous sodium hydroxide solution to an ethanol dispersion solution of the polymer (8). b)) was confirmed. When excited at 295 nm in the polymer dispersion medium, an emission spectrum at 350 nm to 500 nm that was not observed in the monomer solution was observed.
  • the fluorescent polymer of the present invention can be used as a novel fluorescent substance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

Provided is a novel fluorescent polymer that can be in the form of fluorescent fine particles or the like. A fluorescent polymer having structural units derived from a first monomer and structural units derived from a crosslinking agent, wherein the first monomer is a polycyclic fluorescent compound having two or more hydroxy groups, and is one or more species selected from the group consisting of anthracene derivatives, fluorene derivatives, pyrene derivatives, anthraquinone derivatives, porphyrin derivatives, binaphthalene derivatives, bipyridine derivatives, biphenyl derivatives, bisphenol derivatives, xanthene derivatives, dibenzofuran derivatives, and naphthalene derivatives, and the first monomer constitutes at least a portion of the structural units of the main chain of the fluorescent polymer and is crosslinked by a crosslinking agent.

Description

蛍光性重合体および蛍光性重合体の製造方法、ならびに蛍光性ポリマー粒子、分散液、複合体、蛍光性重合体の被覆方法Fluorescent polymer, method for producing fluorescent polymer, and method for coating fluorescent polymer particles, dispersion, composite, and fluorescent polymer
 本発明は、蛍光性重合体および蛍光性重合体の製造方法に関する。また、蛍光性重合体に係る、蛍光性ポリマー粒子、分散液、複合体に関する。また、蛍光性重合体の被覆方法に関する。 The present invention relates to a fluorescent polymer and a method for producing a fluorescent polymer. In addition, the present invention relates to a fluorescent polymer particle, a dispersion liquid, and a composite related to the fluorescent polymer. The present invention also relates to a method for coating a fluorescent polymer.
 蛍光特性を有する微粒子は、各種センシング材料をはじめとする多様な分野で利用されている。これまでの蛍光性微粒子の多くはレアメタル等を構成成分にもつ無機系ナノ粒子や、蛍光性有機分子を化学反応やドープ法によってナノ粒子中に導入したものであった。 微粒子 Microparticles with fluorescent properties are used in various fields including various sensing materials. Most of the fluorescent fine particles so far have been inorganic nanoparticles having a rare metal or the like as a constituent component, or fluorescent organic molecules introduced into the nanoparticles by a chemical reaction or a doping method.
 特許文献1は、蛍光部位を有するポリマー又はオリゴマー及び溶剤を含有する光電変換用波長変換膜形成組成物を開示するものである。ここでは、ポリマー又はオリゴマーとして、例えば、アクリル樹脂、メタクリル樹脂、ノボラック樹脂、アミノプラスト重合体、ポリアミド、ポリイミド、ポリエステルが挙げられることが記載されている。蛍光部位(蛍光発生部位)のポリマー又はオリゴマー側鎖への導入は、例えばグラフト重合によって行うことができることが記載されている。 Patent Document 1 discloses a composition for forming a wavelength conversion film for photoelectric conversion containing a polymer or oligomer having a fluorescent site and a solvent. Here, it is described that examples of the polymer or oligomer include an acrylic resin, a methacrylic resin, a novolak resin, an aminoplast polymer, a polyamide, a polyimide, and a polyester. It is described that the introduction of a fluorescent site (fluorescent site) into a polymer or oligomer side chain can be performed, for example, by graft polymerization.
WO2010/050466WO2010 / 050466
 これまでの蛍光性微粒子は、レアメタル等を構成成分にもつ無機系ナノ粒子や、蛍光性有機分子を化学反応やドープによってナノ粒子中に導入したものがほとんどであったため、金属成分の溶出による毒性や、蛍光性有機分子の溶出による毒性が大きな課題であった。また、特許文献1も側鎖に導入するもののため、蛍光部位が少なかったり、側鎖からの脱落が問題になる場合があった。
 係る状況下、本発明は、新たな蛍光性重合体およびその製造方法を提供することを目的とする。
Until now, most of the fluorescent fine particles were inorganic nanoparticles containing rare metals or other components, or fluorescent organic molecules introduced into the nanoparticles by chemical reaction or doping. Also, toxicity due to elution of fluorescent organic molecules has been a major issue. In addition, Patent Document 1 also introduces a side chain, so that there are cases where the number of fluorescent sites is small or dropout from the side chain becomes a problem.
Under such circumstances, an object of the present invention is to provide a new fluorescent polymer and a method for producing the same.
 本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、下記の発明が上記目的に合致することを見出し、本発明に至った。すなわち、本発明は、以下の発明に係るものである。 The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the following inventions meet the above-mentioned objects, and have accomplished the present invention. That is, the present invention relates to the following inventions.
 <1> 第一のモノマー由来の構造単位と、架橋剤由来の構造単位とを有する蛍光性重合体であって、
 第一のモノマーが、ヒドロキシ基を2個以上有する多環式蛍光性化合物であり、アントラセン系誘導体、フルオレン系誘導体、ピレン系誘導体、アントラキノン系誘導体、ポルフィリン系誘導体、ビナフタレン系誘導体、ビピリジン系誘導体、ビフェニル系誘導体、ビスフェノール系誘導体、キサンテン系誘導体、ジベンゾフラン系誘導体、およびナフタレン系誘導体からなる群から選択される1以上であり、
 前記第一のモノマーが、蛍光性重合体の主鎖の構造単位の少なくとも一部となり、架橋剤により架橋された蛍光性重合体。
 <2> 前記架橋剤が、トリアジナン系誘導体及び/又はヘキサメチレンテトラミンである前記<1>記載の蛍光性重合体。
 <3> 前記<1>または<2>に記載の蛍光性重合体を含み、直径が3~500nmである蛍光性ポリマー粒子。
 <4> 前期<1>または<2>に記載の蛍光性重合体を含む分散液であり、水及び/又は有機溶媒を分散媒とする分散液。
 <5> 担体及び/又は基材に、前記<1>または<2>に記載の蛍光性重合体を含む部位を有する蛍光性重合体の複合体。
<1> A fluorescent polymer having a structural unit derived from a first monomer and a structural unit derived from a crosslinking agent,
The first monomer is a polycyclic fluorescent compound having two or more hydroxy groups, an anthracene derivative, a fluorene derivative, a pyrene derivative, an anthraquinone derivative, a porphyrin derivative, a binaphthalene derivative, a bipyridine derivative, At least one selected from the group consisting of biphenyl derivatives, bisphenol derivatives, xanthene derivatives, dibenzofuran derivatives, and naphthalene derivatives;
A fluorescent polymer in which the first monomer is at least a part of a structural unit of a main chain of the fluorescent polymer and is crosslinked by a crosslinking agent.
<2> The fluorescent polymer according to <1>, wherein the crosslinking agent is a triazinan derivative and / or hexamethylenetetramine.
<3> Fluorescent polymer particles containing the fluorescent polymer according to <1> or <2> and having a diameter of 3 to 500 nm.
<4> A dispersion containing the fluorescent polymer according to <1> or <2>, wherein water and / or an organic solvent is used as a dispersion medium.
<5> A composite of a fluorescent polymer having a site containing the fluorescent polymer according to <1> or <2> on a carrier and / or a substrate.
 <6> 第一のモノマーを架橋剤により架橋する蛍光性重合体の製造方法であって、
 第一のモノマーが、ヒドロキシ基を2個以上有する多環式蛍光性化合物であり、アントラセン系誘導体、フルオレン系誘導体、ピレン系誘導体、アントラキノン系誘導体、ポルフィリン系誘導体、ビナフタレン系誘導体、ビピリジン系誘導体、ビフェニル系誘導体、ビスフェノール系誘導体、キサンテン系誘導体、ジベンゾフラン系誘導体、およびナフタレン系誘導体からなる群から選択される1以上であり、
 架橋剤により、前記第一のモノマーを架橋して、前記第一のモノマーが蛍光性重合体の主鎖の構造単位の少なくとも一部とする蛍光性重合体の製造方法。
 <7> 前記第一のモノマーと、前記架橋剤と、重合用溶媒とを混合しモノマー混合液を調製する混合工程と、
 前記モノマー混合液中で、前記第一のモノマーと前記架橋剤とを重合させて蛍光性重合体を含む重合体溶液とする反応工程と、
 前記重合体溶液から前記蛍光性重合体を回収する回収工程を有する前記<6>記載の蛍光性重合体の製造方法。
 <8> 前期反応工程が、マイクロ波加熱することで共重合させるものである前記<7>記載の蛍光性重合体の製造方法。
 <9> 前記<1>または<2>に記載の蛍光性重合体を、担体及び/又は基材と接触させて、前記担体及び/又は前記基材に前記蛍光性重合体を含む部位を設ける蛍光性重合体の被覆方法。
<6> A method for producing a fluorescent polymer in which the first monomer is crosslinked with a crosslinking agent,
The first monomer is a polycyclic fluorescent compound having two or more hydroxy groups, an anthracene derivative, a fluorene derivative, a pyrene derivative, an anthraquinone derivative, a porphyrin derivative, a binaphthalene derivative, a bipyridine derivative, At least one selected from the group consisting of biphenyl derivatives, bisphenol derivatives, xanthene derivatives, dibenzofuran derivatives, and naphthalene derivatives;
A method for producing a fluorescent polymer, wherein the first monomer is cross-linked by a cross-linking agent so that the first monomer is at least a part of a structural unit of a main chain of the fluorescent polymer.
<7> a mixing step of mixing the first monomer, the crosslinking agent, and the polymerization solvent to prepare a monomer mixture;
In the monomer mixture, a reaction step of polymerizing the first monomer and the crosslinking agent to form a polymer solution containing a fluorescent polymer,
The method for producing a fluorescent polymer according to <6>, further comprising a recovery step of recovering the fluorescent polymer from the polymer solution.
<8> The method for producing a fluorescent polymer according to <7>, wherein the reaction step is a step of copolymerizing by microwave heating.
<9> The fluorescent polymer according to the above <1> or <2> is brought into contact with a carrier and / or a substrate to provide a portion containing the fluorescent polymer on the carrier and / or the substrate. A method for coating a fluorescent polymer.
 本発明によれば、製造工程を管理しやすく、蛍光性を示す重合体が提供される。この重合体は、粒子状への成形も行うことができる。また、この重合体は、分散性にも優れ、水溶液や有機溶媒等の多様な液を溶媒とすることもできる。 According to the present invention, there is provided a polymer which is easy to control the production process and exhibits fluorescence. This polymer can also be formed into particles. Further, this polymer has excellent dispersibility, and various liquids such as an aqueous solution and an organic solvent can be used as a solvent.
実施例1の重合体(1)をTEM観察した像である。5 is an image obtained by TEM observation of the polymer (1) of Example 1. 実施例1の重合体(1)を含む液のpH変更時のゼータ電位の測定結果を示すグラフである。4 is a graph showing the measurement results of zeta potential when the pH of a liquid containing the polymer (1) of Example 1 was changed. 実施例1の重合体(1)を含む液のpH変更時の色の変化を示す図である。FIG. 3 is a diagram showing a change in color of a liquid containing the polymer (1) of Example 1 when the pH is changed. 実施例1の重合体(1)を含む液の紫外可視光吸収特性(a)、励起光-蛍光特性(b)を示すグラフである。3 is a graph showing UV-visible light absorption characteristics (a) and excitation light-fluorescence characteristics (b) of a liquid containing the polymer (1) of Example 1. 実施例1の重合体(1)を含む液をpH9としたときの紫外可視光吸収特性(a)、励起光-蛍光特性(b)を示すグラフである。5 is a graph showing UV-visible light absorption characteristics (a) and excitation light-fluorescence characteristics (b) when the pH of a liquid containing the polymer (1) of Example 1 is adjusted to 9; 実施例1の重合体(1)を様々な溶媒に分散させた溶液の外観を示す図であり、(a)通常光および(b)364nmで励起した観察結果である。It is a figure which shows the external appearance of the solution which disperse | distributed the polymer (1) of Example 1 in various solvents, (a) It is the observation result excited by normal light and (b) 364 nm. 実施例1の重合体(1)を様々な溶媒に分散させた溶液の紫外可視光吸収特性(a)、励起光-蛍光特性(b)を示すグラフである。3 is a graph showing ultraviolet-visible light absorption characteristics (a) and excitation light-fluorescence characteristics (b) of a solution in which the polymer (1) of Example 1 is dispersed in various solvents. 実施例1の重合体(1)として推定される構造式と、その推定される構造式におけるC、H、N比を示す図である。FIG. 2 is a diagram showing a structural formula estimated as a polymer (1) of Example 1 and C, H, and N ratios in the estimated structural formula. 実施例2の重合体(2-1)を含む液の紫外可視光吸収特性(a)、励起光-蛍光特性(b)を示すグラフである。4 is a graph showing UV-visible light absorption characteristics (a) and excitation light-fluorescence characteristics (b) of a liquid containing the polymer (2-1) of Example 2. 実施例2の重合体(2-1)を含む液にレーザー光を照射したときの観察結果を示す図である。FIG. 9 is a view showing an observation result when a liquid containing the polymer (2-1) of Example 2 was irradiated with laser light. 実施例2の重合体(2-1)を含む液を波長364nmの照明で照射したときの観察結果を示す図である。FIG. 8 is a view showing an observation result when a liquid containing the polymer (2-1) of Example 2 is irradiated with illumination having a wavelength of 364 nm. 実施例2の重合体(2-2)を含む液のpHを変更したときの紫外可視光吸収特性(a)、励起光-蛍光特性(b)を示すグラフである。5 is a graph showing UV-visible light absorption characteristics (a) and excitation light-fluorescence characteristics (b) when the pH of a liquid containing the polymer (2-2) of Example 2 is changed. 実施例3の重合体(3)の粒径分布のヒストグラムである。9 is a histogram of a particle size distribution of a polymer (3) of Example 3. 重合体(3)を含む溶液を500nmで励起し測定した蛍光スペクトルである。5 is a fluorescence spectrum measured by exciting a solution containing the polymer (3) at 500 nm. 実施例4のポリマー粒子の製造例をTEM観察した像である。9 is an image obtained by TEM observation of a production example of the polymer particles of Example 4. 実施例4-1および4-7の粒径分布のヒストグラムである。9 is a histogram of a particle size distribution of Examples 4-1 and 4-7. 実施例5の蛍光性重合体被覆シリカ粒子の分散溶液の通常光下(a)、励起光下(b)での観察結果を示す図である。FIG. 9 is a view showing the results of observation of a dispersion solution of the fluorescent polymer-coated silica particles of Example 5 under normal light (a) and under excitation light (b). 実施例6のポリマー粒子の製造例をSEM観察した像である。9 is an SEM observation image of a production example of the polymer particles of Example 6. 実施例6の重合体(6)を溶媒に分散させた溶液の紫外可視光吸収特性(a)、励起光-蛍光特性(b)を示すグラフである。9 is a graph showing ultraviolet-visible light absorption characteristics (a) and excitation light-fluorescence characteristics (b) of a solution in which the polymer (6) of Example 6 is dispersed in a solvent. 実施例7のポリマー粒子の製造例をSEM観察した像である。9 is an SEM observation image of a production example of the polymer particles of Example 7. 実施例7の重合体(7)を溶媒に分散させた溶液の紫外可視光吸収特性(a)、励起光-蛍光特性(b)を示すグラフである。9 is a graph showing ultraviolet-visible light absorption characteristics (a) and excitation light-fluorescence characteristics (b) of a solution in which the polymer (7) of Example 7 is dispersed in a solvent. 実施例8の重合体(8)を溶媒に分散させた溶液の紫外可視光吸収特性(a)、励起光-蛍光特性(b)を示すグラフである。9 is a graph showing ultraviolet-visible light absorption characteristics (a) and excitation light-fluorescence characteristics (b) of a solution in which the polymer (8) of Example 8 is dispersed in a solvent.
 以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を変更しない限り、以下の内容に限定されない。なお、本明細書において「~」という表現を用いる場合、その前後の数値を含む表現として用いる。 Hereinafter, embodiments of the present invention will be described in detail. However, the description of constituent elements described below is an example (representative example) of an embodiment of the present invention, and the present invention is described below unless the gist is changed. It is not limited to the content of. In this specification, the expression “to” is used to include the numerical values before and after the expression.
[本発明の蛍光性重合体]
 本発明の蛍光性重合体は、第一のモノマー由来の構造単位と、架橋剤由来の構造単位とを有する蛍光性重合体であって、第一のモノマーが、ヒドロキシ基を2個以上有する多環式蛍光性化合物であり、アントラセン系誘導体、フルオレン系誘導体、ピレン系誘導体、アントラキノン系誘導体、ポルフィリン系誘導体、ビナフタレン系誘導体、ビピリジン系誘導体、ビフェニル系誘導体、ビスフェノール系誘導体、キサンテン系誘導体、ジベンゾフラン系誘導体、およびナフタレン系誘導体からなる群から選択される1以上であり、前記第一のモノマーが、蛍光性重合体の主鎖の構造単位の少なくとも一部となり、架橋剤により架橋されたものである。
[Fluorescent polymer of the present invention]
The fluorescent polymer of the present invention is a fluorescent polymer having a structural unit derived from a first monomer and a structural unit derived from a crosslinking agent, wherein the first monomer is a polymer having two or more hydroxy groups. Cyclic fluorescent compound, anthracene derivative, fluorene derivative, pyrene derivative, anthraquinone derivative, porphyrin derivative, binaphthalene derivative, bipyridine derivative, biphenyl derivative, bisphenol derivative, xanthene derivative, dibenzofuran derivative A derivative, and at least one selected from the group consisting of naphthalene-based derivatives, wherein the first monomer is at least a part of a structural unit of a main chain of the fluorescent polymer and is cross-linked by a cross-linking agent. .
[本発明の蛍光性重合体の製造方法]
 本発明の蛍光性重合体の製造方法は、第一のモノマーを架橋剤により架橋する蛍光性重合体の製造方法であって、第一のモノマーが、ヒドロキシ基を2個以上有する多環式蛍光性化合物であり、アントラセン系誘導体、フルオレン系誘導体、ピレン系誘導体、アントラキノン系誘導体、ポルフィリン系誘導体、ビナフタレン系誘導体、ビピリジン系誘導体、ビフェニル系誘導体、ビスフェノール系誘導体、キサンテン系誘導体、ジベンゾフラン系誘導体、およびナフタレン系誘導体からなる群から選択される1以上であり、架橋剤により、前記第一のモノマーを架橋して、前記第一のモノマーが蛍光性重合体の主鎖の構造単位の少なくとも一部とするものである。
 本発明の蛍光性重合体の製造方法は本発明の蛍光性重合体の好適な製造方法であり、本願においてそれぞれに対応する構成は相互に利用することができる。
[Production method of fluorescent polymer of the present invention]
The method for producing a fluorescent polymer of the present invention is a method for producing a fluorescent polymer in which a first monomer is cross-linked by a cross-linking agent, wherein the first monomer has two or more hydroxy groups. Anthracene derivative, fluorene derivative, pyrene derivative, anthraquinone derivative, porphyrin derivative, binaphthalene derivative, bipyridine derivative, biphenyl derivative, bisphenol derivative, xanthene derivative, dibenzofuran derivative, and At least one selected from the group consisting of naphthalene derivatives, wherein the first monomer is cross-linked by a cross-linking agent so that the first monomer is at least part of a structural unit of the main chain of the fluorescent polymer. Is what you do.
The method for producing a fluorescent polymer of the present invention is a preferred method for producing the fluorescent polymer of the present invention, and the corresponding configurations in the present application can be used mutually.
 本発明の蛍光性重合体は、蛍光性を示す。すなわち、励起光の照射によって蛍光を発光する重合体である。この蛍光性重合体は、架橋構造を有し、非分解性で蛍光性部位が溶出しにくく安定性が高い。また、分散剤を添加することなく、pH0~14の水溶液に分散するものとすることができる。さらに、分散剤を添加することなく、有機溶媒に分散するものとすることもできる。 蛍 光 The fluorescent polymer of the present invention shows fluorescence. That is, it is a polymer that emits fluorescence when irradiated with excitation light. This fluorescent polymer has a cross-linked structure, is non-degradable, and does not elute a fluorescent site, and has high stability. Further, it can be dispersed in an aqueous solution having a pH of 0 to 14 without adding a dispersant. Further, the composition can be dispersed in an organic solvent without adding a dispersant.
 本発明者らは、所定の多環式蛍光性化合物を、蛍光性部位を有する重合性モノマーとして用い、ポリマー主鎖中に共有結合や架橋反応によって蛍光性部位を固定化することが可能な蛍光性重合体、またその製造方法を検討した。この検討の結果、所定の多環式蛍光性化合物を用いて、さらにトリアジナン系誘導体等の架橋剤と共重合させることで得られる重合体が、可視光に蛍光性を有する蛍光性重合体となることを見出した。
 また、本発明の蛍光性重合体を用いるポリマー粒子は、球状かつ高い単分散性を示し、耐溶剤性や耐候性などにも優れ、蛍光性部位が溶出しにくく安定性が高い蛍光性ポリマー粒子とすることもできる。このような蛍光性重合体は、従来の蛍光性物質等の用途である蛍光性フィラーや分析用マーカーに加えて、生体分析用マーカーとしての応用もできる。
The present inventors use a predetermined polycyclic fluorescent compound as a polymerizable monomer having a fluorescent moiety, and are capable of immobilizing the fluorescent moiety by a covalent bond or a cross-linking reaction in a polymer main chain. The reactive polymer and its production method were studied. As a result of this study, a polymer obtained by using a predetermined polycyclic fluorescent compound and further copolymerizing with a crosslinking agent such as a triazinan derivative becomes a fluorescent polymer having fluorescence to visible light. I found that.
Further, the polymer particles using the fluorescent polymer of the present invention are spherical and exhibit high monodispersity, are excellent in solvent resistance and weather resistance, etc., and have high stability in the fluorescent polymer particles in which the fluorescent portion is hardly eluted. It can also be. Such a fluorescent polymer can also be used as a bioanalytical marker in addition to a conventional fluorescent filler and an analytical marker which are used for a fluorescent substance and the like.
[第一のモノマー]
 本発明の蛍光性重合体に用いられる第一のモノマーは、ヒドロキシ基を2個以上有する多環式蛍光性化合物である。この多環式蛍光性化合物は、アントラセン系誘導体、フルオレン系誘導体、ピレン系誘導体、アントラキノン系誘導体、ポルフィリン系誘導体、ビナフタレン系誘導体、ビピリジン系誘導体、ビフェニル系誘導体、ビスフェノール系誘導体、キサンテン系誘導体、ジベンゾフラン系誘導体、およびナフタレン系誘導体からなる群から選択される1以上である。この第一のモノマーは、蛍光性重合体の主鎖の構造単位の少なくとも一部となる。第一のモノマーはいずれか単独の化合物を用いてもよいし、2以上の複数の化合物を組み合わせて用いてもよい。
[First monomer]
The first monomer used in the fluorescent polymer of the present invention is a polycyclic fluorescent compound having two or more hydroxy groups. The polycyclic fluorescent compounds include anthracene derivatives, fluorene derivatives, pyrene derivatives, anthraquinone derivatives, porphyrin derivatives, binaphthalene derivatives, bipyridine derivatives, biphenyl derivatives, bisphenol derivatives, xanthene derivatives, and dibenzofuran. And at least one selected from the group consisting of a derivative based on a naphthalene derivative. This first monomer becomes at least a part of the structural unit of the main chain of the fluorescent polymer. As the first monomer, any one compound may be used, or two or more compounds may be used in combination.
[多環式蛍光性化合物]
 第一のモノマーは、ヒドロキシ基を2個以上有する多環式蛍光性化合物である。多環式蛍光性化合物とは、蛍光性を有し、炭素等で構成された複数の閉じた環を持つ環式化合物である。また、本発明の第一のモノマーである多環式蛍光性化合物は、ヒドロキシ基(OH基)を2個以上有する。ヒドロキシ基が2個以上あることで、架橋剤により架橋されて架橋構造等を有する重合体を形成する。これらのヒドロキシ基は、少なくとも1個は、フェノール性水酸基のように環式化合物の環構造に結合したものである。これらのヒドロキシ基は、少なくとも2個のフェノール性水酸基のように環式化合物の環に結合したものであることが好ましい。また、ヒドロキシ基が異なる複数の環構造に1以上結合していることが好ましい。
[Polycyclic fluorescent compound]
The first monomer is a polycyclic fluorescent compound having two or more hydroxy groups. The polycyclic fluorescent compound is a cyclic compound having fluorescence and having a plurality of closed rings made of carbon or the like. Further, the polycyclic fluorescent compound as the first monomer of the present invention has two or more hydroxy groups (OH groups). When there are two or more hydroxy groups, the polymer is crosslinked by a crosslinking agent to form a polymer having a crosslinked structure or the like. At least one of these hydroxy groups is bonded to the ring structure of a cyclic compound like a phenolic hydroxyl group. These hydroxy groups are preferably those bonded to the ring of a cyclic compound, such as at least two phenolic hydroxyl groups. Further, it is preferable that one or more hydroxy groups are bonded to a plurality of different ring structures.
 本発明の蛍光性重合体の重合反応は、第一のモノマーと架橋剤の組み合わせ等に応じて、生じる種々の重合反応によるものとすることができ限定されない。推定される代表的な重合反応は、フェノール性水酸基(フェノリックなヒドロキシ基)を例にすると、芳香環に結合したヒドロキシ基と、これに隣接する炭素原子の両方を利用して架橋剤と反応しながら重合反応が進むと考えられる。さらに、生成する重合体が、固体として回収しやすい粒子状等となるためには、架橋反応を促進させるための2個目のフェノール性水酸基が必要となる。すなわち、フェノール性水酸基が2個以上あることによって、重合反応と架橋反応とが、同時に進行でき、結果として球状粒子などを得ることができると考えられる。 重合 The polymerization reaction of the fluorescent polymer of the present invention can be based on various polymerization reactions that occur depending on the combination of the first monomer and the crosslinking agent, and is not limited. A typical polymerization reaction presumed is, for example, a phenolic hydroxyl group (a phenolic hydroxy group), which reacts with a crosslinking agent by using both a hydroxy group bonded to an aromatic ring and a carbon atom adjacent thereto. It is considered that the polymerization reaction proceeds while the reaction proceeds. Further, a second phenolic hydroxyl group for accelerating the crosslinking reaction is required in order for the polymer to be formed into particles or the like which can be easily collected as a solid. That is, it is considered that the polymerization reaction and the cross-linking reaction can proceed simultaneously by having two or more phenolic hydroxyl groups, and as a result, spherical particles and the like can be obtained.
 この多環式蛍光性化合物は、アントラセン系誘導体(式(A)の骨格)、フルオレン系誘導体(式(B)の骨格)、ピレン系誘導体(式(C)の骨格)、アントラキノン系誘導体(式(D)の骨格)、ポルフィリン系誘導体(式(E)の骨格)、ビナフタレン系誘導体(式(F)の骨格)、ビピリジン系誘導体(式(G)等の骨格)、ビフェニル系誘導体(式(H)の骨格)、ビスフェノール系誘導体(式(I)の骨格)、キサンテン系誘導体(式(J)の骨格)、ジベンゾフラン系誘導体(式(K)の骨格)、およびナフタレン系誘導体(式(L)の骨格)からなる群から選択される1以上である。これらの群からなる多環式蛍光性化合物は、いずれか1種のみでもよいし、2種以上の複数を組み合わせてもよい。また、これらの多環式蛍光性化合物は、ヒドロキシ基に加えて他の置換基を有するものであってもよい。他の置換基は、多環式蛍光性化合物が蛍光性を示し、蛍光性重合体を得ることができる範囲で特に制限はないが、骨格となる構造に加えてヒドロキシ基の他の置換基数が5以下や、3以下としてもよい。 The polycyclic fluorescent compound includes an anthracene derivative (skeleton of formula (A)), a fluorene derivative (skeleton of formula (B)), a pyrene derivative (skeleton of formula (C)), and an anthraquinone derivative (formula (C)). (D), a porphyrin derivative (skeleton of formula (E)), a binaphthalene derivative (skeleton of formula (F)), a bipyridine derivative (skeleton of formula (G), etc.), a biphenyl derivative (formula (G)). H), a bisphenol derivative (skeleton of formula (I)), a xanthene derivative (skeleton of formula (J)), a dibenzofuran derivative (skeleton of formula (K)), and a naphthalene derivative (formula (L) ) Is at least one selected from the group consisting of: Any one of the polycyclic fluorescent compounds consisting of these groups may be used alone, or two or more kinds may be used in combination. Further, these polycyclic fluorescent compounds may have another substituent in addition to the hydroxy group. Other substituents are not particularly limited as long as the polycyclic fluorescent compound shows fluorescence and a fluorescent polymer can be obtained, but in addition to the structure serving as a skeleton, the number of other substituents of the hydroxy group is not limited. It may be 5 or less or 3 or less.
 これらの多環式蛍光性化合物は、本発明の蛍光性重合体としたとき、その重合体の主鎖を構成する一部となり、さらに、可視光(370~800nm)程度の波長に蛍光特性を示すものとなる。この蛍光特性は目視でも確認しやすい強い蛍光強度のものである。また、重合体を形成するモノマーとして架橋構造等の重合体を形成しやすいと考えられ、安定性が高い重合体となる。これらの多環式蛍光性化合物は、化合物自体が紫外線から可視光領域に蛍光性を示しやすく、本発明の蛍光性重合体とすることで、電子状態が変化したり縮環構造が拡大等して長波長側に蛍光特性がシフトや蛍光性を示しやすい状態となり、可視光領域に蛍光性を示す重合体を得やすい構造を有していると考えられる。 These polycyclic fluorescent compounds, when used as the fluorescent polymer of the present invention, become a part of the main chain of the polymer, and further exhibit a fluorescent property at a wavelength of about visible light (370 to 800 nm). It will be shown. This fluorescent characteristic has a strong fluorescent intensity that can be easily confirmed visually. Further, it is considered that a polymer having a crosslinked structure or the like is likely to be formed as a monomer forming the polymer, and the polymer has high stability. These polycyclic fluorescent compounds tend to exhibit fluorescence in the visible region from ultraviolet light to the compounds themselves, and by using the fluorescent polymer of the present invention, the electronic state is changed or the fused ring structure is enlarged. It is considered that the polymer has a structure in which the fluorescence characteristics easily shift or show fluorescence on the long wavelength side, and a polymer showing fluorescence in the visible light region is easily obtained.
 この多環式蛍光性化合物は、アントラセン系誘導体(式(A)の骨格)、フルオレン系誘導体(式(B)の骨格)、ビフェニル系誘導体(式(H)の骨格)、およびビスフェノール系誘導体(式(I)の骨格)からなる群から選択されることが好ましい。これらの誘導体は、重合が進行しやすく、モノマーの構造も調整しやすいため重合体の製造に用いやすく、入手しやすいため製造効率にも優れている。中でも、アントラセン系誘導体(式(A)の骨格)、およびフルオレン系誘導体(式(B)の骨格)からなる群から選択されることがより好ましい。これらの誘導体は、可視光での蛍光強度を発揮しやすい。また、C/N比等から重合の程度を管理しやすく、粒子状の重合体や、担体等を被覆する重合体を製造しやすい。 The polycyclic fluorescent compound includes an anthracene derivative (skeleton of formula (A)), a fluorene derivative (skeleton of formula (B)), a biphenyl derivative (skeleton of formula (H)), and a bisphenol derivative (skeleton of formula (H)). It is preferably selected from the group consisting of: (skeleton of formula (I)). These derivatives are easy to use in the production of a polymer because the polymerization proceeds easily and the structure of the monomer is easy to adjust, and they are excellent in production efficiency because they are easily available. Among them, it is more preferable to be selected from the group consisting of an anthracene derivative (skeleton of formula (A)) and a fluorene derivative (skeleton of formula (B)). These derivatives are easy to exhibit fluorescence intensity in visible light. In addition, the degree of polymerization can be easily controlled based on the C / N ratio and the like, and it is easy to produce a particulate polymer or a polymer covering a carrier or the like.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 以下、各多環式蛍光性化合物をより具体的に説明する。なお、以下において、各誘導体は、それぞれの骨格の構造を有し蛍光特性を有するものを含む。また、具体的に例示する化合物も含めて、光学異性体が存在するものは、蛍光特性を奏するいずれの光学異性体も含む。 Hereinafter, each polycyclic fluorescent compound will be described more specifically. In the following, each derivative includes those having the structure of each skeleton and having fluorescent properties. In addition, those containing optical isomers, including compounds specifically exemplified, include any optical isomers exhibiting fluorescent properties.
[アントラセン系誘導体]
 本願において、アントラセン系誘導体とは、アントラセン(式(A))の構造を有し、2個以上のヒドロキシ基を有するものである。例えば、下記式(a-1)~(a-5)のアントラセン系誘導体などを用いることができる。
[Anthracene derivatives]
In the present application, the anthracene derivative has an anthracene (formula (A)) structure and has two or more hydroxy groups. For example, anthracene derivatives represented by the following formulas (a-1) to (a-5) can be used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[フルオレン系誘導体]
 本願において、フルオレン系誘導体とは、フルオレン(式(B))の構造を有し、2個以上のヒドロキシ基を有するものである。例えば、下記式(b-1)~(b-5)のフルオレン系誘導体などを用いることができる。
[Fluorene derivatives]
In the present application, the fluorene derivative has a structure of fluorene (formula (B)) and has two or more hydroxy groups. For example, fluorene derivatives represented by the following formulas (b-1) to (b-5) can be used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[ピレン系誘導体]
 本願において、ピレン系誘導体とは、ピレン(式(C))の構造を有し、2個以上のヒドロキシ基を有するものである。例えば、下記式(c-1)~(c-3)のピレン系誘導体などを用いることができる。
[Pyrene derivative]
In the present application, the pyrene-based derivative has a structure of pyrene (formula (C)) and has two or more hydroxy groups. For example, pyrene derivatives represented by the following formulas (c-1) to (c-3) can be used.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[アントラキノン系誘導体]
 本願において、アントラキノン系誘導体とは、アントラキノン骨格(式(D))を有し、2個以上のヒドロキシ基を有するものである。例えば、下記式(d-1)~(d-2)のアントラキノン系誘導体などを用いることができる。
[Anthraquinone derivatives]
In the present application, an anthraquinone derivative is one having an anthraquinone skeleton (formula (D)) and having two or more hydroxy groups. For example, anthraquinone derivatives represented by the following formulas (d-1) to (d-2) can be used.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[ポルフィリン系誘導体]
 本願において、ポルフィリン系誘導体とは、ポルフィリン(式(E))の構造を有し、2個以上のヒドロキシ基を有するものである。例えば、下記式(e-1)~(e-2)のポルフィリン系誘導体などを用いることができる。
[Porphyrin derivative]
In the present application, the porphyrin-based derivative has a structure of porphyrin (formula (E)) and has two or more hydroxy groups. For example, porphyrin derivatives represented by the following formulas (e-1) to (e-2) can be used.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[ビナフタレン系誘導体]
 本願において、ビナフタレン系誘導体とは、ビナフタレン(化学式(F))の構造を有し、2個以上のヒドロキシ基を有するものである。例えば、下記式(f-1)~(f-2)のビナフタレン系誘導体などを用いることができる。
[Binaphthalene derivative]
In the present application, the binaphthalene derivative has a structure of binaphthalene (chemical formula (F)) and has two or more hydroxy groups. For example, binaphthalene derivatives represented by the following formulas (f-1) to (f-2) can be used.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[ビピリジン系誘導体]
 本願において、ビピリジン系誘導体とは、ビピリジン(化学式(G))の構造(より具体的には、化学式(G-1)(2,2’-ビピリジン)や、化学式(G-2)(4,4’-ビピリジン))の構造を有し、2個以上のヒドロキシ基を有するものである。例えば、下記式(g-1)~(g-2)のビピリジンなどを用いることができる。
[Bipyridine derivative]
In the present application, a bipyridine derivative refers to a structure of bipyridine (chemical formula (G)) (more specifically, a chemical formula (G-1) (2,2′-bipyridine) or a chemical formula (G-2) (4, 4′-bipyridine)) and has two or more hydroxy groups. For example, bipyridines of the following formulas (g-1) to (g-2) can be used.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[ビフェニル系誘導体]
 本願において、ビフェニル系誘導体とは、ビフェニル(化学式(H))の構造を有し、2個以上のヒドロキシ基を有するものである。例えば、下記式(h-1)~(h-2)のビフェニル系誘導体などを用いることができる。
[Biphenyl derivative]
In the present application, a biphenyl-based derivative has a structure of biphenyl (chemical formula (H)) and has two or more hydroxy groups. For example, biphenyl derivatives represented by the following formulas (h-1) to (h-2) can be used.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[ビスフェノール系誘導体]
 本願において、ビスフェノール系誘導体とは、化学式(I)の構造を有し、2個以上のヒドロキシ基を有するビスフェノールである。ビスフェノールは、2個以上のヒドロキシフェニル基を有する化合物であり、化学式(I)におけるXはその2個以上のヒドロキシフェニル基が結合する構造となる部分である。この結合する構造は、例えば、アセトンやアセトフェノン、ヘキサフルオロアセトン、ブタノン、ベンゾフェノン、ジクロロケトン、アセトアルデヒド、ホルムアルデヒド、三酸化硫黄、トリメチルシクロヘキサノン、およびシクロヘキサノンからなる群から選ばれるいずれか由来の構造等が挙げられる。例えば、下記式(i-1)のビスフェノールなどを用いることができる。
[Bisphenol derivatives]
In the present application, the bisphenol derivative is a bisphenol having the structure of the chemical formula (I) and having two or more hydroxy groups. Bisphenol is a compound having two or more hydroxyphenyl groups, and X in the chemical formula (I) is a portion having a structure to which the two or more hydroxyphenyl groups are bonded. Examples of the structure to be bonded include a structure derived from any one selected from the group consisting of acetone, acetophenone, hexafluoroacetone, butanone, benzophenone, dichloroketone, acetaldehyde, formaldehyde, sulfur trioxide, trimethylcyclohexanone, and cyclohexanone. Can be For example, bisphenol of the following formula (i-1) can be used.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
[キサンテン系誘導体、ジベンゾフラン系誘導体、]
 本願において、キサンテン系誘導体とは、キサンテン(式(J))の構造を有し、2個以上のヒドロキシ基を有するものである。また、ジベンゾフラン系誘導体とは、ジベンゾフラン(式(K))の構造を有し、2個以上のヒドロキシ基を有するものである。キサンテン系誘導体としては、例えば、下記式(j-1)~(j-2)のキサンテン系誘導体などを用いることができる。また、ジベンゾフラン系誘導体もこれらに準じる類似構造のものや、1~9位(特に1~4の一つ以上と、6~9の一つ以上)のいずれかがOH基に置換したものなどを用いることができる。
[Xanthene derivatives, dibenzofuran derivatives,]
In the present application, the xanthene derivative has a structure of xanthene (formula (J)) and has two or more hydroxy groups. In addition, the dibenzofuran-based derivative has a structure of dibenzofuran (formula (K)) and has two or more hydroxy groups. As the xanthene derivative, for example, a xanthene derivative represented by the following formulas (j-1) to (j-2) can be used. The dibenzofuran-based derivatives also have a similar structure according to these, and those in which any one of the 1- to 9-positions (particularly, one or more of 1-4 and one or more of 6--9) is substituted with an OH group. Can be used.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
[ナフタレン系誘導体]
 本願において、ナフタレン系誘導体とは、ナフタレン(式(L))の構造を有し、2個以上のヒドロキシ基を有するものである。例えば、下記式(l-1)のナフタレン系誘導体などを用いることができる。1,5-ジヒドロキシナフタレンは、単独の化合物および本発明の重合体としたときの可視光の蛍光強度が低い傾向があるため、1,5-ジヒドロキシナフタレンの蛍光強度を超える化合物が好適に用いられる。例えば、ナフタレン系誘導体としては、(l-1)で表される化合物(2,6-ジヒドロキシナフタレン)が好適である。
[Naphthalene derivative]
In the present application, the naphthalene-based derivative has a structure of naphthalene (formula (L)) and has two or more hydroxy groups. For example, a naphthalene derivative represented by the following formula (1-1) can be used. Since 1,5-dihydroxynaphthalene tends to have a low fluorescence intensity of visible light when used as a single compound and the polymer of the present invention, a compound exceeding the fluorescence intensity of 1,5-dihydroxynaphthalene is preferably used. . For example, as the naphthalene derivative, a compound (2,6-dihydroxynaphthalene) represented by (1-1) is preferable.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
[架橋剤]
 本発明は、架橋剤を用いる。本発明に用いられる架橋剤は、ヒドロキシ基を有する第一のモノマーと反応し、蛍光性重合体とするものである。架橋剤としては、例えば、ホルムアルデヒドと脂肪族アミンを混合して用いる2成分系架橋剤を用いることができる。また、トリアジナン系誘導体を第二のモノマーである架橋剤として用いることもできる。また、ヘキサメチレンテトラミンを第二のモノマーである架橋剤として用いることもできる。
 ホルムアルデヒドおよび脂肪族アミンは、モル比として1:1で反応し後述するトリアジナン系誘導体、特に、1,3,5-トリメチルヘキサヒドロ-1,3,5-トリアジナンのような構造になると考えられる。このトリアジナン系誘導体の構造は、第一のモノマーの環式化合物の環に結合したヒドロキシ基と付加縮合するように反応すると考えられ、これが連続していくことで本発明に係る蛍光性重合体とすることができる。また、ヘキサメチレンテトラミンを用いることで、トリアジナン系誘導体に準じる反応により、本発明に係る重合体を得ることができる。
[Crosslinking agent]
The present invention uses a crosslinking agent. The crosslinking agent used in the present invention reacts with the first monomer having a hydroxy group to form a fluorescent polymer. As the crosslinking agent, for example, a two-component crosslinking agent using a mixture of formaldehyde and an aliphatic amine can be used. Further, a triazinan derivative can be used as a crosslinking agent as the second monomer. Hexamethylenetetramine can also be used as a crosslinking agent as the second monomer.
It is considered that formaldehyde and aliphatic amine react at a molar ratio of 1: 1 to form a structure like a triazinan derivative described below, particularly 1,3,5-trimethylhexahydro-1,3,5-triazinan. The structure of the triazinane derivative is considered to react so as to undergo addition condensation with the hydroxy group bonded to the ring of the cyclic compound of the first monomer, and by continuing this, the fluorescent polymer according to the present invention and can do. Further, by using hexamethylenetetramine, the polymer according to the present invention can be obtained by a reaction according to a triazinan derivative.
[トリアジナン系誘導体]
 本発明は架橋剤とする第二のモノマーとして、トリアジナン系誘導体を用いることができる。トリアジナン系誘導体は、複素環式化合物の一種で、窒素を3個含む6員環構造の骨格(式(X))を持つ。トリアジナン系誘導体は、2個以上の置換基を有するものであることが好ましい。例えば、式(x-1)~式(x-4)のトリアジナン系誘導体などを用いることができる。特に、式(x-1)の1,3,5-トリメチルヘキサヒドロ-1,3,5-トリアジナンが好適に用いられる。このようなトリアジナン系誘導体は、第一のモノマーと反応させて本発明の蛍光性共重合体の製造に特に適している。トリアジナン系誘導体は、本発明の蛍光性共重合体の製造工程での原料のモル比の調整が行いやすい。また、重合開始剤や、金属触媒等を用いずに反応させることもできる。
[Triazine derivative]
In the present invention, a triazinan derivative may be used as the second monomer used as a crosslinking agent. The triazinane derivative is a kind of heterocyclic compound and has a skeleton of a six-membered ring structure containing three nitrogen atoms (formula (X)). It is preferable that the triazinan derivative has two or more substituents. For example, triazinan derivatives of the formulas (x-1) to (x-4) can be used. In particular, 1,3,5-trimethylhexahydro-1,3,5-triazinan of the formula (x-1) is preferably used. Such a triazinan derivative is particularly suitable for producing the fluorescent copolymer of the present invention by reacting with the first monomer. The molar ratio of the raw materials in the production process of the fluorescent copolymer of the present invention can be easily adjusted with the triazinan derivative. In addition, the reaction can be performed without using a polymerization initiator, a metal catalyst, or the like.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
[ホルムアルデヒドおよび脂肪族アミン]
 本発明の架橋剤は、ホルムアルデヒドおよび脂肪族アミンを混合した2成分系のものを用いることもできる。このとき、ホルムアルデヒドおよび脂肪族アミンのモル比は、1:3~3:1、好ましくは1:2~2:1程度の範囲で調整し、ほぼ1:1として用いることが最も好ましい。ホルムアルデヒドは、ホルマリン等を用いてもよい。脂肪族アミンは、一般式R-NH2で表され、このRは炭素数5以下のアルキル基であることが好ましい。炭素数5以下のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、シクロブチル基、シクロプロピルメチル基、n-ペンチル基、シクロペンチル基、シクロプロピルエチル基、及びシクロブチルメチル基が挙げられる。この架橋剤として用いるにあたっては、分子量が小さいほうが好ましいため、Rは、メチル基、エチル基、プロピル基が好ましい。このような具体的な化合物としては、メチルアミン、エチルアミン、プロピルアミン等があげられる。特に、メチルアミンが好ましく用いられる。
[Formaldehyde and aliphatic amine]
As the crosslinking agent of the present invention, a two-component type in which formaldehyde and an aliphatic amine are mixed may be used. At this time, the molar ratio of formaldehyde to the aliphatic amine is adjusted in the range of about 1: 3 to 3: 1, preferably about 1: 2 to 2: 1, and it is most preferable to use it at about 1: 1. As formaldehyde, formalin or the like may be used. The aliphatic amine is represented by the general formula R—NH 2, where R is preferably an alkyl group having 5 or less carbon atoms. Examples of the alkyl group having 5 or less carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, and a cyclobutyl group. , Cyclopropylmethyl, n-pentyl, cyclopentyl, cyclopropylethyl, and cyclobutylmethyl groups. When used as this cross-linking agent, it is preferable that the molecular weight be smaller, so that R is preferably a methyl group, an ethyl group, or a propyl group. Specific examples of such compounds include methylamine, ethylamine, and propylamine. Particularly, methylamine is preferably used.
[ヘキサメチレンテトラミン]
 本発明の架橋剤には、ヘキサメチレンテトラミンを用いることもできる。ヘキサメチレンテトラミンは、ヘキサミンや、1,3,5,7-テトラアザアダマンタンとも呼ばれるものである。ヘキサメチレンテトラミンの構造を式(Y)に示す。
[Hexamethylenetetramine]
Hexamethylenetetramine can also be used as the crosslinking agent of the present invention. Hexamethylenetetramine is also called hexamine or 1,3,5,7-tetraazaadamantane. Formula (Y) shows the structure of hexamethylenetetramine.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
[重合体]
 本発明の蛍光性重合体は、第一のモノマー由来の構造単位と、架橋剤由来の構造単位とを有する蛍光性重合体である。本発明の蛍光性重合体は、好ましくは、第一のモノマー由来の構造単位と、第二のモノマー由来の構造単位とを有する重合体である蛍光性重合体である。それぞれのモノマー由来の構造を有することは、例えば重合体のIRスペクトルを分析した結果からその構造を把握することができる。第一のモノマー由来の構造単位と、第二のモノマー由来の構造単位とは、三次元架橋性重合体を形成している。
 第一のモノマー由来の構造単位は、複数のヒドロキシ基が、互いに、あるいは、架橋剤の置換基等と重合等の反応により生じた構造を形成する。この構造により第一のモノマー由来の構造単位は重合体の主鎖を構成する成分である。また、架橋剤由来の構造単位も主鎖を構成する成分として重合されうる。
[Polymer]
The fluorescent polymer of the present invention is a fluorescent polymer having a structural unit derived from a first monomer and a structural unit derived from a crosslinking agent. The fluorescent polymer of the present invention is preferably a fluorescent polymer which is a polymer having a structural unit derived from a first monomer and a structural unit derived from a second monomer. Having a structure derived from each monomer enables the structure to be ascertained from, for example, the result of analyzing the IR spectrum of the polymer. The structural unit derived from the first monomer and the structural unit derived from the second monomer form a three-dimensional crosslinkable polymer.
The structural unit derived from the first monomer forms a structure in which a plurality of hydroxy groups are generated by a reaction such as polymerization with each other or with a substituent or the like of a crosslinking agent. Due to this structure, the structural unit derived from the first monomer is a component constituting the main chain of the polymer. Further, a structural unit derived from a crosslinking agent may be polymerized as a component constituting the main chain.
 本発明の蛍光性重合体は、第一のモノマーが1種のみのものであってもよいし、2種以上の第一のモノマーを用いて重合したものであってもよい。また、第一のモノマーや、架橋剤・第二のモノマーに加えて、さらに他のモノマーを重合したものであってもよい。この他のモノマーとしては、重合可能なものであれば特に制限されないが、フェノリックなヒドロキシ基を1個有する化合物などが挙げられる。この他のモノマーは、そのモノマーとして蛍光性を示す構造のものでなくてもよい。このような他のモノマーとしては、例えば、フェノール、1-ナフトールなどが挙げられる。 蛍 光 The fluorescent polymer of the present invention may be a single first monomer or a polymer obtained by polymerizing two or more first monomers. Further, in addition to the first monomer, the crosslinking agent and the second monomer, another monomer may be further polymerized. The other monomer is not particularly limited as long as it is polymerizable, and examples thereof include a compound having one phenolic hydroxy group. The other monomer may not have a structure showing fluorescence as the monomer. Such other monomers include, for example, phenol, 1-naphthol, and the like.
 本発明の蛍光性重合体における各モノマー由来の構造は、第一のモノマー由来の構造が占める割合として、10モル%以上が好ましく、20モル%以上がより好ましい。第一のモノマー由来の構造が占める割合は重合できる範囲でその上限を定めることができる。重合するために架橋剤による架橋をすることから、第一のモノマー由来の構造が占める割合は90モル%以下や、80モル%以下、70モル%以下と上限を設定してもよい。架橋剤や第二のモノマー、前述の他のモノマー由来の構造が占める割合は第一のモノマー由来の構造が占める割合の残部として適宜設定される。他のモノマー由来の構造が占める割合は、50モル%以下や、30モル%以下、10モル%以下のように上限を定めてもよい。 構造 The structure derived from each monomer in the fluorescent polymer of the present invention is preferably at least 10 mol%, more preferably at least 20 mol%, as a percentage of the structure derived from the first monomer. The upper limit of the ratio occupied by the structure derived from the first monomer can be determined within a range in which polymerization is possible. Since crosslinking is carried out by a crosslinking agent for polymerization, the ratio occupied by the structure derived from the first monomer may be set to an upper limit of 90 mol% or less, 80 mol% or less, or 70 mol% or less. The proportion occupied by the structure derived from the cross-linking agent, the second monomer, and the other monomer described above is appropriately set as the balance of the proportion occupied by the structure derived from the first monomer. The proportion occupied by the structure derived from another monomer may have an upper limit of 50 mol% or less, 30 mol% or less, 10 mol% or less.
 本発明の蛍光性重合体は、架橋性構造とすることができることから、その重合の程度は、元素の量比であるC/N比等により評価することができ、原料となるモノマーの仕込み量に基づくC/N比と比較して重合の程度を評価したりすることができる。本発明の蛍光性重合体は、架橋して重合することで、一方の原料のC/N比や原料の総量としてのC/N比から、得られる重合体としてのC/N比は変化したものとなる。例えば、第一のモノマーとしてNが含まれないものを用いて重合すると、架橋剤由来のNを含み重合されることで、重合体としてのC/N比が算出されるものとなる。一方、重合が進行するにつれ、第二のモノマーの構造が展開され重合体を構成するものとならなかった構造は脱離する。このため、仕込み量に基づくC/N比よりも重合体におけるNは低減する傾向があり、C/N比は高いものとなる。モノマー種にもよるが、例えば、C/N比は3~50や、5~30、8~20程度を重合体の指標の一つとしてもよい。特に第一のモノマー由来のNが無いとき、この数値範囲が有効な指標となる場合がある。 Since the fluorescent polymer of the present invention can have a cross-linkable structure, the degree of polymerization can be evaluated by the C / N ratio, which is a quantitative ratio of elements, and the charged amount of the monomer as a raw material can be evaluated. Or the degree of polymerization can be evaluated in comparison with the C / N ratio based on the When the fluorescent polymer of the present invention is crosslinked and polymerized, the C / N ratio of the obtained polymer is changed from the C / N ratio of one raw material or the C / N ratio as the total amount of the raw materials. It will be. For example, when polymerization is performed using a first monomer that does not contain N, the C / N ratio as a polymer is calculated by polymerization including N derived from a crosslinking agent. On the other hand, as the polymerization proceeds, the structure of the second monomer that is developed and does not constitute the polymer is eliminated. Therefore, N in the polymer tends to be lower than the C / N ratio based on the charged amount, and the C / N ratio becomes higher. Although depending on the type of the monomer, for example, a C / N ratio of about 3 to 50, about 5 to 30, or about 8 to 20 may be used as an index of the polymer. In particular, when there is no N derived from the first monomer, this numerical range may be an effective index.
 例えば、アントラセン系誘導体(前述の化学式(a-1))と、トリアジナン系誘導体(前述の化学式(x-1))とを等量比で仕込み合成した場合を説明する。これらの仕込み比に基づく全モノマーのC/N比はおよそ5.7であり、アントラセン系誘導体にはNが含まれていないため第一のモノマー単独では、Nが理論上0で不純物程度として検出されても、C/N比は非常に高い値となる。一方、重合体としては、この仕込み比のC/N比よりも大きいものとなり、7以上や8以上となる。このC/N比は重合の程度により上限が変化するが、例えば、30以下や20以下を上限として管理できる。重合時の主たる構造と推定される構造は、C/N比が13.7や、8.1程度であり、これらが混在すると考えられる。よって、重合体としてのC/N比は、およそ9.0~13.0や、9.5~12.5を好適範囲とすることもできる。 For example, a case where an anthracene-based derivative (the above-described chemical formula (a-1)) and a triazinan-based derivative (the above-mentioned chemical formula (x-1)) are charged and synthesized at an equivalent ratio will be described. The C / N ratio of all the monomers based on these charging ratios is about 5.7, and N is not contained in the anthracene-based derivative. Even so, the C / N ratio becomes a very high value. On the other hand, as a polymer, the C / N ratio of the charge ratio is larger than 7 and 8 or more. Although the upper limit of the C / N ratio varies depending on the degree of polymerization, for example, the upper limit can be controlled to 30 or less or 20 or less. The structure presumed to be the main structure at the time of polymerization has a C / N ratio of about 13.7 or 8.1, and it is considered that these are mixed. Therefore, the C / N ratio as a polymer can be in a preferred range of about 9.0 to 13.0 or 9.5 to 12.5.
 本発明の蛍光性重合体は、重合体からなる物質として用いてもよいし、他の物質と複合化等して用いてもよい。例えば、実質的に重合体からなる粒子状やペレット状、分散媒等に分散させた分散液や溶液やスラリー、担体や基材との複合体等とすることができる。本発明の蛍光性重合体、およびこれを含む組成物、複合体等は、蛍光性を示し、レアメタルの含有量が低いものとすることができる。ここでレアメタルの含有量が低いとは、実質不純物として含まれる量以下程度のことをいうものとすることができる。重合体の精製物や、組成物、複合体等においてレアメタル含有量を1.0×10-2質量%以下や、1.0×10-3質量%以下、1.0×10-4質量%以下のような上限を設けても管理してもよいし、検出下限以下のように実質含まないものとしてもよい。このレアメタルは、特に公知の蛍光特性を示す化合物としてのレアメタルである。 The fluorescent polymer of the present invention may be used as a substance made of a polymer, or may be used after being complexed with another substance. For example, it can be a particle or pellet substantially composed of a polymer, a dispersion, a solution or a slurry dispersed in a dispersion medium or the like, or a composite with a carrier or a substrate. The fluorescent polymer of the present invention, and a composition, a composite, and the like containing the same can exhibit fluorescence and have a low rare metal content. Here, the content of the rare metal is low, which means that the content of the rare metal is substantially equal to or less than the amount contained as a substantial impurity. Rare metal content of 1.0 × 10 −2 mass% or less, 1.0 × 10 −3 mass% or less, 1.0 × 10 −4 mass% in purified polymer, composition, composite, etc. An upper limit as described below may be provided or managed, or may not be substantially included as in the detection lower limit or less. This rare metal is a rare metal as a compound having a known fluorescent property.
[蛍光性]
 本発明の蛍光性重合体は蛍光性を有する。この蛍光とは、励起のための電磁波を止めるとすぐに発光が消失する発光寿命が短い蛍光と、発光寿命が長い燐光とを含み、エネルギーの高い短波長の光(電磁波)を照射することにより生じる発光である。本願では、この蛍光が生じることを蛍光性とし、この蛍光性を示す重合体を蛍光性重合体とする。また、この発光は、可視光(波長370~800nm)の発光を生じるものとすることができる。この可視光の発光は、暗闇などでヒトが目視で確認することができる程度に強い発光とすることができる。
[Fluorescence]
The fluorescent polymer of the present invention has fluorescence. This fluorescent light includes short-lived fluorescent light, which emits light as soon as the electromagnetic wave for excitation is stopped, and phosphorescent light, which has a long light-emitting life, and is irradiated with short-wavelength light (electromagnetic wave) having high energy. The resulting light emission. In the present application, the generation of this fluorescence is referred to as fluorescence, and the polymer exhibiting this fluorescence is referred to as a fluorescent polymer. In addition, this light emission can generate visible light (wavelength 370 to 800 nm). The emission of this visible light can be strong enough for humans to visually confirm in darkness or the like.
[重合体の粒子]
 本発明の蛍光性重合体は、直径が3~500nmである蛍光性ポリマー粒子とすることができる。この蛍光性ポリマー粒子は、本発明の蛍光性重合体から実質的になるものとすることができる。この蛍光性ポリマー粒子は、本発明の蛍光性重合体の重合工程において、重合時間や重合温度、モノマー量比の調整により、重合とともに粒状に製造することができる。直径が3~500nmと非常に小さいナノ粒子とすることで、この粒子を含む分散液等としても透光性や蛍光性に優れたものとすることができる。蛍光性ポリマー粒子の直径は、取り扱いやすさや製造管理の行いやすさを考慮してその下限を、5nm以上や10nm以上、20nm以上としてもよい。また、透明性や分散性がより向上するようにその上限を400nm以下や、300nm以下としてよい。なお、これらの直径は、ポリマー粒子の一次粒子の平均粒径としてもよい。
[Polymer particles]
The fluorescent polymer of the present invention can be a fluorescent polymer particle having a diameter of 3 to 500 nm. The fluorescent polymer particles can consist essentially of the fluorescent polymer of the present invention. These fluorescent polymer particles can be produced in a granular form together with the polymerization by adjusting the polymerization time, the polymerization temperature, and the monomer amount ratio in the polymerization step of the fluorescent polymer of the present invention. By making the nanoparticles extremely small, having a diameter of 3 to 500 nm, a dispersion or the like containing the particles can be excellent in light transmission and fluorescence. The lower limit of the diameter of the fluorescent polymer particles may be 5 nm or more, 10 nm or more, or 20 nm or more in consideration of ease of handling and ease of production control. The upper limit may be set to 400 nm or less or 300 nm or less so that the transparency and the dispersibility are further improved. In addition, these diameters may be the average particle diameter of the primary particles of the polymer particles.
[粒径・単分散性]
 この粒子は、3~500nm程度のナノスケールのものとして製造し回収することができる。この粒子は、粒径の単分散性が優れたものとすることもできる。単分散性は、粒径の変動係数(CV値)を指標とすることができる。CV値が20%以下のとき、より取り扱い性や蛍光特性に優れた粒子とすることができる。このCV値は、「粒径の標準偏差(nm)/平均粒径(nm)×100」として求められる数値である。CV値が小さいほど、粒径のばらつきが小さいことを意味する。平均粒径や、粒径の標準偏差は、FE-TEMやFE-SEMにより撮影された粒子の電子顕微鏡写真を、画像解析装置を用いて解析処理することで測定することができる。これらの計算は、好適には、無作為に選択された50個以上の粒子から求める。
[Particle size / monodispersibility]
These particles can be produced and collected as nano-scale particles of about 3 to 500 nm. The particles can have excellent monodispersity in particle size. The monodispersity can be determined using the coefficient of variation (CV value) of the particle size as an index. When the CV value is 20% or less, particles having more excellent handleability and fluorescent properties can be obtained. This CV value is a numerical value calculated as “standard deviation of particle size (nm) / average particle size (nm) × 100”. The smaller the CV value, the smaller the variation in particle size. The average particle size and the standard deviation of the particle size can be measured by analyzing electron micrographs of the particles taken by FE-TEM or FE-SEM using an image analyzer. These calculations are preferably made from 50 or more randomly selected particles.
[球状粒子]
 また、この粒子は、球状粒子として回収することができる。この球状は、平均球形度で評価してもよく、平均球形度を80%以上とすることができる。平均球形度は、90%以上や、95%以上とすることもできる。平均球形度は、球形度を短径/長径として、FE-TEMやFE-SSEMにより撮影された粒子の電子顕微鏡写真を、画像解析装置を用いて解析処理することで測定することができる。平均球形度は、好適には、無作為に選択された50個以上の粒子の球形度の平均値とする。
[Spherical particles]
The particles can be recovered as spherical particles. This spherical shape may be evaluated by average sphericity, and the average sphericity can be 80% or more. The average sphericity can be 90% or more, or 95% or more. The average sphericity can be measured by analyzing the electron micrographs of the particles taken by FE-TEM or FE-SSEM using an image analyzer with the sphericity as the minor axis / major axis. The average sphericity is preferably the average value of the sphericity of 50 or more randomly selected particles.
[重合体の分散液]
 本発明の蛍光性重合体を用いて、本発明の蛍光性重合体を含む分散液であり、水または有機溶媒を分散媒とする分散液とすることができる。なお、ここで分散とは、蛍光性重合体が分散や溶解するいずれの状態も含むものを包括して分散とよび、分散媒は溶媒も含み、分散液は溶液も含む。
[Polymer dispersion]
It is a dispersion containing the fluorescent polymer of the present invention using the fluorescent polymer of the present invention, and can be a dispersion using water or an organic solvent as a dispersion medium. Here, the term “dispersion” includes a state including any state in which the fluorescent polymer is dispersed or dissolved, and is referred to as a dispersion. The dispersion medium also includes a solvent, and the dispersion includes a solution.
 本発明の蛍光性重合体は、親水性と疎水性とを示す両親媒性の重合体とすることができる。また、水分散液や水溶液としたとき、pH0~14の広範なpHの状態にも分散することができる。これらの特性から、本発明の蛍光性重合体は、各種溶媒に分散させたものとすることができる。溶媒としては、水や、有機溶媒、またこれらの混合溶媒等を用いることができる。溶媒の種類や、pH等を調整することで、分散液の色を調整することもできる。 蛍 光 The fluorescent polymer of the present invention can be an amphiphilic polymer showing hydrophilicity and hydrophobicity. When prepared as an aqueous dispersion or an aqueous solution, it can be dispersed in a wide range of pH from 0 to 14. From these characteristics, the fluorescent polymer of the present invention can be dispersed in various solvents. As the solvent, water, an organic solvent, a mixed solvent thereof or the like can be used. The color of the dispersion can also be adjusted by adjusting the type of solvent, pH, and the like.
 分散液とするときの重合体濃度は、その分散液の用途や、重合体の構造・重合度等を考慮して、適宜設定することができる。例えば、分散液の濃度の下限は1mg/L以上や、5mg/L以上、10mg/L以上とすることができる。また、分散液の濃度の上限は1g/L以下や、500mg/L以下、300mg/L以下とすることができる。このような1mg/L~1g/L以下程度の範囲で適宜調整する範囲で分散液の状態のまま十分な蛍光を示す。分散液は、保管時や流通用に、これらの範囲よりも高濃度に調整して取り扱ってもよい。また、この分散液を固化させることで、蛍光性を示す固体とすることもできるし、この分散液を透光性の容器に収容して蛍光性の内容物を有するものとして利用してもよい。 濃度 The polymer concentration when forming a dispersion can be appropriately set in consideration of the use of the dispersion, the structure and the degree of polymerization of the polymer, and the like. For example, the lower limit of the concentration of the dispersion can be 1 mg / L or more, 5 mg / L or more, and 10 mg / L or more. The upper limit of the concentration of the dispersion can be 1 g / L or less, 500 mg / L or less, or 300 mg / L or less. In such a range of 1 mg / L to 1 g / L or less which is appropriately adjusted, sufficient fluorescence is exhibited in the state of the dispersion liquid. The dispersion may be handled at a higher concentration than these ranges for storage or distribution. In addition, by solidifying this dispersion, a solid exhibiting fluorescence can be obtained, or this dispersion may be contained in a translucent container and used as having a fluorescent content. .
[重合体との複合体]
 本発明は、担体及び/又は基材に、本発明の蛍光性重合体を含む部位を有する蛍光性重合体の複合体とすることができる。本発明の蛍光性重合体は、蛍光性重合体を、担体または基材と接触させて、前記担体または前記基材に前記蛍光性重合体を含む部位を設ける蛍光性重合体の被覆方法に用いることができる。
 本発明の蛍光性重合体を、担体や基材に、被覆させて、担体や基材の孔内等や表層に蛍光性重合体を含む部位を有するものとすることができる。なお、本願においては、蛍光性重合体の微粒子や蛍光性重合体の薄膜が、担体や基材の全体に広く分布されることから、担体等の孔内に微粒子等を担持させることで蛍光性重合体を含む部位を有するものとすることや、基材等の表層に層状に蛍光性共重合体を含む部位を有するものとすることも含めて被覆とする。この被覆は、この反応工程を行う場となる溶液に、担体や基材等を浸漬させた状態で、後述するような反応工程を行うことで、反応工程で形成された重合体を担体や基材に接触させて、被覆させるものとすることができる。また、反応工程を完了し、蛍光性重合体が分散・溶解した蛍光性重合体溶液に、担体や基材に接触させて、被覆させてもよい。また、後述する回収工程を行い回収した蛍光性重合体を接触させて、被覆したり、回収された蛍光性重合体を溶媒や分散媒等に溶解・分散させて、担体や基材に接触させて、適宜乾燥等行って、被覆させてもよい。
[Composite with polymer]
In the present invention, a complex of a fluorescent polymer having a site containing the fluorescent polymer of the present invention on a carrier and / or a substrate can be provided. The fluorescent polymer of the present invention is used in a method of coating a fluorescent polymer, in which the fluorescent polymer is brought into contact with a carrier or a substrate to provide a site containing the fluorescent polymer on the carrier or the substrate. be able to.
The fluorescent polymer of the present invention can be coated on a carrier or a base material to have a site containing the fluorescent polymer in the pores of the support or the base material or on the surface layer. In the present application, the fine particles of the fluorescent polymer and the thin film of the fluorescent polymer are widely distributed throughout the carrier and the base material. The coating includes a portion having a polymer and a portion having a layer containing a fluorescent copolymer in a surface layer of a substrate or the like. In this coating, the polymer formed in the reaction step is applied to the carrier or the base by performing the reaction step as described below in a state where the carrier or the base material is immersed in the solution in which the reaction step is performed. The material may be brought into contact with the material to be coated. Further, the reaction step may be completed, and the fluorescent polymer solution in which the fluorescent polymer is dispersed and dissolved may be coated by bringing it into contact with a carrier or a base material. In addition, the collected fluorescent polymer is brought into contact with the collected fluorescent polymer by performing a collecting process described below, or coated, or the collected fluorescent polymer is dissolved and dispersed in a solvent or a dispersion medium, and is brought into contact with a carrier or a base material. Then, drying and the like may be performed as appropriate to coat.
[担体・基材]
 担体は、多孔性粒子等を用いることができる。溶媒に分散させた状態の重合体は多孔性粒子の孔の内部まで浸透したり、多孔性粒子の孔内で重合体を形成させることで、多孔性粒子の孔内まで重合体の層を設けることができる。重合体は小さい微粒子や、薄い膜状とすることができるため、多孔性粒子の孔の閉塞等も防止することができる。
 基材は、各種成形体等とすることができる。本発明の蛍光性重合体は、親水性の溶媒や、疎水性の溶媒等の各種溶媒に優れた分散性を示すことから、基材としても種々の基材に対して接着しやすい重合体とすることができる。成形体を重合体溶液(分散液)に浸漬したり、重合体溶液を各種コーティング手法によりコーティングすることで、成形体に重合体の層を設けることができ、蛍光性を示す成形体を得ることができる。
[Carrier / substrate]
As the carrier, porous particles or the like can be used. The polymer dispersed in the solvent penetrates into the pores of the porous particles, or forms a polymer in the pores of the porous particles, thereby providing a polymer layer up to the pores of the porous particles. be able to. Since the polymer can be in the form of small fine particles or a thin film, blockage of the pores of the porous particles can be prevented.
The base material can be various molded articles. The fluorescent polymer of the present invention has excellent dispersibility in various solvents such as a hydrophilic solvent and a hydrophobic solvent, and therefore, a polymer that easily adheres to various substrates as a substrate. can do. By immersing the molded body in a polymer solution (dispersion liquid) or coating the polymer solution by various coating methods, a polymer layer can be provided on the molded body to obtain a molded body exhibiting fluorescence. Can be.
[本発明の蛍光性重合体の製造方法]
 本願は、前述のように、本発明の蛍光性重合体の製造方法に関する。本願において、本発明の蛍光性重合体の製造方法は、本発明の蛍光性重合体を製造する好適な方法であり、一部前述したようにそれぞれに対応する構成は相互に利用することができる。
[Production method of fluorescent polymer of the present invention]
As described above, the present application relates to a method for producing the fluorescent polymer of the present invention. In the present application, the method for producing the fluorescent polymer of the present invention is a preferable method for producing the fluorescent polymer of the present invention, and the configurations corresponding to each part can be mutually used as described above. .
[蛍光性重合体の製造工程]
 本発明の蛍光性重合体の製造方法は、本発明に用いる第一のモノマーと、架橋剤(好ましくは本発明に用いる第二のモノマー)とを共重合させる種々の方法で行うことができる。
 本発明の蛍光性重合体の製造方法は、本発明に用いる第一のモノマーと、架橋剤とを、重合用溶媒と混合しモノマー混合液を調製する混合工程と、前記モノマー混合液を反応させ前記第一のモノマーと前記架橋剤とを重合させて蛍光性重合体を含む重合体溶液とする反応工程と、前記重合体溶液から前記蛍光性重合体を回収する回収工程を有することが好ましい。
[Process for producing fluorescent polymer]
The method for producing the fluorescent polymer of the present invention can be carried out by various methods for copolymerizing the first monomer used in the present invention and a crosslinking agent (preferably the second monomer used in the present invention).
The method for producing a fluorescent polymer of the present invention comprises a first monomer used in the present invention, a crosslinking agent, and a mixing step of preparing a monomer mixture by mixing with a solvent for polymerization, and reacting the monomer mixture. The method preferably includes a reaction step of polymerizing the first monomer and the crosslinking agent to form a polymer solution containing a fluorescent polymer, and a recovery step of recovering the fluorescent polymer from the polymer solution.
[混合工程]
 本発明の蛍光性重合体の製造方法は、本発明に用いる第一のモノマーと、架橋剤と、重合用溶媒とを混合しモノマー混合液を調製する混合工程を有することができる。この混合工程における混合比率等に基づいて、製造される蛍光性重合体の成分比率等の調整を行うことができる。
[Mixing process]
The method for producing a fluorescent polymer of the present invention can include a mixing step of mixing the first monomer used in the present invention, a crosslinking agent, and a solvent for polymerization to prepare a monomer mixture. Based on the mixing ratio and the like in this mixing step, the component ratio and the like of the produced fluorescent polymer can be adjusted.
[モノマー等]
 本発明に用いる第一のモノマーおよび架橋剤等は、前述した本発明の蛍光性重合体の構造単位の由来となる第一のモノマー、架橋剤等を用いることができる。これらは、混合条件等における温度や雰囲気等に応じて、それぞれのモノマー等の物質の状態に応じたものを用いることができる。これらは操作性の観点から、常温や室温程度(例えば20~30℃程度)で液体や固体のものを用いることが好ましい。また、適宜揮発性等を考慮して、混合に用いる容器等を密閉状態で用いてもよいし、開放状態で混合してもよい。
[Monomer, etc.]
As the first monomer and the cross-linking agent used in the present invention, the first monomer, the cross-linking agent, and the like that are derived from the structural unit of the fluorescent polymer of the present invention described above can be used. These can be used in accordance with the state of the substance such as each monomer, depending on the temperature and the atmosphere under the mixing conditions and the like. From the viewpoint of operability, it is preferable to use a liquid or solid material at room temperature or about room temperature (eg, about 20 to 30 ° C.). Further, in consideration of volatility and the like, a container or the like used for mixing may be used in a closed state, or may be mixed in an open state.
[重合用溶媒]
 本発明にかかる混合工程は重合用溶媒を用いる。重合用溶媒は、第一のモノマーおよび架橋剤を分散や溶解させることができる溶媒を適宜用いることができる。本発明に用いる第一のモノマーや架橋剤は、常温で固体のもの等も含まれるが、重合用溶媒を用いて混合することで、その混合溶液中で第一のモノマーや架橋剤が高い均一性で分散したものとして反応させることができる。
[Polymerization solvent]
The mixing step according to the present invention uses a polymerization solvent. As the solvent for polymerization, a solvent capable of dispersing or dissolving the first monomer and the crosslinking agent can be appropriately used. The first monomer and the crosslinking agent used in the present invention include those which are solid at room temperature, but by mixing using a polymerization solvent, the first monomer or the crosslinking agent is highly uniform in the mixed solution. The reaction can be carried out as a dispersion in nature.
 混合工程に用いる重合用溶媒は、例えば、アルコール類(炭素数1~5の低級アルコールが好ましい)、テトラヒドロフラン、水、エチレングリコール、アセトニトリル、酢酸エチル、ジメチルホルムアミド、ベンゼン、トルエン、およびクロロホルムからなる群から選択される1以上の溶媒を含むものなどを用いることができる。重合用溶媒は、モノマーの溶解度や製造する蛍光性共重合体の粒径等の物性に応じて適宜選択することができる。溶媒は、単独の溶媒を用いてもよいし、複数の溶媒の混合溶媒を用いることもできる。前述したような溶媒は、第一のモノマーおよび第二のモノマーの分散性や、それらが反応する場として重合を阻害せず、優れた分散媒となりうる。また、本発明においては、蛍光性重合体を回収する工程を有するものとすることができるが、この回収においても、遠心分離等による分離性や、乾燥時の揮発性といった観点からも、これらの溶媒が好適に用いられる。溶媒中で反応を進めるにあたっては、モノマーのヒドロキシ基(OH)が解離しやすいほど反応が進みやすいと考えられる。このため、プロトン性極性溶媒や、非プロトン性極性溶媒を用いることが好ましい。 The polymerization solvent used in the mixing step is, for example, a group consisting of alcohols (preferably lower alcohols having 1 to 5 carbon atoms), tetrahydrofuran, water, ethylene glycol, acetonitrile, ethyl acetate, dimethylformamide, benzene, toluene, and chloroform. One containing one or more solvents selected from the following can be used. The polymerization solvent can be appropriately selected according to the physical properties such as the solubility of the monomer and the particle size of the fluorescent copolymer to be produced. As the solvent, a single solvent may be used, or a mixed solvent of a plurality of solvents may be used. The solvent as described above does not inhibit the dispersibility of the first monomer and the second monomer and polymerization as a place where they react, and can be an excellent dispersion medium. Further, in the present invention, it is possible to have a step of recovering the fluorescent polymer, but also in this recovery, separation from centrifugation and the like, from the viewpoint of volatility during drying, these viewpoints Solvents are preferably used. When the reaction proceeds in a solvent, it is considered that the more the hydroxy group (OH) of the monomer is dissociated, the more the reaction proceeds. For this reason, it is preferable to use a protic polar solvent or an aprotic polar solvent.
[溶液調整]
 混合工程における第一のモノマー、第二のモノマー、重合用溶媒の、それぞれの濃度や、混合順序等の調整条件は、各モノマー、溶媒の種類や、製造する蛍光性重合体の粒径や分子量等の物性、用途等を考慮して適宜設定することができる。
[Solution adjustment]
Adjustment conditions such as the concentration of each of the first monomer, the second monomer, and the solvent for polymerization in the mixing step, the order of mixing, and the like, the type of each monomer and solvent, and the particle size and molecular weight of the fluorescent polymer to be produced It can be appropriately set in consideration of the physical properties such as the above, the use, and the like.
 例えば、第一のモノマーと第二のモノマーとの混合比率は、モル比(第一のモノマーのモル量:第二のモノマーのモル量)で、10:1~1:10や、8:2~2:8、6:4~4:6等とすることができる。また、溶液中の濃度としては、第一のモノマーと第二のモノマーの合計モル量として、溶液全体に対する質量比(「第一のモノマーと第二のモノマーの合計モル量(mol)/溶液の全量(L)」)で、1mmol/L~1mol/L程度とすることができる。比較的分子量が大きいモノマーを用いることから、その上限は下げて、0.3mol/L以下や、0.1mol/L以下、50mmol/L以下としてもよい。また、その下限はより反応しやすいようにしたり、目的とする重合体の形状(大きさ等)に応じて、3mmol/L以上や、5mmol/L以上、10mmol/L以上としてもよい。 For example, the mixing ratio of the first monomer and the second monomer is 10: 1 to 1:10 or 8: 2 in a molar ratio (the molar amount of the first monomer: the molar amount of the second monomer). 22: 8, 6: 4 ~ 4: 6, etc. As the concentration in the solution, the total molar amount of the first monomer and the second monomer is represented by the mass ratio to the whole solution (“the total molar amount (mol) of the first monomer and the second monomer / mol of the solution). The total amount (L) ") can be about 1 mmol / L to 1 mol / L. Since a monomer having a relatively large molecular weight is used, the upper limit may be reduced to 0.3 mol / L or less, 0.1 mol / L or less, or 50 mmol / L or less. In addition, the lower limit may be set to make the reaction easier, or may be set to 3 mmol / L or more, 5 mmol / L or more, and 10 mmol / L or more depending on the shape (size or the like) of the target polymer.
 第一のモノマー、架橋剤および重合用溶媒の混合は、モノマー等の状態(液体か固体かなど)などに応じて、適宜設定できるが、重合用溶媒を収容する容器に、秤量した第一のモノマーを混合し、次に秤量した架橋剤等を混合してもよいし、これらの順序を適宜変更して混合してもよい。また、滴下しながら少しずつ混合してもよいし、撹拌等を行ってより均一なものとしてもよい。 The mixing of the first monomer, the crosslinking agent, and the polymerization solvent can be appropriately set according to the state of the monomer and the like (liquid or solid, etc.). The monomers may be mixed and then the weighed crosslinking agent or the like may be mixed, or the order may be changed as appropriate to mix. Further, the mixture may be mixed little by little while dripping, or may be agitated to make the mixture more uniform.
[反応工程]
 本発明の蛍光性重合体の製造方法に係る反応工程は、モノマー混合液を反応させ第一のモノマーと架橋剤とを重合させて蛍光性重合体を含む重合体溶液とする工程である。
[Reaction step]
The reaction step according to the method for producing a fluorescent polymer of the present invention is a step of reacting a monomer mixture to polymerize a first monomer and a crosslinking agent to obtain a polymer solution containing a fluorescent polymer.
[重合]
 反応工程は、第一のモノマーと、架橋剤とのそれぞれ物質や、反応性、得ようとする重合体の物性等を考慮して適宜その反応条件を設定することができる。設定される主な反応条件は、反応温度や、反応時間である。反応して形成された重合体が重合用溶媒中に溶解・分散し、重合体溶液となる。なお、重合体の種類や重合度等や、溶媒との親和性により、重合体は、溶媒中に溶解したり、粒子状等で分散したり、沈殿しやすい状態となる場合があるが、これらの溶解や分散等される状態を合わせて、本願では重合体溶液と呼ぶ。
[polymerization]
In the reaction step, the reaction conditions can be appropriately set in consideration of the respective substances of the first monomer and the crosslinking agent, the reactivity, the physical properties of the polymer to be obtained, and the like. Main reaction conditions to be set are a reaction temperature and a reaction time. The polymer formed by the reaction is dissolved and dispersed in the polymerization solvent to form a polymer solution. In addition, depending on the type and degree of polymerization of the polymer and the affinity with the solvent, the polymer may be dissolved in the solvent, dispersed in the form of particles, or may be in a state of being easily precipitated. In the present application, the state of dissolution, dispersion, and the like of the compound is referred to as a polymer solution.
 反応工程の反応温度は、0℃~300℃の範囲であることが好ましい。反応温度が高いほど反応を促進することができる。反応温度が高すぎる場合、溶媒やモノマーが揮発して反応条件を調整しにくくなる場合がある。また、反応温度が低すぎる場合、重合が進まなかったり、長時間を要する場合がある。反応工程は、常温よりも高い温度で行うことが好ましく、反応温度の下限は、20℃以上や40℃以上、60℃以上、80℃以上とすることが好ましい。溶媒等の揮発等を防止し反応を管理しやすいように、反応温度の上限は、250℃以下や、200℃以下、180℃以下とすることが好ましい。 反 応 The reaction temperature in the reaction step is preferably in the range of 0 ° C to 300 ° C. The higher the reaction temperature, the more the reaction can be promoted. If the reaction temperature is too high, the solvent or monomer may evaporate, making it difficult to adjust the reaction conditions. If the reaction temperature is too low, the polymerization may not proceed or a long time may be required. The reaction step is preferably performed at a temperature higher than room temperature, and the lower limit of the reaction temperature is preferably 20 ° C. or higher, 40 ° C. or higher, 60 ° C. or higher, 80 ° C. or higher. The upper limit of the reaction temperature is preferably 250 ° C. or lower, 200 ° C. or lower, or 180 ° C. or lower so that the volatilization of the solvent and the like can be prevented and the reaction can be easily controlled.
 反応工程の反応時間は、1分~48時間反応させるものであることが好ましい。反応時間は、その重合系で、反応温度として設定する温度に設定してから、反応を停止させるまでの時間である。反応の停止は、反応温度を設定温度から低下させたり、後述する回収工程を開始したときなどを停止したときとすることができる。反応時間が短すぎると、充分な蛍光性や安定性、形状等を有する重合度の重合体を得ることができない場合がある。反応時間が長すぎても重合度等の共重合の程度は飽和して加熱等により劣化等が生じてしまう恐れがある。反応時間の下限は、2分以上や、5分以上、10分以上など、得ようとする重合体の重合度や、粒子化させるときの粒径等を考慮して設定することができる。反応時間の上限は、短くても本発明にかかる蛍光性重合体を得ることができることから、20時間以下や、10時間以下、1時間以下、30分以下としてもよい。 反 応 The reaction time of the reaction step is preferably one in which the reaction is performed for 1 minute to 48 hours. The reaction time is the time from setting the temperature set as the reaction temperature to stopping the reaction in the polymerization system. The reaction can be stopped when the reaction temperature is lowered from the set temperature or when a recovery step described later is started. If the reaction time is too short, it may not be possible to obtain a polymer having a sufficient degree of fluorescence, stability, shape and the like. Even if the reaction time is too long, the degree of copolymerization such as the degree of polymerization is saturated, and there is a possibility that deterioration or the like may occur due to heating or the like. The lower limit of the reaction time can be set in consideration of the degree of polymerization of the polymer to be obtained, such as 2 minutes or more, 5 minutes or more, and 10 minutes or more, and the particle size at the time of forming particles. The upper limit of the reaction time may be 20 hours or less, 10 hours or less, 1 hour or less, or 30 minutes or less since the fluorescent polymer according to the present invention can be obtained even if the reaction time is short.
 本発明の蛍光性重合体の製造方法に係る反応工程は、適宜、撹拌や、マイクロ波の印加等を行いながら行うものであってもよい。撹拌や、マイクロ波の印加を行うことで、実質的な加熱条件を緩やかなものとして反応条件を管理しやすいものとしたり、均一性を向上させたりすることができる。特に、マイクロ波を印加しながら加熱するマイクロ波加熱により反応させて重合することが好ましい。本発明の蛍光性重合体の製造方法は、大気圧下でも十分な重合を行うことができ製造条件の管理を行いやすい。例えば、オイルバスや水浴中で70℃で6時間程度かかる重合の反応を、マイクロ波を印加し150℃に加熱することで数分程度の重合の反応とすることができる。 反 応 The reaction process according to the method for producing a fluorescent polymer of the present invention may be carried out while appropriately stirring, applying microwaves, or the like. By performing the stirring and the application of the microwave, the heating conditions can be moderated so that the reaction conditions can be easily controlled or the uniformity can be improved. In particular, it is preferable to conduct the polymerization by reacting by microwave heating in which heating is performed while applying a microwave. In the method for producing a fluorescent polymer of the present invention, sufficient polymerization can be performed even under atmospheric pressure, and the production conditions can be easily controlled. For example, a polymerization reaction that takes about 6 hours at 70 ° C. in an oil bath or a water bath can be converted into a polymerization reaction of about several minutes by heating to 150 ° C. by applying a microwave.
[回収工程]
 本発明の蛍光性重合体の製造方法にかかる回収工程は、重合体溶液から重合体を回収する工程である。反応工程により重合された蛍光性重合体は、粒子状を形成することができる。この粒子状の状態で重合用溶媒中に分散や沈殿しやすい状態となっている場合がある。これらの蛍光性重合体を回収するために、遠心分離やろ過、乾燥させて溶媒の蒸散などを行い、重合体を回収することが好ましい。例えば、遠心分離して、上澄みを除去した後の沈殿物を重合体濃縮物として用いることができる。
[Recovery process]
The recovery step according to the method for producing a fluorescent polymer of the present invention is a step of recovering a polymer from a polymer solution. The fluorescent polymer polymerized in the reaction step can form particles. In some cases, the particles are in a state of being easily dispersed or precipitated in the polymerization solvent. In order to recover these fluorescent polymers, it is preferable to perform centrifugation, filtration, and drying to evaporate the solvent, and to recover the polymers. For example, the precipitate after centrifugation and removal of the supernatant can be used as a polymer concentrate.
 蛍光性重合体の回収にあたっては、乾燥をおこなってもよい。この乾燥は、反応後の重合体溶液に行ってもよいし、遠心分離を行った後の重合体濃縮物に行ってもよい。乾燥温度は、溶媒として用いる液体の沸点や揮発性、重合体の安定性等を考慮して適宜設定してよく、例えば50~300℃程度、好ましくは80~150℃程度で行うことができる。または、減圧乾燥を適宜加熱乾燥等と組み合わせて行ってもよい。 (4) In recovering the fluorescent polymer, drying may be performed. This drying may be performed on the polymer solution after the reaction or on the polymer concentrate after centrifugation. The drying temperature may be appropriately set in consideration of the boiling point and volatility of the liquid used as the solvent, the stability of the polymer, and the like, and may be, for example, about 50 to 300 ° C., preferably about 80 to 150 ° C. Alternatively, drying under reduced pressure may be appropriately performed in combination with drying by heating or the like.
 本発明の蛍光性重合体の製造方法は、単一の反応容器で混合、反応を行い、所定の蛍光性重合体を得ることができる、いわゆるワンポット合成が可能である。このため、製造設備の導入負荷等は低く、少量多品種の生産から、量産化まで種々の製造を行いやすい。 方法 The method for producing a fluorescent polymer of the present invention enables so-called one-pot synthesis in which mixing and reaction are performed in a single reaction vessel to obtain a predetermined fluorescent polymer. For this reason, the introduction load of the manufacturing equipment is low, and it is easy to perform various types of production from small-quantity multi-product production to mass production.
[本発明の特徴]
 本発明は、完全有機系のポリマーからなり、蛍光性部位がポリマー主鎖内に組み込まれた、三次元架橋した蛍光性重合体である。これは、直径をナノサイズとすることができる蛍光性粒子や発光材料、またそれらの製造方法等に関するものである。本発明の蛍光性重合体は、分解しにくく、蛍光を奏する構造を重合体の主鎖内に有するため、蛍光性部位の溶出しにくく安定性が高い。また、高い熱安定性や耐溶剤性を有し、その利用範囲は広い。例えば、蛍光性フィラーや分析用マーカーとして、また生体分析用マーカーとしての応用が期待される。
[Features of the present invention]
The present invention is a three-dimensionally crosslinked fluorescent polymer composed of a completely organic polymer and having a fluorescent site incorporated in the polymer main chain. This relates to a fluorescent particle or a luminescent material whose diameter can be made to be a nano size, a method for producing the same, and the like. The fluorescent polymer of the present invention is hardly decomposed and has a structure exhibiting fluorescence in the main chain of the polymer, so that the fluorescent site is hardly eluted and has high stability. In addition, it has high thermal stability and solvent resistance, and its use range is wide. For example, it is expected to be applied as a fluorescent filler or a marker for analysis, or as a marker for biological analysis.
 以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples unless the gist is changed.
[評価項目]
<紫外可視スペクトル>
・測定装置:紫外可視分光光度計(日本分光株式会社 型番:V-560)
・測定条件:測定は、吸光度測定モード、バンド幅を1.0nm、走査速度を200nm/minに設定し行った。測定には光路長10mmの光学セルを用いた。
[Evaluation item]
<UV-visible spectrum>
-Measuring device: UV-visible spectrophotometer (JASCO Corporation model number: V-560)
-Measurement conditions: The measurement was performed by setting the absorbance measurement mode, the bandwidth to 1.0 nm, and the scanning speed to 200 nm / min. An optical cell having an optical path length of 10 mm was used for the measurement.
<励起光-蛍光スペクトル>
・測定装置:分光蛍光光度計(日本分光株式会社 型番:FP-6500)
・測定条件:測定はEmissionモード、励起バンド幅を3nm、蛍光バンド幅を3nm、走査速度を200nm/minとして行った。測定には光路長10mmの光学セルを用いた。
<Excitation light-Fluorescence spectrum>
-Measuring device: spectrofluorometer (JASCO Corporation model number: FP-6500)
Measurement conditions: Measurement was performed in an emission mode, with an excitation bandwidth of 3 nm, a fluorescence bandwidth of 3 nm, and a scanning speed of 200 nm / min. An optical cell having an optical path length of 10 mm was used for the measurement.
<粒径の観察>
・測定装置:TEM(日本電子株式会社 型番:JEM1400-plus)
・測定条件:80kVの加速電圧条件で観察を行った。観察試料はプラズマイオンボンバーダ(真空デバイス株式会社 型番:PIB-10)を用いて、5.5mAで90秒間、表面親水化処理を行ったTEMグリッドを用いた。また、試料はTEMグリットにキャスト後、0.1%酢酸ウラニル水溶液を用いて染色処理を行った。
<Observation of particle size>
-Measuring device: TEM (JEOL Ltd. model number: JEM1400-plus)
Measurement conditions: Observation was performed under an acceleration voltage condition of 80 kV. The observation sample used was a TEM grid that had been subjected to a surface hydrophilization treatment at 5.5 mA for 90 seconds using a plasma ion bombarder (Vacuum Device Inc., model number: PIB-10). The sample was cast on a TEM grit and then stained using a 0.1% uranyl acetate aqueous solution.
<ゼータ電位>
・測定装置:ゼータ電位測定装置(MALVERN社 型番:ゼータサイザーナノZS)
・測定条件:測定用セルには、Disposable folded capillary cells(MALVERN社製型番:DTS 1070)を用いた。測定は25℃で行ない、F(ka)値にはSmoluchowski近似を用いた。
<Zeta potential>
-Measuring device: Zeta potential measuring device (MALVERN company model number: Zetasizer Nano ZS)
Measurement conditions: Disposable folded capillary cells (MALVERN model number: DTS 1070) were used as measurement cells. The measurement was performed at 25 ° C., and Smoluchowski approximation was used for the F (ka) value.
[重合方法] [Polymerization method]
[試薬等]
<第一のモノマー>
・DHA:2,6-Dihydroxyanthracenen(東京化成工業、純度:>95%)
[Reagents, etc.]
<First monomer>
・ DHA: 2,6-Dihydroxyanthracenen (Tokyo Chemical Industry, purity:> 95%)
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
・BHPF:9,9'-Bis(4-hydroxyphenyl)fluorene(東京化成工業、純度:>96%) ・ BHPF: 9,9'-Bis (4-hydroxyphenyl) fluorene (Tokyo Chemical Industry, purity:> 96%)
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
・2,6-DHN:2,6-Dihydroxynaphthalene(東京化成工業、純度:>95%) ・ 2,6-DHN: 2,6-Dihydroxynaphthalene (Tokyo Chemical Industry, purity:> 95%)
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
・2,2´-DHBP:2,2'-Dihydroxybiphenyl(富士フイルム和光純薬、純度:>97%) ・ 2,2'-DHBP: 2,2'-Dihydroxybiphenyl (Fujifilm Wako Pure Chemical, purity:> 97%)
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
・4,4´-DHBP:4,4'-Dihydroxybiphenyl(富士フイルム和光純薬、純度:>97%) ・ 4,4'-DHBP: 4,4'-Dihydroxybiphenyl (Fujifilm Wako Pure Chemical, purity:> 97%)
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
・2,2´-BHPP:2,2'-Bis(4-hydroxyphenyl)propane(東京化成工業、純度:>99%)
 (別称:4,4'-(propane-2,2-diyl)diphenol)
・ 2,2'-BHPP: 2,2'-Bis (4-hydroxyphenyl) propane (Tokyo Chemical Industry, purity:> 99%)
(Also known as: 4,4 '-(propane-2,2-diyl) diphenol)
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
<第二のモノマー>
・TA:1,3,5-Trimethylhexahydro-1,3,5-triazinane(東京化成工業、純度:>98%)
<Second monomer>
・ TA: 1,3,5-Trimethylhexahydro-1,3,5-triazinane (Tokyo Chemical Industry, purity:> 98%)
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
<第二のモノマー>
・HMT:ヘキサメチレンテトラミン(片山化学工業、特級)
<Second monomer>
・ HMT: Hexamethylenetetramine (Katayama Chemical Industry, special grade)
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
<溶媒等>
・EtOH:エタノール
・THF:テトラヒドロフラン
・DMF:ジメチルホルムアミド
・DMSO:ジメチルスルホキシド
・CHCl3:トリクロロメタン
・EtOAc:酢酸エチル
・Acetone:アセトン
・水:純水
<Solvent etc.>
· EtOH: Ethanol-THF: Tetrahydrofuran-DMF: dimethylformamide, DMSO: dimethyl sulfoxide-CHCl 3: trichloromethane, EtOAc: ethyl acetate - Acetone: acetone water: Pure water
[実施例1](DHA-TA)
 第一のモノマーとしてDHA、第二のモノマーとしてTAを用いて、蛍光性重合体を製造した。THF:水(容積比8:2)の混合溶媒を用いてDHAの濃度が10mmol/L(「mmol/L」を「mM」と略記する場合がある。)、TAの濃度が10mmol/Lであるモノマー混合液(1)を調製した。このモノマー混合液(1)を、マイクロウェーブ合成装置(Anton Paar 型番:Mono wave 300)を用いて300rpmでかき混ぜながら150℃で3分間加熱し、モノマーを共重合させて重合体溶液(1)を得た。
 この重合体溶液(1)を、エタノールで希釈し、20000rpm・45minの条件で遠心分離し、上澄みを除去して、沈殿物側の分散液を回収した。この分散液には、DHAとTAの重合体(1)が含まれている。
 この分散液をさらに、室温で減圧乾燥して、重合体(1)を得た。この重合体(1)の物性を評価した。
[Example 1] (DHA-TA)
A fluorescent polymer was produced using DHA as the first monomer and TA as the second monomer. Using a mixed solvent of THF: water (volume ratio 8: 2), the concentration of DHA is 10 mmol / L (“mmol / L” may be abbreviated as “mM”), and the concentration of TA is 10 mmol / L. A certain monomer mixture (1) was prepared. This monomer mixture (1) was heated at 150 ° C. for 3 minutes while stirring at 300 rpm using a microwave synthesizer (Anton Paar model: Mono wave 300), and the monomer was copolymerized to obtain a polymer solution (1). Obtained.
The polymer solution (1) was diluted with ethanol, centrifuged at 20,000 rpm for 45 minutes, the supernatant was removed, and the dispersion on the precipitate side was collected. This dispersion contains a polymer (1) of DHA and TA.
This dispersion was further dried under reduced pressure at room temperature to obtain a polymer (1). The physical properties of the polymer (1) were evaluated.
 図1は、得られた重合体(1)のTEMによる観察像である。図1に示すように、直径30nm程度の球状粒子が得られた。
 図2は、得られた重合体(1)の粒子界面の電荷状態のpH依存性を示すグラフである。酸性の条件で、よりpHが低いほどゼータ電位(Zeta Potential)が正の値となることから、重合体(1)はNを有する構造であると考えられる。塩基性の条件で、よりpHが高いほどゼータ電位が負の値となることから、重合体(1)はOHを有する構造であると考えられる。そして、この両電解性は、アニオン性のジヒドロキシ体とカチオン性のトリアジナンユニットが粒子界面に存在していることを示している。
FIG. 1 is a TEM observation image of the obtained polymer (1). As shown in FIG. 1, spherical particles having a diameter of about 30 nm were obtained.
FIG. 2 is a graph showing the pH dependence of the charge state at the particle interface of the obtained polymer (1). Under acidic conditions, the lower the pH, the more positive the zeta potential (Zeta Potential). Therefore, it is considered that the polymer (1) has a structure having N. Under basic conditions, the higher the pH, the more negative the zeta potential becomes. Therefore, it is considered that the polymer (1) has a structure having OH. The two electrolytic properties indicate that an anionic dihydroxy compound and a cationic triazinan unit are present at the particle interface.
(重合体溶液の観察)
 図3は、重合体(1)を5mg/mL程度の濃度で含有する、水を分散媒とする分散溶液を示す写真である。0.1Nの塩酸もしくは0.1Nの水酸化ナトリウム水溶液を用いて、pHを調整し、図3において左側から右側にかけて酸性から塩基性に変更したもので、pHは左から順に、pH2.0、pH2.5、pH3.0、pH3.5、pH4.0、pH7.0、pH12.0としたものである。最も左側の酸性の状態で黄色であり、最も右側の塩基性の状態で赤色となっており、pHによって色が変化する分散媒を調整できることが確認された。
(Observation of polymer solution)
FIG. 3 is a photograph showing a dispersion solution containing water as a dispersion medium containing the polymer (1) at a concentration of about 5 mg / mL. PH was adjusted from 0.1N hydrochloric acid or 0.1N sodium hydroxide aqueous solution to acidic to basic from left to right in FIG. pH 2.5, pH 3.0, pH 3.5, pH 4.0, pH 7.0, and pH 12.0. It was yellow in the acidic state on the left side and red in the basic state on the right side, and it was confirmed that the dispersion medium whose color changes with pH can be adjusted.
(重合体溶液の光学特性(1))
 図4は、重合体(1)の紫外可視光吸収特性(図4(a))、励起光-蛍光特性(図4(b))を確認したものである。得られたポリマー粒子をエタノール:水(容積比9:1)混合溶液中に分散させた時の紫外可視スペクトル及び蛍光スペクトルを示している。グラフの破線はモノマー(DHA)をそのまま混合したものであり、実線は重合体(1)を含む分散媒である。
 ポリマー粒子分散媒では、モノマー分散媒では確認されない吸収帯が500-550nm付近に現れている。また、345nmで励起すると、ポリマー粒子分散液ではモノマーにはない発光が550-700nmに観察された。
(Optical properties of polymer solution (1))
FIG. 4 confirms the ultraviolet-visible light absorption characteristics (FIG. 4 (a)) and the excitation light-fluorescence characteristics (FIG. 4 (b)) of the polymer (1). 4 shows an ultraviolet-visible spectrum and a fluorescence spectrum when the obtained polymer particles are dispersed in a mixed solution of ethanol and water (volume ratio: 9: 1). The broken line in the graph is a mixture of the monomer (DHA) as it is, and the solid line is the dispersion medium containing the polymer (1).
In the polymer particle dispersion medium, an absorption band not observed in the monomer dispersion medium appears around 500 to 550 nm. Further, when excited at 345 nm, light emission not found in the monomer was observed at 550 to 700 nm in the polymer particle dispersion.
(重合体溶液の光学特性(2))
 図5は、重合体(1)の溶液のpHを変更して、紫外可視光吸収特性(図5(a))、励起光-蛍光特性(図5(b))を確認したものである。得られたポリマー粒子をpH9に調整したエタノール:水(容積比9:1)混合溶液中に分散させた時の紫外可視スペクトル及び蛍光スペクトルを示している。通常の破線はモノマー(DHA)をそのまま混合したものであり、実線は重合体(1)を含むpH9の分散媒である。
 塩基性条件に調整することで、ポリマー粒子分散媒の紫外可視スペクトルでは、500nm前後の吸収強度が低下し、564nmに特異な吸収極大を有するスペクトルへと変化した。また、346nmで励起すると、500-800nmに原料では見られなかった蛍光スペクトルがみられた。
(Optical properties of polymer solution (2))
FIG. 5 shows the results obtained by changing the pH of the solution of the polymer (1) and confirming the ultraviolet-visible light absorption characteristics (FIG. 5A) and the excitation light-fluorescence characteristics (FIG. 5B). 4 shows an ultraviolet-visible spectrum and a fluorescence spectrum when the obtained polymer particles are dispersed in a mixed solution of ethanol: water (volume ratio: 9: 1) adjusted to pH9. A normal broken line is a mixture of the monomer (DHA) as it is, and a solid line is a dispersion medium of pH 9 containing the polymer (1).
By adjusting to the basic condition, in the ultraviolet-visible spectrum of the dispersion medium of the polymer particles, the absorption intensity around 500 nm was reduced and changed to a spectrum having a specific absorption maximum at 564 nm. When excited at 346 nm, a fluorescence spectrum not observed with the raw material was observed at 500 to 800 nm.
 図6は重合体(1)を様々な溶媒に分散させた溶液の(a)通常光下および(b)364nmで励起した観察結果である。また、図6のうち、代表的な溶液の紫外可視および蛍光スペクトル測定結果を図7に示した。分散媒に応じて光学特性、特に蛍光特性が大きく変化することが確認された。 FIG. 6 shows observation results of a solution in which the polymer (1) is dispersed in various solvents, (a) excited under normal light and (b) excited at 364 nm. In addition, FIG. 7 shows the results of measuring the ultraviolet-visible and fluorescence spectra of a typical solution in FIG. It was confirmed that the optical characteristics, particularly the fluorescence characteristics, changed significantly depending on the dispersion medium.
 このように、モノマーのDHA溶液は420-440nm付近の蛍光強度があり青みがかった蛍光を示す。本発明に係る重合体(1)とすることで、540-600nm付近に広く強い蛍光強度を示すものとなり、強い黄色の蛍光を示すものとなった。 Thus, the DHA solution of the monomer has a fluorescence intensity around 420-440 nm and shows bluish fluorescence. By using the polymer (1) according to the present invention, a broad and strong fluorescence intensity around 540-600 nm was exhibited, and a strong yellow fluorescence was exhibited.
(重合体(1)の構造式とC/N比)
 重合体(1)の化学構造は、図8に示すStructure1やStructure2のものと推定される。これらのC/N比は、それぞれ13.71、8.14である。重合体(1)の実測のC/N比は12.05であることからStructure1やStructure2などが混在する架橋性重合体となっている。
(Structural formula of polymer (1) and C / N ratio)
The chemical structure of the polymer (1) is presumed to be that of Structure 1 or Structure 2 shown in FIG. These C / N ratios are 13.71 and 8.14, respectively. Since the actually measured C / N ratio of the polymer (1) is 12.05, the polymer (1) is a crosslinkable polymer in which Structure 1 and Structure 2 are mixed.
(重合体(1)の安定性)
 重合体(1)の酸およびアルカリに対する安定性を紫外可視スペクトルおよび励起光-蛍光スペクトルで評価した。pH2およびpH13の重合体(1)5mg/mLの水溶液を調製し、25℃で暗所に静置した後、7日間経過後のスペクトルを測定した。時間経過前後で大きなスペクトルの変化は見られず安定性が高かった。
(Stability of polymer (1))
The stability of the polymer (1) to acids and alkalis was evaluated by an ultraviolet-visible spectrum and an excitation light-fluorescence spectrum. A 5 mg / mL aqueous solution of the polymer (1) at pH 2 and pH 13 was prepared, allowed to stand in a dark place at 25 ° C., and the spectrum was measured after a lapse of 7 days. There was no significant change in spectrum before and after the passage of time, and the stability was high.
[実施例2]
[重合体(2-1)の製造(BHPF-TA)]
 第一のモノマーとしてBHPF、第二のモノマーとしてTAを用いて、蛍光性重合体を製造した。エタノール:水(容積比9:1)を混合し、0.1NのNaOH水溶液でpH12に調整した混合溶媒(2-1)に、BHPF20mmol/Lと、TA20mmol/Lとなるように、混合してモノマー混合液(2-1)を調製した。
 このモノマー混合液(2-1)を、マイクロウェーブ合成装置を用いて300rpmでかき混ぜながら150℃で30分間加熱し、モノマーを共重合させて重合体溶液(2-1)を得た。
 この重合体溶液(2-1)に、エタノールを重合体溶液(2-1)と等量追加することで2倍希釈液とした分散液(2-1)として評価した。この分散液(2-1)には、フルオレン系モノマーとTAの重合体(2-1)が含まれている。
[Example 2]
[Production of polymer (2-1) (BHPF-TA)]
A fluorescent polymer was produced using BHPF as the first monomer and TA as the second monomer. Ethanol: water (volume ratio 9: 1) was mixed, and mixed with a mixed solvent (2-1) adjusted to pH 12 with a 0.1N NaOH aqueous solution so that BHPF 20 mmol / L and TA 20 mmol / L. A monomer mixture (2-1) was prepared.
The monomer mixture (2-1) was heated at 150 ° C. for 30 minutes while stirring at 300 rpm using a microwave synthesizer, and the monomers were copolymerized to obtain a polymer solution (2-1).
Ethanol was added to the polymer solution (2-1) in an amount equal to that of the polymer solution (2-1), and the dispersion was evaluated as a two-fold diluted liquid (2-1). This dispersion liquid (2-1) contains a polymer (2-1) of a fluorene-based monomer and TA.
 図9~11に、重合体を含む分散液(2-1)の評価結果を示す。図9は、紫外可視光吸収特性(図9(a))、励起光-蛍光特性(図9(b))を確認したものである。この図9(b)の励起光は、重合体(2-1)の強い吸収が確認される波長407nmとした。グラフの破線はモノマー(BHPF)をそのまま混合したものであり、実線は重合体(2-1)を含む分散媒である。
 図10は、重合体溶液にレーザー光を照射したときの観察結果を示すものである。図11は、波長364nmの光で照射したときの観察結果を示すものである。なお、図11において、(a)は、モノマーを分散液(2-1)と同濃度でエタノール分散させた重合前の液の評価結果である。また、(b)は、重合体を含む分散液(2-1)の評価結果である。
 重合体を含む分散液(2-1)は黄色に着色していた。また、分散液(2-1)は、波長364nmの励起や、407nmの励起により強い蛍光を示すことが確認された(図9、図11)。なお、分散液(2)にレーザー光を照射することで光散乱が生じることから非常に小さい粒状の重合体が分散したものであることを確認した(図10)。
9 to 11 show the evaluation results of the dispersion liquid (2-1) containing the polymer. FIG. 9 confirms the ultraviolet-visible light absorption characteristics (FIG. 9A) and the excitation light-fluorescence characteristics (FIG. 9B). The excitation light in FIG. 9B has a wavelength of 407 nm at which strong absorption of the polymer (2-1) is confirmed. The broken line in the graph is a mixture of the monomer (BHPF) as it is, and the solid line is the dispersion medium containing the polymer (2-1).
FIG. 10 shows the observation results when the polymer solution was irradiated with laser light. FIG. 11 shows an observation result obtained when irradiation with light having a wavelength of 364 nm is performed. In FIG. 11, (a) shows the evaluation result of the liquid before polymerization in which the monomer was dispersed in ethanol at the same concentration as the dispersion liquid (2-1). (B) shows the evaluation result of the dispersion liquid (2-1) containing the polymer.
The dispersion liquid (2-1) containing the polymer was colored yellow. In addition, it was confirmed that the dispersion liquid (2-1) exhibited strong fluorescence by excitation at a wavelength of 364 nm or 407 nm (FIGS. 9 and 11). Irradiation of the dispersion liquid (2) with laser light causes light scattering, so that it was confirmed that a very small granular polymer was dispersed (FIG. 10).
[重合体(2-2)の製造(DHA-TA)]
 実施例1と同様に、THF:水(容積比8:2)の混合溶媒を用いてDHAの濃度が10mmol/L、TAの濃度が10mmol/Lであるモノマー混合液(2-2)を調製した。このモノマー混合液(2-2)を、マイクロウェーブ合成装置(Anton Paar 型番: Mono wave 300)を用いて300rpmでかき混ぜながら150℃で3分間加熱し、モノマーを共重合させて重合体溶液(2-2)を得た。この重合体溶液(2-2)をアセトニトリルで希釈し、20000rpm・45minの条件で遠心分離し、上澄みを除去して、沈殿物側の分散液を回収した。この分散液には、DHAとTAの重合体(2-2)が含まれている。
[Production of polymer (2-2) (DHA-TA)]
Similarly to Example 1, a monomer mixture (2-2) having a DHA concentration of 10 mmol / L and a TA concentration of 10 mmol / L was prepared using a mixed solvent of THF: water (volume ratio: 8: 2). did. The monomer mixture (2-2) was heated at 150 ° C. for 3 minutes while stirring at 300 rpm using a microwave synthesizer (Anton Paar model number: Mono wave 300) to copolymerize the monomer and polymer solution (2). -2) was obtained. The polymer solution (2-2) was diluted with acetonitrile, centrifuged at 20,000 rpm for 45 minutes, the supernatant was removed, and the dispersion on the precipitate side was collected. This dispersion contains a polymer (2-2) of DHA and TA.
 この分散液をさらに、室温で減圧乾燥して、重合体(2-2)を得た。図12は、この重合体(2-2)をpH13およびpH2に調整したエタノール:水(容積比9:1)混合溶液中に分散させた時の紫外可視スペクトル及び蛍光スペクトルを示している。酸性、アルカリ性いずれの条件下でも実施例1と比較すると、紫外可視スペクトルが50nmほど長波長側へシフトする。また、酸性条件では、495nmで励起すると特徴的な蛍光発光が確認される。 This dispersion was further dried at room temperature under reduced pressure to obtain a polymer (2-2). FIG. 12 shows an ultraviolet-visible spectrum and a fluorescence spectrum when the polymer (2-2) is dispersed in a mixed solution of ethanol and water (volume ratio 9: 1) adjusted to pH 13 and pH 2. Under both acidic and alkaline conditions, as compared with Example 1, the ultraviolet-visible spectrum shifts toward the longer wavelength side by about 50 nm. In addition, under acidic conditions, a characteristic fluorescence emission is confirmed when excited at 495 nm.
[実施例3](2,6DHN-HMT)
 エタノール中に2,6-DHNの濃度が30mmol/L、HMTの濃度が30mmol/Lとなるように調製したモノマー混合液(3)を調製した。このモノマー混合液(3)を、マイクロウェーブ合成装置を用いて300rpmでかき混ぜながら200℃で10分間加熱し、モノマーを共重合させて重合体溶液(3)を得た。この重合体溶液(3)をエタノールで希釈し、20000rpm・30minの条件で遠心分離し、上澄みを除去して、重合体(3)を得た。
Example 3 (2,6DHN-HMT)
A monomer mixture (3) was prepared so that the concentration of 2,6-DHN was 30 mmol / L and the concentration of HMT was 30 mmol / L in ethanol. The monomer mixture (3) was heated at 200 ° C. for 10 minutes while stirring at 300 rpm using a microwave synthesizer, and the monomers were copolymerized to obtain a polymer solution (3). The polymer solution (3) was diluted with ethanol, centrifuged at 20,000 rpm for 30 minutes, and the supernatant was removed to obtain a polymer (3).
 図13は重合体(3)の粒径分布のヒストグラムである。平均粒径39nm、CV値17.5%の粒子が観察された。また図14には2,6-DHNのエタノール溶液(3)および重合体溶液(3)UVスペクトルおよび500nmで励起し測定した蛍光スペクトル測定結果を示している。重合体溶液(3)では400-500nmに2,6-DHNにはない吸収帯がある。また、500nmで各溶液を励起し、蛍光スペクトルを測定したところ2,6-DHNのエタノール溶液では観察されない発光が観察された。 FIG. 13 is a histogram of the particle size distribution of the polymer (3). Particles having an average particle size of 39 nm and a CV value of 17.5% were observed. FIG. 14 shows the UV spectrum of the ethanol solution (3) and the polymer solution (3) of 2,6-DHN and the result of fluorescence spectrum measurement excited at 500 nm. Polymer solution (3) has an absorption band at 400-500 nm that is not found in 2,6-DHN. Further, when each solution was excited at 500 nm and the fluorescence spectrum was measured, light emission not observed in the ethanol solution of 2,6-DHN was observed.
[実施例4]
 実施例1や実施例2に準じて製造した重合体の製造条件を、表1に示す。実施例4-1から、実施例4-8のいずれの製造条件でも、蛍光性重合体を得られることを確認した。なお、表1に示す平均粒径は、TEM観察した像から無作為に50個以上の粒子の粒径を測定し、測定値の総和を測定値の個数で割った値である。
 また、得られた蛍光性重合体のTEM観察像を、図15に示す。図15に示すように、これらの製造条件で、粒径26nm~215nm程度の粒子を得ることができることが確認された。いずれも単分散性の高い粒子が得られており、代表的には、実施例4-1および実施例4-7で、それぞれ17.5%および18.4%というCV値が得られている。図16は実施例4-1および実施例4-7のヒストグラムである。
[Example 4]
Table 1 shows the production conditions of the polymers produced according to Example 1 and Example 2. From Example 4-1 it was confirmed that a fluorescent polymer could be obtained under any of the production conditions of Example 4-8. The average particle size shown in Table 1 is a value obtained by randomly measuring the particle size of 50 or more particles from an image obtained by TEM observation, and dividing the sum of the measured values by the number of measured values.
FIG. 15 shows a TEM observation image of the obtained fluorescent polymer. As shown in FIG. 15, it was confirmed that particles having a particle size of about 26 nm to 215 nm can be obtained under these manufacturing conditions. In each case, particles having high monodispersity were obtained, and typically, in Example 4-1 and Example 4-7, CV values of 17.5% and 18.4% were obtained, respectively. . FIG. 16 is a histogram of Example 4-1 and Example 4-7.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
[実施例5]
<蛍光性重合体の被覆>
 第一のモノマーとしてDHA、第二のモノマーをTAとして、ナノシリカ(日産化学株式会社製スノーテックスS(30%水分散体、平均粒径50nm))を蛍光性重合体で被覆した。ナノシリカは、20000rpm・15minの条件で遠心分離し、沈殿成分をエタノールに再分散して使用した(シリカ分40mg/mL)。シリカ分散液2.6mL(シリカ分105mg)、DHAが10.5mg、TAが6.45mgをエタノールに加えた混合液(5)を調製した。この混合液(5)をオイルバス上で300rpmでかき混ぜながら75℃で12時間加熱し、モノマーをナノシリカ界面上で共重合させて蛍光性重合体被覆シリカ粒子の分散溶液(5)を得た。この蛍光性重合体被覆シリカ粒子の分散液(5)を、エタノールで希釈し、25000rpm・30minの条件で遠心分離し、上澄みを除去して、沈殿物を回収した。この沈殿物をさらに室温で減圧乾燥して、蛍光性重合体被覆シリカ粒子(5)を得た。図17には、蛍光性重合体被覆シリカ粒子(5)を水に分散させ、364nmの波長の紫外光を照射した様子を示している。図17は(a)蛍光性重合体被覆シリカ粒子(5)を水に分散させた試料に0.1N HClを数滴加えたもの、(b)なにも加えていないもの、(c)0.1N NaOHを数滴加えたものである。(a)は白色系、(b)は赤橙色系、(c)は青緑系と、pH条件を変化させることで異なる蛍光色を示した。
[Example 5]
<Coating of fluorescent polymer>
Using DHA as the first monomer and TA as the second monomer, nanosilica (Snowtex S (manufactured by Nissan Chemical Industries, Ltd., 30% aqueous dispersion, average particle size 50 nm)) was coated with a fluorescent polymer. The nanosilica was centrifuged under the conditions of 20,000 rpm for 15 minutes, and the precipitated component was redispersed in ethanol and used (silica content: 40 mg / mL). A mixed solution (5) was prepared by adding 2.6 mL of silica dispersion (105 mg of silica), 10.5 mg of DHA, and 6.45 mg of TA to ethanol. The mixture (5) was heated at 75 ° C. for 12 hours while stirring at 300 rpm on an oil bath, and the monomer was copolymerized on the nanosilica interface to obtain a dispersion solution (5) of the fluorescent polymer-coated silica particles. The dispersion (5) of the fluorescent polymer-coated silica particles was diluted with ethanol, centrifuged at 25,000 rpm for 30 minutes, the supernatant was removed, and the precipitate was collected. The precipitate was further dried at room temperature under reduced pressure to obtain fluorescent polymer-coated silica particles (5). FIG. 17 shows a state where the fluorescent polymer-coated silica particles (5) are dispersed in water and irradiated with ultraviolet light having a wavelength of 364 nm. FIG. 17 shows (a) a sample in which fluorescent polymer-coated silica particles (5) are dispersed in water, a few drops of 0.1N HCl added, (b) nothing added, (c) 0 A few drops of .1N NaOH were added. (A) shows a white color, (b) shows a red-orange color, and (c) shows a blue-green color, showing different fluorescent colors by changing pH conditions.
[実施例6](2,2´-DHBP-TA)
 第一のモノマーとして2,2´-DHBP、第二のモノマーとしてTAを用いて、蛍光性重合体を製造した。EtOH:水(容積比9:1)の混合溶媒を用いて2,2´-DHBPおよびTAそれぞれの濃度が75mMであるモノマー混合液(6)を調製した。このモノマー混合液(6)に、マイクロウェーブ合成装置を用いて300rpmでかき混ぜながら150℃で30分間加熱し、モノマーを共重合させて重合体溶液(6)を得た。この重合体溶液をメンブレンフィルターで濾過し、黄色の重合体(6)を回収した。
[Example 6] (2,2'-DHBP-TA)
A fluorescent polymer was produced using 2,2′-DHBP as the first monomer and TA as the second monomer. Using a mixed solvent of EtOH: water (volume ratio 9: 1), a monomer mixture (6) was prepared in which each of 2,2′-DHBP and TA had a concentration of 75 mM. The monomer mixture (6) was heated at 150 ° C. for 30 minutes while stirring at 300 rpm using a microwave synthesizer to copolymerize the monomers to obtain a polymer solution (6). This polymer solution was filtered through a membrane filter to recover a yellow polymer (6).
 図18は、得られた重合体(6)のSEMによる観察像である。図18に示すように、直径2.5μm程度の球状粒子が得られた。 FIG. 18 is an SEM observation image of the obtained polymer (6). As shown in FIG. 18, spherical particles having a diameter of about 2.5 μm were obtained.
(重合体溶液の光学特性)
 図19は、重合体(6)のエタノール分散溶液に0.1Nの水酸化ナトリウム水溶液を50μL滴下した溶液の紫外可視光吸収特性(図19(a))、励起光-蛍光特性(図19(b))を確認したものである。重合体分散媒では、330nmの吸収帯の強度がモノマー溶液と比べて増加した。また、281nmで励起すると、410nm付近の発光強度が増加した。
(Optical properties of polymer solution)
FIG. 19 shows UV-visible light absorption characteristics (FIG. 19 (a)) and excitation light-fluorescence characteristics (FIG. 19 (A)) of a solution obtained by adding 50 μL of a 0.1N aqueous sodium hydroxide solution to an ethanol dispersion solution of the polymer (6). b)) was confirmed. In the polymer dispersion medium, the intensity of the absorption band at 330 nm was increased as compared with the monomer solution. Excitation at 281 nm increased the emission intensity around 410 nm.
[実施例7](4,4´-DHBP-TA)
 第一のモノマーとして4,4´-DHBP、第二のモノマーとしてTAを用いて、蛍光性重合体を製造した。EtOH:水(容積比9:1)の混合溶媒を用いて4,4´-DHBPおよびTAそれぞれの濃度が75mMであるモノマー混合液(7)を調製した。このモノマー混合液(7)に、マイクロウェーブ合成装置を用いて300rpmでかき混ぜながら200℃で30分間加熱し、モノマーを共重合させて重合体溶液(7)を得た。この重合体溶液をメンブレンフィルターで濾過し、黄色の重合体(7)を回収した。
[Example 7] (4,4'-DHBP-TA)
A fluorescent polymer was produced using 4,4′-DHBP as the first monomer and TA as the second monomer. Using a mixed solvent of EtOH: water (volume ratio 9: 1), a monomer mixture (7) having a concentration of 4,4′-DHBP and TA of 75 mM was prepared. This monomer mixture (7) was heated at 200 ° C. for 30 minutes while stirring at 300 rpm using a microwave synthesizer to copolymerize the monomers to obtain a polymer solution (7). This polymer solution was filtered with a membrane filter to recover a yellow polymer (7).
 図20は、得られた重合体(7)のSEMによる観察像である。図20に示すように、直径2.5μm程度の球状粒子が得られた。 FIG. 20 is an SEM observation image of the obtained polymer (7). As shown in FIG. 20, spherical particles having a diameter of about 2.5 μm were obtained.
(重合体溶液の光学特性)
 図21は、重合体(7)のエタノール分散溶液に0.1Nの水酸化ナトリウム水溶液を50μL滴下した溶液の紫外可視光吸収特性(図21(a))、励起光-蛍光特性(図21(b))を確認したものである。また、300nmで励起すると、モノマー溶液とくらべ400nm-550nmにおける発光スペクトルが長波長側にシフトすることを確認した。
(Optical properties of polymer solution)
FIG. 21 shows UV-visible absorption characteristics (FIG. 21 (a)) and excitation light-fluorescence characteristics (FIG. 21 (A)) of a solution obtained by adding 50 μL of a 0.1N aqueous sodium hydroxide solution to an ethanol dispersion solution of the polymer (7). b)) was confirmed. In addition, it was confirmed that when excited at 300 nm, the emission spectrum at 400 nm to 550 nm shifted to the longer wavelength side compared to the monomer solution.
[実施例8](2,2´-BHPP-TA)
 第一のモノマーとして2,2´-BHPP、第二のモノマーとしてTAを用いて、蛍光性重合体を製造した。EtOH:水(容積比9:1)の混合溶媒を用いて2,2´-BHPPおよびTAそれぞれの濃度が75mMであるモノマー混合液(8)を調製した。このモノマー混合液(8)に、マイクロウェーブ合成装置を用いて300rpmでかき混ぜながら150℃で30分間加熱し、モノマーを共重合させて重合体溶液(8)を得た。この重合体溶液をメンブレンフィルターで濾過し、白色の重合体を回収した。
Example 8 (2,2′-BHPP-TA)
A fluorescent polymer was produced using 2,2'-BHPP as the first monomer and TA as the second monomer. Using a mixed solvent of EtOH: water (volume ratio 9: 1), a monomer mixture (8) was prepared in which each of 2,2′-BHPP and TA had a concentration of 75 mM. The monomer mixture (8) was heated at 150 ° C. for 30 minutes while stirring at 300 rpm using a microwave synthesizer to copolymerize the monomers, thereby obtaining a polymer solution (8). This polymer solution was filtered with a membrane filter to recover a white polymer.
(重合体溶液の光学特性)
 図22は、重合体(8)のエタノール分散溶液に0.1Nの水酸化ナトリウム水溶液を50μL滴下した溶液の紫外可視光吸収特性(図22(a))、励起光-蛍光特性(図22(b))を確認したものである。重合体分散媒では、295nmで励起すると、モノマー溶液には確認されない350nm-500nmにおける発光スペクトルが確認された。
(Optical properties of polymer solution)
FIG. 22 shows UV-visible light absorption characteristics (FIG. 22 (a)) and excitation light-fluorescence characteristics (FIG. 22 (A)) of a solution obtained by adding 50 μL of a 0.1N aqueous sodium hydroxide solution to an ethanol dispersion solution of the polymer (8). b)) was confirmed. When excited at 295 nm in the polymer dispersion medium, an emission spectrum at 350 nm to 500 nm that was not observed in the monomer solution was observed.
 本発明の蛍光性重合体は、蛍光性を有する新規物質として利用することができる。例えば、蛍光性を示す粒子や成形体、液体等を提供したり、蛍光性ポリマーを生体分析用マーカー等に利用することができ、産業上有用である。 蛍 光 The fluorescent polymer of the present invention can be used as a novel fluorescent substance. For example, it is possible to provide fluorescent particles, molded articles, liquids, and the like, and to use a fluorescent polymer as a bioanalytical marker or the like, which is industrially useful.

Claims (11)

  1.  第一のモノマー由来の構造単位と、架橋剤由来の構造単位とを有する蛍光性重合体であって、
     第一のモノマーが、ヒドロキシ基を2個以上有する多環式蛍光性化合物であり、アントラセン系誘導体、フルオレン系誘導体、ピレン系誘導体、アントラキノン系誘導体、ポルフィリン系誘導体、ビナフタレン系誘導体、ビピリジン系誘導体、ビフェニル系誘導体、ビスフェノール系誘導体、キサンテン系誘導体、ジベンゾフラン系誘導体、およびナフタレン系誘導体からなる群から選択される1以上であり、
     前記第一のモノマーが、蛍光性重合体の主鎖の構造単位の少なくとも一部となり、架橋剤により架橋された蛍光性重合体。
    A fluorescent polymer having a structural unit derived from the first monomer and a structural unit derived from a crosslinking agent,
    The first monomer is a polycyclic fluorescent compound having two or more hydroxy groups, an anthracene derivative, a fluorene derivative, a pyrene derivative, an anthraquinone derivative, a porphyrin derivative, a binaphthalene derivative, a bipyridine derivative, At least one selected from the group consisting of biphenyl derivatives, bisphenol derivatives, xanthene derivatives, dibenzofuran derivatives, and naphthalene derivatives;
    A fluorescent polymer in which the first monomer is at least a part of a structural unit of a main chain of the fluorescent polymer and is crosslinked by a crosslinking agent.
  2.  前記架橋剤が、トリアジナン系誘導体及び/又はヘキサメチレンテトラミンである請求項1記載の蛍光性重合体。 蛍 光 The fluorescent polymer according to claim 1, wherein the crosslinking agent is a triazinan derivative and / or hexamethylenetetramine.
  3.  前記架橋剤が、ヘキサメチレンテトラミンである請求項1記載の蛍光性共重合体。 請求 The fluorescent copolymer according to claim 1, wherein the crosslinking agent is hexamethylenetetramine.
  4.  前記第一のモノマーが、ヒドロキシ基を2個以上有する多環式蛍光性化合物であり、アントラセン系誘導体、フルオレン系誘導体、ピレン系誘導体、アントラキノン系誘導体、ポルフィリン系誘導体、ビピリジン系誘導体、ビフェニル系誘導体、ビスフェノール系誘導体、キサンテン系誘導体、ジベンゾフラン系誘導体、およびナフタレン系誘導体からなる群から選択される1以上である請求項2または3記載の蛍光性共重合体。 The first monomer is a polycyclic fluorescent compound having two or more hydroxy groups, and is an anthracene derivative, a fluorene derivative, a pyrene derivative, an anthraquinone derivative, a porphyrin derivative, a bipyridine derivative, a biphenyl derivative. 4. The fluorescent copolymer according to claim 2, which is at least one selected from the group consisting of a bisphenol derivative, a xanthene derivative, a dibenzofuran derivative, and a naphthalene derivative.
  5.  請求項1~4のいずれかに記載の蛍光性重合体を含み、直径が3~500nmである蛍光性ポリマー粒子。 蛍 光 Fluorescent polymer particles containing the fluorescent polymer according to any one of claims 1 to 4 and having a diameter of 3 to 500 nm.
  6.  請求項1~4のいずれかに記載の蛍光性重合体を含む分散液であり、水及び/又は有機溶媒を分散媒とする分散液。 A dispersion comprising the fluorescent polymer according to any one of claims 1 to 4, wherein the dispersion is water and / or an organic solvent.
  7.  担体及び/又は基材に、請求項1~4のいずれかに記載の蛍光性重合体を含む部位を有する蛍光性重合体の複合体。 複合 A composite of a fluorescent polymer having a site containing the fluorescent polymer according to any one of claims 1 to 4 on a carrier and / or a substrate.
  8.  第一のモノマーを架橋剤により架橋する蛍光性重合体の製造方法であって、
     第一のモノマーが、ヒドロキシ基を2個以上有する多環式蛍光性化合物であり、アントラセン系誘導体、フルオレン系誘導体、ピレン系誘導体、アントラキノン系誘導体、ポルフィリン系誘導体、ビナフタレン系誘導体、ビピリジン系誘導体、ビフェニル系誘導体、ビスフェノール系誘導体、キサンテン系誘導体、およびナフタレン系誘導体からなる群から選択される1以上であり、
     架橋剤により、前記第一のモノマーを架橋して、前記第一のモノマーが蛍光性重合体の主鎖の構造単位の少なくとも一部とする蛍光性重合体の製造方法。
    A method for producing a fluorescent polymer in which the first monomer is crosslinked by a crosslinking agent,
    The first monomer is a polycyclic fluorescent compound having two or more hydroxy groups, an anthracene derivative, a fluorene derivative, a pyrene derivative, an anthraquinone derivative, a porphyrin derivative, a binaphthalene derivative, a bipyridine derivative, At least one selected from the group consisting of a biphenyl derivative, a bisphenol derivative, a xanthene derivative, and a naphthalene derivative;
    A method for producing a fluorescent polymer, wherein the first monomer is cross-linked by a cross-linking agent so that the first monomer is at least a part of a structural unit of a main chain of the fluorescent polymer.
  9.  前記第一のモノマーと、前記架橋剤と、重合用溶媒とを混合しモノマー混合液を調製する混合工程と、
     前記モノマー混合液中で、前記第一のモノマーと前記架橋剤とを重合させて蛍光性重合体を含む重合体溶液とする反応工程と、
     前記重合体溶液から前記蛍光性重合体を回収する回収工程を有する請求項8記載の蛍光性重合体の製造方法。
    A mixing step of mixing the first monomer, the crosslinking agent, and the polymerization solvent to prepare a monomer mixture,
    In the monomer mixture, a reaction step of polymerizing the first monomer and the crosslinking agent to form a polymer solution containing a fluorescent polymer,
    The method for producing a fluorescent polymer according to claim 8, further comprising a recovery step of recovering the fluorescent polymer from the polymer solution.
  10.  前期反応工程が、マイクロ波加熱することで共重合させるものである請求項9記載の蛍光性重合体の製造方法。 (10) The method for producing a fluorescent polymer according to (9), wherein the reaction step is a step of performing copolymerization by microwave heating.
  11.  請求項1~4のいずれかに記載の蛍光性重合体を、担体及び/又は基材と接触させて、前記担体及び/又は前記基材に前記蛍光性重合体を含む部位を設ける蛍光性重合体の被覆方法。 The fluorescent polymer according to claim 1, wherein the fluorescent polymer according to any one of claims 1 to 4 is brought into contact with a carrier and / or a substrate to provide a portion containing the fluorescent polymer on the carrier and / or the substrate. Coating coating method.
PCT/JP2019/038573 2018-10-05 2019-09-30 Fluorescent polymer and method for manufacturing fluorescent polymer, and fluorescent polymer particles, liquid dispersion, composite, and fluorescent polymer coating method WO2020071326A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018189735A JP2020059765A (en) 2018-10-05 2018-10-05 Fluorescent polymer and manufacturing method of fluorescent polymer, and coating method of fluorescent polymer particle, dispersion, composite, and fluorescent polymer
JP2018-189735 2018-10-05

Publications (1)

Publication Number Publication Date
WO2020071326A1 true WO2020071326A1 (en) 2020-04-09

Family

ID=70055608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038573 WO2020071326A1 (en) 2018-10-05 2019-09-30 Fluorescent polymer and method for manufacturing fluorescent polymer, and fluorescent polymer particles, liquid dispersion, composite, and fluorescent polymer coating method

Country Status (2)

Country Link
JP (1) JP2020059765A (en)
WO (1) WO2020071326A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426662A (en) * 2020-04-10 2020-07-17 江西理工大学 Fluorescence detection method of sodium formaldehyde sulfoxylate (rongalite)
CN112625240A (en) * 2020-12-16 2021-04-09 常州大学 Fluorescent polymer, preparation and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263617A (en) * 1996-03-28 1997-10-07 Sumitomo Bakelite Co Ltd Heat-resistant phenolic resin
JPH10120749A (en) * 1996-10-21 1998-05-12 Sumitomo Bakelite Co Ltd Curing of biphenol resin
JP2010511064A (en) * 2006-10-09 2010-04-08 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Method for producing discrete solid particles made of a polymer material
JP2012224723A (en) * 2011-04-18 2012-11-15 Asahi Organic Chemicals Industry Co Ltd Phenol resin, curable composition including the same, and cured product
JP2013142142A (en) * 2012-01-12 2013-07-22 Dic Corp Thermosetting resin composition and friction material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263617A (en) * 1996-03-28 1997-10-07 Sumitomo Bakelite Co Ltd Heat-resistant phenolic resin
JPH10120749A (en) * 1996-10-21 1998-05-12 Sumitomo Bakelite Co Ltd Curing of biphenol resin
JP2010511064A (en) * 2006-10-09 2010-04-08 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Method for producing discrete solid particles made of a polymer material
JP2012224723A (en) * 2011-04-18 2012-11-15 Asahi Organic Chemicals Industry Co Ltd Phenol resin, curable composition including the same, and cured product
JP2013142142A (en) * 2012-01-12 2013-07-22 Dic Corp Thermosetting resin composition and friction material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMADA, NOBUO ET AL.,: ""Fabrication of fluorescent a-conjugated polymer nanoparticles by spontaneous growth polymerization method",", LECTURE PREPRINTS OF INTERNATIONAL SYMPOSIUM ON FOREIGN RESEARCHERS EXCHANGE OF THE 55TH KYUSHU AREA JOINT MEETING OF THE CHEMISTRYRELATED SOCIETIES), 30 June 2018 (2018-06-30), pages 44 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426662A (en) * 2020-04-10 2020-07-17 江西理工大学 Fluorescence detection method of sodium formaldehyde sulfoxylate (rongalite)
CN112625240A (en) * 2020-12-16 2021-04-09 常州大学 Fluorescent polymer, preparation and application

Also Published As

Publication number Publication date
JP2020059765A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
US10329479B2 (en) Surface-modified nanoparticles
Yuan et al. Preparation and characterization of microencapsulated polythiol
Tang et al. Hybrid conjugated polymer-Ag@ PNIPAM fluorescent nanoparticles with metal-enhanced fluorescence
Yan et al. Simple but precise engineering of functional nanocapsules through nanoprecipitation
KR101223671B1 (en) Manufacturing method of epoxy polymer-quantum dot composite
US9631066B2 (en) Highly fluorescent monodisperse, cross-linked polymer microbeads
WO2020071326A1 (en) Fluorescent polymer and method for manufacturing fluorescent polymer, and fluorescent polymer particles, liquid dispersion, composite, and fluorescent polymer coating method
Cao et al. Bright and biocompatible AIE polymeric nanoparticles prepared from miniemulsion for fluorescence cell imaging
Ma et al. A biocompatible cross-linked fluorescent polymer prepared via ring-opening PEGylation of 4-arm PEG-amine, itaconic anhydride, and an AIE monomer
Zhou et al. Study and comparison on purification methods of multicolor emission carbon dots
Cao et al. A green miniemulsion-based synthesis of polymeric aggregation-induced emission nanoparticles
CN110885678B (en) Gold nanocluster self-assembly and preparation method thereof and luminescent material
Zhong et al. Synthesis and application of fluorescent polymer micro‐and nanoparticles
Klein et al. Photo-crosslinkable, deformable PMMA colloids
Govindaiah et al. Monodisperse and fluorescent poly (styrene-co-methacrylic acid-co-2-naphthyl methacrylate)/Fe3O4 composite particles
Gao et al. APhen-functionalized nanoparticles–polymer fluorescent nanocomposites via ligand exchange and in situ bulk polymerization
Meenarathi et al. Synthesis and characterizations of Fe3O4-acid fuchsin tagged poly (ϵ-caprolactone) nanocomposites
Li et al. Design and synthesis of fluorescent core–shell nanoparticles with tunable lower critical solution temperature behavior and metal‐enhanced fluorescence
Deepa et al. Polyurethane–oligo (phenylenevinylene) random copolymers: π‐Conjugated pores, vesicles, and nanospheres via solvent‐induced self‐organization
Wang et al. Effect of compatibility between europium complexes and styrene monomer on preparation of europium-encapsulated microspheres by dispersion polymerization
Tan et al. Fast and facile one-step synthesis of monodisperse thermo-responsive core–shell microspheres and applications
Lee et al. Morphological Diversity from the Solution Self‐Assembly of Block Copolymer Blends Containing High Molecular‐Weight Hydrophobic Blocks
Kanelidis et al. Microparticles of phosphonate-functionalized copolymers and their composites with CdTe nanocrystals prepared by sonication-precipitation
De San Luis et al. Co-encapsulation of CdSe/ZnS and CeO 2 nanoparticles in waterborne polymer dispersions: enhancement of fluorescence emission under sunlight
Dastidar et al. Surface functionalization of porous chitosan microsphere with silver nanoparticle and carbon dot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19868919

Country of ref document: EP

Kind code of ref document: A1