WO2020067799A1 - Substrate treated with antimicrobial coating agent and method for producing same - Google Patents

Substrate treated with antimicrobial coating agent and method for producing same Download PDF

Info

Publication number
WO2020067799A1
WO2020067799A1 PCT/KR2019/012637 KR2019012637W WO2020067799A1 WO 2020067799 A1 WO2020067799 A1 WO 2020067799A1 KR 2019012637 W KR2019012637 W KR 2019012637W WO 2020067799 A1 WO2020067799 A1 WO 2020067799A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
urushiol
agent
coating agent
antibacterial
Prior art date
Application number
PCT/KR2019/012637
Other languages
French (fr)
Korean (ko)
Inventor
박민성
강순희
전광승
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190119139A external-priority patent/KR20200035898A/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2021501043A priority Critical patent/JP2021531270A/en
Priority to EP19864338.9A priority patent/EP3816239A4/en
Priority to CN201980048822.8A priority patent/CN112469785A/en
Priority to US17/263,994 priority patent/US11814544B2/en
Publication of WO2020067799A1 publication Critical patent/WO2020067799A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic

Definitions

  • the present invention relates to a substrate coated with an antimicrobial coating agent comprising urushiol and an inorganic antimicrobial agent immobilized on a surface and an antibacterial coating method of the substrate surface.
  • an air purification filter for removing foreign substances in the air has been developed.
  • the high-efficiency filter used for air purification can effectively collect almost all harmful microorganisms, and the microorganisms collected in the filter can survive for a long time and even multiply. Therefore, by providing the filter with antibacterial or antibacterial properties, an antibacterial filter has been developed that can not only remove bacteria present in the filter, but also sufficiently remove or sterilize microorganisms such as bacteria, viruses, and fungi suspended in the air.
  • an inorganic antimicrobial agent when used in a substrate such as an antibacterial filter, the inorganic antimicrobial agent is difficult to introduce into the filter because it exists in a particle size of several micros.
  • An antimicrobial coating agent having antimicrobial activity against various microorganisms including Gram-positive bacteria and Gram-negative bacteria, is immobilized and coated on a surface and provides an antibacterial coating method on the substrate surface.
  • an antimicrobial coating agent including urushiol and an inorganic antibacterial agent is coated on a surface, wherein the inorganic antibacterial agent is immobilized on the surface of the substrate while urushiol is crosslinked.
  • An antimicrobial coating agent is provided with a substrate immobilized on the surface, and as the antimicrobial coating agent, a natural polymer having antibacterial properties, not synthetic polymers, is eco-friendly, easy to control the concentration of the coating agent, polymerizable through a drying method, chemical and It is excellent in thermal stability, and it is possible to coat the fiber, so it does not block pores, and has an excellent antibacterial effect due to inorganic antibacterial agents due to its thin coating thickness.
  • FIG. 1 shows a scanning electron microscope (SEM) photograph of a surface of a substrate prepared according to an example and a comparative example of the present application.
  • Figure 2 shows a scanning electron microscope (SEM) photograph of the surface of the substrate prepared according to an embodiment and a comparative example before and after washing with water.
  • FIG 3 shows a scanning electron microscope (SEM) photograph of the surface of a substrate prepared according to an example and a comparative example of the present application.
  • Figure 4 shows the results of FT-IR analysis of the urushiol monomer and the heat-crosslinked polyurushiol.
  • Figure 5 shows the results of FT-IR analysis of the coated substrate according to an embodiment of the present application.
  • Figure 6 shows the results of the antibacterial experiment to confirm the antibacterial activity of the surface of the substrate prepared according to one embodiment and a comparative example herein.
  • an antimicrobial coating agent including urushiol and an inorganic antibacterial agent is coated on a surface, wherein an inorganic antimicrobial agent is immobilized on a substrate surface while urushiol is crosslinked.
  • substrate of the present invention is a material having a certain shape, and may be a material capable of supporting the antibacterial coating agent according to the present invention to be immobilized on a surface.
  • the material of the substrate can be used without limitation, such as fibers, silicon, glass, metal, magnetic material, semiconductor, ceramic, non-woven fabric as a specific example; Acrylic polymers, such as poly (methyl methacrylate) (PMMA); Polyethylene (PE), polypropylene (PP), polystyrene, polyethersulfone (PES), polycycloolefin (PCO), polyurethane (polyiourethane) or polycarbonate (PC) ), But is not limited thereto. Additionally, the substrate can be modified to have reactivity or introduce a new layer of material.
  • the shape of the substrate is not limited thereto, and may have various shapes such as a spherical shape or a plate shape.
  • the inorganic antibacterial agent When the coating agent is treated on the surface of the substrate, the inorganic antibacterial agent may be immobilized on the surface of the substrate while urushiol is crosslinked, preferably thermally crosslinked. In addition, the coating agent may be uniformly coated on the surface of the substrate.
  • the step of adding an inorganic antibacterial agent to the coating agent containing urushiol High temperature polymerization by impregnating the coating agent with a substrate; And drying the substrate, wherein an inorganic antimicrobial agent is immobilized on the surface of the substrate while urushiol is crosslinked.
  • the urushiol may be diluted in alcohol solvents or oils.
  • an antibacterial filter comprising the substrate is provided.
  • an air purification apparatus including an antibacterial filter is provided.
  • Urushiol is a phenolic substance that is the main component of latex of lacquer species including Rhus verniciflua, and the urushiol monomer contains two -OH groups adjacent to the benzene ring (catechol structure) and has 15 carbons adjacent to it. Or a structure in which 17 long-chain hydrocarbons are combined.
  • the side chain hydrocarbon is a saturated hydrocarbon or an unsaturated hydrocarbon containing 1 to 3 double bonds.
  • Urushiol consists of a catechol structure that has a strong antioxidant activity site (active site) and an amphiphilic structure that has a fat-soluble long side chain in the same molecule, and thus has excellent biocompatibility, strong antioxidant activity, and antibacterial activity. Can be represented.
  • Urushiol can be obtained by purification from lacquer, and the purification method is generally an extraction method using an organic solvent such as n-hexane, methanol, ethanol, isopropanol or butanol, but is not limited to this method.
  • an organic solvent such as n-hexane, methanol, ethanol, isopropanol or butanol
  • the purification method is generally an extraction method using an organic solvent such as n-hexane, methanol, ethanol, isopropanol or butanol, but is not limited to this method.
  • centrifugation is performed to separate the urushiol layer dissolved in the hydrophilic organic solvent
  • heating is performed to remove the organic solvent and moisture from the separated urushiol layer.
  • the urushiol can be obtained through the urushiol extraction step of extracting urushiol.
  • Urushiol may also be obtained through a variety of synthetic methods known in the art, or may be commercially available.
  • a person with a specific constitution causes dermatitis called 'lacquer' on the whole body just by accessing the lacquer tree.
  • This allergen is urushiol. Therefore, when used as a monomer form, urushiol can cause an allergic reaction and can be used by polymerization.
  • urushiol solution it is cured by an enzymatic reaction by laccase, and in the case of an urushiol extract, it is cured by hydrogen peroxide or It is common to introduce light-crosslinkable molecules to crosslink them.
  • urushiol is cured through simple thermal crosslinking in air when the coating composition of the present application is treated on the surface of the substrate through FT-IR analysis (see FIG. 5).
  • urushiol has a chemically stronger bond and stronger adhesion by forming a polymer.
  • the coating composition of the present application is treated on the surface of the substrate, urushiol is thermally crosslinked and cured, and is tightly bound to the inorganic antibacterial agent on the surface, so it was confirmed that there is no difference between the surface of the substrate before and after water washing (FIG. 2).
  • the inorganic antimicrobial agent was coated by urushiol and bound to the fiber surface, the surface was relatively smooth, and the fiber surface and particles were stably fixed because they were coated together during the urushiol curing process (FIG. 3).
  • urushiol contains a saturated or unsaturated alkyl group in the molecule, thereby imparting hydrophobicity to the substrate.
  • inorganic antibacterial agent is a general term for inorganic compounds containing metals or metal ions having antibacterial properties, such as silver, zinc, copper, and the like.
  • the inorganic antibacterial agent may be liquid or solid, and preferably solid.
  • examples of inorganic antibacterial agents include, but are not limited to, inorganic materials such as zeolite, synthetic zeolite, metal oxide, zirconium phosphate, calcium phosphate, calcium zinc phosphate, ceramic, soluble glass powder, silica alumina, titanium zeolite, apatite, calcium carbonate, etc.
  • the inorganic antimicrobial agent may be ion exchange or adsorption of metal ions having excellent antibacterial properties, such as silver, copper, manganese, and zinc, on an inorganic carrier such as zeolite or silica alumina.
  • the inorganic antibacterial agent may be copper oxide, zinc oxide, zinc pyrithione, zeolite, and specifically zeolite containing silver ions.
  • Zeolites are crystalline aluminosilicates with multiple pores.
  • Zeolite is an inorganic polymer material formed by three-dimensionally connecting silicon (Si) and aluminum (Al) through an oxygen atom, and has a fine crystal size of usually 1 ⁇ m. They are characterized by having various shapes and 0.3nm to 10nm nanopores depending on the type.
  • the zeolite may be one or more selected from the group consisting of A-type zeolite, X-type zeolite, Y-type zeolite, high silica zeolite, soulite, mordenite, anannite, clinoptilolite, cavirite, and enoninitite. have.
  • the zeolite crystal structure is loosely bonded to each atom, so the nano pores inside are usually filled with water molecules, and even when this moisture is released with high heat, the skeleton is retained, so other fine particles can be adsorbed. Since zeolite has excellent role of cation exchanger and foreign substance adsorption function due to numerous nano-sized pores, it can exhibit the effect of adsorbing and removing heavy metals or bacteria.
  • silver ions Ag +
  • a large number of silver ions (Ag + ) are adsorbed to the zeolite, and thus can have excellent sterilization and antibacterial activity.
  • Is sterile, and antimicrobial action of silver ions (Ag +) are silver ions (Ag +) makin done while the elution, the elution of the silver ions (Ag +) are Na +, Ca 2+, Mg 2+ cations and the like of Ag + ions It is done through the ion exchange reaction of the liver.
  • the eluted Ag + ions adsorb and bind -SH and COO - or OH - ions in the microbial bacterial body protein to cause cell transformation, leading to condensation-dehydration reactions, thereby making it difficult to metabolize and energy metabolize the bacteria.
  • As a principle of killing bacteria it can exhibit sterilization and antibacterial effects.
  • silver ions exist in an ion-bonded state in zeolite.
  • the particle size of the zeolite that is, the particle size is 1 to 3 ⁇ m, but when the size is smaller than 1 ⁇ m, there is a problem in that washing and drying costs in the manufacturing process are increased. In addition, inhalation toxicity by nanoparticles may occur. The use of larger than 3 ⁇ m may cause dispersion difficulties and clogging of the nonwoven fabric. Also, the reaction with the silver nitrate solution may not work well.
  • Urushiol has antibacterial activity against Gram-positive bacteria
  • inorganic antibacterial agents have antibacterial activity against Gram-negative bacteria.
  • the coating composition provided herein may have antibacterial activity to both Gram-positive bacteria and Gram-negative bacteria because urinol is thermally crosslinked when treated on the substrate surface, and the inorganic antibacterial agent is firmly fixed to the substrate surface.
  • a bacterium in which the coating composition of the present application exhibits antibacterial activity may be Gram positive or Gram negative, or may be non-responsive to Gram tests.
  • Bacteria can also be aerobic or anaerobic.
  • Bacteria can be pathogenic or non-pathogenic.
  • bacterial species or genus examples include Abiotrophia, Achromobacter, Acidaminococcus, Acidovorax, Acinetobacter, Actinobacillus ), Actinobaculum, Actinomadura, Actinomyces, Aerococcus, Aeromonas, Afipia, Agrobacterium, Alkali Alcaligenes, Alloiococcus, Alteromonas, Amycolata, Amycolatopsis, Anaerobospirillum, Anaerorhabdus , Arachnia, Arcanobacterium, Arcobacter, Arthrobacter, Atopobium, Aureobacterium, Bacteroides, Foot Balneatrix, Bar Bartonella, Bergeyella, Bifidobacterium, Bilophila, Branhamella, Borrelia, Bordetella, Brachyspira ), Brevibacillus, Brevibacterium, Brevundimonas, Brucella, Burkholderia, Butiauxella,
  • Mitsuokella Mobiluncus, Moellerella, Moraxella, Morganella, Mycobacterium, Mycoplasma, Myloplasma Myroides, Neisseria, Nocardia, Nocardiopsis, Ochrobactrum, Oeskovia, Oligella, Orientia, Phenibacillus, Pantoia, Parachlamydia, Pasteurella, Pediococcus, Peptococcus, Peptococcus, Peptostreptococcus, Photobacterium Photobacterium, Photorhabdus, Plesiomonas, Porphyrimonas, Prevotella, Propionibacterium, Proteus, Providencia, Pseudomonas, Pseudomonas Pseudonocardia, Pseudoramibacter, Psychrobacter, Rahnella, Ralstonia, Rhodococcus, Rickettsia, Localimei Rochalimaea, Rose
  • Gram-positive bacteria such as Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium avium, Mycobacterium intracellular, Mycobacterium africanum, Mycobacterium kansasii, Mycobacterium marinum, Mycobacterium ulcerans, Staphylococcus aureus (Staphylococcus aureus), Staphylococcus epidermidis, Staphylococcus equi, Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus agalactiae, (steria monocytogenes), Listeria ivanovii, Bacillus anthracis, bar Examples of C.
  • Gram-negative bacteria include, for example, Clostridium tetani, Clostridium perfringens, Clostridium botulinum, Pseudomonas aeruginosa, Vibrio cholerae , Actinobacillus pleuropneumoniae, Pasteurella haemolytica, Pasteurella multocida, Legionella pneumophila, Salmonella typhi (Salmonella typhi) , Brucella abortus, Chlamydi trachomatis, Chlamydia psittaci, Coxella burnetii, Escherichia coli, Escherichia coli, Nisseria meningitiers N meningitidis), Neiserria gonorrhea, Haemophilus influenzae, he Haem
  • Cowdria ruminantium Cowdria ruminantium may be exemplified, but is not limited thereto.
  • urushiol may be included in 1 to 20% by weight.
  • the content is less than 1% by weight, it is difficult to express the properties of urushiol with a content that is too small, and when it exceeds 20% by weight, the content of urushiol is too high, so that complete heat curing does not occur and unreacted substances may remain on the coating surface. .
  • problems may occur in the manufacturing process and void clogging of the substrate may occur.
  • the content of the inorganic antibacterial agent in the coating agent may be 0.1 to 1% by weight.
  • the inorganic antimicrobial agent is less than the above range, a problem that the antibacterial power decreases may occur, and when it exceeds the above range, a dispersibility may occur due to agglomeration between antimicrobial agents.
  • the content of urushiol on the substrate may be 15 to 170% by weight, and the content of the inorganic antibacterial agent may be 4 to 10% by weight. If it is less than the above range, a problem of reducing antibacterial activity may occur, and if it exceeds the above range, a void clogging phenomenon of the substrate may occur.
  • the substrate may be a non-woven material.
  • Non-woven fabric is a fiber with a flat structure made by forming a sheet-shaped web that tangles various fibers such as natural fibers, chemical fibers, glass fibers, and metal fibers according to mutual characteristics, and combined them by mechanical or physical methods. It is a structure.
  • the raw fiber one or more selected from the group consisting of natural fibers and synthetic fibers may be used.
  • it may be a nonwoven material containing at least one selected from viscose rayon fiber, polypropylene fiber, polyethylene fiber, polyethylene terephthalate fiber, polyester fiber, nylon fiber and cellulose fiber.
  • viscose rayon fiber polypropylene fiber
  • polyethylene fiber polyethylene terephthalate fiber
  • polyester fiber nylon fiber and cellulose fiber.
  • Non-woven fabric is applicable as long as it is commonly used, preferably chemical bonding, thermal bonding, thermal bonding, air-ray non-woven fabric (Air Ray), wet non-woven fabric (Wet Ray), needle punching non-woven fabric (Needle) Punching, spanless (water zet), spun bond, melt blown, stitch bond and electrospinning spinning Can be
  • the nonwoven fabric may have an average thickness of 0.1 to 5 mm or 0.2 to 1 mm, and may be appropriately changed depending on the type of device to which the substrate is applied.
  • an example of the present invention the step of adding an inorganic antibacterial agent to the coating agent containing urushiol; High temperature polymerization by impregnating the coating agent with a substrate; And comprising the step of drying the substrate, it characterized in that the inorganic antimicrobial agent is immobilized on the surface of the substrate fiber while the urushiol is crosslinked, provides an antibacterial coating method of the substrate surface.
  • Urushiol can be diluted in organic solvents.
  • organic solvents For example, methanol, ethanol, propanol, butanol, benzene, toluene, ethylbenzene, diethylbenzene, xylene, C1-C4 alkyl acetate, methyl ethyl ketone, acetone, tetrahydrofuran, 1,4-dioxane, tere Finyu may be illustrated, but is not limited thereto.
  • urushiol may be diluted in alcoholic solvents or oils.
  • the dilution concentration of urushiol is not particularly limited, for example, it can be diluted to 0.1 to 50% by weight, 0.5 to 30% by weight or 0.1 to 20% by weight in an organic solvent, and used by those skilled in the art as appropriate.
  • an immersion method, a dipping method, a roller method, an air knife method, a spray method, etc. may be exemplified, but is not limited thereto.
  • the substrate into which the coating agent is introduced may be subjected to high temperature treatment to induce thermal crosslinking and polymerization reaction of urushiol.
  • Urushiol is cured by the high temperature treatment and is tightly combined with the inorganic antibacterial agent on the surface, so that the inorganic antibacterial agent can be firmly fixed to the surface of the substrate.
  • the heating temperature for inducing the polymerization reaction of urushiol may be 70 to 200 ° C, or 100 to 150 ° C, and the heating time may be 1 to 100 hours, or 1 to 72 hours, or 1 to 6 hours.
  • the reaction time within the above range may be shorter as the temperature increases and longer as the temperature decreases.
  • the polymerization reaction proceeds rapidly and it may be difficult to control the reaction.
  • the reaction time can be appropriately adjusted while seeing the degree of immobilization of the coating agent on the surface of the substrate, but the reaction can be terminated at a time when the fluidity of urushiol is significantly reduced.
  • the substrate of the present application may be used as an antibacterial filter, and the antibacterial filter may be useful as an antibacterial filter applied to a vacuum cleaner, an air cleaner, a car, a refrigerator, an air conditioner, a gas mask, a water purifier, and a clean room.
  • the antibacterial filter may be an air filter that can be used for air purification.
  • the air filter may be a vacuum cleaner or an air purifier filter used in the home, but may be an air filter used in an air purification facility or a dust collection facility that can be used in a large capacity in a vehicle or an industry such as a factory or research institute.
  • the filter can also be used for water treatment.
  • a coating agent for surface treatment of a substrate was prepared by adding a zeolite inorganic antibacterial agent containing silver ions to a natural coating agent based on an urushiol solution.
  • a coating solution in which urushiol (Korea National Co., Ltd.) was diluted 1/30 in ethanol was prepared, and a zeolite containing silver ions (a product manufactured by Sunkwang Polymer Co., Ltd.) was added and dispersed.
  • Zeolite containing silver ions was added to the coating solution at a rate of 0.3% w / v. 30 minutes of substrate of miracloth non-woven fabric (Sigma-Aldrich) on the prepared coating agent After soaking, high temperature polymerization and drying were performed at 140 ° C to introduce a coating agent on the substrate surface.
  • a coating agent was prepared in the same manner as in Example 1, but the coating agent was introduced on the surface of the substrate after preparing the coating agent using a dilution of urushiol 1/5.
  • a coating agent was prepared in the same manner as in Example 1, but a coating agent was prepared using a 1/100 dilution of urushiol, and then the coating agent was introduced on the surface of the substrate.
  • Urushiol (Korea National Co., Ltd.) was prepared by diluting urushiol with 1/30 in ethanol.
  • the substrate of the miracloth nonwoven fabric (Sigma-Aldrich) was immersed in the prepared coating agent for 30 minutes, followed by high temperature polymerization and drying at 140 ° C to introduce a coating agent on the surface of the substrate.
  • a zeolite containing silver ions (a product manufactured by Sunkwang Polymer Co., Ltd.) was added and dispersed. Zeolite containing silver ions was added at a rate of 0.3% w / v.
  • the substrate of the miracloth nonwoven fabric (Sigma-Aldrich) was immersed in the prepared coating agent for 30 minutes, followed by high temperature polymerization and drying at 140 ° C to introduce a coating agent on the surface of the substrate.
  • Urushiol (Korea National Co., Ltd.) was prepared by diluting a coating solution 1/30 in ethanol, and a zeolite containing silver ions (a product manufactured by Sunkwang Polymer Co., Ltd.) was added and dispersed. Zeolite containing silver ions was added to the coating solution at a rate of 0.3% w / v.
  • the substrate of miracloth nonwoven fabric (Sigma-Aldrich) was immersed in the prepared coating agent for 30 minutes and then dried at 30 ° C. to introduce a coating agent on the surface of the substrate.
  • Example 1 As a result of observing the antibacterial substrate according to Example 1 with a scanning electron microscope (SEM), the coating agent was uniformly coated on the surface of the nonwoven fabric, and an inorganic antibacterial agent was attached to the surface of the fiber (FIG. 1).
  • SEM scanning electron microscope
  • the coating agent was uniformly coated on the surface of the nonwoven fabric, and an inorganic antibacterial agent was attached to the surface of the fiber (FIG. 1).
  • urushiol is thermally crosslinked and cured and is tightly bound to the inorganic antibacterial agent on the surface, it has been confirmed that there is no difference in the surface of the substrate before and after water washing (FIG. 2).
  • the inorganic antimicrobial agent was coated by urushiol and bound to the fiber surface, the surface was relatively smooth, and the fiber surface and particles were stably fixed because they were coated together during the urushiol curing process (Fig. 3). ).
  • Comparative Example 1 only urushiol was used as a coating agent without an inorganic antibacterial agent, and it was confirmed that the white non-woven fabric turned brown as the coating was cured, and it was confirmed through SEM pictures that the coating agent was uniformly coated on the surface of the non-woven fabric ( Figure 1).
  • Comparative Example 2 only the inorganic antibacterial agent (silver ion-containing zeolite) was used as the coating agent without urushiol, and it was observed that a large amount of the inorganic antibacterial agent falls off after washing the coated substrate. In addition, in the absence of urushiol, it was observed that the inorganic antimicrobial agent was introduced into the nonwoven fabric in a bundled form (FIG. 2). In addition, the inorganic antibacterial agent (silver ion-containing zeolite) was in the form of a cube, had a rough surface, and was fixed to the fiber surface by simple physical adsorption (FIG. 3).
  • Figure 4 shows the results of FT-IR analysis of the urushiol monomer and the heat-crosslinked polyurushiol.
  • 3600 ⁇ 3200 cm -1 is a -OH vibration part, which is sharp in the case of urushiol monomer, but the peak was broadened by hydrogen bonding as it was thermally crosslinked. It can be seen that 948 and 985 cm -1 decrease or disappear as the conjugated double bond of the urushiol monomer is thermally crosslinked. Therefore, it can be confirmed that the urushiol monomer is crosslinked through thermal crosslinking, and as a result, it becomes a cured polyurushiol form.
  • the FT-IR peak of the inorganic antibacterial agent is 3600-3200 cm -1 -OH peak and 900-850 cm -1 Si-OH, 1100-1000 cm -1 Si-O. -Si peak.
  • the -OH vibration portion of 3600 ⁇ 3200 cm -1 overlapped the peak of the urushiol monomer.
  • the 1100 to 850 cm -1 portions were Si-OH and Si-O-Si peaks, and were classified as inorganic antimicrobial peaks. Through the fact that the peak intensity of the 1100 to 850 cm -1 portion was very large compared to other specific peaks, it was found that a number of inorganic antibacterial agents were present on the surface.
  • Antibacterial experiments were performed on substrates except for Comparative Example 2 in which desorption of particles occurs in the washing process and Comparative Example 3 in which urushiol crosslinking is not formed.
  • Staphylococcus aureus was used as a Gram-positive bacterium, and Escherichia coli was used as a Gram-negative bacterium.
  • the strains were supplied by the Korea Microbial Conservation Center.
  • the prepared sample was incubated for 24 hours at (37 ⁇ 1) ° C using a shaking incubator. After the culture was completed, 16 ml of 1X PBS was added and diluted 5 times, followed by vortexing for 30 minutes to 1 hour depending on the type of fabric. This step is the process of removing the bacteria attached to the fabric or attached to the surface in a liquid state, and the miracloth fabric should be vortexed for at least 30 minutes and the spinning fabric for at least 1 hour.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plant Pathology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The present invention relates to: a substrate having an antimicrobial coating agent comprising urushiol and an inorganic antimicrobial agent immobilized and coated on the surface thereof; and a method for applying an antimicrobial coating on the surface of a substrate.

Description

항균 코팅제가 처리된 기재 및 이의 제조방법Antibacterial coating agent treated substrate and method for manufacturing the same
관련 출원(들)과의 상호 인용Cross-citation with relevant application (s)
본 출원은 2018년 9월 27일자 한국 특허 출원 제10-2018-0115319호 및 2019 년 9 월 26 일자 한국 특허 출원 제 10-2019-0119139 에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0115319 dated September 27, 2018 and Korean Patent Application No. 10-2019-0119139 dated September 26, 2019, and documents related to Korean patent applications All content disclosed in is included as part of this specification.
본 발명은 우루시올 및 무기 항균제를 포함하는 항균 코팅제가 표면에 고정화되어 코팅된 기재 및 기재 표면의 항균 코팅 방법에 관한 것이다.The present invention relates to a substrate coated with an antimicrobial coating agent comprising urushiol and an inorganic antimicrobial agent immobilized on a surface and an antibacterial coating method of the substrate surface.
최근 공기의 질에 관한 관심이 증가하면서 실내공기 청정에 대한 요구가 늘어나고 이에 따라 공기 중의 이물질들을 제거하기 위한 공기 정화 필터가 개발되고 있다. 공기정화에 사용되는 고효율 필터는 거의 모든 유해한 미생물을 효과적으로 포집할 수 있는데, 필터에 포집된 미생물은 장시간 생존할 수 있으며 심지어 증식하기도 한다. 따라서, 필터에 항균성 또는 제균성을 부여함으로써, 필터에 존재하는 균들을 제거할 뿐만 아니라, 공기 중에 부유하는 세균, 바이러스, 진균 등의 미생물을 충분히 제거 또는 살균할 수 있는 항균 필터가 개발되고 있다.Recently, as interest in air quality increases, the demand for indoor air cleaning increases, and accordingly, an air purification filter for removing foreign substances in the air has been developed. The high-efficiency filter used for air purification can effectively collect almost all harmful microorganisms, and the microorganisms collected in the filter can survive for a long time and even multiply. Therefore, by providing the filter with antibacterial or antibacterial properties, an antibacterial filter has been developed that can not only remove bacteria present in the filter, but also sufficiently remove or sterilize microorganisms such as bacteria, viruses, and fungi suspended in the air.
그러나, 이와 같이 항균 필터와 같은 기재에 무기계 항균제를 사용하고자 할 경우, 무기계 항균제는 수 마이크로 크기의 입자상태로 존재하기 때문에 이를 필터에 도입하는데 어려움이 있다.However, when an inorganic antimicrobial agent is to be used in a substrate such as an antibacterial filter, the inorganic antimicrobial agent is difficult to introduce into the filter because it exists in a particle size of several micros.
따라서, 다양한 미생물들에 대해 항균성을 부여할 뿐만 아니라 기재 표면에 항균제를 고정화시킬 수 있는 코팅 기술의 개발이 요구된다.Accordingly, there is a need to develop a coating technology capable of immobilizing an antimicrobial agent on a surface of a substrate as well as imparting antimicrobial properties to various microorganisms.
그람 양성균과 그람 음성균을 비롯한 다양한 미생물에 대한 항균력을 가지는 항균 코팅제가 표면에 고정화 및 코팅된 기재 및 기재 표면의 항균 코팅 방법을 제공한다.An antimicrobial coating agent having antimicrobial activity against various microorganisms, including Gram-positive bacteria and Gram-negative bacteria, is immobilized and coated on a surface and provides an antibacterial coating method on the substrate surface.
일예로, 우루시올 및 무기 항균제를 포함하는 항균 코팅제가 표면에 코팅된 기재로서, 우루시올이 가교되면서 무기 항균제가 기재 표면에 고정화된 것을 특징으로 하는, 기재를 제공한다.As an example, an antimicrobial coating agent including urushiol and an inorganic antibacterial agent is coated on a surface, wherein the inorganic antibacterial agent is immobilized on the surface of the substrate while urushiol is crosslinked.
다른 예로, 우루시올을 포함하는 코팅제에, 무기 항균제를 첨가하는 단계; 상기 코팅제에 기재를 함침하여 고온 중합하는 단계; 및 상기 기재를 건조하는 단계를 포함하며, 우루시올이 가교되면서 무기 항균제가 기재 섬유 표면에 고정화되는 것을 특징으로 하는, 기재 표면의 항균 코팅 방법을 제공한다.As another example, the step of adding an inorganic antibacterial agent to the coating agent containing urushiol; High temperature polymerization by impregnating the coating agent with a substrate; And comprising the step of drying the substrate, it characterized in that the inorganic antimicrobial agent is immobilized on the surface of the substrate fiber while the urushiol is crosslinked, provides an antibacterial coating method of the substrate surface.
항균 코팅제가 표면에 고정화된 기재가 제공되며, 상기 항균 코팅제로서 합성고분자가 아닌 항균성을 갖는 천연 고분자를 사용하므로 친환경적이며, 코팅제의 농도 조절이 용이하며 건조방법을 통한 중합이 가능하고, 내화학 및 열적 안정성이 뛰어나며, 섬유코팅이 가능하여 공극을 막지 않고, 얇은 코팅 두께로 인하여 무기항균제에 의한 항균력이 우수하게 나타나는 효과가 있다.An antimicrobial coating agent is provided with a substrate immobilized on the surface, and as the antimicrobial coating agent, a natural polymer having antibacterial properties, not synthetic polymers, is eco-friendly, easy to control the concentration of the coating agent, polymerizable through a drying method, chemical and It is excellent in thermal stability, and it is possible to coat the fiber, so it does not block pores, and has an excellent antibacterial effect due to inorganic antibacterial agents due to its thin coating thickness.
도 1은 본원의 일 실시예 및 비교예에 따라 제조된 기재 표면의 주사전자현미경(SEM) 사진을 나타낸다.1 shows a scanning electron microscope (SEM) photograph of a surface of a substrate prepared according to an example and a comparative example of the present application.
도 2는 본원의 일 실시예 및 비교예에 따라 제조된 기재 표면의 수세 전과후의 주사전자현미경(SEM) 사진을 나타낸다.Figure 2 shows a scanning electron microscope (SEM) photograph of the surface of the substrate prepared according to an embodiment and a comparative example before and after washing with water.
도 3은 본원의 일 실시예 및 비교예에 따라 제조된 기재 표면의 주사전자현미경(SEM) 사진을 나타낸다.3 shows a scanning electron microscope (SEM) photograph of the surface of a substrate prepared according to an example and a comparative example of the present application.
도 4는 우루시올 모노머와 열가교된 폴리우루시올의 FT-IR 분석 결과를 나타낸다.Figure 4 shows the results of FT-IR analysis of the urushiol monomer and the heat-crosslinked polyurushiol.
도 5는 본원의 일 실시예에 따라 코팅된 기재의 FT-IR 분석 결과를 나타낸다.Figure 5 shows the results of FT-IR analysis of the coated substrate according to an embodiment of the present application.
도 6은 본원의 일 실시예 및 비교예에 따라 제조된 기재 표면의 항균력을 확인하기 위한 항균실험결과를 나타낸다.Figure 6 shows the results of the antibacterial experiment to confirm the antibacterial activity of the surface of the substrate prepared according to one embodiment and a comparative example herein.
본 발명의 한 측면에 따라 우루시올 및 무기 항균제를 포함하는 항균 코팅제가 표면에 코팅된 기재로서, 우루시올이 가교되면서 무기 항균제가 기재 표면에 고정화된 것을 특징으로 하는, 기재가 제공된다.According to an aspect of the present invention, an antimicrobial coating agent including urushiol and an inorganic antibacterial agent is coated on a surface, wherein an inorganic antimicrobial agent is immobilized on a substrate surface while urushiol is crosslinked.
본 발명의 용어 "기재(substrate)"는 일정한 형태를 갖는 물질로서 본 발명에 따른 항균 코팅제가 표면에 고정화되도록 지지할 수 있는 물질일 수 있다. 상기 기재의 재질은 섬유, 실리콘, 유리, 금속, 자성물질, 반도체, 세라믹 등의 소재를 제한없이 사용할 수 있고, 구체예로 부직포; 폴리메틸메타크릴레이트(poly(methyl methacrylate); PMMA) 등의 아크릴계 고분자(Acrylic polymers); 폴리에틸렌(polyethylene; PE), 폴리프로필렌(polypropylene; PP), 폴리스티렌(polystyrene), 폴리에테르설폰 (Polyethersulfone; PES), 폴리시클로올레핀 (Polycycloolefin; PCO), 폴리우레탄 (polyiourethane) 또는 폴리카보네이트(polycarbonate; PC) 등일 수 있으나 이에 제한되는 것은 아니다. 추가적으로 상기 기재는 반응성을 갖도록 표면을 개질하거나, 새로운 물질 층을 추가로 도입할 수 있다. 상기 기재의 형태는 이에 제한되지 않으며 구형 또는 판형 등의 다양한 형태를 가질 수 있다.The term "substrate" of the present invention is a material having a certain shape, and may be a material capable of supporting the antibacterial coating agent according to the present invention to be immobilized on a surface. The material of the substrate can be used without limitation, such as fibers, silicon, glass, metal, magnetic material, semiconductor, ceramic, non-woven fabric as a specific example; Acrylic polymers, such as poly (methyl methacrylate) (PMMA); Polyethylene (PE), polypropylene (PP), polystyrene, polyethersulfone (PES), polycycloolefin (PCO), polyurethane (polyiourethane) or polycarbonate (PC) ), But is not limited thereto. Additionally, the substrate can be modified to have reactivity or introduce a new layer of material. The shape of the substrate is not limited thereto, and may have various shapes such as a spherical shape or a plate shape.
상기 코팅제는 기재 표면에 처리시 우루시올이 가교, 바람직하게는 열가교 되면서 무기 항균제가 기재 표면에 고정화될 수 있다. 또한 상기 코팅제가 기재 표면에 균일하게 코팅될 수 있다.When the coating agent is treated on the surface of the substrate, the inorganic antibacterial agent may be immobilized on the surface of the substrate while urushiol is crosslinked, preferably thermally crosslinked. In addition, the coating agent may be uniformly coated on the surface of the substrate.
본 발명의 다른 측면에 따라 우루시올을 포함하는 코팅제에, 무기 항균제를 첨가하는 단계; 상기 코팅제에 기재를 함침하여 고온 중합하는 단계; 및 상기 기재를 건조하는 단계를 포함하며, 우루시올이 가교되면서 무기 항균제가 기재 표면에 고정화되는 것을 특징으로 하는, 기재 표면의 항균 코팅 방법이 제공된다.In accordance with another aspect of the present invention, the step of adding an inorganic antibacterial agent to the coating agent containing urushiol; High temperature polymerization by impregnating the coating agent with a substrate; And drying the substrate, wherein an inorganic antimicrobial agent is immobilized on the surface of the substrate while urushiol is crosslinked.
상기 우루시올은 알코올류 용매 또는 오일류에 희석될 수 있다.The urushiol may be diluted in alcohol solvents or oils.
본 발명의 다른 측면에 따라, 상기 기재를 포함하는 항균 필터가 제공된다.According to another aspect of the present invention, an antibacterial filter comprising the substrate is provided.
본 발명의 다른 측면에 따라, 항균 필터를 포함하는 공기 정화 장치가 제공된다.According to another aspect of the present invention, an air purification apparatus including an antibacterial filter is provided.
우루시올은 옻나무(Rhus verniciflua)를 비롯한 옻나무속 수종의 유액의 주성분인 페놀성 물질로서, 우루시올 모노머는 벤젠 고리에 인접한 2종의 -OH 기 (카테콜 구조)를 포함하고 그 인접 탄소에 탄소수 15개 또는 17개의 장쇄 탄화수소가 결합된 구조이다. 측쇄의 탄화수소는 포화 탄화수소이거나, 1 내지 3개의 이중 결합을 포함하는 불포화 탄화수소이다. 우루시올은 강한 항산화 활성 위치(active site)인 카테콜 구조와 지용성 장쇄 측쇄(long side chain)을 동일 분자 내에 가지고 있는 양친매성인 구조로 이루어져 있어, 생체 적합성이 우수하며, 강한 항산화 작용 및 항균 활성을 나타낼 수 있다. Urushiol is a phenolic substance that is the main component of latex of lacquer species including Rhus verniciflua, and the urushiol monomer contains two -OH groups adjacent to the benzene ring (catechol structure) and has 15 carbons adjacent to it. Or a structure in which 17 long-chain hydrocarbons are combined. The side chain hydrocarbon is a saturated hydrocarbon or an unsaturated hydrocarbon containing 1 to 3 double bonds. Urushiol consists of a catechol structure that has a strong antioxidant activity site (active site) and an amphiphilic structure that has a fat-soluble long side chain in the same molecule, and thus has excellent biocompatibility, strong antioxidant activity, and antibacterial activity. Can be represented.
우루시올은 옻 액으로부터 정제하여 얻을 수 있으며, 정제방법은 일반적으로 n-헥산, 메탄올, 에탄올, 이소프로판올 또는 부탄올과 같은 유기용매를 사용한 추출법을 주로 이용하나 이 방법에 국한하지는 않는다. 예를 들어, 옻 액과 친수성 유기용매를 혼합한 후, 원심분리하여 상기 친수성 유기용매에 용해된 상태에 있는 우루시올 층을 분리하고, 상기 분리된 우루시올 층에 대해 유기용매와 수분을 제거하기 위해 가열하여 우루시올을 추출하는 우루시올 추출단계를 통해서 우루시올을 얻을 수 있다.Urushiol can be obtained by purification from lacquer, and the purification method is generally an extraction method using an organic solvent such as n-hexane, methanol, ethanol, isopropanol or butanol, but is not limited to this method. For example, after mixing the lacquer solution and a hydrophilic organic solvent, centrifugation is performed to separate the urushiol layer dissolved in the hydrophilic organic solvent, and heating is performed to remove the organic solvent and moisture from the separated urushiol layer. The urushiol can be obtained through the urushiol extraction step of extracting urushiol.
우루시올은 또한, 당업계 알려진 다양한 합성방법을 통하여 수득하거나, 상업적으로 이용가능할 수 있다.Urushiol may also be obtained through a variety of synthetic methods known in the art, or may be commercially available.
또한, 특이체질의 사람은 옻나무에 접근하는 것만으로도 전신에 '옻오름'이라는 피부염을 일으키는 데 이 알레르기유발항원(allergen)이 바로 우루시올이다. 따라서, 우루시올은 모노머 형태로 사용하면 알레르기 반응을 유발 할 수 있어 중합하여 사용될 수 있는데, 우루시올 수액의 경우 라카제(laccase)에 의한 효소 반응에 의해 경화가 되며, 우루시올 추출액의 경우 과산화수소에 의해 경화 또는 광가교가 가능한 분자를 도입하여 광가교하는 것이 일반적이다.In addition, a person with a specific constitution causes dermatitis called 'lacquer' on the whole body just by accessing the lacquer tree. This allergen is urushiol. Therefore, when used as a monomer form, urushiol can cause an allergic reaction and can be used by polymerization. In the case of an urushiol solution, it is cured by an enzymatic reaction by laccase, and in the case of an urushiol extract, it is cured by hydrogen peroxide or It is common to introduce light-crosslinkable molecules to crosslink them.
본원의 일 실시예에서는, FT-IR 분석을 통해 본원의 코팅제 조성물을 기재 표면에 처리시 우루시올이 공기 중에서 단순 열가교를 통해 경화됨을 확인 하였다 (도 5 참조). 또한, 본원의 일 실시예에서는, 이와 같이 우루시올이 중합체를 형성함으로써 화학적으로 더 견고한 결합과 강한 접착력을 가지는 것을 확인하였다. 구체적으로, 본원의 코팅제 조성물을 기재 표면에 처리시 우루시올이 열가교 및 경화되며 표면의 무기항균제와 단단하게 결합되므로, 수세 전과 후에 기재 표면의 차이가 없는 것을 확인할 수 있었다 (도 2). 또한, 우루시올에 의해 무기 항균제가 코팅되어 섬유 표면에 결합되어 있었고, 표면이 비교적 매끄러우며, 섬유 표면과 입자들이 우루시올 경화 과정에서 함께 코팅되기 때문에 안정적으로 고정되어 있음을 확인하였다 (도 3).In one embodiment of the present application, it was confirmed that urushiol is cured through simple thermal crosslinking in air when the coating composition of the present application is treated on the surface of the substrate through FT-IR analysis (see FIG. 5). In addition, in one embodiment of the present application, it was confirmed that urushiol has a chemically stronger bond and stronger adhesion by forming a polymer. Specifically, when the coating composition of the present application is treated on the surface of the substrate, urushiol is thermally crosslinked and cured, and is tightly bound to the inorganic antibacterial agent on the surface, so it was confirmed that there is no difference between the surface of the substrate before and after water washing (FIG. 2). In addition, it was confirmed that the inorganic antimicrobial agent was coated by urushiol and bound to the fiber surface, the surface was relatively smooth, and the fiber surface and particles were stably fixed because they were coated together during the urushiol curing process (FIG. 3).
또한, 우루시올은 분자 내에 포화 또는 불포화 알킬 그룹을 포함하고 있어서 기재에 소수성을 부여할 수 있다.In addition, urushiol contains a saturated or unsaturated alkyl group in the molecule, thereby imparting hydrophobicity to the substrate.
용어 "무기 항균제"는 항균 성질을 가진 금속 또는 금속 이온, 예컨대 은, 아연, 구리 등을 함유하는 무기 화합물에 대한 일반적인 용어이다. 무기 항균제는 액체 또는 고체일 수 있고, 바람직하게는 고체일 수 있다. 무기 항균제의 예로는, 이에 제한되는 것은 아니나, 제올라이트, 합성 제올라이트, 금속 산화물, 지르코늄 포스페이트, 칼슘 포스페이트, 칼슘 아연 포스페이트, 세라믹, 가용성 유리 분말, 실리카 알루미나, 티타늄 제올라이트, 아파타이트, 칼슘 카보네이트 등과 같은 무기 물질일 수 있다. 구체 예로, 무기 항균제는 제올라이트 또는 실리카 알루미나 등의 무기 담체에 은, 구리, 망간, 아연 등과 같이 항균성이 뛰어난 금속이온을 이온교환 또는 흡착한 것일 수 있다. 바람직한 예로, 무기항균제는 구리 산화물, 징크옥사이드, 징크 피리치온, 제올라이트, 구체적으로는 은이온을 함유하는 제올라이트일 수 있다.The term "inorganic antibacterial agent" is a general term for inorganic compounds containing metals or metal ions having antibacterial properties, such as silver, zinc, copper, and the like. The inorganic antibacterial agent may be liquid or solid, and preferably solid. Examples of inorganic antibacterial agents include, but are not limited to, inorganic materials such as zeolite, synthetic zeolite, metal oxide, zirconium phosphate, calcium phosphate, calcium zinc phosphate, ceramic, soluble glass powder, silica alumina, titanium zeolite, apatite, calcium carbonate, etc. Can be As a specific example, the inorganic antimicrobial agent may be ion exchange or adsorption of metal ions having excellent antibacterial properties, such as silver, copper, manganese, and zinc, on an inorganic carrier such as zeolite or silica alumina. As a preferred example, the inorganic antibacterial agent may be copper oxide, zinc oxide, zinc pyrithione, zeolite, and specifically zeolite containing silver ions.
제올라이트는 복수의 기공을 갖는 결정성 알루미노실리케이트(crystalline aluminosilicate)이다. 제올라이트는 규소(Si)와 알루미늄(Al)이 산소원자를 통해 삼차원적으로 연결되어 형성되는 무기 고분자(inorganic polymer) 물질로서 보통 1㎛ 크기의 미세한 결정 크기를 갖는다. 이들은 종류에 따라 다양한 모양과 0.3nm 내지 10nm 크기의 나노기공(nanopore)을 가지는 것을 구조적 특징으로 한다.Zeolites are crystalline aluminosilicates with multiple pores. Zeolite is an inorganic polymer material formed by three-dimensionally connecting silicon (Si) and aluminum (Al) through an oxygen atom, and has a fine crystal size of usually 1 μm. They are characterized by having various shapes and 0.3nm to 10nm nanopores depending on the type.
제올라이트는 A형 제올라이트, X형 제올라이트, Y형 제올라이트, 고실리카 제올라이트, 소우덜라이트, 모오데나이트, 애낼나이트, 클리노프틸로라이트, 캐비라이트, 및 에니노나이트를로 이루어지는 군으로부터 선택되는 하나 이상일 수 있다.The zeolite may be one or more selected from the group consisting of A-type zeolite, X-type zeolite, Y-type zeolite, high silica zeolite, soulite, mordenite, anannite, clinoptilolite, cavirite, and enoninitite. have.
제올라이트는 결정구조적으로 각 원자의 결합이 느슨하여 내부에 있는 나노 기공 속에 보통 물 분자들이 채워져 있으며, 이 수분을 고열로 방출시켜도 골격은 그대로 유지되므로 다른 미립 물질을 흡착할 수 있다. 제올라이트는 수많은 나노 크기의 기공으로 인하여 양이온 교환체의 역할 및 이물질 흡착 기능이 우수하여 중금속이나 세균을 흡착하여 제거하는 효과를 나타낼 수 있다.The zeolite crystal structure is loosely bonded to each atom, so the nano pores inside are usually filled with water molecules, and even when this moisture is released with high heat, the skeleton is retained, so other fine particles can be adsorbed. Since zeolite has excellent role of cation exchanger and foreign substance adsorption function due to numerous nano-sized pores, it can exhibit the effect of adsorbing and removing heavy metals or bacteria.
또한, 제올라이트에 다수의 은이온(Ag+)이 흡착됨으로써, 우수한 살균 및 항균력을 가질 수 있다. 은이온(Ag+)의 살균 및 항균작용은 은이온(Ag+)이 용출되면서 이루어지는데, 은이온(Ag+)의 용출은 Na+, Ca2+, Mg2+ 등의 양이온과 Ag+ 이온 간의 이온교환반응을 통해 이루어진다. 또한, 용출된 Ag+ 이온은 미생물인 세균 체 단백질 내의 -SH 및 COO- 또는 OH- 이온을 흡착 결합하여 세포변형을 일으키고, 축합-탈수 반응으로 이어져 세균의 신진대사 및 에너지 대사호흡 등을 어렵게 함으로서, 세균을 사멸시키는 원리로 살균 및 항균효과를 나타낼 수 있다.In addition, a large number of silver ions (Ag + ) are adsorbed to the zeolite, and thus can have excellent sterilization and antibacterial activity. Is sterile, and antimicrobial action of silver ions (Ag +) are silver ions (Ag +) makin done while the elution, the elution of the silver ions (Ag +) are Na +, Ca 2+, Mg 2+ cations and the like of Ag + ions It is done through the ion exchange reaction of the liver. In addition, the eluted Ag + ions adsorb and bind -SH and COO - or OH - ions in the microbial bacterial body protein to cause cell transformation, leading to condensation-dehydration reactions, thereby making it difficult to metabolize and energy metabolize the bacteria. , As a principle of killing bacteria, it can exhibit sterilization and antibacterial effects.
본원에서 은이온(Ag+)은 제올라이트 내에 이온결합한 상태로 존재한다.In the present application, silver ions (Ag + ) exist in an ion-bonded state in zeolite.
제올라이트의 입자 크기, 즉 입도는 1 내지 3μm인 것이 바람직한데, 그 크기가 1μm 보다 작은 것을 사용하면 제조과정에서의 세척 및 건조 비용이 상승하는 문제점이 있다. 또한, 나노입자에 의한 흡입 독성이 발생할 수 있다. 3μm 보다 큰 것을 사용하면 분산의 어려움과 부직포 원단의 공극을 막는 현상이 발생할 수 있다. 또한 질산은 용액과의 반응이 잘 이루어지지 않을 수 있다.It is preferable that the particle size of the zeolite, that is, the particle size is 1 to 3 μm, but when the size is smaller than 1 μm, there is a problem in that washing and drying costs in the manufacturing process are increased. In addition, inhalation toxicity by nanoparticles may occur. The use of larger than 3 μm may cause dispersion difficulties and clogging of the nonwoven fabric. Also, the reaction with the silver nitrate solution may not work well.
우루시올은 그람 양성균에 대해 항균력을 가지며, 무기항균제는 그람 음성균에 대한 항균력을 가진다. 본원에서 제공되는 코팅제 조성물은 기재 표면에 처리시 우루시올이 열가교되면서 무기 항균제가 기재 표면에 단단하게 고정되므로, 그람 양성균 및 그람 음성균 모두에 항균 활성을 가질 수 있다.Urushiol has antibacterial activity against Gram-positive bacteria, and inorganic antibacterial agents have antibacterial activity against Gram-negative bacteria. The coating composition provided herein may have antibacterial activity to both Gram-positive bacteria and Gram-negative bacteria because urinol is thermally crosslinked when treated on the substrate surface, and the inorganic antibacterial agent is firmly fixed to the substrate surface.
일 예로, 본원의 코팅제 조성물이 항균 활성을 나타내는 세균은 그람 양성 또는 그람 음성이거나, 또는 그람 테스트에 무반응성일 수 있다. 또한 세균은 호기성 또는 혐기성일 수 있다. 세균은 병원성 또는 비병원성일 수 있다. 세균의 종 또는 속의 예로는 아비오트로피아(Abiotrophia), 아크로모박터(Achromobacter), 액시드아미노코커스(Acidaminococcus), 액시도모락스(Acidovorax), 액시네토박터(Acinetobacter), 액티노바실러스(Actinobacillus), 액티노바쿨럼(Actinobaculum), 액티노마두라(Actinomadura), 액티노마이세스(Actinomyces), 에로코커스(Aerococcus), 에로모나스(Aeromonas), 아피피아(Afipia), 아그로박테리움(Agrobacterium), 알칼리게네스(Alcaligenes), 알로이오코커스(Alloiococcus), 알테로모나스(Alteromonas), 아미콜라타(Amycolata), 아미콜라톱시스(Amycolatopsis), 안에어로보스피릴룸(Anaerobospirillum), 에어로랍두스(Anaerorhabdus), 아라크니아(Arachnia), 아르카노박테리움(Arcanobacterium), 아르코박터(Arcobacter), 아르트로박터(Arthrobacter), 아토포븀(Atopobium), 아우레오박테리움(Aureobacterium), 박테로이데스(Bacteroides), 발니트릭스(Balneatrix), 바르토넬라(Bartonella), 베르게옐라(Bergeyella), 비피도박테리움(Bifidobacterium), 빌로필라(Bilophila), 브란하멜라(Branhamella), 보렐리아(Borrelia), 보르데텔라(Bordetella), 브라키스피라(Brachyspira), 브레비바실러스(Brevibacillus), 브레비박테리움(Brevibacterium), 브레분디모나스(Brevundimonas), 브루셀라(Brucella), 부르크홀데리아(Burkholderia), 부티아욱셀라(Buttiauxella), 부티리비브리오(Butyrivibrio), 칼림마토박테리움(Calymmatobacterium), 캄필로박터(Campylobacter), 캅노시토파가(Capnocytophaga), 카르디오박테리움(Cardiobacterium), 카토넬라(Catonella), 세데시아(Cedecea), 셀룰로모나스(Cellulomonas), 센티페다(Centipeda), 클라미디아(Chlamydia), 클라미도필라(Chlamydophila), 크로모박테리움(Chromobacterium), 키세오박테리움(Chyseobacterium), 크리세오모나스(Chryseomonas), 시트로박터(Citrobacter), 클로스트리듐(Clostridium), 콜린셀라(Collinsella), 코마모나스(Comamonas), 코리네박테리움(Corynebacterium), 콕시엘라(Coxiella), 크립토박테리움(Cryptobacterium), 델프티아(Delftia), 데르마박터(Dermabacter), 데르마토필러스(Dermatophilus), 데술포모나스(Desulfomonas), 데술포비브리오(Desulfovibrio), 디알리스터(Dialister), 디켈로박터(Dichelobacter), 돌로시코커스(Dolosicoccus), 돌오시그라눌럼(Dolosigranulum), 에드워드시엘라(Edwardsiella), 에게르텔라(Eggerthella), 에를리키아(Ehrlichia), 에이케넬라(Eikenella), 엠페도박터(Empedobacter), 엔테로박터(Enterobacter), 엔테로코커스(Enterococcus), 에르위니아(Erwinia), 에리시펠로트릭스(Erysipelothrix), 에셰리키아(Escherichia), 유박테리움(Eubacterium), 유잉엘라(Ewingella), 엑시구오박테리움(Exiguobacterium), 팍클라미아(Facklamia), 필리팩터(Filifactor), 플라비모나스(Flavimonas), 플라보박테리움(Flavobacterium), 프란시셀라(Francisella), 푸소박테리움(Fusobacterium), 가드네렐라(Gardnerella), 글로비카텔라(Globicatella), 게멜라(Gemella), 고르도나(Gordona), 해모필러스(Haemophilus), 하프니아(Hafnia), 헬리코박터(Helicobacter), 헬로코커스(Helococcus), 홀데마니아(Holdemania), 이그나비그라눔(Ignavigranum), 존소넬라(Johnsonella), 킹엘라(Kingella), 클렙시엘라(Klebsiella), 코쿠리아(Kocuria), 코세렐라(Koserella), 쿠르티아(Kurthia), 키토코커스(Kytococcus), 락토바실러스(Lactobacillus), 락토코커스(Lactococcus), 라우트로피아(Lautropia), 레클레르시아(Leclercia), 레지오넬라(Legionella), 레미노렐라(Leminorella), 렙토스피라(Leptospira), 렙토트리키아(Leptotrichia), 루코노스톡(Leuconostoc), 리스테리아(Listeria), 리스토넬라(Listonella), 메가스페라(Megasphaera), 메틸로박테리움(Methylobacterium), 마이크로박테리움(Microbacterium), 마이크로코커스(Micrococcus), 미쓰오켈라(Mitsuokella), 모빌룬쿠스(Mobiluncus), 모엘레렐라(Moellerella), 모락셀라(Moraxella), 모르가넬라(Morganella), 마이코박테리움(Mycobacterium), 미코플라스마(Mycoplasma), 미로이데스(Myroides), 네이세리아(Neisseria), 노카르디아(Nocardia), 노카르디옵시스(Nocardiopsis), 오크로박테리움(Ochrobactrum), 오에스코비아(Oeskovia), 올리겔라(Oligella), 오리엔티아(Orientia), 페니바실러스(Paenibacillus), 판토이아(Pantoea), 파라클라미디아(Parachlamydia), 파스테우렐라(Pasteurella), 페디오코커스(Pediococcus), 펩토코커스(Peptococcus), 펩토스트렙토코커스(Peptostreptococcus), 포토박테리움(Photobacterium), 포토르합두스(Photorhabdus), 플레시오모나스(Plesiomonas), 포르피리모나스(Porphyrimonas), 프리보텔라(Prevotella), 프로피오니박테리움(Propionibacterium), 프로테우스(Proteus), 프로비덴시아(Providencia), 슈도모나스(Pseudomonas), 슈도노카르디아(Pseudonocardia), 슈도라미박터(Pseudoramibacter), 피크로박터(Psychrobacter), 라넬라(Rahnella), 랄스토니아(Ralstonia), 로도코커스(Rhodococcus), 리켓츠시아(Rickettsia), 로칼리메이아(Rochalimaea), 로세오모나스(Roseomonas), 로티아(Rothia), 루미노코커스(Ruminococcus), 살모넬라(Salmonella), 셀레노모나스(Selenomonas), 세르풀리나(Serpulina), 세라티아(Serratia), 슈베넬라(Shewenella), 시겔라(Shigella), 심카니아(Simkania), 슬락키아(Slackia), 스핑고박테리움(Sphingobacterium), 스핑고모나스(Sphingomonas), 스피릴룸(Spirillum), 스타필로코커스(Staphylococcus), 스테노트로포모나스(Stenotrophomonas), 스토마토코커스(Stomatococcus), 스트렙토바실러스(Streptobacillus), 스트렙토코커스(Streptococcus), 스트렙토마이세스(Streptomyces), 숙시니비브리오(Succinivibrio), 수테렐라(Sutterella), 수토넬라(Suttonella), 타투멜라(Tatumella), 티시에렐라(Tissierella), 트라불시엘라(Trabulsiella), 트레보네마(Treponema), 트로페리마(Tropheryma), 차카무렐라(Tsakamurella), 투리셀라(Turicella), 우리플라스마(Ureaplasma), 바고코커스(Vagococcus), 베일로넬라(Veillonella), 비브리오(Vibrio), 위크셀라(Weeksella), 울리넬라(Wolinella), 잔토모나스(Xanthomonas), 제노르합두스(Xenorhabdus), 예르시니아(Yersinia) 및 요케넬라(Yokenella) 등을 들 수 있다.As an example, a bacterium in which the coating composition of the present application exhibits antibacterial activity may be Gram positive or Gram negative, or may be non-responsive to Gram tests. Bacteria can also be aerobic or anaerobic. Bacteria can be pathogenic or non-pathogenic. Examples of bacterial species or genus include Abiotrophia, Achromobacter, Acidaminococcus, Acidovorax, Acinetobacter, Actinobacillus ), Actinobaculum, Actinomadura, Actinomyces, Aerococcus, Aeromonas, Afipia, Agrobacterium, Alkali Alcaligenes, Alloiococcus, Alteromonas, Amycolata, Amycolatopsis, Anaerobospirillum, Anaerorhabdus , Arachnia, Arcanobacterium, Arcobacter, Arthrobacter, Atopobium, Aureobacterium, Bacteroides, Foot Balneatrix, Bar Bartonella, Bergeyella, Bifidobacterium, Bilophila, Branhamella, Borrelia, Bordetella, Brachyspira ), Brevibacillus, Brevibacterium, Brevundimonas, Brucella, Burkholderia, Butiauxella, Butyrivibrio, Kalimatobacterium, Campylobacter, Capnocytophaga, Cardiobacterium, Catonella, Cedecea, Cellulomonas, Centipeda, Chlamydia, Chlamydophila, Chromobacterium, Chyseobacterium, Chryseomonas, Citrobacter, Clottact Clostridium, cholinecell (Collinsella), Comamonas, Corynebacterium, Coroxiella, Cryptobacterium, Delftia, Dermabacter, Dermatophilus ), Desulfomonas, Desulfovibrio, Dialerister, Dichelobacter, Dolosicoccus, Dolosigranulum, Edwardsiella , Eggerthella, Ehrlichia, Eikenella, Empedobacter, Enterobacter, Enterococcus, Erwinia, Ericipello Tricks (Erysipelothrix), Escherichia, Eubacterium, Ewingella, Exiguobacterium, Facklamia, Filifactor, Flavimonas Flavimonas, Flavobacterium, Francisella (Francisella), Fusobacterium, Gardnerella, Globicatella, Gemella, Gordona, Haemophilus, Hafnia ), Helicobacter, Helococcus, Holdemania, Ignavigranum, Johnsonella, Kingella, Klebsiella, Kocuria ), Kocerella, Kurthia, Kytococcus, Lactobacillus, Lactococcus, Lautropia, Leclercia, Legionella , Reminorella, Leptospira, Leptorichia, Leuconostoc, Listeria, Listonella, Megasphaera, Methylobacterium (Methylobacterium), Microbacterium, Micrococcus, U.S. Mitsuokella, Mobiluncus, Moellerella, Moraxella, Morganella, Mycobacterium, Mycoplasma, Myloplasma Myroides, Neisseria, Nocardia, Nocardiopsis, Ochrobactrum, Oeskovia, Oligella, Orientia, Phenibacillus, Pantoia, Parachlamydia, Pasteurella, Pediococcus, Peptococcus, Peptococcus, Peptostreptococcus, Photobacterium Photobacterium, Photorhabdus, Plesiomonas, Porphyrimonas, Prevotella, Propionibacterium, Proteus, Providencia, Pseudomonas, Pseudomonas Pseudonocardia, Pseudoramibacter, Psychrobacter, Rahnella, Ralstonia, Rhodococcus, Rickettsia, Localimei Rochalimaea, Roseomonas, Rothia, Luminococcus, Salmonella, Selenomonas, Serpulina, Serpulia, Serratia Shewenella, Shigella, Simkania, Slackia, Sphingobacterium, Sphingomonas, Spirillum, Staphylococcus , Stenotrophomonas, Stomatococcus, Streptobacillus, Streptococcus, Streptomyces, Succinivibrio, Suterella, Sutterella, Suterella, Suttonella, Tatumella, T Sisellaella, Trabulsiella, Treponema, Tropheryma, Tsakamurella, Turicella, Ureaplasma, and Baragococcus ), Veillonella, Vibrio, Weeksella, Wolinella, Xanthomonas, Xenorhabdus, Yersinia and Yokenella ( Yokenella).
그람 양성균으로, 예컨대 마이코박테리움 튜베르쿨로시스(Mycobacterium tuberculosis), 마이코박테리움 보비스(Mycobacterium bovis), 마이코박테리움 아비움(Mycobacterium avium), 마이코박테리움 인트라셀룰라(Mycobacterium intracellular), 마이코박테리움 아프리카눔(Mycobacterium africanum), 마이코박테리움 칸사시(Mycobacterium kansasii), 마이코박테리움 마리눔(Mycobacterium marinum), 마이코박테리움 울세란스(Mycobacterium ulcerans), 스타필로코커스 아우레우스(Staphylococcus aureus), 스타필로코커스 에피더미디스(Staphylococcus epidermidis), 스타필로코커스 에퀴(Staphylococcus equi), 스트렙토코커스 피오게네스(Streptococcus pyogenes), 스트렙토코커스 아갈락티애(Streptococcus agalactiae), 리스테리아 모노사이토게네스(steria monocytogenes), 리스테리아 이바노비(Listeria ivanovii), 바실러스 안트라시스(Bacillus anthracis), 바실러스 섭틸리스(B. subtilis), 노카르디아 아스테로이데스(Nocardia asteroides), 액티노마이세스 이스라엘리(Actinomyces israelii), 프로피오니박테리움 애크네스(Propionibacterium acnes) 및 엔테로코커스 종을 예시 할 수 있다. 그람 음성균으로는, 예컨대 클로스트리듐 테타니(Clostridium tetani), 클로스트리듐 퍼프린겐스(Clostridium perfringens), 클로스트리듐 보툴리늄(Clostridium botulinum), 슈도모나스 에어루지노사(Pseudomonas aeruginosa), 비브리오 콜레라(Vibrio cholerae), 액티노바실러스 프레우로뉴모니아(Actinobacillus pleuropneumoniae), 파스테우렐라 해몰리티카(Pasteurella haemolytica), 파스테우렐라 물토시다(Pasteurella multocida), 레지오넬라 뉴모필라(Legionella pneumophila), 살모넬라 티피(Salmonella typhi), 브루셀라 아보르투스(Brucella abortus), 클라미디 트라코마티스(Chlamydi trachomatis), 클라미디아 프사이타시(Chlamydia psittaci), 콕시엘라 부르네티(Coxiella burnetii), 대장균(Escherichia coli), 네이세리아 메닌기티디스(Neiserria meningitidis), 네이세리아 고노리아(Neiserria gonorrhea), 헤모필러스 인플루엔자(Haemophilus influenzae), 헤모필러스 두크레이(Haemophilus ducreyi), 예르시니아 펩스티스(Yersinia pestis), 에르시니아 엔테롤리티카(Yersinia enterolitica), 에세리키아 콜리(Escherichia coli), E. 히라(E. hirae), 버크홀데리아 세팍시아(Burkholderia cepacia), 버크홀데리아 슈도말레이(Burkholderia pseudomallei), 프란시셀라 툴라렌시스(Francisella tularensis), 박테로이데스 프라길리스(Bacteroides fragilis), 푸소박테리움 뉴클레아툼(Fusobascterium nucleatum), 코우드리아 루미난티움(Cowdria ruminantium)을 예시할 수 있으나, 이들로 한정되는 것은 아니다.Gram-positive bacteria, such as Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium avium, Mycobacterium intracellular, Mycobacterium africanum, Mycobacterium kansasii, Mycobacterium marinum, Mycobacterium ulcerans, Staphylococcus aureus (Staphylococcus aureus), Staphylococcus epidermidis, Staphylococcus equi, Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus agalactiae, (steria monocytogenes), Listeria ivanovii, Bacillus anthracis, bar Examples of C. subtilis, Nocardia asteroides, Actinomyces israelii, Propionibacterium acnes and Enterococcus species You can. Gram-negative bacteria include, for example, Clostridium tetani, Clostridium perfringens, Clostridium botulinum, Pseudomonas aeruginosa, Vibrio cholerae , Actinobacillus pleuropneumoniae, Pasteurella haemolytica, Pasteurella multocida, Legionella pneumophila, Salmonella typhi (Salmonella typhi) , Brucella abortus, Chlamydi trachomatis, Chlamydia psittaci, Coxella burnetii, Escherichia coli, Escherichia coli, Nisseria meningitiers N meningitidis), Neiserria gonorrhea, Haemophilus influenzae, he Haemophilus ducreyi, Yersinia pestis, Ersinia enterolitica, Escherichia coli, E. hirae, Burkholdere Burakholderia cepacia, Burkholderia pseudomallei, Francisella tularensis, Bacteroides fragilis, Fusobacterium nucleatum ), Cowdria ruminantium (Cowdria ruminantium) may be exemplified, but is not limited thereto.
본원의 코팅제에 있어서, 우루시올은 1 내지 20 중량%로 포함될 수 있다. 상기 함량이 1 중량% 미만인 경우 너무 적은 함량으로 우루시올의 특성을 발현하기 어려우며, 20 중량%를 초과할 경우 우루시올의 함량이 너무 많아져서 완전한 열경화가 일어나지 않아 코팅 표면에 미반응 물질들이 남을 수 있다. 또한 높은 점도로 인하여 제조공정에 문제가 발생될 수 있으며, 기재의 공극 막힘 현상이 발생할 수 있다.In the coating agent of the present application, urushiol may be included in 1 to 20% by weight. When the content is less than 1% by weight, it is difficult to express the properties of urushiol with a content that is too small, and when it exceeds 20% by weight, the content of urushiol is too high, so that complete heat curing does not occur and unreacted substances may remain on the coating surface. . In addition, due to the high viscosity, problems may occur in the manufacturing process and void clogging of the substrate may occur.
또한, 상기 코팅제 내의 무기 항균제의 함량이 0.1 내지 1 중량% 일 수 있다. 무기 항균제가 상기 범위에 미달되는 경우 항균력이 감소하는 문제가 발생할 수 있고, 상기 범위를 초과하는 경우 항균제 간의 뭉침현상으로 분산성에 문제가 발생할 수 있다.In addition, the content of the inorganic antibacterial agent in the coating agent may be 0.1 to 1% by weight. When the inorganic antimicrobial agent is less than the above range, a problem that the antibacterial power decreases may occur, and when it exceeds the above range, a dispersibility may occur due to agglomeration between antimicrobial agents.
또한, 본원의 기재에 있어서, 상기 기재 상의 우루시올의 함량이 15 내지 170 중량%이고, 무기 항균제의 함량이 4 내지 10 중량% 일 수 있다. 상기 범위에 미달되는 경우 항균력 감소 문제가 발생할 수 있고, 상기 범위를 초과하는 경우 기재의 공극 막힘 현상이 발생할 수 있다.In addition, in the description of the present application, the content of urushiol on the substrate may be 15 to 170% by weight, and the content of the inorganic antibacterial agent may be 4 to 10% by weight. If it is less than the above range, a problem of reducing antibacterial activity may occur, and if it exceeds the above range, a void clogging phenomenon of the substrate may occur.
구체예로, 기재는 부직포 소재일 수 있다. 부직포는 천연섬유, 화학섬유, 유리섬유, 금속섬유 등 각종 섬유를 상호간의 특성에 따라, 엉키게 하는 시트 모양의 웹(Web)을 형성하고, 이를 기계적 또는 물리적 방법으로 결합시켜 만든 평면구조의 섬유구조체이다. 원료 섬유로는 천연 섬유 및 합성 섬유로 이루어진 군에서 선택된 1종 이상이 사용될 수 있다. 예를 들어, 비스코스레이온 섬유, 폴리프로필렌 섬유, 폴리에틸렌 섬유, 폴리에틸렌테레프탈레이트 섬유, 폴리에스테르 섬유, 나일론 섬유 및 셀룰로오스 섬유 중 선택된 1종 이상을 함유한 부직포 소재일 수 있다. 본원에서 부직포의 소재 또는 제조 방식에는 특별한 제한이 없다. 부직포는 통상적으로 사용하는 것이면 적용가능하며, 바람직하게는 케미컬본딩부직포(Chemical Bonding), 써멀본딩부직포(Thermal Bonding), 에어레이부직포(Air Ray), 습식부직포(Wet Ray), 니들펀칭부직포(Needle Punching), 스판레스(수류결합법-Water zet), 스판본드(Spun Bond), 멜트블로운(Melt Blown), 스티치본드(Stitch Bond) 및 전기방사(electro spinning) 부직포 중에서 선택되는 어느 하나의 형태일 수 있다. 부직포는 평균두께가 0.1 ~ 5 ㎜ 또는 0.2 ~ 1 mm 일 수 있으며, 기재가 적용되는 장치의 종류에 따라 적절히 변경할 수 있다.In an embodiment, the substrate may be a non-woven material. Non-woven fabric is a fiber with a flat structure made by forming a sheet-shaped web that tangles various fibers such as natural fibers, chemical fibers, glass fibers, and metal fibers according to mutual characteristics, and combined them by mechanical or physical methods. It is a structure. As the raw fiber, one or more selected from the group consisting of natural fibers and synthetic fibers may be used. For example, it may be a nonwoven material containing at least one selected from viscose rayon fiber, polypropylene fiber, polyethylene fiber, polyethylene terephthalate fiber, polyester fiber, nylon fiber and cellulose fiber. There is no particular limitation on the material or manufacturing method of the nonwoven fabric herein. Non-woven fabric is applicable as long as it is commonly used, preferably chemical bonding, thermal bonding, thermal bonding, air-ray non-woven fabric (Air Ray), wet non-woven fabric (Wet Ray), needle punching non-woven fabric (Needle) Punching, spanless (water zet), spun bond, melt blown, stitch bond and electrospinning spinning Can be The nonwoven fabric may have an average thickness of 0.1 to 5 mm or 0.2 to 1 mm, and may be appropriately changed depending on the type of device to which the substrate is applied.
본 발명의 일예는, 우루시올을 포함하는 코팅제에, 무기 항균제를 첨가하는 단계; 상기 코팅제에 기재를 함침하여 고온 중합하는 단계; 및 상기 기재를 건조하는 단계를 포함하며, 우루시올이 가교되면서 무기 항균제가 기재 섬유 표면에 고정화되는 것을 특징으로 하는, 기재 표면의 항균 코팅 방법을 제공한다.An example of the present invention, the step of adding an inorganic antibacterial agent to the coating agent containing urushiol; High temperature polymerization by impregnating the coating agent with a substrate; And comprising the step of drying the substrate, it characterized in that the inorganic antimicrobial agent is immobilized on the surface of the substrate fiber while the urushiol is crosslinked, provides an antibacterial coating method of the substrate surface.
우루시올은 유기용제에 희석될 수 있다. 예를 들어, 메탄올, 에탄올, 프로판올, 부탄올, 벤젠, 톨루엔, 에틸벤젠, 디에틸벤젠, 크실렌, C1~C4의 알킬아세테이트, 메틸에틸케톤, 아세톤, 테트라하이드로퓨란, 1,4-디옥산, 테레핀유를 예시할 수 있으나 이에 제한되는 것은 아니다. 구체예로, 우루시올은 알코올류 용매 또는 오일류에 희석될 수 있다. 우루시올의 희석 농도에는 특별한 제한이 없으나, 예를 들어, 유기용제에 0.1 ~ 50중량%, 0.5 ~ 30중량% 또는 0.1 ~ 20중량%로 희석될 수 있고, 당업자가 적절히 조절하여 사용할 수 있다.Urushiol can be diluted in organic solvents. For example, methanol, ethanol, propanol, butanol, benzene, toluene, ethylbenzene, diethylbenzene, xylene, C1-C4 alkyl acetate, methyl ethyl ketone, acetone, tetrahydrofuran, 1,4-dioxane, tere Finyu may be illustrated, but is not limited thereto. In an embodiment, urushiol may be diluted in alcoholic solvents or oils. The dilution concentration of urushiol is not particularly limited, for example, it can be diluted to 0.1 to 50% by weight, 0.5 to 30% by weight or 0.1 to 20% by weight in an organic solvent, and used by those skilled in the art as appropriate.
우루시올 코팅 용액에 기재를 함침 방법으로서는 침지법, 디핑법, 롤러법, 에어 나이프법, 스프레이법 등을 예시할 수 있으나, 이에 제한되는 것은 아니다.As a method of impregnating the substrate with the urushiol coating solution, an immersion method, a dipping method, a roller method, an air knife method, a spray method, etc. may be exemplified, but is not limited thereto.
코팅제가 도입된 기재는 고온 처리하여 우루시올의 열가교 및 중합 반응을 유도할 수 있다. 상기 고온 처리에 의하여 우루시올이 경화되며 표면의 무기항균제와 단단하게 결합되므로, 무기 항균제가 기재 표면에 단단히 고정될 수 있다. 우루시올의 중합반응을 유도하기 위한 가열 온도는 70 내지 200 ℃, 또는 100 내지 150℃ 일 수 있고, 가열 시간은 1 내지 100 시간, 또는 1 내지 72시간, 또는 1시간 내지 6시간 일 수 있다. 상기 범위 내에서 반응시간은 온도가 높을수록 짧아지고 낮을수록 길어질 수 있다. 그러나 200 ℃ 가 넘으면 중합 반응이 급속도로 진행되어 반응을 조절하기 어려울 수 있다. 반응시간은 기재 표면에 코팅제가 고정화되는 정도를 보며 적절히 조절가능하나, 우루시올의 유동성이 현저히 감소하는 시점에 반응을 종결할 수 있다.The substrate into which the coating agent is introduced may be subjected to high temperature treatment to induce thermal crosslinking and polymerization reaction of urushiol. Urushiol is cured by the high temperature treatment and is tightly combined with the inorganic antibacterial agent on the surface, so that the inorganic antibacterial agent can be firmly fixed to the surface of the substrate. The heating temperature for inducing the polymerization reaction of urushiol may be 70 to 200 ° C, or 100 to 150 ° C, and the heating time may be 1 to 100 hours, or 1 to 72 hours, or 1 to 6 hours. The reaction time within the above range may be shorter as the temperature increases and longer as the temperature decreases. However, when the temperature exceeds 200 ° C, the polymerization reaction proceeds rapidly and it may be difficult to control the reaction. The reaction time can be appropriately adjusted while seeing the degree of immobilization of the coating agent on the surface of the substrate, but the reaction can be terminated at a time when the fluidity of urushiol is significantly reduced.
본원의 기재는 항균 필터로 사용될 수 있고, 상기 항균 필터는 진공 청소기, 공기 청정 장치, 자동차, 냉장고, 공조기, 가스마스크, 정수기, 클린룸 등에 적용되는 항균 필터로 유용하게 이용될 수 있다.The substrate of the present application may be used as an antibacterial filter, and the antibacterial filter may be useful as an antibacterial filter applied to a vacuum cleaner, an air cleaner, a car, a refrigerator, an air conditioner, a gas mask, a water purifier, and a clean room.
일예로, 항균 필터는 공기 정화에 이용될 수 있는 에어 필터일 수 있다. 이러한 에어 필터는 가정 내에 서 사용되는 진공 청소기 또는 공기 정화기 필터 일 수 있으나, 차량용 또는 공장이나 연구소 등의 산업에 대용량으로 이용될 수 있는 공기 정화 시설 또는 집진 시설에 이용되는 에어 필터일 수 있다. 또한, 상기 필터는 수처리용으로도 사용될 수 있다.In one example, the antibacterial filter may be an air filter that can be used for air purification. The air filter may be a vacuum cleaner or an air purifier filter used in the home, but may be an air filter used in an air purification facility or a dust collection facility that can be used in a large capacity in a vehicle or an industry such as a factory or research institute. In addition, the filter can also be used for water treatment.
이하 본 발명을 다음의 실시예에 의하여 보다 구체적으로 설명하고자 한다. 그러나 이들은 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들 실시예에 의하여 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail by the following examples. However, these are only for illustrating the present invention, and the scope of the present invention is not limited by these examples.
실시예 1. 기재 표면 처리용 항균 코팅제 및 항균 기재의 제조Example 1. Preparation of antibacterial coating agent for surface treatment of substrate and antibacterial substrate
우루시올 용액을 기반으로 하는 천연코팅제에 은이온을 포함하는 제올라이트 무기계 항균제를 첨가한 기재 표면 처리용 코팅제를 제조하였다. 이를 위하여, 우루시올(한국내쇼날주식회사)을 에탄올에서 1/30 으로 희석한 코팅 용액을 제조하고, 은이온을 포함하는 제올라이트 (일광폴리머사에서 제공받은 제오믹 제품)을 첨가 및 분산시켰다. 은이온을 포함하는 제올라이트는 코팅 용액에 0.3% w/v 비율로 첨가하였다. 제조된 코팅제에 miracloth 부직포 원단 (Sigma-Aldrich)의 기재를 30분 담침한 뒤 140℃ 에서 고온중합 및 건조하여 기재 표면에 코팅제를 도입하였다.A coating agent for surface treatment of a substrate was prepared by adding a zeolite inorganic antibacterial agent containing silver ions to a natural coating agent based on an urushiol solution. To this end, a coating solution in which urushiol (Korea National Co., Ltd.) was diluted 1/30 in ethanol was prepared, and a zeolite containing silver ions (a product manufactured by Sunkwang Polymer Co., Ltd.) was added and dispersed. Zeolite containing silver ions was added to the coating solution at a rate of 0.3% w / v. 30 minutes of substrate of miracloth non-woven fabric (Sigma-Aldrich) on the prepared coating agent After soaking, high temperature polymerization and drying were performed at 140 ° C to introduce a coating agent on the substrate surface.
실시예 2. 기재 표면 처리용 항균 코팅제 및 항균 기재의 제조Example 2. Preparation of antibacterial coating agent for surface treatment of substrate and antibacterial substrate
실시예 1과 동일한 방법으로 코팅제를 제조하되, 우루시올 1/5 희석액을 사용하여 코팅제를 제조한 후 기재 표면에 코팅제를 도입하였다.A coating agent was prepared in the same manner as in Example 1, but the coating agent was introduced on the surface of the substrate after preparing the coating agent using a dilution of urushiol 1/5.
실시예 3. 기재 표면 처리용 항균 코팅제 및 항균 기재의 제조Example 3. Preparation of antibacterial coating agent for surface treatment of substrate and antibacterial substrate
실시예 1과 동일한 방법으로 코팅제를 제조하되, 우루시올 1/100 희석액을 사용하여 코팅제를 제조한 후 기재 표면에 코팅제를 도입하였다.A coating agent was prepared in the same manner as in Example 1, but a coating agent was prepared using a 1/100 dilution of urushiol, and then the coating agent was introduced on the surface of the substrate.
비교예 1. 우루시올 코팅제 및 항균 기재의 제조Comparative Example 1. Preparation of urushiol coating agent and antibacterial substrate
우루시올(한국내쇼날주식회사)을 에탄올에서 1/30 으로 희석한 우루시올 코팅제를 제조하였다. 제조된 코팅제에 miracloth 부직포 원단 (Sigma-Aldrich)의 기재를 30분 담침한 뒤 140℃ 에서 고온중합 및 건조하여 기재 표면에 코팅제를 도입하였다.Urushiol (Korea National Co., Ltd.) was prepared by diluting urushiol with 1/30 in ethanol. The substrate of the miracloth nonwoven fabric (Sigma-Aldrich) was immersed in the prepared coating agent for 30 minutes, followed by high temperature polymerization and drying at 140 ° C to introduce a coating agent on the surface of the substrate.
비교예 2. 무기 항균제 함유 코팅제 및 항균 기재의 제조Comparative Example 2. Preparation of inorganic antibacterial agent-containing coating agent and antibacterial substrate
에탄올에서 은이온을 포함하는 제올라이트 (일광폴리머사에서 제공받은 제오믹 제품)을 첨가 및 분산시켰다. 은이온을 포함하는 제올라이트는 0.3% w/v 비율로 첨가하였다. 제조된 코팅제에 miracloth 부직포 원단 (Sigma-Aldrich)의 기재를 30분 담침한 뒤 140℃ 에서 고온중합 및 건조하여 기재 표면에 코팅제를 도입하였다.In ethanol, a zeolite containing silver ions (a product manufactured by Sunkwang Polymer Co., Ltd.) was added and dispersed. Zeolite containing silver ions was added at a rate of 0.3% w / v. The substrate of the miracloth nonwoven fabric (Sigma-Aldrich) was immersed in the prepared coating agent for 30 minutes, followed by high temperature polymerization and drying at 140 ° C to introduce a coating agent on the surface of the substrate.
비교예 3. 기재 표면 처리용 항균 코팅제 및 항균 기재의 제조Comparative Example 3. Preparation of antibacterial coating agent for surface treatment of substrate and antibacterial substrate
우루시올(한국내쇼날주식회사)을 에탄올에서 1/30 으로 희석한 코팅 용액을 제조하고, 은이온을 포함하는 제올라이트 (일광폴리머사에서 제공받은 제오믹 제품)을 첨가 및 분산시켰다. 은이온을 포함하는 제올라이트는 코팅 용액에 0.3% w/v 비율로 첨가하였다. 제조된 코팅제에 miracloth 부직포 원단 (Sigma-Aldrich)의 기재를 30분 담침한 뒤 30℃ 에서 건조하여 기재 표면에 코팅제를 도입하였다.Urushiol (Korea National Co., Ltd.) was prepared by diluting a coating solution 1/30 in ethanol, and a zeolite containing silver ions (a product manufactured by Sunkwang Polymer Co., Ltd.) was added and dispersed. Zeolite containing silver ions was added to the coating solution at a rate of 0.3% w / v. The substrate of miracloth nonwoven fabric (Sigma-Aldrich) was immersed in the prepared coating agent for 30 minutes and then dried at 30 ° C. to introduce a coating agent on the surface of the substrate.
Figure PCTKR2019012637-appb-T000001
Figure PCTKR2019012637-appb-T000001
실험예 1. 주사전자현미경(SEM) 관찰Experimental Example 1. Scanning electron microscope (SEM) observation
실시예 1에 의한 항균 기재를 주사전자현미경(SEM)으로 관찰한 결과, 코팅제가 부직포 섬유 표면에 균일하게 코팅되어 있었고, 섬유의 표면에 무기항균제가 부착되어 있었다 (도 1). 특히, 우루시올이 열가교 및 경화되며 표면의 무기항균제와 단단하게 결합되므로, 수세 전, 후에 기재 표면의 차이가 없는 것을 확인할 수 있었다 (도 2). 또한, 실시예 1의 경우, 우루시올에 의해 무기 항균제가 코팅되어 섬유 표면에 결합되어 있었고, 표면이 비교적 매끄러우며, 섬유 표면과 입자들이 우루시올 경화 과정에서 함께 코팅되기 때문에 안정적으로 고정되어 있었다 (도 3).As a result of observing the antibacterial substrate according to Example 1 with a scanning electron microscope (SEM), the coating agent was uniformly coated on the surface of the nonwoven fabric, and an inorganic antibacterial agent was attached to the surface of the fiber (FIG. 1). In particular, since urushiol is thermally crosslinked and cured and is tightly bound to the inorganic antibacterial agent on the surface, it has been confirmed that there is no difference in the surface of the substrate before and after water washing (FIG. 2). In addition, in the case of Example 1, the inorganic antimicrobial agent was coated by urushiol and bound to the fiber surface, the surface was relatively smooth, and the fiber surface and particles were stably fixed because they were coated together during the urushiol curing process (Fig. 3). ).
비교예 1은 무기 항균제 없이 우루시올만을 코팅제로 사용한 것으로, 코팅제가 경화됨에 따라 흰색의 부직포가 갈색으로 변화됨을 확인할 수 있었고, SEM 사진을 통해 코팅제가 부직포 섬유 표면에 균이하게 코팅된 것을 확인하였다 (도 1).In Comparative Example 1, only urushiol was used as a coating agent without an inorganic antibacterial agent, and it was confirmed that the white non-woven fabric turned brown as the coating was cured, and it was confirmed through SEM pictures that the coating agent was uniformly coated on the surface of the non-woven fabric ( Figure 1).
비교예 2는 우루시올 없이 무기 항균제 (은 이온 함유 제올라이트)만을 코팅제로 사용한 것으로, 코팅된 기재의 수세 후 많은 양의 무기 항균제가 떨어져 나가는 것을 관찰 할 수 있었다. 또한, 우루시올이 없을 경우, 무기 항균제가 뭉친 형태로 부직포에 도입되는 것을 관찰 할 수 있었다(도 2). 또한, 무기 항균제 (은 이온 함유 제올라이트)는 육면체 형태로, 거친 표면을 가지고 있었고, 단순 물리적 흡착으로 섬유 표면에 고정되어 있었다(도 3).In Comparative Example 2, only the inorganic antibacterial agent (silver ion-containing zeolite) was used as the coating agent without urushiol, and it was observed that a large amount of the inorganic antibacterial agent falls off after washing the coated substrate. In addition, in the absence of urushiol, it was observed that the inorganic antimicrobial agent was introduced into the nonwoven fabric in a bundled form (FIG. 2). In addition, the inorganic antibacterial agent (silver ion-containing zeolite) was in the form of a cube, had a rough surface, and was fixed to the fiber surface by simple physical adsorption (FIG. 3).
비교예 3의 경우, 우루시올과 무기 항균제를 모두 포함하는 코팅제를 사용하였으나 우루시올을 고온 경화시키지 않은 것으로, 코팅된 기재의 수세 후 무기 항균제가 떨어져 나가는 것을 관찰 할 수 있었다 (도 2).In the case of Comparative Example 3, a coating agent containing both urushiol and an inorganic antimicrobial agent was used, but the urushiol was not cured at a high temperature, and it could be observed that the inorganic antibacterial agent fell off after washing the coated substrate (FIG. 2).
실험예 2. 적외선 분광 분석(FT-IR)Experimental Example 2. Infrared spectroscopy (FT-IR)
FT-IR 분석을 통해 공기 중에서 단순 열가교를 통해 우루시올이 경화되는 것을 확인하였다. 이를 위하여, 각 샘플들을 2 x 2 cm 크기로 자른 뒤, 반사모드(ATR)로 측정하였다.Through FT-IR analysis, it was confirmed that urushiol was cured through simple thermal crosslinking in air. To this end, each sample was cut to a size of 2 x 2 cm, and then measured in reflection mode (ATR).
도 4는 우루시올 모노머와 열가교된 폴리우루시올의 FT-IR 분석 결과를 나타낸다. 도 4에서 3012 cm-1 은 =C-H 신축 진동 (stretching vibration) 부분으로, 열가교 됨에 따라 이 부분이 줄어들었다 (-CH=CH- + -CH=CR1 -> -CH-CH-CH-CR1). 3600~3200 cm-1 은 -OH vibration 부분으로 우루시올 모노머의 경우 sharp한 형태지만, 열가교 됨에 따라 수소결합에 의해 peak이 broad 해졌다. 948 및 985 cm-1 은 우루시올 모노머의 컨쥬게이션된 이중결합(conjugated double bond)이 열가교됨에 따라 감소하거나 사라짐을 확인할 수 있다. 따라서, 우루시올 모노머가 열가교를 통해 가교되며, 결과적으로 경화된 폴리우루시올 형태가 됨을 확인할 수 있다.Figure 4 shows the results of FT-IR analysis of the urushiol monomer and the heat-crosslinked polyurushiol. In FIG. 4, 3012 cm -1 is a = CH stretching vibration part, and this part is reduced as it is thermally crosslinked (-CH = CH- + -CH = CR1-> -CH-CH-CH-CR1) . 3600 ~ 3200 cm -1 is a -OH vibration part, which is sharp in the case of urushiol monomer, but the peak was broadened by hydrogen bonding as it was thermally crosslinked. It can be seen that 948 and 985 cm -1 decrease or disappear as the conjugated double bond of the urushiol monomer is thermally crosslinked. Therefore, it can be confirmed that the urushiol monomer is crosslinked through thermal crosslinking, and as a result, it becomes a cured polyurushiol form.
이를 바탕으로, 실시예 1에 따라 코팅된 항균 기재의 FT-IR 분석을 수행하였고, 그 결과를 도 5에 나타내었다. 도 5에서, 무기 항균제 (은 이온 함유 제올라이트) 의 FT-IR peak 은 3600~3200 cm-1 의 -OH peak과 900~850 cm-1 의 Si-OH, 1100~1000 cm-1 의 Si-O-Si peak 였다. 3600~3200 cm-1 의 -OH vibration 부분은 우루시올 모노머의 peak 과 겹쳤다. 1100~850 cm-1 부분은 Si-OH, Si-O-Si peak으로, 무기 항균제의 peak으로 구분이 가능하였다. 1100~850 cm-1 부분의 peak의 세기가 다른 특정 peak에 비하여 매우 큰 것을 통하여, 표면에 다수의 무기 항균제가 존재함을 알 수 있었다. Based on this, FT-IR analysis of the antibacterial substrate coated according to Example 1 was performed, and the results are shown in FIG. 5. In FIG. 5, the FT-IR peak of the inorganic antibacterial agent (silver ion-containing zeolite) is 3600-3200 cm -1 -OH peak and 900-850 cm -1 Si-OH, 1100-1000 cm -1 Si-O. -Si peak. The -OH vibration portion of 3600 ~ 3200 cm -1 overlapped the peak of the urushiol monomer. The 1100 to 850 cm -1 portions were Si-OH and Si-O-Si peaks, and were classified as inorganic antimicrobial peaks. Through the fact that the peak intensity of the 1100 to 850 cm -1 portion was very large compared to other specific peaks, it was found that a number of inorganic antibacterial agents were present on the surface.
실험예 3. 항균력 확인Experimental Example 3. Confirmation of antibacterial activity
수세과정에서 입자들의 탈착이 발생하는 비교예 2와 우루시올 가교가 형성되지 않은 비교예 3을 제외한 기재들에 대한 항균실험을 진행하였다. 항균실험은 항균실험 규격인 KS K 0693을 적합하게 변형하여 사용하였다. 구체적으로, 50ml 코니칼 튜브에 잘게 자른 항균 원단 시료에 0.4g, 104 CFU 농도의 균 4ml (1X PBS 4ml, OD 600nm=1 값의 균 40μl)을 첨가하였다. 대조 시험편은 항균 원단 시료 대신 아무런 처리가 되지 않은 원단 0.4g을 넣어 준비하였다. 그람 양성균으로 황색포도상구균(Staphylococcus aureus)를 사용하고, 그람 음성균으로 대장균(Escherichia coli)을 사용하였다. 상기 균주들은 한국미생물보존센터에서 공급받았다. 준비된 샘플을 shaking incubator 를 이용하여 (37±1)℃에서 24시간 동안 현탁 배양하였다. 균 배양이 끝난 시료에 1X PBS 16ml 를 첨가하여 5배 희석한 뒤, 원단 종류에 따라 30분 내지 1시간 동안 볼텍싱(vortexing)하였다. 이 단계는 원단에 끼어있거나 표면에 부착되어 있는 균을 액상으로 떼어내는 과정으로, miracloth 원단은 최소 30분, 방사 원단은 최소 1시간 볼텍싱 처리를 해주어야 한다. 볼텍싱이 완료되면 100μl 씩 아가 고체 배지에 접종한 뒤 스프레더 또는 유리구슬을 이용하여 배지에 흡수될 때까지 도말하였다. 고체 배지를 (37±1)℃에서 24 시간 동안 정치 배양하였다. 각각의 페트리디쉬의 콜로니를 세어 기록하였다. 그 다음 대조 시험편 대비 항균 시료의 CFU 수가 몇 퍼센트 감소되었는지 계산하여 정균 감소값을 구하였다.Antibacterial experiments were performed on substrates except for Comparative Example 2 in which desorption of particles occurs in the washing process and Comparative Example 3 in which urushiol crosslinking is not formed. For the antibacterial test, KS K 0693, an antibacterial test standard, was suitably modified and used. Specifically, 0.4 g, 10 4 CFU concentration of 4 ml of bacteria (1X PBS 4 ml, OD 600 nm = 1 value of 40 μl of bacteria) was added to an antibacterial fabric sample cut into 50 ml conical tubes. The control test piece was prepared by adding 0.4 g of untreated fabric instead of an antibacterial fabric sample. Staphylococcus aureus was used as a Gram-positive bacterium, and Escherichia coli was used as a Gram-negative bacterium. The strains were supplied by the Korea Microbial Conservation Center. The prepared sample was incubated for 24 hours at (37 ± 1) ° C using a shaking incubator. After the culture was completed, 16 ml of 1X PBS was added and diluted 5 times, followed by vortexing for 30 minutes to 1 hour depending on the type of fabric. This step is the process of removing the bacteria attached to the fabric or attached to the surface in a liquid state, and the miracloth fabric should be vortexed for at least 30 minutes and the spinning fabric for at least 1 hour. When the vortexing was completed, 100 μl of each was inoculated into agar solid medium, and then spread until it was absorbed into the medium using a spreader or glass beads. The solid medium was incubated at (37 ± 1) ° C. for 24 hours. Colonies of each Petri dish were counted and recorded. Then, the percentage of CFU in the antimicrobial sample compared to the control specimen was calculated to determine the percentage of bacteriostatic reduction.
그 결과, 실시예 1, 실시예 2, 및 실시예 3에 따라 우루시올과 무기항균제가 코팅된 섬유의 경우 황색포도상구균과 대장균에 모두에 99.9%의 항균력을 나타내었다. 그러나, 비교예 1에 따라 우루시올이 코팅된 섬유의 경우, 대장균에 항균력이 나타나지 않았으며, 그람 양성균인 황색포도상구균에만 99.9%의 항균력을 나타내다 (도 6).As a result, in the case of the fibers coated with urushiol and the inorganic antimicrobial agent according to Example 1, Example 2, and Example 3, Staphylococcus aureus and Escherichia coli showed 99.9% antibacterial activity. However, in the case of the fiber coated with urushiol according to Comparative Example 1, there was no antibacterial activity in E. coli, and only 99.9% of the antibacterial activity in Staphylococcus aureus, a Gram-positive bacteria (FIG. 6).
이상의 설명으로부터, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art to which the present invention pertains will understand that the present invention can be implemented in other specific forms without changing its technical spirit or essential features. Therefore, the embodiments described above should be understood as illustrative in all respects and not restrictive. The scope of the present invention should be construed as including all changes or modifications derived from the meaning and scope of the following claims rather than the detailed description and equivalent concepts thereof.

Claims (13)

  1. 우루시올 및 무기 항균제를 포함하는 항균 코팅제가 표면에 코팅된 기재로서,An antibacterial coating agent including urushiol and an inorganic antibacterial agent is coated on the surface,
    우루시올이 가교되면서 무기 항균제가 기재 표면에 고정화된 것을 특징으로 하는, 기재.The substrate, characterized in that the inorganic antimicrobial agent is immobilized on the surface of the substrate while urushiol is crosslinked.
  2. 제1항에 있어서, 무기 항균제가 은이온 및 제올라이트를 포함하는 무기 항균제, 구리 산화물, 징크옥사이드, 또는 징크피리치온인, 기재.The substrate according to claim 1, wherein the inorganic antibacterial agent is an inorganic antibacterial agent including silver ion and zeolite, copper oxide, zinc oxide, or zinc pyrithione.
  3. 제1항 또는 제2항에 있어서, 코팅제 내의 우루시올의 함량이 1 내지 20 중량%이고, 무기 항균제의 함량이 0.1 내지 1 중량%인, 기재.The substrate according to claim 1 or 2, wherein the content of urushiol in the coating agent is 1 to 20% by weight, and the content of the inorganic antibacterial agent is 0.1 to 1% by weight.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 기재 상의 우루시올의 함량이 15 내지 170 중량%이고, 무기 항균제의 함량이 4 내지 10 중량%인, 기재.The substrate according to any one of claims 1 to 3, wherein the content of urushiol on the substrate is 15 to 170% by weight, and the content of the inorganic antibacterial agent is 4 to 10% by weight.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 코팅제가 그람 양성균 및 그람 음성균에 항균 활성을 가지는 기재.The substrate according to any one of claims 1 to 4, wherein the coating agent has antibacterial activity against Gram-positive bacteria and Gram-negative bacteria.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 코팅제가 표면에 균일하게 코팅된, 기재.The substrate according to any one of claims 1 to 5, wherein the coating agent is uniformly coated on the surface.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 기재가 섬유인, 기재.The substrate according to any one of claims 1 to 6, wherein the substrate is a fiber.
  8. 우루시올을 포함하는 코팅제에, 무기 항균제를 첨가하는 단계;Adding an inorganic antibacterial agent to the coating agent containing urushiol;
    상기 코팅제에 기재를 함침하여 고온 중합하는 단계; 및High temperature polymerization by impregnating the coating agent with a substrate; And
    상기 기재를 건조하는 단계를 포함하며,And drying the substrate.
    우루시올이 가교되면서 무기 항균제가 기재 표면에 고정화되는 것을 특징으로 하는,Characterized in that the inorganic antimicrobial agent is immobilized on the surface of the substrate while the urushiol is crosslinked,
    기재 표면의 항균 코팅 방법.Method for antibacterial coating of substrate surface.
  9. 제8항에 있어서, 상기 우루시올이 알코올류 용매 또는 오일류에 희석된 것인, 방법.The method according to claim 8, wherein the urushiol is diluted in an alcoholic solvent or oils.
  10. 제8항 또는 제9항에 있어서, 무기 항균제가 은이온 및 제올라이트를 포함하는 무기 항균제, 구리 산화물, 징크옥사이드, 또는 징크피리치온인, 방법.The method according to claim 8 or 9, wherein the inorganic antibacterial agent is an inorganic antibacterial agent including silver ion and zeolite, copper oxide, zinc oxide, or zinc pyrithione.
  11. 제8항 내지 제10항 중 어느 한 항에 있어서, 코팅제 내의 우루시올의 함량이 1 내지 20 중량%이고, 무기 항균제의 함량이 0.1 내지 1 중량%인, 방법.The method according to any one of claims 8 to 10, wherein the content of urushiol in the coating agent is 1 to 20% by weight, and the content of the inorganic antibacterial agent is 0.1 to 1% by weight.
  12. 제8항 내지 제11항 중 어느 한 항에 있어서, 기재 상의 우루시올의 함량이 15 내지 170 중량%이고, 무기 항균제의 함량이 4 내지 10 중량%인, 방법.The method according to any one of claims 8 to 11, wherein the content of urushiol on the substrate is 15 to 170% by weight, and the content of the inorganic antibacterial agent is 4 to 10% by weight.
  13. 제8항 내지 제12항 중 어느 한 항에 있어서, 코팅제가 그람 양성균 및 그람 음성균에 항균 활성을 가지는 방법.The method according to any one of claims 8 to 12, wherein the coating agent has antibacterial activity against Gram-positive bacteria and Gram-negative bacteria.
PCT/KR2019/012637 2018-09-27 2019-09-27 Substrate treated with antimicrobial coating agent and method for producing same WO2020067799A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021501043A JP2021531270A (en) 2018-09-27 2019-09-27 Substrate treated with antibacterial coating agent and its manufacturing method
EP19864338.9A EP3816239A4 (en) 2018-09-27 2019-09-27 Substrate treated with antimicrobial coating agent and method for producing same
CN201980048822.8A CN112469785A (en) 2018-09-27 2019-09-27 Substrate treated with antibacterial coating agent and method for producing the same
US17/263,994 US11814544B2 (en) 2018-09-27 2019-09-27 Substrate treated with antimicrobial coating agent and preparation method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0115319 2018-09-27
KR20180115319 2018-09-27
KR10-2019-0119139 2019-09-26
KR1020190119139A KR20200035898A (en) 2018-09-27 2019-09-26 Substrate treated with antibacterial coating composition and method for preparing the same

Publications (1)

Publication Number Publication Date
WO2020067799A1 true WO2020067799A1 (en) 2020-04-02

Family

ID=69950644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012637 WO2020067799A1 (en) 2018-09-27 2019-09-27 Substrate treated with antimicrobial coating agent and method for producing same

Country Status (1)

Country Link
WO (1) WO2020067799A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050034060A (en) * 2003-10-08 2005-04-14 주식회사 하미 Paint composition for urushiol-coated leather
KR20080095638A (en) * 2007-04-25 2008-10-29 한국내쇼날주식회사 Production method of urethane paint including purified urushiol and coating products manufactured by the same
KR20110077169A (en) * 2009-12-30 2011-07-07 주식회사 포스코 Surface treatment method of substrate using hydroxyl group substituted urushiol from toxicodendron vernicifluum
KR20140058054A (en) * 2012-11-06 2014-05-14 김승일 Filter for water purifier and thereof method
KR20150079096A (en) * 2013-12-31 2015-07-08 도레이케미칼 주식회사 PTFE filter media and production method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050034060A (en) * 2003-10-08 2005-04-14 주식회사 하미 Paint composition for urushiol-coated leather
KR20080095638A (en) * 2007-04-25 2008-10-29 한국내쇼날주식회사 Production method of urethane paint including purified urushiol and coating products manufactured by the same
KR20110077169A (en) * 2009-12-30 2011-07-07 주식회사 포스코 Surface treatment method of substrate using hydroxyl group substituted urushiol from toxicodendron vernicifluum
KR20140058054A (en) * 2012-11-06 2014-05-14 김승일 Filter for water purifier and thereof method
KR20150079096A (en) * 2013-12-31 2015-07-08 도레이케미칼 주식회사 PTFE filter media and production method thereof

Similar Documents

Publication Publication Date Title
US11814544B2 (en) Substrate treated with antimicrobial coating agent and preparation method thereof
KR101731126B1 (en) Photochemical cross-linkable polymers, methods of making photochemical cross-linkable polymers, and methods of using photochemical cross-linkable polymers
EP3518984B1 (en) Nanocluster capped mesoporous nanoparticles, methods of making and use
US9879117B2 (en) Photochemical cross-linkable polymers, methods of making photochemical cross-linkable polymers, methods of using photochemical cross-linkable polymers, and methods of making articles containing photochemical cross-linkable polymers
US10010074B2 (en) Photochemical cross-linkable polymers, methods of making photochemical cross-linkable polymers, methods of using photochemical cross-linkable polymers, and methods of making articles containing photochemical cross-linkable polymers
WO2020067799A1 (en) Substrate treated with antimicrobial coating agent and method for producing same
US10070651B2 (en) Synthesis and characterization of antimicrobial non-color forming silver-silica nanocomposite
EP3102540B1 (en) Compositions including a vacancy-engineered (ve)-zno nanocomposite, methods of making a composition, methods of using a composition
EP2563842B1 (en) Synthesis and application reactive antimicrobial copolymers for textile fibers
US20150098974A1 (en) Compositions, Methods of Making a Composition, and Methods of Use
AU2015253484A1 (en) Compositions, methods of making a composition, and methods of use
WO2013019918A2 (en) Permanent attachment of ammonium and guanidine-based antimicrobials to surfaces containing-oh functionality
EP2739315A2 (en) Permanent attachment of ammonium and guanidine-based antimicrobials to surfaces containing c-h functionality
US20180295836A1 (en) Nanocomposite compositions comprising multi-valent metal material and immobilized quat material, methods of making the compositions and methods of using the compositions
CA2851617A1 (en) Synthesis and application reactive antimicrobial copolymers for textile fibers
LOCKLIN et al. Patent 2797709 Summary

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501043

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019864338

Country of ref document: EP

Effective date: 20210126

NENP Non-entry into the national phase

Ref country code: DE