WO2020067304A1 - Railroad vehicle drive device, method of outfitting same, railroad vehicle equipped with said drive device, and method of producing same - Google Patents
Railroad vehicle drive device, method of outfitting same, railroad vehicle equipped with said drive device, and method of producing same Download PDFInfo
- Publication number
- WO2020067304A1 WO2020067304A1 PCT/JP2019/037896 JP2019037896W WO2020067304A1 WO 2020067304 A1 WO2020067304 A1 WO 2020067304A1 JP 2019037896 W JP2019037896 W JP 2019037896W WO 2020067304 A1 WO2020067304 A1 WO 2020067304A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- railway vehicle
- drive device
- current
- vehicle drive
- power
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L9/00—Electric propulsion with power supply external to the vehicle
- B60L9/16—Electric propulsion with power supply external to the vehicle using ac induction motors
- B60L9/18—Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to a railway vehicle drive device having a current breaker, a current reducer, and an inverter device.
- FIG. 4 is a diagram showing an example of the configuration of a conventional railway vehicle drive device.
- a conventional railway vehicle drive device an inverter in which a high-speed circuit breaker (HB) 15, a breaker (LB1, LB2) 7, and a filter reactor (FL) 5 are connected in series and a filter capacitor (FC) 6 is built in The 1C4M control system for driving four motors (IM1 to IM4) 16 using the device (INV) 4 is mainly used.
- a main switch (MS) 8 for electrically disconnecting the overhead line voltage from the main circuit via a pantograph 13 and a main fuse (MF) 14 from a 1500 V DC overhead line, and a ground side And a ground switch (GS) 9 for electrically separating the main circuit from the main circuit.
- An overvoltage protection circuit (OVT) 3 having an overvoltage discharge element (OVTr), a discharge resistor (OVRe) and a voltmeter (DCPT2) is further provided. Further, a voltmeter (DCPT1) 11, a discharge resistor (DCHRe) 12, and a discharge Switch (DS) 10.
- the main circuit unit 1 including the high-speed circuit breaker (HB) 15, the filter reactor (FL) 5, the inverter device (INV) 4, and the disconnectors (LB1, LB2) 7
- HB high-speed circuit breaker
- FL filter reactor
- INV inverter device
- LB1 LB2 disconnectors
- FIG. 5 is a diagram illustrating an example of a conventional under-floor arrangement of equipment mounted on a railway vehicle.
- an INTEROS box (a box for a control transmission / monitoring device of a railway vehicle) 21, a disconnector box 22, an SIV disconnector box 23, a bus breaker A box 24, a brake control device 25, a supply air tank 26, an anti-skid valve device 27, and a direct spare brake device 28 are provided.
- Patent Document 1 Japanese Unexamined Patent Application Publication No. 2001-37004 discloses an inverter type suitable for overhead wire overcurrent protection at the time of inverter phase short-circuiting in order to improve regenerative braking performance at high speed even when overhead wire voltage is low.
- a pantograph supplied with power from an overhead wire, a current breaker, a high-speed circuit breaker, a semiconductor switch connected in parallel to a resistor, a filter device including a reactor and a capacitor,
- An inverter-type electric vehicle including an inverter device and an electric motor, which is provided with means for controlling on / off of a semiconductor switch so that a terminal voltage of the resistor becomes a difference voltage between an electric motor voltage and an overhead line voltage during regenerative braking. It has been disclosed.
- Patent Document 2 Japanese Patent Application Laid-Open No. 2007-26167 discloses that as a means for reducing the number of man-hours at the time of outfitting, each device is preliminarily outfitted in a cabinet, and a complex of each device and the cabinet is integrated. A method of outfitting is disclosed.
- the conventional railway vehicle drive device has a configuration suitable for protection of overhead wire overcurrent.
- any one of the elements (4A, 4B, and 4C) of the power unit (PU) in the inverter device (INV) 4 fails and an arm short circuit occurs, an inrush current flows from the DC power supply (DC overhead wire).
- the rate of increase of the rush current becomes large, and the opening time of the high-speed circuit breaker (HB) 15 mounted on the vehicle is delayed (in the case of a mechanical circuit breaker, usually about 10 ms).
- the short-circuit current may increase sharply, and the high-speed circuit breaker (HB) of the DC substation (not shown) may perform a breaking operation.
- the reactor (FL) 5 has a large inductance value of about 8 mH. However, with this, the mass of the filter reactor (FL) 5 is very heavy, for example, about 500 kg, and occupies a large volume.
- the opening delay of the high-speed circuit breaker (HB) is 10 ms
- the short-circuit current reaches 7500 A before the on-vehicle high-speed circuit breaker (HB) opens.
- the set value of the overcurrent interruption of the high-speed circuit breaker (HB) of the DC substation varies depending on the capacity of the substation, but is usually about 5,000A to 10,000A. Therefore, the short-circuit current may cause the high-speed circuit breaker (HB) of the DC substation to operate.
- the conventional railway vehicle drive device includes main devices (the high-speed circuit breaker (HB) 15, the filter reactor (FL) 5, the inverter device (INV), and the disconnector (LB)).
- the main circuit unit 1 includes a separate box, which increases the volume and mass of the entire railway vehicle drive device, and as shown by the solid line with arrows in FIG. In practice, the number of wires under the vehicle floor for (15) and (15) has increased, and the number of outfitting steps for railway vehicles has also increased.
- Patent Literature 1 when a phase is short-circuited in an inverter or grounded to an overhead wire, a semiconductor switch is turned off and a resistor is inserted to quickly reduce an overcurrent generated in the overhead wire, so that a high-speed circuit breaker (HB) or a current breaker is used. Large current interruption such as (LB1, LB2) can be suppressed. However, the volume and mass of the entire railway vehicle drive device have not been reduced, nor has the cost of railway vehicle production been reduced.
- Patent Document 2 The method described in Patent Document 2 is also effective in reducing the number of steps for fitting an equipment box to a vehicle body, but since the number of equipment boxes does not change, the number of wirings between equipment and terminal blocks used for connection points, etc. There is no effect of reducing the number of. In addition, since the volume and mass of the cabinet itself are added, the power consumption during traveling is increased due to an increase in the weight of the vehicle body, and there is a problem that the available area of the underfloor space is reduced.
- the object of the present invention is to reduce the volume and mass of the entire railway vehicle drive device and to reduce the overall cost of railway vehicle production while maintaining the protection function against overhead line overcurrent as in the past.
- a drive device for a railway vehicle supplies a current through a current breaker that interrupts a DC current supplied to a railway vehicle from a DC overhead line, a current reducer connected in series to the current breaker, and a current reducer.
- Power unit that converts DC power to three-phase AC power and a filter capacitor, and a filter reactor connected between the current reducer and the filter capacitor, all of these components in the same housing. It is housed and integrally mounted on a railway car.
- the overcurrent is rapidly reduced by the current reducer as compared with the conventional mechanical HB, so that the filter reactor, which had to be increased in size in order to suppress the rise rate of the current, can be reduced in size.
- This allows the main circuit from the current reducer to the inverter device to be housed in the same housing, and the installation and wiring of the housing under the floor of the railcar completes the outfitting of the main circuit system .
- the number of wires under the vehicle floor can be significantly reduced, and the number of outfitting steps during production of the railway vehicle can be significantly reduced.
- FIG. 1 is a diagram illustrating an example of a configuration of a railway vehicle drive device according to a first embodiment of the present invention.
- FIG. 2 is a top view of an arrangement example in which main devices in the railway vehicle drive device according to the present invention of FIG. 1 are housed in the same box made of a rectangular parallelepiped to form an integrated box.
- FIG. 3 is a diagram illustrating an underfloor arrangement of a railway vehicle equipped with the integrated box illustrated in FIG. 2. It is a figure which shows an example of a structure of the conventional railway vehicle drive device. It is a figure which shows an example of the underfloor arrangement
- FIG. 9 is a diagram illustrating an example of a configuration of a railway vehicle drive device according to a third embodiment of the present invention.
- FIG. 9 is a diagram illustrating an example of a configuration of a railway vehicle drive device according to a fourth embodiment of the present invention. It is a figure showing an example of the composition of the drive for railway vehicles concerning Example 5 of the present invention. It is the figure which looked at the apparatus layout of the drive device for railway vehicles shown in FIG. 9 from the upper surface. It is a figure which shows an example of the underfloor outfitting arrangement
- FIG. 11 is a diagram showing an underfloor outfitting arrangement of the railway vehicle equipped with the integrated box according to the first embodiment, which is a layout that follows the equipment layout shown in FIG. 10.
- FIG. 19 is a diagram illustrating an example of a layout in a box of an integrated box according to the sixth embodiment. It is a figure showing an example of the layout in a box of a one-piece box concerning Example 7 of the present invention. It is a figure showing an example of underfloor outfitting arrangement concerning Example 8 of the present invention.
- Embodiments 1 to 8 will be described below with reference to the drawings as embodiments for carrying out the present invention.
- the description will be divided into a plurality of sections or details, but unless otherwise specified, they are not unrelated to each other, and one is a part of the other. Or, there is a relationship of all the modified examples, details and supplementary explanations.
- the number of elements including the number, numerical value, amount, range, etc.
- the number is not limited to the specified number, and may be more than or less than the specified number.
- the constituent elements are not necessarily essential unless otherwise specified or in principle considered to be clearly essential.
- the shape and the like are substantially the same unless otherwise specified, and in cases where it is considered that it is obviously not in principle. And the like or similar. This is the same for the above numerical values and ranges.
- FIG. 1 is a diagram illustrating an example of a configuration of a railway vehicle drive device according to a first embodiment of the present invention. Description of the same components as those of the conventional railway vehicle drive device shown in FIG. 4 will be omitted, and only different components will be described.
- a semiconductor current reducer (SHB) 2 for reducing the fault current is provided in place of the conventional high-speed circuit breaker (HB) 15, for example, when a fault current is generated in the inverter power unit PU.
- the semiconductor current reducer (SHB) 2 includes a current reducing element SHBTr1, a current reducing resistor DRe, a filter capacitor (FC) charging element SHBTr2, and a charging resistor CHRe.
- FIG. 2 is a diagram showing a main structure of the railway vehicle drive device according to the present invention shown in FIG. 1 in which the main components are housed in the same box (enclosed by a broken line in the figure) formed of a rectangular parallelepiped.
- FIG. 4 is a diagram of an example of the arrangement when viewed from above (hereinafter, the same box is referred to as an “integrated box”).
- the longitudinal direction of the rectangular parallelepiped is, as shown, the short direction (railway direction) of the railway vehicle.
- a power unit including a disconnector (LB) 7, a semiconductor current reducer (SHB) 2, a filter reactor (FL) 5, an overvoltage protection circuit (OVT) 3, and a filter capacitor (FC) 6 4, an inverter device (INV), a main switch (MS) 8, a ground switch (GS) 9, and an inverter device (INV) and a semiconductor current reducer (SHB) 2 (not shown in FIG. 1).
- a cooler 400 provided on the outer surface of the power unit (PU) 4 and a cooler 200 provided on the outer surface of the semiconductor current reducer (SHB) 2 are provided so as to protrude to the outside.
- a filter reactor (FL, hereinafter sometimes abbreviated as “FL”) is a main heavy object constituting the drive system, and the inductance value of the FL mounted on a general DC train is, for example, 8 mH. It is about. Reduction of the inductance value of the FL is effective in reducing the weight and size of the FL, and the reduction in size and weight of the FL facilitates design such as incorporating the FL into the housing of the drive system.
- the FL inductance value due to the requirement of the electrical function to be performed by the FL in the drive system.
- the main functions of the FL that determine this lower limit are the suppression of the current increase rate (time gradient) in the event of an overcurrent accident and the return current noise flowing through the current path from the overhead wire to the drive system to the return. Passage suppression.
- the FL can be reduced in inductance.
- this means include a high-speed current cutoff by applying a semiconductor current reducer (SHB) as a measure against an overcurrent accident, and a noise reduction by applying an active filter (AF) as a measure against a return current noise.
- SHB semiconductor current reducer
- AF active filter
- the above means makes it possible to reduce the inductance of the FL, but the reduced inductance is compensated for by equipment other than the FL. Therefore, as the inductance is reduced, higher performance is required for the semiconductor current reducer (SHB) and the active filter (AF). Therefore, there is an optimum point for reducing the inductance of the FL from the viewpoint of the mass, size, cost, etc. of the entire system.
- SHB semiconductor current reducer
- AF active filter
- the inductance of the FL is reduced to about 4 mH or less, which is half the conventional value, it is considered that there is a merit as a system combining SHB and AF. Further, when the inductance of the FL is set to about 3 mH or less, the mass of the FL can be reduced to about half of the conventional one, and the weight in the integrated box can be easily balanced. Will be.
- the lower limit value of FL is determined by a trade-off between various conditions such as an allowable range for a decrease in AC impedance from the overhead line to the return line, and an allowable range of a filter capacitor (FC) that increases in response to a decrease in the inductance of the FL. Therefore, it is difficult to clearly define it, but it is estimated to be about 1 mH in consideration of the current technical level.
- the filter reactor (FL) 5 is reduced in size and weight to, for example, 2 mH by adopting the semiconductor current reducer (SHB) 2, but is the largest heavy object among the built-in components, and Place in the center of the direction.
- SHB semiconductor current reducer
- the inverter device (INV) having the semiconductor current reducer (SHB) 2, the power unit (PU) 4, and the overvoltage protection circuit (OVT) 3 uses a semiconductor element as a component, so that the vehicle travels from the outside. It is arranged at the longitudinal end of the integrated box 1 as an environment where cooling is expected due to wind and easy to cool.
- the volume and mass of the entire railway vehicle drive device can be reduced by integrating the housing devices into a single box.
- FIG. 3 is a diagram illustrating an underfloor arrangement of a railway vehicle equipped with the integrated box illustrated in FIG. 2.
- the integrated box 1 mounted on the railway vehicle is arranged around the filter reactor (FL) (in FIG. 3, the filter reactor (FL) is shown as being included in the active filter (AF)). ), The left and right weight balance is maintained with respect to the sleeper direction.
- the semiconductor elements constituting the semiconductor current reducer (SHB) and the inverter device (INV) mounted on the integrated box 1 are from the outside.
- the cooling effect of the traveling wind can be obtained. Thereby, the rating of the semiconductor element can be reduced, and the cooling system can be downsized.
- a wiring duct 600 is installed on a surface of the integrated box 1 that faces in the longitudinal direction. Therefore, it is sufficient to insert only one wire drawn from the overhead wire, and the number of wires under the vehicle floor can be significantly reduced. Also, the number of outfitting steps for railway vehicles can be significantly reduced.
- the interface for electrically connecting the outside and inside of the integrated box is not limited to the above-described wiring duct, and may be configured using, for example, a cleat method or a connector connection.
- FIG. 6 is a diagram illustrating an example of the configuration of the railway vehicle driving device according to the second embodiment of the present invention.
- an active filter (AF) 51 is used instead of the filter reactor (FL) 5.
- the inductance of the filter reactor (FL) 5 is reduced to, for example, about 2 mH, there is a concern about an increase in return current noise affecting signal devices.
- an active filter (AF) 51 in which the filter reactor (FL1) is used as a primary winding and a secondary winding (FL2) magnetically coupled to the filter reactor (FL1) as the primary winding is added.
- the negative phase current of the retrace current noise is injected into the DC stage via the secondary winding (FL2).
- An active filter control device (shown by a dashed line in FIG. 2) that monitors a return current and injects a reverse-phase current of the return current noise is provided to the secondary winding (FL2) of the active filter (AF) 51.
- the active filter control device 500 is connected.
- the volume and mass of the entire railway vehicle drive device can be reduced. It is also possible to reduce the effect on the signal equipment of the railway system.
- FIG. 7 is a diagram illustrating an example of a configuration of the railway vehicle driving device according to the third embodiment of the present invention.
- the difference from the first embodiment shown in FIG. 1 is that two motors (IM) 16 controlled by one power unit (PU) 4 are used (1C2M). Since the power unit (PU) 4 is arranged and connected to each of the two sets of motors (IM), there is an advantage that the motor (IM) 16 can be controlled more accurately.
- the components of the overvoltage protection circuit (OVT) including the filter capacitor (FC) 6 other than the power unit (PU) 4 and the overvoltage discharging element OVTr are the same as the power unit (PU) group 1 (PU1). Shared use by two groups (PU2). In this way, by using some circuit components of the so-called 1C2M control in common, it is possible to suppress an increase in member costs of the entire inverter.
- FIG. 8 is a diagram illustrating an example of a configuration of a railway vehicle drive device according to the fourth embodiment of the present invention.
- the difference from the first embodiment shown in FIG. 1 is that the circuit configuration of the semiconductor current reducer (SHB) 2 is different.
- the downflow resistance (DRe) and the charging resistance (CHRe) constituting the semiconductor current reducer (SHB) 2 are connected in parallel.
- the advantage of this configuration is that the path through which the reduced current flows is two paths, the reduced resistance (DRe) and the charging resistance (CHRe). DRe and CHRe) can be consumed, so that the rating or the number of current-reducing resistors (DRe) can be reduced.
- the resistor mass of the current reducing resistor (DRe) must be larger than that in the fourth embodiment.
- the resistor mass of the current reducing resistor (DRe) must be larger than that in the fourth embodiment.
- FIG. 9 is a diagram illustrating an example of a configuration of the railway vehicle driving device according to the fifth embodiment of the present invention.
- DC power obtained by a pantograph (PAN) 13 from a DC overhead line is supplied to a high-speed circuit breaker (HB) 14, an interrupter (LB1, LB2) 7, a filter reactor (FL) 5, a power unit (PU) 4 (a filter capacitor FC6).
- HB high-speed circuit breaker
- LB1, LB2 interrupter
- FL filter reactor
- PU power unit
- FIG. 10 is a diagram of a device layout of the railway vehicle driving device illustrated in FIG. 9 as viewed from above. This is a device layout in a case where main devices are housed in the same box made of a rectangular parallelepiped to form an integrated box.
- the equipment layout in the box shown in FIG. 10 is such that the high-speed circuit breaker (HB) 15 and the filter reactor (FL) 5 housed in independent boxes in the conventional existing configuration shown in FIG. (LB) 7, a power unit (PU) 4 (with a built-in filter capacitor 6), a control logic unit 100, and other devices constituting a power converter for converting DC power to three-phase AC power required for driving a motor. It is configured as an integrated box that is taken in and housed in the same housing.
- the long side direction of the one-piece box 1 is the sleeper direction.
- the main heavy objects among the devices included in the one-piece box 1 are the power unit (PU) 4 and the filter reactor (FL) 5, and the arrangement in these boxes is dominant in determining the position of the center of gravity of the one-piece box 1. is there.
- the center of gravity of the equipment box fitted to the vehicle body coincides with the center of the one-piece box 1 in order to balance the weight of the underfloor fittings in the vehicle traveling direction and the crossties direction.
- the center of gravity of the integrated box easily matches the center position of the integrated box. Can be done.
- the devices are arranged in the connection order of the main circuit wiring from the viewpoint of simplifying the wiring in the box. That is, a high-speed circuit breaker (HB) 14, a breaker (LB) 7, and a filter reactor (FL) 5 are arranged in this order on one side of the integrated box 1, and a power unit (PU) 4 is provided on the opposite side. By arranging, the main circuit wiring can be wired without crossing in the box.
- At least one or more openings are provided in the center of the integrated box 1.
- the opening is provided for performing maintenance of devices mounted inside the integrated box.
- the installation of the opening is the same in each of the following embodiments.
- FIG. 11 is a diagram showing an example of an underfloor outfitting arrangement of a railway vehicle equipped with the integrated box 1 shown in FIG.
- the equipment mounted under the floor includes an integrated box 1 constituting a main circuit, a control transmission / monitor box 21, a disconnector box 22, a SIV disconnector box 23, a bus breaker box 24, a brake control device 25, an air supply tank. 26, an anti-skid valve device 27, a direct backup brake device 28, and the like.
- FIG. 12 is a diagram in which the underfloor outfitting arrangement of the railway vehicle when the integrated box 1 according to the first embodiment is mounted is a layout that follows the equipment layout shown in FIG. 10.
- the filter reactor (FL) 5 and the power unit (PU) 4 are arranged diagonally in the box.
- the semiconductor current reducer (SHB) 2 is a heating element, a cooler 201 is required.
- Example 6 of the present invention is an embodiment in which two groups of inverter devices are housed in an integrated box.
- FIG. 13 is a main circuit jumpsuit diagram illustrating an example of the configuration of the railway vehicle drive device according to the sixth embodiment. With the configuration of the two groups, each device of the main circuit has a double configuration.
- FIG. 13 shows the pantograph (LB1, LB2) 7 of the disconnectors (LB1, LB2) 7 so as to cope with a failure of one group.
- An example is shown in which branching is performed on the (PAN) side and DC power is supplied to each group.
- FIG. 14 is a diagram illustrating an example of an in-box layout of an integrated box according to the sixth embodiment.
- the power units (PU1, PU2) 4, the filter reactors (FL1, FL2) 5, and the disconnectors (1GLB, 2GLB) 7 exist individually in each group, and two units are arranged in an integrated box.
- the power units (PU1, PU2) 4 are collectively arranged on one side in order to reduce the size of the sleeper. It is desirable.
- the cooler 200 of the power unit (PU1, PU2) 4 is larger than the cooler 201 of the semiconductor current reducer (SHB) 2 in consideration of the respective heat values.
- the power units (PU1, PU2) 4 having the large-sized coolers 200 are arranged on both side surfaces in the vehicle traveling direction, the ratio of the coolers 200 in the sleeper direction increases, resulting in an increase in the box size and the vehicle in the sleeper direction. Limits may be exceeded.
- two power units (PU1, PU2) 4 are arranged on one side surface.
- the semiconductor current reducer (SHB) 2 is disposed on the side opposite to the power unit (PU1, PU2) 4 in order to avoid the influence of hot air from the cooler 200 of the power unit (PU1, PU2) 4.
- the power unit (PU1, PU2) 4 and the semiconductor current reducer (SHB) 2 can be arranged on the same side surface by giving priority to physical dimensions over thermal conditions. .
- the number of members constituting the integrated box can be reduced and the total amount of the two groups can be reduced as compared with the case where each group is provided as an individual box. It becomes possible to reduce the box size. As a result, it is possible to obtain the effect of reducing cost and outfitting space.
- FIG. 15 is a diagram showing an example of a layout in a box of an integrated box according to the seventh embodiment of the present invention.
- the feature of this embodiment is that the power unit (PU) 4 and the semiconductor current reducer (SHB) 2 are arranged on the same side surface in an integrated box.
- the disconnector (LB) 7 and the semiconductor current reducer (SHB), which are heavier than the control logic unit, are used. 2 is disposed on the side opposite to the filter reactor (FL) 5. This makes it easier to balance the weight in the direction of the sleeper, and makes the center of gravity more easily coincide with the center of the box as compared with the case where the power unit (PU) 4 and the semiconductor current reducer (SHB) 2 are arranged on the opposite side surfaces. Can be.
- cooler 200 for the power unit (PU) 4 and the cooler 201 for the semiconductor current reducer (SHB) 2 are concentrated on one side, protrusions from the box are collected on only one side.
- the length of the integrated box in the sleeper direction can be reduced or the space in the box can be increased.
- the layout according to the present embodiment is an example in which a breaker (LB) 7 is arranged between the power unit (PU) 4 and the semiconductor current reducer (SHB) 2 to secure a space between the two coolers. It is shown.
- FIG. 16 is a diagram showing an example of an underfloor outfitting arrangement according to the eighth embodiment of the present invention.
- the present embodiment is an example in which the integrated box 1 according to the present invention and a separate auxiliary power supply (SIV) 61 are installed under the floor of the same vehicle.
- SIV auxiliary power supply
- One of the integrated box 1 and the auxiliary power supply (SIV) 61 is installed at a position offset from the center of the vehicle in the forward direction of the vehicle, and the other is installed at a position offset rearward in the direction of the vehicle. Since the integrated box 1 and the auxiliary power supply (SIV) 61 are the main heavy objects of the underfloor equipment, it is possible to easily balance the axial load in the traveling direction by arranging the outfitting.
- FIG. 16 shows an example in which the integrated box 1 and the auxiliary power supply (SIV) 61 are adjacent to each other, and the outfitting position of both is near the center of the vehicle. However, both are always concentrated near the center of the vehicle. There is no need to arrange another device between the integrated box 1 and the auxiliary power supply (SIV) 61.
- the power supply line for transmitting the DC power can be reduced by rigging in the arrangement shown in this embodiment. can do.
- the present invention has been specifically described based on the respective embodiments.
- the present invention is not limited to the embodiments shown in Embodiments 1 to 8, and may be variously modified without departing from the gist thereof. Needless to say.
- the semiconductor element group used in the power unit (PU) 4 has a so-called 2 in 1 type power module configuration in which upper and lower arms are integrated into one, but is not limited to this.
- a so-called 1-in-1 type power module mounted on each arm may be used.
- the transformer-type filter reactors (FL1 and FL2) may be an air-core type or an iron-core type.
- the motor may be an induction motor (IM) or a permanent magnet synchronous motor (PMSM).
- IM induction motor
- PMSM permanent magnet synchronous motor
- PU power units
- FC filter capacitor
- OHT overvoltage protection circuit
- the drive device when the railway vehicle drive device is fitted and mounted on the railway vehicle, the drive device is disposed under the floor of the vehicle, but may be disposed on the roof of the vehicle. Applicable.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
In order to reduce the volume and mass of a railroad vehicle drive device as a whole while keeping overhead wiring protected from overcurrent as before, and to reduce overall cost during railroad vehicle production, this railroad vehicle drive device is provided with: a line breaker which cuts off a DC current supplied from DC overhead wiring to a railroad vehicle; a current limiter connected to the line breaker in series; an inverter device comprising a power unit for converting DC power supplied via the current limiter into three-phase AC power, and a filter capacitor; and a filter reactor connected between the current limiter and the filter capacitor. All of the constituent components are contained in the same chassis and integrally mounted on the railroad vehicle. In this way, the filter reactor can be reduced in size, so that, by housing a main circuit from the current limiter to the inverter device in the same chassis and installing and wiring the chassis under the floor of the railroad vehicle, it is possible to complete outfitting for the main circuit system and to significantly reduce the number of wires under the vehicle floor and the number of outfitting man-hours during railroad vehicle production.
Description
本発明は、断流器、減流器およびインバータ装置を有する鉄道車両用駆動装置に関する。
The present invention relates to a railway vehicle drive device having a current breaker, a current reducer, and an inverter device.
図4は、従来の鉄道車両用駆動装置の構成の一例を示す図である。
従来の鉄道車両用駆動装置としては、高速度遮断器(HB)15、断流器(LB1、LB2)7およびフィルタリアクトル(FL)5が直列接続され、フィルタコンデンサ(FC)6を内蔵したインバータ装置(INV)4を用いて、4個のモータ(IM1~IM4)16を駆動する1C4M制御方式が主流である。架線からの電力供給経路については、直流1500Vの架線から、パンタグラフ13、主フューズ(MF)14を介して、架線電圧と主回路を電気的に切り離すための主スイッチ(MS)8、およびアース側と主回路を電気的に切り離すための接地スイッチ(GS)9が配置されている。また、過電圧放電用素子(OVTr)、放電抵抗(OVRe)および電圧計(DCPT2)を有する過電圧防止回路(OVT)3を備え、さらに、電圧計(DCPT1)11、放電抵抗(DCHRe)12および放電用スイッチ(DS)10を備えている。従来の鉄道車両用駆動装置では、高速度遮断器(HB)15、フィルタリアクトル(FL)5およびインバータ装置(INV)4と断流器(LB1、LB2)7とを含む主回路部1は、それぞれ別箱とする構成としていた(図中では、それぞれの箱を破線の枠で示す)。 FIG. 4 is a diagram showing an example of the configuration of a conventional railway vehicle drive device.
As a conventional railway vehicle drive device, an inverter in which a high-speed circuit breaker (HB) 15, a breaker (LB1, LB2) 7, and a filter reactor (FL) 5 are connected in series and a filter capacitor (FC) 6 is built in The 1C4M control system for driving four motors (IM1 to IM4) 16 using the device (INV) 4 is mainly used. Regarding the power supply path from the overhead line, a main switch (MS) 8 for electrically disconnecting the overhead line voltage from the main circuit via apantograph 13 and a main fuse (MF) 14 from a 1500 V DC overhead line, and a ground side And a ground switch (GS) 9 for electrically separating the main circuit from the main circuit. An overvoltage protection circuit (OVT) 3 having an overvoltage discharge element (OVTr), a discharge resistor (OVRe) and a voltmeter (DCPT2) is further provided. Further, a voltmeter (DCPT1) 11, a discharge resistor (DCHRe) 12, and a discharge Switch (DS) 10. In the conventional railway vehicle drive device, the main circuit unit 1 including the high-speed circuit breaker (HB) 15, the filter reactor (FL) 5, the inverter device (INV) 4, and the disconnectors (LB1, LB2) 7 Each box is configured as a separate box (in the figure, each box is indicated by a broken-line frame).
従来の鉄道車両用駆動装置としては、高速度遮断器(HB)15、断流器(LB1、LB2)7およびフィルタリアクトル(FL)5が直列接続され、フィルタコンデンサ(FC)6を内蔵したインバータ装置(INV)4を用いて、4個のモータ(IM1~IM4)16を駆動する1C4M制御方式が主流である。架線からの電力供給経路については、直流1500Vの架線から、パンタグラフ13、主フューズ(MF)14を介して、架線電圧と主回路を電気的に切り離すための主スイッチ(MS)8、およびアース側と主回路を電気的に切り離すための接地スイッチ(GS)9が配置されている。また、過電圧放電用素子(OVTr)、放電抵抗(OVRe)および電圧計(DCPT2)を有する過電圧防止回路(OVT)3を備え、さらに、電圧計(DCPT1)11、放電抵抗(DCHRe)12および放電用スイッチ(DS)10を備えている。従来の鉄道車両用駆動装置では、高速度遮断器(HB)15、フィルタリアクトル(FL)5およびインバータ装置(INV)4と断流器(LB1、LB2)7とを含む主回路部1は、それぞれ別箱とする構成としていた(図中では、それぞれの箱を破線の枠で示す)。 FIG. 4 is a diagram showing an example of the configuration of a conventional railway vehicle drive device.
As a conventional railway vehicle drive device, an inverter in which a high-speed circuit breaker (HB) 15, a breaker (LB1, LB2) 7, and a filter reactor (FL) 5 are connected in series and a filter capacitor (FC) 6 is built in The 1C4M control system for driving four motors (IM1 to IM4) 16 using the device (INV) 4 is mainly used. Regarding the power supply path from the overhead line, a main switch (MS) 8 for electrically disconnecting the overhead line voltage from the main circuit via a
また、図5は、従来の鉄道車両搭載機器の床下配置の一例を示す図である。
図5に示すように、車両床下には、上記の箱以外にも、INTEROS箱(鉄道車輌の制御伝送・モニタリング装置用箱)21、断路器箱22、SIV断流器箱23、母線遮断器箱24、ブレーキ制御装置25、供給空気タンク26、滑走防止弁装置27および直通予備ブレーキ装置28が設置されている。 FIG. 5 is a diagram illustrating an example of a conventional under-floor arrangement of equipment mounted on a railway vehicle.
As shown in FIG. 5, under the vehicle floor, in addition to the above boxes, an INTEROS box (a box for a control transmission / monitoring device of a railway vehicle) 21, adisconnector box 22, an SIV disconnector box 23, a bus breaker A box 24, a brake control device 25, a supply air tank 26, an anti-skid valve device 27, and a direct spare brake device 28 are provided.
図5に示すように、車両床下には、上記の箱以外にも、INTEROS箱(鉄道車輌の制御伝送・モニタリング装置用箱)21、断路器箱22、SIV断流器箱23、母線遮断器箱24、ブレーキ制御装置25、供給空気タンク26、滑走防止弁装置27および直通予備ブレーキ装置28が設置されている。 FIG. 5 is a diagram illustrating an example of a conventional under-floor arrangement of equipment mounted on a railway vehicle.
As shown in FIG. 5, under the vehicle floor, in addition to the above boxes, an INTEROS box (a box for a control transmission / monitoring device of a railway vehicle) 21, a
なお、特許文献1(特開2001-37004号公報)には、架線電圧の低い時でも、高速時の回生ブレーキ性能の向上を図り、インバータ相短絡時等の架線過電流保護に好適なインバータ式電気車制御装置を提供するために、架線から電力が供給されるパンタグラフと、断流器と、高速度遮断器と、抵抗に並列接続された半導体スイッチと、リアクトル及びコンデンサからなるフィルタ装置と、インバータ装置と、電動機を備えるインバータ式電気車であって、回生ブレーキ時に、前記抵抗の端子電圧が電動機電圧と架線電圧との差電圧となるように半導体スイッチをオンオフ制御する手段を設けたものが開示されている。
Patent Document 1 (Japanese Unexamined Patent Application Publication No. 2001-37004) discloses an inverter type suitable for overhead wire overcurrent protection at the time of inverter phase short-circuiting in order to improve regenerative braking performance at high speed even when overhead wire voltage is low. In order to provide an electric vehicle control device, a pantograph supplied with power from an overhead wire, a current breaker, a high-speed circuit breaker, a semiconductor switch connected in parallel to a resistor, a filter device including a reactor and a capacitor, An inverter-type electric vehicle including an inverter device and an electric motor, which is provided with means for controlling on / off of a semiconductor switch so that a terminal voltage of the resistor becomes a difference voltage between an electric motor voltage and an overhead line voltage during regenerative braking. It has been disclosed.
また、特許文献2(特開2007-261367号公報)には、艤装時の工数削減を実現する手段として、各機器をあらかじめキャビネットに予備艤装しておき、各機器とキャビネットの複合体を一括して艤装する手法が開示されている。
Patent Document 2 (Japanese Patent Application Laid-Open No. 2007-26167) discloses that as a means for reducing the number of man-hours at the time of outfitting, each device is preliminarily outfitted in a cabinet, and a complex of each device and the cabinet is integrated. A method of outfitting is disclosed.
本願発明者が、鉄道車両用駆動装置全体の体積や質量の小型化、且つ鉄道車輌生産時の低コスト化について鋭意検討した結果、次の知見を得るに至った。
(4) As a result of the inventor's earnest study on miniaturization of the volume and mass of the entire railway vehicle drive device and cost reduction in the production of railway vehicles, the inventors have obtained the following knowledge.
従来の鉄道車両用駆動装置は、架線過電流の保護に好適な構成が示されている。例えばインバータ装置(INV)4内のパワーユニット(PU)の素子(4A、4Bおよび4C)のいずれか1相が故障してアーム短絡が発生した場合、直流電源(直流架線)から突入電流が流れるため、この突入電流の上昇率が大きくなり、車載の高速度遮断器(HB)15の開極時間が遅れる(機械的な遮断器の場合、通常10ms程度)。それにより、短絡電流が急峻に増加して、図示しない直流変電所の高速度遮断器(HB)が遮断動作してしまう可能性があるため、先に示した従来の鉄道車両用駆動装置のフィルタリアクトル(FL)5のインダクタンス値は、8mH程度と大きな値を用いている。しかし、これに伴って、このフィルタリアクトル(FL)5の質量は、一例として500kg程度と非常に重く、大きな体積を占めることになる。
The conventional railway vehicle drive device has a configuration suitable for protection of overhead wire overcurrent. For example, if any one of the elements (4A, 4B, and 4C) of the power unit (PU) in the inverter device (INV) 4 fails and an arm short circuit occurs, an inrush current flows from the DC power supply (DC overhead wire). The rate of increase of the rush current becomes large, and the opening time of the high-speed circuit breaker (HB) 15 mounted on the vehicle is delayed (in the case of a mechanical circuit breaker, usually about 10 ms). As a result, the short-circuit current may increase sharply, and the high-speed circuit breaker (HB) of the DC substation (not shown) may perform a breaking operation. The reactor (FL) 5 has a large inductance value of about 8 mH. However, with this, the mass of the filter reactor (FL) 5 is very heavy, for example, about 500 kg, and occupies a large volume.
仮にフィルタリアクトル(FL)のインダクタンス値を例えば1/4の2mHに小さくした場合、パワーユニットのいずれか1相で短絡が発生した時の短絡電流の上昇率は、1500V/2mH=750A/msとなり、高速度遮断器(HB)の開極遅れを10msとすると、短絡電流は車載用の高速度遮断器(HB)が開極するまでの間に7500Aに達する。直流変電所の高速度遮断器(HB)の過電流遮断のセット値は、変電所の容量によって異なるが通常5000Aから10000A程度である。そのため、上記の短絡電流は、直流変電所の高速度遮断器(HB)を動作させてしまう可能性がある。
If the inductance value of the filter reactor (FL) is reduced to, for example, 1/4 of 2 mH, the rise rate of the short-circuit current when a short-circuit occurs in any one phase of the power unit is 1500 V / 2 mH = 750 A / ms. Assuming that the opening delay of the high-speed circuit breaker (HB) is 10 ms, the short-circuit current reaches 7500 A before the on-vehicle high-speed circuit breaker (HB) opens. The set value of the overcurrent interruption of the high-speed circuit breaker (HB) of the DC substation varies depending on the capacity of the substation, but is usually about 5,000A to 10,000A. Therefore, the short-circuit current may cause the high-speed circuit breaker (HB) of the DC substation to operate.
また、先に記載したとおり、従来の鉄道車両用駆動装置は、主要機器(高速度遮断器(HB)15、フィルタリアクトル(FL)5およびインバータ装置(INV)と断流器(LB)とを含む主回路部1をそれぞれ別箱として構成しており、鉄道車両用駆動装置全体の体積や質量は大きくなる。また、図5に矢印付き実線で示すように、上記の主要機器(1、5および15)に対する車両床下の配線が多くなり、鉄道車両の艤装工数も多くなっているのが実状である。
Further, as described above, the conventional railway vehicle drive device includes main devices (the high-speed circuit breaker (HB) 15, the filter reactor (FL) 5, the inverter device (INV), and the disconnector (LB)). The main circuit unit 1 includes a separate box, which increases the volume and mass of the entire railway vehicle drive device, and as shown by the solid line with arrows in FIG. In practice, the number of wires under the vehicle floor for (15) and (15) has increased, and the number of outfitting steps for railway vehicles has also increased.
特許文献1では、インバータの相短絡時や架線接地時には、半導体スイッチをオフして抵抗を挿入し、架線に生ずる過電流を速やかに減流させるので、高速度遮断器(HB)や断流器(LB1、LB2)等の大電流遮断を抑制することができる。しかし、鉄道車両用駆動装置全体の体積や質量の小型化や、鉄道車輌生産時の低コスト化には至っていない。
In Patent Literature 1, when a phase is short-circuited in an inverter or grounded to an overhead wire, a semiconductor switch is turned off and a resistor is inserted to quickly reduce an overcurrent generated in the overhead wire, so that a high-speed circuit breaker (HB) or a current breaker is used. Large current interruption such as (LB1, LB2) can be suppressed. However, the volume and mass of the entire railway vehicle drive device have not been reduced, nor has the cost of railway vehicle production been reduced.
さらに、鉄道車両の製造において、搭載する機器を車両の床下に艤装するに当たり、車両の走行安定性の観点から、軸重バランスつまり車輪毎にかかる荷重を均等に保つ必要がある。この実現のためには、各機器の重量および重心位置を考慮した艤装位置の決定が必要である。しかしながら、各機器の重心は必ずしもこれを収納する箱の中心に一致しておらず、箱の数が多いことから、箱どうしの相対的な位置関係について考慮すべきパラメータが多く、艤装位置の決定が困難であるという問題があった。加えて、搭載する機器箱の数が多いことから、各機器の車体への艤装および機器間の配線接続の工数が多いという問題があった。
Furthermore, in the manufacture of railway vehicles, when equipping the mounted equipment under the floor of the vehicle, it is necessary to keep the axle load balance, that is, the load applied to each wheel, from the viewpoint of the running stability of the vehicle. In order to realize this, it is necessary to determine the outfitting position in consideration of the weight and the position of the center of gravity of each device. However, since the center of gravity of each device does not always coincide with the center of the box in which it is stored, and the number of boxes is large, there are many parameters to be considered for the relative positional relationship between the boxes, and the outfitting position is determined. There was a problem that was difficult. In addition, since the number of equipment boxes to be mounted is large, there is a problem that the man-hours required for outfitting each device to a vehicle body and connecting wires between the devices are large.
特許文献2に記載の手法においても、機器箱を車体に艤装する工数の削減には効果があるものの、機器箱の数は変わらないため、機器間配線の本数および接続点に使用する端子台等の数を低減する効果はない。加えて、キャビネット自体の体積と質量が加わることになるため、車体重量の増加による走行時の消費電力増加を招き、床下スペースの利用可能面積を減少させるという問題があった。
The method described in Patent Document 2 is also effective in reducing the number of steps for fitting an equipment box to a vehicle body, but since the number of equipment boxes does not change, the number of wirings between equipment and terminal blocks used for connection points, etc. There is no effect of reducing the number of. In addition, since the volume and mass of the cabinet itself are added, the power consumption during traveling is increased due to an increase in the weight of the vehicle body, and there is a problem that the available area of the underfloor space is reduced.
本発明の目的は、従来どおりに架線過電流に対する保護機能を維持したまま、鉄道車両用駆動装置全体の体積や質量の小型化を図り、且つ鉄道車両生産時の全体コストを低減することに関する。
The object of the present invention is to reduce the volume and mass of the entire railway vehicle drive device and to reduce the overall cost of railway vehicle production while maintaining the protection function against overhead line overcurrent as in the past.
本発明に係る鉄道車両用駆動装置は、直流架線から鉄道車両に供給される直流電流を遮断する断流器と、断流器に直列に接続する減流器と、減流器を介して供給する直流電力を三相交流電力に変換するパワーユニットおよびフィルタコンデンサから構成するインバータ装置と、減流器とフィルタコンデンサとの間に接続するフィルタリアクトルとを備え、これら構成部品全てが同一の筐体に収容され、一体となって鉄道車両に搭載される。
A drive device for a railway vehicle according to the present invention supplies a current through a current breaker that interrupts a DC current supplied to a railway vehicle from a DC overhead line, a current reducer connected in series to the current breaker, and a current reducer. Power unit that converts DC power to three-phase AC power and a filter capacitor, and a filter reactor connected between the current reducer and the filter capacitor, all of these components in the same housing. It is housed and integrally mounted on a railway car.
本発明によれば、減流器により過電流が従来の機械式HBに比べて速やかに減流されるため、電流の上昇率抑制のために大型化せざるを得なかったフィルタリアクトルを小型化でき、これにより減流器からインバータ装置までの主回路を同一の筐体に収容できるようになり、さらにこれにより鉄道車両の床下に筐体を設置して配線すれば主回路系の艤装が完了する。これにより、車両床下の配線数を大幅に削減することができ、鉄道車両生産時の艤装工数も大幅に削減することができる。
According to the present invention, the overcurrent is rapidly reduced by the current reducer as compared with the conventional mechanical HB, so that the filter reactor, which had to be increased in size in order to suppress the rise rate of the current, can be reduced in size. This allows the main circuit from the current reducer to the inverter device to be housed in the same housing, and the installation and wiring of the housing under the floor of the railcar completes the outfitting of the main circuit system . As a result, the number of wires under the vehicle floor can be significantly reduced, and the number of outfitting steps during production of the railway vehicle can be significantly reduced.
以下に、本発明を実施するための形態として、実施例1~8について、図を用いて説明する。
以下の実施例においては、便宜上その必要があるときは、複数のセクションまたは細部に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細および補足説明等の関係にある。また、以下の実施例において、要素の数等(個数、数値、量および範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定した数に限定される場合等を除き、その特定した数に限定されるものではなく、特定した数以上でも以下でもよい。Embodiments 1 to 8 will be described below with reference to the drawings as embodiments for carrying out the present invention.
In the following examples, where necessary for convenience, the description will be divided into a plurality of sections or details, but unless otherwise specified, they are not unrelated to each other, and one is a part of the other. Or, there is a relationship of all the modified examples, details and supplementary explanations. In addition, in the following examples, when referring to the number of elements (including the number, numerical value, amount, range, etc.), unless otherwise specified, or limited to the number clearly specified in principle, etc. However, the number is not limited to the specified number, and may be more than or less than the specified number.
以下の実施例においては、便宜上その必要があるときは、複数のセクションまたは細部に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細および補足説明等の関係にある。また、以下の実施例において、要素の数等(個数、数値、量および範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定した数に限定される場合等を除き、その特定した数に限定されるものではなく、特定した数以上でも以下でもよい。
In the following examples, where necessary for convenience, the description will be divided into a plurality of sections or details, but unless otherwise specified, they are not unrelated to each other, and one is a part of the other. Or, there is a relationship of all the modified examples, details and supplementary explanations. In addition, in the following examples, when referring to the number of elements (including the number, numerical value, amount, range, etc.), unless otherwise specified, or limited to the number clearly specified in principle, etc. However, the number is not limited to the specified number, and may be more than or less than the specified number.
さらに、以下の実施例において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須の要件となるものではない。同様に、以下の実施例において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
Furthermore, in the following embodiments, the constituent elements (including element steps, etc.) are not necessarily essential unless otherwise specified or in principle considered to be clearly essential. . Similarly, in the following embodiments, when referring to the shape, positional relationship, and the like of the components, the shape and the like are substantially the same unless otherwise specified, and in cases where it is considered that it is obviously not in principle. And the like or similar. This is the same for the above numerical values and ranges.
図1は、本発明の実施例1に係る鉄道車両用駆動装置の構成の一例を示す図である。
図4に示す従来の鉄道車両用駆動装置の構成と同様の機器については、説明を省略し、異なる機器についてのみ記すこととする。 FIG. 1 is a diagram illustrating an example of a configuration of a railway vehicle drive device according to a first embodiment of the present invention.
Description of the same components as those of the conventional railway vehicle drive device shown in FIG. 4 will be omitted, and only different components will be described.
図4に示す従来の鉄道車両用駆動装置の構成と同様の機器については、説明を省略し、異なる機器についてのみ記すこととする。 FIG. 1 is a diagram illustrating an example of a configuration of a railway vehicle drive device according to a first embodiment of the present invention.
Description of the same components as those of the conventional railway vehicle drive device shown in FIG. 4 will be omitted, and only different components will be described.
先ず、従来の高速度遮断器(HB)15に代えて、例えばインバータパワーユニットPUで事故電流が発生したときにその事故電流を減流する半導体減流器(SHB)2を備え、断流器(LB1、LB2)7により、減流電流を断流するか、インバータが動作不良となった場合に主回路を開放する。なお、半導体減流器(SHB)2は、減流用素子SHBTr1、減流抵抗DRe、フィルタコンデンサ(FC)充電用素子SHBTr2、充電抵抗CHReから構成される。
First, in place of the conventional high-speed circuit breaker (HB) 15, for example, when a fault current is generated in the inverter power unit PU, a semiconductor current reducer (SHB) 2 for reducing the fault current is provided. LB1, LB2) 7, the main circuit is opened when the current-reduction current is cut off or the inverter malfunctions. The semiconductor current reducer (SHB) 2 includes a current reducing element SHBTr1, a current reducing resistor DRe, a filter capacitor (FC) charging element SHBTr2, and a charging resistor CHRe.
図2は、図1の本発明に係る鉄道車両用駆動装置の内で主要な機器を、直方体から成る同一の箱(図中の破線による枠囲み)である筐体に収容して一体箱とした場合の配置例を上面から見た図である(以下では、この同一の箱を「一体箱」という)。この直方体の長手方向は、図示のように鉄道車両の短手方向(枕木方向)である。
FIG. 2 is a diagram showing a main structure of the railway vehicle drive device according to the present invention shown in FIG. 1 in which the main components are housed in the same box (enclosed by a broken line in the figure) formed of a rectangular parallelepiped. FIG. 4 is a diagram of an example of the arrangement when viewed from above (hereinafter, the same box is referred to as an “integrated box”). The longitudinal direction of the rectangular parallelepiped is, as shown, the short direction (railway direction) of the railway vehicle.
収容する機器としては、断流器(LB)7、半導体減流器(SHB)2、フィルタリアクトル(FL)5、過電圧防止回路(OVT)3とフィルタコンデンサ(FC)6を含むパワーユニット(PU)4とから成るインバータ装置(INV)、主スイッチ(MS)8、接地スイッチ(GS)9、および、以下は図1に図示はないが、インバータ装置(INV)や半導体減流器(SHB)2の動作を制御するための論理部100である。また、外部へ突出させる形で、パワーユニット(PU)4の外面側に設けた冷却器400および半導体減流器(SHB)2の外面側に設けた冷却器200を備えている。
As a device to be housed, a power unit (PU) including a disconnector (LB) 7, a semiconductor current reducer (SHB) 2, a filter reactor (FL) 5, an overvoltage protection circuit (OVT) 3, and a filter capacitor (FC) 6 4, an inverter device (INV), a main switch (MS) 8, a ground switch (GS) 9, and an inverter device (INV) and a semiconductor current reducer (SHB) 2 (not shown in FIG. 1). Is a logic unit 100 for controlling the operation of. In addition, a cooler 400 provided on the outer surface of the power unit (PU) 4 and a cooler 200 provided on the outer surface of the semiconductor current reducer (SHB) 2 are provided so as to protrude to the outside.
ここで、フィルタリアクトル(FL、以下「FL」と略す場合がある)は駆動システムを構成する主要な重量物であり、一般的な直流電車に搭載されているFLのインダクタンス値は、一例として8mH程度である。FLのインダクタンス値の低減はFLの重量および寸法の削減に効果的であり、FLが小型軽量化することで駆動システムの筐体内にFLを取り込む等の設計が容易になる。
Here, a filter reactor (FL, hereinafter sometimes abbreviated as “FL”) is a main heavy object constituting the drive system, and the inductance value of the FL mounted on a general DC train is, for example, 8 mH. It is about. Reduction of the inductance value of the FL is effective in reducing the weight and size of the FL, and the reduction in size and weight of the FL facilitates design such as incorporating the FL into the housing of the drive system.
しかしながら、FLが駆動システムで果たすべき電気的な機能の要求から、インダクタンス値の低減には限界がある。この下限を決定するFLの主要な機能は、過電流事故発生時の電流増加速度(時間傾き)の抑制と、架線から駆動システムに入り帰線に至るまでの電流経路に流れる帰線電流ノイズの通過抑制である。
However, there is a limit to the reduction of the inductance value due to the requirement of the electrical function to be performed by the FL in the drive system. The main functions of the FL that determine this lower limit are the suppression of the current increase rate (time gradient) in the event of an overcurrent accident and the return current noise flowing through the current path from the overhead wire to the drive system to the return. Passage suppression.
よって、前記2点の機能をFL以外の機器で補助し、必要な機能スペックを満たすことができれば、FLの低インダクタンス化が可能である。この手段の例として、過電流事故時の対策については半導体減流器(SHB)の適用による高速度電流遮断、帰線電流ノイズ対策についてはアクティブフィルタ(AF)の適用によるノイズの削減が挙げられる。
Therefore, if the above two functions are assisted by equipment other than the FL and the required functional specifications can be satisfied, the FL can be reduced in inductance. Examples of this means include a high-speed current cutoff by applying a semiconductor current reducer (SHB) as a measure against an overcurrent accident, and a noise reduction by applying an active filter (AF) as a measure against a return current noise. .
これら前記の手段によりFLの低インダクタンス化が可能となるが、インダクタンス低下分をFL以外の機器で補うことになる。このためインダクタンスを低減するほど、半導体減流器(SHB)とアクティブフィルタ(AF)に高い性能が必要となる。ゆえにシステム全体としての最適点が全体の質量・サイズ・コスト等の観点から、FLのインダクタンス低減には、最適点が存在する。
The above means makes it possible to reduce the inductance of the FL, but the reduced inductance is compensated for by equipment other than the FL. Therefore, as the inductance is reduced, higher performance is required for the semiconductor current reducer (SHB) and the active filter (AF). Therefore, there is an optimum point for reducing the inductance of the FL from the viewpoint of the mass, size, cost, etc. of the entire system.
ここで、FLのインダクタンスを従来の半分である4mH程度以下にすると、SHBおよびAFを組み合わせたシステムとしてメリットが生じると考えられる。さらに、FLのインダクタンスを3mH程度以下にすると、FLの質量を従来の半分程度にまで低減することができ、一体箱内の重量バランスを取り易くなることから、FLの配置位置の自由度も上がることになる。
Here, if the inductance of the FL is reduced to about 4 mH or less, which is half the conventional value, it is considered that there is a merit as a system combining SHB and AF. Further, when the inductance of the FL is set to about 3 mH or less, the mass of the FL can be reduced to about half of the conventional one, and the weight in the integrated box can be easily balanced. Will be.
この点を踏まえれば、最適点の一例として、2mHが挙げられる。ただし、FLの下限値については、架線から帰線までの交流インピーダンス低下に対する許容範囲や、FLのインダクタンス低下に対応して大きくなるフィルタコンデンサ(FC)の許容範囲などの諸条件のトレードオフで決まることになるので、明確に定めることは困難であるが、現在の技術水準を考慮すれば1mH程度と推量される。
踏 ま え Based on this point, 2 mH is an example of the optimum point. However, the lower limit value of FL is determined by a trade-off between various conditions such as an allowable range for a decrease in AC impedance from the overhead line to the return line, and an allowable range of a filter capacitor (FC) that increases in response to a decrease in the inductance of the FL. Therefore, it is difficult to clearly define it, but it is estimated to be about 1 mH in consideration of the current technical level.
ここで、半導体減流器(SHB)2の採用により、フィルタリアクトル(FL)5は、例えば2mHと小型で軽量化したが、内蔵部品の中では最も大きい重量物であり、一体箱1の長手方向の中心に配置する。中心に配置することで、一体箱1の重心と中心とを一致させることが容易で、一体箱1の取付け時に扱いやすい。また、半導体減流器(SHB)2およびパワーユニット(PU)4と過電圧防止回路(OVT)3とを有するインバータ装置(INV)は、構成部品として半導体素子を用いていることから、外側からの走行風による冷却効果を期待し冷却し易い環境として、一体箱1の長手方向の端部に配置する。
Here, the filter reactor (FL) 5 is reduced in size and weight to, for example, 2 mH by adopting the semiconductor current reducer (SHB) 2, but is the largest heavy object among the built-in components, and Place in the center of the direction. By arranging at the center, it is easy to match the center of gravity of the integrated box 1 with the center, and it is easy to handle when the integrated box 1 is attached. In addition, the inverter device (INV) having the semiconductor current reducer (SHB) 2, the power unit (PU) 4, and the overvoltage protection circuit (OVT) 3 uses a semiconductor element as a component, so that the vehicle travels from the outside. It is arranged at the longitudinal end of the integrated box 1 as an environment where cooling is expected due to wind and easy to cool.
以上のとおり、収容機器の一体箱化により、鉄道車両用駆動装置全体の体積や質量の小型化を実現するものである。
の As described above, the volume and mass of the entire railway vehicle drive device can be reduced by integrating the housing devices into a single box.
図3は、図2に示す一体箱を搭載した鉄道車両の床下配置を示す図である。
鉄道車両に搭載した一体箱1は、前記のとおり、フィルタリアクトル(FL)を中心に配置しているため(図3では、フィルタリアクトル(FL)はアクティブフィルタ(AF)に含まれる形で示している)、枕木方向に対して、左右の重量バランスが保たれることになる。また、一体箱1の長手方向の寸法が、線路幅の例えば1067mm以上あれば、一体箱1に搭載される半導体減流器(SHB)およびインバータ装置(INV)を構成する半導体素子は、外側からの走行風による冷却効果が得られることになる。これにより、半導体素子の定格を小さくし、冷却系の小型化が可能になる。 FIG. 3 is a diagram illustrating an underfloor arrangement of a railway vehicle equipped with the integrated box illustrated in FIG. 2.
As described above, theintegrated box 1 mounted on the railway vehicle is arranged around the filter reactor (FL) (in FIG. 3, the filter reactor (FL) is shown as being included in the active filter (AF)). ), The left and right weight balance is maintained with respect to the sleeper direction. If the length in the longitudinal direction of the integrated box 1 is, for example, 1067 mm or more of the line width, the semiconductor elements constituting the semiconductor current reducer (SHB) and the inverter device (INV) mounted on the integrated box 1 are from the outside. The cooling effect of the traveling wind can be obtained. Thereby, the rating of the semiconductor element can be reduced, and the cooling system can be downsized.
鉄道車両に搭載した一体箱1は、前記のとおり、フィルタリアクトル(FL)を中心に配置しているため(図3では、フィルタリアクトル(FL)はアクティブフィルタ(AF)に含まれる形で示している)、枕木方向に対して、左右の重量バランスが保たれることになる。また、一体箱1の長手方向の寸法が、線路幅の例えば1067mm以上あれば、一体箱1に搭載される半導体減流器(SHB)およびインバータ装置(INV)を構成する半導体素子は、外側からの走行風による冷却効果が得られることになる。これにより、半導体素子の定格を小さくし、冷却系の小型化が可能になる。 FIG. 3 is a diagram illustrating an underfloor arrangement of a railway vehicle equipped with the integrated box illustrated in FIG. 2.
As described above, the
また、図2および図3に示すように、一体箱1の長手方向の対向する面に、配線ダクト600を設置している。そのため、架線から引き込む配線を1箇所入れればよく、車両床下の配線数を大幅に削減することができる。また、鉄道車両の艤装工数も大幅に削減することができる。
配線 Further, as shown in FIGS. 2 and 3, a wiring duct 600 is installed on a surface of the integrated box 1 that faces in the longitudinal direction. Therefore, it is sufficient to insert only one wire drawn from the overhead wire, and the number of wires under the vehicle floor can be significantly reduced. Also, the number of outfitting steps for railway vehicles can be significantly reduced.
さらに、一体箱の外部と内部とを電気的に接続するインタフェースとしては、上記の配線ダクトに限らず、例えば、クリート方式やコネクタ接続を用いて構成してもよい。
イ ン タ フ ェ ー ス Furthermore, the interface for electrically connecting the outside and inside of the integrated box is not limited to the above-described wiring duct, and may be configured using, for example, a cleat method or a connector connection.
図6は、本発明の実施例2に係る鉄道車両用駆動装置の構成の一例を示す図である。
図1に示す実施例1と異なる点は、フィルタリアクトル(FL)5に替えて、アクティブフィルタ(AF)51を用いている点である。フィルタリアクトル(FL)5を低インダクタンス化して例えば2mH程度にすると、信号機器に影響を与える帰線電流ノイズの増加が懸念される。これを防ぐために、フィルタリアクトル(FL1)を一次巻線とし、この一次巻線であるフィルタリアクトル(FL1)に磁気結合した二次巻線(FL2)を追加したアクティブフィルタ(AF)51を構成し、二次巻線(FL2)を介して直流ステージに帰線電流ノイズの逆相電流を注入する。 FIG. 6 is a diagram illustrating an example of the configuration of the railway vehicle driving device according to the second embodiment of the present invention.
The difference from the first embodiment shown in FIG. 1 is that an active filter (AF) 51 is used instead of the filter reactor (FL) 5. When the inductance of the filter reactor (FL) 5 is reduced to, for example, about 2 mH, there is a concern about an increase in return current noise affecting signal devices. In order to prevent this, an active filter (AF) 51 in which the filter reactor (FL1) is used as a primary winding and a secondary winding (FL2) magnetically coupled to the filter reactor (FL1) as the primary winding is added. The negative phase current of the retrace current noise is injected into the DC stage via the secondary winding (FL2).
図1に示す実施例1と異なる点は、フィルタリアクトル(FL)5に替えて、アクティブフィルタ(AF)51を用いている点である。フィルタリアクトル(FL)5を低インダクタンス化して例えば2mH程度にすると、信号機器に影響を与える帰線電流ノイズの増加が懸念される。これを防ぐために、フィルタリアクトル(FL1)を一次巻線とし、この一次巻線であるフィルタリアクトル(FL1)に磁気結合した二次巻線(FL2)を追加したアクティブフィルタ(AF)51を構成し、二次巻線(FL2)を介して直流ステージに帰線電流ノイズの逆相電流を注入する。 FIG. 6 is a diagram illustrating an example of the configuration of the railway vehicle driving device according to the second embodiment of the present invention.
The difference from the first embodiment shown in FIG. 1 is that an active filter (AF) 51 is used instead of the filter reactor (FL) 5. When the inductance of the filter reactor (FL) 5 is reduced to, for example, about 2 mH, there is a concern about an increase in return current noise affecting signal devices. In order to prevent this, an active filter (AF) 51 in which the filter reactor (FL1) is used as a primary winding and a secondary winding (FL2) magnetically coupled to the filter reactor (FL1) as the primary winding is added. The negative phase current of the retrace current noise is injected into the DC stage via the secondary winding (FL2).
また、アクティブフィルタ(AF)51の二次巻線(FL2)には、帰線電流をモニターし、帰線電流ノイズの逆相電流を注入するアクティブフィルタ制御装置(図2に一点鎖線で示す、アクティブフィルタ制御装置500)が接続される。
An active filter control device (shown by a dashed line in FIG. 2) that monitors a return current and injects a reverse-phase current of the return current noise is provided to the secondary winding (FL2) of the active filter (AF) 51. The active filter control device 500) is connected.
実施例1に加えて、フィルタリアクトル(FL)5を、アクティブフィルタ(AF)51にして、アクティブフィルタ制御装置500を付加することで、鉄道車両用駆動装置全体の体積や質量の低減に加え、鉄道システムの信号機器に与える影響も低減することが可能となる。
In addition to the first embodiment, by replacing the filter reactor (FL) 5 with an active filter (AF) 51 and adding an active filter control device 500, the volume and mass of the entire railway vehicle drive device can be reduced. It is also possible to reduce the effect on the signal equipment of the railway system.
図7は、本発明の実施例3に係る鉄道車両用駆動装置の構成の一例を示す図である。
図1に示す実施例1と異なる点は、一つのパワーユニット(PU)4で制御するモータ(IM)16を2台とした点(1C2M)である。2組のモータ(IM)群に対して、それぞれにパワーユニット(PU)4を配置接続するため、モータ(IM)16をより精度よく制御できる利点がある。 FIG. 7 is a diagram illustrating an example of a configuration of the railway vehicle driving device according to the third embodiment of the present invention.
The difference from the first embodiment shown in FIG. 1 is that two motors (IM) 16 controlled by one power unit (PU) 4 are used (1C2M). Since the power unit (PU) 4 is arranged and connected to each of the two sets of motors (IM), there is an advantage that the motor (IM) 16 can be controlled more accurately.
図1に示す実施例1と異なる点は、一つのパワーユニット(PU)4で制御するモータ(IM)16を2台とした点(1C2M)である。2組のモータ(IM)群に対して、それぞれにパワーユニット(PU)4を配置接続するため、モータ(IM)16をより精度よく制御できる利点がある。 FIG. 7 is a diagram illustrating an example of a configuration of the railway vehicle driving device according to the third embodiment of the present invention.
The difference from the first embodiment shown in FIG. 1 is that two motors (IM) 16 controlled by one power unit (PU) 4 are used (1C2M). Since the power unit (PU) 4 is arranged and connected to each of the two sets of motors (IM), there is an advantage that the motor (IM) 16 can be controlled more accurately.
また、実施例3では、パワーユニット(PU)4以外のフィルタコンデンサ(FC)6や過電圧放電用素子OVTr等を含む過電圧防止回路(OVT)の構成部材は、パワーユニット(PU)1群(PU1)と2群(PU2)で共通利用する。このように、いわゆる1C2M制御の一部回路部品を共通利用とすることで、インバータ全体の部材コストの増加を抑えることが可能となる。
In the third embodiment, the components of the overvoltage protection circuit (OVT) including the filter capacitor (FC) 6 other than the power unit (PU) 4 and the overvoltage discharging element OVTr are the same as the power unit (PU) group 1 (PU1). Shared use by two groups (PU2). In this way, by using some circuit components of the so-called 1C2M control in common, it is possible to suppress an increase in member costs of the entire inverter.
図8は、本発明の実施例4に係る鉄道車両用駆動装置の構成の一例を示す図である。
図1に示す実施例1と異なる点は、半導体減流器(SHB)2を構成する回路構成が異なる点である。半導体減流器(SHB)2を構成する減流抵抗(DRe)と充電抵抗(CHRe)とを、実施例4では並列接続としている。この構成の利点は、減流電流が流れる経路が減流抵抗(DRe)と充電抵抗(CHRe)との二つの経路となるため、減流時に抵抗体から発生する発熱量を、二つの抵抗(DReとCHRe)で消費することができるため、減流抵抗(DRe)の定格もしくは本数を削減できることにある。実施例1では減流電流を減流抵抗(DRe)のみで消費する必要があるため、実施例4に比べて、減流抵抗(DRe)の抵抗体質量を大きく取らなければならない。このように、図8に示す半導体減流器(SHB)2を構成する減流抵抗(DRe)と充電抵抗(CHRe)とを並列接続することで、半導体減流器(SHB)2の低コスト化が可能となる。 FIG. 8 is a diagram illustrating an example of a configuration of a railway vehicle drive device according to the fourth embodiment of the present invention.
The difference from the first embodiment shown in FIG. 1 is that the circuit configuration of the semiconductor current reducer (SHB) 2 is different. In the fourth embodiment, the downflow resistance (DRe) and the charging resistance (CHRe) constituting the semiconductor current reducer (SHB) 2 are connected in parallel. The advantage of this configuration is that the path through which the reduced current flows is two paths, the reduced resistance (DRe) and the charging resistance (CHRe). DRe and CHRe) can be consumed, so that the rating or the number of current-reducing resistors (DRe) can be reduced. In the first embodiment, since it is necessary to consume the current flowing through only the current reducing resistor (DRe), the resistor mass of the current reducing resistor (DRe) must be larger than that in the fourth embodiment. As described above, by connecting the current reducing resistor (DRe) and the charging resistor (CHRe) constituting the semiconductor current reducer (SHB) 2 shown in FIG. Is possible.
図1に示す実施例1と異なる点は、半導体減流器(SHB)2を構成する回路構成が異なる点である。半導体減流器(SHB)2を構成する減流抵抗(DRe)と充電抵抗(CHRe)とを、実施例4では並列接続としている。この構成の利点は、減流電流が流れる経路が減流抵抗(DRe)と充電抵抗(CHRe)との二つの経路となるため、減流時に抵抗体から発生する発熱量を、二つの抵抗(DReとCHRe)で消費することができるため、減流抵抗(DRe)の定格もしくは本数を削減できることにある。実施例1では減流電流を減流抵抗(DRe)のみで消費する必要があるため、実施例4に比べて、減流抵抗(DRe)の抵抗体質量を大きく取らなければならない。このように、図8に示す半導体減流器(SHB)2を構成する減流抵抗(DRe)と充電抵抗(CHRe)とを並列接続することで、半導体減流器(SHB)2の低コスト化が可能となる。 FIG. 8 is a diagram illustrating an example of a configuration of a railway vehicle drive device according to the fourth embodiment of the present invention.
The difference from the first embodiment shown in FIG. 1 is that the circuit configuration of the semiconductor current reducer (SHB) 2 is different. In the fourth embodiment, the downflow resistance (DRe) and the charging resistance (CHRe) constituting the semiconductor current reducer (SHB) 2 are connected in parallel. The advantage of this configuration is that the path through which the reduced current flows is two paths, the reduced resistance (DRe) and the charging resistance (CHRe). DRe and CHRe) can be consumed, so that the rating or the number of current-reducing resistors (DRe) can be reduced. In the first embodiment, since it is necessary to consume the current flowing through only the current reducing resistor (DRe), the resistor mass of the current reducing resistor (DRe) must be larger than that in the fourth embodiment. As described above, by connecting the current reducing resistor (DRe) and the charging resistor (CHRe) constituting the semiconductor current reducer (SHB) 2 shown in FIG. Is possible.
図9は、本発明の実施例5に係る鉄道車両用駆動装置の構成の一例を示す図である。直流架線からパンタグラフ(PAN)13により得た直流電力は、高速度遮断器(HB)14、断流器(LB1、LB2)7、フィルタリアクトル(FL)5、パワーユニット(PU)4(フィルタコンデンサFC6を含むインバータ装置INV)の順に伝達される。
図10は、図9に示す鉄道車両用駆動装置の機器レイアウトを上面から見た図である。直方体から成る同一の箱に、主要な機器を収納して一体箱とした場合の箱内の機器レイアウトである。 FIG. 9 is a diagram illustrating an example of a configuration of the railway vehicle driving device according to the fifth embodiment of the present invention. DC power obtained by a pantograph (PAN) 13 from a DC overhead line is supplied to a high-speed circuit breaker (HB) 14, an interrupter (LB1, LB2) 7, a filter reactor (FL) 5, a power unit (PU) 4 (a filter capacitor FC6). Are transmitted in the order of the inverter device INV).
FIG. 10 is a diagram of a device layout of the railway vehicle driving device illustrated in FIG. 9 as viewed from above. This is a device layout in a case where main devices are housed in the same box made of a rectangular parallelepiped to form an integrated box.
図10は、図9に示す鉄道車両用駆動装置の機器レイアウトを上面から見た図である。直方体から成る同一の箱に、主要な機器を収納して一体箱とした場合の箱内の機器レイアウトである。 FIG. 9 is a diagram illustrating an example of a configuration of the railway vehicle driving device according to the fifth embodiment of the present invention. DC power obtained by a pantograph (PAN) 13 from a DC overhead line is supplied to a high-speed circuit breaker (HB) 14, an interrupter (LB1, LB2) 7, a filter reactor (FL) 5, a power unit (PU) 4 (a filter capacitor FC6). Are transmitted in the order of the inverter device INV).
FIG. 10 is a diagram of a device layout of the railway vehicle driving device illustrated in FIG. 9 as viewed from above. This is a device layout in a case where main devices are housed in the same box made of a rectangular parallelepiped to form an integrated box.
図10に示す箱内の機器レイアウトは、図5に示す従来の既存構成では、それぞれ独立した箱体に収めていた高速度遮断器(HB)15およびフィルタリアクトル(FL)5を、断流器(LB)7、直流電力をモータ駆動に必要な三相交流電力に変換するための電力変換装置を構成するパワーユニット(PU)4(フィルタコンデンサ6を内蔵)、制御論理部100およびその他の機器を含む同一筐体内に取り込み収納した一体箱の構成としている。一体箱1の長辺方向は、枕木方向である。
The equipment layout in the box shown in FIG. 10 is such that the high-speed circuit breaker (HB) 15 and the filter reactor (FL) 5 housed in independent boxes in the conventional existing configuration shown in FIG. (LB) 7, a power unit (PU) 4 (with a built-in filter capacitor 6), a control logic unit 100, and other devices constituting a power converter for converting DC power to three-phase AC power required for driving a motor. It is configured as an integrated box that is taken in and housed in the same housing. The long side direction of the one-piece box 1 is the sleeper direction.
一体箱1に含まれる機器のうち主要な重量物は、パワーユニット(PU)4とフィルタリアクトル(FL)5であり、これらの箱内配置が一体箱1の重心位置を決定する上において支配的である。
The main heavy objects among the devices included in the one-piece box 1 are the power unit (PU) 4 and the filter reactor (FL) 5, and the arrangement in these boxes is dominant in determining the position of the center of gravity of the one-piece box 1. is there.
ここで、車体に艤装する機器箱の重心は、床下艤装品の車両進行方向および枕木方向の重量バランスをとるため、一体箱1の中心と一致していることが望ましい。図1に示すとおり、パワーユニット(PU)4とフィルタリアクトル(FL)5を対向する側面、好ましくは対角の位置、に配置することにより、一体箱の重心を一体箱の中心位置と容易に一致させることができる。
Here, it is desirable that the center of gravity of the equipment box fitted to the vehicle body coincides with the center of the one-piece box 1 in order to balance the weight of the underfloor fittings in the vehicle traveling direction and the crossties direction. As shown in FIG. 1, by disposing the power unit (PU) 4 and the filter reactor (FL) 5 on opposing side surfaces, preferably at diagonal positions, the center of gravity of the integrated box easily matches the center position of the integrated box. Can be done.
パワーユニット(PU)4とフィルタリアクトル(FL)5以外の個別機器の箱内配置については、主回路配線の接続順に各機器が並んでいることが、箱内配線を簡素化する観点から望ましい。すなわち、一体箱1の一方の側面に、高速度遮断器(HB)14、断流器(LB)7およびフィルタリアクトル(FL)5の順に配置し、対向する側面に、パワーユニット(PU)4を配置することで、主回路配線を箱内で交差することなく配線することができる。
Regarding the arrangement of individual devices other than the power unit (PU) 4 and the filter reactor (FL) 5 in the box, it is desirable that the devices are arranged in the connection order of the main circuit wiring from the viewpoint of simplifying the wiring in the box. That is, a high-speed circuit breaker (HB) 14, a breaker (LB) 7, and a filter reactor (FL) 5 are arranged in this order on one side of the integrated box 1, and a power unit (PU) 4 is provided on the opposite side. By arranging, the main circuit wiring can be wired without crossing in the box.
また、一体箱1の中央部には、少なくとも1箇所以上の開口部(図1では、2箇所)を設けている。この開口部は、一体箱の内部に搭載した機器類のメンテナンスを行うなどのために設置するものである。開口部の設置については、以降の各実施例においても同様である。
In addition, at least one or more openings (two in FIG. 1) are provided in the center of the integrated box 1. The opening is provided for performing maintenance of devices mounted inside the integrated box. The installation of the opening is the same in each of the following embodiments.
図11は、図10に示す一体箱1を搭載した鉄道車両の床下艤装配置の一例を示す図である。床下に搭載する機器としては、主回路を構成する一体箱1、制御伝送・モニタ箱21、断路器箱22、SIV断流器箱23、母線遮断器箱24、ブレーキ制御装置25、空気供給タンク26、滑走防止弁装置27および直通予備ブレーキ装置28等である。図3のように、重心がほぼ中心にある一体箱1を艤装することで、車両の重量バランス設計が容易となり、艤装の検討および床下艤装の工数を削減することができる。
FIG. 11 is a diagram showing an example of an underfloor outfitting arrangement of a railway vehicle equipped with the integrated box 1 shown in FIG. The equipment mounted under the floor includes an integrated box 1 constituting a main circuit, a control transmission / monitor box 21, a disconnector box 22, a SIV disconnector box 23, a bus breaker box 24, a brake control device 25, an air supply tank. 26, an anti-skid valve device 27, a direct backup brake device 28, and the like. As shown in FIG. 3, by equipping the integral box 1 having the center of gravity substantially at the center, the weight balance design of the vehicle is facilitated, and the study of the outfitting and the number of steps of the underfloor outfitting can be reduced.
図12は、実施例1に係る一体箱1を搭載した場合の鉄道車両の床下艤装配置を図10に示す機器レイアウトに倣ったレイアウトとした図である。
フィルタリアクトル(FL)5とパワーユニット(PU)4とは、箱内で対角配置としている。半導体減流器(SHB)2は発熱体であるため、冷却器201が必要である。半導体減流器(SHB)2とパワーユニット(PU)4とを対向した位置に配置することで、一方の冷却器で温度上昇した空気が他方の冷却器に当たることはなく、互いの発熱の影響を受けずに冷却を行うことができる。 FIG. 12 is a diagram in which the underfloor outfitting arrangement of the railway vehicle when theintegrated box 1 according to the first embodiment is mounted is a layout that follows the equipment layout shown in FIG. 10.
The filter reactor (FL) 5 and the power unit (PU) 4 are arranged diagonally in the box. Since the semiconductor current reducer (SHB) 2 is a heating element, a cooler 201 is required. By arranging the semiconductor current reducer (SHB) 2 and the power unit (PU) 4 at opposing positions, the air whose temperature has risen in one cooler does not hit the other cooler, and the influence of heat generation by each other is reduced. Cooling can be performed without receiving.
フィルタリアクトル(FL)5とパワーユニット(PU)4とは、箱内で対角配置としている。半導体減流器(SHB)2は発熱体であるため、冷却器201が必要である。半導体減流器(SHB)2とパワーユニット(PU)4とを対向した位置に配置することで、一方の冷却器で温度上昇した空気が他方の冷却器に当たることはなく、互いの発熱の影響を受けずに冷却を行うことができる。 FIG. 12 is a diagram in which the underfloor outfitting arrangement of the railway vehicle when the
The filter reactor (FL) 5 and the power unit (PU) 4 are arranged diagonally in the box. Since the semiconductor current reducer (SHB) 2 is a heating element, a cooler 201 is required. By arranging the semiconductor current reducer (SHB) 2 and the power unit (PU) 4 at opposing positions, the air whose temperature has risen in one cooler does not hit the other cooler, and the influence of heat generation by each other is reduced. Cooling can be performed without receiving.
以上のように配置することで、実施例5に比べて小型軽量かつ省エネルギーの駆動システムを提供することができる。
配置 By arranging as described above, it is possible to provide a drive system that is smaller, lighter, and energy saving as compared with the fifth embodiment.
本発明の実施例6は、インバータ装置2群分を一体箱に収めた場合の実施形態である。図13は、実施例6に係る鉄道車両用駆動装置の構成の一例として示す主回路ツナギ図である。2群分の構成に伴い、主回路の各機器が2重の構成になる。
Example 6 of the present invention is an embodiment in which two groups of inverter devices are housed in an integrated box. FIG. 13 is a main circuit jumpsuit diagram illustrating an example of the configuration of the railway vehicle drive device according to the sixth embodiment. With the configuration of the two groups, each device of the main circuit has a double configuration.
パンタグラフ(PAN)13からの直流電力を各群に分岐する位置としては複数考えられるが、図13は、片群の故障時にも対応可能なように、断流器(LB1、LB2)7のパンタグラフ(PAN)側で分岐し、各群に直流電力の供給を行う例を示している。
There are a plurality of possible positions where the DC power from the pantograph (PAN) 13 is branched into each group. FIG. 13 shows the pantograph (LB1, LB2) 7 of the disconnectors (LB1, LB2) 7 so as to cope with a failure of one group. An example is shown in which branching is performed on the (PAN) side and DC power is supplied to each group.
図14は、実施例6に係る一体箱の箱内レイアウトの一例を示す図である。パワーユニット(PU1、PU2)4、フィルタリアクトル(FL1、FL2)5および断流器(1GLB、2GLB)7は、それぞれの群に個別に存在し、一体箱内には2台ずつ配置している。
FIG. 14 is a diagram illustrating an example of an in-box layout of an integrated box according to the sixth embodiment. The power units (PU1, PU2) 4, the filter reactors (FL1, FL2) 5, and the disconnectors (1GLB, 2GLB) 7 exist individually in each group, and two units are arranged in an integrated box.
特に、枕木方向の車両限界が比較的狭い、例えば地下鉄等への適用を考慮すると、枕木方向の寸法を縮小するために、パワーユニット(PU1、PU2)4は、一方の側面に集約して配置することが望ましい。
In particular, in consideration of application to a relatively narrow vehicle limit, for example, a subway, etc., the power units (PU1, PU2) 4 are collectively arranged on one side in order to reduce the size of the sleeper. It is desirable.
また、冷却器の寸法については、それぞれの発熱量を考慮すると、半導体減流器(SHB)2の冷却器201よりもパワーユニット(PU1、PU2)4の冷却器200の方が大型である。大型の冷却器200を持つパワーユニット(PU1、PU2)4を車両進行方向の両側面に配置すると、枕木方向のうち冷却器200の占める割合が大きくなり、箱サイズの増大を招き、枕木方向の車両限界を超過する可能性がある。これを防止するため、本実施例においては、2台のパワーユニット(PU1、PU2)4を一方の側面に揃えて配置する。
Regarding the size of the cooler, the cooler 200 of the power unit (PU1, PU2) 4 is larger than the cooler 201 of the semiconductor current reducer (SHB) 2 in consideration of the respective heat values. When the power units (PU1, PU2) 4 having the large-sized coolers 200 are arranged on both side surfaces in the vehicle traveling direction, the ratio of the coolers 200 in the sleeper direction increases, resulting in an increase in the box size and the vehicle in the sleeper direction. Limits may be exceeded. In order to prevent this, in the present embodiment, two power units (PU1, PU2) 4 are arranged on one side surface.
一方で、半導体減流器(SHB)2は、パワーユニット(PU1、PU2)4の冷却器200からの熱風の影響を避けるために、パワーユニット(PU1、PU2)4とは逆の側面に配置する。しかし、車両限界の制約が厳しい場合においては、物理寸法を熱的条件より優先させて、パワーユニット(PU1、PU2)4と半導体減流器(SHB)2とを同一の側面に配置することもできる。
On the other hand, the semiconductor current reducer (SHB) 2 is disposed on the side opposite to the power unit (PU1, PU2) 4 in order to avoid the influence of hot air from the cooler 200 of the power unit (PU1, PU2) 4. However, when the vehicle limit is severely restricted, the power unit (PU1, PU2) 4 and the semiconductor current reducer (SHB) 2 can be arranged on the same side surface by giving priority to physical dimensions over thermal conditions. .
本実施例に示す2群分の駆動システムを1つの箱に集約することにより、1群ずつ個別の箱とした場合に比べて、一体箱を構成する部材を削減することおよび2群分を合計した箱寸法を縮小することが可能となる。それにより、コストおよび艤装スペースの削減の効果を得ることもできる。
By integrating the drive systems of the two groups shown in this embodiment into one box, the number of members constituting the integrated box can be reduced and the total amount of the two groups can be reduced as compared with the case where each group is provided as an individual box. It becomes possible to reduce the box size. As a result, it is possible to obtain the effect of reducing cost and outfitting space.
図15は、本発明の実施例7に係る一体箱の箱内レイアウトの一例を示す図である。本実施例の特徴は、一体箱内においてパワーユニット(PU)4と半導体減流器(SHB)2とを同じ側面に配置している点である。
FIG. 15 is a diagram showing an example of a layout in a box of an integrated box according to the seventh embodiment of the present invention. The feature of this embodiment is that the power unit (PU) 4 and the semiconductor current reducer (SHB) 2 are arranged on the same side surface in an integrated box.
現在の技術水準においては、一般にフィルタリアクトル(FL)の質量がパワーユニット(PU)に比べて大きいため、制御論理部よりも重量物である断流器(LB)7と半導体減流器(SHB)2とをフィルタリアクトル(FL)5の対向側に配置する。これにより、枕木方向の重量バランスがとりやすく、パワーユニット(PU)4と半導体減流器(SHB)2とを対向する側面にそれぞれ配置した場合に比べて、容易に重心を箱中心に一致させることができる。
In the current state of the art, since the mass of the filter reactor (FL) is generally larger than that of the power unit (PU), the disconnector (LB) 7 and the semiconductor current reducer (SHB), which are heavier than the control logic unit, are used. 2 is disposed on the side opposite to the filter reactor (FL) 5. This makes it easier to balance the weight in the direction of the sleeper, and makes the center of gravity more easily coincide with the center of the box as compared with the case where the power unit (PU) 4 and the semiconductor current reducer (SHB) 2 are arranged on the opposite side surfaces. Can be.
また、パワーユニット(PU)4用の冷却器200と半導体減流器(SHB)2用の冷却器201とを一方の側面に集中配置することにより、箱からの突起物が一方の側面のみに集めることができ、一体箱の枕木方向の長さ短縮もしくは箱内スペースの拡大を図ることができる。
In addition, since the cooler 200 for the power unit (PU) 4 and the cooler 201 for the semiconductor current reducer (SHB) 2 are concentrated on one side, protrusions from the box are collected on only one side. The length of the integrated box in the sleeper direction can be reduced or the space in the box can be increased.
また、パワーユニット(PU)4と半導体減流器(SHB)2との配置について、冷却器としての放熱効率を考慮すると、両者を隣接した場合、一方の発熱により他方の放熱器が受ける空気温度が上昇し、冷却性能の低下を招くため避けるべきである。そこで、本実施例によるレイアウトは、パワーユニット(PU)4と半導体減流器(SHB)2との間に断流器(LB)7を配置し、両者の冷却器間のスペースを確保した例を示すものである。
Also, regarding the arrangement of the power unit (PU) 4 and the semiconductor current reducer (SHB) 2, considering the heat radiation efficiency as a cooler, when both are adjacent to each other, the air temperature received by the other radiator due to heat generation of one is reduced. It should be avoided because it will raise the cooling performance. Therefore, the layout according to the present embodiment is an example in which a breaker (LB) 7 is arranged between the power unit (PU) 4 and the semiconductor current reducer (SHB) 2 to secure a space between the two coolers. It is shown.
図16は、本発明の実施例8に係る床下艤装配置の一例を示す図である。本実施例は、本発明に係る一体箱1と別体の補助電源装置(SIV)61とを同一車両の床下に艤装した例である。
FIG. 16 is a diagram showing an example of an underfloor outfitting arrangement according to the eighth embodiment of the present invention. The present embodiment is an example in which the integrated box 1 according to the present invention and a separate auxiliary power supply (SIV) 61 are installed under the floor of the same vehicle.
一体箱1と補助電源装置(SIV)61の内、一方を車両の中心から車両の進行方向前方に、もう一方を車両の進行方向後方にオフセットした位置に艤装する。一体箱1と補助電源装置(SIV)61とは、床下機器のうち主要な重量物であるから、本艤装の配置により進行方向の軸重バランスを容易にとることができる。
艤 One of the integrated box 1 and the auxiliary power supply (SIV) 61 is installed at a position offset from the center of the vehicle in the forward direction of the vehicle, and the other is installed at a position offset rearward in the direction of the vehicle. Since the integrated box 1 and the auxiliary power supply (SIV) 61 are the main heavy objects of the underfloor equipment, it is possible to easily balance the axial load in the traveling direction by arranging the outfitting.
図16では、一体箱1と補助電源装置(SIV)61とが隣接し、両者の艤装位置が車両の中心付近である例を示したが、必ずしも両者を車両の中心付近に集中して配置する必要はなく、一体箱1と補助電源装置(SIV)61との間に別の機器を配置してもよい。
FIG. 16 shows an example in which the integrated box 1 and the auxiliary power supply (SIV) 61 are adjacent to each other, and the outfitting position of both is near the center of the vehicle. However, both are always concentrated near the center of the vehicle. There is no need to arrange another device between the integrated box 1 and the auxiliary power supply (SIV) 61.
補助電源装置(SIV)は、主回路と同様に直流架線から得た直流電力を用いて動作するため、本実施例で示した配置で艤装を行うことにより、直流電力を伝達する電源配線を削減することができる。
Since the auxiliary power supply (SIV) operates using the DC power obtained from the DC overhead line like the main circuit, the power supply line for transmitting the DC power can be reduced by rigging in the arrangement shown in this embodiment. can do.
以上、本発明を各実施例に基づき具体的に説明したが、本発明は実施例1~8で示す形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
As described above, the present invention has been specifically described based on the respective embodiments. However, the present invention is not limited to the embodiments shown in Embodiments 1 to 8, and may be variously modified without departing from the gist thereof. Needless to say.
以上の各実施例は、本発明を分かり易く説明するために詳細に説明したものであるが、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加、削除および置換をすることが可能である。
例えば、一つには、図8の実施例4に示す半導体減流器(SHB)2の回路構成と、図7の実施例3に示す1C2M制御方式とを組み合わせてもよい。 Each of the above embodiments has been described in detail in order to explain the present invention in an easily understandable manner, but is not necessarily limited to those having all the configurations described above. Further, for a part of the configuration of each embodiment, it is possible to add, delete and replace another configuration.
For example, as one, the circuit configuration of the semiconductor current reducer (SHB) 2 shown in the fourth embodiment of FIG. 8 and the 1C2M control method shown in the third embodiment of FIG. 7 may be combined.
例えば、一つには、図8の実施例4に示す半導体減流器(SHB)2の回路構成と、図7の実施例3に示す1C2M制御方式とを組み合わせてもよい。 Each of the above embodiments has been described in detail in order to explain the present invention in an easily understandable manner, but is not necessarily limited to those having all the configurations described above. Further, for a part of the configuration of each embodiment, it is possible to add, delete and replace another configuration.
For example, as one, the circuit configuration of the semiconductor current reducer (SHB) 2 shown in the fourth embodiment of FIG. 8 and the 1C2M control method shown in the third embodiment of FIG. 7 may be combined.
また一つには、パワーユニット(PU)4に用いられている半導体素子群については、上下アームを一つに纏めたいわゆる2in1型のパワーモジュール構成としたが、もちろんこれに限定されない。各アームに実装したいわゆる1in1型のパワーモジュールを用いてもよい。
{Circle around (1)} The semiconductor element group used in the power unit (PU) 4 has a so-called 2 in 1 type power module configuration in which upper and lower arms are integrated into one, but is not limited to this. A so-called 1-in-1 type power module mounted on each arm may be used.
また一つには、インバータを構成するパワーユニットとブレーキチョッパ素子とを共通化したパワーユニット構成としてもよい。
また一つには、トランス型のフィルタリアクトル(FL1およびFL2)は、空芯型でも鉄芯型でもよい。 On the other hand, a power unit configuration in which the power unit constituting the inverter and the brake chopper element are shared may be employed.
On the other hand, the transformer-type filter reactors (FL1 and FL2) may be an air-core type or an iron-core type.
また一つには、トランス型のフィルタリアクトル(FL1およびFL2)は、空芯型でも鉄芯型でもよい。 On the other hand, a power unit configuration in which the power unit constituting the inverter and the brake chopper element are shared may be employed.
On the other hand, the transformer-type filter reactors (FL1 and FL2) may be an air-core type or an iron-core type.
また一つには、モータは、誘導モータ(IM)でもよいし永久磁石同期モータ(PMSM)でもよい。永久磁石同期モータ(PMSM)を用いる場合は、図6に示すようにパワーユニット(PU)4をモータ毎に複数(例えば4群分)備え、一方でフィルタコンデンサ(FC)や過電圧防止回路(OVT)は共通化する構成とする。これによれば、モータの低損失化と主回路システムの軽量化との効果を最大化できる利点を享受できることになる。
Alternatively, the motor may be an induction motor (IM) or a permanent magnet synchronous motor (PMSM). When using a permanent magnet synchronous motor (PMSM), a plurality of power units (PU) 4 are provided for each motor (for example, for four groups) as shown in FIG. 6, while a filter capacitor (FC) and an overvoltage protection circuit (OVT) are provided. Is a common configuration. According to this, the advantage of maximizing the effect of reducing the loss of the motor and reducing the weight of the main circuit system can be enjoyed.
さらには、以上の実施例1~8は、鉄道車両用駆動装置を鉄道車両に艤装して搭載するに当たって、車両の床下に配置する構成として示したが、車両の屋根上に配置する構成としても適用可能である。
Further, in the above-described first to eighth embodiments, when the railway vehicle drive device is fitted and mounted on the railway vehicle, the drive device is disposed under the floor of the vehicle, but may be disposed on the roof of the vehicle. Applicable.
1…一体箱、2…半導体減流器(SHB)、
3…過電圧防止回路(OVT)、4…パワーユニット(PU)、
5…フィルタリアクトル(FL)、6…フィルタコンデンサ(FC)、
7…断流器(LB1、LB2)、8…主スイッチ(MS)、
9…接地スイッチ(GS)、10…放電用スイッチ(DS)、
11…電圧計(DCPT1)、12…放電抵抗(DCHRe)、
13…パンタグラフ、14…主フューズ(MF)、
15…高速度遮断器(HB)、16…モータ(IM)、
21…INTEROS箱、22…断路器箱、23…SIV断流器箱、
24…母線遮断器箱、25…ブレーキ制御装置、26…供給空気タンク、
27…滑走防止弁装置、28…直通予備ブレーキ装置、
51…アクティブフィルタ(AF)、61…補助電源装置(SIV)、
100…論理部、200、201、202、400…冷却器、
500…アクティブフィルタ制御装置、600…配線ダクト 1… Integral box, 2… Semiconductor current reducer (SHB),
3: Overvoltage protection circuit (OVT), 4: Power unit (PU),
5: filter reactor (FL), 6: filter capacitor (FC),
7: disconnector (LB1, LB2), 8: main switch (MS),
9 ground switch (GS), 10 discharge switch (DS),
11: voltmeter (DCPT1), 12: discharge resistance (DCHRe),
13: Pantograph, 14: Main fuse (MF),
15: High speed circuit breaker (HB), 16: Motor (IM),
21: INTEROS box, 22: disconnector box, 23: SIV disconnector box,
24 ... busbar breaker box, 25 ... brake control device, 26 ... supply air tank,
27: anti-skid valve device, 28: direct through-brake device,
51: active filter (AF), 61: auxiliary power supply (SIV),
100: logic unit, 200, 201, 202, 400: cooler,
500: Active filter control device, 600: Wiring duct
3…過電圧防止回路(OVT)、4…パワーユニット(PU)、
5…フィルタリアクトル(FL)、6…フィルタコンデンサ(FC)、
7…断流器(LB1、LB2)、8…主スイッチ(MS)、
9…接地スイッチ(GS)、10…放電用スイッチ(DS)、
11…電圧計(DCPT1)、12…放電抵抗(DCHRe)、
13…パンタグラフ、14…主フューズ(MF)、
15…高速度遮断器(HB)、16…モータ(IM)、
21…INTEROS箱、22…断路器箱、23…SIV断流器箱、
24…母線遮断器箱、25…ブレーキ制御装置、26…供給空気タンク、
27…滑走防止弁装置、28…直通予備ブレーキ装置、
51…アクティブフィルタ(AF)、61…補助電源装置(SIV)、
100…論理部、200、201、202、400…冷却器、
500…アクティブフィルタ制御装置、600…配線ダクト 1… Integral box, 2… Semiconductor current reducer (SHB),
3: Overvoltage protection circuit (OVT), 4: Power unit (PU),
5: filter reactor (FL), 6: filter capacitor (FC),
7: disconnector (LB1, LB2), 8: main switch (MS),
9 ground switch (GS), 10 discharge switch (DS),
11: voltmeter (DCPT1), 12: discharge resistance (DCHRe),
13: Pantograph, 14: Main fuse (MF),
15: High speed circuit breaker (HB), 16: Motor (IM),
21: INTEROS box, 22: disconnector box, 23: SIV disconnector box,
24 ... busbar breaker box, 25 ... brake control device, 26 ... supply air tank,
27: anti-skid valve device, 28: direct through-brake device,
51: active filter (AF), 61: auxiliary power supply (SIV),
100: logic unit, 200, 201, 202, 400: cooler,
500: Active filter control device, 600: Wiring duct
Claims (26)
- 鉄道車両用駆動装置の構成部品として、
直流架線から鉄道車両に供給する直流電流を遮断する断流器と、
前記断流器に直列に接続する減流器と、
前記減流器を介して供給する直流電力を三相交流電力に変換するパワーユニットおよびフィルタコンデンサから構成するインバータ装置と、
前記減流器と前記フィルタコンデンサとの間に接続するフィルタリアクトルと
を備え、
前記構成部品全てが前記鉄道車両に搭載される同一の筐体に収容される
ことを特徴とする鉄道車両用駆動装置。 As a component of a railway vehicle drive unit,
An interrupter for interrupting a DC current supplied from a DC overhead line to a railway vehicle;
A current reducer connected in series to the current breaker,
An inverter device including a power unit and a filter capacitor for converting DC power supplied through the current reducer into three-phase AC power,
A filter reactor connected between the current reducer and the filter capacitor,
A railway vehicle drive device, wherein all the components are housed in the same housing mounted on the railway vehicle. - 請求項1に記載の鉄道車両用駆動装置であって、
前記フィルタリアクトルのインダクタンス値は、4mH以下である
ことを特徴とする鉄道車両用駆動装置。 The railway vehicle drive device according to claim 1, wherein
A drive device for a railway vehicle, wherein an inductance value of the filter reactor is 4 mH or less. - 請求項1に記載の鉄道車両用駆動装置であって、
前記フィルタリアクトルのインダクタンス値は、3mH以下である
ことを特徴とする鉄道車両用駆動装置。 The railway vehicle drive device according to claim 1, wherein
The drive device for a railway vehicle, wherein an inductance value of the filter reactor is 3 mH or less. - 請求項1から3のいずれか1項に記載の鉄道車両用駆動装置であって、
前記減流器は、スイッチ素子とダイオードとを内蔵する半導体パワーモジュールと抵抗器から構成する半導体減流器である
ことを特徴とする鉄道車両用駆動装置。 The railway vehicle drive device according to any one of claims 1 to 3, wherein:
The drive device for a railway vehicle, wherein the current reducer is a semiconductor current reducer including a semiconductor power module including a switch element and a diode and a resistor. - 請求項1から4のいずれか1項に記載の鉄道車両用駆動装置であって、
前記インバータ装置は、前記フィルタリアクトルと前記フィルタコンデンサとの間に過電圧防止回路を有する
ことを特徴とする鉄道車両用駆動装置。 The railway vehicle drive device according to any one of claims 1 to 4, wherein:
The inverter device has an overvoltage prevention circuit between the filter reactor and the filter capacitor. - 請求項1から5のいずれか1項に記載の鉄道車両用駆動装置であって、
前記フィルタリアクトルが、前記筐体の長手方向の中心に配置され、
前記パワーユニットが、前記同一の筐体内で車両進行方向に対向するいずれかの側面に配置される
ことを特徴とする鉄道車両用駆動装置。 The railway vehicle drive device according to any one of claims 1 to 5, wherein:
The filter reactor is disposed at a center in a longitudinal direction of the housing,
The drive unit for a railway vehicle, wherein the power unit is disposed on any of the side surfaces facing the vehicle traveling direction in the same casing. - 請求項1から5のいずれか1項に記載の鉄道車両用駆動装置であって、
前記フィルタリアクトルと前記パワーユニットとが、前記同一の筐体内で車両進行方向に対向する側面それぞれに配置される
ことを特徴とする鉄道車両用駆動装置。 The railway vehicle drive device according to any one of claims 1 to 5, wherein:
A drive device for a railway vehicle, wherein the filter reactor and the power unit are arranged on respective side surfaces facing in the vehicle traveling direction in the same casing. - 請求項7に記載の鉄道車両用駆動装置であって、
前記フィルタリアクトルと前記パワーユニットとが、前記同一の筐体内で車両進行方向に対向する側面それぞれの対角位置に配置される
ことを特徴とする鉄道車両用駆動装置。 The railway vehicle drive device according to claim 7, wherein
A drive device for a railway vehicle, wherein the filter reactor and the power unit are arranged at diagonal positions on respective side surfaces facing the vehicle traveling direction in the same casing. - 請求項7または8に記載の鉄道車両用駆動装置であって、
前記フィルタリアクトルが配置される前記側面に、前記断流器、前記減流器および前記フィルタリアクトルが前記直流架線から接続された順に配置される
ことを特徴とする鉄道車両用駆動装置。 The railway vehicle drive device according to claim 7, wherein:
A drive device for a railway vehicle, wherein the current breaker, the current reducer, and the filter reactor are arranged on the side surface on which the filter reactor is arranged in the order in which they are connected from the DC overhead wire. - 請求項4を引用する請求項7、当該請求項7を引用する請求項8または9のいずれか1項に記載の鉄道車両用駆動装置であって、
前記パワーユニットが配置される前記側面に、前記断流器を挟んで前記パワーユニットおよび前記半導体減流器が配置される
ことを特徴とする鉄道車両用駆動装置。 The driving device for a railway vehicle according to claim 7, wherein the driving device for a railway vehicle according to claim 8 or 9,
The drive unit for a railway vehicle, wherein the power unit and the semiconductor current reducer are arranged on the side surface on which the power unit is arranged with the current breaker interposed therebetween. - 請求項7から10のいずれか1項に記載の鉄道車両用駆動装置であって、
前記筐体は、前記鉄道車両の枕木方向の中央付近に開口部を有する
ことを特徴とする鉄道車両用駆動装置。 The railway vehicle drive device according to any one of claims 7 to 10, wherein:
The drive device for a railway vehicle, wherein the housing has an opening near a center of the railway vehicle in a sleeper direction. - 請求項6から11のいずれか1項に記載の鉄道車両用駆動装置であって、
前記パワーユニットは、当該パワーユニットが配置される前記側面に配置され、当該側面から外部へ突出させた冷却器を備える
ことを特徴とする鉄道車両用駆動装置。 The railway vehicle drive device according to any one of claims 6 to 11, wherein:
The power unit for a railway vehicle, wherein the power unit includes a cooler disposed on the side surface on which the power unit is disposed and protruding from the side surface to the outside. - 請求項4を引用する請求項6または7並びに当該請求項7を引用する請求項8から12のいずれか1項に記載の鉄道車両用駆動装置であって、
前記減流器は、当該減流器が配置される前記側面に配置され、当該側面から外部へ突出させた冷却器を備える
ことを特徴とする鉄道車両用駆動装置。 The driving apparatus for a railway vehicle according to any one of claims 6 to 7 citing claim 4 and claims 8 to 12 citing claim 7.
The drive device for a railway vehicle, wherein the current reducer includes a cooler disposed on the side surface on which the current reducer is disposed and protruding from the side surface to the outside. - 請求項1から13のいずれか1項に記載の鉄道車両用駆動装置であって、
前記筐体は、自らの長手方向を前記鉄道車両の枕木方向とする直方体である
こと特徴とする鉄道車両用駆動装置。 The railway vehicle drive device according to any one of claims 1 to 13, wherein:
The drive device for a railway vehicle, wherein the housing is a rectangular parallelepiped whose longitudinal direction is the direction of the sleeper of the railway vehicle. - 請求項1から14のいずれか1項に記載の鉄道車両用駆動装置であって、
前記筐体の長手方向の寸法が、前記鉄道車両が走行する軌道の線路幅以上である
こと特徴とする鉄道車両用駆動装置。 The railway vehicle drive device according to any one of claims 1 to 14, wherein:
The railway vehicle drive device, wherein a length of the casing in a longitudinal direction is equal to or more than a track width of a track on which the railway vehicle travels. - 請求項1から15のいずれか1項に記載の鉄道車両用駆動装置であって、
前記フィルタリアクトルは、1次巻線と2次巻線とを有するアクティブフィルタから構成され、前記2次巻線に帰線電流ノイズの逆相電流を注入する制御回路を接続する
ことを特徴とする鉄道車両用駆動装置。 The railway vehicle drive device according to any one of claims 1 to 15, wherein:
The filter reactor comprises an active filter having a primary winding and a secondary winding, and a control circuit for injecting a reverse-phase current of retrace current noise is connected to the secondary winding. Drive device for railway vehicles. - 請求項1から16のいずれか1項に記載の鉄道車両用駆動装置であって、
前記インバータ装置は、複数の前記パワーユニットを備え、
前記複数のパワーユニットそれぞれが、電動機を駆動する
ことを特徴とする鉄道車両用駆動装置。 The railway vehicle drive device according to any one of claims 1 to 16, wherein:
The inverter device includes a plurality of the power units,
A railway vehicle drive device, wherein each of the plurality of power units drives an electric motor. - 請求項1から17のいずれか1項に記載の鉄道車両用駆動装置であって、
前記筐体は、自らの長手方向の対向する面それぞれに当該筐体の内部と外部とをつなぐ配線を通過もしくは接続する手段を有する
ことを特徴とする鉄道車両用駆動装置。 The railway vehicle drive device according to any one of claims 1 to 17, wherein:
A drive device for a railway vehicle, characterized in that the housing has means for passing or connecting a wire connecting the inside and the outside of the housing on each of surfaces facing each other in a longitudinal direction of the housing. - 請求項1から13のいずれか1項に記載の鉄道車両用駆動装置であって、
前記フィルタリアクトルおよび前記パワーユニットを複数個備え、
前記筐体は、車両進行方向を長手方向とし、
前記複数個のフィルタリアクトルと前記複数個のパワーユニットとは、前記対向する側面それぞれに前記断流器および前記減流器を挟む形態で配置される
ことを特徴とする鉄道車両用駆動装置。 The railway vehicle drive device according to any one of claims 1 to 13, wherein:
Comprising a plurality of the filter reactor and the power unit,
The casing has a vehicle traveling direction as a longitudinal direction,
The drive device for a railway vehicle, wherein the plurality of filter reactors and the plurality of power units are arranged on the opposed side surfaces so as to sandwich the current breaker and the current reducer. - 請求項1から19のいずれか1項に記載の鉄道車両用駆動装置を自らの床下に搭載した鉄道車両。 A railway vehicle equipped with the railway vehicle drive device according to any one of claims 1 to 19 under its own floor.
- 請求項1から19のいずれか1項に記載の鉄道車両用駆動装置を自らの屋根上に搭載した鉄道車両。 A railway vehicle equipped with the railway vehicle drive device according to any one of claims 1 to 19 on its own roof.
- 請求項20または21に記載の鉄道車両であって、
前記鉄道車両用駆動装置は更に補助電源装置を備え、
前記筐体と前記補助電源装置とが同一車両に配置される
ことを特徴とする鉄道車両。 The railway vehicle according to claim 20 or 21,
The railway vehicle drive device further includes an auxiliary power supply device,
A railway vehicle, wherein the housing and the auxiliary power supply device are arranged in the same vehicle. - 鉄道車両用駆動装置の構成部品である、直流架線から鉄道車両に供給される直流電流を遮断する断流器と、前記断流器に直列に接続する減流器と、前記減流器を介して供給する直流電力を三相交流電力に変換するパワーユニットおよびフィルタコンデンサから構成するインバータ装置と、前記減流器と前記フィルタコンデンサとの間に接続するフィルタリアクトルとを、同一の筐体に所定のレイアウトで配置することにより収容し、当該筐体を前記鉄道車両の床下または屋根上に搭載する
ことを特徴とする鉄道車両用駆動装置の艤装方法。 A breaker, which is a component of the railway vehicle drive device, that cuts off a DC current supplied to the railway vehicle from the DC overhead line, a current reducer connected in series to the current breaker, and the current reducer. A power unit for converting the supplied DC power into three-phase AC power and an inverter device including a filter capacitor, and a filter reactor connected between the current reducer and the filter capacitor are provided in a same housing in a predetermined manner. An outfitting method for a railway vehicle drive device, wherein the vehicle is accommodated by being arranged in a layout, and the housing is mounted under a floor or a roof of the railway vehicle. - 請求項23に記載の鉄道車両用駆動装置の艤装方法であって、
前記所定のレイアウトは、前記フィルタリアクトルを前記筐体の長手方向の中心に配置し、前記減流器および前記インバータ装置を前記筐体の長手方向の端部に配置する
ことを特徴とする鉄道車両用駆動装置の艤装方法。 An outfitting method for a railway vehicle drive device according to claim 23,
The said predetermined layout arrange | positions the said filter reactor in the center of the longitudinal direction of the said housing | casing, and arrange | positions the said current reducer and the inverter apparatus in the longitudinal direction end part of the said housing | casing, The railway vehicle characterized by the above-mentioned. Outfitting method of the drive unit for the vehicle. - 請求項23に記載の鉄道車両用駆動装置の艤装方法であって、
前記所定のレイアウトは、前記断流器、前記減流器および前記フィルタリアクトルを前記同一の筐体の車両進行方向の第1の側面に前記直流架線から接続された順に配置し、前記パワーユニットを前記第1の側面に対向する第2の側面に配置する
ことを特徴とする鉄道車両用駆動装置の艤装方法。 An outfitting method for a railway vehicle drive device according to claim 23,
In the predetermined layout, the current breaker, the current reducer, and the filter reactor are arranged in the order in which they are connected to the first side surface of the same housing in the vehicle traveling direction from the DC overhead line, and the power unit is provided. A method for outfitting a railway vehicle drive device, comprising: arranging on a second side surface opposite to the first side surface. - 鉄道車両用駆動装置の構成部品である、直流架線から鉄道車両に供給される直流電流を遮断する断流器と、前記断流器に直列に接続する減流器と、前記減流器を介して供給する直流電力を三相交流電力に変換するパワーユニットおよびフィルタコンデンサから構成するインバータ装置と、前記減流器と前記フィルタコンデンサとの間に接続するフィルタリアクトルとを、同一の筐体に収容した鉄道車両用駆動装置を、前記鉄道車両の床下または屋根上に搭載する
ことを特徴とする鉄道車両の生産方法。 A breaker, which is a component of the railway vehicle drive device, that cuts off a DC current supplied to the railway vehicle from the DC overhead line, a current reducer connected in series to the current breaker, and the current reducer. And a filter reactor connected between the current reducer and the filter capacitor, and a power unit configured to convert the supplied DC power into three-phase AC power and a filter capacitor, and a filter reactor connected between the current reducer and the filter capacitor. A method for producing a railway vehicle, comprising mounting a railway vehicle drive device under a floor or a roof of the railway vehicle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020549362A JP6967162B2 (en) | 2018-09-27 | 2019-09-26 | A drive device for a railroad vehicle, this mounting method, a railroad vehicle equipped with the drive device, and this production method. |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-181298 | 2018-09-27 | ||
JP2018181298 | 2018-09-27 | ||
JP2019045421 | 2019-03-13 | ||
JP2019-045421 | 2019-03-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020067304A1 true WO2020067304A1 (en) | 2020-04-02 |
Family
ID=69953496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/037896 WO2020067304A1 (en) | 2018-09-27 | 2019-09-26 | Railroad vehicle drive device, method of outfitting same, railroad vehicle equipped with said drive device, and method of producing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6967162B2 (en) |
WO (1) | WO2020067304A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5869405A (en) * | 1981-10-20 | 1983-04-25 | Mitsubishi Electric Corp | Controller for electric motor vehicle |
JPS6126401A (en) * | 1984-07-16 | 1986-02-05 | Toshiba Corp | Active filter unit for electric railcar |
JPH06351105A (en) * | 1993-06-04 | 1994-12-22 | Toshiba Corp | Apparatus and method for controlling electric railcar |
JPH10290570A (en) * | 1997-04-11 | 1998-10-27 | Toyo Electric Mfg Co Ltd | Overvoltage prevention circuit in power converter for electric vehicle |
WO2017208384A1 (en) * | 2016-06-01 | 2017-12-07 | 三菱電機株式会社 | Power conversion device |
-
2019
- 2019-09-26 JP JP2020549362A patent/JP6967162B2/en active Active
- 2019-09-26 WO PCT/JP2019/037896 patent/WO2020067304A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5869405A (en) * | 1981-10-20 | 1983-04-25 | Mitsubishi Electric Corp | Controller for electric motor vehicle |
JPS6126401A (en) * | 1984-07-16 | 1986-02-05 | Toshiba Corp | Active filter unit for electric railcar |
JPH06351105A (en) * | 1993-06-04 | 1994-12-22 | Toshiba Corp | Apparatus and method for controlling electric railcar |
JPH10290570A (en) * | 1997-04-11 | 1998-10-27 | Toyo Electric Mfg Co Ltd | Overvoltage prevention circuit in power converter for electric vehicle |
WO2017208384A1 (en) * | 2016-06-01 | 2017-12-07 | 三菱電機株式会社 | Power conversion device |
Also Published As
Publication number | Publication date |
---|---|
JP6967162B2 (en) | 2021-11-17 |
JPWO2020067304A1 (en) | 2021-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7103071B2 (en) | Vehicle power supply system | |
WO2013145191A1 (en) | Rail vehicle system | |
WO2014171023A1 (en) | Inverter device and electric motor with integrated inverter | |
AU2008362696B8 (en) | Vehicle control device | |
WO2015001621A1 (en) | Hybrid drive system | |
JP2009077624A (en) | Electrodynamic brake device | |
JP5606749B2 (en) | AC electric car | |
CN203219169U (en) | Converter device | |
WO2013046880A1 (en) | Automobile power conversion control device | |
US11999307B2 (en) | Vehicle power supply system | |
JP5437572B2 (en) | Electric vehicle drive device | |
CN101980886A (en) | Supply of auxiliary drives in a rail vehicle with electrical power | |
WO2020067304A1 (en) | Railroad vehicle drive device, method of outfitting same, railroad vehicle equipped with said drive device, and method of producing same | |
US9056551B2 (en) | Braking system contactor control and/or monitoring system and method | |
US20170267112A1 (en) | System for converting electric energy, electric energy storage device and power train for a railway vehicle | |
EP2798714B1 (en) | Inverter and power system with fuse protection | |
JP3854591B2 (en) | Electric vehicle control device and control method thereof | |
JP5277433B2 (en) | Electric vehicle drive device | |
CN107431365B (en) | Electricity storage device | |
JP7098727B2 (en) | Railroad vehicle drive system and railroad vehicle drive method | |
WO2020137133A1 (en) | Power conversion device for railway vehicle | |
WO2020166472A1 (en) | Driving device for railway vehicles, railway vehicle, and method for manufacturing railway vehicle | |
JP7020945B2 (en) | Power semiconductor devices and power supply systems for vehicles equipped with the power semiconductor devices | |
US20050127856A1 (en) | Low-voltage electric motors | |
JP2006014412A (en) | Electric vehicle controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19867388 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2020549362 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19867388 Country of ref document: EP Kind code of ref document: A1 |