WO2020069665A1 - 一种音频信号处理方法、装置与设备 - Google Patents

一种音频信号处理方法、装置与设备

Info

Publication number
WO2020069665A1
WO2020069665A1 PCT/CN2019/109273 CN2019109273W WO2020069665A1 WO 2020069665 A1 WO2020069665 A1 WO 2020069665A1 CN 2019109273 W CN2019109273 W CN 2019109273W WO 2020069665 A1 WO2020069665 A1 WO 2020069665A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
speaker
voice coil
power
gain
Prior art date
Application number
PCT/CN2019/109273
Other languages
English (en)
French (fr)
Inventor
寇毅伟
李贤胜
赵翔宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19869330.1A priority Critical patent/EP3855761A4/en
Publication of WO2020069665A1 publication Critical patent/WO2020069665A1/zh
Priority to US17/301,466 priority patent/US11375310B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/007Protection circuits for transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G7/00Volume compression or expansion in amplifiers
    • H03G7/002Volume compression or expansion in amplifiers in untuned or low-frequency amplifiers, e.g. audio amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers
    • H04R29/003Monitoring arrangements; Testing arrangements for loudspeakers of the moving-coil type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/70Gain control characterized by the gain control parameter
    • H03G2201/708Gain control characterized by the gain control parameter being temperature
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's

Definitions

  • the invention relates to the technical field of terminals, in particular to an audio signal processing method, device and equipment.
  • the most commonly used type of miniature speakers in small terminal devices are dynamic coil speakers (also known as electrodynamic speakers, whose working principle is that the input current generates a changing magnetic field through the coil, thereby causing the diaphragm of the speaker to vibrate to produce sound), which is characterized by The electro-acoustic conversion efficiency is extremely low (usually less than 1%) and generates heat.
  • dynamic coil speakers also known as electrodynamic speakers, whose working principle is that the input current generates a changing magnetic field through the coil, thereby causing the diaphragm of the speaker to vibrate to produce sound
  • the electro-acoustic conversion efficiency is extremely low (usually less than 1%) and generates heat.
  • the loudspeaker working in a large signal state usually has a relatively high temperature. If no temperature protection measures are applied, the voice coil of the loudspeaker may generate noise and even burn the entire loudspeaker.
  • the current temperature protection methods commonly used by power amplifier (PA, Power Amplifier) chip manufacturers are as follows: based on the feedback signal of the power amplifier, such as current and voltage signals, the DC resistance of the speaker voice coil is calculated and then detected If the temperature or input power of the speaker voice coil exceeds the corresponding threshold, the input signal will be attenuated by a certain gain.
  • PA Power Amplifier
  • An existing technology such as the patent US8774419B2 specifically uses the feedback signal of the power amplifier and the thermal model of the speaker (the thermal model is used to describe the relationship between the heat dissipation power of the speaker and the temperature of the voice coil, usually using an equivalent resistance-capacitance Circuit to simulate the heat dissipation process in the speaker)
  • a steady-state power threshold is calculated, and the steady-state power threshold is used to constrain the transient power of the input signal of the loudspeaker.
  • the transient power of the input signal is greater than the steady-state power threshold, pass the input
  • the signal is attenuated by a fixed gain for temperature protection. This kind of method can use the same control method in any speaker working state.
  • the steady-state power threshold usually calculated based on the speaker thermal model is much smaller than the transient input power of the speaker voice coil, so using the steady-state power threshold to control the transient input power will cause temperature over-protection problems (especially because the control process Excessive protection caused by improper target threshold setting), that is, the control gain of the power limiter output is at a low level for a long time, which will result in a large loss of subjective loudness of the loudspeaker loudspeaker The performance of the loudspeaker cannot be used to protect the loudspeaker more flexibly.
  • the present invention proposes an audio signal processing method, which implements power constraints based on the current input signal power and the currently calculated transient power threshold, and implements temperature constraints based on the current voice coil temperature and the upper limit of the operating temperature of the speaker;
  • the joint control gain strategy and the dynamic control gain calculation method are proposed to solve the problem of speaker over-protection and output gain mutation. While protecting the speaker voice coil temperature from overload, it can maximize the subjective experience of improving the volume of the terminal device.
  • an embodiment of the present invention provides an audio signal processing method.
  • the method specifically includes: obtaining a voice coil DC resistance of a speaker; obtaining an audio input signal to be input to the speaker; and determining an audio input according to the voice coil DC resistance and the audio input signal Power; obtain the thermal model of the speaker and determine the transient power threshold based on the audio input power and thermal model; determine the power constraint gain based on the audio input power and transient power threshold; where, if the audio input power is greater than the transient power threshold, the power Constrained gain is less than 1; obtain the voice coil temperature of the speaker; determine the temperature constrained gain based on the voice coil temperature and the upper limit of the speaker's operating temperature; where, if the voice coil temperature is greater than the upper limit of the speaker's operating temperature, the temperature constrained gain is less than 1; according to the power constraint Gain and temperature-constrained gain adjust the audio input signal to obtain the target signal.
  • an embodiment of the present invention provides an audio signal processing device, which specifically includes: a DC resistance calculation module for acquiring the DC resistance of the voice coil of the speaker; an acquisition module for acquiring the audio input signal of the speaker to be input;
  • the power calculation module is used to determine the audio input power according to the voice coil DC resistance and the audio input signal;
  • the transient power threshold calculation module is used to obtain the thermal model of the speaker and determine the transient power threshold according to the audio input power and the thermal model of the speaker ;
  • Power constraint module used to determine the power constraint gain based on the audio input power and the transient power threshold; where, if the audio input power is greater than the transient power threshold, the power constraint gain is less than 1;
  • the temperature calculation module is used to obtain the sound of the speaker Coil temperature;
  • temperature constraint module used to determine the temperature constraint gain based on the voice coil temperature and the upper limit of the speaker's operating temperature; where, if the voice coil temperature is greater than the speaker's upper operating temperature limit, the temperature constraint gain
  • power constraints are implemented based on the current input signal power and the currently calculated transient power threshold, and temperature constraints are implemented based on the current voice coil temperature and the upper limit of the operating temperature of the speaker;
  • the two constrained joint control gain strategy and the dynamic control gain calculation method are proposed to solve the problem of speaker over-protection and output gain mutation. While protecting the speaker voice coil temperature from overload, it can maximize the volume of the terminal device. Wait for the subjective experience.
  • the size of the power constraint gain is directly related to the ratio of the transient power threshold to the audio input power.
  • the size of the temperature-constrained gain is directly related to the ratio of the upper limit of the operating temperature to the voice coil temperature.
  • the method further includes: if the audio input power is less than or equal to the transient power threshold, the power constraint gain is equal to 1.
  • the method further includes: if the temperature of the voice coil is less than or equal to the upper limit of the operating temperature of the speaker, the temperature constraint gain is equal to 1.
  • acquiring the DC resistance of the voice coil of the speaker includes: obtaining a feedback voltage signal and a feedback current signal at both ends of the speaker using a feedback circuit; and obtaining the feedback voltage signal and the feedback current signal Voice coil DC resistance. This method is specifically executed by the DC resistance calculation module. This design is suitable for application scenarios with feedback structures at both ends of the speaker input.
  • obtaining the DC resistance of the voice coil of the speaker includes:
  • calculating the change amount of the voice coil temperature according to the equivalent thermal impedance transfer function of the voice coil may specifically include: acquiring an audio input signal to be input to the speaker; and according to the audio input signal of the speaker and the voice coil equivalent The thermal impedance transfer function calculates the amount of change in the voice coil temperature.
  • obtaining the voice coil temperature of the speaker includes: calculating the voice coil temperature of the speaker according to the DC resistance of the voice coil. The method is specifically executed by the temperature calculation module.
  • obtaining the voice coil temperature of the speaker includes: obtaining the voice coil equivalent thermal impedance transfer function of the speaker; calculating the voice coil temperature according to the voice coil equivalent thermal impedance transfer function .
  • the method is specifically executed by the temperature calculation module. This design does not depend on the calculation of DC resistance.
  • the calculation of the voice coil temperature according to the voice coil equivalent thermal impedance transfer function may specifically include: obtaining the audio input signal to be input to the speaker; calculating according to the audio input signal of the speaker and the voice coil equivalent thermal impedance transfer function Voice coil temperature.
  • the above method further includes: performing digital-to-analog conversion and amplification on the target signal, and transmitting the amplified analog signal to the speaker for playback.
  • the foregoing possible technical implementation may be that the processor calls the programs and instructions in the memory to perform corresponding processing, such as algorithm implementation, signal acquisition, and so on.
  • an embodiment of the present invention provides an audio signal processing method.
  • the method specifically includes: obtaining a voice coil DC resistance of a speaker; obtaining an audio input signal to be input to the speaker; and determining an audio input according to the voice coil DC resistance and the audio input signal Power; obtain the thermal model of the speaker and determine the transient power threshold based on the audio input power and thermal model; determine the power constraint gain based on the audio input power and transient power threshold; where, if the audio input power is greater than the transient power threshold, the power The constrained gain is less than 1; adjust the audio input signal according to the power constrained gain to obtain the target signal.
  • an embodiment of the present invention provides an audio signal processing method.
  • the method specifically includes: acquiring a DC resistance of a speaker's voice coil; acquiring an audio input signal to be input to the speaker; acquiring a voice coil temperature of the speaker; The upper limit of the operating temperature of the speaker determines the temperature-constrained gain; where, if the voice coil temperature is greater than the upper limit of the operating temperature of the speaker, the temperature-constrained gain is less than 1; the audio input signal is adjusted according to the power-constrained gain and the temperature-constrained gain to obtain the target signal.
  • an embodiment of the present invention provides a terminal device including a memory, a processor, and a bus; the memory and the processor are connected by a bus; the memory is used to store computer programs and instructions; the processor is used to call the computer program stored in the memory
  • the instructions and instructions are also specifically used to make the terminal device perform any of the possible design methods as described above.
  • the terminal device further includes an antenna system, and under the control of the processor, the antenna system transmits and receives wireless communication signals to realize wireless communication with the mobile communication network;
  • the mobile communication network includes one of the following Or multiple: GSM network, CDMA network, 3G network, 4G network, 5G network, FDMA, TDMA, PDC, TACS, AMPS, WCDMA, TDSCDMA, WIFI and LTE network.
  • the prior art adopts a single method of temperature restriction or power restriction to perform temperature protection on the speaker.
  • the above-mentioned prior art implements temperature protection by restricting the input signal power through a power limiter.
  • most music signals with high power and high temperature and music signals with low power and low temperature can be distinguished only by power or temperature, but for some music signals with high power but low temperature and frequency power such as frequency sweep If the temperature and power are not restricted at the same time for a signal with a large temperature and a high temperature, the volume of the music signal will suddenly drop, and the temperature of the frequency sweep signal will exceed the safe upper limit of the speaker.
  • the technical problem 1 to be solved by the present invention is to accurately distinguish various working scenarios and signals based on the temperature and transient input power of the speaker voice coil, so that the temperature protection module outputs dynamic gain control, and the output signal gain changes smoothly to solve the sudden change in the volume of the terminal device. The problem of pain.
  • the prior art uses a steady-state power threshold to limit the transient power. Since the steady-state power threshold is much smaller than the transient power, it will lead to over-temperature protection and the speaker volume cannot reach the maximum value.
  • the technical problem 2 to be solved by the present invention is to calculate the instantaneous power threshold value of the input signal according to the temperature of the speaker voice coil in real time, and the transient power threshold value is used to constrain the input signal power to solve the problem of over-temperature protection caused by improper use of the power constraint threshold.
  • the prior art cannot detect the DC resistance of the speaker voice coil to calculate the voice coil temperature, and therefore cannot monitor the speaker voice coil temperature in real time to perform optimal temperature protection.
  • the technical problem 3 to be solved by the present invention is that the temperature of the speaker voice coil can still be predicted in real time without the feedback structure and the feedback signal cannot be collected, solving the problem that the low-end terminal device speaker cannot achieve optimal temperature protection.
  • FIG. 1 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an audio signal processing device of the present invention
  • FIG. 3 is a logic diagram of audio signal processing in an embodiment of the present invention.
  • FIG. 4 is a flowchart of an audio signal processing method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a thermal model of a speaker in an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another audio signal processing device in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another audio signal processing device in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another audio signal processing device in an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another audio signal processing device in an embodiment of the present invention.
  • FIG. 10 is a flowchart of another audio signal processing method in an embodiment of the present invention.
  • the terminal may be a device that provides users with connectivity for shooting video and / or data, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem, such as a digital camera, a SLR camera , Mobile phones (or “cellular” phones), smart phones, which can be portable, pocket, handheld, wearable devices (such as smart watches, etc.), tablets, personal computers (PC, Personal Computer), PDA ( Personal Digital Assistant, car computer, drone, aerial camera, etc.
  • a wireless modem such as a digital camera, a SLR camera , Mobile phones (or “cellular" phones), smart phones, which can be portable, pocket, handheld, wearable devices (such as smart watches, etc.), tablets, personal computers (PC, Personal Computer), PDA ( Personal Digital Assistant, car computer, drone, aerial camera, etc.
  • FIG. 1 shows a schematic diagram of an optional hardware structure of the terminal 100.
  • the terminal 100 may include a radio frequency unit 110, a memory 120, an input unit 130, a display unit 140, a camera 150, an audio circuit 160 (including a speaker 161, a microphone 162), a processor 170, an external interface 180, and a power supply 190 Other parts.
  • FIG. 1 is only an example of a smart terminal or a multi-function device, and does not constitute a limitation on the smart terminal or multi-function device, and may include more or less components than shown, or a combination of certain Parts, or different parts.
  • the camera 150 is used to collect images or videos, and can be triggered by an application program instruction to realize a photo or video function.
  • the camera may include components such as an imaging lens, a filter, and an image sensor. The light emitted or reflected by the object enters the imaging lens, passes through the filter, and finally converges on the image sensor.
  • the imaging lens is mainly used for converging imaging of light emitted or reflected from all objects in the camera's viewing angle (also known as the scene to be photographed, the object to be photographed, the target scene or the target object, and can also be understood as the scene image that the user expects to shoot) ;
  • the filter is mainly used to filter out excess light waves (such as light waves other than visible light, such as infrared) in the light;
  • the image sensor is mainly used to photoelectrically convert the received light signal into an electrical signal, and Input to the processor 170 for subsequent processing.
  • the camera can be located in front of the terminal device or the back of the terminal device. The specific number and arrangement of cameras can be flexibly determined according to the requirements of the designer or manufacturer's strategy, and this application is not limited.
  • the input unit 130 may be used to receive input numeric or character information, and generate key signal input related to user settings and function control of the portable multi-function device.
  • the input unit 130 may include a touch screen 131 and / or other input devices 132.
  • the touch screen 131 can collect user's touch operations on or near it (such as user operations on the touch screen or near the touch screen using any suitable objects such as fingers, joints, stylus, etc.), and drive the corresponding according to a preset program Connection device.
  • the touch screen can detect the user's touch action on the touch screen, convert the touch action into a touch signal and send it to the processor 170, and can receive and execute the command sent by the processor 170; the touch signal includes at least touch Point coordinate information.
  • the touch screen 131 may provide an input interface and an output interface between the terminal 100 and the user.
  • the touch screen can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 130 may include other input devices.
  • other input devices 132 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control keys 132, switch keys 133, etc.), trackball, mouse, joystick, and so on.
  • the display unit 140 may be used to display information input by the user or provided to the user, various menus, interactive interfaces of the terminal 100, file display, and / or playback of any kind of multimedia file.
  • the display unit is also used to display images / videos acquired by the device using the camera 150, which may include preview images / videos in certain shooting modes, initial images / videos captured, and certain algorithm processing after shooting After the target image / video.
  • the touch screen 131 may cover the display panel 141, and when the touch screen 131 detects a touch operation on or near it, it is transmitted to the processor 170 to determine the type of touch event, and then the processor 170 displays the display panel according to the type of touch event.
  • 141 provides corresponding visual output.
  • the touch screen and the display unit can be integrated into one component to realize the input, output, and display functions of the terminal 100; for ease of description, the embodiment of the present invention uses a touch display to represent the set of functions of the touch screen and the display unit; In some embodiments, the touch screen and the display unit can also be used as two independent components.
  • the memory 120 may be used to store instructions and data.
  • the memory 120 may mainly include a storage instruction area and a storage data area.
  • the storage data area may store various data, such as multimedia files, text, etc .
  • the storage instruction area may store an operating system, applications, At least one functional unit such as instructions required by a function, or their subset, extension set. It may also include a non-volatile random access memory; providing the processor 170 with hardware, software, and data resources included in the management of the computing processing device, and supporting control software and applications. It is also used for the storage of multimedia files and the storage of running programs and applications.
  • the processor 170 is the control center of the terminal 100, and uses various interfaces and lines to connect various parts of the entire mobile phone, and executes various operations of the terminal 100 by running or executing instructions stored in the memory 120 and calling data stored in the memory 120. Function and process data to control the phone overall.
  • the processor 170 may include one or more processing units; preferably, the processor 170 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and application programs, etc.
  • the modem processor mainly handles wireless communication. It can be understood that the above-mentioned modem processor may not be integrated into the processor 170.
  • the processor and the memory can be implemented on a single chip.
  • the processor 170 may also be used to generate corresponding operation control signals, send to corresponding components of the computing processing device, read and process data in the software, especially read and process data and programs in the memory 120, so that Each functional module performs the corresponding function, thereby controlling the corresponding component to act according to the requirements of the instruction.
  • the radio frequency unit 110 may be used for receiving and sending information or receiving and sending signals during a call, for example, after receiving the downlink information of the base station and processing it to the processor 170; in addition, sending the designed uplink data to the base station.
  • the RF circuit includes but is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the radio frequency unit 110 can also communicate with network devices and other devices through wireless communication.
  • the wireless communication may use any communication standard or protocol, including but not limited to Global System of Mobile (GSM), General Packet Radio Service (GPRS), and Code Division Multiple Access (Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), E-mail, Short Message Service (SMS), etc.
  • GSM Global System of Mobile
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • E-mail Short Message Service
  • the audio circuit 160, the speaker 161, and the microphone 162 may provide an audio interface between the user and the terminal 100.
  • the audio circuit 160 can convert the received audio data into electrical signals, transmit them to the speaker 161, and convert the speakers 161 into sound signals for output; on the other hand, the microphone 162 is used to collect sound signals, and can also convert the collected sound signals into
  • the electrical signal is received by the audio circuit 160 and converted into audio data, and then processed by the audio data output processor 170, and then sent to another terminal via the radio frequency unit 110, or the audio data is output to the memory 120 for further processing, audio
  • the circuit may also include a headphone jack 163 for providing a connection interface between the audio circuit and the headphones.
  • the terminal 100 further includes a power supply 190 (such as a battery) that supplies power to various components.
  • a power supply 190 such as a battery
  • the power supply can be logically connected to the processor 170 through a power management system, so as to realize functions such as charging, discharging, and power consumption management through the power management system.
  • the terminal 100 also includes an external interface 180, which can be a standard Micro USB interface, or a multi-pin connector, which can be used to connect the terminal 100 to communicate with other devices, or to connect a charger to the terminal 100 Charge.
  • an external interface 180 can be a standard Micro USB interface, or a multi-pin connector, which can be used to connect the terminal 100 to communicate with other devices, or to connect a charger to the terminal 100 Charge.
  • the terminal 100 may further include a flash light, a wireless fidelity (WiFi) module, a Bluetooth module, sensors with different functions, and so on, which will not be repeated here. Part or all of the methods described below can be applied to the terminal shown in FIG. 1.
  • WiFi wireless fidelity
  • Bluetooth Bluetooth
  • the invention can be applied to a terminal device with a speaker-out function.
  • the floor product form can be a smart terminal, such as a mobile phone, a tablet, a DV, a camera, a camera, a portable computer, a notebook computer, a smart speaker, a TV, and other products with speakers installed;
  • the functional module of the present invention is deployed on a DSP chip of a related device, and may specifically be an application program or software therein; the present invention is deployed on a terminal device, through software installation or upgrade, and through the invocation of hardware to provide audio
  • the signal processing function improves the speaker temperature protection function, so as to give full play to the speaker performance.
  • the present invention is mainly applied to scenarios where audio output of multimedia files of a terminal device, hands-free calling, etc., require the use of high volume playback of micro speakers in the terminal. including but not limited to:
  • Application scenario 3 mobile phone ringtone (outgoing mode, plug-in headset mode);
  • the device needs to be temperature protected. Because in the case of large signals, the speaker temperature may exceed the safe value; in the case of small signals, the risk of the speaker temperature exceeding the safe value is low, but the temperature of the voice coil can still be monitored.
  • the temperature and input power of the speaker voice coil (which can be referred to as voice coil) can be detected in real time by the method proposed by the present invention. If the signal with a large playback power causes the temperature and power of the speaker voice coil to exceed the corresponding threshold (threshold It is preset according to the physical limit state allowed by the speaker itself), which will trigger the temperature control method proposed by the present invention, and then achieve dynamic smoothing to reduce the gain of the input signal to avoid the sudden change of the speaker volume and to ensure that the voice coil temperature does not exceed the upper limit of the speaker safety , To achieve the optimal temperature protection of the speaker.
  • the present invention will be described below by way of example.
  • FIG. 2 The structure of an audio processing signal device of the present invention is shown in FIG. 2, after the input signal undergoes power constraint and temperature constraint processing, digital-to-analog conversion is performed and transmitted to the amplifier, and finally output to the speaker for playback.
  • Example 1 describes Example 1 in detail with reference to FIG. 2. (Note: 101-109, 111, 112, 113 in Figure 2 represent signals, and 201-211 represent modules)
  • the system module may include: a power calculation module 201, a power constraint module 202, a transient power threshold calculation module 203, a temperature constraint module 204, a digital-to-analog converter 205, a temperature calculation module 206, a DC resistance calculation module 207, and an analog-to-digital conversion It consists of an amplifier 208, a gain application module 209, an amplifier 210 with a feedback circuit, and a speaker 211.
  • the core unit in the system module may include a power constraint unit and a temperature constraint unit.
  • the power constraint unit includes a power calculation module 201, a power constraint module 202, and a transient power threshold calculation module 203.
  • the temperature constraint unit includes a temperature constraint module 204 and a temperature calculation module 206.
  • Power calculation module 201 The input power 102 of the digital audio input signal 101 can be calculated according to the digital audio input signal 101 and the voice coil DC resistance 109.
  • Power constraint module 202 You can compare the transient power threshold 103 and the input power 102; if the audio input power is less than or equal to the transient power threshold, no processing is performed on the input signal. At this time, the gain of the power constraint module output is 1, if the audio input power If it is greater than the transient power threshold, the input signal is weakened. At this time, the power constraint gain 104 output by the power constraint module is a value less than 1, wherein the size of the power constraint gain 104 is directly related to the ratio of the transient power threshold to the audio input power. In this way, the input signal with high power can be effectively restrained.
  • Transient power threshold calculation module 203 The transient power threshold 103 can be calculated according to the input power 102 and the thermal model parameters of the known speaker; using the transient power threshold 103 to constrain the input signal can achieve optimal temperature protection. Specifically, under the working state of the speaker, the input signal of the speaker is transient, so it is more reasonable and accurate to use the transient threshold to refer to and control. The size of the two is strongly referenced and real-time. , There is no existing technology that uses a fixed and low steady-state threshold to limit the over-protection problem caused by transient input power.
  • the gain may be too low or the loudness of the speaker may be too low to fully
  • the performance of the speaker is used, and as a result, the sound that should not be weakened is weakened. Therefore, the present invention can more efficiently and fully exert the performance of the speaker and ensure the smoothness of sound playback.
  • the transient power threshold may also be some preset value, which may have different designs according to the power of the input signal.
  • Temperature constraint module 204 You can compare the preset temperature threshold (including but not limited to the maximum temperature allowed for normal operation of the device, or a user-defined threshold) and the voice coil temperature 111 calculated by the temperature extreme module 206, if the voice coil temperature is less than If it is equal to the temperature threshold, no processing is performed on the input signal. At this time, the gain of the temperature constraint module output is 1; if the voice coil temperature is greater than the preset temperature threshold, the input signal is weakened. At this time, the temperature constraint gain output by the temperature constraint module is 105 It is a value less than 1, where the size of the temperature constraint gain 105 is directly related to the ratio of the temperature threshold to the voice coil temperature. In this way, signals with high temperature can be effectively restrained.
  • the preset temperature threshold including but not limited to the maximum temperature allowed for normal operation of the device, or a user-defined threshold
  • Digital-to-analog converter 205 It can convert the gain-adjusted digital signal 112 into an analog signal 106.
  • Temperature calculation module 206 The voice coil temperature 111 can be calculated according to the voice coil DC resistance 109.
  • the DC resistance 109 of the speaker voice coil can be calculated according to the feedback voltage and current signal 108 after the analog-to-digital conversion.
  • Analog-to-digital converter 208 The feedback analog signal 107 can be converted into a digital feedback signal 108.
  • Gain application module 209 can be used to apply the power-constrained gain 104 obtained by the power-constrained module 202 and the temperature-constrained gain 105 obtained by the temperature-constrained module 204 to the digital audio input signal 101 for signal adjustment to obtain a gain-adjusted digital signal 112.
  • Amplifier 210 with feedback circuit it can be used to amplify analog signal 106 into analog signal 113 and send it to speaker 211 for playback.
  • the feedback circuit can be used to sample analog signals across the speaker, including voltage and current signals.
  • the acquisition module 213 (not shown in the figure) is used to acquire digital audio input from the DSP chip.
  • the digital-to-analog converter 205, the analog-to-digital converter 208, the amplifier 210 with a feedback circuit, and the speaker 211 are well-known technologies or devices in the industry, and their functions are also well-known in the industry, and these modules will not be repeated in the embodiments of the present invention.
  • FIG. 3 is a logic diagram of signal processing according to an embodiment of the present invention. The following steps can be included:
  • Step 300 Receive the audio digital signal U in from the DSP chip
  • Step 301 Calculate the input power P in of the voice coil according to the input signal U in and the voice coil DC resistance Re;
  • Step 302 Calculate the transient power threshold P lim based on the input power P in of the voice coil and the known thermal model parameters;
  • Step 303 the voice coil power constraint module compares the input power and the transient power P in P lim a threshold size
  • Step 304 If P in > P lim , the output gain of the power constraint module is dynamically reduced, and the power constraint gain is less than 1;
  • Step 305 If P in ⁇ P lim , the output gain of the power constraint module is not changed, that is, the gain is 1 (0 dB);
  • Step 306 Calculate the voice coil temperature T v according to the voice coil DC resistance Re;
  • Step 307 The temperature constraint module compares the voice coil temperature Tv with a preset temperature threshold Tlim ;
  • Step 308 If T v > T lim , the output gain of the temperature constraint module is dynamically reduced, and the temperature constraint gain is less than 1;
  • Step 309 If T v ⁇ T lim , the output gain of the temperature constraint module is not changed, that is, the gain is 1 (0 dB);
  • Step 310 Apply the output gain of the power constraint module (available in step 304 or 305) and the temperature constraint module (available in step 308 or 309) to the input signal U in to obtain the output signal U out ;
  • Step 311 The speaker plays the analog signal after PA processing
  • Step 312 The PA grabs the voltage and current signals at both ends of the speaker
  • Step 313 The grab PA calculated feedback voltage coil current signals for calculating a voice coil DC resistance Re temperature T v (step 301) and the input power P in (step 306).
  • this method includes a feedback mechanism. If there is a calculation frequency in the calculation process, the feedback voltage and current signal captured at the previous time (t n-1 ) calculates the voice coil DC resistance Re at the previous time, and the previous time The voice coil DC resistance Re is used to calculate the voice coil temperature T v and the input power P in at the next moment (t n ). The voice coil temperature T v and the input power P in will affect the output voltage and current at the next moment. Continue Carrying out feedback ... The feedback mechanism is not repeated in the present invention. It should be understood that the feedback mechanism belongs to a well-known technology.
  • previous time and the next time belong to a relative concept, and the previous time occurs before the next time; the audio signal's previous time and the next time (if it is small enough) approximate that the amplitude will not change suddenly, but A signal with smooth amplitude.
  • the time difference between the last time t n-1 and the next time t n may be the delay of the feedback circuit;
  • the time difference between the previous time t n-1 and the next time t n can also be a user-defined preset time interval.
  • the time difference between the previous time t n-1 and the next time t n can be a constant value or a changing value during the signal processing, or meet some design conditions of the user; for example, the last time The data can be used to participate in the relevant calculations at the next moment, and the next moment can be maintained for a long time.
  • the result has always been the result of the 200ms from the 200ms to the 400ms; etc. ...
  • FIG. 4 is a flowchart of an audio signal processing method according to an embodiment of the present invention.
  • the method may include the following steps:
  • Step 41 Obtain the DC resistance of the voice coil of the speaker.
  • the amplifier 210 with a feedback circuit acquires the voltage and current signals at both ends of the speaker at the previous moment, that is, the analog feedback signal 107, including the feedback voltage and current signal, is converted into a digital feedback signal 108 by the analog-to-digital converter 208, including the digital feedback voltage And current signal; wherein, the last time is represented by the above t n-1 ; the DC resistance calculation module 207 calculates the output voice coil DC resistance 109Re (t n-1 ) based on the digital feedback voltage and current signal.
  • the specific calculation method of Re (t n-1 ) can determine the estimated resistance by dividing by the root mean square (RMS) value of the current and voltage entering the speaker 211.
  • RMS root mean square
  • Step 42 Obtain the digital audio input signal.
  • the delay between the previous time and the next time is related to the delay of the feedback circuit in the amplifier with a feedback circuit in this example.
  • the time delay between the next time and the previous time can also be defined by the user, for example, any value between (0, t0), and t0 is a preset value.
  • Acquiring a digital audio input signal may be performed by an acquisition module 213 (not shown in the figure).
  • Step 43 Determine the audio input power according to the voice coil DC resistance and the audio input signal.
  • the power calculation module 201 calculates the audio input power 102, P in (t n ) according to the voice coil DC resistance 109 and the audio input signal 101.
  • the implementation includes but is not limited to the following formula:
  • Step 44 Determine the transient power threshold based on the audio input power and the thermal model of the speaker
  • the transient power threshold calculation module 203 calculates the output transient power threshold 103P lim (t n ) based on the audio input power 102P in (t n ) and the known thermal model parameters of the speaker (belonging to the device's own properties).
  • the implementation includes: But it is not limited to the following formula:
  • Step 45 Determine the power constraint gain according to the relationship between the audio input power and the transient power threshold
  • the power constraint module 202 compares the magnitude of the transient power threshold 103P lim (t n ) with the audio input power 102P in (t n ), and the output power constraint gain 104, G P (t n ).
  • Implementation methods include but are not limited to the following formulas:
  • Step 46 Determine the voice coil temperature according to the voice coil DC resistance
  • the temperature calculation module 206 obtains the voice coil temperature 111, T v (t n-1 ) according to the voice coil DC resistance 109Re (t n-1 ) at the previous time.
  • Implementation methods include but are not limited to the following formulas:
  • R 0 , T 0 and ⁇ in the above formula represent the reference DC resistance of the speaker, the reference temperature (such as room temperature under various standards, or a preset temperature) and the temperature resistance coefficient of the voice coil of the speaker. These parameters can be found in Obtained in the specification of the speaker.
  • Step 47 Determine the temperature constraint gain according to the voice coil temperature and the upper limit of the speaker working temperature
  • the temperature constraint module 204 compares the size of the voice coil temperature 110T v (t n-1 ) and the upper limit of the speaker operating temperature T lim (the value of T lim may be the limit value of the working state, or may be a preset value specified by the manufacturer) , According to the relationship between the size and output temperature constraint gain 105, G T (t n ), the implementation includes but is not limited to the following formula:
  • Step 48 Adjust the audio input signal according to the temperature-constrained gain and the power-constrained gain to obtain the target digital signal
  • the gain application module 209 adjusts the audio input signal 101 according to the temperature-constrained gain 105 and the power-constrained gain 104 to obtain the target digital signal 112.
  • the implementation includes but is not limited to the following formula:
  • the input signal U in (t n ) can be multiplied by an optimized coefficient on the basis of the above formula, and this coefficient can be related to the device and the working state.
  • Step 49 Perform digital-to-analog conversion on the target digital signal and amplify the amplifier to obtain the target analog signal, and the target analog signal is played by the speaker.
  • the digital-to-analog converter 205 digital-to-analog converts the target digital signal 112 into an analog signal 106, and the amplifier 210 with a feedback circuit further amplifies 106 to obtain the target analog signal 113, which is input to the speaker 211 for playback.
  • the combined control of power constraints and temperature constraints can accurately distinguish various types of signals, and dynamically and smoothly control the gain of the input signal, so that when the speaker plays any signal, the temperature of the voice coil does not exceed its safe upper limit and the volume of the loud speaker is not The beneficial effects of mutations.
  • Example 2 is a schematic diagram of another audio signal processing apparatus in an embodiment of the present invention.
  • Example 2 lacks the temperature restriction unit, that is, the temperature restriction module 204 and the temperature calculation module 206 are absent, or the two modules do not function.
  • another audio signal processing method flow is provided in the embodiments of the present invention. The method may include the following steps:
  • Step 51 Same as step 41.
  • Step 52 Same as step 42.
  • Step 53 Same as step 43.
  • Step 54 Same as step 44.
  • Step 55 Same as step 45.
  • Step 56 Adjust the audio input signal according to the power-constrained gain to obtain the target digital signal; the gain application module 209 adjusts the audio input signal 101 according to the power-constrained gain 104 to obtain the target digital signal 112.
  • Implementation methods include but are not limited to the following formulas:
  • the input signal U in (t n ) can be multiplied by an optimized coefficient on the basis of the above formula, and this coefficient can be related to the device and the working state.
  • Step 57 Perform digital-to-analog conversion and amplifier amplification on the target digital signal 112 obtained in step 56 to obtain the target analog signal, and the target analog signal is played by the speaker. Similar to step 49.
  • Example 3 is a schematic diagram of another audio signal processing apparatus in an embodiment of the present invention.
  • Example 3 lacks a power constraint unit, that is, there is no power calculation module 201, power constraint module 202, transient power threshold calculation module 203, or these three modules do not function.
  • a power constraint unit that is, there is no power calculation module 201, power constraint module 202, transient power threshold calculation module 203, or these three modules do not function.
  • the method may include the following steps:
  • Step 61 Same as step 41.
  • Step 62 Same as step 46.
  • Step 63 Same as step 47.
  • Step 64 Adjust the audio input signal according to the temperature-constrained gain to obtain the target digital signal; the gain application module 209 adjusts the audio input signal 101 according to the temperature-constrained gain 105 to obtain the target digital signal 112.
  • Implementation methods include but are not limited to the following formulas:
  • the input signal U in (t n ) can be multiplied by an optimized coefficient on the basis of the above formula, and this coefficient can be related to the device and the working state.
  • Step 65 Perform digital-to-analog conversion and amplifier amplification on the target digital signal 112 obtained in step 64 to obtain the target analog signal, and the target analog signal is played by the speaker. Similar to step 49.
  • Example 4 is a structural diagram of another system-level module in an embodiment of the present invention.
  • the function of the temperature calculation module 206 has changed.
  • the input has changed.
  • the temperature calculation module 206 calculates the voice coil temperature based on the input power of the audio, instead of calculating it through the DC resistance.
  • another audio signal processing method flow is provided in the embodiments of the present invention. The method may include the following steps:
  • Step 71 Same as step 41.
  • Step 72 Same as step 42.
  • Step 73 Same as step 43.
  • Step 74 Same as step 44.
  • Step 75 Same as step 45.
  • Step 76 The temperature calculation module 206 calculates the voice coil temperature 111, T v (t n-1 ) according to the audio input power 102P in (t n ) and the equivalent thermal impedance transfer function Z v of the speaker's voice coil, and calculates the It is transmitted to the temperature constraint module 204; where the equivalent thermal impedance transfer function Z v can be obtained from the device specification of the speaker, or provided by the supplier, or can be measured by the instrument itself, or calculated by the algorithm).
  • the calculation method of T v (t n-1 ) includes but is not limited to the following formula:
  • T v (t n-1 ) ⁇ T v (t n-1 ) + T 0
  • * means convolution operation
  • ⁇ T v (t n-1 ) is the temperature rise of the voice coil
  • T 0 is a known reference temperature (such as room temperature under common standards, or a certain temperature specified in the device specification) .
  • Example 1 the difference between this step and Example 1 can be understood as the algorithm of T v (t n-1 ).
  • Step 77 Similar to step 47, the difference between step 77 and step 47 is that for the temperature constraint module 201, the input voice coil temperature is derived from step 76.
  • Step 78 Same as step 48.
  • Step 79 Same as step 49.
  • the above examples use the voltage and current signals based on the feedback of the power amplifier to calculate the DC resistance of the speaker voice coil; however, these examples cannot be applied to low-end terminal devices without a feedback structure, and the optimal temperature protection measures for the speakers of such devices cannot be implemented .
  • the optimal temperature protection refers to the case where the temperature of the speaker voice coil does not exceed the upper safety limit of the device, the gain output by the temperature protection algorithm has the least effect on the input signal, so that the loudness of the speaker can be minimized.
  • the present invention also proposes Example 5.
  • Example 5 is a structural diagram of another system-level module in an embodiment of the present invention.
  • the low-end device PA cannot feedback the voltage and current signals, the DC resistance can no longer be calculated based on the feedback signal.
  • Example 5 proposes a method to calculate DC resistance without feedback signal.
  • the amplifier 210 with a feedback circuit becomes an amplifier 212 without a feedback circuit; and there is no analog-to-digital converter 208 in the feedback loop, or the analog-to-digital converter 208 is in this embodiment Disabled; therefore, without the feedback signal, the DC resistance of the voice coil cannot be calculated from the feedback signal; in addition, compared with Example 4, the calculation method of the DC resistance calculation module 207 has also changed.
  • the temperature calculation module 206 first calculates the voice coil temperature rise 114 according to the audio input power, and then the DC resistance calculation module 207 calculates the DC resistance of the voice coil.
  • the method may include the following steps:
  • Step 81 The temperature calculation module 206 calculates the voice coil temperature rise 114, ⁇ T v (t n- ) based on the input power 102P in (t n-1 ) at the previous moment and the known voice coil equivalent thermal impedance transfer function Z v 1), i.e. the amount of change in coil temperature;
  • DC resistance calculation module 207 ⁇ T v (t n-1 ) is calculated according to the voice coil DC resistance R e (t n-1) .
  • Implementation methods include but are not limited to the following formulas:
  • R e (t n-1 ) R 0 [1 + ⁇ ⁇ ⁇ T v (t n-1 )]
  • R 0 , T 0 and ⁇ in the above formula represent the reference DC resistance of the speaker, the reference temperature (such as room temperature under various standards, or a preset temperature) and the temperature resistance coefficient of the voice coil of the speaker. These parameters can be found in Obtained in the specification of the speaker.
  • Step 82 Same as step 72.
  • Step 83 similar to step 73; the difference between step 83 and step 73 is that for the power calculation module 201, the input voice coil DC resistance 109 is derived from step 81.
  • Step 84 Same as step 74.
  • Step 85 Same as step 75.
  • Step 86 Same as step 76.
  • Step 87 Same as step 77.
  • Step 88 Same as step 78.
  • Step 89 Same as step 79.
  • Example 5 provides a DC resistance calculation method without a feedback voltage and current signal, which solves the problem of over-protection caused by the inability to predict the voice coil temperature, and has a very important application value for improving the loudness of low-end terminal equipment. At the same time, it realizes the function of predicting the temperature of the speaker without feedback signal, and is compatible with low-end terminal equipment that cannot provide feedback signal.
  • the signals indicated by the same signal label may have different sources or may be obtained by different algorithms, which does not constitute a limitation; the functions contained in the functional modules indicated by the same module label There may also be differences in functions and algorithms, and should not constitute a limitation.
  • the "same step xx" is more focused on the similar signal processing logic of the two, and is not limited to the input and output of the two being exactly the same, nor is it limited to the two functional modules Exactly.
  • FIG. 10 is a flowchart of another audio signal processing method in the present invention.
  • the method includes:
  • the implementation manner may include but not limited to step 41 or step 81. It should be understood that the voice coil DC resistance obtained in this step can all participate in the calculation related to the voice coil DC resistance in the following steps.
  • the implementation manner may include but is not limited to step 42.
  • S93 Determine audio input power according to the voice coil DC resistance and the audio input signal.
  • the implementation manner may include but is not limited to step 43.
  • the implementation manner may include but is not limited to step 44.
  • the implementation manner may include but is not limited to step 45.
  • the implementation manner may include but not limited to step 46 or step 76. It should be understood that the voice coil temperature obtained in this step can all participate in the calculation related to the voice coil temperature in the following steps.
  • S97 Determine a temperature-constrained gain according to the voice coil temperature and the upper limit of the operating temperature of the speaker; wherein, if the voice coil temperature is greater than the upper limit of the operating temperature of the speaker, the temperature-constrained gain is less than 1.
  • the implementation manner may include but not limited to step 47, or 77.
  • the implementation manner may include but is not limited to step 48.
  • S99 Perform digital-to-analog conversion on the target digital signal and amplify the amplifier to obtain the target analog signal, and the target analog signal is played by the speaker.
  • the implementation manner may include, but not limited to, steps 49, 57, 65.
  • the invention provides an audio signal processing method, which outputs dynamic gain smoothing processing input signal through the combined action of power constraint and temperature constraint to protect the speaker temperature.
  • the proposed transient power threshold calculation method solves the problem of over-protection caused by the steady-state power threshold being too low, which can effectively increase the output gain of the protection algorithm, which is conducive to improving the subjective experience such as the volume of the terminal device.
  • an embodiment of the present invention provides an audio signal processing apparatus.
  • the apparatus can be applied to various terminal devices, and can be implemented in any form of the terminal 100, such as a small terminal including a speaker ,
  • the device includes:
  • the DC resistance calculation module 207 is used to obtain the DC resistance of the voice coil of the speaker.
  • the specific implementation forms of its functions include, but are not limited to, the implementation methods of the DC resistance calculation module 207 corresponding to the examples in Example 1, Example 4, or Example 5.
  • This module is specifically used to execute the method mentioned in S91 and a method that can be replaced equivalently; this module can be implemented by the processor by calling a corresponding program instruction in the memory through a certain algorithm.
  • the obtaining module 213 is configured to obtain an audio input signal to be input to the speaker.
  • the specific implementation form of its functions includes, but is not limited to, the implementation method of the acquisition module 213 as corresponding to Example 1.
  • This module is specifically used to execute the method mentioned in S92 and a method that can be equivalently replaced; this module can be implemented by the processor invoking the corresponding program instruction in the memory to obtain the audio signal from the audio circuit interface.
  • the power calculation module 201 is used to determine the audio input power according to the voice coil DC resistance and the audio input signal.
  • the specific implementation form of its functions includes, but is not limited to, the implementation method of the power calculation module 201 corresponding to the examples in Example 1, Example 4, or Example 5.
  • This module is specifically used to execute the method mentioned in S93 and a method that can be equivalently replaced; this module can be implemented by the processor by calling a corresponding program instruction in the memory through a certain algorithm.
  • the transient power threshold calculation module 203 is used to obtain a thermal model of the speaker, and determine the transient power threshold according to the audio input power and the thermal model of the speaker.
  • the specific implementation forms of its functions include, but are not limited to, the implementation methods of the transient power threshold calculation module 203 corresponding to the examples in Example 1, Example 4, or Example 5.
  • This module is specifically used to execute the method mentioned in S94 and a method that can be replaced equivalently; this module can be implemented by the processor by calling a corresponding program instruction in the memory through a certain algorithm.
  • the power constraint module 202 is configured to determine the power constraint gain according to the audio input power and the transient power threshold; wherein, if the audio input power is greater than the transient power threshold, the power constraint gain is less than 1.
  • the specific implementation forms of its functions include, but are not limited to, the implementation methods of the power constraint module 202 corresponding to the examples in Example 1, Example 4, or Example 5.
  • This module is specifically used to execute the method mentioned in S95 and a method that can be equivalently replaced; this module can be implemented by the processor by calling a corresponding program instruction in the memory through a certain algorithm.
  • the temperature calculation module 206 is used to obtain the voice coil temperature of the speaker.
  • the specific implementation forms of its functions include, but are not limited to, the implementation methods of the temperature calculation module 206 corresponding to the examples in Example 1, Example 4, or Example 5.
  • This module is specifically used to execute the method mentioned in S96 and a method that can be replaced equivalently; this module can be implemented by the processor by calling a corresponding program instruction in the memory through a certain algorithm.
  • the temperature constraint module 204 is configured to determine a temperature constraint gain according to the voice coil temperature and the upper limit of the operating temperature of the speaker; wherein, if the voice coil temperature is greater than the upper limit of the operating temperature of the speaker, the temperature constraint gain is less than 1.
  • the specific implementation forms of its functions include, but are not limited to, the implementation methods of the temperature constraint module 204 corresponding to the examples in Example 1, Example 4, or Example 5.
  • This module is specifically used to execute the method mentioned in S97 and a method that can be equivalently replaced; this module can be implemented by the processor by calling a corresponding program instruction in the memory through a certain algorithm.
  • the gain application module 209 is used to adjust the audio input signal according to the power constrained gain and the temperature constrained gain to obtain the target signal.
  • Specific implementation forms of its functions include, but are not limited to, the implementation methods of the gain application module 209 corresponding to the examples in Example 1, Example 4, or Example 5.
  • This module is specifically used to execute the method mentioned in S98 and the method that can be equivalently replaced; this module can be implemented by the processor by calling a corresponding program instruction in the memory through a certain algorithm.
  • the device may also include:
  • the digital-to-analog converter 205 is used to convert the target signal into an analog signal.
  • the specific implementation forms of its functions include, but are not limited to, the implementation methods of the digital-to-analog converter 205 corresponding to the examples in Example 1, Example 4, or Example 5.
  • the amplifier 210 or 212 is used to amplify the analog signal to obtain a target analog signal, and transmit the target analog signal to a speaker for playback.
  • the specific implementation form of the function of the amplifier 210 includes but is not limited to the implementation method of the amplifier 210 corresponding to the example in Example 1 or Example 4; the specific implementation form of the function of the amplifier 212 includes but not limited to the amplifier 212 corresponding to the example in Example 5 Implementation method. It should be understood that the amplifier 210 includes a feedback circuit. When the amplifier 210 is used, there may also be an analog-to-digital converter 208. Specific implementation forms of the functions of the analog-to-digital converter 208 include but are not limited to those corresponding to the examples in Example 1 or Example 4. The realization method of the analog-to-digital converter 208.
  • the digital-to-analog converter 205 and the amplifier 210 or 212 are commonly used to perform the method mentioned in S99 and a method that can be equivalently replaced.
  • each module in the above device is only a division of logical functions, and in actual implementation, it may be fully or partially integrated into a physical entity or may be physically separated.
  • each of the above modules may be a separately established processing element, or may be integrated in a chip of the terminal, and may also be stored in the storage element of the controller in the form of program code and processed by a processor
  • the component calls and executes the functions of the above modules.
  • various modules can be integrated together or can be implemented independently.
  • the processing element described herein may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in a processor element or instructions in the form of software.
  • the processing element may be a general-purpose processor, such as a central processing unit (English: central processing unit, CPU for short), or one or more integrated circuits configured to implement the above method, for example, one or more specific integrations Circuit (English: application-specific integrated circuit, ASIC for short), or, one or more microprocessors (English: digital signal processor, DSP for short), or, one or more field programmable gate arrays (English: field-programmable gate (array for short: FPGA), etc.
  • a general-purpose processor such as a central processing unit (English: central processing unit, CPU for short), or one or more integrated circuits configured to implement the above method, for example, one or more specific integrations Circuit (English: application-specific integrated circuit, ASIC for short), or, one or more microprocessors (English: digital signal processor, DSP for short), or, one or more field programmable gate arrays (English: field-programmable gate (array for short: FPGA), etc.
  • the embodiments of the present invention may be provided as methods, systems, or computer program products. Therefore, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may take the form of a computer program product implemented on one or more computer usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • computer usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer readable memory produce an article of manufacture including an instruction device, the instructions The device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and / or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to produce computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and / or block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Multimedia (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本发明提出了一种音频信号处理方法,根据当前输入信号的功率与当前计算出的瞬态功率阈值实施功率约束,根据当前的音圈温度以及扬声器的工作温度上限实施温度约束;两种约束的联合控制增益的策略以及动态控制增益计算方法的提出,解决了扬声器过保护和输出增益突变问题,在保护扬声器音圈温度不过载的同时,可以最大化提升终端设备的外放音量等主观体验。

Description

一种音频信号处理方法、装置与设备 技术领域
本发明涉及终端技术领域,尤其涉及一种音频信号处理方法、装置与设备。
背景技术
随着便携式终端设备需求的快速增长,微型扬声器在手机、平板电脑等小型终端中的应用范围越来越广。目前小型终端设备中最常用的一类微型扬声器是动圈式扬声器(也称电动式扬声器,工作原理是输入电流通过线圈产生变化的磁场,从而让扬声器的膜片振动产生声音),其特点是电声转换效率极低(通常小于1%)并且会产生热量。在实际工作场景中为提升手机等终端设备的外放音量等主观体验,通常需要对其中的扬声器施加较大的驱动电压使其工作在大信号状态,甚至有时候达到其物理极限状态。然而在大信号状态下工作的扬声器通常温度较高,如不施加温度保护措施可能导致扬声器的音圈散圈产生杂音甚至烧毁整个扬声器。
对于扬声器温度保护这一问题,目前功率放大器(PA,Power Amplifier)的芯片厂商通用的温度保护方法如下:基于功率放大器的反馈信号,如电流和电压信号,计算出扬声器音圈直流阻,进而检测扬声器音圈的温度或输入功率,若检测结果超过对应阈值时,对输入信号衰减一定的增益。
一种现有技术,如专利US8774419B2,具体通过功率放大器的反馈信号和扬声器的热模型(热模型用于描述扬声器热耗散功率与音圈温度之间的关系,通常使用一个等效的阻容电路来模拟扬声器中的散热过程)计算得到一个稳态功率阈值,并用该稳态功率阈值去约束扬声器的输入信号的瞬态功率,当输入信号的瞬态功率大于稳态功率阈值时通过对输入信号衰减固定增益来进行温度保护。这一类方法在任何的扬声器工作状态下都可以采用同样的控制手段。
然而,该技术至少存在下述缺陷:
(1)通常基于扬声器热模型计算得到的稳态功率阈值远小于扬声器音圈的瞬态输入功率,因此采用稳态功率阈值控制瞬态输入功率会导致温度过保护问题(特指控制过程中由于目标阈值设置不当而导致的过分保护现象),即功率限幅器输出的控制增益长时处于偏低水平,将导致扬声器外放主观响度损失较大,不能最大化扬声器外放音量,未能充分地发挥扬声器的性能,也不能对扬声器进行更加灵活的保护。
(2)衰减固定增益会带来声音的突变,主观听觉体验下降。
发明内容
本发明提出了一种音频信号处理方法,根据当前输入信号的功率与当前计算出的瞬态功率阈值实施功率约束,根据当前的音圈温度以及扬声器的工作温度上限实施温度约束;两种约束的联合控制增益的策略以及动态控制增益计算方法的提出,解决了 扬声器过保护和输出增益突变问题,在保护扬声器音圈温度不过载的同时,可以最大化提升终端设备的外放音量等主观体验。
本发明实施例提供的具体技术方案如下:
第一方面,本发明实施例提供一种音频信号处理方法,该方法具体包括:获取扬声器的音圈直流阻;获取待输入扬声器的音频输入信号;根据音圈直流阻与音频输入信号确定音频输入功率;获取扬声器的热模型,并根据音频输入功率与热模型确定瞬态功率阈值;根据音频输入功率与瞬态功率阈值确定功率约束增益;其中,若音频输入功率大于瞬态功率阈值,则功率约束增益小于1;获取扬声器的音圈温度;根据音圈温度与扬声器的工作温度上限确定温度约束增益;其中,若音圈温度大于扬声器的工作温度上限,则温度约束增益小于1;根据功率约束增益与温度约束增益对音频输入信号进行调整,得到目标信号。
第二方面,本发明实施例提供一种音频信号处理装置,该装置具体包括:直流阻计算模块,用于获取扬声器的音圈直流阻;获取模块,用于获取待输入扬声器的音频输入信号;功率计算模块,用于根据音圈直流阻与音频输入信号确定音频输入功率;瞬态功率阈值计算模块,用于获取扬声器的热模型,并根据音频输入功率与扬声器的热模型确定瞬态功率阈值;功率约束模块,用于根据音频输入功率与瞬态功率阈值确定功率约束增益;其中,若音频输入功率大于瞬态功率阈值,则功率约束增益小于1;温度计算模块,用于获取扬声器的音圈温度;温度约束模块,用于根据音圈温度与扬声器的工作温度上限确定温度约束增益;其中,若音圈温度大于扬声器的工作温度上限,则温度约束增益小于1;增益应用模块,用于根据功率约束增益与温度约束增益对所述音频输入信号进行调整,得到目标信号。
根据本发明实施例提供的上述方法和装置的技术方案,根据当前输入信号的功率与当前计算出的瞬态功率阈值实施功率约束,根据当前的音圈温度以及扬声器的工作温度上限实施温度约束;两种约束的联合控制增益的策略以及动态控制增益计算方法的提出,解决了扬声器过保护和输出增益突变问题,在保护扬声器音圈温度不过载的同时,可以最大化提升终端设备的外放音量等主观体验。
根据第一方面或者第二方面,在一种可能的设计中,功率约束增益的大小与瞬态功率阈值与音频输入功率的比值成正相关。
根据第一方面或者第二方面,在一种可能的设计中,温度约束增益的大小跟工作温度上限与音圈温度的比值成正相关。
根据第一方面或者第二方面,在一种可能的设计中,方法还包括:若音频输入功率小于等于瞬态功率阈值,则功率约束增益等于1。
根据第一方面或者第二方面,在一种可能的设计中,方法还包括:若音圈温度小于等于扬声器的工作温度上限,则温度约束增益等于1。
根据第一方面或者第二方面,在一种可能的设计中,获取扬声器的音圈直流阻包括:利用反馈电路获取扬声器两端的反馈电压信号和反馈电流信号;根据反馈电压信号和反馈电流信号得到音圈直流阻。该方法由直流阻计算模块具体执行。这种设计适用于在扬声器输入的两端带有反馈结构的应用场景中。
根据第一方面或者第二方面,在一种可能的设计中,获取扬声器的音圈直流阻包括:
获取所述扬声器的音圈等效热阻抗传递函数;根据所述音圈等效热阻抗传递函数计算音圈温度的变化量;根据所述音圈温度的变化量计算所述扬声器的音圈直流阻。该方法由直流阻计算模块具体执行。这种设计适用于在扬声器输入的两端不带有反馈结构的应用场景中,当然也可以适用于带有反馈结构的应用场景中,在带有反馈结构的应用场景中,Re的计算方式更加多样灵活。其中,根据所述音圈等效热阻抗传递函数计算音圈温度的变化量具体可以包括:获取待输入所述扬声器的音频输入信号;根据所述扬声器的音频输入信号和所述音圈等效热阻抗传递函数计算音圈温度的变化量。
根据第一方面或者第二方面,在一种可能的设计中,获取扬声器的音圈温度包括:根据音圈直流阻计算扬声器的音圈温度。该方法由温度计算模块具体执行。
根据第一方面或者第二方面,在一种可能的设计中,获取扬声器的音圈温度包括:获取扬声器的音圈等效热阻抗传递函数;根据音圈等效热阻抗传递函数计算音圈温度。该方法由温度计算模块具体执行。这种设计可以不依赖于直流阻的计算。所述根据音圈等效热阻抗传递函数计算音圈温度具体可以包括:获取待输入所述扬声器的音频输入信号;根据所述扬声器的音频输入信号和所述音圈等效热阻抗传递函数计算音圈温度。
根据第一方面或者第二方面,在一种可能的设计中,上述方法还包括:将目标信号进行数模转换和放大,并将放大后的模拟信号传输给扬声器进行播放。
更具体地,上述可能的技术实现可以由处理器调用存储器中的程序与指令进行相应的处理,如算法实现,信号获取等。
第三方面,本发明实施例提供一种音频信号处理方法,该方法具体包括:获取扬声器的音圈直流阻;获取待输入扬声器的音频输入信号;根据音圈直流阻与音频输入信号确定音频输入功率;获取扬声器的热模型,并根据音频输入功率与热模型确定瞬态功率阈值;根据音频输入功率与瞬态功率阈值确定功率约束增益;其中,若音频输入功率大于瞬态功率阈值,则功率约束增益小于1;根据功率约束增益对音频输入信号进行调整,得到目标信号。
第四方面,本发明实施例提供一种音频信号处理方法,该方法具体包括:获取扬声器的音圈直流阻;获取待输入扬声器的音频输入信号;获取扬声器的音圈温度;根据音圈温度与扬声器的工作温度上限确定温度约束增益;其中,若音圈温度大于扬声器的工作温度上限,则温度约束增益小于1;根据功率约束增益与温度约束增益对音频输入信号进行调整,得到目标信号。
第五方面,本发明实施例提供一种终端设备,包含存储器、处理器、总线;存储器、以及处理器通过总线相连;存储器用于存储计算机程序和指令;处理器用于调用存储器中存储的计算机程序和指令,还具体用于使终端设备执行如上述任何一种可能的设计方法。
根据第五方面,在一种可能的设计中,终端设备还包括天线系统、天线系统在处理器的控制下,收发无线通信信号实现与移动通信网络的无线通信;移动通信网络包括以下的一种或多种:GSM网络、CDMA网络、3G网络、4G网络、5G网络、FDMA、 TDMA、PDC、TACS、AMPS、WCDMA、TDSCDMA、WIFI以及LTE网络。
对于上述任何一种可能的设计中的技术方案,在不违背自然规律的前提下,可以进行方案之间的组合。
现有技术采用温度约束或功率约束的单一方式对扬声器进行温度保护,例如上述的现有技术一只通过功率限幅器约束输入信号功率来实施温度保护。在实际工作场景中需要同时考虑扬声器温度和输入功率的大小才能准确区分各类信号来实施最优的温度保护措施。例如,对于大多数的功率大温度高的音乐信号和功率小温度低的音乐信号可以只通过功率或温度来进行区分,但对于某些功率大但温度偏低的音乐信号以及扫频等功率极大温度极高的信号,若不同时约束温度和功率则会导致音乐信号的外放音量出现突降而扫频信号的温度超过扬声器安全上限。因此现有技术无法完全准确地区分扫频等极端信号和音乐信号,不能针对扬声器当前的工作状态实施最优的温度保护措施,而且由于其对输入信号衰减固定增益将会导致扬声器外放音量无法达到最大值,不能充分发挥扬声器的性能。本发明所要解决的技术问题1是基于扬声器音圈的温度和瞬态输入功率准确区分各类工作场景和信号,使温度保护模块输出动态增益控制输出信号增益平滑变化,解决终端设备外放音量突变的痛点问题。
现有技术使用稳态功率阈值去限制瞬态功率,由于稳态功率阈值远小于瞬态功率,因此会导致温度过保护而使扬声器外放音量无法达到最大值。本发明所要解决的技术问题2是根据扬声器音圈温度实时计算输入信号的瞬态功率阈值,采用瞬态功率阈值去约束输入信号功率,解决功率约束阈值使用不当导致的温度过保护问题。
对于PA无法提供反馈信号的低端终端设备,现有技术无法检测扬声器音圈直流阻来计算音圈温度,因此无法实时监测扬声器音圈温度来对其进行最优的温度保护。本发明所要解决的技术问题3是在没有反馈结构无法采集反馈信号的情况下依旧能够实时预测扬声器音圈温度,解决低端终端设备扬声器无法实现最优温度保护的问题。
附图说明
图1为本发明实施例中一种终端结构示意图;
图2为本发明的一种音频信号处理装置结构示意图;
图3为本发明实施例中一种音频信号处理逻辑图;
图4为本发明实施例中一种音频信号处理方法流程图;
图5为本发明实施例中一种扬声器热模型示意图;
图6为本发明实施例中另一种音频信号处理装置示意图;
图7为本发明实施例中另一种音频信号处理装置示意图;
图8为本发明实施例中另一种音频信号处理装置示意图;
图9为本发明实施例中另一种音频信号处理装置示意图;
图10为本发明实施例中另一种音频信号处理方法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,并不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例中,终端,可以是向用户提供拍摄视频和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备,比如:数码相机、单反相机、移动电话(或称为“蜂窝”电话)、智能手机,可以是便携式、袖珍式、手持式、可穿戴设备(如智能手表等)、平板电脑、个人电脑(PC,Personal Computer)、PDA(Personal Digital Assistant,个人数字助理)、车载电脑、无人机、航拍器等。
图1示出了终端100的一种可选的硬件结构示意图。
参考图1所示,终端100可以包括射频单元110、存储器120、输入单元130、显示单元140、摄像头150、音频电路160(包含扬声器161、麦克风162)、处理器170、外部接口180、电源190等部件。本领域技术人员可以理解,图1仅仅是智能终端或多功能设备的举例,并不构成对智能终端或多功能设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件。如,至少存在存储器120、处理器170、音频电路160(包含扬声器161)。
摄像头150用于采集图像或视频,可以通过应用程序指令触发开启,实现拍照或者摄像功能。摄像头可以包括成像镜头,滤光片,图像传感器等部件。物体发出或反射的光线进入成像镜头,通过滤光片,最终汇聚在图像传感器上。成像镜头主要是用于对拍照视角中的所有物体(也可称为待拍摄场景、待拍摄对象、目标场景或目标对象,也可以理解为用户期待拍摄的场景图像)发出或反射的光汇聚成像;滤光片主要是用于将光线中的多余光波(例如除可见光外的光波,如红外)滤去;图像传感器主要是用于对接收到的光信号进行光电转换,转换成电信号,并输入到处理器170进行后续处理。其中,摄像头可以位于终端设备的前面,也可以位于终端设备的背面,摄像头具体个数以及排布方式可以根据设计者或厂商策略的需求灵活确定,本申请不做限定。
输入单元130可用于接收输入的数字或字符信息,以及产生与所述便携式多功能装置的用户设置以及功能控制有关的键信号输入。具体地,输入单元130可包括触摸屏131和/或其他输入设备132。所述触摸屏131可收集用户在其上或附近的触摸操作(比如用户使用手指、关节、触笔等任何适合的物体在触摸屏上或在触摸屏附近的操作),并根据预先设定的程序驱动相应的连接装置。触摸屏可以检测用户对触摸屏的触摸动作,将所述触摸动作转换为触摸信号发送给所述处理器170,并能接收所述处理器170发来的命令并加以执行;所述触摸信号至少包括触点坐标信息。所述触摸屏131可以提供所述终端100和用户之间的输入界面和输出界面。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触摸屏。除了触摸屏131,输入单元130还可以包括其他输入设备。具体地,其他输入设备132可以包括但不限于物理键盘、功能键(比如音量控制按键132、开关按键133等)、轨迹球、鼠标、操作杆 等中的一种或多种。
所述显示单元140可用于显示由用户输入的信息或提供给用户的信息、终端100的各种菜单、交互界面、文件显示和/或任意一种多媒体文件的播放。在本发明实施例中,显示单元还用于显示设备利用摄像头150获取到的图像/视频,可以包括某些拍摄模式下的预览图像/视频、拍摄的初始图像/视频以及拍摄后经过一定算法处理后的目标图像/视频。
进一步的,触摸屏131可覆盖显示面板141,当触摸屏131检测到在其上或附近的触摸操作后,传送给处理器170以确定触摸事件的类型,随后处理器170根据触摸事件的类型在显示面板141上提供相应的视觉输出。在本实施例中,触摸屏与显示单元可以集成为一个部件而实现终端100的输入、输出、显示功能;为便于描述,本发明实施例以触摸显示屏代表触摸屏和显示单元的功能集合;在某些实施例中,触摸屏与显示单元也可以作为两个独立的部件。
所述存储器120可用于存储指令和数据,存储器120可主要包括存储指令区和存储数据区,存储数据区可存储各种数据,如多媒体文件、文本等;存储指令区可存储操作系统、应用、至少一个功能所需的指令等软件单元,或者他们的子集、扩展集。还可以包括非易失性随机存储器;向处理器170提供包括管理计算处理设备中的硬件、软件以及数据资源,支持控制软件和应用。还用于多媒体文件的存储,以及运行程序和应用的存储。
处理器170是终端100的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器120内的指令以及调用存储在存储器120内的数据,执行终端100的各种功能和处理数据,从而对手机进行整体控制。可选的,处理器170可包括一个或多个处理单元;优选的,处理器170可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器170中。在一些实施例中,处理器、存储器、可以在单一芯片上实现,在一些实施例中,他们也可以在独立的芯片上分别实现。处理器170还可以用于产生相应的操作控制信号,发给计算处理设备相应的部件,读取以及处理软件中的数据,尤其是读取和处理存储器120中的数据和程序,以使其中的各个功能模块执行相应的功能,从而控制相应的部件按指令的要求进行动作。
所述射频单元110可用于收发信息或通话过程中信号的接收和发送,例如,将基站的下行信息接收后,给处理器170处理;另外,将设计上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,射频单元110还可以通过无线通信与网络设备和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
音频电路160、扬声器161、麦克风162可提供用户与终端100之间的音频接口。音频电路160可将接收到的音频数据转换为电信号,传输到扬声器161,由扬声器161转换为声音信号输出;另一方面,麦克风162用于收集声音信号,还可以将收集的声音信号转换为电信号,由音频电路160接收后转换为音频数据,再将音频数据输出处理器170处理后,经射频单元110以发送给比如另一终端,或者将音频数据输出至存储器120以便进一步处理,音频电路也可以包括耳机插孔163,用于提供音频电路和耳机之间的连接接口。
终端100还包括给各个部件供电的电源190(比如电池),优选的,电源可以通过电源管理系统与处理器170逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
终端100还包括外部接口180,所述外部接口可以是标准的Micro USB接口,也可以使多针连接器,可以用于连接终端100与其他装置进行通信,也可以用于连接充电器为终端100充电。
尽管未示出,终端100还可以包括闪光灯、无线保真(wireless fidelity,WiFi)模块、蓝牙模块、不同功能的传感器等,在此不再赘述。下文中描述的部分或全部方法均可以应用在如图1所示的终端中。
本发明可应用于具有扬声器外放功能的终端设备,落地产品形态可以是智能终端,如手机、平板、DV、摄像机、照相机、便携电脑、笔记本电脑、智能音箱、电视等安装有扬声器的产品;具体地,本发明的功能模块部署在相关设备的DSP芯片上,具体的可以是其中的应用程序或软件;本发明部署在终端设备上,通过软件安装或升级,通过硬件的调用配合,提供音频信号处理功能,提升扬声器温度保护功能,进而充分发挥扬声器性能。
本发明主要应用在终端设备多媒体文件的音频外放、免提通话等需要利用终端中的对微型扬声器进行大音量播放的场景。包括但不限于:
应用场景1,音乐电影外放(单声道、双声道以及四声道);
应用场景2,免提通话(运营商电话、网络电话);
应用场景3,手机铃声(外放模式、插耳机模式);
应用场景4,游戏外放……
这些场景中,如果微型扬声器工作在大信号下,器件需要进行温度保护。因为在大信号情形下,扬声器温度可能超过安全值;小信号情形下,扬声器温度超过安全值的风险较低,但仍可以监控音圈的温度。
以上应用场景均可以通过本发明提出的方法实时检测扬声器音圈(可简称音圈)的温度和输入功率,如果播放功率较大的信号使扬声器音圈的温度和功率超过对应的阈值时(阈值是根据扬声器自身允许的物理极限状态预先设定的),会触发本发明提出的温度控制方法,进而达到动态平滑降低输入信号的增益避免扬声器外放音量突变并且保证音圈温度不超过扬声器安全上限,实现对扬声器的最优温度保护。下面以示例的方式对本发明进行说明。
示例1
本发明的一种音频处理信号装置结构如图2所示,输入信号经过功率约束和温度约束处理后进行数模转换传送给放大器,最终输出给扬声器播放。下面结合图2对示例1进行具体说明。(注:图2中101-109、111、112、113表示信号,201-211表示模块)
其中,系统模块可以包括:功率计算模块201、功率约束模块202、瞬态功率阈值计算模块203、温度约束模块204、数模转换器205、温度计算模块206、直流阻计算模块207、模数转换器208、增益应用模块209、带反馈电路的放大器210以及扬声器211组成。系统模块中的核心单元可以包括功率约束单元和温度约束单元,功率约束单元包括功率计算模块201、功率约束模块202、瞬态功率阈值计算模块203,温度约束单元包括温度约束模块204、温度计算模块206。
各个模块的功能描述如下:
功率计算模块201:可以根据数字音频输入信号101和音圈直流阻109计算数字音频输入信号101的输入功率102。
功率约束模块202:可以比较瞬态功率阈值103和输入功率102;如果音频输入功率小于等于瞬态功率阈值则不对输入信号做任何处理,此时功率约束模块输出的增益为1,如果音频输入功率大于瞬态功率阈值,则减弱输入信号,此时功率约束模块输出的功率约束增益104为小于1的值,其中,功率约束增益104的大小跟瞬态功率阈值与音频输入功率的比值成正相关。通过这种方式可以有效约束功率大的输入信号。
瞬态功率阈值计算模块203:可以根据输入功率102和已知扬声器的的热模型参数计算瞬态功率阈值103;使用瞬态功率阈值103约束输入信号可以实现最优的温度保护。具体地,扬声器在工作状态下,扬声器输入的信号是瞬态变化的,因此用瞬态的阈值去参考和控制才是更加合理和准确的,两者的大小是具有强参考性和实时性的,就不存在现有技术用一个固定且偏低的稳态阈值约束瞬态输入功率导致的过保护问题,例如比值过低,可能导致的增益或过低,扬声器的播放响度过低,无法充分发挥扬声器的性能,结果上削弱了不该削弱的声音。因此,本发明能够更高效且更充分地发挥扬声器的性能并且保证声音播放的平稳度。
可选的,在一些其它的实施方式中,瞬态功率阈值也可以是预先设定的一些值,可以随输入信号的功率不同而有不同的设计。
温度约束模块204:可以比较预先设定的温度阈值(包括但不限于器件正常工作允许的最高温度,或用户自定义阈值)和温度极端模块206计算得到的音圈温度111,如果音圈温度小于等于温度阈值则不对输入信号做任何处理,此时温度约束模块输出的增益为1;如果音圈温度大于预先设定的温度阈值,则减弱输入信号,此时温度约束模块输出的温度约束增益105为小于1的值,其中,温度约束增益105的大小跟温度阈值与音圈温度的比值成正相关。通过这种方式可以有效约束温度高的信号。
数模转换器205:可以将增益调整后的数字信号112转变为模拟信号106。
温度计算模块206:可以根据音圈直流阻109计算音圈温度111。
直流阻计算模块207:可以根据模数转换后的反馈电压电流信号108计算扬声器音圈直流阻109。
模数转换器208:可以将反馈的模拟信号107转变为数字反馈信号108。
增益应用模块209:可以用于将功率约束模块202得到的功率约束增益104与温度约束模块204得到的温度约束增益105作用于数字音频输入信号101上,进行信号调整,得到增益调整后的数字信号112。
带有反馈电路的放大器210:可以用于将模拟信号106放大为模拟信号113,并传送给扬声器211播放。其中的反馈电路部分可以用于采样扬声器两端的模拟信号,包括电压和电流信号。
获取模块213(图中未示出),用于从DSP芯片中获取数字音频输入。
数模转换器205、模数转换器208、带反馈电路的放大器210以及扬声器211为业界公知的技术或器件,其功能同样为业界公知,本发明实施例中不再对这些模块予以赘述。
具体地,请参阅图3,图3为本发明实施例中一种信号处理逻辑图。可以包括以下步骤:
步骤300:接收来自DSP芯片的音频数字信号U in
步骤301:根据输入信号U in和音圈直流阻Re计算音圈的输入功率P in
步骤302:根据音圈输入功率P in和已知的热模型参数计算瞬态功率阈值P lim
步骤303:功率约束模块比较音圈输入功率P in和瞬态功率阈值P lim的大小;
步骤304:如果P in>P lim则动态降低功率约束模块输出增益,功率约束增益小于1;
步骤305:如果P in≤P lim则不改变功率约束模块输出增益,即增益为1(0dB);
步骤306:根据音圈直流阻Re计算音圈温度T v
步骤307:温度约束模块比较音圈温度T v和预设的温度阈值T lim
步骤308:如果T v>T lim则动态降低温度约束模块输出增益,温度约束增益小于1;
步骤309:如果T v≤T lim则不改变温度约束模块输出增益,即增益为1(0dB);
步骤310:将功率约束模块(可由步骤304或305得到)和温度约束模块的输出增益(可由步骤308或309得到)作用到输入信号U in上,得到输出信号U out
步骤311:扬声器播放经过PA处理后的模拟信号;
步骤312:PA抓取扬声器两端的电压电流信号;
步骤313:根据PA抓取的反馈电压电流信号计算音圈直流阻Re用于计算音圈温度T v(步骤301)和输入功率P in(步骤306)。
可见,该方法是含有反馈机制的,若计算过程中有计算频率,则上一时刻(t n-1)抓取的反馈电压电流信号计算上一时刻的音圈直流阻Re,上一时刻的音圈直流阻Re用于计算下一时刻(t n)的音圈温度T v和输入功率P in,音圈温度T v和输入功率P in将会影响下一时刻的输出电压和电流,继续进行反馈……本发明中不对反馈机制予以赘述,应理解,反馈机制属于公知技术。
此外,上一时刻和下一时刻属于一个相对的概念,上一时刻发生在下一时刻之前;音频信号上一时刻与下一时刻(足够小的的情况下)近似认为幅度不会突变,而是一个幅度平滑的信号。
另外这两个概念并不局限于带有反馈电路的结构中,在带有反馈电路的电路结构中,上一时刻t n-1与下一时刻t n的时间差可以是反馈电路的时延;在一些不带有反馈 的电路结构(如下面示例5)中以及一些带有反馈的电路结构中,上一时刻t n-1与下一时刻t n的时间差也可以是用户定义的预设时间间隔。另外,上一时刻t n-1与下一时刻t n的时间差在信号处理的过程中可以是恒定的值,也可以是一个变化的值,或者满足用户的一些设计条件;例如上一时刻算出来的数据,可以用于参与下一时刻的相关计算,并且下一时刻可以保持很久。例如,用第100ms的数据,参与第200ms-第400ms这200ms的数据的计算;或者用第100ms的数据,参与第200ms的计算,该结果一直作为第200ms-第400ms这200ms的结果;等等……
请参阅图4,图4为本发明实施例中一种音频信号处理方法流程图。该方法可以包括以下步骤:
步骤41:获取扬声器的音圈直流阻。
带反馈电路的放大器210获取在上一时刻扬声器两端的电压信号和电流信号,即模拟反馈信号107,包括反馈电压和电流信号,经模数转换器208转换为数字反馈信号108,包括数字反馈电压和电流信号;其中,上一时刻用上述t n-1表示;直流阻计算模块207根据数字反馈电压和电流信号计算输出音圈直流阻109Re(t n-1)。Re(t n-1)的具体计算方法,可以通过除以进入扬声器211的电流和电压的均方根(RMS)值来确定估计的电阻。如CN103873985A具体实施方式[0020]部分。该步骤还可以采用现有技术中的其他方案,本发明中不予以列举和限定。
步骤42:获取数字音频输入信号。
获取当前(可以理解为一种情形的“下一时刻”)的音频输入信号101,用U in(t n)来表示,下一时刻用上述t n来表示,数字音频输入信号可以为DSP的输出信号,U in(t n)需要经过一系列的信号处理才能输出给扬声器。
上一时刻与下一时刻的时延在本示例中与带反馈电路的放大器中的反馈电路的时延有关。在一些其他的实现场景中,下一时刻与上一时刻的时延还可以由用户自定义时间,例如(0,t0)之间的任意值,t0为一个预设值。
获取数字音频输入信号可以由获取模块213(图中未示出)执行。
步骤43:根据音圈直流阻和音频输入信号确定音频输入功率。
功率计算模块201根据音圈直流阻109和音频输入信号101计算音频输入功率102,P in(t n),实现方式包括但不限于如下公式:
Figure PCTCN2019109273-appb-000001
步骤44:根据音频输入功率以及扬声器的热模型,确定出瞬态功率阈值;
瞬态功率阈值计算模块203根据音频输入功率102P in(t n)和已知的扬声器的热模型参数(属于器件的自身属性),计算输出瞬态功率阈值103P lim(t n),实现方式包括但不限于如下公式:
P lim(t n)=[T lim-P in(t n)*Z m(t n)]*[Z v-Z m] -1
上式中*表示卷积运算,-1表示求逆运算,T lim为已知的扬声器温度上限,Z v和Z m分别表示扬声器音圈和磁体部分的等效热阻抗传递函数,可按照如图5所示的热模 型或其他已知的等效热模型求出,具体方法可参见文献(Chapman,Peter John."Thermal simulation of loudspeakers."Audio Engineering Society Convention 104.Audio Engineering Society,1998.)。图5中的模型参数R tv,R tm,C tv,C tm等参数可由仪器测得或通过参数辨识方法得到;热模型以及热模型参数还可以由扬声器供应商提供。
步骤45:根据音频输入功率与瞬态功率阈值的大小关系确定功率约束增益;
功率约束模块202比较瞬态功率阈值103P lim(t n)和音频输入功率102P in(t n)的大小,输出功率约束增益104,G P(t n),实现方式包括但不限于如下公式:
Figure PCTCN2019109273-appb-000002
步骤46:根据音圈直流阻,确定音圈温度;
温度计算模块206根据上一时刻的音圈直流阻109Re(t n-1),得到音圈温度111,T v(t n-1)。实现方式包括但不限于如下公式:
Figure PCTCN2019109273-appb-000003
上式中的R 0、T 0和α分别表示扬声器的参考直流阻、参考温度(如各种标准下的室温、或某一预设温度)和扬声器的音圈温阻系数,这些参数可以在扬声器的规格说明书中得到。
步骤47:根据音圈温度和扬声器工作温度上限确定出温度约束增益;
温度约束模块204比较音圈温度110T v(t n-1)和扬声器工作温度上限T lim(T lim的值可以是工作状态极限值,也可以是由厂商规定的某一个预设值)的大小,根据大小关系输出温度约束增益105,G T(t n),实现方式包括但不限于如下公式:
Figure PCTCN2019109273-appb-000004
步骤48:根据温度约束增益和功率约束增益对音频输入信号进行调整,得到目标数字信号;
增益应用模块209根据温度约束增益105和功率约束增益104调整音频输入信号101,得到目标数字信号112,实现方式包括但不限于如下公式:
U out(t n)=G T(t n)·G P(t n)·U in(t n)
上式中在触发功率约束时,G P(t n)<1,触发温度约束时G T(t n)<1,因此只触发功率约束或温度约束,或同时触发两者时,扬声器输出信号U out(t n)的幅度降低,这会使音圈温度降低,达到温度保护的目标。
具体实现过程中,可在上述公式的基础上对输入信号U in(t n)乘以优化的系数,这个系数可以和器件、工作状态有关。
步骤49:对目标数字信号进行数模转换、放大器放大,得到目标模拟信号,并由 扬声器播放目标模拟信号。
具体地,数模转换器205对目标数字信号112进行数模转换,变为模拟信号106,带反馈电路的放大器210对106进一步放大得到目标模拟信号113,并输入给扬声器211进行播放。
采用本示例方法,可以通过功率约束和温度约束联合控制能够准确区分各类信号,并且动态平滑控制输入信号的增益,实现了扬声器播放任何信号时音圈温度不超过其安全上限且外放音量不发生突变的有益效果。
示例2
下面结合图6对示例2进行具体说明,图6为本发明实施例中另一种音频信号处理装置示意图。相比于示例1中的图2,示例2中缺少了温度约束单元,即没有了温度约束模块204、温度计算模块206,或者这两个模块不起作用。该结构下,本发明实施例中提供了另一种音频信号处理方法流程,该方法可以包括以下步骤:
步骤51:同步骤41。
步骤52:同步骤42。
步骤53:同步骤43。
步骤54:同步骤44。
步骤55:同步骤45。
步骤56:根据功率约束增益对音频输入信号进行调整,得到目标数字信号;增益应用模块209根据功率约束增益104调整音频输入信号101,得到目标数字信号112,实现方式包括但不限于如下公式:
U out(t n)=G P(t n)·U in(t n)
具体实现过程中,可在上述公式的基础上对输入信号U in(t n)乘以优化的系数,这个系数可以和器件、工作状态有关。
步骤57:对步骤56得到的目标数字信号112进行数模转换、放大器放大,得到目标模拟信号,并由扬声器播放目标模拟信号。类似步骤49。
示例3:
下面结合图7对示例3进行具体说明,图7为本发明实施例中另一种音频信号处理装置示意图。相比于示例1中的图2,示例3中缺少了功率约束单元,即没有了功率计算模块201、功率约束模块202、瞬态功率阈值计算模块203,或者这三个模块不起作用。该结构下,本发明实施例中提供了另一种音频信号处理方法流程,该方法可以包括以下步骤:
步骤61:同步骤41。
步骤62:同步骤46。
步骤63:同步骤47。
步骤64:根据温度约束增益对音频输入信号进行调整,得到目标数字信号;增益应用模块209根据温度约束增益105调整音频输入信号101,得到目标数字信号112,实现方式包括但不限于如下公式:
U out(t n)=G T(t n)·U in(t n)
具体实现过程中,可在上述公式的基础上对输入信号U in(t n)乘以优化的系数,这个系数可以和器件、工作状态有关。
步骤65:对步骤64中得到的目标数字信号112进行数模转换、放大器放大,得到目标模拟信号,并由扬声器播放目标模拟信号。类似步骤49。
示例4
下面结合图8对示例4进行具体说明,图8为本发明实施例中另一种系统级模块结构图。相比于示例1中的图2,温度计算模块206的功能发生了变化,首先输入发生了变化,温度计算模块206根据音频的输入功率来计算音圈温度,而不再通过直流阻来计算了。该结构下,本发明实施例中提供了另一种音频信号处理方法流程,该方法可以包括以下步骤:
步骤71:同步骤41。
步骤72:同步骤42。
步骤73:同步骤43。
步骤74:同步骤44。
步骤75:同步骤45。
步骤76:温度计算模块206根据音频输入功率102P in(t n)和扬声器的音圈等效热阻抗传递函数Z v,计算出音圈温度111,T v(t n-1),并将其传送给温度约束模块204;其中,等效热阻抗传递函数Z v可以从扬声器的器件规格书中得到,或者由供应商提供,或者可以自己用仪器测量,或者用算法计算得到)。T v(t n-1)的计算方式包括但不限于如下公式:
ΔT v(t n-1)=P in(t n)*Z v
T v(t n-1)=ΔT v(t n-1)+T 0
上式中*表示卷积运算,ΔT v(t n-1)为音圈温升,T 0为已知的参考温度(如常见标准下的室温,或者器件规格书中规定的某一个温度)。
即,该步骤中与示例1的差异可以理解为T v(t n-1)的算法不同。
步骤77:类似步骤47,步骤77与步骤47差别在于,对于温度约束模块201,输入的音圈温度是来源于步骤76。
步骤78:同步骤48。
步骤79:同步骤49。
示例5
上述示例采用基于功率放大器反馈的电压电流信号,进而计算出扬声器音圈直流阻;然而这些示例无法适用于没有反馈结构的低端终端设备,不能对此类设备的扬声器实施最优的温度保护措施。其中,最优温度保护指的是在保证扬声器音圈温度不超过器件安全上限的情况下,温度保护算法输出的增益对输入信号影响最低,这样可以最大程度的不降低扬声器的外放音量。针对此问题,本发明还提出了示例5。
下面结合图9对示例5进行具体说明,图9为本发明实施例中另一种系统级模块结构图。对于低端设备PA无法反馈电压电流信号的情况,不能再根据反馈信号计算得到直流阻。示例5提出了一种不需要反馈信号计算直流阻的方法。相比于示例4中的图8,原带反馈电路的放大器210变为无反馈电路的放大器212;并且没有了反馈回路中的模数转换器208,或者模数转换器208在该实施例中不使能;因此,没有反馈信号也就不能通过反馈信号来计算音圈的直流阻;另外,示例5相比于示例4,直流阻计算模块207的计算方式也发生了变化。温度计算模块206根据音频的输入功率先计算出音圈温升114,再由直流阻计算模块207计算出音圈的直流阻。该结构下,本发明实施例中提供了另一种音频信号处理方法流程,该方法可以包括以下步骤:
步骤81:温度计算模块206根据上一时刻的输入功率102P in(t n-1)和已知的音圈等效热阻抗传递函数Z v计算出音圈温升114,ΔT v(t n-1),即音圈温度的变化量;直流阻计算模块207根据ΔT v(t n-1)计算出音圈直流阻R e(t n-1)。实现方式包括但不限于如下公式:
ΔT v(t n-1)=P in(t n)*Z v
R e(t n-1)=R 0[1+α·ΔT v(t n-1)]
上式中的R 0、T 0和α分别表示扬声器的参考直流阻、参考温度(如各种标准下的室温、或某一预设温度)和扬声器的音圈温阻系数,这些参数可以在扬声器的规格说明书中得到。
步骤82:同步骤72。
步骤83:类似步骤73;步骤83与步骤73差别在于,对于功率计算模块201,输入的音圈直流阻109是来源于步骤81的。
步骤84:同步骤74。
步骤85:同步骤75。
步骤86:同步骤76。
步骤87:同步骤77。
步骤88:同步骤78。
步骤89:同步骤79。
示例5在无反馈电压电流信号情况下给出了直流阻计算方法,解决了由于无法预测音圈温度导致的过保护问题,对于提升低端终端设备的外放响度具有十分重要的应用价值。同时,实现了无反馈信号情况下依旧能预测扬声器温度的功能,可兼容无法提供反馈信号的低端终端设备。
应理解,在本发明不同的示例中,相同的信号标号所指的信号可以有不同的来源或可以通过不同的算法得到,并不构成限定;相同的模块标号所指的功能模块所包含的功能也可以在功能和算法上存在差异,也不应构成限定。另外,在不同示例的步骤引用中,“同步骤xx”更侧重于指两者的信号处理逻辑类似,并不限定于两者的输入和输出都要完全相同,也并不限定两个功能模块完全等同。
请参阅图10,图10为本发明中另一种音频信号处理方法流程图。该方法包括:
S91,获取扬声器的音圈直流阻。
具体地,实现方式可以包括但不限于步骤41,或步骤81。应理解,该步骤得到的音圈直流阻均可以参与下述步骤中与音圈直流阻有关的运算。
S92,获取待输入扬声器的音频输入信号。
具体地,实现方式可以包括但不限于步骤42。
S93,根据所述音圈直流阻与所述音频输入信号确定音频输入功率。
具体地,实现方式可以包括但不限于步骤43。
S94,获取扬声器的热模型,并根据音频输入功率与热模型确定瞬态功率阈值。
具体地,实现方式可以包括但不限于步骤44。
S95,根据音频输入功率与瞬态功率阈值确定功率约束增益;其中,若音频输入功率大于瞬态功率阈值,则功率约束增益小于1。
具体地,实现方式可以包括但不限于步骤45。
S96,获取所述扬声器的音圈温度。
具体地,实现方式可以包括但不限于步骤46,或步骤76。应理解,该步骤得到的音圈温度均可以参与下述步骤中与音圈温度有关的运算。
S97,根据所述音圈温度与所述扬声器的工作温度上限确定温度约束增益;其中,若所述音圈温度大于所述扬声器的工作温度上限,则所述温度约束增益小于1。
具体地,实现方式可以包括但不限于步骤47、或77。
S98,根据所述功率约束增益与所述温度约束增益对所述音频输入信号进行调整,得到目标信号。
具体地,实现方式可以包括但不限于步骤48。
S99,对目标数字信号进行数模转换、放大器放大,得到目标模拟信号,并由扬声器播放目标模拟信号。
具体地,实现方式可以包括但不限于步骤49、57、65。
本发明提供了一种音频信号处理方法,通过功率约束和温度约束联合作用输出动态增益平滑处理输入信号,对扬声器进行温度保护。具有如下有益效果:
1)功率约束(体现在功率约束增益)和温度约束(体现在温度约束增益)联合控制策略以及动态控制增益计算方法的提出,解决了由于无法准确区分各类信号而导致的过保护和输出增益突变问题,在保护扬声器音圈温度不过载的同时,可以最大化提升终端设备的外放音量等主观体验,可以彻底解决终端设备外放等场景下用户主观听感突变的难题。
2)瞬态功率阈值计算方法的提出解决了由于稳态功率阈值过低导致的过保护问题,可以有效提升保护算法的输出增益,有利于提升终端设备的外放音量等主观体验。
基于上述实施例提供的音频信号处理方法,本发明实施例提供一种音频信号处理装置所述装置可以应用于多种终端设备,可以如终端100的任意一种实现形式,如包含扬声器的小型终端,该装置包括:
直流阻计算模块207,用于获取扬声器的音圈直流阻。其功能的具体实现形式包括但不限于如示例1、示例4或示例5中实例所对应的直流阻计算模块207的实现方法。该模块具体用于执行S91中所提到的方法以及可以等同替换的方法;该模块可以由处理器调用存储器中相应的程序指令通过一定的算法来实现。
获取模块213,用于获取待输入所述扬声器的音频输入信号。其功能的具体实现形式包括但不限于如示例1中所对应的获取模块213的实现方法。该模块具体用于执行S92中所提到的方法以及可以等同替换的方法;该模块可以由处理器调用存储器中相应的程序指令,从音频电路接口获取音频信号来实现。
功率计算模块201,用于根据所述音圈直流阻与音频输入信号确定音频输入功率。其功能的具体实现形式包括但不限于如示例1、示例4或示例5中实例所对应的功率计算模块201的实现方法。该模块具体用于执行S93中所提到的方法以及可以等同替换的方法;该模块可以由处理器调用存储器中相应的程序指令通过一定的算法来实现。
瞬态功率阈值计算模块203,用于获取扬声器的热模型,并根据音频输入功率与扬声器的热模型确定瞬态功率阈值。其功能的具体实现形式包括但不限于如示例1、示例4或示例5中实例所对应的瞬态功率阈值计算模块203的实现方法。该模块具体用于执行S94中所提到的方法以及可以等同替换的方法;该模块可以由处理器调用存储器中相应的程序指令通过一定的算法来实现。
功率约束模块202,用于根据音频输入功率与瞬态功率阈值确定功率约束增益;其中,若音频输入功率大于瞬态功率阈值,则功率约束增益小于1。其功能的具体实现形式包括但不限于如示例1、示例4或示例5中实例所对应的功率约束模块202的实现方法。该模块具体用于执行S95中所提到的方法以及可以等同替换的方法;该模块可以由处理器调用存储器中相应的程序指令通过一定的算法来实现。
温度计算模块206,用于获取扬声器的音圈温度。其功能的具体实现形式包括但不限于如示例1、示例4或示例5中实例所对应的温度计算模块206的实现方法。该模块具体用于执行S96中所提到的方法以及可以等同替换的方法;该模块可以由处理器调用存储器中相应的程序指令通过一定的算法来实现。
温度约束模块204,用于根据音圈温度与扬声器的工作温度上限确定温度约束增益;其中,若音圈温度大于所述扬声器的工作温度上限,则温度约束增益小于1。其功能的具体实现形式包括但不限于如示例1、示例4或示例5中实例所对应的温度约束模块204的实现方法。该模块具体用于执行S97中所提到的方法以及可以等同替换的方法;该模块可以由处理器调用存储器中相应的程序指令通过一定的算法来实现。
增益应用模块209,用于根据功率约束增益与温度约束增益对音频输入信号进行调整,得到目标信号。其功能的具体实现形式包括但不限于如示例1、示例4或示例5中实例所对应的增益应用模块209的实现方法。该模块具体用于执行S98中所提到的方法以及可以等同替换的方法;该模块可以由处理器调用存储器中相应的程序指令通过一定的算法来实现。
此外,该装置还可以包括:
数模转换器205,用于将目标信号转换为模拟信号。其功能的具体实现形式包括但不限于如示例1、示例4或示例5中实例所对应的数模转换器205的实现方法。
放大器210或212,用于将模拟信号放大得到目标模拟信号,并将目标模拟信号传输给扬声器进行播放。放大器210其功能的具体实现形式包括但不限于如示例1或示例4中实例所对应的放大器210的实现方法;放大器212其功能的具体实现形式包括但不限于示例5中实例所对应的放大器212的实现方法。应理解,放大器210含有反 馈电路,当放大器采用210时,还可以有模数转换器208,模数转换器208其功能的具体实现形式包括但不限于如示例1或示例4中实例所对应的模数转换器208的实现方法。
数模转换器205和放大器210或212共同用于执行S99中所提到的方法以及可以等同替换的方法。
其中,上述具体的方法示例以及实施例中技术特征的解释、表述、以及多种实现形式的扩展也适用于装置中的方法执行,装置实施例中不予以赘述。
应理解以上装置中的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。例如,以上各个模块可以为单独设立的处理元件,也可以集成在终端的某一个芯片中实现,此外,也可以以程序代码的形式存储于控制器的存储元件中,由处理器的某一个处理元件调用并执行以上各个模块的功能。此外各个模块可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。该处理元件可以是通用处理器,例如中央处理器(英文:central processing unit,简称:CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(英文:application-specific integrated circuit,简称:ASIC),或,一个或多个微处理器(英文:digital signal processor,简称:DSP),或,一个或者多个现场可编程门阵列(英文:field-programmable gate array,简称:FPGA)等。
应理解本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定 方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的部分实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括已列举实施例以及落入本发明范围的所有变更和修改。显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也包含这些改动和变型在内。

Claims (19)

  1. 一种音频信号处理方法,其特征在于,所述方法包括:
    获取扬声器的音圈直流阻;
    获取待输入所述扬声器的音频输入信号;
    根据所述音圈直流阻与所述音频输入信号确定音频输入功率;
    获取所述扬声器的热模型,并根据所述音频输入功率与所述热模型确定瞬态功率阈值;
    根据所述音频输入功率与所述瞬态功率阈值确定功率约束增益;其中,若所述音频输入功率大于所述瞬态功率阈值,则所述功率约束增益小于1;
    获取所述扬声器的音圈温度;
    根据所述音圈温度与所述扬声器的工作温度上限确定温度约束增益;其中,若所述音圈温度大于所述扬声器的工作温度上限,则所述温度约束增益小于1;
    根据所述功率约束增益与所述温度约束增益对所述音频输入信号进行调整,得到目标信号。
  2. 如权利要求1所述方法,其特征在于,所述功率约束增益的大小与所述瞬态功率阈值与所述音频输入功率的比值成正相关。
  3. 如权利要求1或2所述方法,其特征在于,所述温度约束增益的大小跟所述工作温度上限与所述音圈温度的比值成正相关。
  4. 如权利要求1-3任一项所述方法,其特征在于,所述方法还包括:
    若所述音频输入功率小于等于所述瞬态功率阈值,则所述功率约束增益等于1;
    若所述音圈温度小于等于所述扬声器的工作温度上限,则所述温度约束增益等于1。
  5. 如权利要求1-4任一项所述方法,其特征在于,所述获取扬声器的音圈直流阻包括:
    利用反馈电路获取所述扬声器两端的反馈电压信号和反馈电流信号;
    根据所述反馈电压信号和所述反馈电流信号得到所述音圈直流阻。
  6. 如权利要求1-4任一项所述方法,其特征在于,所述获取扬声器的音圈直流阻包括:
    获取所述扬声器的音圈等效热阻抗传递函数;
    根据所述音圈等效热阻抗传递函数计算音圈温度的变化量;
    根据所述音圈温度的变化量计算所述扬声器的音圈直流阻。
  7. 如权利要求1-6任一项所述方法,其特征在于,所述获取所述扬声器的音圈温度包括:
    根据所述音圈直流阻计算所述扬声器的音圈温度。
  8. 如权利要求1-6任一项所述方法,其特征在于,所述获取所述扬声器的音圈温度包括:
    获取所述扬声器的音圈等效热阻抗传递函数;
    根据所述音圈等效热阻抗传递函数计算音圈温度。
  9. 如权利要求1-8任一项所述方法,其特征在于,所述方法还包括:将所述目标信号进行数模转换和放大,并将放大后的模拟信号传输给所述扬声器进行播放。
  10. 一种音频信号处理方法,其特征在于,所述方法包括:
    获取扬声器的音圈直流阻;
    获取待输入所述扬声器的音频输入信号;
    根据所述音圈直流阻与所述音频输入信号确定音频输入功率;
    获取所述扬声器的热模型,并根据所述音频输入功率与所述热模型确定瞬态功率阈值;
    根据所述音频输入功率与所述瞬态功率阈值确定功率约束增益;其中,若所述音频输入功率大于所述瞬态功率阈值,则所述功率约束增益小于1;
    根据所述功率约束增益对所述音频输入信号进行调整,得到目标信号。
  11. 一种音频信号处理方法,其特征在于,所述方法包括:
    获取扬声器的音圈直流阻;
    获取待输入所述扬声器的音频输入信号;
    获取所述扬声器的音圈温度;
    根据所述音圈温度与所述扬声器的工作温度上限确定温度约束增益;其中,若所述音圈温度大于所述扬声器的工作温度上限,则所述温度约束增益小于1;
    根据所述功率约束增益与所述温度约束增益对所述音频输入信号进行调整,得到目标信号。
  12. 一种音频信号处理装置,其特征在于,所述装置包括:
    直流阻计算模块,用于获取扬声器的音圈直流阻;
    获取模块,用于获取待输入所述扬声器的音频输入信号;
    功率计算模块,用于根据所述音圈直流阻与所述音频输入信号确定音频输入功率;
    瞬态功率阈值计算模块,用于获取所述扬声器的热模型,并根据所述音频输入功率与所述扬声器的热模型确定瞬态功率阈值;
    功率约束模块,用于根据所述音频输入功率与所述瞬态功率阈值确定功率约束增益;其中,若所述音频输入功率大于所述瞬态功率阈值,则所述功率约束增益小于1;
    温度计算模块,用于获取所述扬声器的音圈温度;
    温度约束模块,用于根据所述音圈温度与所述扬声器的工作温度上限确定温度约束增益;其中,若所述音圈温度大于所述扬声器的工作温度上限,则所述温度约束增益小于1;
    增益应用模块,用于根据所述功率约束增益与所述温度约束增益对所述音频输入信号进行调整,得到目标信号。
  13. 如权利要求12所述装置,其特征在于,所述功率约束增益的大小与所述瞬态功率阈值与所述音频输入功率的比值成正相关;所述温度约束增益的大小跟所述工作温度上限与所述音圈温度的比值成正相关。
  14. 如权利要求12或13所述装置,其特征在于,若所述音圈温度小于等于所述扬声器的工作温度上限,则所述温度约束增益等于1。
  15. 如权利要求12-14任一项所述装置,其特征在于,所述直流阻计算模块具体用于:
    利用反馈电路获取所述扬声器两端的反馈电压信号和反馈电流信号;
    根据所述反馈电压信号和所述反馈电流信号得到所述音圈直流阻;或者,
    获取所述扬声器的音圈等效热阻抗传递函数;
    根据所述音圈等效热阻抗传递函数计算音圈温度的变化量;
    根据所述音圈温度的变化量计算所述扬声器的音圈直流阻。
  16. 如权利要求12-15任一项所述装置,其特征在于,所述温度计算模块具体用于:
    根据所述音圈直流阻计算所述扬声器的音圈温度;或者,
    获取所述扬声器的音圈等效热阻抗传递函数;
    根据所述音圈等效热阻抗传递函数计算音圈温度。
  17. 如权利要求12-16任一项所述装置,其特征在于,所述装置还包括:
    数模转换模块,用于将所述目标信号转换为模拟信号;
    放大器,用于将所述模拟信号放大得到目标模拟信号,并将所述目标模拟信号传输给所述扬声器进行播放。
  18. 一种终端设备,其特征在于,所述终端设备包含存储器、处理器、总线;所述存储器、以及所述处理器通过所述总线相连;
    所述存储器用于存储计算机程序和指令;
    所述处理器用于调用所述存储器中存储的所述计算机程序和指令,用于执行如权利要求1~9中任一项所述方法。
  19. 如权利要求18所述的终端设备,所述终端设备还包括天线系统、所述天线系统在处理器的控制下,收发无线通信信号实现与移动通信网络的无线通信;所述移动通信网络包括以下的一种或多种:GSM网络、CDMA网络、3G网络、4G网络、5G网络、FDMA、TDMA、PDC、TACS、AMPS、WCDMA、TDSCDMA、WIFI以及LTE网络。
PCT/CN2019/109273 2018-10-06 2019-09-30 一种音频信号处理方法、装置与设备 WO2020069665A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19869330.1A EP3855761A4 (en) 2018-10-06 2019-09-30 AUDIO SIGNAL PROCESSING METHOD, APPARATUS AND DEVICE
US17/301,466 US11375310B2 (en) 2018-10-06 2021-04-05 Audio signal processing method and apparatus, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811164593.XA CN111010650B (zh) 2018-10-06 2018-10-06 一种音频信号处理方法、装置与设备
CN201811164593.X 2018-10-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/301,466 Continuation US11375310B2 (en) 2018-10-06 2021-04-05 Audio signal processing method and apparatus, and device

Publications (1)

Publication Number Publication Date
WO2020069665A1 true WO2020069665A1 (zh) 2020-04-09

Family

ID=70054959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109273 WO2020069665A1 (zh) 2018-10-06 2019-09-30 一种音频信号处理方法、装置与设备

Country Status (4)

Country Link
US (1) US11375310B2 (zh)
EP (1) EP3855761A4 (zh)
CN (1) CN111010650B (zh)
WO (1) WO2020069665A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111541975B (zh) * 2020-04-27 2021-05-07 维沃移动通信有限公司 音频信号的调节方法及电子设备
CN111556408B (zh) * 2020-05-06 2021-08-17 上海傅硅电子科技有限公司 扬声器智能功率控制系统及其控制方法
CN113810826A (zh) * 2020-06-12 2021-12-17 上海艾为电子技术股份有限公司 一种多阈值温度保护电路、方法、保护装置及电子设备
CN112965551A (zh) * 2021-01-29 2021-06-15 维沃移动通信有限公司 扬声器的发热控制方法和装置
CN113099352B (zh) * 2021-03-25 2023-04-07 维沃移动通信有限公司 音频信号处理方法、装置、电子设备及存储介质
CN113691677B (zh) * 2021-08-25 2022-12-16 Oppo广东移动通信有限公司 音频输出的控制方法、装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149035A (zh) * 2010-02-10 2011-08-10 Nxp股份有限公司 改变扬声器信号的系统和方法
CN102196336A (zh) * 2010-03-17 2011-09-21 哈曼国际工业有限公司 音频电源管理系统
CN102843634A (zh) * 2011-06-22 2012-12-26 Nxp股份有限公司 对扬声器输出的控制
CN103873985A (zh) 2012-12-13 2014-06-18 马克西姆综合产品公司 用以确定并限制扩音器的音圈的温度的对扩音器的输入信号的直接测量
US8774419B2 (en) 2011-09-28 2014-07-08 Texas Instruments Incorporated Thermal control of voice coils in loudspeakers
CN105573398A (zh) * 2014-10-11 2016-05-11 联想(北京)有限公司 功率控制方法以及电子设备
WO2017055808A1 (en) * 2015-09-28 2017-04-06 Cirrus Logic International Semiconductor Limited Loudspeaker protection circuitry and methods

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7447318B2 (en) * 2000-09-08 2008-11-04 Harman International Industries, Incorporated System for using digital signal processing to compensate for power compression of loudspeakers
US6940981B2 (en) * 2003-03-12 2005-09-06 Qsc Audio Products, Inc. Apparatus and method of limiting power applied to a loudspeaker
CN101877807B (zh) * 2010-06-18 2015-08-12 中兴通讯股份有限公司 扬声器及音源播放的方法
GB2522449B (en) * 2014-01-24 2016-07-13 Cirrus Logic Int Semiconductor Ltd Loudspeaker protection systems and methods
CN106817655B (zh) * 2015-12-01 2019-11-12 展讯通信(上海)有限公司 扬声器控制方法及装置
US9807502B1 (en) * 2016-06-24 2017-10-31 Cirrus Logic, Inc. Psychoacoustics for improved audio reproduction and speaker protection
GB2559204A (en) * 2017-01-25 2018-08-01 Cirrus Logic Int Semiconductor Ltd Loudspeaker protection systems and methods
US10567895B2 (en) * 2017-10-09 2020-02-18 Cirrus Logic, Inc. Thermal model based estimator
US10250978B1 (en) * 2018-02-26 2019-04-02 Texas Instruments Incorporated Voice coil temperature control based on an estimated voice coil temperature and a threshold

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149035A (zh) * 2010-02-10 2011-08-10 Nxp股份有限公司 改变扬声器信号的系统和方法
CN102196336A (zh) * 2010-03-17 2011-09-21 哈曼国际工业有限公司 音频电源管理系统
CN102843634A (zh) * 2011-06-22 2012-12-26 Nxp股份有限公司 对扬声器输出的控制
US8774419B2 (en) 2011-09-28 2014-07-08 Texas Instruments Incorporated Thermal control of voice coils in loudspeakers
CN103873985A (zh) 2012-12-13 2014-06-18 马克西姆综合产品公司 用以确定并限制扩音器的音圈的温度的对扩音器的输入信号的直接测量
CN105573398A (zh) * 2014-10-11 2016-05-11 联想(北京)有限公司 功率控制方法以及电子设备
WO2017055808A1 (en) * 2015-09-28 2017-04-06 Cirrus Logic International Semiconductor Limited Loudspeaker protection circuitry and methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3855761A4

Also Published As

Publication number Publication date
EP3855761A1 (en) 2021-07-28
EP3855761A4 (en) 2021-11-24
US20210227323A1 (en) 2021-07-22
CN111010650B (zh) 2022-02-11
CN111010650A (zh) 2020-04-14
US11375310B2 (en) 2022-06-28

Similar Documents

Publication Publication Date Title
WO2020069665A1 (zh) 一种音频信号处理方法、装置与设备
US11632621B2 (en) Method for controlling volume of wireless headset, and computer-readable storage medium
JP6505252B2 (ja) 音声信号を処理するための方法及び装置
CN101877807B (zh) 扬声器及音源播放的方法
US20210217433A1 (en) Voice processing method and apparatus, and device
CN108476256A (zh) 一种音量调节方法及终端
WO2019129020A1 (zh) 一种摄像头自动调焦方法、存储设备及移动终端
WO2019129092A1 (zh) 一种降帧率拍照方法、移动终端及存储介质
EP3327932A1 (en) Method and apparatus for adjusting sound field of earphone, terminal and earphone
CN111508510B (zh) 音频处理方法、装置、存储介质及电子设备
WO2022199518A1 (zh) 音频信号处理方法、装置、电子设备及存储介质
WO2020007174A1 (zh) 通信连接建立方法及相关设备
WO2024021736A1 (zh) 蓝牙多媒体包的传输方法、装置、设备和系统
WO2023155595A1 (zh) 最大功率波动的功率校准方法、终端设备及存储介质
CN116994596A (zh) 啸叫抑制方法、装置、存储介质及电子设备
WO2021120383A1 (zh) 屏幕色温控制方法、装置、存储介质及移动终端
CN115835094A (zh) 音频信号处理方法、系统、设备、产品及介质
WO2021159943A1 (zh) 一种拍摄控制方法、装置及终端设备
CN109618062B (zh) 语音交互方法、装置、设备以及计算机可读存储介质
CN108024016B (zh) 音量调节方法、装置、存储介质及电子设备
WO2021128556A1 (zh) 一种降低 sar 值的方法、系统及移动终端
WO2024045829A1 (zh) 屏幕亮度调整方法、装置、存储介质及电子设备
CN117527771B (zh) 音频传输方法、装置、存储介质及电子设备
CN111161750B (zh) 语音处理方法及相关装置
CN108882085B (zh) 一种可穿戴设备电量均衡方法及相关产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019869330

Country of ref document: EP

Effective date: 20210421