WO2020070887A1 - Solid-state imaging device - Google Patents

Solid-state imaging device

Info

Publication number
WO2020070887A1
WO2020070887A1 PCT/JP2018/037422 JP2018037422W WO2020070887A1 WO 2020070887 A1 WO2020070887 A1 WO 2020070887A1 JP 2018037422 W JP2018037422 W JP 2018037422W WO 2020070887 A1 WO2020070887 A1 WO 2020070887A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
substrate
region
filter
imaging device
Prior art date
Application number
PCT/JP2018/037422
Other languages
French (fr)
Japanese (ja)
Inventor
祐輔 山本
友作 小山
嘉晴 安食
良章 竹本
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2018/037422 priority Critical patent/WO2020070887A1/en
Publication of WO2020070887A1 publication Critical patent/WO2020070887A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present invention relates to a solid-state imaging device, and more particularly, to an imaging device that simultaneously acquires a visible light image and an infrared light image.
  • FIG. 1 is a cross-sectional view of such an imaging device.
  • the imaging device 100 includes a first substrate 101, a second substrate 102, a color filter 103, and a connection unit 104.
  • Each of the first substrate 101 and the second substrate 102 includes a plurality of pixels, and outputs a pixel signal corresponding to the amount of received light.
  • RGB color filters 103 are formed on the light receiving surface side (upper side in the figure) of the first substrate.
  • the first substrate 101 is a back-illuminated (BSI) imaging substrate, and the thickness of the first substrate 101 is as thin as about several ⁇ m. Therefore, part of the light incident from the light receiving surface side of the first substrate 101 is transmitted, and is incident on the light receiving surface side of the second substrate 102.
  • silicon has a high light absorptivity for light having a short wavelength, and a low light absorptivity of silicon for light having a long wavelength. Therefore, in the first substrate 101 having a small thickness, part of infrared light having a long wavelength is transmitted without being absorbed, and is incident on the second substrate 102. Therefore, the first substrate 101 can detect visible light, and the second substrate 102 can detect infrared light. As described above, the visible light image and the infrared light image can be simultaneously observed using the first substrate 101 and the second substrate 102.
  • BSI back-illuminated
  • FIG. 16 is a diagram showing details of a cross section of an imaging device according to the related art.
  • Each of the first substrate 101 and the second substrate 102 includes a plurality of pixels, and each pixel includes a photoelectric conversion layer and a wiring layer.
  • the first substrate 101 includes a first photoelectric conversion layer 111 and a first wiring layer 121.
  • the second substrate 102 includes a second photoelectric conversion layer 112 and a second wiring layer 122.
  • a photoelectric conversion unit (photodiode) is formed in the photoelectric conversion layer, and receives light transmitted through the RGB color filter 103 and performs photoelectric conversion.
  • a first photoelectric conversion unit 113 is formed in the first photoelectric conversion layer 111.
  • a second photoelectric conversion unit 114 is formed on the second photoelectric conversion layer 112.
  • the wiring layer is formed by stacking layers composed of a plurality of wirings 123, and each layer is insulated by an interlayer insulating film 124.
  • the wiring 123 and the MOS transistor 115 include a control line for driving each pixel and a circuit for reading a signal of each pixel.
  • the ratio of wiring in each pixel increases, and the aperture ratio of each pixel decreases. Therefore, the amount of light incident on the second photoelectric conversion layer 112 further decreases, and the sensitivity of the second photoelectric conversion unit 114 further decreases.
  • the present invention suppresses a decrease in the amount of light incident on a second photoelectric conversion layer (lower photodiode) in a stacked imager (imaging device) that simultaneously detects visible light and infrared light. It is an object of the present invention to provide a pixel structure for performing the above.
  • a first substrate having a plurality of first photoelectric conversion units and a second substrate having a plurality of second photoelectric conversion units are provided so as to be stacked on the first substrate.
  • a solid-state imaging device comprising: a substrate; and wherein in the first substrate, at least two first photoelectric conversion units among the plurality of first photoelectric conversion units form a first photoelectric conversion group;
  • a plurality of first photoelectric conversion units included in the first photoelectric conversion group share one floating diffusion unit, and one of the plurality of first photoelectric conversion units and one of the first photoelectric conversion units and its surroundings Wherein there is a first high-density region in which the sum of the area of the wiring and the area of the transistor is higher than that of the remaining first photoelectric conversion units among the plurality of first photoelectric conversion units;
  • the plurality of second photoelectric conversion units are A solid-state imaging device, wherein at least one second photoelectric conversion unit is provided corresponding to the first photoelectric conversion group, and the plurality of second photoelectric conversion units exist below
  • At least two second photoelectric conversion units among the plurality of second photoelectric conversion units form a second photoelectric conversion group, and a plurality of second photoelectric conversion groups included in the second photoelectric conversion group are included.
  • One floating diffusion portion is shared by the second photoelectric conversion portions, and the sum of the area of the wiring and the transistor is one of the plurality of second photoelectric conversion portions in and around the second photoelectric conversion portion.
  • the second high-density region of the second photoelectric conversion unit having a higher density than the remaining second photoelectric conversion unit may be located at the same position as the first high-density region.
  • the first high-density region may include at least an amplification transistor.
  • the second high-density region may include at least an amplification transistor.
  • a color filter that is disposed on the first substrate and has a transmission band in a visible region and an infrared region, wherein the plurality of first photoelectric conversion units are configured to reduce an exposure amount of light transmitted through the color filter.
  • the signal charge may be output.
  • the color filter includes an R filter that transmits an R visible region, a G filter that transmits a G visible region, and a B filter that transmits a B visible region, wherein the first high-density region includes the R filter. May be provided at a surface position of the first photoelectric conversion unit immediately below the first photoelectric conversion unit.
  • the first wiring layer of the first substrate and the second wiring layer of the second substrate are provided so as to face each other, and in the first substrate, the wiring in the first wiring layer is
  • the second wiring board may be arranged in the second high-density region, and the wiring in the second wiring layer may be arranged in the second high-density region in the second substrate.
  • a first wiring layer of the first substrate is provided below the first photoelectric conversion unit, and a second wiring layer of the second substrate is provided below the second photoelectric conversion unit.
  • the wiring in the first wiring layer may be arranged in the first high-density region.
  • a filter that cuts visible light and transmits infrared light may be provided between the first substrate and the second substrate.
  • the color filter includes an R filter that transmits an R visible region, a G filter that transmits a G visible region, and a B filter that transmits a B visible region.
  • the first photoelectric conversion unit includes the color filter. And a thickness of the first photoelectric conversion layer in a region where the B filter is disposed and a thickness of the first photoelectric conversion layer in a region where the G filter is disposed. The thickness of the first photoelectric conversion layer in a region where the R filter is arranged may be thicker than the thickness.
  • the color filter includes an R filter that transmits an R visible region, a G filter that transmits a G visible region, and a B filter that transmits a B visible region.
  • the second photoelectric conversion unit includes a second photoelectric conversion unit. The second photoelectric conversion unit corresponding to the R filter may not be present in the second photoelectric conversion layer, which is disposed in a photoelectric conversion layer.
  • Pixel structure in a stacked imager (imaging device) that simultaneously detects visible light and infrared light, a decrease in the amount of light incident on the second photoelectric conversion layer (lower photodiode) is suppressed.
  • Pixel structure can be provided.
  • FIG. 2 is a cross-sectional view illustrating a cross section of the imaging device according to the embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating an arrangement of pixels included in a first substrate on which a color filter is formed in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram illustrating an arrangement of pixels included in a second substrate in the embodiment of the present invention.
  • FIG. 4 is a schematic diagram illustrating an arrangement relationship between pixels in a set of unit pixel regions included in a first substrate and pixels included in a second substrate in the embodiment of the present invention.
  • 5 is a graph illustrating transmission characteristics of a color filter according to the embodiment of the present invention. It is an image figure of the imaging device concerning a 1st embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a circuit configuration related to a pixel unit in a unit pixel region of the imaging device according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an arrangement diagram of a color filter having a unit pixel area reduction of the imaging device according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a pixel layout of a unit pixel region of the imaging device according to the first embodiment of the present invention.
  • FIG. 6 is a diagram illustrating details of a cross section of the imaging device according to Modification Example 1 of the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example of spectral sensitivity of RGB pixels. It is the graph which plotted the light quantity at the time of 450 nm, 530 nm, 620 nm, and 800 nm light having traveled arbitrary distance in Si.
  • FIG. 11 is a diagram illustrating details of a cross section of an imaging device according to a conventional technique.
  • FIG. 1 is a cross-sectional view showing a cross section of an imaging device 100 (solid-state imaging device) according to an embodiment of the present invention.
  • the imaging device 100 includes a first substrate 101, a second substrate 102, a color filter 103 (first filter), and a connection unit 104.
  • Each of the first substrate 101 and the second substrate 102 is formed on a silicon chip and has a plurality of pixels.
  • An RGB color filter 103 is provided on the light receiving surface side of the first substrate 101. The arrangement of the color filters 103 and the wavelength of light transmitted by the color filters 103 will be described later.
  • the color filter 103 has transmission bands in the visible region and the infrared region.
  • the color filter 103 is made of an organic material (pigment), the red color filter (R filter) transmits red visible light and infrared light, and the green color filter (G filter) is green visible light.
  • a blue color filter (B filter) have a characteristic of transmitting blue visible light and infrared light.
  • the first substrate 101 and the second substrate 102 are stacked.
  • the second substrate 102 is disposed on the side opposite to the light receiving surface of the first substrate 101.
  • the light receiving surface of the second substrate 102 is on the side where the first substrate 101 exists.
  • a connection portion 104 is formed between the first substrate 101 and the second substrate 102, and the first substrate 101 and the second substrate 102 are electrically connected to each other through the connection portion 104. ing. That is, the first substrate 101 and the second substrate 102 are bonded to each other via the connection portion 104.
  • the first substrate 101 is a back-illuminated imaging substrate, and the thickness of the first substrate 101 is as thin as about several ⁇ m. Therefore, part of the light incident from the light receiving surface side of the first substrate 101 is transmitted, and is incident on the light receiving surface side of the second substrate 102.
  • the light absorption of silicon differs depending on the wavelength.
  • the light absorptivity of silicon for light with a short wavelength is high, and the light absorptivity of silicon for light with a long wavelength is low. That is, in the thin first substrate 101 having a thickness of about 3 ⁇ m, of light incident on the imaging device 100, visible light having a short wavelength is almost absorbed, but infrared light having a long wavelength is not partially absorbed. Through the first substrate.
  • the second substrate 102 is a front-illuminated imaging substrate and is thicker than the first substrate 101.
  • the second substrate 102 detects infrared light transmitted through the first substrate 101.
  • the first substrate 101 is not limited to a back-illuminated imaging substrate, and may be any substrate that absorbs visible light and transmits infrared light.
  • FIG. 2 is a schematic diagram showing an arrangement of pixels included in the first substrate 101 provided with the color filters 103 in the embodiment of the present invention.
  • an example is shown in which a total of 32 pixels are arranged two-dimensionally in 4 rows and 8 columns.
  • the number and arrangement of the pixels included in the first substrate 101 are not limited to the illustrated example, but may be any number and arrangement.
  • the color filters 103 are arranged in a Bayer array, and four pixels vertically and horizontally adjacent to each other are defined as a set of unit pixel areas 200. Therefore, as shown in the figure, one set of unit pixel regions 200 has one pixel 201 provided with a color filter 103 that transmits red and infrared light wavelength regions, and transmits one green pixel and infrared light wavelength region. And a pixel 203 provided with a color filter 103 that transmits the wavelength region of blue and infrared light.
  • Each of the pixels 201 to 203 included in the first substrate 101 includes a photoelectric conversion element (first photoelectric conversion element) and a signal readout circuit.
  • Each photoelectric conversion element outputs a first signal charge corresponding to an exposure amount to a readout circuit.
  • the signal readout circuit outputs the first signal charge output from the photoelectric conversion element as a first electric signal.
  • FIG. 3 is a schematic diagram showing an arrangement of pixels included in the second substrate 102 in the embodiment of the present invention.
  • an example is shown in which a total of 32 pixels are arranged two-dimensionally in 4 rows and 8 columns.
  • the number and arrangement of the pixels included in the second substrate 102 are not limited to the illustrated example, but may be any number and arrangement.
  • Each of the pixels 301 to 303 included in the second substrate 102 includes a photoelectric conversion element (second photoelectric conversion element) and a signal readout circuit.
  • Each photoelectric conversion element outputs a second signal charge corresponding to the exposure amount to the readout circuit.
  • the signal readout circuit outputs the second signal charge output from the photoelectric conversion element as a second electric signal.
  • FIG. 4 shows an arrangement relationship between pixels 201 to 203 of a set of unit pixel regions 200 included in the first substrate 101 and pixels 301 to 303 included in the second substrate 102 in the embodiment of the present invention.
  • the pixel 301 is disposed at a position where the infrared light transmitted through the pixel 201 provided with the color filter 103 transmitting red light and infrared light is incident.
  • the pixel 302 is arranged at a position where the infrared light transmitted through the pixel 202 provided with the color filter 103 transmitting the green light and the infrared light is incident.
  • the pixel 303 is disposed at a position where the infrared light transmitted through the pixel 203 provided with the color filter 103 transmitting blue light and infrared light is incident. That is, the pixels 201 to 203 included in the first substrate 101 and the pixels 301 to 303 included in the second substrate 102 have a one-to-one correspondence.
  • FIG. 5 is a graph showing the transmission characteristics of the color filter 103 according to the embodiment of the present invention.
  • the horizontal axis of the graph shown in the drawing represents the wavelength, and the vertical axis represents the transmittance of the color filter 103 at each wavelength.
  • the line 511 indicates that the blue color filter 103 transmitting the blue light and the infrared light has a wavelength of about 400 nm to 500 nm (blue light) and a wavelength of about 700 nm or more (blue). Infrared light).
  • the line 512 indicates that the green color filter 103 transmitting the green light and the infrared light has a wavelength of about 500 nm to 600 nm (green light) and a wavelength of about 700 nm or more (infrared light). ).
  • a line 513 indicates that the green color filter 103 transmitting red light and infrared light transmits light having a wavelength of about 600 nm or more (red light and infrared light).
  • the light source uses illumination light including wavelengths from a visible region to an infrared region. Then, an illuminating light is applied to a target object such as a living tissue or a finger, and the transmitted light or the reflected light is incident on the imaging device 100.
  • the red color filter 103 transmits red light and infrared light.
  • the green color filter 103 transmits green light and infrared light.
  • the blue color filter 103 transmits blue light and infrared light.
  • Each of the pixels 201 to 203 of the first substrate 101 detects visible light transmitted through each of the color filters 103 and outputs a first electric signal. Specifically, the pixel 201 provided with the red color filter 103 outputs a first electric signal corresponding to red light. The pixel 202 provided with the green color filter 103 outputs a first electric signal corresponding to green light. The pixel 203 provided with the blue color filter 103 outputs a first electric signal corresponding to blue light.
  • a processing unit (not shown) generates a visible light image based on the first electric signal output from each of the pixels 201 to 203. Strictly speaking, the first substrate 101 absorbs not only visible light but also infrared light.
  • the first electric signal output from the first substrate 101 includes, in addition to the visible light component, a slightly detected infrared light component.
  • the infrared light considered in the present embodiment is weak light such as fluorescence, and light that is weaker than visible light enters the substrate. Therefore, in the first signal, a signal generated by visible light is more dominant than a signal generated by infrared light. Therefore, in this specification, description is made such that each pixel of the first substrate 101 detects visible light.
  • the infrared light transmitted through the first substrate 101 is incident on the second substrate 102.
  • Each of the pixels 301 to 303 included in the second substrate 102 has sensitivity at least in the infrared region.
  • Each of the pixels 301 to 303 of the second substrate 102 outputs a second electric signal according to light having a wavelength of infrared light.
  • a processing unit (not shown) generates an infrared light image based on the second electric signal output from each of the pixels 301 to 303.
  • the first substrate 101 and the second substrate 102 are stacked. Further, the first substrate 101 transmits infrared light. Accordingly, the pixels 201 to 203 included in the first substrate 101 can output the first electric signal based on the visible light. Further, the pixels 301 to 303 included in the second substrate 102 can output a second electric signal based on infrared light. Further, a visible light image can be generated from the first electric signal, and an infrared light image can be generated from the second electric signal.
  • the imaging device 100 can simultaneously output a first electric signal capable of generating a visible light image and a second electric signal capable of generating an infrared light image.
  • the imaging device 100 according to the embodiment of the present invention does not require a dichroic mirror, a plurality of lenses, and imaging devices for detecting visible light and detecting infrared light. Therefore, size reduction and cost reduction of the device can be realized. Therefore, according to the embodiment of the present invention, the imaging device 100 can simultaneously acquire the visible light image and the infrared light image at low cost.
  • FIG. 6 is an image diagram of the imaging device according to the first embodiment of the present invention.
  • the layers of the color filter 103, the first substrate 101, and the second substrate 102 are arranged in order from the upper side of the drawing (the light receiving surface side of the first substrate).
  • a unit pixel region 200 is configured from a plurality of pixels (four pixels of 2 ⁇ 2 pixels in the present embodiment), and the entire photoelectric conversion layer is configured by repeating the unit pixel region.
  • FIG. 7 is a diagram showing details of a cross section of the imaging device according to the first embodiment of the present invention.
  • Each of the first substrate 101 and the second substrate 102 includes a plurality of pixels, and each pixel includes a photoelectric conversion layer and a wiring layer.
  • the first substrate 101 includes a first photoelectric conversion layer 111 and a first wiring layer 121.
  • the second substrate 102 includes a second photoelectric conversion layer 112 and a second wiring layer 122.
  • a photoelectric conversion unit (photodiode) is formed in the photoelectric conversion layer, and receives light transmitted through the RGB color filter 103 and performs photoelectric conversion.
  • a first photoelectric conversion unit 113 is formed in the first photoelectric conversion layer 111.
  • a second photoelectric conversion unit 114 is formed on the second photoelectric conversion layer 112.
  • the wiring layer is formed by stacking layers composed of a plurality of wirings 123, and each layer is insulated by an interlayer insulating film 124.
  • the wiring 123 and the MOS transistor 115 include a control line for driving each pixel and a circuit for reading a signal of each pixel.
  • wirings and transistors are laid under one pixel (R pixel in the present embodiment) in the unit pixel region. Therefore, in order to minimize wiring and transistors below the other pixels (the G pixel and the B pixel), the ratio of the wiring in the pixel is reduced, and a space is generated as shown in FIG.
  • the light transmitted without being absorbed by the first photoelectric conversion layer 111 forms the first wiring layer 121 of the first substrate 101 before being incident on the second photoelectric conversion layer 112 of the second substrate 102.
  • the light is reflected on the wirings to be formed and the wirings forming the second wiring layer 122 in the second substrate 102.
  • the ratio of the wiring in the G pixel and the B pixel is reduced, the amount of light incident on the second substrate 102 in the G pixel and the B pixel is increased. Thereby, the sensitivity of the second photoelectric conversion unit 114 is improved in the G pixel and the B pixel.
  • FIG. 8 is a diagram illustrating a circuit configuration related to a pixel unit in a unit pixel region of the imaging device according to the present embodiment. Note that the circuit configuration is common to the first substrate and the second substrate.
  • one photodiode (pixel) PD1 to PD4 shares one floating diffusion portion (FD).
  • the four photodiodes share a reset transistor (r-Tr), an amplification transistor (a-Tr), and a selection transistor (s-Tr) other than the transfer transistors (t-Tr1 to t-Tr4). is there.
  • the photodiodes PD1 to PD4 of each pixel accumulate charges corresponding to the amount of incident light.
  • the electric charge accumulated in each photodiode is transferred to the floating diffusion section via the transfer transistor of each pixel.
  • the amplification transistor forms a current source and a source follower via the selection transistor, and outputs an electric signal corresponding to the electric charge accumulated in the floating diffusion portion to the vertical signal line as an output signal. Note that the reset transistor resets the charge in the floating diffusion portion to the power supply voltage VDD.
  • FIG. 9 is a diagram illustrating an arrangement diagram of a color filter of a unit pixel area of the imaging apparatus according to the present embodiment.
  • FIG. 10 is a diagram illustrating a pixel layout of a unit pixel region of the imaging device according to the present embodiment. Note that the unit pixel region has a common layout configuration for the first substrate 101 and the second substrate 102, and FIG. 10 is an image diagram of the unit pixel area on the first substrate 101 or the second substrate 102.
  • the reset transistor (r-Tr) is formed with the diffusion regions 212 and 213 as a source and a drain, respectively, and with a gate electrode. Further, the amplification transistor (a-Tr) is formed to have the diffusion regions 214 and 215 as drains and sources, respectively, and to have a gate electrode. Further, the selection transistor (s-Tr) is formed with the diffusion regions 215 and 216 as drains and sources, respectively, and having a gate electrode.
  • the photodiodes PD1 to PD4 of each pixel are connected to respective transfer transistors (t-Tr1 to t-Tr4). That is, the photodiodes PD1 to PD4 of each pixel are connected to the floating diffusion unit 211 via the transfer transistor.
  • a thick line 217 in the drawing is a wiring of a floating diffusion (FD wiring), and the FD wiring electrically connects the floating diffusion portion 211 to the gate electrode of the amplification transistor and the source 212 of the reset transistor.
  • the source of the amplification transistor and the drain of the selection transistor are formed by a common diffusion region 215, and are electrically connected.
  • the source of the selection transistor is electrically connected to the vertical signal line.
  • the drain 213 of the reset transistor and the drain 214 of the amplification transistor are electrically connected to the power supply VDD.
  • a signal line (not shown) for controlling the transfer transistor is wired along the first substrate 101 or the second substrate 102 along the horizontal direction (column direction), and is connected to the gate electrode of each transfer transistor. ing.
  • a signal line for controlling the reset transistor, the first substrate 101 or the second substrate 102 is arranged along the horizontal direction (column direction), and is connected to the gate electrode of the reset transistor.
  • a signal line for controlling the selection transistor is arranged along the first substrate 101 or the second substrate 102 along the horizontal direction (column direction), and is connected to the gate electrode of the selection transistor.
  • the transfer transistor is disposed in each pixel, but the amplification transistor, the reset transistor, and the selection transistor It is arranged at the pixel (R pixel, PD2 in FIG. 10) on which the color filter is arranged.
  • the proportion of wiring occupied by B pixels (pixels on which a color filter of B is arranged, PD3 in FIG. 10) and G pixels (pixels on which a color filter of G is arranged, PD1 and PD4 in FIG. 10) other than the R pixel decreases I do. Therefore, the amount of light incident on the pixel (PD3) provided with the B color filter and the pixels (PD1 and PD4) provided with the G color filter in the second photoelectric conversion unit 114 increases, and The sensitivity is improved.
  • the photodiode PD2 of the pixel provided with the R color filter in the second photoelectric conversion unit 114 becomes unnecessary, and the other photodiodes PD1 and PD3 , PD4 can be arranged so as to increase the area. Accordingly, the photodiode area of the pixel provided with the B color filter and the pixel provided with the G color filter in the second photoelectric conversion layer 112 increases, and the amount of light incident on these photodiodes further increases. And further improvement in sensitivity can be expected.
  • circuits and transistors are spread under the R pixels. It is sufficient that at least a transfer transistor is disposed in a portion other than the R pixel, and a reset transistor, a selection transistor, and the like are disposed immediately below the R pixel. Further, the signal of the second pixel area (PD2) below the R pixel in FIG. 10 can be corrected using the signal of the adjacent unit pixel area (not shown) in the second photoelectric conversion unit.
  • the aperture ratio of the B pixel and the G pixel other than the R pixel is improved (the wiring area is reduced), and the amount of light incident on the second photoelectric conversion unit is increased. Then, as compared with the conventional structure, the SN ratio of the signal detected by the second photoelectric conversion unit is improved. In the region under the B pixel and the G pixel in the second photoelectric conversion unit, the rate of laying down the transistors is reduced, so that the PD region can be expanded, which leads to an improvement in sensitivity.
  • FIG. 11 is a diagram illustrating details of a cross section of the imaging device according to the first modification.
  • a filter visible light cut filter
  • FIG. 7 The difference from the first embodiment shown in FIG. 7 is that a filter (visible light cut filter) that cuts visible light and transmits only infrared light is inserted between the first substrate 101 and the second substrate 102.
  • the interlayer multilayer film 130 is formed. That is, the interlayer multilayer film 130 including the visible light cut filter is provided between the upper pixel and the lower pixel.
  • the second photoelectric conversion unit 114 can efficiently detect infrared light.
  • FIG. 12 is a diagram illustrating details of a cross section of the imaging device according to the second modification.
  • the difference from the first embodiment shown in FIG. 7 is that, on the second substrate 102, the positions of the second wiring layer 122 and the second photoelectric conversion layer 112 are switched. That is, the second substrate 102 of the present modified example has a backside illumination (BSI) structure.
  • BSA backside illumination
  • the second wiring layer 122 which has been a factor of reflection and scattering, is eliminated, so that the amount of light incident on the second photoelectric conversion unit 114 increases.
  • the sensitivity of the second photoelectric conversion unit 114 is improved. Further, the infrared light transmitted through the second photoelectric conversion unit 114 is reflected by the wiring in the second wiring layer 122 and is incident on the second photoelectric conversion unit 114 again. The sensitivity of 114 is further improved.
  • FIG. 13 is a diagram illustrating details of a cross section of the imaging device according to the second embodiment of the present invention.
  • the difference from the first embodiment shown in FIG. 7 is that the thickness of the first photoelectric conversion layer 111 in the region where the blue color filter is provided and the first photoelectric conversion layer 111 in the region where the green color filter is provided Is different from the thickness of the first photoelectric conversion layer 111 in the region where the red color filter is provided. That is, the thickness of the first photoelectric conversion layer 111 is changed for each of the B pixel, the G pixel, and the R pixel.
  • the thickness of the region provided with the blue color filter and the thickness of the region provided with the green color filter are larger than the thickness of the region provided with the red color filter. Should be thinner. That is, the thickness of the first photoelectric conversion layer of the B pixel and the thickness of the first photoelectric conversion layer of the G pixel ⁇ the thickness of the first photoelectric conversion layer of the R pixel.
  • absorption of infrared light in the first photoelectric conversion layer 111 in the region where the blue color filter is provided and the first photoelectric conversion layer 111 in the region where the green color filter is provided is suppressed.
  • the amount of infrared light incident on the second photoelectric conversion layer 112 in the region where the blue color filter is provided and the second photoelectric conversion layer 112 in the region where the green color filter is provided increases, The sensitivity of the second photoelectric conversion layer 112 is improved.
  • the manufacturing method of the above-mentioned imaging device is as follows. First, holes for embedding the light transmitting material 140 are formed by dry-etching the first photoelectric conversion layer 111 in a region where the blue color filter and the green color filter are provided. Next, the light transmitting material 140 is embedded in the hole formed by dry etching.
  • the light transmitting material 140 is formed from a material having a high light transmitting property, and is formed using a transparent material such as SiO 2 or SiN or a transparent resin. After the light transmitting material 140 is embedded, the surface of the first photoelectric conversion layer 111 is flattened in order to form the color filter 103.
  • FIG. 14 is a diagram illustrating an example of the spectral sensitivity of the RGB pixels. That is, the first photoelectric conversion portion 113 in the region where the blue color filter is provided, the first photoelectric conversion portion 113 in the region where the green color filter is provided, and the first photoelectric conversion portion 113 in the region where the red color filter is provided.
  • the wavelengths at which the sensitivity of the first photoelectric conversion unit 113 is highest can be regarded as 450 nm, 530 nm, and 620 nm, respectively.
  • the wavelength of light (infrared light) detected by the second photoelectric conversion unit 114 is 800 nm.
  • FIG. 15 is a graph plotting the light amounts when 450 nm, 530 nm, 620 nm, and 800 nm light travels an arbitrary distance in Si.
  • the vertical axis of the graph indicates the amount of light, and the intensity of light incident on the Si surface is set to 1.
  • the horizontal axis of the graph indicates the distance [um] traveled by the light.
  • the thickness of the Si layer having a general BSI structure is about 3.0 ⁇ m, and at this time, about 25% of 800 nm light is absorbed.
  • the thickness of the Si layer is about 1.0 ⁇ m, about 10% of the 800 nm light is absorbed.
  • the thickness of the Si layer is set to about 1.6 ⁇ m, about 14% of the 800 nm light is absorbed. Therefore, by adjusting the thickness of the Si layer for each pixel, the amount of infrared light absorbed by the upper pixel can be reduced.
  • the first photoelectric conversion layer 111 in the region where the blue color filter is provided is provided.
  • the first photoelectric conversion layer 111 in the region where the green color filter is provided is provided.
  • both the first substrate 101 and the second substrate 102 form a unit pixel region 200 (photoelectric conversion group) from four 2 ⁇ 2 pixels (photoelectric conversion units), and the floating diffusion unit (
  • the present invention is not limited to this. It is sufficient that two or more photodiodes (pixels) on the upper side (first substrate 101) share the FD. That is, on the first substrate 101, at least two pixels (first photoelectric conversion units 113) form a unit pixel region (first photoelectric conversion group), and a plurality of pixels included in the first photoelectric conversion group. It is sufficient that the first photoelectric conversion unit shares one floating diffusion unit.
  • the sum of the area of the wiring and the area of the transistor at one of the first photoelectric conversion units 113 and at any position around the first photoelectric conversion unit 113 is equal to the sum of the area of the plurality of first photoelectric conversion units.
  • the first high-density region in FIG. 10, around the region where the PD 2 is located) that has a higher density than the remaining first photoelectric conversion units may be present.
  • At least one photodiode (pixel) on the lower side (second substrate 102) should correspond to the unit pixel region (first photoelectric conversion group) on the upper side (first substrate 101). That is, on the second substrate 102, it is sufficient that at least one second photoelectric conversion unit is provided corresponding to the first photoelectric conversion group. As described above, a plurality of pixels share the FD in the first substrate 101, but a plurality of pixels do not need to share the FD in the second substrate 102.
  • the second photoelectric conversion unit only needs to exist below the above-described first non-high-density area (the area where PD1, PD3, and PD4 exist in FIG. 10).
  • each pixel on the first substrate 101 and the second substrate 102 has the same size
  • the present invention is not limited to this.
  • the size (pixel size) of a pixel arranged on the first substrate 101 and a pixel arranged on the second substrate 102 may be different.
  • At least two second photoelectric conversion units 114 form a second photoelectric conversion group, and a plurality of second photoelectric conversion units 114 included in the second photoelectric conversion group share one floating diffusion unit.
  • the sum of the area of the wiring and the area of the transistor at one of the second photoelectric conversion units 113 and at any position around the second photoelectric conversion unit 113 among the plurality of second photoelectric conversion units 113 is determined.
  • the second high-density region existing at a higher density than the remaining second photoelectric conversion unit is any one of the first photoelectric conversion unit of the first substrate 101 where the first high-density region exists and one of the first photoelectric conversion unit and its surroundings. It should just be under the position of.
  • the present invention is not limited to this.
  • only the amplification transistor having the largest area may be arranged in the high-density region (first high-density region, second high-density region).
  • the first high-density region is provided at the surface position of the first photoelectric conversion unit immediately below the R filter, but the present invention is not limited to this.
  • the first high-density region may be provided at a surface position of the first photoelectric conversion unit in a region immediately below the G filter.
  • first wiring layer 121 of the first substrate 101 and the second wiring layer 122 of the second substrate 102 are provided to face each other (FIGS. 7, 11, and 13)
  • first substrate 101 wirings (and transistors) in the first wiring layer 121 are arranged in a first high-density region.
  • the wiring (and the transistor) in the second wiring layer 122 is arranged in the second high-density region.
  • a first wiring layer 121 of the first substrate 101 is provided below the first photoelectric conversion unit 113, and a second wiring layer 122 of the second substrate 102 is provided below the second photoelectric conversion unit 114.
  • the wiring (and the transistor) in the first wiring layer 121 is arranged in the first high-density region.
  • the wiring (and the transistor) in the second wiring layer 122 may be arranged in the second high-density region, or the wiring (and the transistor) in the second wiring layer 122 may be arranged.
  • Transistors may be evenly arranged.
  • the photodiode PD2 of the pixel provided with the R filter in the second photoelectric conversion layer 112 becomes unnecessary, the photodiodes PD1, PD3, and PD4 are arranged so that the areas of the other photodiodes PD1, PD3, and PD4 are large. Is also good. That is, the second photoelectric conversion layer 112 may not include the second photoelectric conversion unit (photodiode PD2) corresponding to the R filter.
  • the present invention can be widely applied to a stacked-type imaging device that simultaneously acquires a visible light image and an infrared light image, and suppresses a decrease in the amount of light incident on the second photoelectric conversion layer (lower photodiode). it can.
  • imaging device 101 first substrate 102 second substrate 103 color filter 104 connection portion 111 first photoelectric conversion layer 112 second photoelectric conversion layer 113 first photoelectric conversion portion (pixel) 114 second photoelectric conversion unit (pixel) 115 MOS transistor 121 1st wiring layer 122 2nd wiring layer 123 wiring 124 Interlayer insulating film 130 Interlayer multilayer film (visible light cut filter) 140 light transmitting material 200 unit pixel area (photoelectric conversion group) 201 to 203, 301 to 303 ...
  • Pixel 211 Floating diffusion part 212 to 216 Diffusion area 217 FD wiring PD1, PD3, PD4 Photodiode (area other than high density area) PD2 photodiode (high density area) a-Tr amplifying transistor r-Tr reset transistor s-Tr selection transistor t-Tr1 to t-Tr4 transfer transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

This solid-state imaging device is provided with: a first substrate that includes a plurality of first photoelectric conversion units; and a second substrate that is disposed so as to be layered on the first substrate and that includes a plurality of second photoelectric conversion units. In the first substrate, at least two of the plurality of first photoelectric conversion units form a first photoelectric conversion group, and the plurality of first photoelectric conversion units included in the first photoelectric conversion group share one floating diffusion part. In one of the plurality of first photoelectric conversion units and the surrounding area thereof, a first high density region having a higher density than the remaining first photoelectric conversion units of the plurality of first photoelectric conversion units in terms of the sum of a wiring area and a transistor area, is present. In the second substrate, at least one of the plurality of second photoelectric conversion units is disposed so as to correspond to the first photoelectric conversion group. The plurality of second photoelectric conversion units are present under a region other than the first high density region.

Description

固体撮像装置Solid-state imaging device
 本発明は、固体撮像装置、より詳しくは、可視光画像と赤外光画像を同時に取得する撮像装置に関する。 The present invention relates to a solid-state imaging device, and more particularly, to an imaging device that simultaneously acquires a visible light image and an infrared light image.
 近年、蛍光観察用内視鏡システムや静脈認証システム等に用いるために、可視光観察と共に赤外光観察を行なう撮像装置や撮像システムが盛んになっており、可視光観察では視認が難しい被写体からの情報を得ている。このため、可視光画像と赤外光画像同時に取得することが可能な撮像装置が広く提案されている(例えば、特許文献1参照)。 In recent years, imaging devices and systems that perform infrared light observation together with visible light observation have become popular for use in endoscope systems for fluorescence observation, vein authentication systems, and the like. The information has been obtained. For this reason, an imaging device capable of simultaneously acquiring a visible light image and an infrared light image has been widely proposed (for example, see Patent Document 1).
 図1は、このような撮像装置の断面図である。撮像装置100は、第1の基板101と、第2の基板102と、カラーフィルタ103と、接続部104とを備えている。第1の基板101と第2の基板102は、それぞれ複数の画素を備えており、受光した光量に応じた画素信号を出力する。第1の基板の受光面側(図の上側)には、RGBのカラーフィルタ103が形成されている。 FIG. 1 is a cross-sectional view of such an imaging device. The imaging device 100 includes a first substrate 101, a second substrate 102, a color filter 103, and a connection unit 104. Each of the first substrate 101 and the second substrate 102 includes a plurality of pixels, and outputs a pixel signal corresponding to the amount of received light. RGB color filters 103 are formed on the light receiving surface side (upper side in the figure) of the first substrate.
 第1の基板101は裏面照射型(BSI型)の撮像基板であり、第1の基板101の厚さは数um程度と薄い。そのために、第1の基板101の受光面側から入射した光の一部は透過し、第2の基板102の受光面側に入射する。なお、波長が短い光に対するシリコンの光吸収率は高く、波長が長い光に対するシリコンの光吸収率は低い。そのため、厚さが薄い第1の基板101では、波長の長い赤外光の一部が吸収されずに透過し、第2の基板102に入射する。従って、第1の基板101では可視光を検出し、第2の基板102では赤外光を検出することができる。このように、第1の基板101と第2の基板102を用いて、可視光画像と赤外光画像を同時に観察することができる。 (1) The first substrate 101 is a back-illuminated (BSI) imaging substrate, and the thickness of the first substrate 101 is as thin as about several μm. Therefore, part of the light incident from the light receiving surface side of the first substrate 101 is transmitted, and is incident on the light receiving surface side of the second substrate 102. Note that silicon has a high light absorptivity for light having a short wavelength, and a low light absorptivity of silicon for light having a long wavelength. Therefore, in the first substrate 101 having a small thickness, part of infrared light having a long wavelength is transmitted without being absorbed, and is incident on the second substrate 102. Therefore, the first substrate 101 can detect visible light, and the second substrate 102 can detect infrared light. As described above, the visible light image and the infrared light image can be simultaneously observed using the first substrate 101 and the second substrate 102.
 図16は、従来技術に係る撮像装置の断面の詳細を示す図である。第1の基板101と第2の基板102はそれぞれ複数の画素を備えており、各画素は光電変換層と配線層とから構成されている。第1の基板101は、第1の光電変換層111と第1の配線層121とから構成されている。第2の基板102は、第2の光電変換層112と第2の配線層122とから構成されている。 FIG. 16 is a diagram showing details of a cross section of an imaging device according to the related art. Each of the first substrate 101 and the second substrate 102 includes a plurality of pixels, and each pixel includes a photoelectric conversion layer and a wiring layer. The first substrate 101 includes a first photoelectric conversion layer 111 and a first wiring layer 121. The second substrate 102 includes a second photoelectric conversion layer 112 and a second wiring layer 122.
 光電変換層には光電変換部(フォトダイオード)が形成されており、RGBのカラーフィルタ103を透過した光を受光し、光電変換する。第1の光電変換層111には第1の光電変換部113が形成されている。第2の光電変換層112には第2の光電変換部114が形成されている。 光電 A photoelectric conversion unit (photodiode) is formed in the photoelectric conversion layer, and receives light transmitted through the RGB color filter 103 and performs photoelectric conversion. A first photoelectric conversion unit 113 is formed in the first photoelectric conversion layer 111. On the second photoelectric conversion layer 112, a second photoelectric conversion unit 114 is formed.
 配線層は複数の配線123から構成された層が積み重なっており、各層は層間絶縁膜124により絶縁されている。配線123とMOSトランジスタ115は、各画素を駆動させるための制御線や各画素の信号を読み出すための回路を含む。 (4) The wiring layer is formed by stacking layers composed of a plurality of wirings 123, and each layer is insulated by an interlayer insulating film 124. The wiring 123 and the MOS transistor 115 include a control line for driving each pixel and a circuit for reading a signal of each pixel.
特開2014-135535号公報JP 2014-135535 A
 図16において、第1の光電変換層111で吸収されずに透過した光は、第2の基板102における第2の光電変換層112に入射する前に、第1の基板101における第1の配線層121を構成する配線および第2の基板102における第2の配線層122を構成する配線に当たって反射する。そのために、第2の光電変換層112に入射する光量が減少してしまい、第2の光電変換部114の感度が低下する。 In FIG. 16, light transmitted through the first photoelectric conversion layer 111 without being absorbed is incident on the first wiring of the first substrate 101 before being incident on the second photoelectric conversion layer 112 of the second substrate 102. The light is reflected on the wiring forming the layer 121 and the wiring forming the second wiring layer 122 in the second substrate 102. Therefore, the amount of light incident on the second photoelectric conversion layer 112 decreases, and the sensitivity of the second photoelectric conversion unit 114 decreases.
 更に、画素の微細化が進むにつれて、各画素における配線の占める割合が増加し、各画素の開口率が低下する。そのため、第2の光電変換層112に入射する光量は更に減少し、第2の光電変換部114の感度は更に低下する。 Furthermore, as pixels become finer, the ratio of wiring in each pixel increases, and the aperture ratio of each pixel decreases. Therefore, the amount of light incident on the second photoelectric conversion layer 112 further decreases, and the sensitivity of the second photoelectric conversion unit 114 further decreases.
 上述の事情を鑑み、本発明は、可視光と赤外光を同時に検出する積層型イメージャ(撮像装置)において、第2の光電変換層(下側のフォトダイオード)に入射する光量の低下を抑制するための画素構造を提供することを目的とする。 In view of the above circumstances, the present invention suppresses a decrease in the amount of light incident on a second photoelectric conversion layer (lower photodiode) in a stacked imager (imaging device) that simultaneously detects visible light and infrared light. It is an object of the present invention to provide a pixel structure for performing the above.
 本発明の第一の態様は、複数の第1の光電変換部を有する第1の基板と、前記第1の基板に積層して設けられ、複数の第2の光電変換部を有する第2の基板と、を備える固体撮像装置であって、前記第1の基板において、前記複数の第1の光電変換部のうち少なくとも2つの第1の光電変換部が第1の光電変換グループを形成し、前記第1の光電変換グループに含まれる複数の第1の光電変換部で1つのフローティングディフュージョン部を共有し、前記複数の第1の光電変換部のうち1つの第1の光電変換部とこの周囲において、配線とトランジスタの面積の和が、前記複数の第1の光電変換部のうち残りの第1の光電変換部よりも高密度で存在する第1の高密度領域が存在し、前記第2の基板において、前記複数の第2の光電変換部は、前記第1の光電変換グループに対応して少なくとも1つ設けられ、前記第1の高密度領域でない領域の下に、前記複数の第2の光電変換部が存在することを特徴とする固体撮像装置である。 According to a first aspect of the present invention, a first substrate having a plurality of first photoelectric conversion units and a second substrate having a plurality of second photoelectric conversion units are provided so as to be stacked on the first substrate. A solid-state imaging device comprising: a substrate; and wherein in the first substrate, at least two first photoelectric conversion units among the plurality of first photoelectric conversion units form a first photoelectric conversion group; A plurality of first photoelectric conversion units included in the first photoelectric conversion group share one floating diffusion unit, and one of the plurality of first photoelectric conversion units and one of the first photoelectric conversion units and its surroundings Wherein there is a first high-density region in which the sum of the area of the wiring and the area of the transistor is higher than that of the remaining first photoelectric conversion units among the plurality of first photoelectric conversion units; Wherein the plurality of second photoelectric conversion units are A solid-state imaging device, wherein at least one second photoelectric conversion unit is provided corresponding to the first photoelectric conversion group, and the plurality of second photoelectric conversion units exist below a region other than the first high-density region. It is.
 前記第2の基板において、前記複数の第2の光電変換部のうち少なくとも2つの第2の光電変換部が第2の光電変換グループを形成し、前記第2の光電変換グループに含まれる複数の第2の光電変換部で1つのフローティングディフュージョン部を共有し、前記複数の第2の光電変換部のうち1つの第2の光電変換部とこの周囲において、配線とトランジスタの面積の和が前記複数の第2の光電変換部のうち残りの第2の光電変換部よりも高密度で存在する第2の高密度領域が、前記第1の高密度領域と同じ位置にあってもよい。 In the second substrate, at least two second photoelectric conversion units among the plurality of second photoelectric conversion units form a second photoelectric conversion group, and a plurality of second photoelectric conversion groups included in the second photoelectric conversion group are included. One floating diffusion portion is shared by the second photoelectric conversion portions, and the sum of the area of the wiring and the transistor is one of the plurality of second photoelectric conversion portions in and around the second photoelectric conversion portion. The second high-density region of the second photoelectric conversion unit having a higher density than the remaining second photoelectric conversion unit may be located at the same position as the first high-density region.
 前記第1の高密度領域は、少なくとも増幅トランジスタを含んでもよい。 (4) The first high-density region may include at least an amplification transistor.
 前記第2の高密度領域は、少なくとも増幅トランジスタを含んでもよい。 The second high-density region may include at least an amplification transistor.
 前記第1の基板の上に配置され、可視領域と赤外領域に透過帯域を有するカラーフィルタをさらに備え、前記複数の第1の光電変換部は、前記カラーフィルタを透過した光の露光量に応じた第1の信号電荷を出力し、複数の前記第2の光電変換部は、少なくとも赤外領域に感度を有し、前記第1の基板を透過した光の露光量に応じた第2の信号電荷を出力してもよい。 A color filter that is disposed on the first substrate and has a transmission band in a visible region and an infrared region, wherein the plurality of first photoelectric conversion units are configured to reduce an exposure amount of light transmitted through the color filter. Outputs a first signal charge corresponding to the second signal, and the plurality of second photoelectric conversion units have sensitivity in at least an infrared region, and output a second signal charge corresponding to an exposure amount of light transmitted through the first substrate. The signal charge may be output.
 前記カラーフィルタは、Rの可視領域を透過させるRフィルタ、Gの可視領域を透過させるGフィルタ、Bの可視領域を透過させるBフィルタから構成され、前記第1の高密度領域は、前記Rフィルタの直下の前記第1の光電変換部の面位置に設けられてもよい。 The color filter includes an R filter that transmits an R visible region, a G filter that transmits a G visible region, and a B filter that transmits a B visible region, wherein the first high-density region includes the R filter. May be provided at a surface position of the first photoelectric conversion unit immediately below the first photoelectric conversion unit.
 前記第1の基板の第1の配線層と、前記第2の基板の第2の配線層は向かい合わせて設けられ、前記第1の基板において、前記第1の配線層内の配線は前記第1の高密度領域内に配置され、前記第2の基板において、前記第2の配線層内の配線は前記第2の高密度領域内に配置されてもよい。 The first wiring layer of the first substrate and the second wiring layer of the second substrate are provided so as to face each other, and in the first substrate, the wiring in the first wiring layer is The second wiring board may be arranged in the second high-density region, and the wiring in the second wiring layer may be arranged in the second high-density region in the second substrate.
 前記第1の基板の第1の配線層は前記第1の光電変換部の下に設けられ、前記第2の基板の第2の配線層は、前記第2の光電変換部の下に設けられ、前記第1の基板において、前記第1の配線層内の配線は前記第1の高密度領域内に配置されてもよい。 A first wiring layer of the first substrate is provided below the first photoelectric conversion unit, and a second wiring layer of the second substrate is provided below the second photoelectric conversion unit. In the first substrate, the wiring in the first wiring layer may be arranged in the first high-density region.
 前記第1の基板と前記第2の基板との間に、可視光をカットし赤外光を透過するフィルタが設けられてもよい。 フ ィ ル タ A filter that cuts visible light and transmits infrared light may be provided between the first substrate and the second substrate.
 前記カラーフィルタは、Rの可視領域を透過させるRフィルタ、Gの可視領域を透過させるGフィルタ、Bの可視領域を透過させるBフィルタから構成され、前記第1の光電変換部は、前記カラーフィルタの下の第1の光電変換層内に配置され、前記Bフィルタが配置される領域の第1の前記光電変換層の厚みおよび前記Gフィルタが配置される領域の前記第1の光電変換層の厚みよりも、前記Rフィルタが配置される領域の前記第1の光電変換層の厚みが厚くてもよい。 The color filter includes an R filter that transmits an R visible region, a G filter that transmits a G visible region, and a B filter that transmits a B visible region. The first photoelectric conversion unit includes the color filter. And a thickness of the first photoelectric conversion layer in a region where the B filter is disposed and a thickness of the first photoelectric conversion layer in a region where the G filter is disposed. The thickness of the first photoelectric conversion layer in a region where the R filter is arranged may be thicker than the thickness.
 前記カラーフィルタは、Rの可視領域を透過させるRフィルタ、Gの可視領域を透過させるGフィルタ、Bの可視領域を透過させるBフィルタから構成され、前記第2の光電変換部は、第2の光電変換層内に配置され、前記第2の光電変換層において、前記Rフィルタに対応する前記第2の光電変換部が存在しなくてもよい。 The color filter includes an R filter that transmits an R visible region, a G filter that transmits a G visible region, and a B filter that transmits a B visible region. The second photoelectric conversion unit includes a second photoelectric conversion unit. The second photoelectric conversion unit corresponding to the R filter may not be present in the second photoelectric conversion layer, which is disposed in a photoelectric conversion layer.
 本発明の各態様によれば、可視光と赤外光を同時に検出する積層型イメージャ(撮像装置)において、第2の光電変換層(下側のフォトダイオード)に入射する光量の低下を抑制するための画素構造を提供することができる。 According to each aspect of the present invention, in a stacked imager (imaging device) that simultaneously detects visible light and infrared light, a decrease in the amount of light incident on the second photoelectric conversion layer (lower photodiode) is suppressed. Pixel structure can be provided.
本発明の実施形態における撮像装置の断面を示した断面図である。FIG. 2 is a cross-sectional view illustrating a cross section of the imaging device according to the embodiment of the present invention. 本発明の実施形態において、カラーフィルタが形成された第1の基板に含まれる画素の配列を示した概略図である。FIG. 2 is a schematic diagram illustrating an arrangement of pixels included in a first substrate on which a color filter is formed in an embodiment of the present invention. 本発明の実施形態において、第2の基板に含まれる画素の配列を示した概略図である。FIG. 3 is a schematic diagram illustrating an arrangement of pixels included in a second substrate in the embodiment of the present invention. 本発明の実施形態において、第1の基板に含まれる1組の単位画素領域の画素と、第2の基板に含まれる画素との配置関係を示した概略図である。FIG. 4 is a schematic diagram illustrating an arrangement relationship between pixels in a set of unit pixel regions included in a first substrate and pixels included in a second substrate in the embodiment of the present invention. 本発明の実施形態におけるカラーフィルタの透過特性を示したグラフである。5 is a graph illustrating transmission characteristics of a color filter according to the embodiment of the present invention. 本発明の第1実施形態に係る撮像装置のイメージ図である。It is an image figure of the imaging device concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る撮像装置の断面の詳細を示す図である。It is a figure showing the detail of the section of the imaging device concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る撮像装置の単位画素領域における画素部に関する回路構成を示す図である。FIG. 2 is a diagram illustrating a circuit configuration related to a pixel unit in a unit pixel region of the imaging device according to the first embodiment of the present invention. 本発明の第1実施形態に係る撮像装置の単位画素領減のカラーフィルタの配置図を示す図である。FIG. 2 is a diagram illustrating an arrangement diagram of a color filter having a unit pixel area reduction of the imaging device according to the first embodiment of the present invention. 本発明の第1実施形態に係る撮像装置の単位画素領域の画素レイアウトを示す図である。FIG. 2 is a diagram illustrating a pixel layout of a unit pixel region of the imaging device according to the first embodiment of the present invention. 本発明の第1実施形態の変形例1に係る撮像装置の断面の詳細を示す図である。FIG. 6 is a diagram illustrating details of a cross section of the imaging device according to Modification Example 1 of the first embodiment of the present invention. 本発明の第1実施形態の変形例2に係る撮像装置の断面の詳細を示す図である。It is a figure showing the detail of the section of the imaging device concerning modification 2 of a 1st embodiment of the present invention. 本発明の第2実施形態に係る撮像装置の断面の詳細を示す図である。It is a figure showing the detail of the section of the imaging device concerning a 2nd embodiment of the present invention. RGB画素の分光感度の一例を示す図である。FIG. 3 is a diagram illustrating an example of spectral sensitivity of RGB pixels. 450nm、530nm、620nm、および800nmの光がSi内を任意の距離進んだ場合の光量をプロットしたグラフである。It is the graph which plotted the light quantity at the time of 450 nm, 530 nm, 620 nm, and 800 nm light having traveled arbitrary distance in Si. 従来技術に係る撮像装置の断面の詳細を示す図である。FIG. 11 is a diagram illustrating details of a cross section of an imaging device according to a conventional technique.
 以下、本発明の実施形態について図面を参照して説明する。なお、図1~図5は、従来技術と同様であるが、本発明の理解を助けるために以下説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 5 are the same as those in the related art, but will be described below to help understand the present invention.
 図1は、本発明の実施形態における撮像装置100(固体撮像装置)の断面を示した断面図である。図示する例では、撮像装置100は、第1の基板101と、第2の基板102と、カラーフィルタ103(第1のフィルタ)と、接続部104とを備えている。第1の基板101と第2の基板102は、それぞれシリコンチップ上に形成されており複数の画素を備えている。第1の基板101の受光面側には、RGBのカラーフィルタ103が設けられている。カラーフィルタ103の配置およびカラーフィルタ103が透過する光の波長については後述する。 FIG. 1 is a cross-sectional view showing a cross section of an imaging device 100 (solid-state imaging device) according to an embodiment of the present invention. In the illustrated example, the imaging device 100 includes a first substrate 101, a second substrate 102, a color filter 103 (first filter), and a connection unit 104. Each of the first substrate 101 and the second substrate 102 is formed on a silicon chip and has a plurality of pixels. An RGB color filter 103 is provided on the light receiving surface side of the first substrate 101. The arrangement of the color filters 103 and the wavelength of light transmitted by the color filters 103 will be described later.
 カラーフィルタ103は可視領域と赤外領域に透過帯域を有する。カラーフィルタ103は有機材料(顔料)により生成されており、赤色のカラーフィルタ(Rフィルタ)は、赤色の可視光と赤外光を透過し、緑色のカラーフィルタ(Gフィルタ)は緑色の可視光と赤外光を透過し、青色のカラーフィルタ(Bフィルタ)は青色の可視光と赤外光を透過する特性を持つ。 The color filter 103 has transmission bands in the visible region and the infrared region. The color filter 103 is made of an organic material (pigment), the red color filter (R filter) transmits red visible light and infrared light, and the green color filter (G filter) is green visible light. And a blue color filter (B filter) have a characteristic of transmitting blue visible light and infrared light.
 また、第1の基板101と第2の基板102とは段積み(スタック)されている。図示する例では、第1の基板101の受光面とは反対側に、第2の基板102が配置されている。第2の基板102の受光面は、第1の基板101が存在する側である。また、第1の基板101と第2の基板102との間には接続部104が構成されており、第1の基板101と第2の基板102は接続部104を介して電気的に接続されている。すなわち、第1の基板101と第2の基板102とは接続部104を介して貼り合わせている。 {Circle around (1)} The first substrate 101 and the second substrate 102 are stacked. In the illustrated example, the second substrate 102 is disposed on the side opposite to the light receiving surface of the first substrate 101. The light receiving surface of the second substrate 102 is on the side where the first substrate 101 exists. Further, a connection portion 104 is formed between the first substrate 101 and the second substrate 102, and the first substrate 101 and the second substrate 102 are electrically connected to each other through the connection portion 104. ing. That is, the first substrate 101 and the second substrate 102 are bonded to each other via the connection portion 104.
 ここで、第1の基板101は裏面照射型の撮像基板であり、第1の基板101の厚さは数um程度と薄い。そのために、第1の基板101の受光面側から入射した光の一部は透過し、第2の基板102の受光面側に入射する。なお、シリコンの光吸収率は波長によって異なる。波長が短い光に対するシリコンの光吸収率は高く、波長が長い光に対するシリコンの光吸収率は低い。すなわち、厚さが約3umの薄い第1の基板101では、撮像装置100に入射した光のうち、波長が短い可視光はほとんど吸収されるが、波長が長い赤外光は一部吸収されずに、第1の基板を透過する。従って、第2の基板102には、赤外光が入射する。第2の基板102は、表面照射型の撮像基板であり、第1の基板101よりも厚い。第2の基板102では、第1の基板101を透過した赤外光を検出する。なお、第1の基板101は、裏面照射型の撮像基板に限らず、可視光を吸収し、赤外光を透過する基板であればどのような基板でもよい。 Here, the first substrate 101 is a back-illuminated imaging substrate, and the thickness of the first substrate 101 is as thin as about several μm. Therefore, part of the light incident from the light receiving surface side of the first substrate 101 is transmitted, and is incident on the light receiving surface side of the second substrate 102. Note that the light absorption of silicon differs depending on the wavelength. The light absorptivity of silicon for light with a short wavelength is high, and the light absorptivity of silicon for light with a long wavelength is low. That is, in the thin first substrate 101 having a thickness of about 3 μm, of light incident on the imaging device 100, visible light having a short wavelength is almost absorbed, but infrared light having a long wavelength is not partially absorbed. Through the first substrate. Therefore, infrared light is incident on the second substrate 102. The second substrate 102 is a front-illuminated imaging substrate and is thicker than the first substrate 101. The second substrate 102 detects infrared light transmitted through the first substrate 101. Note that the first substrate 101 is not limited to a back-illuminated imaging substrate, and may be any substrate that absorbs visible light and transmits infrared light.
 図2は、本発明の実施形態において、カラーフィルタ103が設けられた第1の基板101に含まれる画素の配列を示した概略図である。図示する例では、4行8列の二次元状に配列された計32個の画素の例を示している。なお、第1の基板101に含まれる画素の数および配列は図示する例に限らず、どのような数および配列でもよい。 FIG. 2 is a schematic diagram showing an arrangement of pixels included in the first substrate 101 provided with the color filters 103 in the embodiment of the present invention. In the illustrated example, an example is shown in which a total of 32 pixels are arranged two-dimensionally in 4 rows and 8 columns. The number and arrangement of the pixels included in the first substrate 101 are not limited to the illustrated example, but may be any number and arrangement.
 本発明の実施形態では、カラーフィルタ103の配列はベイヤー配列であり、縦と横に隣接する4つの画素を1組の単位画素領域200とする。そのため、図示する通り、1組の単位画素領域200には、赤色と赤外光の波長領域を透過するカラーフィルタ103が設けられた1つの画素201と、緑色と赤外光の波長領域を透過するカラーフィルタ103が設けられた2つの画素202と、青色と赤外光の波長領域を透過するカラーフィルタ103が設けられた1つの画素203とで構成されている。 In the embodiment of the present invention, the color filters 103 are arranged in a Bayer array, and four pixels vertically and horizontally adjacent to each other are defined as a set of unit pixel areas 200. Therefore, as shown in the figure, one set of unit pixel regions 200 has one pixel 201 provided with a color filter 103 that transmits red and infrared light wavelength regions, and transmits one green pixel and infrared light wavelength region. And a pixel 203 provided with a color filter 103 that transmits the wavelength region of blue and infrared light.
 第1の基板101に含まれる各画素201~203は、それぞれ光電変換素子(第1の光電変換素子)および信号読み出し回路を備えている。各光電変換素子は、露光量に応じた第1の信号電荷を読み出し回路に出力する。信号読み出し回路は、光電変換素子が出力した第1の信号電荷を第1の電気信号として出力する。 Each of the pixels 201 to 203 included in the first substrate 101 includes a photoelectric conversion element (first photoelectric conversion element) and a signal readout circuit. Each photoelectric conversion element outputs a first signal charge corresponding to an exposure amount to a readout circuit. The signal readout circuit outputs the first signal charge output from the photoelectric conversion element as a first electric signal.
 図3は、本発明の実施形態において、第2の基板102に含まれる画素の配列を示した概略図である。図示する例では、4行8列の二次元状に配列された計32個の画素の例を示している。なお、第2の基板102に含まれる画素の数および配列は図示する例に限らず、どのような数および配列でもよい。 FIG. 3 is a schematic diagram showing an arrangement of pixels included in the second substrate 102 in the embodiment of the present invention. In the illustrated example, an example is shown in which a total of 32 pixels are arranged two-dimensionally in 4 rows and 8 columns. The number and arrangement of the pixels included in the second substrate 102 are not limited to the illustrated example, but may be any number and arrangement.
 第2の基板102に含まれる各画素301~303は、それぞれ光電変換素子(第2の光電変換素子)および信号読み出し回路を備えている。各光電変換素子は、露光量に応じた第2の信号電荷を読み出し回路に出力する。信号読み出し回路は、光電変換素子が出力した第2の信号電荷を第2の電気信号として出力する。 Each of the pixels 301 to 303 included in the second substrate 102 includes a photoelectric conversion element (second photoelectric conversion element) and a signal readout circuit. Each photoelectric conversion element outputs a second signal charge corresponding to the exposure amount to the readout circuit. The signal readout circuit outputs the second signal charge output from the photoelectric conversion element as a second electric signal.
 図4は、本発明の実施形態において、第1の基板101に含まれる1組の単位画素領域200の画素201~203と、第2の基板102に含まれる画素301~303との配置関係を示した概略図である。図示する例では、赤色の光と赤外光とを透過するカラーフィルタ103が設けられた画素201を透過した赤外光が入射する位置に、画素301は配置されている。また、緑色の光と赤外光とを透過するカラーフィルタ103が設けられた画素202を透過した赤外光が入射する位置に、画素302は配置されている。また、青色の光と赤外光とを透過するカラーフィルタ103が設けられた画素203を透過した赤外光が入射する位置に、画素303は配置されている。すなわち、第1の基板101に含まれる画素201~203と、第2の基板102に含まれる画素301~303とは1対1で対応している。 FIG. 4 shows an arrangement relationship between pixels 201 to 203 of a set of unit pixel regions 200 included in the first substrate 101 and pixels 301 to 303 included in the second substrate 102 in the embodiment of the present invention. FIG. In the illustrated example, the pixel 301 is disposed at a position where the infrared light transmitted through the pixel 201 provided with the color filter 103 transmitting red light and infrared light is incident. The pixel 302 is arranged at a position where the infrared light transmitted through the pixel 202 provided with the color filter 103 transmitting the green light and the infrared light is incident. Further, the pixel 303 is disposed at a position where the infrared light transmitted through the pixel 203 provided with the color filter 103 transmitting blue light and infrared light is incident. That is, the pixels 201 to 203 included in the first substrate 101 and the pixels 301 to 303 included in the second substrate 102 have a one-to-one correspondence.
 次に、カラーフィルタ103が透過する光の波長について説明する。図5は、本発明の実施形態におけるカラーフィルタ103の透過特性を示したグラフである。図示するグラフの横軸は波長を示し、縦軸は各波長におけるカラーフィルタ103の透過率を示している。図示する例では、線511は、青色の光と赤外光とを透過する青色のカラーフィルタ103が、約400nm~500nmの波長の光(青色の光)と、約700nm以上の波長の光(赤外光)とを透過することを示している。また、線512は、緑色の光と赤外光とを透過する緑色のカラーフィルタ103が、約500nm~600nmの波長の光(緑色の光)と、約700nm以上の波長の光(赤外光)とを透過することを示している。また、線513は、赤色の光と赤外光とを透過する緑色のカラーフィルタ103が、約600nm以上の波長の光(赤色の光および赤外光)を透過することを示している。 Next, the wavelength of light transmitted by the color filter 103 will be described. FIG. 5 is a graph showing the transmission characteristics of the color filter 103 according to the embodiment of the present invention. The horizontal axis of the graph shown in the drawing represents the wavelength, and the vertical axis represents the transmittance of the color filter 103 at each wavelength. In the illustrated example, the line 511 indicates that the blue color filter 103 transmitting the blue light and the infrared light has a wavelength of about 400 nm to 500 nm (blue light) and a wavelength of about 700 nm or more (blue). Infrared light). The line 512 indicates that the green color filter 103 transmitting the green light and the infrared light has a wavelength of about 500 nm to 600 nm (green light) and a wavelength of about 700 nm or more (infrared light). ). A line 513 indicates that the green color filter 103 transmitting red light and infrared light transmits light having a wavelength of about 600 nm or more (red light and infrared light).
 次に撮像装置100の動作について説明する。なお、本発明の実施形態では、光源は可視領域から赤外領域までの波長を含んだ照明光を用いる。そして、生体組織や指などの対象物に照明光を照射し、その透過光または反射光を、撮像装置100に入射させる。 Next, the operation of the imaging device 100 will be described. In the embodiment of the present invention, the light source uses illumination light including wavelengths from a visible region to an infrared region. Then, an illuminating light is applied to a target object such as a living tissue or a finger, and the transmitted light or the reflected light is incident on the imaging device 100.
 カラーフィルタ103が設けられた第1の基板101の受光面側に光が入射される。図5に示す透過特性のように、赤色のカラーフィルタ103は赤色の光と赤外光とを透過する。また、緑色のカラーフィルタ103は、緑色の光と赤外光とを透過する。また、青色のカラーフィルタ103は、青色の光と赤外光とを透過する。 Light is incident on the light receiving surface side of the first substrate 101 on which the color filter 103 is provided. Like the transmission characteristics shown in FIG. 5, the red color filter 103 transmits red light and infrared light. The green color filter 103 transmits green light and infrared light. Further, the blue color filter 103 transmits blue light and infrared light.
 第1の基板101の各画素201~203は、それぞれのカラーフィルタ103を透過した可視光を検出し、第1の電気信号を出力する。具体的には、赤色のカラーフィルタ103が設けられた画素201は、赤色の光に応じた第1の電気信号を出力する。また、緑色のカラーフィルタ103が設けられた画素202は、緑色の光に応じた第1の電気信号を出力する。また、青色のカラーフィルタ103が設けられた画素203は、青色の光に応じた第1の電気信号を出力する。図示せぬ処理部は、各画素201~203が出力した第1の電気信号に基づいて可視光画像を生成する。
 なお、厳密には、第1の基板101では、可視光以外に、赤外光も吸収される。そのため、第1の基板101から出力される第1の電気信号には、可視光成分以外に、わずかながらに検出される赤外光成分も含まれてしまう。ただし、本実施形態で考える赤外光は蛍光などの微弱光であり、基板には、可視光に比べて弱い光が入射する。そのため、第1の信号において、可視光によって生成される信号の方が、赤外光によって生成される信号に比べて支配的である。そこで、本明細書では、第1の基板101の各画素は可視光を検出するという記述としている。
Each of the pixels 201 to 203 of the first substrate 101 detects visible light transmitted through each of the color filters 103 and outputs a first electric signal. Specifically, the pixel 201 provided with the red color filter 103 outputs a first electric signal corresponding to red light. The pixel 202 provided with the green color filter 103 outputs a first electric signal corresponding to green light. The pixel 203 provided with the blue color filter 103 outputs a first electric signal corresponding to blue light. A processing unit (not shown) generates a visible light image based on the first electric signal output from each of the pixels 201 to 203.
Strictly speaking, the first substrate 101 absorbs not only visible light but also infrared light. Therefore, the first electric signal output from the first substrate 101 includes, in addition to the visible light component, a slightly detected infrared light component. However, the infrared light considered in the present embodiment is weak light such as fluorescence, and light that is weaker than visible light enters the substrate. Therefore, in the first signal, a signal generated by visible light is more dominant than a signal generated by infrared light. Therefore, in this specification, description is made such that each pixel of the first substrate 101 detects visible light.
 第2の基板102には、第1の基板101を透過した赤外光が入射される。第2の基板102が備えている各画素301~303は、少なくとも赤外領域に感度を有する。第2の基板102の各画素301~303は、赤外光の波長の光に応じた第2の電気信号を出力する。図示せぬ処理部は、各画素301~303が出力した第2の電気信号に基づいて赤外光画像を生成する。 (4) The infrared light transmitted through the first substrate 101 is incident on the second substrate 102. Each of the pixels 301 to 303 included in the second substrate 102 has sensitivity at least in the infrared region. Each of the pixels 301 to 303 of the second substrate 102 outputs a second electric signal according to light having a wavelength of infrared light. A processing unit (not shown) generates an infrared light image based on the second electric signal output from each of the pixels 301 to 303.
 上述したとおり、本発明の実施形態によれば、第1の基板101と第2の基板102とは段積みされている。また、第1の基板101は赤外光を透過する。これにより、第1の基板101が備えている画素201~203は、可視光に基づいた第1の電気信号を出力することができる。また、第2の基板102が備えている画素301~303は、赤外光に基づいた第2の電気信号を出力することができる。また、第1の電気信号より、可視光画像を生成することができ、第2の電気信号より、赤外光画像を生成することができる。 As described above, according to the embodiment of the present invention, the first substrate 101 and the second substrate 102 are stacked. Further, the first substrate 101 transmits infrared light. Accordingly, the pixels 201 to 203 included in the first substrate 101 can output the first electric signal based on the visible light. Further, the pixels 301 to 303 included in the second substrate 102 can output a second electric signal based on infrared light. Further, a visible light image can be generated from the first electric signal, and an infrared light image can be generated from the second electric signal.
 また、本発明の実施形態では、光源として可視領域から赤外領域を含んだ光を用いるために、可視光と赤外光の時間的な切替えは必要ない。そのために、撮像装置100は、可視光画像を生成することができる第1の電気信号と、赤外光画像を生成することができる第2の電気信号とを同時に出力することができる。また、本発明の実施形態における撮像装置100は、ダイクロイックミラーや複数のレンズ、および可視光検出用と赤外光検出用の撮像装置を必要としない。そのために、装置の小型化や低コスト化を実現することができる。従って、本発明の実施形態によれば、撮像装置100は、安価で、可視光画像と赤外光画像を同時に取得することができる。 In addition, in the embodiment of the present invention, since light including a visible region to an infrared region is used as a light source, there is no need to temporally switch between visible light and infrared light. Therefore, the imaging device 100 can simultaneously output a first electric signal capable of generating a visible light image and a second electric signal capable of generating an infrared light image. Further, the imaging device 100 according to the embodiment of the present invention does not require a dichroic mirror, a plurality of lenses, and imaging devices for detecting visible light and detecting infrared light. Therefore, size reduction and cost reduction of the device can be realized. Therefore, according to the embodiment of the present invention, the imaging device 100 can simultaneously acquire the visible light image and the infrared light image at low cost.
 次に、本発明の特徴である、可視光と赤外光を同時に検出する積層型の撮像装置において、第2の光電変換層(下側のフォトダイオード)に入射する光量の低下を抑制するための画素構造について説明する。 Next, in the stacked imaging device that simultaneously detects visible light and infrared light, which is a feature of the present invention, in order to suppress a decrease in the amount of light incident on the second photoelectric conversion layer (lower photodiode). Will be described.
 (第1実施形態)
 図6は、本発明の第1実施形態に係る撮像装置のイメージ図である。撮像装置100において、図の上側(第1の基板の受光面側)から順に、カラーフィルタ103、第1の基板101、第2の基板102の各層が配置される。各層において、複数の画素(本実施形態では2×2画素の4画素)から単位画素領域200が構成され、単位画素領域の繰り返しにより光電変換層の全体が構成される。
(1st Embodiment)
FIG. 6 is an image diagram of the imaging device according to the first embodiment of the present invention. In the imaging device 100, the layers of the color filter 103, the first substrate 101, and the second substrate 102 are arranged in order from the upper side of the drawing (the light receiving surface side of the first substrate). In each layer, a unit pixel region 200 is configured from a plurality of pixels (four pixels of 2 × 2 pixels in the present embodiment), and the entire photoelectric conversion layer is configured by repeating the unit pixel region.
 図7は、本発明の第1実施形態に係る撮像装置の断面の詳細を示す図である。第1の基板101と第2の基板102はそれぞれ複数の画素を備えており、各画素は光電変換層と配線層とから構成されている。第1の基板101は、第1の光電変換層111と第1の配線層121とから構成されている。第2の基板102は、第2の光電変換層112と第2の配線層122とから構成されている。 FIG. 7 is a diagram showing details of a cross section of the imaging device according to the first embodiment of the present invention. Each of the first substrate 101 and the second substrate 102 includes a plurality of pixels, and each pixel includes a photoelectric conversion layer and a wiring layer. The first substrate 101 includes a first photoelectric conversion layer 111 and a first wiring layer 121. The second substrate 102 includes a second photoelectric conversion layer 112 and a second wiring layer 122.
 光電変換層には光電変換部(フォトダイオード)が形成されており、RGBのカラーフィルタ103を透過した光を受光し、光電変換する。第1の光電変換層111には第1の光電変換部113が形成されている。第2の光電変換層112には第2の光電変換部114が形成されている。 光電 A photoelectric conversion unit (photodiode) is formed in the photoelectric conversion layer, and receives light transmitted through the RGB color filter 103 and performs photoelectric conversion. A first photoelectric conversion unit 113 is formed in the first photoelectric conversion layer 111. On the second photoelectric conversion layer 112, a second photoelectric conversion unit 114 is formed.
 配線層は複数の配線123から構成された層が積み重なっており、各層は層間絶縁膜124により絶縁されている。配線123とMOSトランジスタ115は、各画素を駆動させるための制御線や各画素の信号を読み出すための回路を含む。 (4) The wiring layer is formed by stacking layers composed of a plurality of wirings 123, and each layer is insulated by an interlayer insulating film 124. The wiring 123 and the MOS transistor 115 include a control line for driving each pixel and a circuit for reading a signal of each pixel.
 本実施形態では、図7に示すように、単位画素領域のうち1つの画素(本実施形態ではR画素)の下側に、配線やトランジスタを敷き詰める。そのため、それ以外の画素(G画素及びB画素)の下側には配線やトランジスタを極力配置しないようにするため、画素における配線の占める割合が低下し、図7に示すように空間が生じる。 In the present embodiment, as shown in FIG. 7, wirings and transistors are laid under one pixel (R pixel in the present embodiment) in the unit pixel region. Therefore, in order to minimize wiring and transistors below the other pixels (the G pixel and the B pixel), the ratio of the wiring in the pixel is reduced, and a space is generated as shown in FIG.
 第1の光電変換層111で吸収されずに透過した光は、第2の基板102における第2の光電変換層112に入射する前に、第1の基板101における第1の配線層121を構成する配線および第2の基板102における第2の配線層122を構成する配線に当たって反射する。しかし、本実施形態では、G画素及びB画素における配線の占める割合が低下しているため、G画素及びB画素において第2の基板102に入射する光量が増加する。これにより、G画素及びB画素において第2の光電変換部114の感度が向上する。 The light transmitted without being absorbed by the first photoelectric conversion layer 111 forms the first wiring layer 121 of the first substrate 101 before being incident on the second photoelectric conversion layer 112 of the second substrate 102. The light is reflected on the wirings to be formed and the wirings forming the second wiring layer 122 in the second substrate 102. However, in the present embodiment, since the ratio of the wiring in the G pixel and the B pixel is reduced, the amount of light incident on the second substrate 102 in the G pixel and the B pixel is increased. Thereby, the sensitivity of the second photoelectric conversion unit 114 is improved in the G pixel and the B pixel.
 撮像装置の回路構成について説明する。図8は、本実施形態に係る撮像装置の単位画素領域における画素部に関する回路構成を示す図である。なお、回路構成は、第1の基板と第2の基板で共通である。 The circuit configuration of the imaging device will be described. FIG. 8 is a diagram illustrating a circuit configuration related to a pixel unit in a unit pixel region of the imaging device according to the present embodiment. Note that the circuit configuration is common to the first substrate and the second substrate.
 2×2画素からなる単位画素領域では、4つのフォトダイオード(画素)PD1~PD4で1つのフローティングディフュージョン部(FD)を共有している。また、4つのフォトダイオードが、転送トランジスタ(t-Tr1~t-Tr4)以外のリセットトランジスタ(r-Tr)、増幅トランジスタ(a-Tr)、および選択トランジスタ(s-Tr)を共有した構成である。 In a unit pixel region composed of 2 × 2 pixels, one photodiode (pixel) PD1 to PD4 shares one floating diffusion portion (FD). The four photodiodes share a reset transistor (r-Tr), an amplification transistor (a-Tr), and a selection transistor (s-Tr) other than the transfer transistors (t-Tr1 to t-Tr4). is there.
 各画素のフォトダイオードPD1~PD4は、入射光の光量に応じた電荷を蓄積する。各フォトダイオードに蓄積された電荷は、各画素の転送トランジスタを介してフローティングディフュージョン部に転送される。増幅トランジスタは、選択トランジスタを介して電流源とソースフォロワを構成し、フローティングディフュージョン部に蓄積された電荷に応じた電気信号を出力信号として、垂直信号線に出力する。なお、リセットトランジスタは、フローティングディフュージョン部の電荷を電源電圧VDDにリセットする。 (4) The photodiodes PD1 to PD4 of each pixel accumulate charges corresponding to the amount of incident light. The electric charge accumulated in each photodiode is transferred to the floating diffusion section via the transfer transistor of each pixel. The amplification transistor forms a current source and a source follower via the selection transistor, and outputs an electric signal corresponding to the electric charge accumulated in the floating diffusion portion to the vertical signal line as an output signal. Note that the reset transistor resets the charge in the floating diffusion portion to the power supply voltage VDD.
 垂直信号線に読み出された各画素の出力信号は、図示していない水平出力回路に行毎に一時的に保存された後、撮像素子から出力される。このようにして、撮像素子の各画素から、光量に応じた信号が読み出される。 (4) The output signal of each pixel read to the vertical signal line is temporarily stored for each row in a horizontal output circuit (not shown), and then output from the image sensor. In this way, a signal corresponding to the amount of light is read from each pixel of the image sensor.
 次に撮像装置の画素レイアウトについて説明する。図9は、本実施形態に係る撮像装置の単位画素領減のカラーフィルタの配置図を示す図である。図10は、本実施形態に係る撮像装置の単位画素領域の画素レイアウトを示す図である。なお、単位画素領域は第1の基板101と第2の基板102とで共通のレイアウト構成であり、図10は第1の基板101または第2の基板102における単位画素領減のイメージ図である。 Next, the pixel layout of the imaging device will be described. FIG. 9 is a diagram illustrating an arrangement diagram of a color filter of a unit pixel area of the imaging apparatus according to the present embodiment. FIG. 10 is a diagram illustrating a pixel layout of a unit pixel region of the imaging device according to the present embodiment. Note that the unit pixel region has a common layout configuration for the first substrate 101 and the second substrate 102, and FIG. 10 is an image diagram of the unit pixel area on the first substrate 101 or the second substrate 102.
 リセットトランジスタ(r-Tr)は、拡散領域212と213をそれぞれソースおよびドレインとし、ゲート電極を有して形成される。また、増幅トランジスタ(a-Tr)は、拡散領域214と215をそれぞれドレインおよびソースとし、ゲート電極を有して形成される。また、選択トランジスタ(s-Tr)は、拡散領域215と216をそれぞれドレインおよびソースとし、ゲート電極を有して形成される。 (4) The reset transistor (r-Tr) is formed with the diffusion regions 212 and 213 as a source and a drain, respectively, and with a gate electrode. Further, the amplification transistor (a-Tr) is formed to have the diffusion regions 214 and 215 as drains and sources, respectively, and to have a gate electrode. Further, the selection transistor (s-Tr) is formed with the diffusion regions 215 and 216 as drains and sources, respectively, and having a gate electrode.
 各画素のフォトダイオードPD1~PD4は、それぞれの転送トランジスタ(t-Tr1~t-Tr4)に接続している。すなわち、転送トランジスタを介して、各画素のフォトダイオードPD1~PD4は、フローティングディフュージョン部211に接続している。図中の太線217はフローティングディフュージョンの配線(FD配線)であり、FD配線によって、フローティングディフュージョン部211と、増幅トランジスタのゲート電極、およびリセットトランジスタのソース212が電気的に接続している。 (4) The photodiodes PD1 to PD4 of each pixel are connected to respective transfer transistors (t-Tr1 to t-Tr4). That is, the photodiodes PD1 to PD4 of each pixel are connected to the floating diffusion unit 211 via the transfer transistor. A thick line 217 in the drawing is a wiring of a floating diffusion (FD wiring), and the FD wiring electrically connects the floating diffusion portion 211 to the gate electrode of the amplification transistor and the source 212 of the reset transistor.
 増幅トランジスタのソースと選択トランジスタのドレインは共通の拡散領域215で形成されており、電気的に後続している。選択トランジスタのソースは、垂直信号線に電気的に接続している。また、リセットトランジスタのドレイン213、および増幅トランジスタのドレイン214が電源VDDに電気的に接続している。 (4) The source of the amplification transistor and the drain of the selection transistor are formed by a common diffusion region 215, and are electrically connected. The source of the selection transistor is electrically connected to the vertical signal line. In addition, the drain 213 of the reset transistor and the drain 214 of the amplification transistor are electrically connected to the power supply VDD.
 転送トランジスタを制御するための信号線(図示なし)は、第1の基板101または第2の基板102を横方向(列方向)に沿って配線されており、各転送トランジスタのゲート電極と接続している。同様に、リセットトランジスタを制御するための信号線、第1の基板101または第2の基板102を横方向(列方向)に沿って配置されており、リセットトランジスタのゲート電極と接続している。同様に、選択トランジスタを制御するための信号線は、第1の基板101または第2の基板102を横方向(列方向)に沿って配置されており、選択トランジスタのゲート電極と接続している。 A signal line (not shown) for controlling the transfer transistor is wired along the first substrate 101 or the second substrate 102 along the horizontal direction (column direction), and is connected to the gate electrode of each transfer transistor. ing. Similarly, a signal line for controlling the reset transistor, the first substrate 101 or the second substrate 102 is arranged along the horizontal direction (column direction), and is connected to the gate electrode of the reset transistor. Similarly, a signal line for controlling the selection transistor is arranged along the first substrate 101 or the second substrate 102 along the horizontal direction (column direction), and is connected to the gate electrode of the selection transistor. .
 上述のように、第1の光電変換層111および第2の光電変換層112の画素レイアウトでは、転送トランジスタは各画素に配置されているが、増幅トランジスタ、リセットトランジスタ、および選択トランジスタは、Rのカラーフィルタが配置された画素(R画素、図10ではPD2)に配置されている。R画素以外のB画素(Bのカラーフィルタが配置された画素、図10ではPD3)とG画素(Gのカラーフィルタが配置された画素、図10ではPD1とPD4)における配線の占める割合が減少する。そのため、第2の光電変換部114のうちBのカラーフィルタが設けられた画素(PD3)およびGのカラーフィルタが設けられた画素(PD1とPD4)に入射する光量が増加し、これらの画素における感度が向上する。 As described above, in the pixel layout of the first photoelectric conversion layer 111 and the second photoelectric conversion layer 112, the transfer transistor is disposed in each pixel, but the amplification transistor, the reset transistor, and the selection transistor It is arranged at the pixel (R pixel, PD2 in FIG. 10) on which the color filter is arranged. The proportion of wiring occupied by B pixels (pixels on which a color filter of B is arranged, PD3 in FIG. 10) and G pixels (pixels on which a color filter of G is arranged, PD1 and PD4 in FIG. 10) other than the R pixel decreases I do. Therefore, the amount of light incident on the pixel (PD3) provided with the B color filter and the pixels (PD1 and PD4) provided with the G color filter in the second photoelectric conversion unit 114 increases, and The sensitivity is improved.
 さらに、第2の光電変換層112の画素レイアウトでは、第2の光電変換部114のうちRのカラーフィルタが設けられた画素のフォトダイオードPD2は不要となるため、それ以外のフォトダイオードPD1、PD3、PD4の面積が大きくなるように配置することができる。これにより、第2の光電変換層112におけるBのカラーフィルタが設けられた画素およびGのカラーフィルタが設けられた画素のフォトダイオードの面積が大きくなり、これらのフォトダイオードに入射する光量がさらに増加し、さらに感度の向上が見込める。 Further, in the pixel layout of the second photoelectric conversion layer 112, the photodiode PD2 of the pixel provided with the R color filter in the second photoelectric conversion unit 114 becomes unnecessary, and the other photodiodes PD1 and PD3 , PD4 can be arranged so as to increase the area. Accordingly, the photodiode area of the pixel provided with the B color filter and the pixel provided with the G color filter in the second photoelectric conversion layer 112 increases, and the amount of light incident on these photodiodes further increases. And further improvement in sensitivity can be expected.
 上述のように、本実施形態では、R画素の下に回路やトランジスタを敷き詰めた。R画素以外の箇所には最低でも転送トランジスタを配置していればよく、R画素直下にリセットトランジスタや選択トランジスタ等を配置する。また、図10におけるR画素の下の第2の画素領域(PD2)の信号は、第2の光電変換部において隣接する単位画素領域(図示なし)の信号を用いて補正することができる。 As described above, in the present embodiment, circuits and transistors are spread under the R pixels. It is sufficient that at least a transfer transistor is disposed in a portion other than the R pixel, and a reset transistor, a selection transistor, and the like are disposed immediately below the R pixel. Further, the signal of the second pixel area (PD2) below the R pixel in FIG. 10 can be corrected using the signal of the adjacent unit pixel area (not shown) in the second photoelectric conversion unit.
 これにより、本実施形態では、R画素以外のB画素およびG画素の開口率は向上(配線領域が減少)し、第2の光電変換部に入射する光量が増加する。そして、従来の構造に比べて、第2の光電変換部で検出される信号のSN比が向上する。第2の光電変換部のうちB画素およびG画素の下の領域においても、トランジスタを敷き詰める割合が少なくなるために、PD領域を広げることが可能となり、感度向上につながる。 According to this, in the present embodiment, the aperture ratio of the B pixel and the G pixel other than the R pixel is improved (the wiring area is reduced), and the amount of light incident on the second photoelectric conversion unit is increased. Then, as compared with the conventional structure, the SN ratio of the signal detected by the second photoelectric conversion unit is improved. In the region under the B pixel and the G pixel in the second photoelectric conversion unit, the rate of laying down the transistors is reduced, so that the PD region can be expanded, which leads to an improvement in sensitivity.
 (変形例1)
 第1実施形態の変形例1について説明する。図11は、変形例1に係る撮像装置の断面の詳細を示す図である。図7に示す第1実施形態との違いは、第1の基板101と第2の基板102との問に、可視光をカットし赤外光のみを透過するフィルタ(可視光カットフィルタ)を挿入し、層間多層膜130を形成している点である。すなわち、上の画素と下の画素との間に、可視光カットフィルタからなる層間多層膜130を設けている。
(Modification 1)
Modification 1 of the first embodiment will be described. FIG. 11 is a diagram illustrating details of a cross section of the imaging device according to the first modification. The difference from the first embodiment shown in FIG. 7 is that a filter (visible light cut filter) that cuts visible light and transmits only infrared light is inserted between the first substrate 101 and the second substrate 102. The point is that the interlayer multilayer film 130 is formed. That is, the interlayer multilayer film 130 including the visible light cut filter is provided between the upper pixel and the lower pixel.
 第1の基板101において、波長が500nm以下の光は全て吸収される。そのため、第2の光電変換部114のうち青色のカラーフィルタが設けられた領域には、赤外光のみが入射する。一方、第2の光電変換部114のうち緑色のカラーフィルタが設けられた領域には、第1の基板で吸収されなかった緑色の光が入射する。そこで、第1の基板101と第2の基板102との問に可視光カットフィルタを設けることにより、第2の光電変換部114に赤外光のみが入射する。このような構成により、本変形例では、第1実施形態の効果に加えて、第2の光電変換部114において赤外光を効率よく検出することができる。 (4) In the first substrate 101, all light having a wavelength of 500 nm or less is absorbed. Therefore, only infrared light is incident on a region of the second photoelectric conversion unit 114 where the blue color filter is provided. On the other hand, green light that has not been absorbed by the first substrate enters a region of the second photoelectric conversion unit 114 where the green color filter is provided. Therefore, by providing a visible light cut filter between the first substrate 101 and the second substrate 102, only infrared light enters the second photoelectric conversion unit 114. With such a configuration, in the present modification, in addition to the effect of the first embodiment, the second photoelectric conversion unit 114 can efficiently detect infrared light.
 (変形例2)
 第1実施形態の変形例2について説明する。図12は、変形例2に係る撮像装置の断面の詳細を示す図である。図7に示す第1実施形態との違いは、第2の基板102において、第2の配線層122と第2の光電変換層112の位置を入れ替えて配置している点である。すなわち、本変形例の第2の基板102は、裏面照射型(BSI)構造となっている。
(Modification 2)
Modification 2 of the first embodiment will be described. FIG. 12 is a diagram illustrating details of a cross section of the imaging device according to the second modification. The difference from the first embodiment shown in FIG. 7 is that, on the second substrate 102, the positions of the second wiring layer 122 and the second photoelectric conversion layer 112 are switched. That is, the second substrate 102 of the present modified example has a backside illumination (BSI) structure.
 第2の光電変換部114に入射する光の光路において、反射や散乱の要因となっていた第2の配線層122が無くなったため、第2の光電変換部114に入射する光量が増加し、第2の光電変換部114の感度が向上する。また、第2の光電変換部114を透過した赤外光は、第2の配線層122内の配線に反射して、再び第2の光電変換部114に入射するため、第2の光電変換部114の感度がさらに向上する。 In the optical path of the light incident on the second photoelectric conversion unit 114, the second wiring layer 122, which has been a factor of reflection and scattering, is eliminated, so that the amount of light incident on the second photoelectric conversion unit 114 increases. The sensitivity of the second photoelectric conversion unit 114 is improved. Further, the infrared light transmitted through the second photoelectric conversion unit 114 is reflected by the wiring in the second wiring layer 122 and is incident on the second photoelectric conversion unit 114 again. The sensitivity of 114 is further improved.
 なお、本変形例では、第2の配線層122を透過する光を考慮しなくてよいので、1つの画素(本実施形態ではR画素)の下側に、配線やトランジスタを集約する必要がない。すなわち、図12に示すように、第2の配線層122では、各画素における配線の占める割合をほぼ同等にしてもよい。 In this modification, since it is not necessary to consider the light transmitted through the second wiring layer 122, it is not necessary to integrate wirings and transistors below one pixel (R pixel in the present embodiment). . That is, as shown in FIG. 12, in the second wiring layer 122, the proportion of the wiring in each pixel may be substantially equal.
 (第2実施形態)
 本発明の第2実施形態について説明する。図13は、本発明の第2実施形態に係る撮像装置の断面の詳細を示す図である。図7に示す第1実施形態との違いは、青色のカラーフィルタが設けられた領域の第1の光電変換層111の厚み、緑色のカラーフィルタが設けられた領域の第1の光電変換層111の厚み、および赤色のカラーフィルタが設けられた領域の第1の光電変換層111の厚みが異なる点である。すなわち、B画素、G画素、R画素毎に、第1の光電変換層111の厚みを変える。
(2nd Embodiment)
A second embodiment of the present invention will be described. FIG. 13 is a diagram illustrating details of a cross section of the imaging device according to the second embodiment of the present invention. The difference from the first embodiment shown in FIG. 7 is that the thickness of the first photoelectric conversion layer 111 in the region where the blue color filter is provided and the first photoelectric conversion layer 111 in the region where the green color filter is provided Is different from the thickness of the first photoelectric conversion layer 111 in the region where the red color filter is provided. That is, the thickness of the first photoelectric conversion layer 111 is changed for each of the B pixel, the G pixel, and the R pixel.
 具体的には、第1の光電変換層111のうち、赤色のカラーフィルタが設けられた領域の厚みよりも、青色のカラーフィルタが設けられた領域と緑色のカラーフィルタが設けられた領域の厚みが薄くなるようにする。すなわち、B画素の第1の光電変換層の厚み、G画素の第1の光電変換層の厚み<R画素の第1の光電変換層の厚みとなるようにする。 Specifically, in the first photoelectric conversion layer 111, the thickness of the region provided with the blue color filter and the thickness of the region provided with the green color filter are larger than the thickness of the region provided with the red color filter. Should be thinner. That is, the thickness of the first photoelectric conversion layer of the B pixel and the thickness of the first photoelectric conversion layer of the G pixel <the thickness of the first photoelectric conversion layer of the R pixel.
 このような構成により、青色のカラーフィルタが設けられた領域の第1の光電変換層111と緑色のカラーフィルタが設けられた領域の第1の光電変換層111における赤外光の吸収を抑えることができる。すなわち、第1の光電変換層111におけるB画素およびG画素の赤外光の吸収を抑えることができる。また、青色のカラーフィルタが設けられた領域の第2の光電変換層112と、緑色のカラーフィルタが設けられた領域の第2の光電変換層112に入射する赤外光の光量が増加し、第2の光電変換層112の感度が向上する。 With such a structure, absorption of infrared light in the first photoelectric conversion layer 111 in the region where the blue color filter is provided and the first photoelectric conversion layer 111 in the region where the green color filter is provided is suppressed. Can be. That is, absorption of infrared light of the B pixel and the G pixel in the first photoelectric conversion layer 111 can be suppressed. Further, the amount of infrared light incident on the second photoelectric conversion layer 112 in the region where the blue color filter is provided and the second photoelectric conversion layer 112 in the region where the green color filter is provided increases, The sensitivity of the second photoelectric conversion layer 112 is improved.
 上述の撮像措置の製造方法は以下のようになる。まず、青色のカラーフィルタおよび緑色のカラーフィルタが設けられた領域の第1の光電変換層111をドライエッチングすることにより、光透過材料140を埋め込むための穴を形成する。次に、ドライエッチングによって形成された穴に、光透過材料140を埋め込む。光透過材料140は光透過性が高い材料から形成されており、例えばSiO2やSiN等の透明材質や透明樹脂を用いて形成される。光透過材料140を埋め込んだ後、カラーフィルタ103を形成するために、第1の光電変換層111の表面を平坦化する。 製造 The manufacturing method of the above-mentioned imaging device is as follows. First, holes for embedding the light transmitting material 140 are formed by dry-etching the first photoelectric conversion layer 111 in a region where the blue color filter and the green color filter are provided. Next, the light transmitting material 140 is embedded in the hole formed by dry etching. The light transmitting material 140 is formed from a material having a high light transmitting property, and is formed using a transparent material such as SiO 2 or SiN or a transparent resin. After the light transmitting material 140 is embedded, the surface of the first photoelectric conversion layer 111 is flattened in order to form the color filter 103.
 本実施形態の原理について説明する。一般的には、B画素、G画素、R画素の感度がピークとなる波長は、図14に示すように、それぞれ約450nm、530nm、620nmである。図14は、RGB画素の分光感度の一例を示す図である。すなわち、青色のカラーフィルタが設けられた領域の第1の光電変換部113、緑色のカラーフィルタが設けられた領域の第1の光電変換部113、および赤色のカラーフィルタが設けられた領域の第1の光電変換部113の感度が最も高い波長は、それぞれ450nm、530nm、620nmとみなすことができる。また、第2の光電変換部114で検出する光(赤外光)の波長を800nmとする。 原理 The principle of the present embodiment will be described. Generally, the wavelengths at which the sensitivities of the B pixel, the G pixel, and the R pixel peak are about 450 nm, 530 nm, and 620 nm, respectively, as shown in FIG. FIG. 14 is a diagram illustrating an example of the spectral sensitivity of the RGB pixels. That is, the first photoelectric conversion portion 113 in the region where the blue color filter is provided, the first photoelectric conversion portion 113 in the region where the green color filter is provided, and the first photoelectric conversion portion 113 in the region where the red color filter is provided. The wavelengths at which the sensitivity of the first photoelectric conversion unit 113 is highest can be regarded as 450 nm, 530 nm, and 620 nm, respectively. The wavelength of light (infrared light) detected by the second photoelectric conversion unit 114 is 800 nm.
 図15は、450nm、530nm、620nm、および800nmの光がSi内を任意の距離進んだ場合の光量をプロットしたグラフである。グラフの縦軸は光量を示し、Si面に入射した光の強度を1としている。グラフの横軸は光が進んだ距離[um]を示す。 FIG. 15 is a graph plotting the light amounts when 450 nm, 530 nm, 620 nm, and 800 nm light travels an arbitrary distance in Si. The vertical axis of the graph indicates the amount of light, and the intensity of light incident on the Si surface is set to 1. The horizontal axis of the graph indicates the distance [um] traveled by the light.
 図15に示すように、450nmの光は、Si内を約1.0um進んだ時にほとんど吸収される。また、530nmの光は、Si内を約1.6um進んだ時に80%吸収される。そのため、青色のカラーフィルタが設けられた領域の光電変換部113および緑色のカラーフィルタが設けられた領域の第1の光電変換部113で十分な感度を得るためには、それぞれ約1.0um、約1.6umの膜厚があれば問題ない。 450 As shown in FIG. 15, light of 450 nm is almost absorbed when traveling about 1.0 μm in Si. The 530 nm light is absorbed by 80% when it travels about 1.6 μm in Si. Therefore, in order to obtain sufficient sensitivity in the photoelectric conversion unit 113 in the region where the blue color filter is provided and the first photoelectric conversion unit 113 in the region where the green color filter is provided, each of about 1.0 μm, There is no problem if the thickness is about 1.6 μm.
 一般的なBSI構造のSi層の膜厚は約3.0umであり、この時、800nmの光は約25%吸収される。一方、Si層の膜厚を約1.0umにした場合、800nmの光は約10%吸収される。また、Si層の膜厚を約1.6umにした場合、800nmの光は約14%吸収される。そのため、画素毎にSi層の膜厚を調整することによって、上の画素で吸収される赤外光の光量を低減させることができる。 膜厚 The thickness of the Si layer having a general BSI structure is about 3.0 μm, and at this time, about 25% of 800 nm light is absorbed. On the other hand, when the thickness of the Si layer is about 1.0 μm, about 10% of the 800 nm light is absorbed. When the thickness of the Si layer is set to about 1.6 μm, about 14% of the 800 nm light is absorbed. Therefore, by adjusting the thickness of the Si layer for each pixel, the amount of infrared light absorbed by the upper pixel can be reduced.
 例えば、青色のカラーフィルタが設けられた領域のSi層の膜厚を約3.0umから約1.0umに薄くすることによって、青色のカラーフィルタが設けられた領域の第1の光電変換層111で吸収される赤外光の光量を約15%低減できる。また、緑色のカラーフィルタが設けられた領域のSi層の膜厚を約3.0umから約1.6umに薄くすることによって、緑色のカラーフィルタが設けられた領域の第1の光電変換層111で吸収される赤外光の光量を約11%低減できる。 For example, by reducing the thickness of the Si layer in the region where the blue color filter is provided from about 3.0 μm to about 1.0 μm, the first photoelectric conversion layer 111 in the region where the blue color filter is provided is provided. Can reduce the amount of infrared light absorbed by about 15%. Further, by reducing the thickness of the Si layer in the region where the green color filter is provided from about 3.0 μm to about 1.6 μm, the first photoelectric conversion layer 111 in the region where the green color filter is provided is provided. Can reduce the amount of infrared light absorbed by about 11%.
 このように、B画素の第1の光電変換層の厚み、G画素の第1の光電変換層の厚み<R画素の第1の光電変換層の厚みとなるようにすることにより、B画素およびG画素の第1の光電変換層111で吸収される赤外光の光量を低減でき、B画素およびG画素の第2の光電変換部114に入射する赤外光の光量が増加するため、感度が向上できる。 By setting the thickness of the first photoelectric conversion layer of the B pixel and the thickness of the first photoelectric conversion layer of the G pixel <the thickness of the first photoelectric conversion layer of the R pixel in this manner, the B pixel and the Since the amount of infrared light absorbed by the first photoelectric conversion layer 111 of the G pixel can be reduced and the amount of infrared light incident on the second photoelectric conversion unit 114 of the B pixel and the G pixel increases, the sensitivity increases. Can be improved.
 以上、本発明の一実施形態について説明したが、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において構成要素の組み合わせを変えたり、各構成要素に種々の変更を加えたり、削除したりすることができる。 As described above, one embodiment of the present invention has been described. However, the technical scope of the present invention is not limited to the above-described embodiment, and a combination of constituent elements may be changed without departing from the spirit of the present invention. Can be changed or deleted.
 上述の実施形態では、第1の基板101、第2の基板102ともに、2×2画素の4つの画素(光電変換部)から単位画素領域200(光電変換グループ)が構成され、フローティングディフュージョン部(FD)を共有する例を説明したが、本発明はこれに限定されない。上側(第1の基板101)の2つ以上のフォトダイオード(画素)がFDを共有していればよい。すなわち、第1の基板101において、少なくとも2つの画素(第1の光電変換部113)が単位画素領域(第1の光電変換グループ)を形成し、この第1の光電変換グループに含まれる複数の第1の光電変換部で1つのフローティングディフュージョン部を共有していればよい。 In the above-described embodiment, both the first substrate 101 and the second substrate 102 form a unit pixel region 200 (photoelectric conversion group) from four 2 × 2 pixels (photoelectric conversion units), and the floating diffusion unit ( Although the example of sharing the FD) has been described, the present invention is not limited to this. It is sufficient that two or more photodiodes (pixels) on the upper side (first substrate 101) share the FD. That is, on the first substrate 101, at least two pixels (first photoelectric conversion units 113) form a unit pixel region (first photoelectric conversion group), and a plurality of pixels included in the first photoelectric conversion group. It is sufficient that the first photoelectric conversion unit shares one floating diffusion unit.
 この場合、複数の第1の光電変換部113のうち1つの第1の光電変換部とこの周囲のいずれかの位置において、配線とトランジスタの面積の和が、複数の第1の光電変換部のうち残りの第1の光電変換部よりも高密度で存在する第1の高密度領域(図10では、PD2のある領域の周囲)が存在していればよい。 In this case, the sum of the area of the wiring and the area of the transistor at one of the first photoelectric conversion units 113 and at any position around the first photoelectric conversion unit 113 is equal to the sum of the area of the plurality of first photoelectric conversion units. The first high-density region (in FIG. 10, around the region where the PD 2 is located) that has a higher density than the remaining first photoelectric conversion units may be present.
 上側(第1の基板101)の単位画素領域(第1の光電変換グループ)に対応して、下側(第2の基板102)のフォトダイオード(画素)は少なくとも1つあればよい。すなわち、第2の基板102において、第2の光電変換部が、第1の光電変換グループに対応して少なくとも1つ設けられていればよい。このように、第1の基板101では複数の画素がFDを共有するが、第2の基板102では複数の画素がFDを共有しなくてもよい。 At least one photodiode (pixel) on the lower side (second substrate 102) should correspond to the unit pixel region (first photoelectric conversion group) on the upper side (first substrate 101). That is, on the second substrate 102, it is sufficient that at least one second photoelectric conversion unit is provided corresponding to the first photoelectric conversion group. As described above, a plurality of pixels share the FD in the first substrate 101, but a plurality of pixels do not need to share the FD in the second substrate 102.
 この場合、上述の第1の高密度領域でない領域(図10では、PD1、PD3、PD4のある領域)の下に、第2の光電変換部が存在すればよい。 In this case, the second photoelectric conversion unit only needs to exist below the above-described first non-high-density area (the area where PD1, PD3, and PD4 exist in FIG. 10).
 上述の実施形態では、第1の基板101および第2の基板102における、各画素が同じ大きさである例を説明したが、本発明はこれに限定されない。例えば、第1の基板101に配置される画素と第2の基板102に配置される画素の大きさ(画素サイズ)が異なっていてもよい。 In the above-described embodiment, an example in which each pixel on the first substrate 101 and the second substrate 102 has the same size has been described, but the present invention is not limited to this. For example, the size (pixel size) of a pixel arranged on the first substrate 101 and a pixel arranged on the second substrate 102 may be different.
 第2の基板102において複数の画素がFDを共有している場合は、以下のようになる。少なくとも2つの第2の光電変換部114が第2の光電変換グループを形成し、第2の光電変換グループに含まれる複数の第2の光電変換部114で1つのフローティングディフュージョン部を共有する。この場合、複数の第2の光電変換部113のうち1つの第2の光電変換部とこの周囲のいずれかの位置において、配線とトランジスタの面積の和が複数の第2の光電変換部のうち残りの第2の光電変換部よりも高密度で存在する第2の高密度領域が、第1の基板101の第1の高密度領域が存在する第1の光電変換部とこの周囲のいずれかの位置の下にあればよい。 場合 When a plurality of pixels share the FD on the second substrate 102, the following is performed. At least two second photoelectric conversion units 114 form a second photoelectric conversion group, and a plurality of second photoelectric conversion units 114 included in the second photoelectric conversion group share one floating diffusion unit. In this case, the sum of the area of the wiring and the area of the transistor at one of the second photoelectric conversion units 113 and at any position around the second photoelectric conversion unit 113 among the plurality of second photoelectric conversion units 113 is determined. The second high-density region existing at a higher density than the remaining second photoelectric conversion unit is any one of the first photoelectric conversion unit of the first substrate 101 where the first high-density region exists and one of the first photoelectric conversion unit and its surroundings. It should just be under the position of.
 上述の実施形態では、全てのトランジスタを、1つのフォトダイオード(高密度領域)に集約して配置している例を説明したが、本発明はこれに限定されない。例えば、一番面積の大きい増幅トランジスタだけを、高密度領域(第1の高密度領域、第2の高密度領域)に配置してもよい。 In the above-described embodiment, an example has been described in which all the transistors are collectively arranged in one photodiode (high-density region), but the present invention is not limited to this. For example, only the amplification transistor having the largest area may be arranged in the high-density region (first high-density region, second high-density region).
 上述の実施形態では、第1の高密度領域がRフィルタの直下の領域の第1の光電変換部の面位置に設けられている例を説明したが、本発明はこれに限定されない。例えば、第1の高密度領域がGフィルタの直下の領域の第1の光電変換部の面位置に設けられていてもよい。 In the above-described embodiment, an example has been described in which the first high-density region is provided at the surface position of the first photoelectric conversion unit immediately below the R filter, but the present invention is not limited to this. For example, the first high-density region may be provided at a surface position of the first photoelectric conversion unit in a region immediately below the G filter.
 上述のように、第1の基板101の第1の配線層121と、第2の基板102の第2の配線層122が向かい合わせて設けられている場合(図7、図11、図13)、第1の基板101において、第1の配線層121内の配線(およびトランジスタ)は第1の高密度領域内に配置される。また、第2の基板102において、第2の配線層122内の配線(およびトランジスタ)は第2の高密度領域内に配置される。 As described above, the case where the first wiring layer 121 of the first substrate 101 and the second wiring layer 122 of the second substrate 102 are provided to face each other (FIGS. 7, 11, and 13) In the first substrate 101, wirings (and transistors) in the first wiring layer 121 are arranged in a first high-density region. Further, in the second substrate 102, the wiring (and the transistor) in the second wiring layer 122 is arranged in the second high-density region.
 第1の基板101の第1の配線層121が第1の光電変換部113の下に設けられ、第2の基板102の第2の配線層122が第2の光電変換部114の下に設けられる場合(図12)、第1の基板101において、第1の配線層121内の配線(およびトランジスタ)は第1の高密度領域内に配置される。この時、第2の基板102において、第2の配線層122内の配線(およびトランジスタ)が第2の高密度領域内に配置されてもよいし、第2の配線層122内の配線(およびトランジスタ)が均等に配置されていてもよい。 A first wiring layer 121 of the first substrate 101 is provided below the first photoelectric conversion unit 113, and a second wiring layer 122 of the second substrate 102 is provided below the second photoelectric conversion unit 114. In this case (FIG. 12), in the first substrate 101, the wiring (and the transistor) in the first wiring layer 121 is arranged in the first high-density region. At this time, in the second substrate 102, the wiring (and the transistor) in the second wiring layer 122 may be arranged in the second high-density region, or the wiring (and the transistor) in the second wiring layer 122 may be arranged. Transistors) may be evenly arranged.
 上述のように、第2の光電変換層112においてRフィルタが設けられた画素のフォトダイオードPD2は不要となるため、それ以外のフォトダイオードPD1、PD3、PD4の面積が大きくなるように配置してもよい。すなわち、第2の光電変換層112において、Rフィルタに対応する第2の光電変換部(フォトダイオードPD2)がなくてもよい。 As described above, since the photodiode PD2 of the pixel provided with the R filter in the second photoelectric conversion layer 112 becomes unnecessary, the photodiodes PD1, PD3, and PD4 are arranged so that the areas of the other photodiodes PD1, PD3, and PD4 are large. Is also good. That is, the second photoelectric conversion layer 112 may not include the second photoelectric conversion unit (photodiode PD2) corresponding to the R filter.
 本明細書において「前、後ろ、上、下、右、左、垂直、水平、縦、横、行および列」などの方向を示す言葉は、本発明の装置におけるこれらの方向を説明するために使用している。従って、本発明の明細書を説明するために使用されたこれらの言葉は、本発明の装置において相対的に解釈されるべきである。 As used herein, words indicating direction such as "front, back, top, bottom, right, left, vertical, horizontal, vertical, horizontal, row and column" are used to describe these directions in the device of the present invention. I'm using Therefore, these terms used to describe the specification of the present invention should be interpreted relatively in the device of the present invention.
 本発明は、可視光画像と赤外光画像を同時に取得する積層型の撮像装置に広く適用でき、第2の光電変換層(下側のフォトダイオード)に入射する光量の低下を抑制することができる。 INDUSTRIAL APPLICABILITY The present invention can be widely applied to a stacked-type imaging device that simultaneously acquires a visible light image and an infrared light image, and suppresses a decrease in the amount of light incident on the second photoelectric conversion layer (lower photodiode). it can.
 100 撮像装置
 101 第1の基板
 102 第2の基板
 103 カラーフィルタ
 104 接続部
 111 第1の光電変換層
 112 第2の光電変換層
 113 第1の光電変換部(画素)
 114 第2の光電変換部(画素)
 115 MOSトランジスタ
 121 第1の配線層
 122 第2の配線層
 123 配線
 124 層間絶縁膜
 130 層間多層膜(可視光カットフィルタ)
 140 光透過材料
 200 単位画素領域(光電変換グループ)
 201~203、301~303・・・画素
 211 フローティングディフュージョン部
 212~216 拡散領域
 217 FD配線
 PD1、PD3、PD4 フォトダイオード(高密度領域でない領域)
 PD2 フォトダイオード(高密度領域)
 a-Tr 増幅トランジスタ
 r-Tr リセットトランジスタ
 s-Tr 選択トランジスタ
 t-Tr1~t-Tr4 転送トランジスタ
REFERENCE SIGNS LIST 100 imaging device 101 first substrate 102 second substrate 103 color filter 104 connection portion 111 first photoelectric conversion layer 112 second photoelectric conversion layer 113 first photoelectric conversion portion (pixel)
114 second photoelectric conversion unit (pixel)
115 MOS transistor 121 1st wiring layer 122 2nd wiring layer 123 wiring 124 Interlayer insulating film 130 Interlayer multilayer film (visible light cut filter)
140 light transmitting material 200 unit pixel area (photoelectric conversion group)
201 to 203, 301 to 303 ... Pixel 211 Floating diffusion part 212 to 216 Diffusion area 217 FD wiring PD1, PD3, PD4 Photodiode (area other than high density area)
PD2 photodiode (high density area)
a-Tr amplifying transistor r-Tr reset transistor s-Tr selection transistor t-Tr1 to t-Tr4 transfer transistor

Claims (11)

  1.  複数の第1の光電変換部を有する第1の基板と、前記第1の基板に積層して設けられ複数の第2の光電変換部を有する第2の基板と、を備える固体撮像装置であって、
     前記第1の基板において、
      前記複数の第1の光電変換部のうち少なくとも2つの第1の光電変換部が第1の光電変換グループを形成し、
      前記第1の光電変換グループに含まれる複数の第1の光電変換部で1つのフローティングディフュージョン部を共有し、
      前記複数の第1の光電変換部のうち1つの第1の光電変換部とこの周囲において、配線とトランジスタの面積の和が、前記複数の第1の光電変換部のうち残りの第1の光電変換部よりも高密度で存在する第1の高密度領域が存在し、
     前記第2の基板において、
      前記複数の第2の光電変換部は、前記第1の光電変換グループに対応して少なくとも1つ設けられ、
      前記第1の高密度領域でない領域の下に、前記複数の第2の光電変換部が存在する
     ことを特徴とする固体撮像装置。
    A solid-state imaging device including: a first substrate having a plurality of first photoelectric conversion units; and a second substrate having a plurality of second photoelectric conversion units provided to be stacked on the first substrate. hand,
    In the first substrate,
    At least two first photoelectric conversion units among the plurality of first photoelectric conversion units form a first photoelectric conversion group;
    A plurality of first photoelectric conversion units included in the first photoelectric conversion group share one floating diffusion unit;
    In one of the plurality of first photoelectric conversion units and the periphery of one of the first photoelectric conversion units, the sum of the area of the wiring and the transistor is equal to the remaining first photoelectric conversion unit of the plurality of first photoelectric conversion units. There is a first high-density region that exists at a higher density than the conversion unit,
    In the second substrate,
    At least one of the plurality of second photoelectric conversion units is provided corresponding to the first photoelectric conversion group,
    The solid-state imaging device, wherein the plurality of second photoelectric conversion units exist below a region other than the first high-density region.
  2.  前記第2の基板において、
      前記複数の第2の光電変換部のうち少なくとも2つの第2の光電変換部が第2の光電変換グループを形成し、
      前記第2の光電変換グループに含まれる複数の第2の光電変換部で1つのフローティングディフュージョン部を共有し、
      前記複数の第2の光電変換部のうち1つの第2の光電変換部とこの周囲において、配線とトランジスタの面積の和が前記複数の第2の光電変換部のうち残りの第2の光電変換部よりも高密度で存在する第2の高密度領域が、前記第1の高密度領域と同じ位置にある
     ことを特徴とする、請求項1に記載の固体撮像装置。
    In the second substrate,
    At least two second photoelectric conversion units among the plurality of second photoelectric conversion units form a second photoelectric conversion group;
    A plurality of second photoelectric conversion units included in the second photoelectric conversion group share one floating diffusion unit;
    In one of the plurality of second photoelectric conversion units and the periphery thereof, the sum of the area of the wiring and the transistor is equal to the remaining second photoelectric conversion unit of the plurality of second photoelectric conversion units. 2. The solid-state imaging device according to claim 1, wherein a second high-density region existing at a higher density than the portion is located at the same position as the first high-density region. 3.
  3.  前記第1の高密度領域は、少なくとも増幅トランジスタを含むことを特徴とする、請求項1に記載の固体撮像装置。 The solid-state imaging device according to claim 1, wherein the first high-density region includes at least an amplification transistor.
  4.  前記第1の高密度領域または前記第2の高密度領域は、少なくとも増幅トランジスタを含むことを特徴とする、請求項2に記載の固体撮像装置。 The solid-state imaging device according to claim 2, wherein the first high-density region or the second high-density region includes at least an amplification transistor.
  5.  前記第1の基板の上に配置され、可視領域と赤外領域に透過帯域を有するカラーフィルタをさらに備え、
     前記複数の第1の光電変換部は、前記カラーフィルタを透過した光の露光量に応じた第1の信号電荷を出力し、
     複数の前記第2の光電変換部は、少なくとも赤外領域に感度を有し、前記第1の基板を透過した光の露光量に応じた第2の信号電荷を出力することを特徴とする、請求項1~4のいずれか1項に記載の固体撮像装置。
    A color filter disposed on the first substrate and having a transmission band in a visible region and an infrared region,
    The plurality of first photoelectric conversion units output a first signal charge according to an exposure amount of light transmitted through the color filter,
    The plurality of second photoelectric conversion units have sensitivity at least in an infrared region, and output a second signal charge according to an exposure amount of light transmitted through the first substrate. The solid-state imaging device according to any one of claims 1 to 4.
  6.  前記カラーフィルタは、Rの可視領域を透過させるRフィルタ、Gの可視領域を透過させるGフィルタ、Bの可視領域を透過させるBフィルタから構成され、
     前記第1の高密度領域は、前記Rフィルタの直下の前記第1の光電変換部の面位置に設けられることを特徴とする、請求項5に記載の固体撮像装置。
    The color filter includes an R filter that transmits an R visible region, a G filter that transmits a G visible region, and a B filter that transmits a B visible region.
    The solid-state imaging device according to claim 5, wherein the first high-density region is provided at a surface position of the first photoelectric conversion unit immediately below the R filter.
  7.  前記第1の基板の第1の配線層と、前記第2の基板の第2の配線層は向かい合わせて設けられ、
     前記第1の基板において、前記第1の配線層内の配線は前記第1の高密度領域内に配置され、
     前記第2の基板において、前記第2の配線層内の配線は前記第2の高密度領域内に配置されることを特徴とする、請求項2または4に記載の固体撮像装置。
    A first wiring layer of the first substrate and a second wiring layer of the second substrate are provided to face each other;
    In the first substrate, the wiring in the first wiring layer is arranged in the first high-density region,
    The solid-state imaging device according to claim 2, wherein, in the second substrate, wiring in the second wiring layer is arranged in the second high-density region.
  8.  前記第1の基板の第1の配線層は前記第1の光電変換部の下に設けられ、前記第2の基板の第2の配線層は、前記第2の光電変換部の下に設けられ、
     前記第1の基板において、前記第1の配線層内の配線は前記第1の高密度領域内に配置されることを特徴とする、請求項1~6のいずれか1項に記載の固体撮像装置。
    A first wiring layer of the first substrate is provided below the first photoelectric conversion unit, and a second wiring layer of the second substrate is provided below the second photoelectric conversion unit. ,
    The solid-state imaging device according to any one of claims 1 to 6, wherein, in the first substrate, a wiring in the first wiring layer is arranged in the first high-density region. apparatus.
  9.  前記第1の基板と前記第2の基板との間に、可視光をカットし赤外光を透過するフィルタが設けられることを特徴とする、請求項1~8のいずれか1項に記載の固体撮像装置。 The filter according to any one of claims 1 to 8, wherein a filter that cuts visible light and transmits infrared light is provided between the first substrate and the second substrate. Solid-state imaging device.
  10.  前記カラーフィルタは、Rの可視領域を透過させるRフィルタ、Gの可視領域を透過させるGフィルタ、Bの可視領域を透過させるBフィルタから構成され、
     前記第1の光電変換部は、前記カラーフィルタの下の第1の光電変換層内に配置され、
     前記Bフィルタが配置される領域の第1の前記光電変換層の厚みおよび前記Gフィルタが配置される領域の前記第1の光電変換層の厚みよりも、前記Rフィルタが配置される領域の前記第1の光電変換層の厚みが厚いことを特徴とする、請求項5に記載の固体撮像装置。
    The color filter includes an R filter that transmits an R visible region, a G filter that transmits a G visible region, and a B filter that transmits a B visible region.
    The first photoelectric conversion unit is disposed in a first photoelectric conversion layer below the color filter,
    Than the thickness of the first photoelectric conversion layer in the region where the B filter is arranged and the thickness of the first photoelectric conversion layer in the region where the G filter is arranged, The solid-state imaging device according to claim 5, wherein the thickness of the first photoelectric conversion layer is large.
  11.  前記カラーフィルタは、Rの可視領域を透過させるRフィルタ、Gの可視領域を透過させるGフィルタ、Bの可視領域を透過させるBフィルタから構成され、
     前記第2の光電変換部は、第2の光電変換層内に配置され、
     前記第2の光電変換層において、前記Rフィルタに対応する前記第2の光電変換部が存在しないことを特徴とする、請求項5に記載の固体撮像装置。
    The color filter includes an R filter that transmits an R visible region, a G filter that transmits a G visible region, and a B filter that transmits a B visible region.
    The second photoelectric conversion unit is disposed in a second photoelectric conversion layer,
    The solid-state imaging device according to claim 5, wherein the second photoelectric conversion layer does not include the second photoelectric conversion unit corresponding to the R filter.
PCT/JP2018/037422 2018-10-05 2018-10-05 Solid-state imaging device WO2020070887A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/037422 WO2020070887A1 (en) 2018-10-05 2018-10-05 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/037422 WO2020070887A1 (en) 2018-10-05 2018-10-05 Solid-state imaging device

Publications (1)

Publication Number Publication Date
WO2020070887A1 true WO2020070887A1 (en) 2020-04-09

Family

ID=70055376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037422 WO2020070887A1 (en) 2018-10-05 2018-10-05 Solid-state imaging device

Country Status (1)

Country Link
WO (1) WO2020070887A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210296385A1 (en) * 2020-03-19 2021-09-23 Ricoh Company, Ltd. Solid-state image sensor, image scanning device, and image forming apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161225A1 (en) * 2011-05-24 2012-11-29 ソニー株式会社 Solid-state imaging element and camera system
WO2014021130A1 (en) * 2012-08-02 2014-02-06 ソニー株式会社 Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic device
JP2014135535A (en) * 2013-01-08 2014-07-24 Olympus Corp Imaging apparatus
WO2016056396A1 (en) * 2014-10-06 2016-04-14 ソニー株式会社 Solid state image pickup device and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161225A1 (en) * 2011-05-24 2012-11-29 ソニー株式会社 Solid-state imaging element and camera system
WO2014021130A1 (en) * 2012-08-02 2014-02-06 ソニー株式会社 Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic device
JP2014135535A (en) * 2013-01-08 2014-07-24 Olympus Corp Imaging apparatus
WO2016056396A1 (en) * 2014-10-06 2016-04-14 ソニー株式会社 Solid state image pickup device and electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210296385A1 (en) * 2020-03-19 2021-09-23 Ricoh Company, Ltd. Solid-state image sensor, image scanning device, and image forming apparatus
US11978749B2 (en) * 2020-03-19 2024-05-07 Ricoh Company, Ltd. Solid-state image sensor, image scanning device, and image forming apparatus

Similar Documents

Publication Publication Date Title
KR102568441B1 (en) Solid-state imaging element, production method thereof, and electronic device
TWI742573B (en) Solid-state imaging element, its manufacturing method, and electronic equipment
TWI512958B (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus
JP6947036B2 (en) Imaging equipment, electronic equipment
KR100751524B1 (en) Solid-state imaging device
JP2015128131A (en) Solid state image sensor and electronic apparatus
US11817471B2 (en) Imaging device and electronic device configured by bonding a plurality of semiconductor substrates
KR20150033606A (en) Solid-state imaging element, method for manufacturing solid-state imaging element, and electronic instrument
JP2013055159A (en) Solid state image pickup device
JP4972924B2 (en) Solid-state imaging device, manufacturing method thereof, and camera
JP6724212B2 (en) Solid-state image sensor and electronic device
JP5504382B2 (en) Solid-state imaging device and imaging apparatus
KR102223515B1 (en) Solid-state imaging device and electronic device
KR102520573B1 (en) Image sensor and electronic device including the same
TW201029167A (en) Ultraviolet light filter layer in image sensors
WO2020070887A1 (en) Solid-state imaging device
JP2004221506A (en) Solid-state image sensing element and its manufacturing method
JP2006324810A (en) Optical module
US11985431B2 (en) Imaging system with an electronic shutter
WO2024029383A1 (en) Light detecting device and electronic apparatus
KR20190139484A (en) Image sensor and electronic device including the same
TWI808688B (en) Image sensor arrangement, image sensor device and method for operating an image sensor arrangement
JP2011243785A (en) Solid state imaging device
WO2022149488A1 (en) Light detection device and electronic apparatus
WO2022254773A1 (en) Photo detection apparatus and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP