WO2020069934A1 - Composition neuroprotectrice - Google Patents

Composition neuroprotectrice

Info

Publication number
WO2020069934A1
WO2020069934A1 PCT/EP2019/075826 EP2019075826W WO2020069934A1 WO 2020069934 A1 WO2020069934 A1 WO 2020069934A1 EP 2019075826 W EP2019075826 W EP 2019075826W WO 2020069934 A1 WO2020069934 A1 WO 2020069934A1
Authority
WO
WIPO (PCT)
Prior art keywords
myelin
composition
nmda
antagonist
concentrations
Prior art date
Application number
PCT/EP2019/075826
Other languages
English (en)
Inventor
Robert Fern
Original Assignee
University Of Plymouth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Plymouth filed Critical University Of Plymouth
Publication of WO2020069934A1 publication Critical patent/WO2020069934A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/44221,4-Dihydropyridines, e.g. nifedipine, nicardipine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia

Definitions

  • the central nervous system is made up of grey matter (GM), where the neuron cell bodies are located and form synapses with other neurons, and white matter (WM), where the long projections (axons) of these neurons run.
  • GM grey matter
  • WM white matter
  • WM The function of WM is the transmission of signals to, from and between neurons and this requires the presence of insulation on many of the long axonal neuronal projection called axons.
  • the insulation is provided by layers of myelin that wrap around the axons, and the myelin is generated by a cell type called the oligodendrocyte.
  • MR.I imaging reveals white matter myelin damage in many diseases.
  • disorders that are effectively caused by“pure” white matter damage such as but not limited to spinal cord injury (SCI), cerebral palsy (CP), vascular dementia (VaD), multiple sclerosis (MS), traumatic brain injury (TBI), ischemic optic neuropathy (ION) and certain kinds of stroke. Damage to myelin in these diseases has serious consequences; for example MS is a product of pure myelin damage.
  • neurological diseases affect grey matter but have an important white matter component, including but not limited to Alzheimer’s, Huntingdon’s and Parkinson’s diseases, depression, schizophrenia and some forms of stroke.
  • An aspect of the present invention provides a composition for protecting against demyelination and other forms of myelin injury, comprising a combination of an NDMA-type glutamate receptor antagonist and a non-NMDA-type glutamate receptor antagonist.
  • the concentration of each antagonist may be at a level below a clinically effective uncombined level.
  • the concentrations of both antagonists may be at least one order of magnitude lower than the clinically effective levels.
  • the concentration of both antagonists may be at least two orders of magnitude lower than the individually effective levels.
  • each antagonist may be at a level below an in vacuo sub-clinically effective level. In other words, both concentrations are at a level below that which would normally be expected for either drug to be clinically effective when administered individually.
  • the NMDA receptor blocker memantine is typically prescribed at 20 mg/day and the non-NMDA receptor blocker parampanel is typically prescribed at 4-8 mg/day (current UK NICE guidelines).
  • a 2 mg/day memantine and 0.4-0.8 mg/day parampanel dose may, for example, be prescribed in combination.
  • concentrations of both antagonists may be at least one order of magnitude lower than said in vacuo sub-clinically effective levels.
  • the concentrations of both antagonists may be at least two or more orders of magnitude lower than said in vacuo sub-clinically effective levels.
  • Some aspects and embodiments of the present invention are based on a principle of a low-combined dose.
  • a further aspect relates to the combined use of low concentrations of any NMDA and any non-NMDA antagonist. This is based on data showing that the clinically approved drugs Parampanel (AMPA blocker) + memantine (NMDA blocker) are protective in vitro at very low combined concentrations.
  • AMPA blocker clinically approved drugs Parampanel
  • NMDA blocker memantine
  • a further aspect relates to the combined use of a selective GluN2C/D NMDA receptor blocker in combination with any non-NMDA blocker, at any concentration range. This is based on data showing that QNZ-46+CP465022 are highly protective at low combined doses in two in vivo models (EAE model of multiple sclerosis and tMCAO model of stroke).
  • Some aspects and embodiments relate to the use of low concentrations of any NMDA and non-NMDA antagonist in combination at low concentrations.
  • a further aspect provides the use of the combination of a NDMA-type glutamate receptor antagonist and a non-NMDA glutamate receptor antagonist for protecting against demyelination.
  • a further aspect provides the use of a combined non-NMDA glutamate receptor and GluN2C/D subunit containing NMDA glutamate receptor antagonist for the prophylaxis and/or treatment of neurological disease.
  • a further aspect provides the use of a composition comprising an NMDA blocker selected from Table I in combination with an AMPA blocker selected from Table I for the protection of myelin.
  • Uses described herein may be for the treatment or prophylaxis of neurological disease.
  • Some aspects and embodiments of the present invention relate to a combined non-NMDA glutamate receptor and a GluN2C/D subunit-containing NMDA glutamate receptor antagonism for protection and treatment of neurological disease, in particular those affecting myelin.
  • the GluN2C/D subunit-containing NMDA glutamate receptor antagonist may comprise QNZ-46 or a functional equivalent thereof.
  • QNZ-46 is a selective, negative allosteric modulator of NMDA receptors that contain a GluN2C/D subunit:
  • the GluN2C/D subunit-containing NMDA glutamate receptor antagonist may consist of QNZ-46.
  • the non-NMDA antagonist may comprise an AMPA receptor blocker.
  • the non-NMDA antagonist may comprise CP465022 or a functional equivalent thereof.
  • CP465022 is a selective non-competitive antagonist of the AMPA non-NMDA receptor.
  • the non-NMDA antagonist may consist of CP465022.
  • the present invention also provides a neuroprotective composition comprising a selective non-NMDA receptor blocker in combination with a selective GluN2C/D containing receptor blocker. Both blockers may be present at the clinically effective level required when either is delivered individually. Both blockers may be present at concentrations below a clinically effective level required when either is delivered individually/separately.
  • the present invention also provides a composition for the protection of myelin comprising an NMDA blocker selected from Table I in combination with an AMPA blocker selected from Table I .
  • Both blockers may be present at in vacuo sub-clinically effective concentrations.
  • the antagonists may be present at established clinically effective concentrations.
  • the present invention also provides the use of a formulation as described herein for the treatment of a neurological disease.
  • the present invention also provides the use of a formulation as described herein for the treatment of multiple sclerosis.
  • the present invention also provides the use of a formulation as described herein for the prevention of demyelination.
  • a further aspect provides a method of treating or preventing myelin injury by administering to a person in need of such treatment an effective amount of a composition as described herein.
  • a further aspect provides use of a composition as described herein in the treatment or prophylaxis of myelin damage.
  • a further aspect provides use of a composition described herein in the treatment or prophylaxis of disorders or diseases of the nervous system involving myelin pathology including but not limited to: spinal cord injury, cerebral palsy, vascular dementia, multiple sclerosis, traumatic brain injury, ischemic optic neuropathy and stroke.
  • neurological diseases that involve significant myelin damage to which the present invention may be applicable include but are not limited to: Alzheimer’s, Huntingdon’s and Parkinson’s diseases, depression, schizophrenia and disorders affecting the peripheral nervous system (such as diabetic neuropathy), the neurological complications of AIDS, prion diseases, metabolic disorders, genetic disorders and toxicities affecting myelin.
  • a further aspect relates to use of combined non-NMDA glutamate receptor and GluN2C/D subunit containing NMDA glutamate receptor antagonist for the protection and/or treatment of neurological disease.
  • a further aspect relates to use of combined AMPA antagonist and GluN2C/D subunit containing NMDA glutamate receptor antagonist for the protection and/or treatment of neurological disease.
  • Many diseases include myelin damage, and we include herein data from the in vivo tMCAO model of stroke using combined low doses that show protection of areas that are not white matter.
  • the present invention also relates to uses described herein for the protection and/or treatment of non-white matter injury in stroke.
  • the present invention also provides an ex vivo system for testing the protective effect of drugs against demyelination, comprising the administration of cuprizone in the present of a putative protective drug.
  • the present invention also provides an ex vivo system for producing selective myelin loss in a sample, for example comprising exposing the sample to cuprizone, LPS or other myelin damaging environment.
  • This embodiment may form the basis for testing drugs that may be protective against myelin damage in vivo or clinically.
  • the system may comprise means for visualising myelin or otherwise measuring the functional integrity of myelin.
  • the present invention also provides a system comprising a means for visualising myelin based upon QNZ- 46 or similar structures.
  • the present invention also provides a system comprising a means for visualising myelin based upon QNZ- 46 or a functionally or a structurally equivalent thereof.
  • An important recent discovery in myelin research is the presence of functional NMDA-type glutamate receptors (GluRs), reported to be expressed at densities comparable to those found at neuronal synapses ' , 2 .
  • GluRs NMDA-type glutamate receptors
  • These myelinic NMDA receptors may play a role in the control of myelin development 3 and the uptake of energy substrate 4 , and we and others have shown that they can be over-stimulated under pathological conditions leading to myelin injury and associated loss of axonal function 5 ' 6 .
  • Myelin also contains AMPA-type non-NMDA GluRs 7 , which can also mediate cytotoxic injury 8 ' 9 . Since AMPA receptors can act to gate NMDA receptor currents, these two receptors may act synergistically in a putative myelinic excitotoxic pathway.
  • Multiple sclerosis is a debilitating neuroinflamatory disorder targeting the axon myelin sheath, the insulating, low capacitance layer required for fast action potential propagation.
  • NMDA receptors are significant in multiple sclerosis demyelination
  • normal appearing white matter (NAWM), active lesion (AL) and chronic lesion (CL) tissue from 3 donors was embedded, ultra-sectioned and immune-gold post-stained for the GluN I obligatory NMDA receptor subunit using protocols previously developed for post-embedded immune-electron microscopy (l-TEM) in rodent tissue for this antibody l 2, l 3 , and human tissue using a similar protocol l4 , in my laboratory.
  • l-TEM post-embedded immune-electron microscopy
  • FIG. 1 GluN I reactivity in multiple sclerosis (NMDA-type GluR expression).
  • E-H Active lesion (AL) regions contain areas of sever myelin decompaction and splitting (arrow heads) which are often associated with focal points of intense GluN I reactivity (arrows in boxed areas are shown at higher gain). Reactivity can also be seen in non-myelin areas surrounding axons which may be the remnants of glial processes (H“gp”).
  • H“gp” The proportion of myelin occupying the tissue in low- power images, showing the significant myelin loss in lesion sites.
  • J Immuno-gold particle density in the three regions broken down for whole sections, myelin and non-myelin staining. Note the significant increases in myelin reactivity in CL and AL tissue compared to NAWM. Scale bars as shown.
  • OGD oxygen-glucose deprivation
  • Drug lipid solubility was found to be a requirement for effective myelin protection by NMDA blockers, consistent with the expression of GluRs within the myelin sheath ' 2 .
  • the drug QNZ-46 is a 4-oxo- 3(4H)quinazolinyl derivative containing the trans-stilbene pharmacophore that targets mylein 20 and a quinazolinone backbone which exhibits strong fluorescence 21 .
  • Quinazolinone derivatives such as QNZ- 46 have a wide range of clinical uses and have a good safety record (see 22 ).
  • the drug has a peak emission at 450 nm allowing drug uptake into myelin to be monitored in real time.
  • Quinazolinone such as QNZ-46 are ideally suited to avoid these problem for the following reasons: I ) High lipid-solubility allows rapid myelin access 6 . 2) Drugability with good brain penetration 6 . 3) Trans-stilbene pharmacore providing unique myelin trapping 6 . 4) Negative allosteric mode of action and use-dependent block, predisposing the drug to target pathological over-activation of receptors over normal physiological receptor function 20 2S . 5) Selective for GluN2C/D containing NMDA receptors which are primarily extra-synaptic 26-28 and are expressed at low levels in grey matter regions than are other NMDA GluR subunits 29, 3 °, consistent with limited on-target side effects.
  • CP465022 (3-(2-Chlorophenyl)-2-[2-[6-[(diethylamino)methyl]-2-pyridinyl]ethenyl]-6-fluoro-4(3H)- quinazolinone) is a highly selective and potent non-competitive quinazolinone antagonist of AMPA type non-NMDA GluRs 3 I . Delivered alone, this drug failed to provide protection in a rodent in vivo model of stroke 32 . As a close analogue of QNZ-46, CP465022 is likely to share the characteristics of myelin penetration and retention of its fellow quinazolinone.
  • Non-NMDA GluRs It is a feature of non-NMDA GluRs that they act to gate NMDA GluRs and we here show that both QNZ-46 and CP465022 protect myelin from injury in a model of acute demyelination.
  • the two drugs are shown to provide protection at low concentrations. When applied together at concentrations below those required to provide protection when applied individually, the drugs provide protection when applied in combination. This synergistic effect of the two drugs acting in combination reduces the concentrations required for protection by ⁇ 2 orders of magnitude and are in the nM range.
  • Figure 2 An ex-vivo cuprizone model of demyelination, showing the protocol which involves hemi- secting live mouse brain slices and staining the myelin with a vital dye such as FluoroMyelin Red. The two halves of each section are then exposed to cuprizone for 100 min, with one side simultaneously exposed either to a drug or a vehicle control. The level of myelin retained by the slice is then assessed via an assay such as a confocal fluorescent microscopy.
  • a vital dye such as FluoroMyelin Red
  • Figure 3 The advantages of the ex-vivo cuprizone model. Current models for testing drugs against myelin damage (top) require large numbers of animals to be monitored over long periods. The new approach described here generates multiple data from a single animal in a single day, with a higher level of statistical power.
  • Figure 4. Data from the ex-vivo cuprizone model. A: Myelin in the corpus callosum of mouse brain slices is shown stained red. The myelin stain is lower in the slice that has been exposed for 100 min to cuprizone (CPZ) compared to one that has not been exposed (control). The level of myelin staining in 6 pairs of slices is shown to the right showing the significant myelin loss produced by cuprizone exposure.
  • CPZ cuprizone
  • FIG. 1 Ultra-micrograph TEM analysis showing pattern of myelin damage in axons of the corpus callosum fixed after 100 min cuprizone treatment.
  • A The significant reduction in axon g-ratio following cuprizone treatment over the range of axon diameters, indicative of myelin disruption.
  • B Representative myelinated axons in the optic nerve and brain slice. Note the similarities to the myelin disruption seen following cuprizone treatment to those in MS patients in Figure I .
  • This new model is ideal for dose-protection work to identify the concentrations at which drugs protect myelin from injury.
  • the model can be adapted to use other conditions that may be relevant to myelin damage.
  • LPS bacterial endotoxin lipopolysaccharide
  • the new assay shows that combined low-doses of NMDA + AMPA antagonists (both experimental and clinically approved) are protective of myelin injury.
  • Figure 7 The dose-dependence of the protective effect of QNZ-46 against ex vivo cuprizone induced myelin loss assessed via FluoroMyelin Red staining.
  • the stated concentrations of the drug are added 60 min before and continually during the 100 min period of cuprizone treatment.
  • the fold difference in myelin protection is calculated relative to myelin staining in the second hemi-section in absence of the drug.
  • I I the increasing protection with increasing drug concentration.
  • the data point in red is the degree of protection produced by a combined treatment with 500 nM QNZ-46 + 10 nM CP465022.
  • Figure 8 The dose-dependence of the protective effect of CP465022 against ex vivo cuprizone induced myelin loss assessed via FluoroMyelin Red staining (as in Figure 7).
  • the data point in red is the degree of protection produced by a combined treatment with 500 nM QNZ-46 + 10 nM CP465022.
  • Figure 9 The protective effect of CP465022 and QNZ-46 against ex vivo cuprizone induced loss of the CAP in the isolate MON.
  • B The time-course of the mean CAP loss when cuprizone is perfused over the tissue (orange), and the protective effect of combined I mM QNZ 46 and I mM CP 465022 (yellow).
  • C Representative CAP from these experiments.
  • Figure 10 The dose-dependence of the protective effect of memantine against ex vivo cuprizone induced myelin loss assessed via FluoroMyelin Red staining (as in Figure 7).
  • the data point in red is the degree of protection produced by a combined treatment with 200 nM memantine + 200 nM parampanel.
  • Figure I I The dose-dependence of the protective effect of parampanel against ex vivo cuprizone induced myelin loss assessed via FluoroMyelin Red staining (as in Figure 7). The data point in red is the degree of protection produced by a combined treatment with 200 nM memantine + 200 nM parampanel. The protective effect of memantine and parampanel was confirmed by CAP recording ( Figure 12). In this assay cuprizone injury was prevented by simultaneous perfusion with I mM memantine and I mM parampanel and these concentrations had no significant protective effect when applied in isolation.
  • the novel combined low-dose therapy identified using the new in vitro assay translates to established in vivo models.
  • a dose of 5 +2 mg/Kg has previously been used in a standard transient middle-cerebral artery occlusion (tMCAO) model of stroke without any protective effect 32 .
  • 20 mg/Kg QNZ-46 has been previously used as an effective dose to reduced ischemic injury in vivo with no behavioural effects, and has been modelled to produce a CSF concentration appropriate for block of myelinic GluN2C/D-containing NMDA receptors 6 .
  • a combined daily dose of I mg/Kg CP465022 + 2 mg/Kg QNZ-46 given via intraperitoneal injection (IP) is therefore ⁇ one order of magnitude lower than the doses required for each drug in isolation in vivo. It must be recognized that the 4 Hr half-life will result in a much lower circulating concentration for the majority of a 24hr dosing regimen.
  • the low combined dose was delivered daily (vs., vehicle) in an established in vivo mouse model of demyelination (experimental autoimmune encephalopathy: EAE).
  • EAE effective autoimmune encephalopathy
  • Experiments were conducted blind and the drug-treated group had a significantly lower area under the curve (AUC) of neurological injury score and a latter latency to onset, and therefore the treatment showed significant efficacy (Figure 13).
  • AUC area under the curve
  • Figure 13 The EAE model is widely used for testing of drugs for multiple sclerosis.
  • FIG. 14 Low combined dose treatment (I mg/Kg CP465022 + 2 mg/Kg QNZ-46) significantly protected against tMCAO injury.
  • Left Three brain sections are shown vertically arranged, collected form mice subject to tMCAO (60 min) + 24 hr recovery and stained for TCC (the white area indicates the damaged part of the brain). Treatment was delivered 120 min prior to the onset of the tMCAO.
  • the table shows data from individual mice and is collated in the two histograms. These stow the significant reduction in lesion volume (as a % of the brain volume) and the reduced Bederson score, which is indicated of functional improvement.
  • FIG. 1 Low combined dose treatment (I mg/Kg CP465022 + 2 mg/Kg QNZ-46) significantly protected against tMCAO injury to myelin.
  • Salter MG Fern R. Nmda receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature. 2005;438: l 167- 1 171
  • Lipton SA Failures and successes of nmda receptor antagonists: Molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults.
  • NeuroRx the journal of the American Society for Experimental NeuroTherapeutics. 2004; 1 : 101 - 1 10
  • Nr2b and nr2d subunits coassemble in cerebellar golgi cells to form a distinct nmda receptor subtype restricted to extrasynaptic sites.
  • the Journal of neuroscience the official journal of the Society for Neuroscience. 2003;23:4958-4966

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

L'invention concerne une composition pour la protection contre la démyélinisation et d'autres formes de lésion de la myéline, comprenant une combinaison d'un antagoniste de récepteur de glutamate de type NDMA et d'un antagoniste de récepteur de glutamate de type non NMDA.
PCT/EP2019/075826 2018-10-05 2019-09-25 Composition neuroprotectrice WO2020069934A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1816273.5 2018-10-05
GB201816273 2018-10-05

Publications (1)

Publication Number Publication Date
WO2020069934A1 true WO2020069934A1 (fr) 2020-04-09

Family

ID=68208267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/075826 WO2020069934A1 (fr) 2018-10-05 2019-09-25 Composition neuroprotectrice

Country Status (1)

Country Link
WO (1) WO2020069934A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023144163A1 (fr) 2022-01-25 2023-08-03 Albert-Ludwigs-Universität Freiburg Inhibiteur de glun2d destiné à être utilisé le traitement ou la prévention de la rechute d'un épisode dépressif

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111590A2 (fr) * 2007-03-05 2008-09-18 Eisai R & D Management Co., Ltd. Antagonistes des récepteurs ampa et nmda pour maladies neurodégénératives
EP2441459A1 (fr) * 2009-06-11 2012-04-18 Proyecto de Biomedicina Cima, S.L. Propriétés neuroprotectrice de la 5'-méthylthioadénosine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111590A2 (fr) * 2007-03-05 2008-09-18 Eisai R & D Management Co., Ltd. Antagonistes des récepteurs ampa et nmda pour maladies neurodégénératives
EP2441459A1 (fr) * 2009-06-11 2012-04-18 Proyecto de Biomedicina Cima, S.L. Propriétés neuroprotectrice de la 5'-méthylthioadénosine

Non-Patent Citations (40)

* Cited by examiner, † Cited by third party
Title
AKAZAWA CSHIGEMOTO RBESSHO YNAKANISHI SMIZUNO N: "Differential expression of five n-methyl-d-aspartate receptor subunit mrnas in the cerebellum of developing and adult rats", THE JOURNAL OF COMPARATIVE NEUROLOGY, vol. 347, 1994, pages 1 50 - 160
ALIX JJFERN R: "Glutamate receptor-mediated ischemic injury of premyelinated central axons", ANNALS OF NEUROLOGY, vol. 66, 2009, pages 682 - 693
ALIX JJZAMMIT CRIDDLE AMESHUL CKBACK SAVALENTINO M ET AL.: "Central axons preparing to myelinate are highly sensitivity to ischemic injury", ANNALS OF NEUROLOGY, vol. 72, 2012, pages 936 - 951
BACK SACRAIG AKAYTON RJLUO NLMESHUL CKALLCOCK N ET AL.: "Hypoxia-ischemia preferentially triggers glutamate depletion from oligodendroglia and axons in perinatal cerebral white matter", JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM : OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF CEREBRAL BLOOD FLOW AND METABOLISM, vol. 27, 2007, pages 334 - 347
BLAKEMORE WF: "Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice", JOURNAL OF NEUROCYTOLOGY, vol. 1, 1972, pages 413 - 426
BRICKLEY SGMISRA CMOK MHMISHINA MCULL-CANDY SG: "Nr2b and nr2d subunits coassemble in cerebellar golgi cells to form a distinct nmda receptor subtype restricted to extrasynaptic sites", THE JOURNAL OF NEUROSCIENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR NEUROSCIENCE, vol. 23, 2003, pages 4958 - 4966
CHRISTENSEN PCSAMADI-BAHRAMI ZPAVLOV VSTYS PKMOORE GRW: "lonotropic glutamate receptor expression in human white matter", NEUROSCIENCE LETTERS, vol. 630, 2016, pages 1 - 8
CHRISTOPHER BOLTON ET AL: "Glutamate Receptors in Neuroinflammatory Demyelinating Disease", MEDIATORS OF INFLAMMATION., vol. 127, no. 6, 1 January 2006 (2006-01-01), GB, pages 1313 - 12, XP055259010, ISSN: 0962-9351, DOI: 10.1155/MI/2006/93684 *
DOYLE S, HANSEN DB, VELLA J, BOND P, HARPER G, ZAMMIT C ET AL.: "Vesicular glutamate release from central axons contributes to myelin damage", NATURE COMMUNICATIONS, vol. 9, no. 1032, 12 March 2018 (2018-03-12), pages 1 - 14, XP055635899 *
DOYLE SHANSEN DBVELLA JBOND PHARPER GZAMMIT C ET AL.: "Vesicular glutamate release from central axons contributes to myelin damage", NATURE COMMUNICATIONS, vol. 9, 2018, pages 1032
FIELDS RD: "A new mechanism of nervous system plasticity: Activity-dependent myelination", NATURE REVIEWS. NEUROSCIENCE, vol. 16, 2015, pages 756 - 767
FRANK S. MENNITI ET AL: "CP-465,022, a Selective Noncompetitive AMPA Receptor Antagonist, Blocks AMPA Receptors but Is Not Neuroprotective In Vivo", STROKE, vol. 34, no. 1, 1 January 2003 (2003-01-01), US, pages 171 - 176, XP055655204, ISSN: 0039-2499, DOI: 10.1161/01.STR.0000048216.90221.9C *
GARCIA-BEREGUIAIN MAGONZALEZ-ISLAS CLINDSLY CBUTLER EHILL AWWENNER P: "In vivo synaptic scaling is mediated by glua2-lacking ampa receptors in the embryonic spinal cord", JOURNAL OF NEUROSCIENCE, vol. 33, 2013, pages 6791 - 6799
HAMILTON NBKOLODZIEJCZYK KKOUGIOUMTZIDOU EATTWELL D: "Proton-gated ca(2+)-permeable trp channels damage myelin in conditions mimicking ischaemia", NATURE, vol. 529, 2016, pages 523 - 527, XP055335934, doi:10.1038/nature16519
HARNEY SCJANE DEANWYL R: "Extrasynaptic nr2d-containing nmdars are recruited to the synapse during Itp of nmdar-epscs", THE JOURNAL OF NEUROSCIENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR NEUROSCIENCE, vol. 28, 2008, pages 1 1685 - 1 1694
HURIA TBEERAKA NMAI-GHAMDI BFERN R: "Premyelinated central axons express neurotoxic nmda receptors: Relevance to early developing white-matter injury", JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM : OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF CEREBRAL BLOOD FLOW AND METABOLISM, 2014
JAFARI EKHAJOUEI MRHASSANZADEH FHAKIMELAHI GHKHODARAHMI GA: "Quinazolinone and quinazoline derivatives: Recent structures with potent antimicrobial and cytotoxic activities", RES PHARM SCI., vol. 11, 2016, pages 1 - 14, XP055586079
KARADOTTIR RCAVELIER PBERGERSEN LHATTWELL D: "Nmda receptors are expressed in oligodendrocytes and activated in ischaemia", NATURE, vol. 438, 2005, pages 1 162 - 1 166
LAZZARO JTPATERNAIN AVLERMA JCHENARD BLEWING FEHUANG J ET AL.: "Functional characterization of cp-465,022, a selective, noncompetitive ampa receptor antagonist", NEUROPHARMACOLOGY, vol. 42, 2002, pages 143 - 153, XP027251994
LIPPERT K ET AL: "Over-additive protective effect of dizocilpine and NBQX against neuronal damage", EUROPEAN JOURNAL OF PHARMACOLOGY, ELSEVIER SCIENCE, NL, vol. 253, no. 3, 3 March 1994 (1994-03-03), pages 207 - 213, XP025555012, ISSN: 0014-2999, [retrieved on 19940303], DOI: 10.1016/0014-2999(94)90193-7 *
LIPTON SA: "Failures and successes of nmda receptor antagonists: Molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults", NEURORX : THE JOURNAL OF THE AMERICAN SOCIETY FOR EXPERIMENTAL NEUROTHERAPEUTICS, vol. 1, 2004, pages 101 - 1 10
LOESCHMANN P-A ET AL: "SYNERGISM OF THE AMPA-ANTAGONIST NBQX AND THE NMDA-ANTAGONIST CPP WITH L-DOPA IN MODELS OF PARKINSON'S DISEASE", JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM, SPRINGER, AUSTRIA, vol. 3, no. 3, 1 January 1991 (1991-01-01), pages 203 - 213, XP000973350, ISSN: 0303-6995, DOI: 10.1007/BF02259538 *
LUNDGAARD ILUZHYNSKAYA ASTOCKLEY JHWANG ZEVANS KASWIRE M ET AL.: "Neuregulin and bdnf induce a switch to nmda receptor-dependent myelination by oligodendrocytes", PLOS BIOLOGY, vol. I I, 2013, pages e 1001743
MACREZ RSTYS PKVIVIEN DLIPTON SADOCAGNE F: "Mechanisms of glutamate toxicity in multiple sclerosis: Biomarker and therapeutic opportunities", LANCET NEUROLOGY, vol. 1 5, 2016, pages 1 089 - 1 I 02
MENNITI FSBUCHAN AMCHENARD BLCRITCHETT DJGANONG AHGUANOWSKY V ET AL.: "Stroke; a journal of cerebral circulation", vol. 34, 2003, article "a selective noncompetitive ampa receptor antagonist, blocks ampa receptors but is not neuroprotective in vivo", pages: 171 - 176
MICU IJIANG QCODERRE ERIDSDALE AZHANG LWOULFE J ET AL.: "Nmda receptors mediate calcium accumulation in myelin during chemical ischaemia", NATURE, vol. 439, 2006, pages 988 - 992
MOMIYAMA AFELDMEYER DCULL-CANDY SG: "Identification of a native low-conductance nmda channel with reduced sensitivity to mg2+ in rat central neurones", THE JOURNAL OF PHYSIOLOGY, vol. 494, 1996, pages 479 - 492
MONYER HBURNASHEV NLAURIE DJSAKMANN BSEEBURG PH: "Developmental and regional expression in the rat brain and functional properties of four nmda receptors", NEURON, vol. 12, 1994, pages 529 - 540, XP025524399, doi:10.1016/0896-6273(94)90210-0
MOSLEY CAACKER TMHANSEN KBMULLASSERIL PANDERSEN KTLE P ET AL.: "Quinazolin-4-one derivatives: A novel class of noncompetitive nr2c/d subunit-selective n-methyl-d-aspartate receptor antagonists", JOURNAL OF MEDICINAL CHEMISTRY, vol. 53, 2010, pages 5476 - 5490
NALEWAY JJFOX CMJROBINHOLD DTERPETSCHNIG EOLSON NAHAUGLAND RP: "Synthesis and use of new fluorogenic precipitating substrates", TETRAHEDRON LETT., vol. 35, 1994, pages 8569 - 8572, XP026608434, doi:10.1016/S0040-4039(00)78438-3
OUARDOUZ MCODERRE EZAMPONI GWHAMEED SYIN XTRAPP BD ET AL.: "Glutamate receptors on myelinated spinal cord axons: li. Ampa and glur5 receptors", ANNALS OF NEUROLOGY, vol. 65, 2009, pages 160 - 166
SAAB ASTZVETAVONA IDTREVISIOL ABALTAN SDIBAJ PKUSCH K ET AL.: "Oligodendroglial nmda receptors regulate glucose import and axonal energy metabolism", NEURON, vol. 91, 2016, pages 1 19 - 132
SALTER MGFERN R: "Nmda receptors are expressed in developing oligodendrocyte processes and mediate injury", NATURE, vol. 438, 2005, pages 1 167 - 1 171
SANCHEZ-GOMEZ MVMATUTE C: "Ampa and kainate receptors each mediate excitotoxicity in oligodendroglial cultures", NEUROBIOLOGY OF DISEASE, vol. 6, 1999, pages 475 - 485, XP000878541, doi:10.1006/nbdi.1999.0264
SARCHIELLI PGRECO LFLORIDI AFLORIDI AGALLAI V: "Excitatory amino acids and multiple sclerosis: Evidence from cerebrospinal fluid", ARCHIVES OF NEUROLOGY, vol. 60, 2003, pages 1082 - 1088, XP055238645, doi:10.1001/archneur.60.8.1082
SAVER JLSTARKMAN SECKSTEIN MSTRATTON SJPRATT FDHAMILTON S ET AL.: "Prehospital use of magnesium sulfate as neuroprotection in acute stroke", NEW ENGL J MED., vol. 372, 2015, pages 528 - 536
SPITZER SVOLBRACHT KLUNDGAARD IKARADOTTIR RT: "Glutamate signalling: A multifaceted modulator of oligodendrocyte lineage cells in health and disease", NEUROPHARMACOLOGY, 2016
TROTMAN MVERMEHREN PGIBSON CLFERN R: "The dichotomy of memantine treatment for ischemic stroke: Dose-dependent protective and detrimental effects", JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM : OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF CEREBRAL BLOOD FLOW AND METABOLISM, vol. 35, 2015, pages 230 - 239
WAKE HLEE PRFIELDS RD: "Control of local protein synthesis and initial events in myelination by action potentials", SCIENCE, no. 333, 2011, pages 1 647 - 1 65 1
YU QHUI RPARK JHUANG YKUSNECOV AWDREYFUS CF ET AL.: "Strain differences in cuprizone induced demyelination", CELL BIOSCI, vol. 7, 2017, pages 59

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023144163A1 (fr) 2022-01-25 2023-08-03 Albert-Ludwigs-Universität Freiburg Inhibiteur de glun2d destiné à être utilisé le traitement ou la prévention de la rechute d'un épisode dépressif

Similar Documents

Publication Publication Date Title
Popoli et al. Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum
Verma et al. NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine
Carli et al. Dissociable contribution of 5-HT1A and 5-HT2A receptors in the medial prefrontal cortex to different aspects of executive control such as impulsivity and compulsive perseveration in rats
Zhuo Glutamate receptors and persistent pain: targeting forebrain NR2B subunits
Bureau et al. Kainate receptor-mediated responses in the CA1 field of wild-type and GluR6-deficient mice
Keller et al. Patch clamp analysis of excitatory synaptic currents in granule cells of rat hippocampus.
Doyle et al. Vesicular glutamate release from central axons contributes to myelin damage
Martel et al. In developing hippocampal neurons, NR2B-containing N-methyl-D-aspartate receptors (NMDARs) can mediate signaling to neuronal survival and synaptic potentiation, as well as neuronal death
Krystal et al. N-methyl-D-aspartate glutamate receptors and alcoholism: reward, dependence, treatment, and vulnerability
Carter et al. Ifenprodil and SL 82.0715 as cerebral anti-ischemic agents. II. Evidence for N-methyl-D-aspartate receptor antagonist properties.
Correa et al. The adenosine A2A antagonist KF17837 reverses the locomotor suppression and tremulous jaw movements induced by haloperidol in rats: possible relevance to parkinsonism
Cheng et al. Emergence of excitotoxicity in cultured forebrain neurons coincides with larger glutamate-stimulated [Ca2+] i increases and NMDA receptor mRNA levels
Lyeth et al. Group I metabotropic glutamate antagonist reduces acute neuronal degeneration and behavioral deficits after traumatic brain injury in rats
Hough et al. Carbamazepine inhibition of N-methyl-D-aspartate-evoked calcium influx in rat cerebellar granule cells.
Barberis et al. Impact of synaptic neurotransmitter concentration time course on the kinetics and pharmacological modulation of inhibitory synaptic currents
Schoepp et al. In vitro and in vivo antagonism of AMPA receptor activation by (3S, 4aR, 6R, 8aR)-6-[2-(1 (2) H-tetrazole-5-yl) ethyl] decahydroisoquinoline-3-carboxylic acid
Tsuneki et al. Mouse muscle denervation increases expression of an α7 nicotinic receptor with unusual pharmacology
Taschenberger et al. Ca2+-permeable P2X receptor channels in cultured rat retinal ganglion cells
Novelli et al. Nefopam inhibits calcium influx, cGMP formation, and NMDA receptor-dependent neurotoxicity following activation of voltage sensitive calcium channels
Ferreira et al. Long-term activation of adenosine A2a receptors blocks glutamate excitotoxicity in cultures of avian retinal neurons
Simeone et al. Subunit selectivity of topiramate modulation of heteromeric GABAA receptors
CA2425771A1 (fr) Ouvreurs selectifs de canaux potassiques maxi-k, fonctionnant sous des conditions de concentration calcique intracellulaire elevee, procedes et utilisations associes
Xu et al. Slow death of postnatal hippocampal neurons by GABAA receptor overactivation
WO2008002594A2 (fr) Neuroprotection dépendante des circuits neuronaux par interaction entre les récepteurs nicotiniques
Petryszyn et al. The number of striatal cholinergic interneurons expressing calretinin is increased in parkinsonian monkeys

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19786276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19786276

Country of ref document: EP

Kind code of ref document: A1