WO2020067083A1 - Multilayer film - Google Patents

Multilayer film Download PDF

Info

Publication number
WO2020067083A1
WO2020067083A1 PCT/JP2019/037440 JP2019037440W WO2020067083A1 WO 2020067083 A1 WO2020067083 A1 WO 2020067083A1 JP 2019037440 W JP2019037440 W JP 2019037440W WO 2020067083 A1 WO2020067083 A1 WO 2020067083A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laminated film
resin
mass
less
Prior art date
Application number
PCT/JP2019/037440
Other languages
French (fr)
Japanese (ja)
Inventor
鷹行 河野
浩孝 保田
磯上 宏一郎
利之 井口
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2020549249A priority Critical patent/JPWO2020067083A1/en
Publication of WO2020067083A1 publication Critical patent/WO2020067083A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties

Definitions

  • the present invention relates to a laminated film having at least a polyvinyl acetal resin layer (A) and a thermoplastic resin layer (B).
  • Safety glass For laminated glass for architectural purposes, laminated glass for surface protection of displays or windshields or side glasses for automobiles, a resin layer is placed between two inorganic or organic glasses for the purpose of preventing scattering when the glass is broken.
  • Safety glass is mainly used. In recent years, such safety glass has been increasingly provided with further functionality (for example, heat ray shielding property, design property, conductivity, light reflection property or light absorption property).
  • As the method it has the above-mentioned functions on a thin polyethylene phthalate (hereinafter referred to as “PET”) film or a polycarbonate film (hereinafter referred to as “PET film etc.”) which is excellent in versatility or economy.
  • PET thin polyethylene phthalate
  • PET film etc. a polycarbonate film
  • Patent Documents 1 to 3 disclose such methods. It is described that a transparent laminated glass having no appearance defects such as wrinkles could be produced by a suitable method.
  • 3D shape laminated glass which has been increasingly used in recent years, is required to be able to follow the 3D shape.
  • a general PET film or the like has poor followability to a 3D shape due to characteristics of a resin or a film forming method, and is likely to have wrinkles or cuts in a functional layer on the PET film or the like at the time of manufacturing a laminated glass.
  • an interlayer film for laminated glass using a PET film or the like having improved moldability has been studied.
  • a plastic film is sandwiched between two resin interlayer films.
  • Laminated glass is described.
  • Patent Document 5 discloses a polyester film for laminated glass having at least three layers and having a specific haze, wherein both outermost polyester films have a specific thickness, a specific composition, and a specific haze. Polyester films are described.
  • the problem to be solved by the invention is to provide a laminated glass with a function or the like, when distorting the functional layer or deteriorating the transparency of the laminated glass as occurs when using PET or a general interlayer film.
  • An object of the present invention is to provide a laminated film which can be suppressed and can be easily used for a laminated glass having a 3D shape which is required to conform to a shape.
  • the viscosity of a 10% by mass toluene / ethanol 1/1 (mass ratio) solution measured at 20 ° C.
  • the layer (A) has a thickness of 10 to 350 ⁇ m, and the resin material constituting the layer (B) has a tensile storage modulus E ′ (40) at 40 ° C. And a tensile storage modulus E ′ (100) at 100 ° C. satisfying the formulas (1) and (2).
  • the present invention when imparting functionality or the like to the laminated glass, it is possible to suppress distortion of the functional layer or deterioration in the transparency of the laminated glass as occurs when using PET or a general interlayer, It is possible to provide a laminated film which can be easily used for laminated glass having a 3D shape which requires conformability to a shape.
  • FIG. 3 is a schematic view showing a state where a laminated glass to which an iron plate is adhered is fixed at a predetermined angle in order to measure a heat creep resistance value. It is a mimetic diagram showing one mode of 3D shape laminated glass concerning the present invention.
  • the present invention relates to a laminated film having at least a polyvinyl acetal resin layer (A) and a thermoplastic resin layer (B), and a Brookfield type (B type) viscometer for the polyvinyl acetal resin in the layer (A).
  • E ′ ( 40) and the tensile storage modulus E ′ (100) at 100 ° C. are calculated by the formulas (1) and (2): (1) E '(40) ⁇ 1000 MPa (2) E '(100) ⁇ 10 MPa A laminated film that satisfies is satisfied.
  • the laminated film of the present invention has one or more polyvinyl acetal resin layers (A).
  • the resin materials constituting the layer (A) may be the same or different.
  • the term “resin material” means a material made of a resin or a mixture containing a resin (that is, a resin composition).
  • the layer (A) in the laminated film of the present invention contains a polyvinyl acetal resin as a resin component.
  • the content of the polyvinyl acetal resin in the layer (A) is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 65% by mass or more, based on the total mass of the layer (A). Is 70% by mass or more.
  • the upper limit of the content is not particularly limited. The content is 100% by mass or less based on the total mass of the layer (A).
  • the layer (A) may have a multi-component phase-separated structure, but the phase-separated structure preferably has an average particle size of the island component of less than 100 nm, more preferably less than 80 nm, and It is particularly preferred not to exhibit the phase separation structure of By not exhibiting the phase separation structure of the sea-island or exhibiting a sufficiently small particle size, transparency that can be used for a windshield of a car or the like can be ensured.
  • the polyvinyl acetal resin contained in the layer (A) in the present invention is one polyvinyl acetal resin, or has a viscosity average polymerization degree, an acetalization degree, a vinyl acetate unit content, a vinyl alcohol unit content, and an ethylene unit content. And two or more polyvinyl acetal resins each differing in at least one of the molecular weight and the chain length of the aldehyde used for acetalization.
  • the layer (A) contains two or more different polyvinyl acetal resins, another polyvinyl acetal resin layer (C) or a functional layer (D), which will be described later, at the time of melt-molding ease and at the time of producing laminated glass.
  • Polyvinyl acetal resin is a mixture of at least two polyvinyl acetal resins having different viscosity-average polymerization degrees, or at least two having different viscosity-average polymerization degrees, from the viewpoint of easily preventing distortion of glass and displacement of glass when using laminated glass. It is preferably an acetalized product of a mixture of two polyvinyl alcohol-based resins.
  • the degree of acetalization of the polyvinyl acetal resin used in the present invention is preferably at least 40 mol%, more preferably at least 45 mol%, further preferably at least 50 mol%, still more preferably at least 60 mol%, particularly preferably at least 68 mol%. Mol% or more, preferably 86 mol% or less, more preferably 84 mol% or less, still more preferably 82 mol% or less.
  • the degree of acetalization is defined as a unit consisting of two carbon atoms in the main chain (eg, a vinyl alcohol unit, a vinyl acetate unit, an ethylene unit, etc.) in a polyvinyl alcohol-based resin which is a raw material for producing a polyvinyl acetal resin.
  • the acetalization degree is in the range between the lower limit and the upper limit described above, the mechanical strength of the obtained layer (A) tends to be sufficient, and the compatibility between the polyvinyl acetal resin and the plasticizer is good. It is preferable because it easily becomes.
  • the degree of acetalization of at least one polyvinyl acetal resin is in the range between the lower limit and the upper limit described above.
  • the degree of acetalization of the polyvinyl acetal resin is preferably at least 65 mol% from the viewpoint of water resistance.
  • the degree of acetalization can be adjusted by adjusting the amount of aldehyde used in the acetalization reaction.
  • the vinyl acetate unit content of the polyvinyl acetal resin is preferably at least 0.1 mol%, more preferably at least 0.3 mol%, preferably at most 30 mol%, more preferably at most 20 mol%, Preferably it is 0.5 to 3 mol% or 5 to 8 mol%.
  • the content of the vinyl acetate unit is such that a unit composed of two carbon atoms in the main chain (for example, a vinyl alcohol unit, a vinyl acetate unit, an ethylene unit, etc.) in a polyvinyl alcohol-based resin which is a raw material for producing a polyvinyl acetal resin is a repeating unit. And the amount of vinyl acetate units based on one repeating unit.
  • the vinyl acetate unit content can affect the polarity of the polyvinyl acetal resin, which can change the plasticizer compatibility or mechanical strength of layer (A).
  • the vinyl acetate unit content is in the range between the lower limit and the upper limit, good bonding with another polyvinyl acetal resin layer (C) which may be optionally laminated may be easily achieved, and Reduction of optical distortion and the like are easily achieved.
  • the layer (A) contains two or more different polyvinyl acetal resins
  • the vinyl acetate unit content of at least one polyvinyl acetal resin is preferably within the above range.
  • the content of the vinyl acetate unit can be adjusted by appropriately adjusting the degree of saponification of the raw material polyvinyl alcohol-based resin.
  • the vinyl alcohol unit content of the polyvinyl acetal resin is preferably 9 to 36 mol%, more preferably 18 to 34 mol%, further preferably 22 to 34 mol%, still more preferably 26 to 34 mol%, and particularly preferably. It is 26 to 31 mol%, particularly preferably 26 to 30 mol%.
  • the vinyl alcohol unit content is defined as a unit composed of two carbon atoms in the main chain (for example, a vinyl alcohol unit, a vinyl acetate unit, an ethylene unit, etc.) in a polyvinyl alcohol-based resin, which is a raw material for producing a polyvinyl acetal resin, as one repeating unit. , Is the amount of vinyl alcohol units based on one repeating unit.
  • the vinyl alcohol unit content is within the above range, the difference in the refractive index between the layer (C) and the adjacently laminated layer (C) may be reduced in some cases, and a laminated glass with less optical unevenness is easily obtained.
  • the content of the vinyl alcohol unit is preferably 9 to 29 mol%, more preferably 12 to 26 mol%, further preferably 15 to 23 mol%, and particularly preferably 16 to 20 mol% in order to further impart the sound insulation performance. Mol%.
  • the layer (A) includes two or more different polyvinyl acetal resins
  • the vinyl alcohol unit content of at least one polyvinyl acetal resin is preferably within the above range.
  • the vinyl alcohol unit content can be adjusted within the above range by adjusting the amount of aldehyde used in the acetalization reaction.
  • the polyvinyl acetal resin is usually composed of an acetal-forming unit, a vinyl alcohol unit and a vinyl acetate unit, and the amount of each of these units can be determined by, for example, JIS K6728 "Testing method for polyvinyl butyral” or nuclear magnetic resonance (NMR). Measured.
  • the viscosity is 200 mPa ⁇ s or less, the distortion of the functional layer (D) cannot be sufficiently suppressed during the production of the laminated glass, and the displacement of the obtained laminated glass at a high temperature is sufficiently suppressed. Can not do.
  • the viscosity is preferably at least 220 mPa ⁇ s, more preferably at least 230 mPa ⁇ s, even more preferably. Is at least 240 mPa ⁇ s, particularly preferably at least 265 mPa ⁇ s.
  • the viscosity is preferably 220 mPa ⁇ s.
  • the above is more preferably 230 mPa ⁇ s or more, and still more preferably 240 mPa ⁇ s or more.
  • the viscosity of the polyvinyl acetal resin is equal to or more than the lower limit, distortion and cracking of the layer (C) or the layer (D) are easily suppressed during the production of the laminated glass, and the resulting laminated glass is misaligned at a high temperature. Is easily prevented.
  • the viscosity is adjusted so that good film-forming properties can be easily obtained, and From the viewpoint of ease of production, it is usually 1500 mPa ⁇ s or less, preferably 1000 mPa ⁇ s or less, more preferably 800 mPa ⁇ s or less, still more preferably 500 mPa or less, and particularly preferably 450 mPa or less.
  • the viscosity is preferably such that good film-forming properties can be easily obtained, and From the viewpoint of ease of production, it is usually 3000 mPa ⁇ s or less, preferably 2000 mPa ⁇ s or less, more preferably 1500 mPa ⁇ s or less.
  • the viscosity can be adjusted by using or using a polyvinyl acetal resin produced using a polyvinyl alcohol-based resin having a high viscosity average degree of polymerization as a raw material or a part of the raw material.
  • the polyvinyl acetal resin used to form the layer (A) comprises a mixture of a plurality of resins
  • the viscosity is the viscosity of such a mixture.
  • the peak top molecular weight of the polyvinyl acetal resin is preferably 115,000 to 200,000, more preferably 120,000 to 160,000, and particularly preferably 130,000 to 150,000.
  • suitable film-forming properties and suitable film physical properties are easily obtained.
  • the peak top molecular weight of the polyvinyl acetal resin can be adjusted within the above range by using or using a polyvinyl acetal resin produced using a polyvinyl alcohol resin having a high viscosity average polymerization degree as a raw material or a part of the raw material.
  • the molecular weight distribution of the polyvinyl acetal resin in the layer (A), that is, the ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) is preferably 2.7 or more, more preferably 2.8. Above, particularly preferably 2.9 or more.
  • the molecular weight distribution of the polyvinyl acetal resin is equal to or more than the lower limit, it is easy to achieve both film forming properties and suitable film properties (for example, suitability for lamination, creep resistance and breaking strength).
  • the molecular weight distribution of the polyvinyl acetal resin is not less than the lower limit. Can be adjusted.
  • the upper limit of the molecular weight distribution is not particularly limited. From the viewpoint of easy film formation, the molecular weight distribution is usually 10 or less, preferably 5 or less.
  • the peak top molecular weight and the molecular weight distribution of at least one polyvinyl acetal resin are preferably within the above ranges.
  • the peak top molecular weight and the molecular weight distribution are determined by gel permeation chromatography (GPC) using polystyrene having a known molecular weight as a standard.
  • the polyvinyl acetal resin can be produced by a conventionally known method, typically, by acetalizing a polyvinyl alcohol-based resin (for example, polyvinyl alcohol resin or ethylene vinyl alcohol copolymer) with an aldehyde.
  • a polyvinyl alcohol-based resin for example, polyvinyl alcohol resin or ethylene vinyl alcohol copolymer
  • an aldehyde for example, a polyvinyl alcohol-based resin is dissolved in warm water, and the obtained aqueous solution is kept at a predetermined temperature (for example, 0 ° C. or higher, preferably 10 ° C. or higher, for example, 90 ° C. or lower, preferably 20 ° C. or lower).
  • the required acid catalyst and aldehyde are added, and the acetalization reaction proceeds with stirring.
  • the reaction temperature is raised to about 70 ° C. to ripen the reaction, thereby completing the reaction.
  • neutralization, washing and drying are performed to obtain a powder of
  • the polyvinyl acetal resin used in the present invention is preferably one produced by the reaction of at least one polyvinyl alcohol-based resin with one or more aliphatic unbranched aldehyde having 2 to 10 carbon atoms. .
  • n-butyraldehyde is preferable from the viewpoint that a polyvinyl acetal resin having a suitable breaking energy is easily obtained.
  • the content of n-butyraldehyde in the aldehyde used for acetalization is preferably 50% by mass or more, more preferably 80% by mass or more, still more preferably 95% by mass or more, particularly preferably 99% by mass or more. % By mass.
  • the polyvinyl acetal resin is a polyvinyl butyral resin.
  • the polyvinyl butyral resin a modified polyvinyl butyral resin obtained by butyralizing a polyvinyl alcohol-based polymer obtained by saponifying a copolymer of a vinyl ester and another monomer with butyraldehyde can be used.
  • the other monomer include ethylene and propylene.
  • a monomer having a hydroxyl group, a carboxyl group or a carboxylate group can be used as the other monomer.
  • the polyvinyl alcohol-based resin used for producing the polyvinyl acetal resin may be a single resin or a mixture of polyvinyl alcohol-based resins having different viscosity average polymerization degrees or hydrolysis degrees.
  • the viscosity average polymerization degree of the polyvinyl alcohol-based resin as a raw material of the polyvinyl acetal resin is preferably 100 or more, more preferably 300 or more, still more preferably 400 or more, still more preferably 600 or more, particularly preferably 700 or more, and particularly more preferably. Is 750 or more.
  • the viscosity average polymerization degree of the polyvinyl alcohol-based resin is equal to or more than the lower limit, distortion and disconnection of the layer (C) or the layer (D) are easily suppressed at the time of producing a laminated glass, and the glass is produced by heat in the obtained laminated glass. The deviation phenomenon is easily prevented.
  • the viscosity average polymerization degree of the polyvinyl alcohol-based resin is preferably 5,000 or less, more preferably 3,000 or less, further preferably 2,500 or less, particularly preferably 2300 or less, particularly preferably 2,000 or less.
  • the viscosity average polymerization degree of the polyvinyl alcohol-based resin is equal to or less than the upper limit, good film-forming properties are easily obtained.
  • the preferable value of the viscosity average degree of polymerization of the polyvinyl acetal resin is the same as the preferable value of the viscosity average degree of polymerization of the polyvinyl alcohol-based resin.
  • the viscosity average polymerization degree of at least one polyvinyl acetal resin is not less than the lower limit and not more than the upper limit.
  • the vinyl acetate unit of the obtained polyvinyl acetal resin to preferably 30 mol% or less, it is preferable to use a polyvinyl alcohol resin having a saponification degree of 70 mol% or more.
  • the saponification degree of the polyvinyl alcohol-based resin is equal to or more than the lower limit, the transparency and heat resistance of the resin tend to be excellent, and the reactivity with the aldehyde also becomes good.
  • the saponification degree is more preferably 95 mol% or more.
  • the viscosity average degree of polymerization and the degree of saponification of the polyvinyl alcohol-based resin can be measured based on JIS K 6726 “Testing method for polyvinyl alcohol”.
  • the layer (A) preferably contains an uncrosslinked polyvinyl acetal from the viewpoint of easily obtaining good film-forming properties. It is also possible that layer (A) comprises a cross-linked polyvinyl acetal. Methods for cross-linking polyvinyl acetal are described, for example, in EP 1527107B1 and WO 2004/063231 A1 (thermal self-crosslinking of carboxyl group-containing polyvinyl acetal), EP 1606325 A1 (polyvinyl acetal cross-linked by polyaldehyde), and WO 2003/2003. 020776 @ A1 (polyvinyl acetal crosslinked with glyoxylic acid). It is also a useful method to control the amount of intermolecular acetal bonds generated or to control the degree of blocking of the remaining hydroxyl groups by appropriately adjusting the acetalization reaction conditions.
  • the thickness of the layer (A) is 10 to 350 ⁇ m.
  • the thickness is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, preferably 330 ⁇ m or less, more preferably 295 ⁇ m or less, even more preferably 270 ⁇ m or less, even more preferably 250 ⁇ m or less, particularly preferably 150 ⁇ m or less, particularly more preferably Preferably it is 120 ⁇ m or less, particularly preferably less than 100 ⁇ m.
  • the thickness of the layer (A) is equal to or more than the lower limit, the problem that distortion or the like occurs in the layer (C) or the layer (D) due to shrinkage or deformation of the layer (A) is less likely to occur, and good production is achieved. Easy to obtain film properties.
  • the thickness of the layer (A) is equal to or less than the upper limit, the problem that the impact resistance of the vehicle glass using the layer (A) is reduced is less likely to occur. This is because the transfer amount of the plasticizer from the layer (C) which is optionally laminated on the layer (A) can be suppressed to a small range.
  • the thickness of the layer (A) can be measured using a thickness gauge, a laser microscope, or the like.
  • the thickness of each layer (A) is preferably within the above range.
  • the tensile storage modulus E ′ (40) at 40 ° C. of the resin material constituting the layer (A) is preferably less than 1000 MPa, or the tensile storage modulus E at 100 ° C. of the resin material constituting the layer (A).
  • '(100) is preferably less than 10 MPa.
  • the amount of the plasticizer in the layer (A) is 0 to 35% by mass based on the total mass of the layer (A).
  • the amount of the plasticizer is preferably 0 to 33% by mass, more preferably 0 to 30% by mass.
  • the amount of the plasticizer in the layer (A) is within the above range, the layer (A) excellent in film-forming property and handleability is easily produced, and the layer (A) is produced when a laminated glass using the layer (A) is produced.
  • D) Distortion and cracking are easily suppressed.
  • esters of polyvalent aliphatic or aromatic acids are preferably used as the plasticizer.
  • dialkyl adipates eg, dihexyl adipate, di-2-ethylbutyl adipate, dioctyl adipate, di-2-ethylhexyl adipate, hexyl cyclohexyl adipate, diheptyl adipate, dinonyl adipate, diisononyl adipate, heptyl nonyl adipate); adipic acid Of an alcohol containing an alcohol or an ether compound [eg, di (butoxyethyl) adipate, di (butoxyethoxyethyl) adipate]; dialkyl sebacate (eg, dibutyl sebacate); sebacic acid and an alicyclic or ether compound
  • Esters or ethers of polyhydric aliphatic or aromatic alcohols or oligoether glycols having one or more aliphatic or aromatic substituents include esters of glycerin, diglycol, triglycol, tetraglycol and the like with a linear or branched aliphatic or alicyclic carboxylic acid, and at least one terminal of an oligoalkylene glycol having 2 to 10 repeating units.
  • diethylene glycol-bis- (2-ethylhexanoate), triethylene glycol-bis- (2-ethylhexanoate) (hereinafter sometimes referred to as “3GO”), triethylene glycol- Bis- (2-ethylbutanoate), tetraethylene glycol-bis- (2-ethylhexanoate), tetraethylene glycol-bis-n-heptanoate, triethylene glycol-bis-n-heptanoate, triethylene glycol- Bis-n-hexanoate, tetraethylene glycol dimethyl ether, and dipropylene glycol dibenzoate.
  • 3GO triethylene glycol- Bis- (2-ethylbutanoate
  • tetraethylene glycol-bis- (2-ethylhexanoate) tetraethylene glycol-bis-n-heptanoate
  • triethylene glycol-bis-n-heptanoate triethylene glycol- Bis-n-hexan
  • Phosphoric acid esters of aliphatic or aromatic alcohols examples include tris (2-ethylhexyl) phosphate, triethyl phosphate, diphenyl-2-ethylhexyl phosphate, and tricresyl phosphate.
  • Esters of citric, succinic and / or fumaric acid examples include tris (2-ethylhexyl) phosphate, triethyl phosphate, diphenyl-2-ethylhexyl phosphate, and tricresyl phosphate.
  • a polyester or oligoester composed of a polyhydric alcohol and a polycarboxylic acid, a terminal ester or ether thereof, a polyester or oligoester composed of lactone or hydroxycarboxylic acid, or a terminal ester or ether thereof. It may be used as a plasticizer.
  • the plasticizer When the plasticizer is contained in the layer (A), a problem (for example, a problem such as a change in physical properties over time) caused by the migration of the plasticizer between the layer (A) and the layer (C) when laminated. ), From the viewpoint of easy suppression, the same plasticizer as that contained in the layer (C) to be laminated, or plasticity that does not impair the physical properties (eg, heat resistance, light resistance, transparency, and plasticizing effect) of the layer (C). It is preferred to use agents.
  • An ester compound of an oligocarboxylic acid compound having 14 and an alcohol compound having 2 to 14 carbon atoms which may contain an ether bond is preferable.
  • triethylene glycol-bis (2-ethylbutanoate), tetraethylene glycol -Bis- (2-ethylhexanoate) and tetraethylene glycol-bis-n-heptanoate are more preferred, and triethylene glycol-bis- (2-ethylhexanoate) is particularly preferred.
  • the total amount of the polyvinyl acetal resin and the plasticizer contained in the layer (A) is not particularly limited, but is preferably 50% by mass or more, more preferably 80% by mass or more, and further preferably, based on the total mass of the layer (A). Is 90% by mass or more, even more preferably 95% by mass or more, particularly preferably 99% by mass or more, very preferably 99.5% by mass or more, and may be 100% by mass.
  • a heat-shielding material for example, an inorganic heat-shielding fine particle or an organic heat-shielding material having an infrared absorbing ability
  • an ultraviolet absorber for example, an ultraviolet absorber, Antioxidants, light stabilizers, adhesion regulators and / or various additives for regulating adhesion, antiblocking agents, pigments, dyes, and the like may be added as necessary.
  • An ultraviolet absorber is a compound having the ability to absorb ultraviolet light.
  • An ultraviolet absorber is a compound that is said to have a function of mainly converting light energy into heat energy.
  • Examples of the ultraviolet absorber include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, oxalic anilides, malonic esters, and formamidines. These can be used alone or in combination of two or more.
  • benzotriazoles, triazines, or ultraviolet absorbers having a maximum value ⁇ max of the molar extinction coefficient at a wavelength of 380 to 450 nm of 1200 dm 3 ⁇ mol ⁇ 1 ⁇ cm ⁇ 1 or less are preferable.
  • Benzotriazoles have a high effect of suppressing deterioration of optical properties such as coloring due to irradiation with ultraviolet rays.
  • benzotriazoles include 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (manufactured by BASF; trade name TINUVIN329), 2- (2H- Benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by BASF; trade name TINUVIN234) and 2,2′-methylenebis [6- (2H-benzotriazole) -2-yl) -4-tert-octylphenol] (manufactured by ADEKA Corporation; LA-31) and the like.
  • An ultraviolet absorber having a maximum value ⁇ max of the molar extinction coefficient at a wavelength of 380 to 450 nm of 1200 dm 3 ⁇ mol ⁇ 1 ⁇ cm ⁇ 1 or less can suppress the yellow tint of the obtained laminated film.
  • Examples of such an ultraviolet absorbent include 2-ethyl-2'-ethoxy-oxalanilide (manufactured by Clariant Japan; trade name: Sandueboa VSU).
  • ultraviolet absorbers benzotriazoles and the like are preferably used from the viewpoint that resin deterioration due to ultraviolet irradiation is suppressed.
  • a triazine ultraviolet absorber when it is desired to efficiently absorb a wavelength near the wavelength of 380 nm, a triazine ultraviolet absorber is preferably used.
  • examples of such an ultraviolet absorber include 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA Corporation; LA-F70); And hydroxyphenyltriazine-based ultraviolet absorbers (manufactured by BASF; TINUVIN 477-D, TINUVIN 460, and TINUVIN 479) which are analogs thereof.
  • the maximum value ⁇ max of the molar extinction coefficient of the ultraviolet absorber is measured as follows. 10.00 mg of an ultraviolet absorber is added to 1 L of cyclohexane, and dissolved so that there is no undissolved matter by visual observation. This solution is poured into a 1 cm ⁇ 1 cm ⁇ 3 cm quartz glass cell, and the absorbance at a wavelength of 380 to 450 nm is measured using a U-3410 type spectrophotometer manufactured by Hitachi, Ltd.
  • the areal density (g / m 2 ) of the ultraviolet absorbent in the layer (A) is preferably 0.2 or more, more preferably 0.5 or more, particularly preferably 0.7 or more, and preferably 10.0 or less. , More preferably 5.0 or less, particularly preferably 3.0 or less.
  • the areal density (g / m 2 ) of the ultraviolet absorbent in the layer (A) is in the range between the lower limit and the upper limit described above, when the laminated glass is used, a sufficient ultraviolet absorbing effect is easily exhibited, In addition, good haze, good weather resistance, or a reduced change in color difference is easily obtained.
  • the amount of the ultraviolet absorber added is preferably not less than 10 ppm, more preferably not less than 100 ppm, preferably not more than 50,000 ppm, more preferably not more than 10,000 ppm, based on the weight of the polyvinyl acetal resin contained in the layer (A). 000 ppm or less. If the amount is equal to or more than the lower limit, a sufficient effect is likely to be exhibited. Even if the amount of the UV absorber is more than 50,000 ppm, no remarkable effect can be expected.
  • the antioxidant alone is effective in preventing the resin from being oxidized and degraded in the presence of oxygen.
  • a phosphorus antioxidant, a hindered phenol antioxidant, a thioether antioxidant and the like can be mentioned.
  • an antioxidant containing a portion having a phosphorus-based antioxidant effect and a portion having a hindered phenol-based antioxidant effect in the same molecule can also be used.
  • One or two or more of these antioxidants can be used.
  • a phosphorus-based antioxidant and a hindered phenol-based antioxidant are preferable, and the combined use of a phosphorus-based antioxidant and a hindered phenol-based antioxidant is more preferable.
  • the mass ratio of the used amount of the phosphorus-based antioxidant to the used amount of the hindered phenol-based antioxidant is preferably 1/5 or more, more preferably 1/2 or more.
  • (the amount of the phosphorus-based antioxidant) / (the amount of the hindered phenol-based antioxidant) is preferably 2/1 or less, more preferably 1/1 or less.
  • Examples of the phosphorus-based antioxidant include 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite (manufactured by ADEKA Corporation; trade name: ADK STAB HP-10), tris (2,4-di-t-butyl) -Butylphenyl) phosphite (manufactured by BASF; trade name: IRGAFOS168); and 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3 Preferred is 9-diphosphaspiro [5.5] undecane (manufactured by ADEKA Corporation; trade name: ADK STAB PEP-36).
  • Hindered phenolic antioxidants include pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF; trade name IRGANO01010) and octadecyl-3- (3,5-Di-tert-butyl-4-hydroxyphenyl) propionate (manufactured by BASF; trade name IRGANO01076) is preferred.
  • antioxidant containing a portion having a phosphorus-based antioxidant effect and a portion having a hindered phenol-based antioxidant effect in the same molecule include 6- [3- (3-t-butyl-4-hydroxy). -5-methyl) propoxy] -2,4,8,10-tetra-t-butyldibenz [d, f] [1,3,2] -dioxasphosphepin (Sumitomo Chemical Co., Ltd .; trade name Sumilizer GP Is preferred.
  • the areal density of the antioxidant in the layer (A) is preferably 0.1 g / m 2 or more, more preferably 0.2 g / m 2 or more, particularly preferably 0.5 g / m 2 or more, and preferably 2 g / m 2 or more. .5g / m 2 or less, more preferably 1.5 g / m 2 or less, particularly preferably 2.0 g / m 2 or less.
  • the compounding amount of the antioxidant is preferably 0.001 part by mass or more, more preferably 0.01 part by mass or more, usually 5 parts by mass or less, preferably 4 parts by mass or less based on 100 parts by mass of the polyvinyl acetal resin. , More preferably 3 parts by mass or less.
  • the amount of the antioxidant is not less than the lower limit, a sufficient antioxidant effect is easily obtained. Even if the amount of the antioxidant is more than 5 parts by mass, a remarkable improvement in effect cannot be expected.
  • a light stabilizer is a compound that is said to have a function of capturing radicals generated mainly by oxidation by light.
  • Suitable light stabilizers include hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton (manufactured by ADEKA Corporation; LA-52 and LA-57) (manufactured by BASF; TINUVIN622SF and TINUVIN770). Is mentioned.
  • the compounding amount of the light stabilizer is preferably at least 0.01 part by mass, more preferably at least 0.05 part by mass, usually at most 10 parts by mass, more preferably at most 5 parts by mass, based on 100 parts by mass of the polyvinyl acetal resin. Part or less.
  • the amount of the light stabilizer is equal to or more than the lower limit, a sufficient effect is easily obtained. Even if the amount of the light stabilizer is more than 10 parts by mass, a remarkable improvement in effect cannot be expected.
  • the heat shielding material has a function of absorbing at least a light ray in a near infrared wavelength region.
  • suitable heat shielding materials include metal oxide fine particles having a heat ray shielding function, such as tin-doped indium oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, indium-doped zinc oxide, gallium-doped zinc oxide, and tungsten oxide. , Lanthanum hexaboride, cerium hexaboride, anhydrous zinc antimonate, copper sulfide and the like. These may be used alone or in combination of two or more.
  • the layer (A) contains metal oxide fine particles having a heat ray shielding function.
  • the infrared-absorbing ability of the heat-shielding material is determined by the optical path length (m) when infrared light passes through the layer (A) and the concentration of the heat-shielding material in the layer (A). (G / m 3 ). Therefore, the infrared absorbing ability of the heat shielding material is proportional to the areal density (g / m 2 ) of the heat shielding material in the layer (A).
  • the surface density (g / m 2 ) of the heat-shielding material is preferably 0.10 or more, more preferably 0 or more. .15 or more, particularly preferably 0.20 or more, preferably 1.00 or less, more preferably 0.70 or less, and particularly preferably 0.50 or less.
  • the surface density (g / m 2 ) of the heat-shielding material is preferably 0.50 or more, more preferably 1.00 or more, and still more preferably. It is at least 1.50, particularly preferably at least 2.25, most preferably at least 3.00, preferably at most 15.00, more preferably at most 10.50, particularly preferably at most 7.50.
  • the surface density (g / m 2 ) of the heat shielding material is preferably 1.00 or more, more preferably 1.50 or more, and particularly preferably. Is 2.00 or more, preferably 10.00 or less, more preferably 7.00 or less, and particularly preferably 5.00 or less.
  • the surface density (g / m 2 ) of the heat-shielding material is preferably 0.010 or more, more preferably 0.015 or more, and particularly preferably 0.1% or more. 020 or more, preferably 0.100 or less, more preferably 0.070 or less, particularly preferably 0.050 or less.
  • the surface density (g / m 2 ) of the heat shield material is preferably 1.00 or more, more preferably 1.50 or more, and particularly preferably. It is 2.00 or more, preferably 10.00 or less, more preferably 7.00 or less, and particularly preferably 5.00 or less.
  • the surface density (g / m 2 ) of the heat shielding material is preferably 1.00 or more, more preferably 1.50 or more, and particularly preferably 2 or more. 0.000 or more, preferably 10.00 or less, more preferably 7.00 or less, particularly preferably 5.00 or less.
  • the surface density (g / m 2 ) of the heat shielding material is preferably 0.02 or more, more preferably 0.03 or more, and particularly preferably. It is 0.04 or more, preferably 0.20 or less, more preferably 0.14 or less, and particularly preferably 0.10 or less.
  • each heat shielding material When the surface density (g / m 2 ) of each heat shielding material is in the range between the lower limit and the upper limit described above, a sufficient effect is likely to be exhibited when a laminated glass is used, and a favorable effect is obtained. It is easy to obtain haze, good weather resistance or a small change in color difference.
  • the layer (A) contains a heat shielding material
  • the layer (B) is an inner layer and the layer (A) is an outer layer, the thermoplastic resin of the layer (B) is protected from ultraviolet rays and the heat shielding property of the laminated film can be enhanced.
  • the layer (A) may be made to contain a heat-shielding material to form a layer.
  • the heat shielding properties can be enhanced without impairing the visible light transmittance or haze of the laminated glass.
  • the layer (A) may contain an adhesive force adjuster and / or various additives for adjusting the adhesiveness, if necessary, in order to control the adhesiveness of the laminated film to glass or the like.
  • alkali metal salts and alkaline earth metal salts are preferably used.
  • the salt include organic acids such as carboxylic acids such as octanoic acid, hexanoic acid, butyric acid, acetic acid, and formic acid; and salts of inorganic acids such as hydrochloric acid and nitric acid.
  • the optimal amount of the adhesive force adjusting agent and / or the various additives for adjusting the adhesiveness varies depending on the additive used.
  • the adhesive force of the obtained laminated film to glass is poor in a Pummel test (Pummeltest; International). It is generally preferable to adjust the amount to be 3 or more and 10 or less, especially when high penetration resistance is required. In the case where the property is required, it is preferable to adjust so as to be 7 or more and 10 or less. When a high glass scattering prevention property is required, it is also a useful method not to add an adhesion regulator.
  • the method for producing the polyvinyl acetal resin layer (A) is not particularly limited. After blending the polyvinyl acetal resin, a predetermined amount of plasticizer in some cases, and other additives as necessary, and uniformly kneading the mixture, an extrusion method, a calendar method, a pressing method, a casting method, an inflation method, or the like. It can be manufactured using a known film forming method.
  • a method of manufacturing a film using an extruder is suitably employed.
  • the resin temperature during extrusion is preferably from 150 to 250 ° C, more preferably from 170 to 230 ° C. If the resin temperature is too high, the polyvinyl acetal resin will decompose and the content of volatile substances will increase. On the other hand, when the resin temperature is too low, the content of the volatile substance increases. In order to remove volatile substances efficiently, the volatile substances can be removed by reducing the pressure through the vent port of the extruder.
  • the laminated film of the present invention has one or more thermoplastic resin layers (B) in addition to the polyvinyl acetal resin layer (A).
  • the laminated film of the present invention has a performance of favorably preventing distortion of the functional layer (D) which may be optionally provided, excellent optical performance, and excellent performance. It can also have curved surface followability.
  • the layer (B) may be arranged at any position on the laminated film.
  • the layer (B) is preferably the layer (A) from the viewpoint that the distortion of the layer (D) or the deterioration of the transparency of the laminated glass can be suppressed, and a laminated glass having a 3D shape required to follow the shape is easily obtained. Are stacked adjacent to each other.
  • the type of the film constituting the layer (B) is not particularly limited as long as it satisfies the formula (1) “E ′ (40) ⁇ 1000 MPa” and the formula (2) “E ′ (100) ⁇ 10 MPa”.
  • a polyvinyl alcohol (PVA) system film a polyvinyl acetal resin film, an ionomer film, a polyacetal (POM) film, a polypropylene (PP) film, a PET film, and the like can be used.
  • PVA polyvinyl alcohol
  • POM polyacetal
  • PP polypropylene
  • PET film and the like
  • an acrylic film, a polyvinyl acetal resin film, or a PET film is preferably used from the viewpoint of cost, long-term light resistance, transparency, or good workability when processing as a laminated glass. These films may be unstretched films or stretched films. Unless otherwise specified, film means unstretched film.
  • the layer (B) may be a single-layer film made of a single thermoplastic resin material, or may be a multilayer film in which layers made of a plurality of thermoplastic resin materials are laminated.
  • the resin component contained in the layer (B) may be an alloy resin obtained by mixing different resins at the time of melt-kneading, or may be a single resin. That is, for example, a maleic acid-modified acrylic resin and an acrylic resin are used for the purpose of modifying the resin in order to improve the adhesiveness with the layer (A) or the layer (C) or the layer (D) which may be laminated as the case may be.
  • a melt-kneaded alloy resin may be used, or a single maleic acid-modified acrylic resin may be used.
  • the tensile storage elastic modulus E ' can be measured by the method described in Examples described later.
  • a method of using an acrylic resin composition containing elastic particles for the layer (B) can be mentioned.
  • the elastic particles include a crosslinked elastic polymer in which at least one inner layer contains a crosslinked elastic polymer having an alkyl acrylate monomer unit having an alkyl group having 1 to 8 carbon atoms and / or a conjugated diene monomer unit.
  • the polymer layer is preferred, and the outermost layer is preferably a thermoplastic polymer layer containing a thermoplastic polymer having an alkyl methacrylate monomer unit having an alkyl group having 1 to 8 carbon atoms.
  • a layer (B2) in which a methacrylate polymer block (z2) is bonded to an acrylate polymer block (z1) is used.
  • a method using an acrylic resin composition containing the copolymer (Z) and the methacrylic resin (M) is exemplified. In this case, the melt viscosity [ ⁇ (Z)] of the block copolymer (Z) at 220 ° C.
  • the ratio [ ⁇ (M) / ⁇ (Z)] of the melt viscosity [ ⁇ (M)] to the melt viscosity [ ⁇ (Z)] at a speed of 122 / sec is preferably 1 to 20.
  • the resin material constituting the layer (B) has a tensile storage modulus E ′ (40) at 40 ° C. of 1000 MPa or more, preferably 1100 MPa or more, more preferably 1200 MPa or more. If the tensile storage modulus E ′ (40) is less than 1000 MPa, the film will have insufficient rigidity in practical use, resulting in poor handling properties, and a functional layer provided on the layer (B) by a processing method such as printing or etching. In such a process, the process passability is deteriorated.
  • the tensile storage modulus E '(40) is usually 10,000 MPa or less.
  • the resin material constituting the layer (B) has a tensile storage modulus E ′ (100) at 100 ° C. of 10 MPa or more, preferably 30 MPa or more, more preferably 50 MPa or more. If the tensile storage modulus E '(100) is less than 10 MPa, the layer (B) undergoes heat sagging during processing into a laminated glass, causing distortion and breakage of the functional layer.
  • the tensile storage modulus E '(100) is usually 10,000 MPa or less.
  • the tensile storage modulus E ′ (120) at 120 ° C. of the resin material constituting the layer (B) is preferably 500 MPa or less, more preferably 400 MPa or less, and particularly preferably 300 MPa or less.
  • the layer (B) becomes sufficiently soft when processed into a laminated glass, and it is easy to obtain the followability to the 3D-shaped glass. Wrinkles and cuts are less likely to occur.
  • the tensile storage modulus E '(120) is usually 0.1 MPa or more.
  • the arithmetic average roughness (Ra) of at least one surface of the layer (B) and the layer (A) or at least one surface of the layer (B) before being laminated with the layer (C) or the layer (D) which is optionally laminated is preferably It is 0.15 ⁇ m or less, more preferably 0.12 ⁇ m or less, and particularly preferably 0.10 ⁇ m or less.
  • the arithmetic average roughness (Ra) is equal to or less than the upper limit, excellent transparency after processing into a laminated glass can be easily obtained, and an adjacent layer (particularly, a layer (D) optionally laminated) can be obtained. It is easy to obtain good bondability.
  • the arithmetic average roughness (Ra) As a method of making the arithmetic average roughness (Ra) equal to or less than the upper limit, for example, in a process of forming a film by a melt extrusion film forming method using a T-die, two sufficiently smooth cooling rolls are used. A nip film forming method for imparting a mirror surface by sandwiching a film discharged from a die, or a cast film forming a film discharged from a die onto a roll using a sufficiently smooth cooling roll. And the like.
  • the arithmetic average roughness (Ra) can be measured using a laser microscope.
  • the arithmetic average roughness (Ra) can be obtained as an average value of the individual arithmetic average roughness (Ra) measured at any five places on the film surface, and this value is expressed in ⁇ m. Specifically, it can be measured according to JIS B0601: 2001.
  • the thickness of the layer (B) is preferably at least 15 ⁇ m, more preferably at least 30 ⁇ m, preferably at most 150 ⁇ m, more preferably at most 100 ⁇ m, particularly preferably at most 75 ⁇ m.
  • the thickness of the layer (B) is equal to or more than the lower limit, a sufficient handling property of the film in practical use is easily obtained, and when the thickness of the layer (B) is equal to or less than the upper limit, 3D-shaped glass is obtained. It is easy to obtain excellent followability.
  • the thickness of the layer (B) is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less, and particularly preferably 75 ⁇ m or less. It is as follows. When the thickness of the layer (B) is equal to or more than the lower limit, the coating stability in practical use is excellent, and when the thickness of the layer (B) is equal to or less than the upper limit, excellent follow-up to 3D glass is achieved. Easy to get the character. When the laminated film of the present invention has a plurality of layers (B), the thickness of each layer (B) is preferably within the above range.
  • any acrylic film can be used as long as it satisfies the above conditions.
  • An acrylic film formed of the resin composition (R1) is used.
  • the acrylic resin composition (R1) may contain an optional additive.
  • An acrylic resin composition in which a block copolymer (Z) in which a methacrylate ester polymer block (z2) is bonded to an acrylate ester polymer block (z1) and a methacrylic resin (M) are mixed at an arbitrary ratio.
  • An acrylic film formed by (R2) is also suitably used.
  • the acrylic resin composition (R2) may contain an optional additive.
  • the acrylic multilayer polymer particles (Y) contained in the acrylic film known particles can be used. From the viewpoint of impact resistance and the like, the acrylic multilayer polymer particles (Y) include at least one inner layer (inner layer than the outermost layer) having an alkyl group having 1 to 8 carbon atoms. A crosslinked elastic polymer layer containing a crosslinked elastic polymer having a monomer unit and / or a conjugated diene-based monomer unit, wherein the outermost layer has a monoalkyl methacrylate having an alkyl group having 1 to 8 carbon atoms. Acrylic multilayer polymer particles (Y), which are thermoplastic polymer layers containing a thermoplastic polymer having a body unit, are preferred.
  • the content of the resin component derived from the acrylic acid alkyl ester monomer unit having an alkyl group having 1 to 8 carbon atoms and the conjugated diene monomer unit is equal to the total amount of the crosslinked elastic polymer layer. It is preferably at least 50% by mass based on the mass.
  • the crosslinked elastic polymer contained in the crosslinked elastic polymer layer has a monomer unit other than an alkyl acrylate monomer unit having an alkyl group having 1 to 8 carbon atoms and a conjugated diene-based monomer unit. It may be something. Further, the crosslinked elastic polymer layer may contain a polymer other than the crosslinked elastic polymer.
  • the resin component derived from the alkyl methacrylate monomer unit having an alkyl group having 1 to 8 carbon atoms is 50% by mass or more based on the total mass of the thermoplastic polymer layer.
  • the thermoplastic polymer contained in the thermoplastic polymer layer may have a monomer unit other than the alkyl methacrylate monomer unit having an alkyl group having 1 to 8 carbon atoms. Further, the thermoplastic polymer layer may contain a polymer other than the thermoplastic polymer.
  • Acrylic multi-layer polymer particles (Y) are a so-called core / shell rubber in which one or more inner layers including at least one crosslinked elastic polymer layer are covered by an outermost thermoplastic polymer layer. Particles.
  • the crosslinked elastic polymer layer constituting at least one inner layer excluding the outermost layer has a molecular chain of this layer and a molecular chain in an adjacent layer bonded by a graft bond. It is preferred that
  • alkyl acrylate having an alkyl group having 1 to 8 carbon atoms used in the crosslinked elastic polymer layer examples include, for example, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and propyl acrylate And the like.
  • conjugated diene-based monomer used in the crosslinked elastic polymer layer examples include 1,3-butadiene and isoprene.
  • a vinyl monomer copolymerizable therewith may be used.
  • the copolymerizable vinyl monomer include a methacrylic acid ester, an aromatic vinyl compound, and a polyfunctional monomer.
  • the “polyfunctional monomer” is a monomer having two or more polymerizable functional groups.
  • the crosslinked elastic polymer layer contains an alkyl acrylate unit having an alkyl group having 1 to 8 carbon atoms and / or a conjugated diene-based unit.
  • the content of the resin component derived from the monomer unit is preferably at least 60% by mass, more preferably at least 70% by mass, based on the total mass of the crosslinked elastic polymer layer.
  • examples of the alkyl methacrylate having an alkyl group having 1 to 8 carbon atoms used in the outermost thermoplastic polymer layer include methyl methacrylate and ethyl methacrylate. , Propyl methacrylate, butyl methacrylate, and cyclohexyl methacrylate.
  • the content of the resin component derived from the alkyl methacrylate monomer unit in the thermoplastic polymer layer is determined by the total mass of the thermoplastic polymer layer. Is preferably 70% by mass or more, more preferably 80% by mass or more.
  • the number of layers of the acrylic multi-layer polymer particles (Y) is not particularly limited, but is two, three, or four or more. In terms of thermal stability and productivity, it is particularly preferable that the acrylic multilayer polymer particles (Y) have a three-layer structure.
  • the acrylic multilayer polymer particles (Y) include, from the central side, a methyl methacrylate unit, an alkyl acrylate unit having an alkyl group having 1 to 8 carbon atoms, and a polyfunctional monomer unit.
  • a crosslinked elastic body including a first layer composed of a crosslinked resin layer, an alkyl acrylate unit having an alkyl group having 1 to 8 carbon atoms, a methyl methacrylate unit (optional component), and a polyfunctional monomer unit
  • a third layer (outermost layer) composed of a hard thermoplastic resin layer containing a methyl methacrylate unit and an alkyl acrylate unit having an alkyl group having 1 to 8 carbon atoms.
  • Layered polymer particles (Y1) are preferred.
  • the first crosslinked resin layer contains 30 to 99.99% by mass of methyl methacrylate units, 1 to 69.99% by mass of an alkyl acrylate unit having an alkyl group having 1 to 8 carbon atoms, and 0.1 to 99.99% by mass. It preferably contains from 0.1 to 2% by mass of a polyfunctional monomer unit.
  • the second crosslinked elastic layer is composed of 70 to 99.9% by mass of an alkyl acrylate unit having an alkyl group having 1 to 8 carbon atoms and 0 to 29.9% by mass of a methyl methacrylate unit (optional component). ) And 0.1 to 5% by mass of a polyfunctional monomer unit.
  • the third layer of the hard thermoplastic resin layer preferably contains 80 to 99% by mass of a methyl methacrylate unit and 1 to 20% by mass of an alkyl acrylate unit having an alkyl group having 1 to 8 carbon atoms. .
  • the ratio of each layer is not particularly limited, and the first layer is 5 to 40% by mass, the second layer is 20 to 55% by mass, and the third layer (the outermost layer). Is preferably 15 to 75% by mass.
  • the particle diameter of the acrylic multilayer polymer particles (Y) is not particularly limited, but is preferably 0.05 ⁇ m or more, more preferably 0.06 ⁇ m or more, and further preferably 0.07 ⁇ m or more. .
  • the particle size of the acrylic multilayer polymer particles (Y) is preferably 0.25 ⁇ m or less, more preferably 0.20 ⁇ m or less, and even more preferably 0.15 ⁇ m or less. When the particle size of the acrylic multilayer structure polymer particles (Y) is less than 0.05 ⁇ m, the handleability of the acrylic multilayer structure polymer particles (Y) tends to decrease.
  • the particle diameter of the acrylic multi-layer polymer particles (Y) is larger than 0.25 ⁇ m, the interlayer film for laminated glass of the present invention is whitened when stress is applied, and the transmittance is easily reduced (that is, the transmittance is reduced). , Stress whitening resistance is deteriorated). Further, when the addition ratio of the multilayer polymer particles (Y) having a large particle diameter is large, the haze of the obtained laminated glass tends to increase. From the viewpoint of stress whitening resistance and haze, the particle diameter of the acrylic multilayer polymer particles (Y) is preferably 0.15 ⁇ m or less.
  • the particle size of the acrylic multilayer structure polymer particles (Y) can be appropriately adjusted by, for example, changing the addition amount of a surfactant or the composition of a monomer when performing polymerization by an emulsion polymerization method. it can.
  • the acrylic multi-layered polymer particles (Y) are composed of a polymer having a refractive index in the range of 1.485 to 1.495 measured based on ASTM D542. It is preferable from the viewpoint of enhancing the properties.
  • the polymerization method of the acrylic multilayer polymer particles (Y) is not particularly limited, and an emulsion polymerization method is preferable. First, one or two or more raw material monomers are emulsion-polymerized to form core particles, and then another one or two or more monomers are emulsion-polymerized in the presence of the core particles. To form a shell around. Next, if necessary, one or more kinds of monomers are emulsion-polymerized in the presence of particles comprising a core and a shell to form another shell. By repeating such a polymerization reaction, the target acrylic-based multilayer polymer particles (Y) can be produced as an emulsified latex. In the obtained latex, usually, a linear methacrylic resin having a methyl methacrylate unit is present in addition to the acrylic multilayer polymer particles (Y).
  • the content of the acrylic multi-layer polymer particles (Y) used in the present invention is preferably at least 40% by mass, more preferably at least 50% by mass, based on the total mass of the layer (B). , 62% by mass or more. Further, the content of the acrylic multilayer structure polymer particles (Y) is preferably 80% by mass or less, more preferably 70% by mass or less, based on the total mass of the layer (B). It is particularly preferred that the content is not more than mass%. Note that the content of the acrylic multilayer polymer particles (Y) is determined by the following method using acetone. After the acrylic resin composition constituting the layer (B) is sufficiently dried to remove water, the mass (W1) is measured.
  • the acrylic resin composition used for the acrylic film contains the acrylic multilayer polymer particles (Y) and 80% by mass or more of methyl methacrylate units, and has a melt flow rate of 0.5 to 10 g / 10 min. It is preferable to include the methacrylic resin (M). As the methacrylic resin (M), one type may be used alone, or two or more types may be used.
  • the methacrylic resin (M) may contain 20% by mass or less of a copolymerizable vinyl monomer unit as needed in accordance with the methyl methacrylate unit.
  • the vinyl monomer is not particularly limited, and examples thereof include acrylate monomers such as methyl acrylate; methacrylate; aromatic vinyl compounds; These may be used alone or in combination of two or more.
  • the melt flow rate of the methacrylic resin (M) is preferably 1 g / 10 min or more, more preferably 1.2 g / 10 min or more.
  • the melt flow rate of the methacrylic resin (M) is preferably 5 g / 10 minutes or less, more preferably 3 g / 10 minutes or less.
  • the acrylic resin composition (R1) containing the methacrylic resin (M) and the acrylic multilayer polymer particles (Y) is melt-molded. In this case, the toughness tends to decrease.
  • the melt flow rate of the methacrylic resin (M) is less than the above range, the fluidity when the acrylic resin composition (R1) is melt-molded tends to decrease.
  • the methacrylic resin (M) having a melt flow rate of 0.5 to 10 g / 10 min can be prepared, for example, by appropriately adjusting the amount of an acrylate or chain transfer agent used in combination with the polymerization of a monomer containing methyl methacrylate. It can be obtained by adjusting.
  • the methacrylic resin (M) is composed of a polymer whose refractive index measured based on ASTM D542 is in the range of 1.485 to 1.495. Preferred from a viewpoint.
  • the blending amount of the methacrylic resin (M) in the acrylic resin composition (R1) obtained by mixing the acrylic multilayer polymer particles (Y) and the methacrylic resin (M) is not particularly limited, and the acrylic multilayer structure weight is not limited.
  • the amount is preferably at least 1 part by mass, more preferably at least 5 parts by mass, particularly preferably at least 15 parts by mass, per 100 parts by mass of the united particles (Y).
  • the amount of the methacrylic resin (M) to be blended is preferably 100 parts by mass or less, more preferably 70 parts by mass or less, and preferably 45 parts by mass, based on 100 parts by mass of the acrylic multilayer polymer particles (Y). Parts or less is particularly preferred.
  • the amount of the methacrylic resin (M) is more than 100 parts by mass, it is difficult to adjust the tensile storage modulus E ′ (120) at 120 ° C. of the resin material constituting the layer (B) to a desired range. Tend to be.
  • the methacrylic resin (M) As the methacrylic resin (M), a commercially available product or a product specified in ISO8257-1 can be used.
  • the methacrylic resin (M) can be polymerized by a known method and used.
  • the polymerization method of the methacrylic resin (M) is not particularly limited, and examples thereof include an emulsion polymerization method, a suspension polymerization method, a bulk polymerization method, and a solution polymerization method.
  • the methacrylic acid ester polymer block (z1) has a structural unit derived from a methacrylic acid ester as a main structural unit.
  • the ratio of the structural unit derived from methacrylic acid ester in the methacrylic acid ester polymer block (z1) is preferably 80% by mass or more, more preferably 90% by mass or more, and preferably 95% by mass or more. Is more preferable, and particularly preferably 98% by mass or more.
  • the methacrylic acid ester can form a methacrylic acid ester polymer block (z1) by polymerizing one kind alone or two or more kinds in combination.
  • the weight average molecular weight Mw (z1) of the single unit of the methacrylate polymer block (z1) is preferably 5,000 or more, and more preferably 150,000 or less. Further, the weight average molecular weight Mw of a single unit of the methacrylate polymer block (z1) is more preferably 8,000 or more, and further preferably 12,000 or more. Further, the weight average molecular weight Mw is more preferably 120,000 or less, further preferably 100,000 or less.
  • the composition ratio and molecular weight of the constituent units constituting each methacrylate polymer block (z1) are as follows. , May be the same or different.
  • the proportion of the methacrylic acid ester polymer block (z1) in the block copolymer (Z) is preferably 10% by mass or more from the viewpoints of transparency, flexibility, moldability and surface smoothness, and is preferably 60% by mass. % Is more preferable.
  • the layer (B) composed of the acrylic resin composition of the present invention is used. Excellent in transparency, flexibility, bending resistance, impact resistance, flexibility and the like.
  • the block copolymer (Z) includes a plurality of methacrylate ester polymer blocks (z1), the above ratio is calculated based on the total mass of all the methacrylate ester polymer blocks (z1).
  • the acrylate polymer block (z2) has a structural unit derived from an acrylate ester as a main structural unit.
  • the proportion of the constituent unit derived from the acrylate in the acrylate polymer block (z2) is preferably 45% by mass or more, more preferably 50% by mass or more, and preferably 60% by mass or more. Is more preferably 90% by mass or more.
  • the acrylate examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, tert-butyl acrylate, acrylic acid Amyl, isoamyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, pentadecyl acrylate, dodecyl acrylate, isobornyl acrylate, phenyl acrylate, benzyl acrylate, phenoxyethyl acrylate, acrylic acid 2 -Hydroxyethyl, 2-methoxyethyl acrylate, glycidyl acrylate, allyl acrylate and the like.
  • the acrylate ester can form an acrylate polymer block (z2) by polymer
  • the acrylate polymer block (z2) is preferably composed of an acrylate alkyl ester and an acrylate aromatic ester from the viewpoint of improving the transparency of the acrylic resin composition (R2) described below.
  • the acrylate polymer block (z2) is composed of an alkyl acrylate and an aromatic acrylate
  • the acrylate polymer block (z2) is composed of 50 to 90 structural units derived from the alkyl acrylate. It is preferable that the composition contains 50% by mass and 50 to 10% by mass of structural units derived from an aromatic (meth) acrylate.
  • the weight average molecular weight Mw (z2) of the single unit of the acrylate polymer block (z2) is preferably at least 5,000, more preferably at least 15,000, and at least 30,000. Is particularly preferred.
  • the weight average molecular weight Mw (z2) of a single unit of the acrylate polymer block (z2) is preferably 120,000 or less, more preferably 110,000 or less, and 100,000 or less. Is particularly preferred.
  • the proportion of the acrylate polymer block (z2) in the block copolymer (Z) is preferably 10% by mass or more, from the viewpoint of transparency, flexibility, moldability, and surface smoothness, and is preferably 20% by mass. %, More preferably 60% by mass or less, and even more preferably 55% by mass or less.
  • the layer (B) composed of the acrylic resin composition of the present invention is used. Excellent impact resistance, flexibility, etc.
  • the block copolymer (Z) includes a plurality of acrylate polymer blocks (z2) in one molecule, the above ratio is based on the total mass of all the acrylate polymer blocks (z2). calculate.
  • the form of bonding between the methacrylate polymer block (z1) and the acrylate polymer block (z2) of the block copolymer (Z) is not particularly limited.
  • One in which one end of a methacrylate polymer block (z1) is connected to each of both ends of an acrylate polymer block (z2) [triblock copolymer having a structure of (z1)-(z2)-(z1)]
  • a methacrylate polymer block (z1) and an acrylate polymer block (z2) are connected in series. It is below.
  • the block copolymer (Z) may have a polymer block (z3) other than the methacrylate polymer block (z1) and the acrylate polymer block (z2).
  • the block copolymer (Z) may have a functional group such as a hydroxyl group, a carboxyl group, an acid anhydride, or an amino group in a molecular chain or at a molecular chain terminal, if necessary.
  • the weight average molecular weight Mw (Z) of the block copolymer (Z) is preferably 52,000 or more, more preferably 60,000 or more.
  • the weight average molecular weight Mw (Z) of the block copolymer (Z) is preferably at most 400,000, more preferably at most 300,000.
  • Mw (Z) / Mn (Z) which is a ratio between the weight average molecular weight Mw (Z) representing the molecular weight distribution of the block copolymer (Z) and the number average molecular weight Mn (Z), is 1.0 or more. It is preferably 2.0 or less, more preferably 1.6 or less. When the molecular weight distribution is within such a range, the content of the unmelted material that causes the occurrence of bumps can be extremely small in the interlayer film for laminated glass of the present invention.
  • the melt viscosity [ ⁇ (Z)] of the block copolymer (Z) at 220 ° C. and a shear rate of 122 / sec is preferably in the range of 75 to 1500 Pa ⁇ s.
  • the melt viscosity [ ⁇ (Z)] is more preferably 150 Pa ⁇ s or more, and particularly preferably 300 Pa ⁇ s or more. Further, the melt viscosity [ ⁇ (Z)] is more preferably 1,000 Pa ⁇ s or less, and particularly preferably 700 Pa ⁇ s or less.
  • melt viscosity [ ⁇ (Z)] is in the range of 75 to 1500 Pa ⁇ s, it has excellent mechanical properties such as breaking strength, and is caused by fine grain-like irregularities on the surface and unmelted material (high molecular weight material). It is possible to obtain a good film in which the occurrence of dust is suppressed.
  • the value of the ratio [ ⁇ (M) / ⁇ (Z)] of the melt viscosity [ ⁇ (M)] and the melt viscosity [ ⁇ (Z)] of the methacrylic resin (M) at 220 ° C. and a shear rate of 122 / sec. Is preferably 1 or more, more preferably 5 or more, and still more preferably 6 or more.
  • the value of [ ⁇ (M) / ⁇ (Z)] is preferably 20 or less, more preferably 10 or less, and even more preferably 8 or less.
  • the respective melt viscosities of the methacrylic resin (M) and the block copolymer (Z) at 220 ° C. and a shear rate of 122 / sec were measured at 220 ° C. using a Capillograph (manufactured by Toyo Seiki Seisakusho, Model 1D).
  • the molten resin can be extruded from a capillary having a diameter of 1 mm ⁇ and a length of 10 mm at a piston speed of 10 mm / min, and can be determined from the shear stress generated at that time.
  • the refractive index of the block copolymer (Z) measured based on ASTM D542 is preferably 1.485 or more, more preferably 1.487 or more.
  • the refractive index of the block copolymer (Z) is preferably 1.495 or less, more preferably 1.493 or less.
  • the term “refractive index” means a value measured at a measurement wavelength of 587.6 nm (d-line) as specified in ASTM D542.
  • the method for producing the block copolymer (Z) is not particularly limited, and a method according to a known method can be employed.
  • a method of living-polymerizing monomers constituting each polymer block is generally used.
  • Examples of such a living polymerization method include a method in which an organic alkali metal compound is used as a polymerization initiator, an anion polymerization is performed in the presence of a mineral acid salt such as an alkali metal or an alkaline earth metal salt, and a method in which an organic alkali metal compound is polymerized.
  • Method of anionic polymerization in the presence of an organoaluminum compound using as an initiator method of polymerization using an organic rare earth metal complex as a polymerization initiator, method of radical polymerization in the presence of a copper compound using an ⁇ -halogenated ester compound as an initiator And the like.
  • a method of polymerizing monomers constituting each block by using a polyvalent radical polymerization initiator or a polyvalent radical chain transfer agent to produce a mixture containing the block copolymer (Z) used in the present invention, or the like.
  • the block copolymer (Z) can be obtained with high purity, the molecular weight and the composition ratio can be easily controlled, and it is economical.
  • a method of anionic polymerization in the presence of an organic aluminum compound is preferred.
  • the acrylic resin composition (R2) used for the acrylic film contains the block copolymer (Z) and 80% by mass or more of methyl methacrylate units, and has a melt flow rate of 0.5 to 10 g / 10 min. It is preferable to include the methacrylic resin (M).
  • the content of the block copolymer (Z) in the acrylic resin composition (R2) is 1 part by mass or more based on 100 parts by mass in total of the methacrylic resin (M) and the block copolymer (Z). And more preferably at least 10 parts by mass.
  • the content of the block copolymer (Z) is preferably 90 parts by mass or less, more preferably 45 parts by mass or less, based on 100 parts by mass of the total of the methacrylic resin (M) and the block copolymer (Z). More preferably, it is even more preferably 30 parts by mass or less.
  • the content of the methacrylic resin (M) in the acrylic resin composition (R2) is smaller than the content of the block copolymer (Z), the surface hardness of the sheet obtained by melt extrusion molding using a T die decreases. Tend.
  • any polyvinyl acetal resin film can be used as the layer (B) as long as it satisfies the formulas (1) and (2).
  • the polyvinyl acetal resin film used as the layer (B) can be manufactured with reference to the materials and the production method used for the layer (A) described above. However, regarding the polyvinyl acetal resin film used as the layer (B), from the viewpoint of controlling the tensile storage modulus of the resin material constituting the layer (B) to a desired range, the polyvinyl acetal resin in the layer (B) is used.
  • the viscosity average polymerization degree of the polyvinyl alcohol-based resin used as the raw material is preferably 1,000 or more, more preferably 1500 or more.
  • the polyvinyl acetal resin in the layer (B) is formed by a reaction between at least one polyvinyl alcohol-based resin and at least one aliphatic unbranched aldehyde having 2 to 10 carbon atoms.
  • the content of acetaldehyde in the aldehyde used for acetalization is preferably 40% by mass or more, more preferably 60% by mass or more, further preferably 80% by mass or more, and may be 100% by mass.
  • the aldehyde used for acetalization may be a mixture of acetaldehyde and butyraldehyde.
  • the polyvinyl acetal resin film used as the layer (B) may contain a plasticizer.
  • a plasticizer the plasticizer which may be contained in the layer (A) described above can be used.
  • the amount of the plasticizer in the polyvinyl acetal resin film is preferably 0 to 20% by mass, more preferably 0 to 10% by mass, and particularly preferably 0 to 5% by mass, based on the total mass of the polyvinyl acetal resin film. is there.
  • PET film can be used as the layer (B) as long as it satisfies the formulas (1) and (2).
  • the layer (B) of the present invention may contain one or more optional components as necessary, in addition to the components described above, as long as the object of the present invention is not impaired.
  • Optional components include antioxidants, thermal deterioration inhibitors, ultraviolet absorbers, light stabilizers, heat ray shielding agents, plasticizers, lubricants, mold release agents, polymer processing aids, adhesion regulators, antistatic agents, Examples include flame retardants, dyes and pigments, organic dyes, impact modifiers, foaming agents, fillers, and various additives such as phosphors.
  • the total amount of the various additives is not particularly limited, and is generally preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and preferably 20% by mass, based on the total mass of the layer (B). Or less, more preferably 10% by mass or less, particularly preferably 5% by mass or less.
  • antioxidant and light stabilizer those which can be contained in the above-mentioned layer (A) can be used.
  • the thermal degradation inhibitor is capable of preventing thermal degradation of a resin by capturing polymer radicals generated when exposed to high heat under a substantially oxygen-free state.
  • the thermal deterioration inhibitor include 2-t-butyl-6- (3′-t-butyl-5′-methyl-hydroxybenzyl) -4-methylphenyl acrylate (Sumitomo Chemical Co., Ltd .; trade name Sumilizer GM); And 2,4-di-t-amyl-6- (3 ', 5'-di-t-amyl-2'-hydroxy- ⁇ -methylbenzyl) phenyl acrylate (Sumitomo Chemical Co., Ltd .; trade name Sumilizer GS). preferable.
  • polymer processing aid for example, polymer particles produced by an emulsion polymerization method and comprising 60% by mass or more of a methyl methacrylate unit and 40% by mass or less of a vinyl monomer unit copolymerizable therewith may be used. Used.
  • the polymer processing aid preferably has an intrinsic viscosity of 3 to 6 dl / g.
  • the content of the metal oxide fine particles is preferably 0.001 to 100 parts by mass of the thermoplastic resin in the layer (B). It is at least 0.002 parts by mass, more preferably at least 0.002 parts by mass, preferably at most 2 parts by mass, more preferably at most 1.5 parts by mass.
  • the content of the metal oxide fine particles is equal to or more than the lower limit, the expected heat ray shielding effect is easily obtained.
  • the content of the metal oxide fine particles is equal to or less than the upper limit, good transparency of the layer (B) is obtained. Is easy to be retained.
  • the layer (B) contains metal oxide fine particles having a heat ray shielding function.
  • an interlayer adhesion modifier may be added to the layer (B) or the layer (A).
  • the interlayer adhesion modifier include carboxyl groups, carboxyl derivative groups, epoxy groups, boronic acid groups, boronic acid group derivative groups, alkoxyl groups, and alkoxyl group derivative groups.
  • Examples include polyolefins having an adhesive functional group.
  • the adhesive strength between the layer (B) and the layer (A) can be suitably adjusted.
  • the addition amount of the polyolefin having an adhesive functional group is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and preferably 10 parts by mass or less, based on 100 parts by mass of the thermoplastic resin of the layer (B). More preferably, the amount is not more than part by mass. If the amount of the polyolefin having an adhesive functional group exceeds 20 parts by mass, haze may be deteriorated when a laminated glass is produced.
  • polystyrene resin having an adhesive functional group among the above-mentioned polyolefins, a polypropylene containing a carboxyl group is easily available, easy to adjust adhesiveness, and from the viewpoint of easy adjustment of haze. It is suitable.
  • the method for producing the layer (B) is not particularly limited.
  • the method for manufacturing the layer (A) described above can be employed.
  • a commercially available film can be used as the layer (B).
  • commercially available acrylic films include PARAPURE (registered trademark) JS and PARAPURE (registered trademark) HI manufactured by Kuraray Co., Ltd.
  • commercially available PET films include Cosmoshine (registered trademark) manufactured by Toyobo Co., Ltd. A4300).
  • the laminated film further has another polyvinyl acetal resin layer (C).
  • the layer (C) may be a single layer or a multilayer, and may be arranged at any position of the laminated film.
  • the layer (C) contains a polyvinyl acetal resin and a plasticizer.
  • the polyvinyl acetal resin or the plasticizer contained in the layer (C) the polyvinyl acetal resin or the plasticizer described for the layer (A) can be used.
  • Those preferred embodiments, manufacturing methods, and the like described for the layer (A) can be similarly applied to the layer (C), except for the embodiments specifically mentioned below for the layer (C).
  • the content of the polyvinyl acetal resin in the layer (C) is not particularly limited. It is preferably 84.0% by mass or less, more preferably 60.0 to 83.9% by mass, based on the total mass of the layer (C).
  • the content of the plasticizer in the layer (C) is preferably 16.0% by mass or more, more preferably 16.1% by mass or more, based on the total mass of the layer (C). More preferably, it is more than 20.0% by mass, still more preferably 22.0% by mass or more, particularly preferably 26.0% by mass or more, preferably 36.0% by mass or less, more preferably 32.0% by mass. Or less, particularly preferably 30.0% by mass or less.
  • the content of the plasticizer in the initial state is preferably 30% by mass or more, more preferably 30 to 50% by mass, and still more preferably 31 to 45% by mass, based on the total mass of the layer (C). It is particularly preferably from 32 to 42% by mass.
  • the layer (C) may contain, in addition to the polyvinyl acetal resin and the plasticizer, the additives described in the paragraph of [Other additives] for the layer (A) as necessary. However, the total amount of the polyvinyl acetal resin and the plasticizer in the layer (C) is preferably 90% by mass or more.
  • the layer (C) may have a wedge-shaped cross-sectional shape with one end face being thick and the other end face being thin.
  • the cross-sectional shape may be a shape that is entirely wedge-shaped so that the thickness gradually decreases from one end face side to the other end face side, or a section between the one end face and the other end face.
  • the cross-section may be wedge-shaped so that the thickness is the same up to an arbitrary position and the thickness gradually decreases from the arbitrary position to the other end surface, or as long as there is no problem in manufacturing, It may have an arbitrary cross-sectional shape regardless of the position.
  • the layer whose cross-sectional thickness changes may be all layers or only some layers.
  • the laminated film of the present invention has a wedge-shaped thickness profile even when the thickness profile of a film or a layer other than the layer (C) is a parallel plane. And can be used in head-up displays (HUD) in automotive windshields.
  • HUD head-up displays
  • the layer (C) may be a single layer or a multilayer, and the total thickness of the layer (C) is preferably 1100 to 100 ⁇ m, more preferably 1000 to 200 ⁇ m, and particularly preferably 900 to 300 ⁇ m. When the total thickness of the layer (C) is within the above range, it is easy to achieve both the expression of the function of the layer (C) (for example, impact resistance or sound insulation) and reduction in weight.
  • the thickness of the layer (C) can be measured using a thickness gauge or a laser microscope.
  • Layer (C) may also be a commercially available plasticizer-containing polyvinyl acetal resin sheet.
  • the tensile storage modulus E ′ (40) at 40 ° C. of the resin material constituting the layer (C) is preferably less than 1000 MPa, or the tensile storage modulus E at 100 ° C. of the resin material constituting the layer (C).
  • '(100) is preferably less than 10 MPa.
  • the laminated film further has a functional layer (D).
  • the layer (D) may be a single layer or a multilayer, and may be arranged at any position of the laminated film.
  • the type of each functional layer may be the same or different.
  • the functional layer (D) includes a colored layer, a light absorbing layer (an electromagnetic wave absorbing layer having a specific wavelength such as an infrared absorbing layer or an ultraviolet absorbing layer), and a light reflecting layer (for example, an electromagnetic wave having a specific wavelength such as an infrared reflecting layer or an ultraviolet reflecting layer).
  • the layer (D) may be laminated on the entire surface of the laminated film, or may be laminated on a part thereof.
  • the thickness of the layer (D) is preferably 2 to 300 ⁇ m, more preferably 5 to 200 ⁇ m. When the thickness of the layer (D) is within the above range, a desired function of the layer (D) (for example, conductivity, heat ray shielding property, light absorbing property, or the like) is likely to be exhibited.
  • the thickness of the layer (D) can be measured using a thickness gauge, a laser microscope, or the like.
  • the layer (D) is a heat ray shielding coating layer having a thickness of 0.01 to 200 ⁇ m.
  • the thickness of the heat ray shielding coating layer as the layer (D) is preferably 100 ⁇ m or less, more preferably 60 ⁇ m or less. When the thickness of the heat ray shielding coating layer is equal to or less than the upper limit, excellent transparency of the laminated film is easily secured.
  • the layer (D) is a conductive structure.
  • the conductive structure includes a discontinuous conductive structure, and is not a planar layer, but an individually identifiable structure, for example, a conductor track, a conductive wire, and a mesh-like structure composed of them. , A point, or a combination thereof.
  • the discontinuous conductive structure may be provided on the surface of the layer (A) or the layer (B), or may be embedded in the surface.
  • the conductive structure preferably contains a metal (for example, gold, silver, copper, indium, zinc, iron, or aluminum) and / or a metal oxide as a conductive material.
  • a metal for example, gold, silver, copper, indium, zinc, iron, or aluminum
  • a semiconductor material can also be suitably arranged in layer (B).
  • the conductive structure may include a carbon-based conductive material, for example, graphite, CNT (carbon nanotube), or graphene.
  • the conductive structure contains at least one conductive material selected from the group consisting of gold, silver, copper and metal oxide.
  • the lamination of the layer (D) is performed by coating, laminating or printing the material constituting the layer (D) on at least one surface of either the layer (A) or the layer (B), or the layer (D) by the layer (A). Alternatively, it can be carried out by a method of coating, laminating, or printing a material constituting any of the layers (B). The method of coating, laminating or printing the material is not particularly limited.
  • a method of coating the material for example, a method of coating the layer (D) with a melt of a resin material constituting either the layer (A) or the layer (B) [for example, A method of melt-extruding a resin material, or a method of applying the resin material on the layer (D) by knife coating or the like]; a layer (A) or a layer (B) formed by vapor deposition, sputtering or electric vapor deposition.
  • a method of laminating the material for example, a method of laminating the layer (D) and any of the layer (A) or the layer (B) and thermocompression bonding; a solvent or any of the layer (A) or the layer (B) A solution of the resin material containing the resin and the solvent contained in the layer (D) and / or the layer (A) or the layer (B), or the layer (D) and the layer (A). ) Or the layer (B), and bonding the layer (D) and the layer (A) or the layer (B); or the layer (D) and the layer (A) with an adhesive. Or a method of bonding with any of the layers (B).
  • the adhesive used in the bonding method using the adhesive may be an adhesive generally used in the art, such as an acrylate adhesive, a urethane adhesive. , Epoxy-based adhesives and hot-melt adhesives.
  • the layer (D) is joined to either the layer (A) or the layer (B) without using an adhesive from the viewpoint that haze derived from the adhesive does not occur. Is preferred.
  • Examples of a method for printing the material include screen printing, flexographic printing, and gravure printing.
  • an ink that is dried or cured by heat or light is used before laminating a polyvinyl acetal resin film having a layer in a subsequent process.
  • the ink or printing ink used contains conductive particles.
  • the conductive particles are metal particles, for example, gold, silver, copper, zinc, iron or aluminum particles, metal-coated materials, for example, silver-plated glass fiber or glass globule particles, or conductive carbon black, carbon It can be a particle of nanotubes, graphite or graphene.
  • semiconductor particles for example, particles of a conductive metal oxide such as indium-doped tin oxide, indium-doped zinc oxide or antimony-doped tin oxide.
  • a conductive metal oxide such as indium-doped tin oxide, indium-doped zinc oxide or antimony-doped tin oxide.
  • the conductive particles particles of gold, silver, copper, or a conductive metal oxide are preferable.
  • the conductive structure is formed by a printing method, an etching method, or an evaporation method.
  • the step of bonding the metal foil to the layer (A) or the layer (B) includes, for example, the following method (I) to (III).
  • (I) a method in which the layer (A) or the layer (B) and the metal foil are overlapped and thermocompression-bonded
  • (II) A method of coating and joining a melt of the resin material constituting the layer (A) or the layer (B) on the metal foil, for example, a method of melt-extruding the resin material on the metal foil, or a method of melting the metal foil
  • the bonding temperature at the time of thermocompression bonding in the above method (I) depends on the kind of the resin contained in the layer (A) or the layer (B), but is usually 90 to 170 ° C, preferably 100 to 160 ° C, more preferably. Is 110 to 155 ° C, more preferably 110 to 150 ° C. When the joining temperature is within the above range, good joining strength is easily obtained.
  • the resin temperature during extrusion in the above method (II) is preferably from 150 to 250 ° C, more preferably from 170 to 230 ° C, from the viewpoint of reducing the content of volatile substances in the layer (A) or the layer (B). .
  • a plasticizer usually used for a polyvinyl acetal resin As such a plasticizer, those described in the paragraph ⁇ Plasticizer> above are used.
  • the step of forming a desired shape of the conductive structure from the obtained metal foil-attached layer (A) or layer (B) is performed by using a known photolithography technique.
  • a dry film resist is laminated on the metal foil of the layer (A) or the layer (B) with a metal foil, and then the etching resistance is determined using a photolithography technique.
  • the layer (A) or the layer (B) provided with the etching resistance pattern is immersed in a copper etching solution to form the shape of the conductive structure, and the remaining photoresist is formed by a known method. This is done by removing the layer.
  • conductive structures are used to electromagnetically shield frequency electromagnetic fields or to heat part or all of laminated glass, to create electrical circuits, such as wiring or transmitting and / or receiving antennas and other functions. What can be used. Due to the fact that the laminated film has a conductive structure, for example, a heating element can be introduced into the laminated glass, and the antenna can be used, for example, for receiving radio waves in the automotive field or in inter-vehicle communication.
  • the conductive structure may be finished as a contact sensor, which allows the production of laminated glass that interacts with other electronic components.
  • information input on a laminated glass for example, a windshield or side glass of a passenger car, or a glass of a door
  • a laminated glass for example, a windshield or side glass of a passenger car, or a glass of a door
  • a laminated glass for example, a windshield or side glass of a passenger car, or a glass of a door
  • the conductive structure is an electronic component, that is, a multilayer structure of conductive and dielectric structures
  • an additional electronic circuit or component may be provided. All such electronic circuits or components include, in particular, transistors, resistors, chips, sensors, displays, light emitting diodes (eg OLEDs) and / or smart labels.
  • the conductive structure may be very small and may not be sufficiently recognized by the naked eye.
  • the width of the conductive structure is preferably 1 ⁇ m or more, preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and particularly preferably 15 ⁇ m or less.
  • the width of the filament is less than 25 ⁇ m.
  • the heating area may be introduced only locally, for example only before the optical sensor system above the windshield.
  • the laminated film of the present invention may have a peelable protective film on the outermost layer. Therefore, another object of the present invention is a laminated film with a protective film having a peelable protective film on the outermost layer of the laminated film. As such a protective film, those commonly used in the art can be used.
  • the laminated structure in the laminated film of the present invention is determined depending on the purpose. For example, it may have the following laminated structure, but is not limited thereto.
  • the configuration of the layer (C) is preferred, and the configuration of the layer (A) / layer (B) / layer (D) / layer (C) is particularly preferred.
  • the laminated film preferably has at least one layer (C) in addition to the layer (A) and the layer (B).
  • the layer (C) is preferably in contact with the layer (B) side of the layer (A) / layer (B), and the layer (D) exists on the layer (A) or the layer (B). Is preferably in contact with the layer (D).
  • the content of the vinyl alcohol unit in the polyvinyl acetal resin in the layer (A) and the content of the vinyl alcohol unit in the polyvinyl butyral resin in the layer (C) are determined.
  • the difference is preferably at most 6 mol%, more preferably at most 4 mol%, particularly preferably at most 3 mol%.
  • the vinyl alcohol unit content of at least one polyvinyl acetal resin contained in the layer (A) and the layer (C) is equal to or less than the upper limit.
  • the difference in the refractive index between the layer (A) and the layer (C) in an equilibrium state after the plasticizer has migrated in the laminated film is small. It is preferable to use the layer (A) and the layer (A) because the boundary between them is difficult to see.
  • the average amount of the plasticizer in the layer (A) in the equilibrium state is set to 30% by mass or more.
  • the vinyl alcohol unit content of the polyvinyl acetal resin in the layer (A) is preferably at least 6 mol% lower than the vinyl alcohol unit content of the polyvinyl butyral resin in the layer (C), and more preferably 10% or less. Mol% or less.
  • the ten-point average roughness Rz value of the bonding surface of the layer (A) with the layer (D) is preferably 20 ⁇ m or less, more preferably 5 ⁇ m or less. It is particularly preferably 3 ⁇ m or less, and the average interval Sm value of the unevenness is preferably 500 ⁇ m or more, more preferably 1000 ⁇ m or more, particularly preferably 1300 ⁇ m or more.
  • the Rz value is equal to or less than the upper limit value or the Sm value is equal to or greater than the lower limit value, uniform printing, coating or lamination is easily achieved, and uneven bonding between the layer (A) and the ink or metal foil or the like is caused. Easy to be suppressed.
  • the ten-point average roughness Rz value of the bonding surface of the layer (A) with glass is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and preferably 1 ⁇ m.
  • the above is more preferably 2 ⁇ m or more
  • the average interval Sm value of the unevenness is preferably 1500 ⁇ m or less, more preferably 1000 ⁇ m or less, particularly preferably 700 ⁇ m or less.
  • the Rz value and the Sm value are measured using a surface roughness meter or a laser microscope in accordance with JIS B0601-1994.
  • a melt extrusion method for example, a method using a T-die or a method of inflation molding
  • a solvent casting method or the like
  • the Rz value and the Sm value can be adjusted by forming a film of the melt extruded from the T-die using a smooth cooling roll.
  • the difference in refractive index between the refractive index of the layer (A) and the refractive index of the layer (B) measured based on ASTM D542 is preferably 0.10 or less, more preferably 0.08 or less. It is.
  • the refractive index difference can be adjusted to the upper limit or less by, for example, configuring the layer (A) with a polyvinyl acetal resin material and configuring the layer (B) with the resin material described above.
  • the haze value based on JIS K7136 of the laminated glass sandwiching the laminated film between two glasses is preferably 1.5% or less, more preferably 1.0% or less, and particularly preferably 0% or less. 0.8% or less.
  • the haze value is equal to or less than the upper limit, the obtained laminated glass has excellent transparency.
  • the haze value can be adjusted to the upper limit or less, for example, by configuring the layer (A) with a polyvinyl acetal resin material and configuring the layer (B) with the resin material described above.
  • the laminated film of the present invention may have an adhesive layer between the layer (A) and the layer (B), but from the viewpoint of transparency of the laminated film, it may not have an adhesive layer. preferable.
  • the laminated film of the present invention has a layer (A) and a layer (B), and optionally a layer (C) and optionally a layer (D).
  • the manufacturing method is not particularly limited.
  • the laminated film can be manufactured by the same method as the method of coating, laminating or printing as described in the paragraph of [Functional Layer (D)].
  • the protective film may be laminated on the obtained laminated film by a method common in the art.
  • the present invention is also directed to a laminated glass in which the laminated film of the present invention or the laminated film obtained by peeling the protective film from the laminated film with a protective film of the present invention is sandwiched between two glasses.
  • the glass in the present invention is preferably an organic glass or an inorganic glass from the viewpoint of transparency, weather resistance and mechanical strength.
  • an inorganic glass also simply referred to as “glass” in the present specification
  • a methacrylic resin sheet such as a system resin sheet, more preferably an inorganic glass, a methacrylic resin sheet or a polycarbonate resin sheet, and particularly preferably an inorganic glass.
  • the inorganic glass include, but are not particularly limited to, float glass, tempered glass, semi-tempered glass, chemically strengthened glass, green glass, and quartz glass.
  • the laminated glass of the present invention can be manufactured by a conventionally known method.
  • a laminated film in which the protective film is peeled off from the laminated film of the present invention or the laminated film with the protective film of the present invention is arranged, and another glass is further laminated by pre-compression bonding.
  • a laminated glass can be produced by locally fusing each other and then treating in an autoclave. Further, the production of the laminated film can be performed simultaneously with the production of the laminated glass.
  • a layered film for example, a layer A / A
  • a layer (A) and a layer (B) and optionally a layer (C) and an optional layer (D) are laminated on glass, or a part of the layers is laminated in advance.
  • Layer B / Layer D) and one or more layers (C) are superposed in any order, and another glass is superimposed and fused to the whole surface or locally by pre-compression bonding Then, by treating in an autoclave, a laminated glass can be produced.
  • a method of degassing under reduced pressure by a method such as a vacuum bag, a vacuum ring or a vacuum laminator, a nip roll And a method of compression molding at a high temperature from the viewpoint of removing excess air or performing light joining of adjacent layers, a method of degassing under reduced pressure by a method such as a vacuum bag, a vacuum ring or a vacuum laminator, a nip roll And a method of compression molding at a high temperature.
  • the vacuum bag method or the vacuum ring method is performed at about 2 ⁇ 10 4 Pa and 100 to 145 ° C., for example, as described in EP 1235683 B1.
  • the vacuum laminator comprises a heatable and vacuumable chamber in which laminated glass is formed within a time period of about 20-60 minutes. Usually, it is carried out at a reduced pressure of 1 Pa to 3 ⁇ 10 4 Pa and a temperature of 100 to 200 ° C., particularly 130 to 160 ° C. When a vacuum laminator is used, the subsequent autoclave may not be performed depending on the temperature and the pressure.
  • the treatment is performed in an autoclave, the treatment is performed, for example, at a pressure of about 1 ⁇ 10 6 to 1.5 ⁇ 10 6 Pa and a temperature of about 100 to 145 ° C. for about 20 minutes to 2 hours.
  • the laminated glass of the present invention is used, for example, as a laminated glass in a building or a vehicle.
  • vehicle glass examples include a windshield, a rear glass, a roof glass, a side glass, and the like for vehicles such as trains, trains, automobiles, ships, and aircraft.
  • a layered film of layer (A) / layer (B) and a plasticized polyvinyl butyral resin film as layer (C) prepared in Examples and Comparative Examples described later were cut into dimensions of 100 mm in width and 270 mm in length. As shown in FIG. 1, the cut sample was placed between the layers A and B so that the cut sample was placed between glasses A and B having a width of 100 mm, a length of 300 mm, and a thickness of 3 mm shifted by 30 mm in the length direction.
  • a 1 kg iron plate is adhered to the surface of the glass B on the side opposite to the bonding surface with the plasticized polyvinyl butyral resin film with an adhesive, and as shown in FIG.
  • the glass A is fixed so that the sample with the iron plate is at an angle of 80 to 90 ° with respect to the horizontal plane, and the portion where the iron plate of glass B is attached is the upper or upper surface of the sample, with the part protruding 30 mm upward.
  • the shifted distance (mm) of the glass B was measured, and this value was defined as the heat creep resistance value.
  • a haze meter Suga The haze value was measured according to JIS K7136 using a test machine (manufactured by Testing Machine Co., Ltd.).
  • ⁇ Measurement of arithmetic average roughness (Ra)> The arithmetic average roughness (Ra) of each resin film used as the layer (B) in Examples and Comparative Examples described below was measured using a laser microscope according to JIS B0601: 2001.
  • the arithmetic average roughness (Ra) can be obtained as an average value of the individual arithmetic average roughness (Ra) measured at any five places on the film surface, and this value is expressed in ⁇ m.
  • the surface that comes into contact with the layer (C) or the layer (D) was measured, and the value was adopted as the arithmetic average roughness (Ra).
  • the tensile storage elastic moduli E ′ (40), E ′ (100) and E ′ (120) were measured by the following method.
  • the resin film used as the layer (B) was cut into dimensions of 3 mm in width and 3 cm in length to prepare a sample for dynamic viscoelasticity measurement.
  • Example 1 Resin A-1 as polyvinyl butyral resin 1 (hereinafter, referred to as “resin 1”) and resin A-2 as polyvinyl butyral resin 2 (hereinafter, referred to as “resin 2”) in a mass ratio of 75:25. They were mixed, melt-kneaded, extruded into strands, and pelletized. The obtained pellets were melt-extruded using a single screw extruder and a T-die under the following conditions, and a 50 ⁇ m-thick polyvinyl acetal resin film a having a smooth surface was obtained using a metal elastic roll, and this was used as a layer (A). Using. Melt extrusion conditions Set temperature of extruder (melting temperature of resin material): 200 ° C, T die width: 500mm, T die lip opening: 0.5mm, Discharge rate of molten resin from T-die: 15 kg / h
  • the layer (B) PARAPURE (registered trademark) JS (acrylic film) manufactured by Kuraray Co., Ltd., having a thickness of 50 ⁇ m and an arithmetic average roughness (Ra) of 0.15 ⁇ m or less on both surfaces, was used.
  • this film is referred to as “PMMA-1”.
  • the layer (A) and the layer (B) are heated at 140 ° C. for 10 minutes using a hot press machine, and then pressurized at 1.2 MPa for 15 minutes to obtain a layer (A) / layer (B) laminated film.
  • PMMA-1 arithmetic average roughness
  • the obtained pellets are introduced into a uniaxial vent extruder having a screw diameter of 65 mm and a screw diameter of 50 mm, extruded from a T-die into a film, and formed into a plasticized polyvinyl butyral resin film having a thickness of 760 ⁇ m (hereinafter referred to as “PVB-1”). ), which was used as layer (C).
  • the laminated film of layer (A) / layer (B) and PVB-1 as layer (C) are cut into a size of 50 mm ⁇ 50 mm, and laminated film (layer A / layer B) and layer (C) in this order. After stacking and heating at 140 ° C. for 10 minutes using a hot press machine, pressure was applied at 1.2 MPa for 15 minutes to obtain a laminated film (layer A / layer B / layer C).
  • a laminated film (layer A / layer B / layer C) is placed between two pieces of glass having a thickness of 2 mm and dimensions of 50 mm ⁇ 50 mm, put into a vacuum bag, and evacuated at 100 ° C. for 30 minutes. It was left still. The contents were taken out of the vacuum bag, and left still at 140 ° C. for 60 minutes in an autoclave to obtain a target laminated glass.
  • the layered film of layer (A) / layer (B) and PVB-1 as layer (C) are cut out into circles each having a size of 150 mm in diameter, and one grid is formed on the surface of layer (B) of the layered film.
  • Lattice-shaped lines were drawn with conductive ink so that the size was 5 mm ⁇ 5 mm.
  • the laminated film (layer A / layer B) and the layer (C) were laminated in this order, heated at 140 ° C. for 10 minutes using a hot press machine, and then pressed at 1.2 MPa for 15 minutes to form a laminated film (layer A / layer A / B).
  • Layer B / layer C) was obtained.
  • a laminated film [Layer A (33) / Layer B] is placed between two disc-shaped watch glasses (3D-shaped glasses 31 and 32) having a diameter of 150 mm and a height of 15 mm so that the lamination order shown in FIG. (34) / layer C (35)] was placed and placed in a vacuum bag, and allowed to stand at 100 ° C. for 30 minutes while evacuating. The contents were taken out of the vacuum bag, and further left still at 140 ° C. for 60 minutes in an autoclave to obtain a target laminated glass 40.
  • Example 2 As the layer (B), Kuraray Co., Ltd. having a thickness of 50 ⁇ m is used in place of PARAPURE (registered trademark) JS manufactured by Kuraray Co., Ltd., which has a thickness of 50 ⁇ m and an arithmetic average roughness (Ra) of 0.15 ⁇ m or less on both surfaces.
  • a laminated film and a laminated glass were prepared and various evaluations were performed in the same manner as in Example 1 except that PARAPURE (registered trademark) HI (acrylic film; hereinafter, referred to as “PMMA-2”) was used. . Table 3 shows the evaluation results.
  • Example 3 The resin A-1 as the resin 1 and the resin A-2 as the resin 2 were mixed at a mass ratio of 25:75, and 82% by mass of the obtained mixture and 3GO (18% by mass) were melted by a twin-screw extruder. The mixture was kneaded, extruded into a strand, and pelletized. The obtained pellet was melt-extruded using a single screw extruder and a T-die, and a 50 ⁇ m-thick polyvinyl acetal resin film b having a smooth surface was obtained using a metal elastic roll. A laminated film and a laminated glass were prepared and various evaluations were performed in the same manner as in Example 2 except that the resin film b was used instead of the resin film a as the layer (A). Table 3 shows the evaluation results.
  • Example 4 Resin A-2 (72% by mass) and 3GO (28% by mass) as resin 1 were melt-kneaded with a twin-screw extruder, extruded into strands, and pelletized. The obtained pellets were melt-extruded using a single screw extruder and a T-die, and a 100 ⁇ m-thick polyvinyl acetal resin film c having a smooth surface was obtained using a metal elastic roll. A laminated film and laminated glass were prepared and various evaluations were performed in the same manner as in Example 2 except that the resin film c was used instead of the resin film a as the layer (A). Table 3 shows the evaluation results.
  • Example 5 A polyvinyl acetal resin having a degree of acetalization of 70 mol%, a vinyl acetate unit content of 0.9 mol%, and a viscosity average degree of polymerization of polyvinyl alcohol of about 2400, which was acetalized with acetaldehyde, and having a screw diameter of 65 mm and a screw diameter of 50 mm was used.
  • a thermoplastic resin film “PVX-1” having a thickness of 50 ⁇ m and an arithmetic average roughness (Ra) of 0.15 ⁇ m or less on both sides is put into a single-screw vent extruder and extruded from a T-die into a film. Obtained.
  • a laminated film and a laminated glass were prepared and various evaluations were performed in the same manner as in Example 1 except that PVX-1 was used instead of PMMA-1 as the layer (B). Table 3 shows the evaluation results.
  • the following thermoplastic resin film "PVX-2" was obtained. A laminated film and a laminated glass were prepared and various evaluations were performed in the same manner as in Example 1 except that PVX-2 was used instead of PMMA-1 as the layer (B). Table 3 shows the evaluation results.
  • Example 7 Example except that PET (Cosmoshine (registered trademark) A4300, thickness 50 ⁇ m, arithmetic average roughness of both sides 0.15 ⁇ m or less) manufactured by Toyobo Co., Ltd. was used as the layer (B) instead of PMMA-1.
  • PET Cosmoshine (registered trademark) A4300, thickness 50 ⁇ m, arithmetic average roughness of both sides 0.15 ⁇ m or less
  • Table 3 shows the evaluation results.
  • Example 8 Example except that PET (Cosmoshine® A4300, thickness 125 ⁇ m, arithmetic mean roughness of both sides 0.15 ⁇ m or less) manufactured by Toyobo Co., Ltd. was used instead of PMMA-1 as the layer (B).
  • PET Cosmoshine® A4300, thickness 125 ⁇ m, arithmetic mean roughness of both sides 0.15 ⁇ m or less
  • PMMA-1 PMMA-1
  • Example 9 99 mass% of the raw material resin of the resin film a and 0.2 mass% of ITO (tin-doped indium oxide, ITO-R (registered trademark) manufactured by CIK Nanotech Co., Ltd.) are melt-kneaded with a twin-screw extruder and extruded into strands. And pelletized. The obtained pellet was melt-extruded using a single screw extruder and a T-die, and a 50 ⁇ m-thick polyvinyl acetal resin film e having a smooth surface was obtained using a metal elastic roll. A laminated film and a laminated glass were produced and various evaluations were performed in the same manner as in Example 1 except that the resin film e was used instead of the resin film a as the layer (A). Table 3 shows the evaluation results.
  • Example 10 99.7% by mass of a raw resin of PARAPURE (registered trademark) JS manufactured by Kuraray Co., Ltd. and ITO (0.3% by mass) were melt-kneaded with a twin-screw extruder, extruded into strands, and pelletized.
  • the obtained pellets are melt-extruded using a single screw extruder and a T-die, and a thermoplastic resin film having a smooth surface (having an arithmetic average roughness of 0.15 ⁇ m or less) and a thickness of 100 ⁇ m using a metal elastic roll.
  • PMMA-3 "was obtained.
  • a laminated film and a laminated glass were produced and various evaluations were performed in the same manner as in Example 1 except that PMMA-3 was used instead of PMMA-1 as the layer (B). Table 3 shows the evaluation results.
  • Example 11 Polyvinyl butyral resin having an acetalization degree of 70 mol%, a vinyl acetate unit content of 0.9 mol%, and a viscosity average degree of polymerization of polyvinyl alcohol of about 1700 was 71.9 mass%, 3GO (28 mass%) and ITO (0 mass%). .1% by mass) was melt-kneaded with a twin-screw extruder, extruded into strands, and pelletized.
  • the obtained pellets are introduced into a uniaxial vent extruder having a screw diameter of 65 mm and a screw diameter of 50 mm, extruded into a film from a T-die, and formed into a 760 ⁇ m-thick ITO-containing plasticized polyvinyl butyral resin film (hereinafter, “ITO-containing PVB”). ).
  • ITO-containing PVB plasticized polyvinyl butyral resin film
  • Example 12 The layer (A) / layer (B) laminated film obtained in Example 1 was coated with a 7 ⁇ m-thick copper foil having one surface blackened so that the blackened surface was in contact with the layer (B). Stacked in orientation. Here, the visible light reflectance of the blackened surface measured according to JIS R 3106 was 5.2%. Next, the upper and lower sides of a laminate in which a layered film of layer (A) / layer (B) and a copper foil as layer (D) are sandwiched between a 50 ⁇ m-thick PET film, and a thermocompression roll set at 120 ° C.
  • the PET film After passing through (pressure: 0.2 MPa, speed: 0.5 m / min), the PET film was peeled off to obtain a laminated film (layer A / layer B / copper foil).
  • a laminated film layer A / layer B / copper foil.
  • an etching resistance pattern was formed using a photolithography technique.
  • the laminated film on which the etching resistance pattern was formed was immersed in a copper etching solution to form a conductive layer (conductive structure), and the remaining photoresist layer was removed by a conventional method.
  • a laminated film (layer A / layer B / layer D) having a conductive layer as layer (D) was obtained.
  • This laminated film has no adhesive layer between the layer (B) and the conductive layer that is the layer (D).
  • the conductive layer has a copper mesh structure in which copper wires having a line width of 10 ⁇ m are arranged in a grid at intervals of 500 ⁇ m inside a square having a length of 5 cm and a width of 5 cm, and an upper side and a lower side thereof have a width of 5 mm corresponding to a bus bar.
  • a structure connected to the A 3D shape evaluation was performed on a laminated film (layer A / layer B / layer D) having a conductive layer as layer (D). No wrinkles, cuts and distortions were observed. At this time, no disconnection or deformation occurred in the conductive layer (D).
  • Example 13 In order to prepare a laminated film (layer A / layer B / layer D / layer C) in place of the laminated film (layer A / layer B / layer C), the laminated film of layer (A) / layer (B) and the layer ( Laminating was carried out in the same manner as in Example 1 except that a heat ray shielding coating layer (Crystallin 70 manufactured by 3M Co., Ltd., thickness: 50 ⁇ m) as a layer (D) was further laminated between PVB-1 as C). A film and a laminated glass were produced. When the 3D shape was evaluated, no wrinkles, cuts or distortions were observed. The heat creep resistance was rated A, and the haze value of the laminated glass was 0.9.
  • Example 14 As a raw material for the layer (B), a raw resin for the thermoplastic resin film “PVX-2” of Example 6 was dissolved in ethanol to prepare a 7% by mass ethanol solution. The prepared ethanol solution was coated on a resin film a having a thickness of 50 ⁇ m obtained in the same manner as in Example 1 using an applicator, and dried at normal temperature and normal pressure. The thickness was 10 ⁇ m, and the arithmetic mean A thermoplastic resin film “PVX-3” having a thickness (Ra) of 0.15 ⁇ m or less was formed on the layer (A) to obtain a layer (A) / layer (B) laminated film.
  • a laminated glass was produced in the same manner as in Example 1 except that PVX-3 was used instead of PMMA-1 as the layer (B), and a layer (A) / layer (B) laminated film was obtained by coating. Were prepared and various evaluations were made. Table 3 shows the evaluation results.
  • Comparative Example 1 Resin A-1 (72% by mass) and 3GO (28% by mass) as resin 1 were melt-kneaded with a twin-screw extruder, extruded into strands, and pelletized. The obtained pellet was melt-extruded using a single screw extruder and a T-die, and a 100 ⁇ m-thick polyvinyl acetal resin film d having a smooth surface was obtained using a metal elastic roll. A laminated film and a laminated glass were prepared and various evaluations were performed in the same manner as in Example 2, except that the resin film d was used instead of the resin film a as the layer (A). Table 3 shows the evaluation results.
  • Comparative Example 2 A resin film c ′ was prepared in the same manner as the resin film c except that the thickness was changed to 500 ⁇ m, and was the same as in Example 7 except that the resin film c ′ was used instead of the resin film a as the layer (A). Similarly, a laminated film and a laminated glass were prepared and various evaluations were performed. Table 3 shows the evaluation results.
  • Table 1 shows the physical property values of Resin A-1 and Resin A-2 used in Examples and Comparative Examples.
  • Table 2 shows the compositions and glass transition temperatures of the resin materials constituting the polyvinyl acetal resin films a to e used in the examples and comparative examples.
  • the tensile storage elastic modulus E ′ (40) at 40 ° C. of the resin material constituting the polyvinyl acetal resin films a to e was less than 1000 MPa, and the tensile storage elastic modulus E ′ (100) at 100 ° C. was less than 10 MPa.
  • Example 1 it is shown that the laminated film of the present invention has both excellent heat creep resistance and good followability to 3D-shaped glass, and also provides a laminated glass having high transparency.
  • Being superior in heat creep resistance means that the distortion of the functional layer can be favorably suppressed.
  • Comparative Example 1 as a resin component contained in the layer (A), toluene / ethanol having a concentration of 10% by mass, which was measured at 20 ° C. and 30 rpm using a Brookfield type (B type) viscometer, was 1/1/1.
  • the laminated film of the present invention can suppress the distortion of the functional layer or the deterioration of the transparency of the laminated glass when used as the interlayer of the laminated glass, and is excellent in conformability to the 3D shape. It can be suitably used as a laminated glass for protecting the surface of a display or an interlayer film of a laminated glass for automobiles.
  • Laminated glass for heat resistance creep resistance measurement 11 Glass A 12 Glass B 13 Laminated film of laminated film (layer A / layer B) and plasticized polyvinyl butyral resin film (layer C) 13A Laminated film (layer A / layer B) 13B Plasticized polyvinyl butyral resin film (layer C) Reference Signs List 20 laminated glass for heat resistance creep resistance measurement bonded with iron plate 21 iron plate 31 3D-shaped glass 32 3D-shaped glass 33 layer (A) 34 layers (B) 35 layers (C) 40 Laminated glass for 3D shape evaluation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to a multilayer film which comprises at least a polyvinyl acetal resin layer (A) and a thermoplastic resin layer (B), and which is configured such that: the viscosity of a 10 mass% toluene/ethanol solution (wherein the toluene/ethanol mass ratio is 1/1) of the polyvinyl acetal resin in the layer (A) as measured at 20°C at 30 rpm with use of a Blookfield type (B type) viscometer is more than 200 mPa·s; the amount of a plasticizer in the layer (A) is 0-35% by mass relative to the total mass of the layer (A); the layer (A) has a thickness of 10-350 μm; and the tensile storage elastic modulus E'(40) at 40°C and the tensile storage elastic modulus E'(100) at 100°C of the resin material that constitutes the layer (B) satisfy formula (1) and formula (2). (1): E'(40) ≥ 1,000 MPa (2): E'(100) ≥ 10 MPa

Description

積層フィルムLaminated film
 本発明は、ポリビニルアセタール樹脂層(A)と熱可塑性樹脂層(B)とを少なくとも有する積層フィルムに関する。 << The present invention relates to a laminated film having at least a polyvinyl acetal resin layer (A) and a thermoplastic resin layer (B).
 建築用合わせガラス、ディスプレイの表面保護用の合わせガラス又は自動車用フロントガラス若しくはサイドガラス等には、ガラスが割れたときの飛散防止の目的で、2枚の無機ガラス又は有機ガラスの間に樹脂層を有する安全ガラスが主に用いられている。近年、そのような安全ガラスに、さらなる機能性(例えば、熱線遮蔽性、意匠性、導電性、光線反射性又は光線吸収性等)を付与することが増えている。その方法として、汎用性又は経済性に優れた薄いポリエチレンフタレート(以下、「PET」と称する)フィルム又はポリカーボネートフィルム(以下、「PETフィルム等」と称する)の上に、上記したような機能を有する機能性層を印刷、熱圧着又は蒸着等により形成し、得られた機能性層付きフィルムを合わせガラス用中間膜として使用する方法が知られており、例えば特許文献1~3には、そのような方法により、しわ等の外観欠陥がなく、透明な合わせガラスを製造できたことが記載されている。 For laminated glass for architectural purposes, laminated glass for surface protection of displays or windshields or side glasses for automobiles, a resin layer is placed between two inorganic or organic glasses for the purpose of preventing scattering when the glass is broken. Safety glass is mainly used. In recent years, such safety glass has been increasingly provided with further functionality (for example, heat ray shielding property, design property, conductivity, light reflection property or light absorption property). As the method, it has the above-mentioned functions on a thin polyethylene phthalate (hereinafter referred to as “PET”) film or a polycarbonate film (hereinafter referred to as “PET film etc.”) which is excellent in versatility or economy. A method is known in which a functional layer is formed by printing, thermocompression bonding, vapor deposition, or the like, and the obtained film with a functional layer is used as an interlayer film for laminated glass. For example, Patent Documents 1 to 3 disclose such methods. It is described that a transparent laminated glass having no appearance defects such as wrinkles could be produced by a suitable method.
 一方、近年使用が拡大している3D形状の合わせガラスでは、3D形状への追従性が求められる。しかし、一般的なPETフィルム等は、樹脂の特性又は製膜方法に起因して3D形状への追従性が悪く、合わせガラス作製時にPETフィルム等の上の機能性層にしわや切れが生じやすい。この問題に鑑み、成形性が改善されたPETフィルム等を用いた合わせガラス用中間膜が検討されており、例えば特許文献4には、2枚の樹脂中間膜の間にプラスチックフィルムを挟持してなるフィルムを用いて作製された合わせガラスであって、プラスチックフィルムが、特定の熱収縮率、特定の弾性率若しくは特定の伸び率を有し、PETフィルム又はポリカーボネートフィルム等のプラスチックフィルムから選択される合わせガラスが記載されている。また、特許文献5には、少なくとも3層からなり、特定のヘイズを有する合わせガラス用ポリエステルフィルムであって、最外層の両方のポリエステルフィルムが特定の厚さ、特定の組成及び特定のヘイズを有するポリエステルフィルムが記載されている。 On the other hand, 3D shape laminated glass, which has been increasingly used in recent years, is required to be able to follow the 3D shape. However, a general PET film or the like has poor followability to a 3D shape due to characteristics of a resin or a film forming method, and is likely to have wrinkles or cuts in a functional layer on the PET film or the like at the time of manufacturing a laminated glass. . In view of this problem, an interlayer film for laminated glass using a PET film or the like having improved moldability has been studied. For example, in Patent Document 4, a plastic film is sandwiched between two resin interlayer films. A laminated glass produced using a film, wherein the plastic film has a specific heat shrinkage, a specific elastic modulus or a specific elongation, and is selected from a plastic film such as a PET film or a polycarbonate film. Laminated glass is described. Patent Document 5 discloses a polyester film for laminated glass having at least three layers and having a specific haze, wherein both outermost polyester films have a specific thickness, a specific composition, and a specific haze. Polyester films are described.
特開2009-35439号公報JP 2009-35439 A 特開2009-35440号公報JP 2009-35440 A 特開平6-915号公報JP-A-6-915 特開2010-180089号公報JP 2010-180089 A 特開2014-180844号公報JP 2014-180844 A
 発明が解決しようとする課題は、合わせガラスに機能性等を付与する際に、PET又は一般的な中間膜を用いた場合に生じるような機能性層の歪み又は合わせガラスの透明性の悪化を抑制でき、形状への追従性が要求される3D形状の合わせガラスに容易に使用できる積層フィルムを提供することである。 The problem to be solved by the invention is to provide a laminated glass with a function or the like, when distorting the functional layer or deteriorating the transparency of the laminated glass as occurs when using PET or a general interlayer film. An object of the present invention is to provide a laminated film which can be suppressed and can be easily used for a laminated glass having a 3D shape which is required to conform to a shape.
 本発明者らは、前記課題を解決するために、積層フィルムについて詳細に検討を重ね、本発明を完成させるに至った。
 即ち、本発明は、以下の好適な態様を包含する。
〔1〕ポリビニルアセタール樹脂層(A)と熱可塑性樹脂層(B)とを少なくとも有する積層フィルムであって、層(A)中のポリビニルアセタール樹脂の、ブルックフィールド型(B型)粘度計を用いて20℃、30rpmで測定された、濃度10質量%のトルエン/エタノール=1/1(質量比)溶液の粘度が200mPa・sより大きく、層(A)中の可塑剤の量が層(A)の総質量に対して0~35質量%であり、層(A)の厚さが10~350μmであり、層(B)を構成する樹脂材料の40℃における引張貯蔵弾性率E’(40)及び100℃における引張貯蔵弾性率E’(100)が式(1)及び式(2)を満たす、積層フィルム。
(1)E’(40)≧1000MPa
(2)E’(100)≧10MPa
〔2〕ASTM D542に基づいて測定される層(A)の屈折率と層(B)の屈折率との屈折率差が0.10以下であり、2枚のガラスで前記積層フィルムを挟持した合わせガラスのJIS K7136に基づくヘイズ値が1.5%以下である、前記〔1〕に記載の積層フィルム。
〔3〕層(B)の厚さが150μm以下である、前記〔1〕又は〔2〕に記載の積層フィルム。
〔4〕層(B)を構成する樹脂材料の120℃における引張貯蔵弾性率E’(120)が式(3)を満たす、前記〔1〕~〔3〕のいずれかに記載の積層フィルム。
(3)E’(120)≦500MPa
〔5〕層(B)の少なくとも一方の表面の算術平均粗さ(Ra)が0.15μm以下である、前記〔1〕~〔4〕のいずれかに記載の積層フィルム。
〔6〕層(B)が熱線遮蔽性機能を有する金属酸化物微粒子を含有する、前記〔1〕~〔5〕のいずれかに記載の積層フィルム。
〔7〕さらに別のポリビニルアセタール樹脂層(C)を有する、前記〔1〕~〔6〕のいずれかに記載の積層フィルム。
〔8〕さらに機能性層(D)を有する、前記〔1〕~〔7〕のいずれかに記載の積層フィルム。
〔9〕層(D)が0.01~200μmの厚さの熱線遮蔽性被覆層である、前記〔8〕に記載の積層フィルム。
〔10〕層(D)が導電性構造体である、前記〔8〕又は〔9〕に記載の積層フィルム。
〔11〕導電性構造体が印刷法、エッチング法又は蒸着法で形成されたものである、前記〔10〕に記載の積層フィルム。
〔12〕導電性構造体が、金、銀、銅及び金属酸化物からなる群から選択される少なくとも1つの導電性材料を含有する、前記〔10〕又は〔11〕に記載の積層フィルム。
〔13〕層(A)が熱線遮蔽性機能を有する金属酸化物微粒子を含有する、前記〔1〕~〔12〕のいずれかに記載の積層フィルム。
〔14〕前記〔1〕~〔13〕のいずれかに記載の積層フィルムの最外層に剥離可能な保護フィルムを有する、保護フィルム付き積層フィルム。
〔15〕前記〔1〕~〔13〕のいずれかに記載の積層フィルム又は前記〔14〕に記載の保護フィルム付き積層フィルムから保護フィルムが剥離された積層フィルムが、2枚のガラスの間に挟持された合わせガラス。
The present inventors have studied the laminated film in detail in order to solve the above problems, and have completed the present invention.
That is, the present invention includes the following preferred embodiments.
[1] A laminated film having at least a polyvinyl acetal resin layer (A) and a thermoplastic resin layer (B), using a Brookfield type (B type) viscometer for the polyvinyl acetal resin in the layer (A). The viscosity of a 10% by mass toluene / ethanol = 1/1 (mass ratio) solution measured at 20 ° C. and 30 rpm is greater than 200 mPa · s, and the amount of plasticizer in the layer (A) is )), The layer (A) has a thickness of 10 to 350 μm, and the resin material constituting the layer (B) has a tensile storage modulus E ′ (40) at 40 ° C. And a tensile storage modulus E ′ (100) at 100 ° C. satisfying the formulas (1) and (2).
(1) E '(40) ≧ 1000 MPa
(2) E '(100) ≧ 10 MPa
[2] The refractive index difference between the refractive index of the layer (A) and the refractive index of the layer (B) measured based on ASTM D542 is 0.10 or less, and the laminated film is sandwiched between two glasses. The laminated film according to the above [1], wherein the laminated glass has a haze value based on JIS K7136 of 1.5% or less.
[3] The laminated film according to [1] or [2], wherein the thickness of the layer (B) is 150 μm or less.
[4] The laminated film according to any one of the above [1] to [3], wherein the resin material constituting the layer (B) has a tensile storage modulus at 120 ° C. E ′ (120) satisfying the expression (3).
(3) E ′ (120) ≦ 500 MPa
[5] The laminated film according to any of [1] to [4], wherein the arithmetic average roughness (Ra) of at least one surface of the layer (B) is 0.15 μm or less.
[6] The laminated film according to any one of [1] to [5], wherein the layer (B) contains metal oxide fine particles having a heat ray shielding function.
[7] The laminated film according to any one of [1] to [6], further comprising another polyvinyl acetal resin layer (C).
[8] The laminated film according to any one of [1] to [7], further comprising a functional layer (D).
[9] The laminated film according to [8], wherein the layer (D) is a heat ray shielding coating layer having a thickness of 0.01 to 200 μm.
[10] The laminated film according to the above [8] or [9], wherein the layer (D) is a conductive structure.
[11] The laminated film according to [10], wherein the conductive structure is formed by a printing method, an etching method, or an evaporation method.
[12] The laminated film according to [10] or [11], wherein the conductive structure contains at least one conductive material selected from the group consisting of gold, silver, copper, and a metal oxide.
[13] The laminated film according to any of [1] to [12], wherein the layer (A) contains metal oxide fine particles having a heat ray shielding function.
[14] A laminated film with a protective film, comprising a peelable protective film on the outermost layer of the laminated film according to any of [1] to [13].
[15] The laminated film according to any one of [1] to [13] or the laminated film obtained by peeling the protective film from the laminated film with a protective film according to [14], between a pair of glasses. Laminated glass sandwiched.
 本発明によれば、合わせガラスに機能性等を付与する際に、PET又は一般的な中間膜を用いた場合に生じるような機能性層の歪み又は合わせガラスの透明性の悪化を抑制でき、形状への追従性が要求される3D形状の合わせガラスに容易に使用できる積層フィルムを提供することができる。 According to the present invention, when imparting functionality or the like to the laminated glass, it is possible to suppress distortion of the functional layer or deterioration in the transparency of the laminated glass as occurs when using PET or a general interlayer, It is possible to provide a laminated film which can be easily used for laminated glass having a 3D shape which requires conformability to a shape.
耐熱クリープ性値の測定に用いる合わせガラスの模式図である。It is a schematic diagram of the laminated glass used for measurement of a heat creep resistance value. 鉄板が接着された、耐熱クリープ性値の測定に用いる合わせガラスの模式図である。It is a schematic diagram of the laminated glass used for measurement of the heat creep resistance value to which the iron plate was adhered. 耐熱クリープ性値を測定するために、鉄板が接着された合わせガラスを、所定の角度に固定した状態の模式図である。FIG. 3 is a schematic view showing a state where a laminated glass to which an iron plate is adhered is fixed at a predetermined angle in order to measure a heat creep resistance value. 本発明に係る3D形状の合わせガラスの一態様を示す模式図である。It is a mimetic diagram showing one mode of 3D shape laminated glass concerning the present invention.
 本発明は、ポリビニルアセタール樹脂層(A)と熱可塑性樹脂層(B)とを少なくとも有する積層フィルムであって、層(A)中のポリビニルアセタール樹脂の、ブルックフィールド型(B型)粘度計を用いて20℃、30rpmで測定された、濃度10質量%のトルエン/エタノール=1/1(質量比)溶液の粘度が200mPa・sより大きく、層(A)中の可塑剤の量が層(A)の総質量に対して0~35質量%であり、層(A)の厚さが10~350μmであり、層(B)を構成する樹脂材料の40℃における引張貯蔵弾性率E’(40)及び100℃における引張貯蔵弾性率E’(100)が式(1)及び式(2):
  (1)E’(40)≧1000MPa
  (2)E’(100)≧10MPa
を満たす、積層フィルムを対象とする。
The present invention relates to a laminated film having at least a polyvinyl acetal resin layer (A) and a thermoplastic resin layer (B), and a Brookfield type (B type) viscometer for the polyvinyl acetal resin in the layer (A). The viscosity of a 10% by mass toluene / ethanol = 1/1 (mass ratio) solution measured at 20 ° C. and 30 rpm was greater than 200 mPa · s, and the amount of plasticizer in layer (A) was 0 to 35% by mass based on the total mass of A), the thickness of the layer (A) is 10 to 350 μm, and the resin material constituting the layer (B) has a tensile storage modulus at 40 ° C. E ′ ( 40) and the tensile storage modulus E ′ (100) at 100 ° C. are calculated by the formulas (1) and (2):
(1) E '(40) ≧ 1000 MPa
(2) E '(100) ≧ 10 MPa
A laminated film that satisfies is satisfied.
[ポリビニルアセタール樹脂層(A)]
 本発明の積層フィルムは、1層以上のポリビニルアセタール樹脂層(A)を有する。本発明の積層フィルムが複数の層(A)を有する場合、層(A)を構成するそれぞれの樹脂材料は同じであってもよいし、異なっていてもよい。なお、本発明において樹脂材料とは、樹脂からなる材料、又は樹脂を含む混合物(即ち樹脂組成物)を意味する。
[Polyvinyl acetal resin layer (A)]
The laminated film of the present invention has one or more polyvinyl acetal resin layers (A). When the laminated film of the present invention has a plurality of layers (A), the resin materials constituting the layer (A) may be the same or different. In the present invention, the term “resin material” means a material made of a resin or a mixture containing a resin (that is, a resin composition).
 本発明の積層フィルムにおける層(A)は、樹脂成分としてポリビニルアセタール樹脂を含有する。層(A)中のポリビニルアセタール樹脂の含有量は、層(A)の総質量に基づいて、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは65質量%以上、特に好ましくは70質量%以上である。前記含有量の上限値は特に制限されない。前記含有量は、層(A)の総質量に基づいて100質量%以下である。 層 The layer (A) in the laminated film of the present invention contains a polyvinyl acetal resin as a resin component. The content of the polyvinyl acetal resin in the layer (A) is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 65% by mass or more, based on the total mass of the layer (A). Is 70% by mass or more. The upper limit of the content is not particularly limited. The content is 100% by mass or less based on the total mass of the layer (A).
 層(A)は、多成分による相分離構造を有していてもよいが、相分離構造は島成分の平均粒径が100nm未満であることが好ましく、80nm未満であることがより好ましく、海島の相分離構造を示さないことが特に好ましい。海島の相分離構造を示さないか、十分に細かい粒径を示すことにより、車のフロントガラス等にも使用可能な透明性を確保できる。 The layer (A) may have a multi-component phase-separated structure, but the phase-separated structure preferably has an average particle size of the island component of less than 100 nm, more preferably less than 80 nm, and It is particularly preferred not to exhibit the phase separation structure of By not exhibiting the phase separation structure of the sea-island or exhibiting a sufficiently small particle size, transparency that can be used for a windshield of a car or the like can be ensured.
 本発明における層(A)に含まれるポリビニルアセタール樹脂は、1つのポリビニルアセタール樹脂であるか、又は粘度平均重合度、アセタール化度、酢酸ビニル単位含有量、ビニルアルコール単位含有量、エチレン単位含有量、アセタール化に用いられるアルデヒドの分子量、及び鎖長のうちいずれか1つ以上がそれぞれ異なる2つ以上のポリビニルアセタール樹脂であってよい。層(A)が異なる2つ以上のポリビニルアセタール樹脂を含む場合、溶融成形の容易性の観点、並びに合わせガラス作製時の、後述する別のポリビニルアセタール樹脂層(C)又は機能性層(D)の歪み及び合わせガラス使用時のガラスのずれ等を防ぎやすい観点から、ポリビニルアセタール樹脂は、粘度平均重合度の異なる少なくとも2つのポリビニルアセタール樹脂の混合物であるか、又は粘度平均重合度の異なる少なくとも2つのポリビニルアルコール系樹脂の混合物のアセタール化物であることが好ましい。 The polyvinyl acetal resin contained in the layer (A) in the present invention is one polyvinyl acetal resin, or has a viscosity average polymerization degree, an acetalization degree, a vinyl acetate unit content, a vinyl alcohol unit content, and an ethylene unit content. And two or more polyvinyl acetal resins each differing in at least one of the molecular weight and the chain length of the aldehyde used for acetalization. When the layer (A) contains two or more different polyvinyl acetal resins, another polyvinyl acetal resin layer (C) or a functional layer (D), which will be described later, at the time of melt-molding ease and at the time of producing laminated glass. Polyvinyl acetal resin is a mixture of at least two polyvinyl acetal resins having different viscosity-average polymerization degrees, or at least two having different viscosity-average polymerization degrees, from the viewpoint of easily preventing distortion of glass and displacement of glass when using laminated glass. It is preferably an acetalized product of a mixture of two polyvinyl alcohol-based resins.
 本発明に用いられるポリビニルアセタール樹脂のアセタール化度は、好ましくは40モル%以上、より好ましくは45モル%以上、さらに好ましくは50モル%以上、さらにより好ましくは60モル%以上、特に好ましくは68モル%以上であり、好ましくは86モル%以下、より好ましくは84モル%以下、さらに好ましくは82モル%以下である。アセタール化度は、ポリビニルアセタール樹脂の製造原料であるポリビニルアルコール系樹脂中の主鎖の炭素2個からなる単位(例えば、ビニルアルコール単位、酢酸ビニル単位、エチレン単位等)を一繰返し単位とし、その一繰返し単位を基準とした、アセタールを形成する上記単位の量である。アセタール化度が前記した下限値と上限値との範囲内であると、得られる層(A)の力学的強度が十分なものになりやすく、ポリビニルアセタール樹脂と可塑剤との相溶性が良好になりやすいため好ましい。層(A)が異なる2つ以上のポリビニルアセタール樹脂を含む場合、少なくとも1つのポリビニルアセタール樹脂のアセタール化度が、前記した下限値と上限値との範囲内であることが好ましい。また、ポリビニルアセタール樹脂のアセタール化度は、耐水性の観点からは65モル%以上であることが好ましい。アセタール化度は、アセタール化反応におけるアルデヒドの使用量を調整することにより調整できる。 The degree of acetalization of the polyvinyl acetal resin used in the present invention is preferably at least 40 mol%, more preferably at least 45 mol%, further preferably at least 50 mol%, still more preferably at least 60 mol%, particularly preferably at least 68 mol%. Mol% or more, preferably 86 mol% or less, more preferably 84 mol% or less, still more preferably 82 mol% or less. The degree of acetalization is defined as a unit consisting of two carbon atoms in the main chain (eg, a vinyl alcohol unit, a vinyl acetate unit, an ethylene unit, etc.) in a polyvinyl alcohol-based resin which is a raw material for producing a polyvinyl acetal resin. The amount of the above units forming an acetal, based on one repeating unit. When the acetalization degree is in the range between the lower limit and the upper limit described above, the mechanical strength of the obtained layer (A) tends to be sufficient, and the compatibility between the polyvinyl acetal resin and the plasticizer is good. It is preferable because it easily becomes. When the layer (A) contains two or more different polyvinyl acetal resins, it is preferable that the degree of acetalization of at least one polyvinyl acetal resin is in the range between the lower limit and the upper limit described above. The degree of acetalization of the polyvinyl acetal resin is preferably at least 65 mol% from the viewpoint of water resistance. The degree of acetalization can be adjusted by adjusting the amount of aldehyde used in the acetalization reaction.
 ポリビニルアセタール樹脂の酢酸ビニル単位含有量は、好ましくは0.1モル%以上、より好ましくは0.3モル%以上であり、好ましくは30モル%以下、より好ましくは20モル%以下であり、特に好ましくは0.5~3モル%又は5~8モル%である。酢酸ビニル単位の含有量は、ポリビニルアセタール樹脂の製造原料であるポリビニルアルコール系樹脂中の主鎖の炭素2個からなる単位(例えば、ビニルアルコール単位、酢酸ビニル単位、エチレン単位等)を一繰返し単位とし、その一繰返し単位を基準とした酢酸ビニル単位の量である。酢酸ビニル単位含有量は、ポリビニルアセタール樹脂の極性に影響を及ぼし得、それによって層(A)の可塑剤相溶性又は機械的強度が変化し得る。酢酸ビニル単位含有量が前記した下限値と上限値との範囲内であると、場合により隣接して積層されてよい別のポリビニルアセタール樹脂層(C)との良好な接合が達成されやすく、また光学歪の低減等が達成されやすい。層(A)が異なる2つ以上のポリビニルアセタール樹脂を含む場合、少なくとも1つのポリビニルアセタール樹脂の酢酸ビニル単位含有量が、前記範囲内であることが好ましい。酢酸ビニル単位の含有量は、原料のポリビニルアルコール系樹脂のケン化度を適宜調整することにより調整できる。 The vinyl acetate unit content of the polyvinyl acetal resin is preferably at least 0.1 mol%, more preferably at least 0.3 mol%, preferably at most 30 mol%, more preferably at most 20 mol%, Preferably it is 0.5 to 3 mol% or 5 to 8 mol%. The content of the vinyl acetate unit is such that a unit composed of two carbon atoms in the main chain (for example, a vinyl alcohol unit, a vinyl acetate unit, an ethylene unit, etc.) in a polyvinyl alcohol-based resin which is a raw material for producing a polyvinyl acetal resin is a repeating unit. And the amount of vinyl acetate units based on one repeating unit. The vinyl acetate unit content can affect the polarity of the polyvinyl acetal resin, which can change the plasticizer compatibility or mechanical strength of layer (A). When the vinyl acetate unit content is in the range between the lower limit and the upper limit, good bonding with another polyvinyl acetal resin layer (C) which may be optionally laminated may be easily achieved, and Reduction of optical distortion and the like are easily achieved. When the layer (A) contains two or more different polyvinyl acetal resins, the vinyl acetate unit content of at least one polyvinyl acetal resin is preferably within the above range. The content of the vinyl acetate unit can be adjusted by appropriately adjusting the degree of saponification of the raw material polyvinyl alcohol-based resin.
 ポリビニルアセタール樹脂のビニルアルコール単位含有量は、好ましくは9~36モル%、より好ましくは18~34モル%、さらに好ましくは22~34モル%、さらにより好ましくは26~34モル%、特に好ましくは26~31モル%、特により好ましくは26~30モル%である。ビニルアルコール単位含有量は、ポリビニルアセタール樹脂の製造原料であるポリビニルアルコール系樹脂中の主鎖の炭素2個からなる単位(例えば、ビニルアルコール単位、酢酸ビニル単位、エチレン単位等)を一繰返し単位とし、その一繰返し単位を基準としたビニルアルコール単位の量である。ビニルアルコール単位含有量が前記範囲内であると、場合により隣接して積層される層(C)との屈折率差が小さくなり、光学むらの少ない合わせガラスを得やすい。一方で、さらに遮音性能を合わせて付与するために好ましいビニルアルコール単位含有量は9~29モル%、より好ましくは12~26モル%、さらに好ましくは15~23モル%、特に好ましくは16~20モル%である。層(A)が異なる2つ以上のポリビニルアセタール樹脂を含む場合、少なくとも1つのポリビニルアセタール樹脂のビニルアルコール単位含有量が、前記範囲内であることが好ましい。ビニルアルコール単位含有量は、アセタール化反応におけるアルデヒドの使用量を調整することにより前記範囲内に調整できる。 The vinyl alcohol unit content of the polyvinyl acetal resin is preferably 9 to 36 mol%, more preferably 18 to 34 mol%, further preferably 22 to 34 mol%, still more preferably 26 to 34 mol%, and particularly preferably. It is 26 to 31 mol%, particularly preferably 26 to 30 mol%. The vinyl alcohol unit content is defined as a unit composed of two carbon atoms in the main chain (for example, a vinyl alcohol unit, a vinyl acetate unit, an ethylene unit, etc.) in a polyvinyl alcohol-based resin, which is a raw material for producing a polyvinyl acetal resin, as one repeating unit. , Is the amount of vinyl alcohol units based on one repeating unit. When the vinyl alcohol unit content is within the above range, the difference in the refractive index between the layer (C) and the adjacently laminated layer (C) may be reduced in some cases, and a laminated glass with less optical unevenness is easily obtained. On the other hand, the content of the vinyl alcohol unit is preferably 9 to 29 mol%, more preferably 12 to 26 mol%, further preferably 15 to 23 mol%, and particularly preferably 16 to 20 mol% in order to further impart the sound insulation performance. Mol%. When the layer (A) includes two or more different polyvinyl acetal resins, the vinyl alcohol unit content of at least one polyvinyl acetal resin is preferably within the above range. The vinyl alcohol unit content can be adjusted within the above range by adjusting the amount of aldehyde used in the acetalization reaction.
 ポリビニルアセタール樹脂は通常、アセタールを形成する単位、ビニルアルコール単位及び酢酸ビニル単位から構成されており、これらの各単位量は、例えばJIS K6728「ポリビニルブチラール試験方法」又は核磁気共鳴法(NMR)によって測定される。 The polyvinyl acetal resin is usually composed of an acetal-forming unit, a vinyl alcohol unit and a vinyl acetate unit, and the amount of each of these units can be determined by, for example, JIS K6728 "Testing method for polyvinyl butyral" or nuclear magnetic resonance (NMR). Measured.
 ポリビニルアセタール樹脂の、ブルックフィールド型(B型)粘度計を用いて20℃、30rpmで測定された、濃度10質量%のトルエン/エタノール=1/1(質量比)溶液の粘度は、200mPa・sより大きい。前記粘度が200mPa・s以下であると、合わせガラス作製時に機能性層(D)の歪みを十分に抑制することができず、得られる合わせガラスの高温下でのガラスのずれを十分に抑制することができない。
 合わせガラス作製時に場合により用いてよい層(C)から可塑剤が層(A)へ移行する場合においては、前記粘度は、好ましくは220mPa・s以上、より好ましくは230mPa・s以上、さらにより好ましくは240mPa・s以上、特に好ましくは265mPa・s以上である。また、合わせガラス作製時に場合により用いてよい層(C)から可塑剤が層(A)へ移行しない場合、例えば間にバリア層が存在する場合等においては、前記粘度は、好ましくは220mPa・s以上、より好ましくは230mPa・s以上、さらにより好ましくは240mPa・s以上である。ポリビニルアセタール樹脂の前記粘度が前記下限値以上であると、合わせガラスの作製時に層(C)又は層(D)の歪み及び割れが抑制されやすく、得られる合わせガラスの高温下でのガラスのずれが防止されやすい。
The viscosity of a 10% by mass toluene / ethanol = 1/1 (mass ratio) solution of a polyvinyl acetal resin measured at 20 ° C. and 30 rpm using a Brookfield type (B type) viscometer has a viscosity of 200 mPa · s. Greater than. When the viscosity is 200 mPa · s or less, the distortion of the functional layer (D) cannot be sufficiently suppressed during the production of the laminated glass, and the displacement of the obtained laminated glass at a high temperature is sufficiently suppressed. Can not do.
In the case where the plasticizer shifts from the layer (C) which may be optionally used during the production of a laminated glass to the layer (A), the viscosity is preferably at least 220 mPa · s, more preferably at least 230 mPa · s, even more preferably. Is at least 240 mPa · s, particularly preferably at least 265 mPa · s. When the plasticizer does not migrate from the layer (C), which may be used in some cases, to the layer (A) during the production of the laminated glass, for example, when a barrier layer is present between the layers, the viscosity is preferably 220 mPa · s. The above is more preferably 230 mPa · s or more, and still more preferably 240 mPa · s or more. When the viscosity of the polyvinyl acetal resin is equal to or more than the lower limit, distortion and cracking of the layer (C) or the layer (D) are easily suppressed during the production of the laminated glass, and the resulting laminated glass is misaligned at a high temperature. Is easily prevented.
 層(A)中の可塑剤の量が、層(A)の総質量に対して0~10質量%の場合は、前記粘度は、良好な製膜性が得られやすい観点、及び合わせガラスの作製のしやすさから、通常は1500mPa・s以下、好ましくは1000mPa・s以下、より好ましくは800mPa・s以下、さらにより好ましくは500mPa以下、特に好ましくは450mPa以下である。
 層(A)中の可塑剤の量が、層(A)の総質量に対して10~35質量%の場合は、前記粘度は、良好な製膜性が得られやすい観点、及び合わせガラスの作製のしやすさから、通常は3000mPa・s以下、好ましくは2000mPa・s以下、さらに好ましくは1500mPa・s以下である。
When the amount of the plasticizer in the layer (A) is 0 to 10% by mass with respect to the total mass of the layer (A), the viscosity is adjusted so that good film-forming properties can be easily obtained, and From the viewpoint of ease of production, it is usually 1500 mPa · s or less, preferably 1000 mPa · s or less, more preferably 800 mPa · s or less, still more preferably 500 mPa or less, and particularly preferably 450 mPa or less.
When the amount of the plasticizer in the layer (A) is from 10 to 35% by mass based on the total mass of the layer (A), the viscosity is preferably such that good film-forming properties can be easily obtained, and From the viewpoint of ease of production, it is usually 3000 mPa · s or less, preferably 2000 mPa · s or less, more preferably 1500 mPa · s or less.
 前記粘度は、粘度平均重合度の高いポリビニルアルコール系樹脂を原料又は原料の一部として用いて製造したポリビニルアセタール樹脂を使用又は併用することにより調整できる。層(A)を構成するために使用されるポリビニルアセタール樹脂が複数の樹脂の混合物からなる場合、前記粘度は、そのような混合物の粘度である。 The viscosity can be adjusted by using or using a polyvinyl acetal resin produced using a polyvinyl alcohol-based resin having a high viscosity average degree of polymerization as a raw material or a part of the raw material. When the polyvinyl acetal resin used to form the layer (A) comprises a mixture of a plurality of resins, the viscosity is the viscosity of such a mixture.
 ポリビニルアセタール樹脂のピークトップ分子量は、好ましくは115,000~200,000、より好ましくは120,000~160,000、特に好ましくは130,000~150,000である。ポリビニルアセタール樹脂のピークトップ分子量が前記範囲内であると、好適な製膜性及び好適な膜物性(例えば、ラミネート適性、耐クリープ性及び破断伸度)を得やすい。粘度平均重合度の高いポリビニルアルコール系樹脂を原料又は原料の一部として用いて製造したポリビニルアセタール樹脂を使用又は併用することにより、ポリビニルアセタール樹脂のピークトップ分子量は前記範囲内に調整できる。
 層(A)中のポリビニルアセタール樹脂の分子量分布、即ち重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、好ましくは2.7以上、より好ましくは2.8以上、特に好ましくは2.9以上である。ポリビニルアセタール樹脂の分子量分布が前記下限値以上であると、製膜性及び好適な膜物性(例えば、ラミネート適性、耐クリープ性及び破断強度)を両立させやすい。粘度平均重合度の異なるポリビニルアルコール系樹脂の混合物をアセタール化したり、粘度平均重合度の異なるポリビニルアルコール系樹脂のアセタール化物を混合したりすることにより、ポリビニルアセタール樹脂の分子量分布は前記下限値以上に調整できる。分子量分布の上限値は特に限定されない。製膜しやすさの観点から、分子量分布は、通常は10以下、好ましくは5以下である。
 層(A)が異なる2つ以上のポリビニルアセタール樹脂を含む場合、少なくとも1つのポリビニルアセタール樹脂のピークトップ分子量及び分子量分布が、上記範囲内であることが好ましい。
 ピークトップ分子量及び分子量分布は、ゲル浸透クロマトグラフィー(GPC)を用い、分子量既知のポリスチレンを標準として求められる。
The peak top molecular weight of the polyvinyl acetal resin is preferably 115,000 to 200,000, more preferably 120,000 to 160,000, and particularly preferably 130,000 to 150,000. When the peak top molecular weight of the polyvinyl acetal resin is within the above range, suitable film-forming properties and suitable film physical properties (for example, suitability for lamination, creep resistance and elongation at break) are easily obtained. The peak top molecular weight of the polyvinyl acetal resin can be adjusted within the above range by using or using a polyvinyl acetal resin produced using a polyvinyl alcohol resin having a high viscosity average polymerization degree as a raw material or a part of the raw material.
The molecular weight distribution of the polyvinyl acetal resin in the layer (A), that is, the ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) is preferably 2.7 or more, more preferably 2.8. Above, particularly preferably 2.9 or more. When the molecular weight distribution of the polyvinyl acetal resin is equal to or more than the lower limit, it is easy to achieve both film forming properties and suitable film properties (for example, suitability for lamination, creep resistance and breaking strength). By acetalizing a mixture of polyvinyl alcohol-based resins having different viscosity average polymerization degrees, or by mixing acetalized products of polyvinyl alcohol-based resins having different viscosity average polymerization degrees, the molecular weight distribution of the polyvinyl acetal resin is not less than the lower limit. Can be adjusted. The upper limit of the molecular weight distribution is not particularly limited. From the viewpoint of easy film formation, the molecular weight distribution is usually 10 or less, preferably 5 or less.
When the layer (A) includes two or more different polyvinyl acetal resins, the peak top molecular weight and the molecular weight distribution of at least one polyvinyl acetal resin are preferably within the above ranges.
The peak top molecular weight and the molecular weight distribution are determined by gel permeation chromatography (GPC) using polystyrene having a known molecular weight as a standard.
 ポリビニルアセタール樹脂は従来公知の方法により製造でき、代表的には、ポリビニルアルコール系樹脂(例えばポリビニルアルコール樹脂又はエチレンビニルアルコールコポリマー)をアルデヒドによりアセタール化することによって製造できる。具体的には例えば、ポリビニルアルコール系樹脂を温水に溶解し、得られた水溶液を所定の温度(例えば0℃以上、好ましくは10℃以上、例えば90℃以下、好ましくは20℃以下)に保持しておいて、所要の酸触媒及びアルデヒドを加え、撹拌しながらアセタール化反応を進行させる。次いで、反応温度を70℃程度に上げて熟成して、反応を完結させ、その後、中和、水洗及び乾燥を行って、ポリビニルアセタール樹脂の粉末を得ることができる。 The polyvinyl acetal resin can be produced by a conventionally known method, typically, by acetalizing a polyvinyl alcohol-based resin (for example, polyvinyl alcohol resin or ethylene vinyl alcohol copolymer) with an aldehyde. Specifically, for example, a polyvinyl alcohol-based resin is dissolved in warm water, and the obtained aqueous solution is kept at a predetermined temperature (for example, 0 ° C. or higher, preferably 10 ° C. or higher, for example, 90 ° C. or lower, preferably 20 ° C. or lower). Then, the required acid catalyst and aldehyde are added, and the acetalization reaction proceeds with stirring. Next, the reaction temperature is raised to about 70 ° C. to ripen the reaction, thereby completing the reaction. Thereafter, neutralization, washing and drying are performed to obtain a powder of a polyvinyl acetal resin.
 本発明において使用されるポリビニルアセタール樹脂は、少なくとも1つのポリビニルアルコール系樹脂と、2~10個の炭素原子を有する1つ以上の脂肪族非分岐のアルデヒドとの反応により生じるものであることが好ましい。そのようなアルデヒドとしては、好適な破断エネルギーを有するポリビニルアセタール樹脂が得られやすい観点から、n-ブチルアルデヒドが好ましい。アセタール化に使用するアルデヒドにおけるn-ブチルアルデヒドの含有量は、好ましくは50質量%以上、より好ましくは80質量%以上、さらに好ましくは95質量%以上、特に好ましくは99質量%以上であり、100質量%であってもよい。 The polyvinyl acetal resin used in the present invention is preferably one produced by the reaction of at least one polyvinyl alcohol-based resin with one or more aliphatic unbranched aldehyde having 2 to 10 carbon atoms. . As such an aldehyde, n-butyraldehyde is preferable from the viewpoint that a polyvinyl acetal resin having a suitable breaking energy is easily obtained. The content of n-butyraldehyde in the aldehyde used for acetalization is preferably 50% by mass or more, more preferably 80% by mass or more, still more preferably 95% by mass or more, particularly preferably 99% by mass or more. % By mass.
 従って、本発明の好ましい一態様では、ポリビニルアセタール樹脂はポリビニルブチラール樹脂である。ポリビニルブチラール樹脂としては、ビニルエステルと他の単量体との共重合体をケン化して得られるポリビニルアルコール系重合体を、ブチルアルデヒドを用いてブチラール化した変性ポリビニルブチラール樹脂を用いることができる。前記した他の単量体としては、例えばエチレン及びプロピレン等が挙げられる。また、前記した他の単量体として、水酸基、カルボキシル基又はカルボキシレート基を有する単量体を用いることができる。 Accordingly, in one preferred embodiment of the present invention, the polyvinyl acetal resin is a polyvinyl butyral resin. As the polyvinyl butyral resin, a modified polyvinyl butyral resin obtained by butyralizing a polyvinyl alcohol-based polymer obtained by saponifying a copolymer of a vinyl ester and another monomer with butyraldehyde can be used. Examples of the other monomer include ethylene and propylene. Further, as the other monomer, a monomer having a hydroxyl group, a carboxyl group or a carboxylate group can be used.
 ポリビニルアセタール樹脂を製造するために使用されるポリビニルアルコール系樹脂は、単独であるか、又は粘度平均重合度若しくは加水分解度等が異なるポリビニルアルコール系樹脂の混合物であってよい。 The polyvinyl alcohol-based resin used for producing the polyvinyl acetal resin may be a single resin or a mixture of polyvinyl alcohol-based resins having different viscosity average polymerization degrees or hydrolysis degrees.
 ポリビニルアセタール樹脂の原料となるポリビニルアルコール系樹脂の粘度平均重合度は、好ましくは100以上、より好ましくは300以上、さらに好ましく400以上、さらにより好ましくは600以上、特に好ましくは700以上、特により好ましくは750以上である。ポリビニルアルコール系樹脂の粘度平均重合度が前記下限値以上であると、合わせガラスの作製時に層(C)又は層(D)の歪み及び断線が抑制されやすく、得られる合わせガラスにおいて熱によりガラスがずれる現象が防止されやすい。また、ポリビニルアルコール系樹脂の粘度平均重合度は、好ましくは5000以下、より好ましくは3000以下、さらに好ましくは2500以下、特に好ましくは2300以下、特により好ましくは2000以下である。ポリビニルアルコール系樹脂の粘度平均重合度が前記上限値以下であると、良好な製膜性を得やすい。 The viscosity average polymerization degree of the polyvinyl alcohol-based resin as a raw material of the polyvinyl acetal resin is preferably 100 or more, more preferably 300 or more, still more preferably 400 or more, still more preferably 600 or more, particularly preferably 700 or more, and particularly more preferably. Is 750 or more. When the viscosity average polymerization degree of the polyvinyl alcohol-based resin is equal to or more than the lower limit, distortion and disconnection of the layer (C) or the layer (D) are easily suppressed at the time of producing a laminated glass, and the glass is produced by heat in the obtained laminated glass. The deviation phenomenon is easily prevented. Further, the viscosity average polymerization degree of the polyvinyl alcohol-based resin is preferably 5,000 or less, more preferably 3,000 or less, further preferably 2,500 or less, particularly preferably 2300 or less, particularly preferably 2,000 or less. When the viscosity average polymerization degree of the polyvinyl alcohol-based resin is equal to or less than the upper limit, good film-forming properties are easily obtained.
 なお、ポリビニルアセタール樹脂の好ましい粘度平均重合度の値は、上記したポリビニルアルコール系樹脂の好ましい粘度平均重合度の値と同一である。層(A)が異なる2つ以上のポリビニルアセタール樹脂を含む場合、少なくとも1つのポリビニルアセタール樹脂の粘度平均重合度が、前記下限値以上かつ前記上限値以下であることが好ましい。 The preferable value of the viscosity average degree of polymerization of the polyvinyl acetal resin is the same as the preferable value of the viscosity average degree of polymerization of the polyvinyl alcohol-based resin. When the layer (A) contains two or more different polyvinyl acetal resins, it is preferable that the viscosity average polymerization degree of at least one polyvinyl acetal resin is not less than the lower limit and not more than the upper limit.
 得られるポリビニルアセタール樹脂の酢酸ビニル単位を好ましくは30モル%以下に設定するために、ケン化度が70モル%以上のポリビニルアルコール系樹脂を使用することが好ましい。ポリビニルアルコール系樹脂のケン化度が前記下限値以上であると、樹脂の透明性や耐熱性に優れる傾向にあり、またアルデヒドとの反応性も良好となる。ケン化度は、より好ましくは95モル%以上である。 ポ リ ビ ニ ル In order to set the vinyl acetate unit of the obtained polyvinyl acetal resin to preferably 30 mol% or less, it is preferable to use a polyvinyl alcohol resin having a saponification degree of 70 mol% or more. When the saponification degree of the polyvinyl alcohol-based resin is equal to or more than the lower limit, the transparency and heat resistance of the resin tend to be excellent, and the reactivity with the aldehyde also becomes good. The saponification degree is more preferably 95 mol% or more.
 ポリビニルアルコール系樹脂の粘度平均重合度及びケン化度は、JIS K 6726「ポリビニルアルコール試験方法」に基づいて測定することができる。 粘度 The viscosity average degree of polymerization and the degree of saponification of the polyvinyl alcohol-based resin can be measured based on JIS K 6726 “Testing method for polyvinyl alcohol”.
 層(A)は、良好な製膜性を得やすい観点から、未架橋のポリビニルアセタールを含むことが好ましい。層(A)が、架橋されたポリビニルアセタールを含むことも可能である。ポリビニルアセタールを架橋するための方法は、例えば、EP 1527107B1及びWO 2004/063231 A1(カルボキシル基含有ポリビニルアセタールの熱自己架橋)、EP 1606325 A1(ポリアルデヒドにより架橋されたポリビニルアセタール)、及びWO 2003/020776 A1(グリオキシル酸により架橋されたポリビニルアセタール)に記載されている。また、アセタール化反応条件を適宜調整することで、生成する分子間アセタール結合量をコントロールしたり、残存水酸基のブロック化度をコントロールしたりすることも有用な方法である。 The layer (A) preferably contains an uncrosslinked polyvinyl acetal from the viewpoint of easily obtaining good film-forming properties. It is also possible that layer (A) comprises a cross-linked polyvinyl acetal. Methods for cross-linking polyvinyl acetal are described, for example, in EP 1527107B1 and WO 2004/063231 A1 (thermal self-crosslinking of carboxyl group-containing polyvinyl acetal), EP 1606325 A1 (polyvinyl acetal cross-linked by polyaldehyde), and WO 2003/2003. 020776 @ A1 (polyvinyl acetal crosslinked with glyoxylic acid). It is also a useful method to control the amount of intermolecular acetal bonds generated or to control the degree of blocking of the remaining hydroxyl groups by appropriately adjusting the acetalization reaction conditions.
 層(A)の厚さは10~350μmである。前記厚さは、好ましくは20μm以上、より好ましくは30μm以上であり、好ましくは330μm以下、より好ましくは295μm以下、さらに好ましくは270μm以下、さらにより好ましくは250μm以下、特に好ましくは150μm以下、特により好ましくは120μm以下、特にさらに好ましくは100μm未満である。層(A)の厚さが前記下限値以上であると、層(A)の収縮又は変形に起因して層(C)又は層(D)に歪み等が生じる問題が起こりにくく、良好な製膜性を得やすい。また、層(A)の厚さが前記上限値以下であると、層(A)を用いた乗物用ガラスの耐衝撃性が小さくなる問題が起こりにくい。これは、層(A)に場合により積層される層(C)からの可塑剤移行量を少ない範囲に抑制できるためである。層(A)の厚さは、厚み計又はレーザー顕微鏡等を用いて測定できる。本発明の積層フィルムが複数の層(A)を有する場合、各層(A)の厚さが上記範囲内であることが好ましい。 The thickness of the layer (A) is 10 to 350 μm. The thickness is preferably 20 μm or more, more preferably 30 μm or more, preferably 330 μm or less, more preferably 295 μm or less, even more preferably 270 μm or less, even more preferably 250 μm or less, particularly preferably 150 μm or less, particularly more preferably Preferably it is 120 μm or less, particularly preferably less than 100 μm. When the thickness of the layer (A) is equal to or more than the lower limit, the problem that distortion or the like occurs in the layer (C) or the layer (D) due to shrinkage or deformation of the layer (A) is less likely to occur, and good production is achieved. Easy to obtain film properties. In addition, when the thickness of the layer (A) is equal to or less than the upper limit, the problem that the impact resistance of the vehicle glass using the layer (A) is reduced is less likely to occur. This is because the transfer amount of the plasticizer from the layer (C) which is optionally laminated on the layer (A) can be suppressed to a small range. The thickness of the layer (A) can be measured using a thickness gauge, a laser microscope, or the like. When the laminated film of the present invention has a plurality of layers (A), the thickness of each layer (A) is preferably within the above range.
 層(A)を構成する樹脂材料の40℃における引張貯蔵弾性率E’(40)は好ましくは1000MPa未満であり、又は、層(A)を構成する樹脂材料の100℃における引張貯蔵弾性率E’(100)は好ましくは10MPa未満である。 The tensile storage modulus E ′ (40) at 40 ° C. of the resin material constituting the layer (A) is preferably less than 1000 MPa, or the tensile storage modulus E at 100 ° C. of the resin material constituting the layer (A). '(100) is preferably less than 10 MPa.
<可塑剤>
 本発明において、層(A)中の可塑剤の量は、層(A)の総質量に対して0~35質量%である。前記可塑剤量が35質量%を超えると、層(A)を製膜することが難しく、特に加熱時の収縮率を低く抑えることが困難であり、層(D)を形成する際に層(D)の歪み及び/又は割れが生じやすい。
 前記可塑剤量は、好ましくは0~33質量%、より好ましくは0~30質量%である。層(A)中の可塑剤の量が前記範囲内であると、製膜性及び取扱い性に優れた層(A)が製造されやすく、層(A)を用いた合わせガラスの作製時に層(D)の歪み及び割れが抑制されやすい。
<Plasticizer>
In the present invention, the amount of the plasticizer in the layer (A) is 0 to 35% by mass based on the total mass of the layer (A). When the amount of the plasticizer is more than 35% by mass, it is difficult to form the layer (A), and it is particularly difficult to keep the shrinkage rate at the time of heating low. D) easily causes distortion and / or cracking.
The amount of the plasticizer is preferably 0 to 33% by mass, more preferably 0 to 30% by mass. When the amount of the plasticizer in the layer (A) is within the above range, the layer (A) excellent in film-forming property and handleability is easily produced, and the layer (A) is produced when a laminated glass using the layer (A) is produced. D) Distortion and cracking are easily suppressed.
 層(A)中に可塑剤が含まれる場合、可塑剤として、好ましくは、下記群から選択される1以上の化合物が使用される。
・多価の脂肪族又は芳香族酸のエステル。例えば、ジアルキルアジペート(例えば、ジヘキシルアジペート、ジ-2-エチルブチルアジペート、ジオクチルアジペート、ジ-2-エチルヘキシルアジペート、ヘキシルシクロヘキシルアジペート、ジヘプチルアジペート、ジノニルアジペート、ジイソノニルアジペート、ヘプチルノニルアジペート);アジピン酸とアルコール若しくはエーテル化合物を含むアルコールとのエステル〔例えば、ジ(ブトキシエチル)アジペート、ジ(ブトキシエトキシエチル)アジペート〕;ジアルキルセバケート(例えば、ジブチルセバケート);セバシン酸と脂環式若しくはエーテル化合物を含むアルコールとのエステル;フタル酸のエステル(例えば、ブチルベンジルフタレート、ビス-2-ブトキシエチルフタレート);及び脂環式多価カルボン酸と脂肪族アルコールとのエステル(例えば、1,2-シクロヘキサンジカルボン酸ジイソノニルエステル)が挙げられる。
・多価の脂肪族若しくは芳香族アルコール又は1つ以上の脂肪族若しくは芳香族置換基を有するオリゴエーテルグリコールのエステル又はエーテル。例えば、グリセリン、ジグリコール、トリグリコール、テトラグリコール等と、直鎖状若しくは分岐状の脂肪族若しくは脂環式カルボン酸とのエステルが挙げられ、繰り返し単位2~10のオリゴアルキレングリコールの少なくとも片末端がエーテル結合若しくはエステル結合により炭素数2~14の基と結合している化合物、又は炭素数2~14のオリゴカルボン酸化合物とエーテル結合を含んでいてもよい炭素数2~14のアルコール化合物とのエステル化合物が挙げられる。具体的には、ジエチレングリコール-ビス-(2-エチルヘキサノエート)、トリエチレングリコール-ビス-(2-エチルヘキサノエート)(以下において、「3GO」と称することもある)、トリエチレングリコール-ビス-(2-エチルブタノエート)、テトラエチレングリコール-ビス-(2-エチルヘキサノエート)、テトラエチレングリコール-ビス-n-ヘプタノエート、トリエチレングリコール-ビス-n-ヘプタノエート、トリエチレングリコール-ビス-n-ヘキサノエート、テトラエチレングリコールジメチルエーテル、及びジプロピレングリコールジベンゾエートが挙げられる。
・脂肪族又は芳香族アルコールのリン酸エステル。例えば、トリス(2-エチルヘキシル)ホスフェート、トリエチルホスフェート、ジフェニル-2-エチルヘキシルホスフェート、及びトリクレジルホスフェートが挙げられる。
・クエン酸、コハク酸及び/又はフマル酸のエステル。
When a plasticizer is contained in the layer (A), one or more compounds selected from the following group are preferably used as the plasticizer.
Esters of polyvalent aliphatic or aromatic acids. For example, dialkyl adipates (eg, dihexyl adipate, di-2-ethylbutyl adipate, dioctyl adipate, di-2-ethylhexyl adipate, hexyl cyclohexyl adipate, diheptyl adipate, dinonyl adipate, diisononyl adipate, heptyl nonyl adipate); adipic acid Of an alcohol containing an alcohol or an ether compound [eg, di (butoxyethyl) adipate, di (butoxyethoxyethyl) adipate]; dialkyl sebacate (eg, dibutyl sebacate); sebacic acid and an alicyclic or ether compound Esters of phthalic acid (eg, butylbenzyl phthalate, bis-2-butoxyethyl phthalate); and cycloaliphatic polyvalent carboxy Acid and esters of aliphatic alcohols (e.g., 1,2-cyclohexane dicarboxylic acid diisononyl esters).
Esters or ethers of polyhydric aliphatic or aromatic alcohols or oligoether glycols having one or more aliphatic or aromatic substituents. Examples thereof include esters of glycerin, diglycol, triglycol, tetraglycol and the like with a linear or branched aliphatic or alicyclic carboxylic acid, and at least one terminal of an oligoalkylene glycol having 2 to 10 repeating units. Is a compound having an ether bond or an ester bond to a group having 2 to 14 carbon atoms, or an oligocarboxylic acid compound having 2 to 14 carbon atoms and an alcohol compound having 2 to 14 carbon atoms which may contain an ether bond. Ester compounds of the formula (I). Specifically, diethylene glycol-bis- (2-ethylhexanoate), triethylene glycol-bis- (2-ethylhexanoate) (hereinafter sometimes referred to as “3GO”), triethylene glycol- Bis- (2-ethylbutanoate), tetraethylene glycol-bis- (2-ethylhexanoate), tetraethylene glycol-bis-n-heptanoate, triethylene glycol-bis-n-heptanoate, triethylene glycol- Bis-n-hexanoate, tetraethylene glycol dimethyl ether, and dipropylene glycol dibenzoate.
Phosphoric acid esters of aliphatic or aromatic alcohols; Examples include tris (2-ethylhexyl) phosphate, triethyl phosphate, diphenyl-2-ethylhexyl phosphate, and tricresyl phosphate.
Esters of citric, succinic and / or fumaric acid.
 また、多価アルコールと多価カルボン酸とからなるポリエステル若しくはオリゴエステル、これらの末端エステル化物若しくはエーテル化物、ラクトン若しくはヒドロキシカルボン酸からなるポリエステル若しくはオリゴエステル、又はこれらの末端エステル化物若しくはエーテル化物等を可塑剤として用いてもよい。 Further, a polyester or oligoester composed of a polyhydric alcohol and a polycarboxylic acid, a terminal ester or ether thereof, a polyester or oligoester composed of lactone or hydroxycarboxylic acid, or a terminal ester or ether thereof. It may be used as a plasticizer.
 層(A)中に可塑剤が含まれる場合、層(A)と積層する場合の層(C)との間で可塑剤が移行することに伴う問題(例えば、経時的な物性変化等の問題)を抑制しやすい観点から、積層する層(C)に含まれるものと同じ可塑剤、又は層(C)の物性(例えば、耐熱性、耐光性、透明性及び可塑化効果)を損なわない可塑剤を使用することが好ましい。このような観点から、可塑剤としては、繰り返し単位2~10のオリゴアルキレングリコールの少なくとも片末端がエーテル結合若しくはエステル結合により炭素数2~14の基と結合している化合物、又は炭素数2~14のオリゴカルボン酸化合物とエーテル結合を含んでいてもよい炭素数2~14のアルコール化合物とのエステル化合物が好ましく、中でも3GO、トリエチレングリコール-ビス(2-エチルブタノエート)、テトラエチレングリコール-ビス-(2-エチルヘキサノエート)、テトラエチレングリコール-ビス-n-ヘプタノエートがより好ましく、トリエチレングリコール-ビス-(2-エチルヘキサノエート)が特に好ましい。 When the plasticizer is contained in the layer (A), a problem (for example, a problem such as a change in physical properties over time) caused by the migration of the plasticizer between the layer (A) and the layer (C) when laminated. ), From the viewpoint of easy suppression, the same plasticizer as that contained in the layer (C) to be laminated, or plasticity that does not impair the physical properties (eg, heat resistance, light resistance, transparency, and plasticizing effect) of the layer (C). It is preferred to use agents. From such a viewpoint, as the plasticizer, a compound in which at least one terminal of the oligoalkylene glycol having 2 to 10 repeating units is bonded to a group having 2 to 14 carbon atoms by an ether bond or an ester bond, or a compound having 2 to 10 carbon atoms An ester compound of an oligocarboxylic acid compound having 14 and an alcohol compound having 2 to 14 carbon atoms which may contain an ether bond is preferable. Among them, 3GO, triethylene glycol-bis (2-ethylbutanoate), tetraethylene glycol -Bis- (2-ethylhexanoate) and tetraethylene glycol-bis-n-heptanoate are more preferred, and triethylene glycol-bis- (2-ethylhexanoate) is particularly preferred.
 層(A)に含まれるポリビニルアセタール樹脂及び可塑剤の合計量は特に制限されないが、層(A)の総質量に基づいて、好ましくは50質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、さらにより好ましくは95質量%以上、特に好ましくは99質量%以上、極めて好ましくは99.5質量%以上であり、100質量%であってもよい。 The total amount of the polyvinyl acetal resin and the plasticizer contained in the layer (A) is not particularly limited, but is preferably 50% by mass or more, more preferably 80% by mass or more, and further preferably, based on the total mass of the layer (A). Is 90% by mass or more, even more preferably 95% by mass or more, particularly preferably 99% by mass or more, very preferably 99.5% by mass or more, and may be 100% by mass.
〔他の添加剤〕
 層(A)には、ポリビニルアセタール樹脂及び場合により含まれる可塑剤以外の成分として、さらに遮熱材料(例えば、赤外線吸収能を有する、無機遮熱性微粒子又は有機遮熱性材料)、紫外線吸収剤、酸化防止剤、光安定剤、接着力調整剤及び/又は接着性を調整する各種添加剤、ブロッキング防止剤、顔料、染料等が、必要に応じて添加されていてもよい。
(Other additives)
In the layer (A), as a component other than the polyvinyl acetal resin and the plasticizer optionally contained, a heat-shielding material (for example, an inorganic heat-shielding fine particle or an organic heat-shielding material having an infrared absorbing ability), an ultraviolet absorber, Antioxidants, light stabilizers, adhesion regulators and / or various additives for regulating adhesion, antiblocking agents, pigments, dyes, and the like may be added as necessary.
<紫外線吸収剤>
 紫外線吸収剤は、紫外線を吸収する能力を有する化合物である。紫外線吸収剤は、主に光エネルギーを熱エネルギーに変換する機能を有すると言われる化合物である。紫外線吸収剤としては、ベンゾフェノン類、ベンゾトリアゾール類、トリアジン類、ベンゾエート類、サリシレート類、シアノアクリレート類、蓚酸アニリド類、マロン酸エステル類、及びホルムアミジン類等が挙げられる。これらは1種又は2種以上を用いることができる。上記の中でも、ベンゾトリアゾール類、トリアジン類、又は波長380~450nmにおけるモル吸光係数の最大値εmaxが1200dm・mol-1・cm-1以下である紫外線吸収剤が好ましい。
<Ultraviolet absorber>
An ultraviolet absorber is a compound having the ability to absorb ultraviolet light. An ultraviolet absorber is a compound that is said to have a function of mainly converting light energy into heat energy. Examples of the ultraviolet absorber include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, oxalic anilides, malonic esters, and formamidines. These can be used alone or in combination of two or more. Among the above, benzotriazoles, triazines, or ultraviolet absorbers having a maximum value ε max of the molar extinction coefficient at a wavelength of 380 to 450 nm of 1200 dm 3 · mol −1 · cm −1 or less are preferable.
 ベンゾトリアゾール類は、紫外線被照による着色等の光学特性低下を抑制する効果が高い。ベンゾトリアゾール類としては、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(BASF社製;商品名TINUVIN329)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASF社製;商品名TINUVIN234)、及び、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノール](株式会社ADEKA製;LA-31)等が好ましい。 Benzotriazoles have a high effect of suppressing deterioration of optical properties such as coloring due to irradiation with ultraviolet rays. Examples of benzotriazoles include 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (manufactured by BASF; trade name TINUVIN329), 2- (2H- Benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by BASF; trade name TINUVIN234) and 2,2′-methylenebis [6- (2H-benzotriazole) -2-yl) -4-tert-octylphenol] (manufactured by ADEKA Corporation; LA-31) and the like.
 波長380~450nmにおけるモル吸光係数の最大値εmaxが1200dm・mol-1・cm-1以下である紫外線吸収剤は、得られる積層フィルムの黄色味を抑制できる。このような紫外線吸収剤としては、2-エチル-2’-エトキシ-オキサルアニリド(クラリアントジャパン社製;商品名サンデユボアVSU)等が挙げられる。 An ultraviolet absorber having a maximum value ε max of the molar extinction coefficient at a wavelength of 380 to 450 nm of 1200 dm 3 · mol −1 · cm −1 or less can suppress the yellow tint of the obtained laminated film. Examples of such an ultraviolet absorbent include 2-ethyl-2'-ethoxy-oxalanilide (manufactured by Clariant Japan; trade name: Sandueboa VSU).
 上記した紫外線吸収剤の中で、紫外線被照による樹脂劣化が抑えられるという観点から、ベンゾトリアゾール類等が好ましく用いられる。 ベ ン ゾ Among the above-mentioned ultraviolet absorbers, benzotriazoles and the like are preferably used from the viewpoint that resin deterioration due to ultraviolet irradiation is suppressed.
 また、波長380nm付近の波長を効率的に吸収したい場合は、トリアジン類の紫外線吸収剤が好ましく用いられる。このような紫外線吸収剤としては、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン(株式会社ADEKA製;LA-F70)、及びその類縁体であるヒドロキシフェニルトリアジン系紫外線吸収剤(BASF社製;TINUVIN477-DやTINUVIN460やTINUVIN479)等が挙げられる。 い Further, when it is desired to efficiently absorb a wavelength near the wavelength of 380 nm, a triazine ultraviolet absorber is preferably used. Examples of such an ultraviolet absorber include 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA Corporation; LA-F70); And hydroxyphenyltriazine-based ultraviolet absorbers (manufactured by BASF; TINUVIN 477-D, TINUVIN 460, and TINUVIN 479) which are analogs thereof.
 なお、紫外線吸収剤のモル吸光係数の最大値εmaxは、次のようにして測定する。シクロヘキサン1Lに紫外線吸収剤10.00mgを添加し、目視による観察で未溶解物がないように溶解させる。この溶液を1cm×1cm×3cmの石英ガラスセルに注入し、日立製作所社製U-3410型分光光度計を用い、波長380~450nmでの吸光度を測定する。紫外線吸収剤の分子量(MUV)と、測定された吸光度の最大値(Amax)とから次式により計算し、モル吸光係数の最大値εmaxを算出する。
 εmax=[Amax/(10×10-3)]×MUV
The maximum value ε max of the molar extinction coefficient of the ultraviolet absorber is measured as follows. 10.00 mg of an ultraviolet absorber is added to 1 L of cyclohexane, and dissolved so that there is no undissolved matter by visual observation. This solution is poured into a 1 cm × 1 cm × 3 cm quartz glass cell, and the absorbance at a wavelength of 380 to 450 nm is measured using a U-3410 type spectrophotometer manufactured by Hitachi, Ltd. The maximum value ε max of the molar extinction coefficient is calculated from the molecular weight (M UV ) of the ultraviolet absorbent and the measured maximum absorbance (A max ) according to the following equation.
ε max = [A max / (10 × 10 −3 )] × M UV
 層(A)における紫外線吸収剤の面密度(g/m)は、好ましくは0.2以上、より好ましくは0.5以上、特に好ましくは0.7以上であり、好ましくは10.0以下、より好ましくは5.0以下、特に好ましくは3.0以下である。層(A)における紫外線吸収剤の面密度(g/m)が前記した下限値と上限値との範囲内であると、合わせガラスとした場合に、十分な紫外線吸収効果が発現されやすく、また、良好なヘイズ、良好な耐候性又は低減された色差変化を得やすい。 The areal density (g / m 2 ) of the ultraviolet absorbent in the layer (A) is preferably 0.2 or more, more preferably 0.5 or more, particularly preferably 0.7 or more, and preferably 10.0 or less. , More preferably 5.0 or less, particularly preferably 3.0 or less. When the areal density (g / m 2 ) of the ultraviolet absorbent in the layer (A) is in the range between the lower limit and the upper limit described above, when the laminated glass is used, a sufficient ultraviolet absorbing effect is easily exhibited, In addition, good haze, good weather resistance, or a reduced change in color difference is easily obtained.
 紫外線吸収剤の添加量は、層(A)に含有されるポリビニルアセタール樹脂に対して質量基準で好ましくは10ppm以上、より好ましくは100ppm以上であり、好ましくは50,000ppm以下、より好ましくは10,000ppm以下である。添加量前記下限値以上であると、十分な効果が発現されやすい。紫外線吸収剤の量を50,000ppmより多くしても格段の効果向上は望めない。 The amount of the ultraviolet absorber added is preferably not less than 10 ppm, more preferably not less than 100 ppm, preferably not more than 50,000 ppm, more preferably not more than 10,000 ppm, based on the weight of the polyvinyl acetal resin contained in the layer (A). 000 ppm or less. If the amount is equal to or more than the lower limit, a sufficient effect is likely to be exhibited. Even if the amount of the UV absorber is more than 50,000 ppm, no remarkable effect can be expected.
<酸化防止剤>
 酸化防止剤は、酸素存在下においてそれ単体で樹脂の酸化劣化防止に効果を有するものである。例えば、リン系酸化防止剤、ヒンダードフェノール系酸化防止剤、及びチオエーテル系酸化防止剤等が挙げられる。酸化防止剤としては、同一分子中にリン系酸化防止剤の効果を持つ部分及びヒンダードフェノール系酸化防止剤の効果を持つ部分を含む酸化防止剤を用いることもできる。これらの酸化防止剤は1種又は2種以上を用いることができる。中でも、着色による光学特性の劣化防止効果の観点から、リン系酸化防止剤及びヒンダードフェノール系酸化防止剤等が好ましく、リン系酸化防止剤とヒンダードフェノール系酸化防止剤との併用がより好ましい。リン系酸化防止剤とヒンダードフェノール系酸化防止剤とを併用する場合、リン系酸化防止剤の使用量とヒンダードフェノール系酸化防止剤の使用量の質量比である(リン系酸化防止剤の使用量)/(ヒンダードフェノール系酸化防止剤の使用量)は、1/5以上であることが好ましく、1/2以上であることがより好ましい。また、(リン系酸化防止剤の使用量)/(ヒンダードフェノール系酸化防止剤の使用量)は、2/1以下であることが好ましく、1/1以下であることがより好ましい。
<Antioxidant>
The antioxidant alone is effective in preventing the resin from being oxidized and degraded in the presence of oxygen. For example, a phosphorus antioxidant, a hindered phenol antioxidant, a thioether antioxidant and the like can be mentioned. As the antioxidant, an antioxidant containing a portion having a phosphorus-based antioxidant effect and a portion having a hindered phenol-based antioxidant effect in the same molecule can also be used. One or two or more of these antioxidants can be used. Above all, from the viewpoint of the effect of preventing deterioration of the optical properties due to coloring, a phosphorus-based antioxidant and a hindered phenol-based antioxidant are preferable, and the combined use of a phosphorus-based antioxidant and a hindered phenol-based antioxidant is more preferable. . When a phosphorus-based antioxidant and a hindered phenol-based antioxidant are used in combination, the mass ratio of the used amount of the phosphorus-based antioxidant to the used amount of the hindered phenol-based antioxidant (the amount of the phosphorus-based antioxidant (Used amount) / (Used amount of hindered phenolic antioxidant) is preferably 1/5 or more, more preferably 1/2 or more. Further, (the amount of the phosphorus-based antioxidant) / (the amount of the hindered phenol-based antioxidant) is preferably 2/1 or less, more preferably 1/1 or less.
 リン系酸化防止剤としては、2,2-メチレンビス(4,6-ジt-ブチルフェニル)オクチルホスファイト(株式会社ADEKA製;商品名:アデカスタブHP-10)、トリス(2,4-ジt-ブチルフェニル)ホスファイト(BASF社製;商品名:IRGAFOS168)、及び3,9-ビス(2,6-ジt-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサー3,9-ジホスファスピロ[5.5]ウンデカン(株式会社ADEKA製;商品名:アデカスタブPEP-36)等が好ましい。 Examples of the phosphorus-based antioxidant include 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite (manufactured by ADEKA Corporation; trade name: ADK STAB HP-10), tris (2,4-di-t-butyl) -Butylphenyl) phosphite (manufactured by BASF; trade name: IRGAFOS168); and 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3 Preferred is 9-diphosphaspiro [5.5] undecane (manufactured by ADEKA Corporation; trade name: ADK STAB PEP-36).
 ヒンダードフェノール系酸化防止剤としては、ペンタエリスリチル-テトラキス〔3-(3,5-ジt-ブチル-4-ヒドロキシフェニル)プロピオネート〕(BASF社製;商品名IRGANO01010)、及びオクタデシル-3-(3,5-ジt-ブチル-4-ヒドロキシフェニル)プロピオネート(BASF社製;商品名IRGANO01076)等が好ましい。 Hindered phenolic antioxidants include pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF; trade name IRGANO01010) and octadecyl-3- (3,5-Di-tert-butyl-4-hydroxyphenyl) propionate (manufactured by BASF; trade name IRGANO01076) is preferred.
 同一分子中にリン系酸化防止剤の効果を持つ部分及びヒンダードフェノール系酸化防止剤の効果を持つ部分を含む酸化防止剤としては、6-[3-(3-t-ブチル-4-ヒドロキシ-5-メチル)プロポキシ]-2,4,8,10-テトラ-t-ブチルジベンズ[d,f][1,3,2]-ジオキサスホスフェピン(住友化学株式会社製;商品名スミライザーGP)等が好ましい。 Examples of the antioxidant containing a portion having a phosphorus-based antioxidant effect and a portion having a hindered phenol-based antioxidant effect in the same molecule include 6- [3- (3-t-butyl-4-hydroxy). -5-methyl) propoxy] -2,4,8,10-tetra-t-butyldibenz [d, f] [1,3,2] -dioxasphosphepin (Sumitomo Chemical Co., Ltd .; trade name Sumilizer GP Is preferred.
 層(A)における酸化防止剤の面密度は、好ましくは0.1g/m以上、より好ましくは0.2g/m以上、特に好ましくは0.5g/m以上であり、好ましくは2.5g/m以下、より好ましくは1.5g/m以下、特に好ましくは2.0g/m以下である。層(A)における酸化防止剤の面密度が前記した下限値と上限値との範囲内であると、合わせガラスとした場合に、十分な酸化防止効果が発現されやすく、また、良好なヘイズ又は低減された色差変化を得やすい。 The areal density of the antioxidant in the layer (A) is preferably 0.1 g / m 2 or more, more preferably 0.2 g / m 2 or more, particularly preferably 0.5 g / m 2 or more, and preferably 2 g / m 2 or more. .5g / m 2 or less, more preferably 1.5 g / m 2 or less, particularly preferably 2.0 g / m 2 or less. When the areal density of the antioxidant in the layer (A) is in the range between the lower limit and the upper limit described above, when the laminated glass is used, a sufficient antioxidant effect is easily exhibited, and good haze or It is easy to obtain a reduced color difference change.
 酸化防止剤の配合量は、ポリビニルアセタール樹脂100質量部に対して好ましくは0.001質量部以上、より好ましくは0.01質量部以上であり、通常5質量部以下、好ましくは4質量部以下、より好ましくは3質量部以下である。酸化防止剤の量が前記下限値以上であると、十分な酸化防止効果を得やすい。酸化防止剤の量を5質量部より多くしても格段の効果向上は望めない。 The compounding amount of the antioxidant is preferably 0.001 part by mass or more, more preferably 0.01 part by mass or more, usually 5 parts by mass or less, preferably 4 parts by mass or less based on 100 parts by mass of the polyvinyl acetal resin. , More preferably 3 parts by mass or less. When the amount of the antioxidant is not less than the lower limit, a sufficient antioxidant effect is easily obtained. Even if the amount of the antioxidant is more than 5 parts by mass, a remarkable improvement in effect cannot be expected.
<光安定剤>
 光安定剤は、主に光による酸化で生成するラジカルを捕捉する機能を有すると言われる化合物である。好適な光安定剤としては、2,2,6,6-テトラアルキルピペリジン骨格を持つ化合物等のヒンダードアミン(株式会社ADEKA製;LA-52やLA-57)(BASF社製;TINUVIN622SFやTINUVIN770)等が挙げられる。
<Light stabilizer>
A light stabilizer is a compound that is said to have a function of capturing radicals generated mainly by oxidation by light. Suitable light stabilizers include hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton (manufactured by ADEKA Corporation; LA-52 and LA-57) (manufactured by BASF; TINUVIN622SF and TINUVIN770). Is mentioned.
 層(A)における光安定剤の面密度は、好ましくは0.05g/m以上、より好ましくは0.5g/m以上であり、好ましくは70g/m以下、より好ましくは30g/m以下である。
 光安定剤の配合量は、ポリビニルアセタール樹脂100質量部に対して好ましくは0.01質量部以上、より好ましくは0.05質量部以上であり、通常は10質量部以下、より好ましくは5質量部以下である。光安定剤の配合量が前記下限値以上であると、十分な効果を得やすい。光安定剤の量を10質量部より多くしても格段の効果向上は望めない。
Surface density of light stabilizers in the layer (A), preferably from 0.05 g / m 2 or more, more preferably 0.5 g / m 2 or more, preferably 70 g / m 2 or less, more preferably 30 g / m 2 or less.
The compounding amount of the light stabilizer is preferably at least 0.01 part by mass, more preferably at least 0.05 part by mass, usually at most 10 parts by mass, more preferably at most 5 parts by mass, based on 100 parts by mass of the polyvinyl acetal resin. Part or less. When the amount of the light stabilizer is equal to or more than the lower limit, a sufficient effect is easily obtained. Even if the amount of the light stabilizer is more than 10 parts by mass, a remarkable improvement in effect cannot be expected.
<遮熱材料>
 遮熱材料は、少なくとも近赤外波長領域の光線を吸収する機能を有するものである。好適な遮熱材料の例としては、熱線遮蔽性機能を有する金属酸化物微粒子、例えば、錫ドープ酸化インジウム、アンチモンドープ酸化錫、アルミニウムドープ酸化亜鉛、インジウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛、酸化タングステン、六ホウ化ランタン、六ホウ化セリウム、無水アンチモン酸亜鉛及び硫化銅等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。これらの中でも、性能、安全性、原料入手性、価格等の観点から無水アンチモン酸亜鉛又は錫ドープ酸化インジウムを含むことが好ましい。
 本発明の好ましい一態様では、層(A)は熱線遮蔽性機能を有する金属酸化物微粒子を含有する。
<Heat shielding material>
The heat shielding material has a function of absorbing at least a light ray in a near infrared wavelength region. Examples of suitable heat shielding materials include metal oxide fine particles having a heat ray shielding function, such as tin-doped indium oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, indium-doped zinc oxide, gallium-doped zinc oxide, and tungsten oxide. , Lanthanum hexaboride, cerium hexaboride, anhydrous zinc antimonate, copper sulfide and the like. These may be used alone or in combination of two or more. Among these, it is preferable to contain anhydrous zinc antimonate or tin-doped indium oxide from the viewpoints of performance, safety, raw material availability, price and the like.
In a preferred embodiment of the present invention, the layer (A) contains metal oxide fine particles having a heat ray shielding function.
 層(A)が遮熱材料を含有する場合、遮熱材料の赤外線吸収能は、赤外線が層(A)を通過するときの光路長(m)及び層(A)中の遮熱材料の濃度(g/m)に比例する。従って、遮熱材料の赤外線吸収能は、層(A)における遮熱材料の面密度(g/m)に比例する。 When the layer (A) contains a heat-shielding material, the infrared-absorbing ability of the heat-shielding material is determined by the optical path length (m) when infrared light passes through the layer (A) and the concentration of the heat-shielding material in the layer (A). (G / m 3 ). Therefore, the infrared absorbing ability of the heat shielding material is proportional to the areal density (g / m 2 ) of the heat shielding material in the layer (A).
 層(A)において遮熱材料として金属ドープ酸化タングステン(例えばセシウムドープ酸化タングステン)を用いた場合、遮熱材料の面密度(g/m)は、好ましくは0.10以上、より好ましくは0.15以上、特に好ましくは0.20以上であり、好ましくは1.00以下、より好ましくは0.70以下、特に好ましくは0.50以下である。 When metal-doped tungsten oxide (for example, cesium-doped tungsten oxide) is used as the heat-shielding material in the layer (A), the surface density (g / m 2 ) of the heat-shielding material is preferably 0.10 or more, more preferably 0 or more. .15 or more, particularly preferably 0.20 or more, preferably 1.00 or less, more preferably 0.70 or less, and particularly preferably 0.50 or less.
 層(A)において遮熱材料として錫ドープ酸化インジウムを用いた場合、遮熱材料の面密度(g/m)は、好ましくは0.50以上、より好ましくは1.00以上、さらに好ましくは1.50以上、特に好ましくは2.25以上、最も好ましくは3.00以上であり、好ましくは15.00以下、より好ましくは10.50以下、特に好ましくは7.50以下である。 When tin-doped indium oxide is used as the heat-shielding material in the layer (A), the surface density (g / m 2 ) of the heat-shielding material is preferably 0.50 or more, more preferably 1.00 or more, and still more preferably. It is at least 1.50, particularly preferably at least 2.25, most preferably at least 3.00, preferably at most 15.00, more preferably at most 10.50, particularly preferably at most 7.50.
 層(A)おいて遮熱材料としてアンチモンドープ酸化錫を用いた場合、遮熱材料の面密度(g/m)は、好ましくは1.00以上、より好ましくは1.50以上、特に好ましくは2.00以上であり、好ましくは10.00以下、より好ましくは7.00以下、特に好ましくは5.00以下である。 When antimony-doped tin oxide is used as the heat shielding material in the layer (A), the surface density (g / m 2 ) of the heat shielding material is preferably 1.00 or more, more preferably 1.50 or more, and particularly preferably. Is 2.00 or more, preferably 10.00 or less, more preferably 7.00 or less, and particularly preferably 5.00 or less.
 層(A)において遮熱材料としてフタロシアニン化合物を用いた場合、遮熱材料の面密度(g/m)は、好ましくは0.010以上、より好ましくは0.015以上、特に好ましくは0.020以上であり、好ましくは0.100以下、より好ましくは0.070以下、特に好ましくは0.050以下である。 When a phthalocyanine compound is used as the heat-shielding material in the layer (A), the surface density (g / m 2 ) of the heat-shielding material is preferably 0.010 or more, more preferably 0.015 or more, and particularly preferably 0.1% or more. 020 or more, preferably 0.100 or less, more preferably 0.070 or less, particularly preferably 0.050 or less.
 層(A)において遮熱材料としてアルミニウムドープ酸化亜鉛を用いた場合、遮熱材料の面密度(g/m)は、好ましくは1.00以上、より好ましくは1.50以上、特に好ましくは2.00以上であり、好ましくは10.00以下、より好ましくは7.00以下、特に好ましくは5.00以下である。 When aluminum-doped zinc oxide is used as the heat shield material in the layer (A), the surface density (g / m 2 ) of the heat shield material is preferably 1.00 or more, more preferably 1.50 or more, and particularly preferably. It is 2.00 or more, preferably 10.00 or less, more preferably 7.00 or less, and particularly preferably 5.00 or less.
 層(A)において遮熱材料としてアンチモン酸亜鉛を用いた場合、遮熱材料の面密度(g/m)は、好ましくは1.00以上、より好ましくは1.50以上、特に好ましくは2.00以上であり、好ましくは10.00以下、より好ましくは7.00以下、特に好ましくは5.00以下である。 When zinc antimonate is used as the heat shielding material in the layer (A), the surface density (g / m 2 ) of the heat shielding material is preferably 1.00 or more, more preferably 1.50 or more, and particularly preferably 2 or more. 0.000 or more, preferably 10.00 or less, more preferably 7.00 or less, particularly preferably 5.00 or less.
 層(A)において遮熱材料として六ホウ化ランタンを用いた場合、遮熱材料の面密度(g/m)は、好ましくは0.02以上、より好ましくは0.03以上、特に好ましくは0.04以上であり、好ましくは0.20以下、より好ましくは0.14以下、特に好ましくは0.10以下である。 When lanthanum hexaboride is used as the heat shielding material in the layer (A), the surface density (g / m 2 ) of the heat shielding material is preferably 0.02 or more, more preferably 0.03 or more, and particularly preferably. It is 0.04 or more, preferably 0.20 or less, more preferably 0.14 or less, and particularly preferably 0.10 or less.
 各遮熱材料についての前記面密度(g/m)が前記した下限値と上限値との範囲内であると、合わせガラスとした場合に、十分な効果が発現されやすく、また、良好なヘイズ、良好な耐候性又は小さい色差変化を得やすい。 When the surface density (g / m 2 ) of each heat shielding material is in the range between the lower limit and the upper limit described above, a sufficient effect is likely to be exhibited when a laminated glass is used, and a favorable effect is obtained. It is easy to obtain haze, good weather resistance or a small change in color difference.
 層(A)が遮熱材料を含有する場合、少なくとも層(A)が1種以上の紫外線吸収剤を含有することが好ましい。これにより、例えば、層(B)を内層とし、層(A)を外層とした場合に、層(B)の熱可塑性樹脂が紫外線から保護されるとともに、積層フィルムの遮熱性を高めることができる。 場合 When the layer (A) contains a heat shielding material, it is preferable that at least the layer (A) contains at least one ultraviolet absorber. Thereby, for example, when the layer (B) is an inner layer and the layer (A) is an outer layer, the thermoplastic resin of the layer (B) is protected from ultraviolet rays and the heat shielding property of the laminated film can be enhanced. .
 また、例えば、本発明の積層フィルムが層(A)/層(B)/層(A)という3層構成を有する場合、層(A)に遮熱材料を含有させる態様とすることにより、層(A)2層分の光路長を赤外線が通過することになるため、合わせガラスの可視光線透過率又はヘイズを損なわずに遮熱性を高めることができる。 Further, for example, when the laminated film of the present invention has a three-layer structure of layer (A) / layer (B) / layer (A), the layer (A) may be made to contain a heat-shielding material to form a layer. (A) Since infrared rays pass through the optical path length of the two layers, the heat shielding properties can be enhanced without impairing the visible light transmittance or haze of the laminated glass.
<接着力調整剤>
 層(A)には、必要に応じて、ガラス等に対する積層フィルムの接着性を制御するために、接着力調整剤及び/又は接着性を調整するための各種添加剤を含有させてもよい。
<Adhesive strength adjuster>
The layer (A) may contain an adhesive force adjuster and / or various additives for adjusting the adhesiveness, if necessary, in order to control the adhesiveness of the laminated film to glass or the like.
 接着性を調整するための各種添加剤としては、国際公開第03/033583号に開示されているものを使用することもでき、アルカリ金属塩、アルカリ土類金属塩が好ましく使用され、例えば、カリウム、ナトリウム、マグネシウム等の塩が挙げられる。上記塩としてはオクタン酸、ヘキサン酸、酪酸、酢酸、蟻酸等のカルボン酸等の有機酸;塩酸、硝酸等の無機酸の塩等が挙げられる。 As various additives for adjusting the adhesiveness, those disclosed in WO 03/033583 can also be used, and alkali metal salts and alkaline earth metal salts are preferably used. , Sodium, magnesium and the like. Examples of the salt include organic acids such as carboxylic acids such as octanoic acid, hexanoic acid, butyric acid, acetic acid, and formic acid; and salts of inorganic acids such as hydrochloric acid and nitric acid.
 接着力調整剤及び/又は接着性を調整するための各種添加剤の最適な添加量は、使用する添加剤により異なるが、得られる積層フィルムのガラスへの接着力が、パンメル試験(Pummeltest;国際公開第03/033583号等に記載)において、一般には3以上、10以下になるように調整することが好ましく、特に高い耐貫通性を必要とする場合は3以上、6以下、高いガラス飛散防止性を必要とする場合は7以上、10以下になるように調整することが好ましい。高いガラス飛散防止性が求められる場合は、接着力調整剤を添加しないことも有用な方法である。 The optimal amount of the adhesive force adjusting agent and / or the various additives for adjusting the adhesiveness varies depending on the additive used. However, the adhesive force of the obtained laminated film to glass is poor in a Pummel test (Pummeltest; International). It is generally preferable to adjust the amount to be 3 or more and 10 or less, especially when high penetration resistance is required. In the case where the property is required, it is preferable to adjust so as to be 7 or more and 10 or less. When a high glass scattering prevention property is required, it is also a useful method not to add an adhesion regulator.
[ポリビニルアセタール樹脂層(A)の製造方法]
 ポリビニルアセタール樹脂層(A)の製造方法は特に限定されない。前記ポリビニルアセタール樹脂、場合により所定量の可塑剤、及び必要に応じて他の添加剤を配合し、これを均一に混練した後、押出法、カレンダー法、プレス法、キャスティング法又はインフレーション法等の公知の製膜方法を用いて製造できる。
[Production method of polyvinyl acetal resin layer (A)]
The method for producing the polyvinyl acetal resin layer (A) is not particularly limited. After blending the polyvinyl acetal resin, a predetermined amount of plasticizer in some cases, and other additives as necessary, and uniformly kneading the mixture, an extrusion method, a calendar method, a pressing method, a casting method, an inflation method, or the like. It can be manufactured using a known film forming method.
 公知の製膜方法の中でも特に、押出機を用いてフィルムを製造する方法が好適に採用される。押出時の樹脂温度は150~250℃が好ましく、170~230℃がより好ましい。樹脂温度が高くなりすぎるとポリビニルアセタール樹脂が分解を起こし、揮発性物質の含有量が多くなる。一方で樹脂温度が低すぎる場合にも、揮発性物質の含有量は多くなる。揮発性物質を効率的に除去するため、押出機のベント口から減圧により、揮発性物質を除去することもできる。 中 で も Among the known film forming methods, a method of manufacturing a film using an extruder is suitably employed. The resin temperature during extrusion is preferably from 150 to 250 ° C, more preferably from 170 to 230 ° C. If the resin temperature is too high, the polyvinyl acetal resin will decompose and the content of volatile substances will increase. On the other hand, when the resin temperature is too low, the content of the volatile substance increases. In order to remove volatile substances efficiently, the volatile substances can be removed by reducing the pressure through the vent port of the extruder.
[熱可塑性樹脂層(B)]
 本発明の積層フィルムは、ポリビニルアセタール樹脂層(A)に加えて、1層以上の熱可塑性樹脂層(B)を有する。層(A)と層(B)との組み合わせにより、本発明の積層フィルムは、場合によって有してもよい機能性層(D)の歪みを良好に防止する性能、優れた光学性能及び優れた曲面追従性を併せ持つことができる。層(B)は、積層フィルムのいずれの位置に配置されていてもよい。層(D)の歪み又は合わせガラスの透明性の悪化を抑制でき、形状への追従性が要求される3D形状の合わせガラスを得やすい観点から、層(B)は、好ましくは層(A)と隣接して積層されている。
[Thermoplastic resin layer (B)]
The laminated film of the present invention has one or more thermoplastic resin layers (B) in addition to the polyvinyl acetal resin layer (A). By the combination of the layer (A) and the layer (B), the laminated film of the present invention has a performance of favorably preventing distortion of the functional layer (D) which may be optionally provided, excellent optical performance, and excellent performance. It can also have curved surface followability. The layer (B) may be arranged at any position on the laminated film. The layer (B) is preferably the layer (A) from the viewpoint that the distortion of the layer (D) or the deterioration of the transparency of the laminated glass can be suppressed, and a laminated glass having a 3D shape required to follow the shape is easily obtained. Are stacked adjacent to each other.
 層(B)を構成するフィルムの種類は式(1)「E’(40)≧1000MPa」及び式(2)「E’(100)≧10MPa」を満たすフィルムであれば特に限定されず、アクリル系フィルムの他に、ポリビニルアルコール(PVA)系フィルム、ポリビニルアセタール樹脂フィルム、アイオノマーフィルム、ポリアセタール(POM)フィルム、ポリプロピレン(PP)フィルム及びPETフィルム等を用いることができる。コスト、長期耐光性、透明性、又は合わせガラスとして加工する際の加工性の良さの観点から、層(B)としてはアクリル系フィルム、ポリビニルアセタール樹脂フィルム又はPETフィルムが好適に用いられる。これらのフィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。特に明記しない限り、フィルムは未延伸フィルムを意味する。なお、層(B)として使用できるポリビニルアセタール樹脂フィルムは、ポリビニルアセタール樹脂層(A)とは異なる。 The type of the film constituting the layer (B) is not particularly limited as long as it satisfies the formula (1) “E ′ (40) ≧ 1000 MPa” and the formula (2) “E ′ (100) ≧ 10 MPa”. In addition to the system film, a polyvinyl alcohol (PVA) system film, a polyvinyl acetal resin film, an ionomer film, a polyacetal (POM) film, a polypropylene (PP) film, a PET film, and the like can be used. As the layer (B), an acrylic film, a polyvinyl acetal resin film, or a PET film is preferably used from the viewpoint of cost, long-term light resistance, transparency, or good workability when processing as a laminated glass. These films may be unstretched films or stretched films. Unless otherwise specified, film means unstretched film. The polyvinyl acetal resin film that can be used as the layer (B) is different from the polyvinyl acetal resin layer (A).
 また、層(B)は、単一の熱可塑性樹脂材料からなる単層フィルムであってもよいし、複数の熱可塑性樹脂材料からなる層が積層された多層フィルムであってもよい。 The layer (B) may be a single-layer film made of a single thermoplastic resin material, or may be a multilayer film in which layers made of a plurality of thermoplastic resin materials are laminated.
 また、層(B)に含まれる樹脂成分は、異なる樹脂を溶融混練時に混合したアロイ樹脂であってもよいし、単独の樹脂でもよい。即ち、例えば、層(A)又は場合により積層されてよい層(C)若しくは層(D)との接着性を高めるために樹脂を改質する目的で、マレイン酸変性アクリル樹脂とアクリル樹脂とを溶融混練したアロイ樹脂であってもよいし、単独のマレイン酸変性アクリル樹脂であってもよい。 樹脂 The resin component contained in the layer (B) may be an alloy resin obtained by mixing different resins at the time of melt-kneading, or may be a single resin. That is, for example, a maleic acid-modified acrylic resin and an acrylic resin are used for the purpose of modifying the resin in order to improve the adhesiveness with the layer (A) or the layer (C) or the layer (D) which may be laminated as the case may be. A melt-kneaded alloy resin may be used, or a single maleic acid-modified acrylic resin may be used.
 引張貯蔵弾性率E’は、後述の実施例に記載の方法で測定できる。
 層(B)を構成する樹脂材料の40℃における引張貯蔵弾性率E’(40)及び100℃における引張貯蔵弾性率E’(100)が、式(1)及び式(2)を満たすフィルムを作製する方法としては、例えば、層(B)に、弾性体粒子を含むアクリル系樹脂組成物を用いる方法が挙げられる。弾性体粒子は、少なくとも1層の内層が、炭素数1~8のアルキル基を有するアクリル酸アルキルエステル単量体単位及び/又は共役ジエン系単量体単位を有する架橋弾性重合体を含む架橋弾性重合体層であり、最外層が、炭素数1~8のアルキル基を有するメタクリル酸アルキルエステル単量体単位を有する熱可塑性重合体を含む熱可塑性重合体層であることが好ましい。
 また、式(1)及び式(2)を満たすフィルムを作製する方法としては、層(B)として、アクリル酸エステル重合体ブロック(z1)にメタクリル酸エステル重合体ブロック(z2)が結合したブロック共重合体(Z)と、メタクリル系樹脂(M)とを含むアクリル系樹脂組成物を用いる方法が挙げられる。この場合、ブロック共重合体(Z)の220℃、せん断速度122/secにおける溶融粘度〔η(Z)〕が75~1500Pa・sであり、さらに、メタクリル系樹脂(M)の220℃、せん断速度122/secにおける溶融粘度〔η(M)〕と溶融粘度〔η(Z)〕の比〔η(M)/η(Z)〕の値が1~20であることが好ましい。
The tensile storage elastic modulus E 'can be measured by the method described in Examples described later.
A film in which the resin material constituting the layer (B) has a tensile storage modulus E ′ (40) at 40 ° C. and a tensile storage modulus E ′ (100) at 100 ° C. that satisfies the formulas (1) and (2) As a manufacturing method, for example, a method of using an acrylic resin composition containing elastic particles for the layer (B) can be mentioned. The elastic particles include a crosslinked elastic polymer in which at least one inner layer contains a crosslinked elastic polymer having an alkyl acrylate monomer unit having an alkyl group having 1 to 8 carbon atoms and / or a conjugated diene monomer unit. The polymer layer is preferred, and the outermost layer is preferably a thermoplastic polymer layer containing a thermoplastic polymer having an alkyl methacrylate monomer unit having an alkyl group having 1 to 8 carbon atoms.
As a method for producing a film satisfying the formulas (1) and (2), a layer (B2) in which a methacrylate polymer block (z2) is bonded to an acrylate polymer block (z1) is used. A method using an acrylic resin composition containing the copolymer (Z) and the methacrylic resin (M) is exemplified. In this case, the melt viscosity [η (Z)] of the block copolymer (Z) at 220 ° C. and a shear rate of 122 / sec is 75 to 1500 Pa · s, and the methacrylic resin (M) has a melt viscosity of 220 ° C. The ratio [η (M) / η (Z)] of the melt viscosity [η (M)] to the melt viscosity [η (Z)] at a speed of 122 / sec is preferably 1 to 20.
 層(B)を構成する樹脂材料の40℃における引張貯蔵弾性率E’(40)は、1000MPa以上、好ましくは1100MPa以上、より好ましくは1200MPa以上である。引張貯蔵弾性率E’(40)が1000MPa未満となると、実用時におけるフィルムの剛性が足りずハンドリング性が悪くなり、また印刷やエッチング等の加工方法で層(B)上に機能性層を付与する工程において工程通過性悪化の原因となる。引張貯蔵弾性率E’(40)は、通常10000MPa以下である。 樹脂 The resin material constituting the layer (B) has a tensile storage modulus E ′ (40) at 40 ° C. of 1000 MPa or more, preferably 1100 MPa or more, more preferably 1200 MPa or more. If the tensile storage modulus E ′ (40) is less than 1000 MPa, the film will have insufficient rigidity in practical use, resulting in poor handling properties, and a functional layer provided on the layer (B) by a processing method such as printing or etching. In such a process, the process passability is deteriorated. The tensile storage modulus E '(40) is usually 10,000 MPa or less.
 層(B)を構成する樹脂材料の100℃における引張貯蔵弾性率E’(100)は、10MPa以上、好ましくは30MPa以上、より好ましくは50MPa以上である。引張貯蔵弾性率E’(100)が10MPa未満となると、合わせガラスに加工する際に層(B)が熱ダレを起こし、機能性層の歪みや破断等の原因となる。引張貯蔵弾性率E’(100)は、通常10000MPa以下である。 樹脂 The resin material constituting the layer (B) has a tensile storage modulus E ′ (100) at 100 ° C. of 10 MPa or more, preferably 30 MPa or more, more preferably 50 MPa or more. If the tensile storage modulus E '(100) is less than 10 MPa, the layer (B) undergoes heat sagging during processing into a laminated glass, causing distortion and breakage of the functional layer. The tensile storage modulus E '(100) is usually 10,000 MPa or less.
 層(B)を構成する樹脂材料の120℃における引張貯蔵弾性率E’(120)は、好ましくは500MPa以下、より好ましくは400MPa以下、特に好ましくは300MPa以下である。引張貯蔵弾性率E’(120)が前記上限値以下であると、合わせガラスに加工する際に層(B)が十分に柔らかくなって3D形状のガラスへの追従性を得やすく、機能性層のしわや切れが発生しにくい。引張貯蔵弾性率E’(120)は、通常0.1MPa以上である。 The tensile storage modulus E ′ (120) at 120 ° C. of the resin material constituting the layer (B) is preferably 500 MPa or less, more preferably 400 MPa or less, and particularly preferably 300 MPa or less. When the tensile storage modulus E ′ (120) is equal to or less than the above upper limit, the layer (B) becomes sufficiently soft when processed into a laminated glass, and it is easy to obtain the followability to the 3D-shaped glass. Wrinkles and cuts are less likely to occur. The tensile storage modulus E '(120) is usually 0.1 MPa or more.
 層(B)と層(A)又は場合により積層される層(C)若しくは層(D)と積層する前の層(B)の少なくとも一方の表面の算術平均粗さ(Ra)は、好ましくは0.15μm以下、より好ましくは0.12μm以下、特に好ましくは0.10μm以下である。算術平均粗さ(Ra)が前記上限値以下であると、合わせガラスに加工した後の優れた透明性を得やすく、また、隣接する層〔特に、場合により積層される層(D)〕との良好な接合性を得やすい。算術平均粗さ(Ra)を前記上限値以下とする方法としては、例えば、Tダイを用いた溶融押出成膜法によりフィルムを成膜する工程において、十分に平滑な冷却ロール2本を用いてダイから吐出されるフィルムを挟みこむことにより鏡面性を付与するニップ成膜法や、十分に平滑な冷却ロール1本を用いて、ロール上にダイから吐出されるフィルムを成膜するキャスト成膜法等が挙げられる。算術平均粗さ(Ra)は、レーザー顕微鏡を利用して測定することができる。算術平均粗さ(Ra)はフィルム表面の任意の5箇所において測定された個々の算術平均粗さ(Ra)の平均値として求めることができ、この値をμmで表したものをいう。詳しくはJIS B0601:2001に準じて測定することができる。 The arithmetic average roughness (Ra) of at least one surface of the layer (B) and the layer (A) or at least one surface of the layer (B) before being laminated with the layer (C) or the layer (D) which is optionally laminated is preferably It is 0.15 μm or less, more preferably 0.12 μm or less, and particularly preferably 0.10 μm or less. When the arithmetic average roughness (Ra) is equal to or less than the upper limit, excellent transparency after processing into a laminated glass can be easily obtained, and an adjacent layer (particularly, a layer (D) optionally laminated) can be obtained. It is easy to obtain good bondability. As a method of making the arithmetic average roughness (Ra) equal to or less than the upper limit, for example, in a process of forming a film by a melt extrusion film forming method using a T-die, two sufficiently smooth cooling rolls are used. A nip film forming method for imparting a mirror surface by sandwiching a film discharged from a die, or a cast film forming a film discharged from a die onto a roll using a sufficiently smooth cooling roll. And the like. The arithmetic average roughness (Ra) can be measured using a laser microscope. The arithmetic average roughness (Ra) can be obtained as an average value of the individual arithmetic average roughness (Ra) measured at any five places on the film surface, and this value is expressed in μm. Specifically, it can be measured according to JIS B0601: 2001.
 層(B)の厚さは、好ましくは15μm以上、より好ましくは30μm以上であり、好ましくは150μm以下、より好ましくは100μm以下、特に好ましくは75μm以下である。層(B)の厚さが前記下限値以上であると、実用時におけるフィルムの十分なハンドリング性を得やすく、層(B)の厚さが前記上限値以下であると、3D形状のガラスへの優れた追従性を得やすい。
 コーティング又は蒸着法を用いる場合は、層(B)の厚さは、好ましくは0.1μm以上、より好ましくは0.5μm以上であり、好ましくは150μm以下、より好ましくは100μm以下、特に好ましくは75μm以下である。層(B)の厚さが前記下限値以上であると、実用時における被膜安定性が優れ、層(B)の厚さが前記上限値以下であると、3D形状のガラスへの優れた追従性を得やすい。
 本発明の積層フィルムが複数の層(B)を有する場合、各層(B)の厚さが上記範囲内であることが好ましい。
The thickness of the layer (B) is preferably at least 15 μm, more preferably at least 30 μm, preferably at most 150 μm, more preferably at most 100 μm, particularly preferably at most 75 μm. When the thickness of the layer (B) is equal to or more than the lower limit, a sufficient handling property of the film in practical use is easily obtained, and when the thickness of the layer (B) is equal to or less than the upper limit, 3D-shaped glass is obtained. It is easy to obtain excellent followability.
When using a coating or vapor deposition method, the thickness of the layer (B) is preferably 0.1 μm or more, more preferably 0.5 μm or more, preferably 150 μm or less, more preferably 100 μm or less, and particularly preferably 75 μm or less. It is as follows. When the thickness of the layer (B) is equal to or more than the lower limit, the coating stability in practical use is excellent, and when the thickness of the layer (B) is equal to or less than the upper limit, excellent follow-up to 3D glass is achieved. Easy to get the character.
When the laminated film of the present invention has a plurality of layers (B), the thickness of each layer (B) is preferably within the above range.
 アクリル系フィルムは、上記条件を満たすものであれば任意のものを用いることができる。好ましくは、弾性体粒子を含むアクリル系樹脂組成物により形成されたアクリル系フィルム、より好ましくは、アクリル系多層構造重合体粒子(Y)とメタクリル系樹脂(M)を任意の割合で混合したアクリル系樹脂組成物(R1)により形成されたアクリル系フィルムが用いられる。アクリル系樹脂組成物(R1)には、任意の添加剤が含まれていてもよい。
 また、アクリル酸エステル重合体ブロック(z1)にメタクリル酸エステル重合体ブロック(z2)が結合したブロック共重合体(Z)とメタクリル系樹脂(M)を任意の割合で混合したアクリル系樹脂組成物(R2)により形成されたアクリル系フィルムも好適に用いられる。アクリル系樹脂組成物(R2)には、任意の添加剤が含まれていてもよい。
Any acrylic film can be used as long as it satisfies the above conditions. Preferably, an acrylic film formed of an acrylic resin composition containing elastic particles, more preferably acrylic obtained by mixing acrylic multilayer polymer particles (Y) and methacrylic resin (M) at an arbitrary ratio. An acrylic film formed of the resin composition (R1) is used. The acrylic resin composition (R1) may contain an optional additive.
An acrylic resin composition in which a block copolymer (Z) in which a methacrylate ester polymer block (z2) is bonded to an acrylate ester polymer block (z1) and a methacrylic resin (M) are mixed at an arbitrary ratio. An acrylic film formed by (R2) is also suitably used. The acrylic resin composition (R2) may contain an optional additive.
〔アクリル系多層構造重合体粒子(Y)〕
 アクリル系フィルムに含まれるアクリル系多層構造重合体粒子(Y)としては、公知のものを用いることができる。耐衝撃性等の観点から、アクリル系多層構造重合体粒子(Y)としては、少なくとも1層の内層(最外層より内側の層)が、炭素数1~8のアルキル基を有するアクリル酸アルキルエステル単量体単位及び/又は共役ジエン系単量体単位を有する架橋弾性重合体を含む架橋弾性重合体層であり、最外層が、炭素数1~8のアルキル基を有するメタクリル酸アルキルエステル単量体単位を有する熱可塑性重合体を含む熱可塑性重合体層であるアクリル系多層構造重合体粒子(Y)が好ましい。
[Acrylic multilayer polymer particles (Y)]
As the acrylic multilayer structure polymer particles (Y) contained in the acrylic film, known particles can be used. From the viewpoint of impact resistance and the like, the acrylic multilayer polymer particles (Y) include at least one inner layer (inner layer than the outermost layer) having an alkyl group having 1 to 8 carbon atoms. A crosslinked elastic polymer layer containing a crosslinked elastic polymer having a monomer unit and / or a conjugated diene-based monomer unit, wherein the outermost layer has a monoalkyl methacrylate having an alkyl group having 1 to 8 carbon atoms. Acrylic multilayer polymer particles (Y), which are thermoplastic polymer layers containing a thermoplastic polymer having a body unit, are preferred.
 架橋弾性重合体層は、炭素数1~8のアルキル基を有するアクリル酸アルキルエステル単量体単位及び共役ジエン系単量体単位に由来する樹脂成分の含有量が、架橋弾性重合体層の総質量に対して50質量%以上であることが好ましい。架橋弾性重合体層に含まれる架橋弾性重合体は、炭素数1~8のアルキル基を有するアクリル酸アルキルエステル単量体単位と共役ジエン系単量体単位以外の他の単量体単位を有するものであってもよい。また、架橋弾性重合体層には、架橋弾性重合体以外の重合体が含まれていてもよい。 The content of the resin component derived from the acrylic acid alkyl ester monomer unit having an alkyl group having 1 to 8 carbon atoms and the conjugated diene monomer unit is equal to the total amount of the crosslinked elastic polymer layer. It is preferably at least 50% by mass based on the mass. The crosslinked elastic polymer contained in the crosslinked elastic polymer layer has a monomer unit other than an alkyl acrylate monomer unit having an alkyl group having 1 to 8 carbon atoms and a conjugated diene-based monomer unit. It may be something. Further, the crosslinked elastic polymer layer may contain a polymer other than the crosslinked elastic polymer.
 熱可塑性重合体層は、炭素数1~8のアルキル基を有するメタクリル酸アルキルエステル単量体単位に由来する樹脂成分が、熱可塑性重合体層の全質量に対して50質量%以上であることが好ましい。熱可塑性重合体層に含まれる熱可塑性重合体は、炭素数1~8のアルキル基を有するメタクリル酸アルキルエステル単量体単位以外の他の単量体単位を有するものであってもよい。また、熱可塑性重合体層には、熱可塑性重合体以外の重合体が含まれていてもよい。 In the thermoplastic polymer layer, the resin component derived from the alkyl methacrylate monomer unit having an alkyl group having 1 to 8 carbon atoms is 50% by mass or more based on the total mass of the thermoplastic polymer layer. Is preferred. The thermoplastic polymer contained in the thermoplastic polymer layer may have a monomer unit other than the alkyl methacrylate monomer unit having an alkyl group having 1 to 8 carbon atoms. Further, the thermoplastic polymer layer may contain a polymer other than the thermoplastic polymer.
 アクリル系多層構造重合体粒子(Y)は、少なくとも1層の架橋弾性重合体層を含む1層又は複数層の内層が最外層の熱可塑性重合体層により覆われた、いわゆるコア/シェル構造ゴム粒子である。
 アクリル系多層構造重合体粒子(Y)において、最外層を除く少なくとも1層の内層を構成する架橋弾性重合体層は、この層の分子鎖と隣接する層中の分子鎖とがグラフト結合により結合されていることが好ましい。
Acrylic multi-layer polymer particles (Y) are a so-called core / shell rubber in which one or more inner layers including at least one crosslinked elastic polymer layer are covered by an outermost thermoplastic polymer layer. Particles.
In the acrylic multilayer polymer particles (Y), the crosslinked elastic polymer layer constituting at least one inner layer excluding the outermost layer has a molecular chain of this layer and a molecular chain in an adjacent layer bonded by a graft bond. It is preferred that
 架橋弾性重合体層に使用される炭素数1~8のアルキル基を有するアクリル酸アルキルエステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、及びアクリル酸プロピル等が挙げられる。架橋弾性重合体層に使用される共役ジエン系単量体としては、例えば、1,3-ブタジエン及びイソプレン等が挙げられる。 Examples of the alkyl acrylate having an alkyl group having 1 to 8 carbon atoms used in the crosslinked elastic polymer layer include, for example, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and propyl acrylate And the like. Examples of the conjugated diene-based monomer used in the crosslinked elastic polymer layer include 1,3-butadiene and isoprene.
 架橋弾性重合体層には、炭素数1~8のアルキル基を有するアクリル酸アルキルエステル及び/又は共役ジエン系単量体の他、これらと共重合可能なビニル系単量体を用いてもよい。共重合可能なビニル系単量体としては、例えば、メタクリル酸エステル、芳香族ビニル化合物、多官能性単量体等が挙げられる。
 なお、本明細書において、「多官能性単量体」は、2以上の重合性官能基を有する単量体である。
In the crosslinked elastic polymer layer, besides an alkyl acrylate having an alkyl group having 1 to 8 carbon atoms and / or a conjugated diene monomer, a vinyl monomer copolymerizable therewith may be used. . Examples of the copolymerizable vinyl monomer include a methacrylic acid ester, an aromatic vinyl compound, and a polyfunctional monomer.
In the present specification, the “polyfunctional monomer” is a monomer having two or more polymerizable functional groups.
 本発明の積層フィルムを用いて作製した合わせガラスの耐衝撃性等の観点から、架橋弾性重合体層中の炭素数1~8のアルキル基を有するアクリル酸アルキルエステル単位及び/又は共役ジエン系単量体単位に由来する樹脂成分の含有量は、架橋弾性重合体層の総質量に対して、60質量%以上であることが好ましく、70質量%以上であることがより好ましい。 From the viewpoint of the impact resistance and the like of the laminated glass produced using the laminated film of the present invention, the crosslinked elastic polymer layer contains an alkyl acrylate unit having an alkyl group having 1 to 8 carbon atoms and / or a conjugated diene-based unit. The content of the resin component derived from the monomer unit is preferably at least 60% by mass, more preferably at least 70% by mass, based on the total mass of the crosslinked elastic polymer layer.
 アクリル系多層構造重合体粒子(Y)において、最外層の熱可塑性重合体層に使用される炭素数1~8のアルキル基を有するメタクリル酸アルキルエステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、及びメタクリル酸シクロヘキシル等が挙げられる。アクリル系多層構造重合体粒子(Y)の分散性の点から、熱可塑性重合体層中のメタクリル酸アルキルエステル単量体単位に由来する樹脂成分の含有量は、熱可塑性重合体層の総質量に対して、70質量%以上であることが好ましく、80質量%以上であることがより好ましい。 In the acrylic multilayer polymer particles (Y), examples of the alkyl methacrylate having an alkyl group having 1 to 8 carbon atoms used in the outermost thermoplastic polymer layer include methyl methacrylate and ethyl methacrylate. , Propyl methacrylate, butyl methacrylate, and cyclohexyl methacrylate. From the viewpoint of the dispersibility of the acrylic multilayer polymer particles (Y), the content of the resin component derived from the alkyl methacrylate monomer unit in the thermoplastic polymer layer is determined by the total mass of the thermoplastic polymer layer. Is preferably 70% by mass or more, more preferably 80% by mass or more.
 アクリル系多層構造重合体粒子(Y)の層数は特に制限されず、2層、3層、又は4層以上である。熱安定性及び生産性の点で、アクリル系多層構造重合体粒子(Y)は3層構造であることが特に好ましい。 数 The number of layers of the acrylic multi-layer polymer particles (Y) is not particularly limited, but is two, three, or four or more. In terms of thermal stability and productivity, it is particularly preferable that the acrylic multilayer polymer particles (Y) have a three-layer structure.
 アクリル系多層構造重合体粒子(Y)としては、中心側から、メタクリル酸メチル単位と、炭素数1~8のアルキル基を有するアクリル酸アルキルエステル単位と、多官能性単量体単位とを含む架橋樹脂層からなる第1層と、炭素数1~8のアルキル基を有するアクリル酸アルキルエステル単位と、メタクリル酸メチル単位(任意成分)と、多官能性単量体単位とを含む架橋弾性体層からなる第2層と、メタクリル酸メチル単位と、炭素数1~8のアルキル基を有するアクリル酸アルキルエステル単位とを含む硬質熱可塑性樹脂層からなる第3層(最外層)とからなる3層構造重合体粒子(Y1)が好ましい。第1層の架橋樹脂層は、30~98.99質量%のメタクリル酸メチル単位と、1~69.99質量%の炭素数1~8のアルキル基を有するアクリル酸アルキルエステル単位と、0.01~2質量%の多官能性単量体単位とを含むことが好ましい。第2層の架橋弾性体層は、70~99.9質量%の炭素数1~8のアルキル基を有するアクリル酸アルキルエステル単位と、0~29.9質量%のメタクリル酸メチル単位(任意成分)と、0.1~5質量%の多官能性単量体単位とを含むことが好ましい。第3層の硬質熱可塑性樹脂層は、80~99質量%のメタクリル酸メチル単位と、1~20質量%の炭素数1~8のアルキル基を有するアクリル酸アルキルエステル単位とを含むことが好ましい。 The acrylic multilayer polymer particles (Y) include, from the central side, a methyl methacrylate unit, an alkyl acrylate unit having an alkyl group having 1 to 8 carbon atoms, and a polyfunctional monomer unit. A crosslinked elastic body including a first layer composed of a crosslinked resin layer, an alkyl acrylate unit having an alkyl group having 1 to 8 carbon atoms, a methyl methacrylate unit (optional component), and a polyfunctional monomer unit And a third layer (outermost layer) composed of a hard thermoplastic resin layer containing a methyl methacrylate unit and an alkyl acrylate unit having an alkyl group having 1 to 8 carbon atoms. Layered polymer particles (Y1) are preferred. The first crosslinked resin layer contains 30 to 99.99% by mass of methyl methacrylate units, 1 to 69.99% by mass of an alkyl acrylate unit having an alkyl group having 1 to 8 carbon atoms, and 0.1 to 99.99% by mass. It preferably contains from 0.1 to 2% by mass of a polyfunctional monomer unit. The second crosslinked elastic layer is composed of 70 to 99.9% by mass of an alkyl acrylate unit having an alkyl group having 1 to 8 carbon atoms and 0 to 29.9% by mass of a methyl methacrylate unit (optional component). ) And 0.1 to 5% by mass of a polyfunctional monomer unit. The third layer of the hard thermoplastic resin layer preferably contains 80 to 99% by mass of a methyl methacrylate unit and 1 to 20% by mass of an alkyl acrylate unit having an alkyl group having 1 to 8 carbon atoms. .
 3層構造重合体粒子(Y1)において、各層の比率は特に制限されず、第1層が5~40質量%であり、第2層が20~55質量%であり、第3層(最外層)が15~75質量%であるのが好ましい。 In the three-layer polymer particles (Y1), the ratio of each layer is not particularly limited, and the first layer is 5 to 40% by mass, the second layer is 20 to 55% by mass, and the third layer (the outermost layer). Is preferably 15 to 75% by mass.
 アクリル系多層構造重合体粒子(Y)の粒子径は特に制限されず、0.05μm以上であることが好ましく、0.06μm以上であることがより好ましく、0.07μm以上であることがさらに好ましい。また、アクリル系多層構造重合体粒子(Y)の粒子径は、0.25μm以下であることが好ましく、0.20μm以下であることがより好ましく、0.15μm以下であることがさらに好ましい。アクリル系多層構造重合体粒子(Y)の粒子径が0.05μm未満では、アクリル系多層構造重合体粒子(Y)の取扱い性が低下する傾向がある。アクリル系多層構造重合体粒子(Y)の粒子径が0.25μmより大きくなると、本発明の合わせガラス用中間膜が、応力が加えられたときに白化して透過率が低下しやすくなる(つまり、耐応力白化性が悪化する)傾向がある。さらに粒子径の大きい多層構造重合体粒子(Y)の添加割合が多いと、得られる合わせガラスのヘイズが増大する傾向がある。耐応力白化性やヘイズの観点から、アクリル系多層構造重合体粒子(Y)の粒子径は、0.15μm以下であることが好ましい。アクリル系多層構造重合体粒子(Y)の粒子径は、例えば、乳化重合法により重合を行う際における界面活性剤の添加量や単量体の組成を変更することで、適宜、調整することができる。 The particle diameter of the acrylic multilayer polymer particles (Y) is not particularly limited, but is preferably 0.05 μm or more, more preferably 0.06 μm or more, and further preferably 0.07 μm or more. . The particle size of the acrylic multilayer polymer particles (Y) is preferably 0.25 μm or less, more preferably 0.20 μm or less, and even more preferably 0.15 μm or less. When the particle size of the acrylic multilayer structure polymer particles (Y) is less than 0.05 μm, the handleability of the acrylic multilayer structure polymer particles (Y) tends to decrease. When the particle diameter of the acrylic multi-layer polymer particles (Y) is larger than 0.25 μm, the interlayer film for laminated glass of the present invention is whitened when stress is applied, and the transmittance is easily reduced (that is, the transmittance is reduced). , Stress whitening resistance is deteriorated). Further, when the addition ratio of the multilayer polymer particles (Y) having a large particle diameter is large, the haze of the obtained laminated glass tends to increase. From the viewpoint of stress whitening resistance and haze, the particle diameter of the acrylic multilayer polymer particles (Y) is preferably 0.15 μm or less. The particle size of the acrylic multilayer structure polymer particles (Y) can be appropriately adjusted by, for example, changing the addition amount of a surfactant or the composition of a monomer when performing polymerization by an emulsion polymerization method. it can.
 アクリル系多層構造重合体粒子(Y)は、ASTM D542に基づいて測定される屈折率が1.485~1.495の範囲となる重合体で構成されていることが、層(B)の透明性を高める観点から好ましい。 The acrylic multi-layered polymer particles (Y) are composed of a polymer having a refractive index in the range of 1.485 to 1.495 measured based on ASTM D542. It is preferable from the viewpoint of enhancing the properties.
 アクリル系多層構造重合体粒子(Y)の重合法は特に制限されず、乳化重合法が好ましい。まず、1種又は2種以上の原料単量体を乳化重合させて芯粒子をつくった後、他の1種又は2種以上の単量体を芯粒子の存在下に乳化重合させて芯粒子の周りに殻を形成させる。次いで必要に応じて、芯と殻からなる粒子の存在下にさらに1種又は2種以上の単量体を乳化重合させて別の殻を形成させる。このような重合反応を繰り返すことにより、目的とするアクリル系多層構造重合体粒子(Y)を乳化ラテックスとして製造することができる。得られたラテックス中には、通常、アクリル系多層構造重合体粒子(Y)に加えて、メタクリル酸メチル単位を有する直鎖のメタクリル系樹脂が存在する。 重合 The polymerization method of the acrylic multilayer polymer particles (Y) is not particularly limited, and an emulsion polymerization method is preferable. First, one or two or more raw material monomers are emulsion-polymerized to form core particles, and then another one or two or more monomers are emulsion-polymerized in the presence of the core particles. To form a shell around. Next, if necessary, one or more kinds of monomers are emulsion-polymerized in the presence of particles comprising a core and a shell to form another shell. By repeating such a polymerization reaction, the target acrylic-based multilayer polymer particles (Y) can be produced as an emulsified latex. In the obtained latex, usually, a linear methacrylic resin having a methyl methacrylate unit is present in addition to the acrylic multilayer polymer particles (Y).
 本発明に用いるアクリル系多層構造重合体粒子(Y)の含有量は、層(B)の総質量に対して、40質量%以上であることが好ましく、50質量%以上であることがより好ましく、62質量%以上であることが特に好ましい。また、アクリル系多層構造重合体粒子(Y)の含有量は、層(B)の総質量に対して、80質量%以下であることが好ましく、70質量%以下であることがより好ましく、67質量%以下であることが特に好ましい。
 なお、アクリル系多層構造重合体粒子(Y)の含有量は、アセトンを用いて以下の方法にて求めるものとする。
 層(B)を構成するアクリル系樹脂組成物を充分乾燥して水分を除去した後、その質量(W1)を測定する。次に、このアクリル系樹脂組成物を試験管に入れ、アセトンを加えて溶解し、アセトン可溶部を除去する。その後、真空加熱乾燥機を使用してアセトンを除去し、残留物を得る。この残留物から微粒子を分離し、次に得られた残留物の質量(W2)を測定する。次式に基づいて、アクリル系多層構造重合体粒子(Y)の含有量を求める。
 [アクリル系多層構造重合体粒子(Y)の含有量]=(W2/W1)×100(%)
The content of the acrylic multi-layer polymer particles (Y) used in the present invention is preferably at least 40% by mass, more preferably at least 50% by mass, based on the total mass of the layer (B). , 62% by mass or more. Further, the content of the acrylic multilayer structure polymer particles (Y) is preferably 80% by mass or less, more preferably 70% by mass or less, based on the total mass of the layer (B). It is particularly preferred that the content is not more than mass%.
Note that the content of the acrylic multilayer polymer particles (Y) is determined by the following method using acetone.
After the acrylic resin composition constituting the layer (B) is sufficiently dried to remove water, the mass (W1) is measured. Next, this acrylic resin composition is put into a test tube, acetone is added and dissolved, and the acetone-soluble portion is removed. Thereafter, acetone is removed using a vacuum heating dryer to obtain a residue. Fine particles are separated from the residue, and the mass (W2) of the obtained residue is measured. Based on the following formula, the content of the acrylic multilayer polymer particles (Y) is determined.
[Content of Acrylic Multilayer Polymer Particles (Y)] = (W2 / W1) × 100 (%)
〔メタクリル系樹脂(M)〕
 アクリル系フィルムに用いるアクリル系樹脂組成物は、アクリル系多層構造重合体粒子(Y)と、さらに、80質量%以上のメタクリル酸メチル単位を含み、メルトフローレートが0.5~10g/10分であるメタクリル系樹脂(M)を含むことが好ましい。メタクリル系樹脂(M)は、1種を単独で、又は、2種以上を用いることができる。
[Methacrylic resin (M)]
The acrylic resin composition used for the acrylic film contains the acrylic multilayer polymer particles (Y) and 80% by mass or more of methyl methacrylate units, and has a melt flow rate of 0.5 to 10 g / 10 min. It is preferable to include the methacrylic resin (M). As the methacrylic resin (M), one type may be used alone, or two or more types may be used.
 メタクリル系樹脂(M)は、メタクリル酸メチル単位に合わせて、必要に応じて、20質量%以下の共重合可能なビニル系単量体単位を含むことができる。ビニル系単量体としては特に制限されず、アクリル酸メチル等のアクリル酸エステル単量体;メタクリル酸エステル;芳香族ビニル化合物;等が挙げられる。これらは1種を単独で、又は、2種以上を用いることができる。 (4) The methacrylic resin (M) may contain 20% by mass or less of a copolymerizable vinyl monomer unit as needed in accordance with the methyl methacrylate unit. The vinyl monomer is not particularly limited, and examples thereof include acrylate monomers such as methyl acrylate; methacrylate; aromatic vinyl compounds; These may be used alone or in combination of two or more.
 メタクリル系樹脂(M)のメルトフローレートは、1g/10分以上であることが好ましく、1.2g/10分以上であることがより好ましい。メタクリル系樹脂(M)のメルトフローレートは、5g/10分以下であることが好ましく、3g/10分以下であることがより好ましい。メタクリル系樹脂(M)のメルトフローレートが上記の範囲を超えると、メタクリル系樹脂(M)とアクリル系多層構造重合体粒子(Y)とを含むアクリル系樹脂組成物(R1)を溶融成形する際の粘り強さが低下する傾向にある。メタクリル系樹脂(M)のメルトフローレートが上記の範囲未満であると、アクリル系樹脂組成物(R1)を溶融成形する際の流動性が低下する傾向にある。メルトフローレートが0.5~10g/10分であるメタクリル系樹脂(M)は、例えば、メタクリル酸メチルを含む単量体の重合に併用するアクリル酸エステルや連鎖移動剤の添加量を適切に調整することにより得ることができる。 The melt flow rate of the methacrylic resin (M) is preferably 1 g / 10 min or more, more preferably 1.2 g / 10 min or more. The melt flow rate of the methacrylic resin (M) is preferably 5 g / 10 minutes or less, more preferably 3 g / 10 minutes or less. When the melt flow rate of the methacrylic resin (M) exceeds the above range, the acrylic resin composition (R1) containing the methacrylic resin (M) and the acrylic multilayer polymer particles (Y) is melt-molded. In this case, the toughness tends to decrease. When the melt flow rate of the methacrylic resin (M) is less than the above range, the fluidity when the acrylic resin composition (R1) is melt-molded tends to decrease. The methacrylic resin (M) having a melt flow rate of 0.5 to 10 g / 10 min can be prepared, for example, by appropriately adjusting the amount of an acrylate or chain transfer agent used in combination with the polymerization of a monomer containing methyl methacrylate. It can be obtained by adjusting.
 メタクリル系樹脂(M)は、ASTM D542に基づいて測定される屈折率が1.485~1.495の範囲となる重合体で構成されていることが、層(B)の透明性を高めやすい観点から好ましい。 It is easy for the methacrylic resin (M) to increase the transparency of the layer (B) because the methacrylic resin (M) is composed of a polymer whose refractive index measured based on ASTM D542 is in the range of 1.485 to 1.495. Preferred from a viewpoint.
 アクリル系多層構造重合体粒子(Y)とメタクリル系樹脂(M)を混合したアクリル系樹脂組成物(R1)中におけるメタクリル系樹脂(M)の配合量は特に制限されず、アクリル系多層構造重合体粒子(Y)100質量部に対して、1質量部以上であることが好ましく、5質量部以上であることがより好ましく、15質量部以上であることが特に好ましい。メタクリル系樹脂(M)の配合量は、アクリル系多層構造重合体粒子(Y)100質量部に対して、100質量部以下であることが好ましく、70質量部以下であることが好ましく、45質量部以下であることが特に好ましい。メタクリル系樹脂(M)の配合量が100質量部より多くなると、層(B)を構成する樹脂材料の120℃における引張貯蔵弾性率E’(120)を所望の範囲に調整することが困難になる傾向がある。 The blending amount of the methacrylic resin (M) in the acrylic resin composition (R1) obtained by mixing the acrylic multilayer polymer particles (Y) and the methacrylic resin (M) is not particularly limited, and the acrylic multilayer structure weight is not limited. The amount is preferably at least 1 part by mass, more preferably at least 5 parts by mass, particularly preferably at least 15 parts by mass, per 100 parts by mass of the united particles (Y). The amount of the methacrylic resin (M) to be blended is preferably 100 parts by mass or less, more preferably 70 parts by mass or less, and preferably 45 parts by mass, based on 100 parts by mass of the acrylic multilayer polymer particles (Y). Parts or less is particularly preferred. If the amount of the methacrylic resin (M) is more than 100 parts by mass, it is difficult to adjust the tensile storage modulus E ′ (120) at 120 ° C. of the resin material constituting the layer (B) to a desired range. Tend to be.
 メタクリル系樹脂(M)は、市販品又はISO8257-1の規定品を用いることができる。
 メタクリル系樹脂(M)は、公知方法により重合して用いることができる。ここで、メタクリル系樹脂(M)の重合法は特に制限されず、乳化重合法、懸濁重合法、塊状重合法、及び溶液重合法等が挙げられる。
As the methacrylic resin (M), a commercially available product or a product specified in ISO8257-1 can be used.
The methacrylic resin (M) can be polymerized by a known method and used. Here, the polymerization method of the methacrylic resin (M) is not particularly limited, and examples thereof include an emulsion polymerization method, a suspension polymerization method, a bulk polymerization method, and a solution polymerization method.
〔アクリル系ブロック共重合体(Z)〕
 メタクリル酸エステル重合体ブロック(z1)は、メタクリル酸エステルに由来する構成単位を主たる構成単位とするものである。メタクリル酸エステル重合体ブロック(z1)におけるメタクリル酸エステルに由来する構成単位の割合は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、98質量%以上であることが特に好ましい。
[Acrylic block copolymer (Z)]
The methacrylic acid ester polymer block (z1) has a structural unit derived from a methacrylic acid ester as a main structural unit. The ratio of the structural unit derived from methacrylic acid ester in the methacrylic acid ester polymer block (z1) is preferably 80% by mass or more, more preferably 90% by mass or more, and preferably 95% by mass or more. Is more preferable, and particularly preferably 98% by mass or more.
 メタクリル酸エステルとしては、透明性及び耐熱性を向上させる観点から、メタクリル酸メチルがより好ましい。メタクリル酸エステルは、1種を単独で、又は、2種以上を組み合わせて重合することによって、メタクリル酸エステル重合体ブロック(z1)を形成できる。 As the methacrylate, methyl methacrylate is more preferred from the viewpoint of improving transparency and heat resistance. The methacrylic acid ester can form a methacrylic acid ester polymer block (z1) by polymerizing one kind alone or two or more kinds in combination.
 メタクリル酸エステル重合体ブロック(z1)の単一ユニットの重量平均分子量Mw(z1)は、5,000以上であることが好ましく、150,000以下であることが好ましい。また、メタクリル酸エステル重合体ブロック(z1)の単一ユニットの重量平均分子量Mwは、8,000以上であることがより好ましく、12,000以上であることがさらに好ましい。また、重量平均分子量Mwは、120,000以下であることがより好ましく、100,000以下であることがさらに好ましい。 (4) The weight average molecular weight Mw (z1) of the single unit of the methacrylate polymer block (z1) is preferably 5,000 or more, and more preferably 150,000 or less. Further, the weight average molecular weight Mw of a single unit of the methacrylate polymer block (z1) is more preferably 8,000 or more, and further preferably 12,000 or more. Further, the weight average molecular weight Mw is more preferably 120,000 or less, further preferably 100,000 or less.
 ブロック共重合体(Z)において、一分子中にメタクリル酸エステル重合体ブロック(z1)が複数ある場合、其々のメタクリル酸エステル重合体ブロック(z1)を構成する構成単位の組成比や分子量は、相互に同じであってもよいし、異なっていてもよい。 In the block copolymer (Z), when there are a plurality of methacrylate polymer blocks (z1) in one molecule, the composition ratio and molecular weight of the constituent units constituting each methacrylate polymer block (z1) are as follows. , May be the same or different.
 ブロック共重合体(Z)におけるメタクリル酸エステル重合体ブロック(z1)の割合は、透明性、柔軟性、成形加工性及び表面平滑性の観点から、10質量%以上であることが好ましく、60質量%以下であることがより好ましい。ブロック共重合体(Z)におけるメタクリル酸エステル重合体ブロック(z1)の割合が10質量%以上であり、60質量%以下であると、本発明のアクリル系樹脂組成物からなる層(B)の透明性、可撓性、耐屈曲性、耐衝撃性、柔軟性等に優れる。ブロック共重合体(Z)にメタクリル酸エステル重合体ブロック(z1)が複数含まれる場合には、上記の割合は、すべてのメタクリル酸エステル重合体ブロック(z1)の合計質量に基づいて算出する。 The proportion of the methacrylic acid ester polymer block (z1) in the block copolymer (Z) is preferably 10% by mass or more from the viewpoints of transparency, flexibility, moldability and surface smoothness, and is preferably 60% by mass. % Is more preferable. When the ratio of the methacrylic acid ester polymer block (z1) in the block copolymer (Z) is 10% by mass or more and 60% by mass or less, the layer (B) composed of the acrylic resin composition of the present invention is used. Excellent in transparency, flexibility, bending resistance, impact resistance, flexibility and the like. When the block copolymer (Z) includes a plurality of methacrylate ester polymer blocks (z1), the above ratio is calculated based on the total mass of all the methacrylate ester polymer blocks (z1).
 アクリル酸エステル重合体ブロック(z2)は、アクリル酸エステルに由来する構成単位を主たる構成単位とするものである。アクリル酸エステル重合体ブロック(z2)におけるアクリル酸エステルに由来する構成単位の割合は、45質量%以上であることが好ましく、50質量%以上であることがより好ましく、60質量%以上であることがさらに好ましく、90質量%以上であることがさらに好ましい。 The acrylate polymer block (z2) has a structural unit derived from an acrylate ester as a main structural unit. The proportion of the constituent unit derived from the acrylate in the acrylate polymer block (z2) is preferably 45% by mass or more, more preferably 50% by mass or more, and preferably 60% by mass or more. Is more preferably 90% by mass or more.
 アクリル酸エステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸sec-ブチル、アクリル酸tert-ブチル、アクリル酸アミル、アクリル酸イソアミル、アクリル酸n-ヘキシル、アクリル酸シクロヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ペンタデシル、アクリル酸ドデシル、アクリル酸イソボルニル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸フェノキシエチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-メトキシエチル、アクリル酸グリシジル、アクリル酸アリル等が挙げられる。アクリル酸エステルは、1種を単独で、又は2種以上を組み合わせて重合することによって、アクリル酸エステル重合体ブロック(z2)を形成できる。 Examples of the acrylate include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, tert-butyl acrylate, acrylic acid Amyl, isoamyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, pentadecyl acrylate, dodecyl acrylate, isobornyl acrylate, phenyl acrylate, benzyl acrylate, phenoxyethyl acrylate, acrylic acid 2 -Hydroxyethyl, 2-methoxyethyl acrylate, glycidyl acrylate, allyl acrylate and the like. The acrylate ester can form an acrylate polymer block (z2) by polymerizing one kind alone or two or more kinds in combination.
 アクリル酸エステル重合体ブロック(z2)は、後述のアクリル系樹脂組成物(R2)の透明性を向上させる観点等から、アクリル酸アルキルエステルとアクリル酸芳香族エステルとからなることが好ましい。アクリル酸エステル重合体ブロック(z2)が、アクリル酸アルキルエステルとアクリル酸芳香族エステルとからなる場合、該アクリル酸エステル重合体ブロック(z2)は、アクリル酸アルキルエステルに由来する構成単位50~90質量%と(メタ)アクリル酸芳香族エステルに由来する構成単位50~10質量%とを含むことが好ましい。 The acrylate polymer block (z2) is preferably composed of an acrylate alkyl ester and an acrylate aromatic ester from the viewpoint of improving the transparency of the acrylic resin composition (R2) described below. When the acrylate polymer block (z2) is composed of an alkyl acrylate and an aromatic acrylate, the acrylate polymer block (z2) is composed of 50 to 90 structural units derived from the alkyl acrylate. It is preferable that the composition contains 50% by mass and 50 to 10% by mass of structural units derived from an aromatic (meth) acrylate.
 アクリル酸エステル重合体ブロック(z2)の単一ユニットの重量平均分子量Mw(z2)は、5,000以上であることが好ましく、15,000以上であることがより好ましく、30,000以上であることが特に好ましい。アクリル酸エステル重合体ブロック(z2)の単一ユニットの重量平均分子量Mw(z2)は、120,000以下であることが好ましく、110,000以下であることがより好ましく、100,000以下であることが特に好ましい。 The weight average molecular weight Mw (z2) of the single unit of the acrylate polymer block (z2) is preferably at least 5,000, more preferably at least 15,000, and at least 30,000. Is particularly preferred. The weight average molecular weight Mw (z2) of a single unit of the acrylate polymer block (z2) is preferably 120,000 or less, more preferably 110,000 or less, and 100,000 or less. Is particularly preferred.
 ブロック共重合体(Z)におけるアクリル酸エステル重合体ブロック(z2)の割合は、透明性、柔軟性、成形加工性及び表面平滑性の観点から、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、60質量%以下であることが好ましく、55質量%以下であることがより好ましい。ブロック共重合体(Z)におけるアクリル酸エステル重合体ブロック(z2)の割合が10質量%以上、60質量%以下の範囲にあると、本発明のアクリル系樹脂組成物からなる層(B)の耐衝撃性、柔軟性等に優れる。ブロック共重合体(Z)が一分子中にアクリル酸エステル重合体ブロック(z2)を複数含む場合には、上記の割合は、すべてのアクリル酸エステル重合体ブロック(z2)の合計質量に基づいて算出する。 The proportion of the acrylate polymer block (z2) in the block copolymer (Z) is preferably 10% by mass or more, from the viewpoint of transparency, flexibility, moldability, and surface smoothness, and is preferably 20% by mass. %, More preferably 60% by mass or less, and even more preferably 55% by mass or less. When the proportion of the acrylate ester polymer block (z2) in the block copolymer (Z) is in the range of 10% by mass or more and 60% by mass or less, the layer (B) composed of the acrylic resin composition of the present invention is used. Excellent impact resistance, flexibility, etc. When the block copolymer (Z) includes a plurality of acrylate polymer blocks (z2) in one molecule, the above ratio is based on the total mass of all the acrylate polymer blocks (z2). calculate.
 ブロック共重合体(Z)のメタクリル酸エステル重合体ブロック(z1)とアクリル酸エステル重合体ブロック(z2)との結合形態は、特に限定されない。例えば、メタクリル酸エステル重合体ブロック(z1)の一末端にアクリル酸エステル重合体ブロック(z2)の一末端が繋がったもの〔(z1)-(z2)構造のジブロック共重合体〕;メタクリル酸エステル重合体ブロック(z1)の両末端のそれぞれにアクリル酸エステル重合体ブロック(z2)の一末端が繋がったもの〔(z2)-(z1)-(z2)構造のトリブロック共重合体〕;アクリル酸エステル重合体ブロック(z2)の両末端のそれぞれにメタクリル酸エステル重合体ブロック(z1)の一末端が繋がったもの〔(z1)-(z2)-(z1)構造のトリブロック共重合体〕等のメタクリル酸エステル重合体ブロック(z1)とアクリル酸エステル重合体ブロック(z2)とが直列に繋がった構造のブロック共重合体が挙げられる。 結合 The form of bonding between the methacrylate polymer block (z1) and the acrylate polymer block (z2) of the block copolymer (Z) is not particularly limited. For example, one in which one terminal of an acrylate polymer block (z2) is connected to one terminal of a methacrylate polymer block (z1) [a diblock copolymer having a (z1)-(z2) structure]; methacrylic acid One in which both ends of an ester polymer block (z1) are connected to one end of an acrylate polymer block (z2) [(z2)-(z1)-(z2) structure triblock copolymer]; One in which one end of a methacrylate polymer block (z1) is connected to each of both ends of an acrylate polymer block (z2) [triblock copolymer having a structure of (z1)-(z2)-(z1)] And a methacrylate polymer block (z1) and an acrylate polymer block (z2) are connected in series. It is below.
 また、ブロック共重合体(Z)は、メタクリル酸エステル重合体ブロック(z1)及びアクリル酸エステル重合体ブロック(z2)以外の重合体ブロック(z3)を有するものであってもよい。 ブ ロ ッ ク Further, the block copolymer (Z) may have a polymer block (z3) other than the methacrylate polymer block (z1) and the acrylate polymer block (z2).
 ブロック共重合体(Z)は、必要に応じて、分子鎖中又は分子鎖末端に水酸基、カルボキシル基、酸無水物、アミノ基等の官能基を有していてもよい。 The block copolymer (Z) may have a functional group such as a hydroxyl group, a carboxyl group, an acid anhydride, or an amino group in a molecular chain or at a molecular chain terminal, if necessary.
 ブロック共重合体(Z)の重量平均分子量Mw(Z)は、52,000以上であることが好ましく、60,000以上であることがより好ましい。ブロック共重合体(Z)の重量平均分子量Mw(Z)は、400,000以下であることが好ましく、300,000以下であることがより好ましい。ブロック共重合体(Z)の重量平均分子量が小さいと、溶融押出成形において十分な溶融張力を保持できず、良好な板状成形体が得られにくく、また得られた板状成形体の破断強度等の力学物性が低下する傾向がある。一方、ブロック共重合体(Z)の重量平均分子量が大きいと、溶融樹脂の粘度が高くなり、溶融押出成形で得られる板状成形体の表面に微細なシボ調の凹凸や未溶融物(高分子量体)に起因するブツが発生し、良好な板状成形体が得られにくい傾向がある。 重量 The weight average molecular weight Mw (Z) of the block copolymer (Z) is preferably 52,000 or more, more preferably 60,000 or more. The weight average molecular weight Mw (Z) of the block copolymer (Z) is preferably at most 400,000, more preferably at most 300,000. When the weight average molecular weight of the block copolymer (Z) is small, sufficient melt tension cannot be maintained in melt extrusion molding, and it is difficult to obtain a good plate-like molded product, and the breaking strength of the obtained plate-like molded product Etc. tend to decrease in mechanical properties. On the other hand, when the weight average molecular weight of the block copolymer (Z) is large, the viscosity of the molten resin increases, and fine grain-like irregularities and unmelted material (high (Molecular weight)), and it tends to be difficult to obtain a good plate-like molded product.
 また、ブロック共重合体(Z)の分子量分布を表す重量平均分子量Mw(Z)と数平均分子量Mn(Z)の比であるMw(Z)/Mn(Z)は、1.0以上であることが好ましく、2.0以下であることが好ましく、1.6以下であることがより好ましい。このような範囲内に分子量分布があることにより、本発明の合わせガラス用中間膜において、ブツの発生原因となる未溶融物の含有量を極めて少量とすることができる。 Further, Mw (Z) / Mn (Z), which is a ratio between the weight average molecular weight Mw (Z) representing the molecular weight distribution of the block copolymer (Z) and the number average molecular weight Mn (Z), is 1.0 or more. It is preferably 2.0 or less, more preferably 1.6 or less. When the molecular weight distribution is within such a range, the content of the unmelted material that causes the occurrence of bumps can be extremely small in the interlayer film for laminated glass of the present invention.
 ブロック共重合体(Z)の220℃、せん断速度122/secにおける溶融粘度〔η(Z)〕は、75~1500Pa・sの範囲であることが好ましい。溶融粘度〔η(Z)〕は、150Pa・s以上であることがより好ましく、300Pa・s以上であることが特に好ましい。また、溶融粘度〔η(Z)〕は、1000Pa・s以下であることがより好ましく、700Pa・s以下であることが特に好ましい。溶融粘度〔η(Z)〕が、75~1500Pa・sの範囲であることで、破断強度等の力学物性に優れ、表面の微細なシボ調の凹凸や未溶融物(高分子量体)に起因するブツの発生が抑制された、良好なフィルムを得ることができる。 The melt viscosity [η (Z)] of the block copolymer (Z) at 220 ° C. and a shear rate of 122 / sec is preferably in the range of 75 to 1500 Pa · s. The melt viscosity [η (Z)] is more preferably 150 Pa · s or more, and particularly preferably 300 Pa · s or more. Further, the melt viscosity [η (Z)] is more preferably 1,000 Pa · s or less, and particularly preferably 700 Pa · s or less. When the melt viscosity [η (Z)] is in the range of 75 to 1500 Pa · s, it has excellent mechanical properties such as breaking strength, and is caused by fine grain-like irregularities on the surface and unmelted material (high molecular weight material). It is possible to obtain a good film in which the occurrence of dust is suppressed.
 また、メタクリル系樹脂(M)の220℃、せん断速度122/secにおける溶融粘度〔η(M)〕と溶融粘度〔η(Z)〕の比〔η(M)/η(Z)〕の値は、1以上であることが好ましく、5以上であることがより好ましく、6以上であることがさらに好ましい。〔η(M)/η(Z)〕の値は、20以下であることが好ましく、10以下であることがより好ましく、8以下であることがさらに好ましい。η(M)/η(Z)の値が1~20の範囲であることで、良好な分散性を確保でき、機械的物性、光学特性に優れたフィルムとなる。 The value of the ratio [η (M) / η (Z)] of the melt viscosity [η (M)] and the melt viscosity [η (Z)] of the methacrylic resin (M) at 220 ° C. and a shear rate of 122 / sec. Is preferably 1 or more, more preferably 5 or more, and still more preferably 6 or more. The value of [η (M) / η (Z)] is preferably 20 or less, more preferably 10 or less, and even more preferably 8 or less. When the value of η (M) / η (Z) is in the range of 1 to 20, good dispersibility can be ensured, and a film having excellent mechanical properties and optical properties can be obtained.
 220℃、せん断速度122/secにおける、メタクリル系樹脂(M)及びブロック共重合体(Z)のそれぞれの溶融粘度は、キャピログラフ(株式会社東洋精機製作所製、型式1D)を用いて、220℃で、直径1mmΦ、長さ10mmのキャピラリーより、ピストンスピード10mm/分の速度で、溶融した樹脂を押出し、その際に生じるせん断応力から求めることができる。 The respective melt viscosities of the methacrylic resin (M) and the block copolymer (Z) at 220 ° C. and a shear rate of 122 / sec were measured at 220 ° C. using a Capillograph (manufactured by Toyo Seiki Seisakusho, Model 1D). The molten resin can be extruded from a capillary having a diameter of 1 mmΦ and a length of 10 mm at a piston speed of 10 mm / min, and can be determined from the shear stress generated at that time.
 ブロック共重合体(Z)のASTM D542に基づいて測定される屈折率は、1.485以上であることが好ましく、1.487以上であることがより好ましい。ブロック共重合体(Z)の屈折率は、1.495以下であることが好ましく、1.493以下であることがより好ましい。ブロック共重合体(Z)の屈折率が、1.485~1.495の範囲にあると、層(B)の透明性が高くなる。なお、本明細書において「屈折率」とは、ASTM D542の規定のとおり、測定波長587.6nm(d線)で測定した値を意味する。 The refractive index of the block copolymer (Z) measured based on ASTM D542 is preferably 1.485 or more, more preferably 1.487 or more. The refractive index of the block copolymer (Z) is preferably 1.495 or less, more preferably 1.493 or less. When the refractive index of the block copolymer (Z) is in the range of 1.485 to 1.495, the transparency of the layer (B) becomes high. In this specification, the term “refractive index” means a value measured at a measurement wavelength of 587.6 nm (d-line) as specified in ASTM D542.
 ブロック共重合体(Z)の製造方法は、特に限定されず、公知の手法に準じた方法を採用することができる。例えば、各重合体ブロックを構成する単量体をリビング重合する方法が一般に使用される。このようなリビング重合の手法としては、例えば、有機アルカリ金属化合物を重合開始剤として用いアルカリ金属又はアルカリ土類金属塩等の鉱酸塩の存在下でアニオン重合する方法、有機アルカリ金属化合物を重合開始剤として用い有機アルミニウム化合物の存在下でアニオン重合する方法、有機希土類金属錯体を重合開始剤として用い重合する方法、α-ハロゲン化エステル化合物を開始剤として用い銅化合物の存在下ラジカル重合する方法等が挙げられる。また、多価ラジカル重合開始剤や多価ラジカル連鎖移動剤を用いて、各ブロックを構成するモノマーを重合させ、本発明に用いられるブロック共重合体(Z)を含有する混合物として製造する方法等も挙げられる。これらの方法のうち、特に、ブロック共重合体(Z)が高純度で得られ、また分子量や組成比の制御が容易であり、且つ経済的であることから、有機アルカリ金属化合物を重合開始剤として用い、有機アルミニウム化合物の存在下でアニオン重合する方法が好ましい。 方法 The method for producing the block copolymer (Z) is not particularly limited, and a method according to a known method can be employed. For example, a method of living-polymerizing monomers constituting each polymer block is generally used. Examples of such a living polymerization method include a method in which an organic alkali metal compound is used as a polymerization initiator, an anion polymerization is performed in the presence of a mineral acid salt such as an alkali metal or an alkaline earth metal salt, and a method in which an organic alkali metal compound is polymerized. Method of anionic polymerization in the presence of an organoaluminum compound using as an initiator, method of polymerization using an organic rare earth metal complex as a polymerization initiator, method of radical polymerization in the presence of a copper compound using an α-halogenated ester compound as an initiator And the like. Further, a method of polymerizing monomers constituting each block by using a polyvalent radical polymerization initiator or a polyvalent radical chain transfer agent to produce a mixture containing the block copolymer (Z) used in the present invention, or the like. Are also mentioned. Among these methods, in particular, the block copolymer (Z) can be obtained with high purity, the molecular weight and the composition ratio can be easily controlled, and it is economical. And a method of anionic polymerization in the presence of an organic aluminum compound is preferred.
 アクリル系フィルムに用いるアクリル系樹脂組成物(R2)は、ブロック共重合体(Z)と、さらに、80質量%以上のメタクリル酸メチル単位を含み、メルトフローレートが0.5~10g/10分であるメタクリル系樹脂(M)を含むことが好ましい。アクリル系樹脂組成物(R2)におけるブロック共重合体(Z)の含有量は、メタクリル系樹脂(M)とブロック共重合体(Z)との合計100質量部に対し、1質量部以上であることが好ましく、10質量部以上であることがより好ましい。ブロック共重合体(Z)の含有量は、メタクリル系樹脂(M)とブロック共重合体(Z)との合計100質量部に対し、90質量部以下であることが好ましく、45質量部以下であることがより好ましく、30質量部以下であることがさらに好ましい。アクリル系樹脂組成物(R2)におけるメタクリル系樹脂(M)の含有量がブロック共重合体(Z)に対して少ないと、Tダイを用いた溶融押出成形により得られるシートの表面硬度が低下する傾向がある。 The acrylic resin composition (R2) used for the acrylic film contains the block copolymer (Z) and 80% by mass or more of methyl methacrylate units, and has a melt flow rate of 0.5 to 10 g / 10 min. It is preferable to include the methacrylic resin (M). The content of the block copolymer (Z) in the acrylic resin composition (R2) is 1 part by mass or more based on 100 parts by mass in total of the methacrylic resin (M) and the block copolymer (Z). And more preferably at least 10 parts by mass. The content of the block copolymer (Z) is preferably 90 parts by mass or less, more preferably 45 parts by mass or less, based on 100 parts by mass of the total of the methacrylic resin (M) and the block copolymer (Z). More preferably, it is even more preferably 30 parts by mass or less. When the content of the methacrylic resin (M) in the acrylic resin composition (R2) is smaller than the content of the block copolymer (Z), the surface hardness of the sheet obtained by melt extrusion molding using a T die decreases. Tend.
 ポリビニルアセタール樹脂フィルムもまた、式(1)及び(2)を満たすものであれば任意のものを層(B)として用いることができる。層(B)として使用されるポリビニルアセタール樹脂フィルムは、先に記載した層(A)に用いられる材料及び製法を参照して製造することができる。
 但し、層(B)として使用されるポリビニルアセタール樹脂フィルムについては、層(B)を構成する樹脂材料の引張貯蔵弾性率を所望の範囲に制御する観点から、層(B)中のポリビニルアセタール樹脂の原料としたポリビニルアルコール系樹脂の粘度平均重合度は好ましくは1000以上、より好ましくは1500以上である。また、層(B)中のポリビニルアセタール樹脂は、少なくとも1つのポリビニルアルコール系樹脂と、2~10個の炭素原子を有する1つ以上の脂肪族非分岐のアルデヒドとの反応により生じるものであることが好ましいが、アセタール化に使用するアルデヒドにおけるアセトアルデヒドの含有量は、好ましくは40質量%以上、より好ましくは60質量%以上、さらに好ましくは80質量%以上であり、100質量%であってもよい。アセタール化に使用するアルデヒドは、アセトアルデヒドとブチルアルデヒドの混合物であってもよい。
Any polyvinyl acetal resin film can be used as the layer (B) as long as it satisfies the formulas (1) and (2). The polyvinyl acetal resin film used as the layer (B) can be manufactured with reference to the materials and the production method used for the layer (A) described above.
However, regarding the polyvinyl acetal resin film used as the layer (B), from the viewpoint of controlling the tensile storage modulus of the resin material constituting the layer (B) to a desired range, the polyvinyl acetal resin in the layer (B) is used. The viscosity average polymerization degree of the polyvinyl alcohol-based resin used as the raw material is preferably 1,000 or more, more preferably 1500 or more. The polyvinyl acetal resin in the layer (B) is formed by a reaction between at least one polyvinyl alcohol-based resin and at least one aliphatic unbranched aldehyde having 2 to 10 carbon atoms. However, the content of acetaldehyde in the aldehyde used for acetalization is preferably 40% by mass or more, more preferably 60% by mass or more, further preferably 80% by mass or more, and may be 100% by mass. . The aldehyde used for acetalization may be a mixture of acetaldehyde and butyraldehyde.
 層(B)として使用されるポリビニルアセタール樹脂フィルムは、可塑剤を含有してよい。そのような可塑剤としては、先に記載した層(A)に含まれてよい可塑剤を使用できる。ポリビニルアセタール樹脂フィルム中の可塑剤の量は、当該ポリビニルアセタール樹脂フィルムの総質量に対して、好ましくは0~20質量%、より好ましくは0~10質量%、特に好ましくは0~5質量%である。 ポ リ ビ ニ ル The polyvinyl acetal resin film used as the layer (B) may contain a plasticizer. As such a plasticizer, the plasticizer which may be contained in the layer (A) described above can be used. The amount of the plasticizer in the polyvinyl acetal resin film is preferably 0 to 20% by mass, more preferably 0 to 10% by mass, and particularly preferably 0 to 5% by mass, based on the total mass of the polyvinyl acetal resin film. is there.
 PETフィルムもまた、式(1)及び(2)を満たすものであれば任意のものを層(B)用いることができる。 Any PET film can be used as the layer (B) as long as it satisfies the formulas (1) and (2).
〔他の添加剤〕
 本発明の層(B)は、上記した成分以外に、本発明の目的を損なわない範囲で必要に応じて、1種又は2種以上の任意成分を含むことができる。
 任意成分としては、酸化防止剤、熱劣化防止剤、紫外線吸収剤、光安定剤、熱線遮蔽剤、可塑剤、滑剤、離型剤、高分子加工助剤、接着力調整剤、帯電防止剤、難燃剤、染顔料、有機色素、耐衝撃性改質剤、発泡剤、充填剤及び蛍光体等の各種添加剤等が挙げられる。
(Other additives)
The layer (B) of the present invention may contain one or more optional components as necessary, in addition to the components described above, as long as the object of the present invention is not impaired.
Optional components include antioxidants, thermal deterioration inhibitors, ultraviolet absorbers, light stabilizers, heat ray shielding agents, plasticizers, lubricants, mold release agents, polymer processing aids, adhesion regulators, antistatic agents, Examples include flame retardants, dyes and pigments, organic dyes, impact modifiers, foaming agents, fillers, and various additives such as phosphors.
 上記各種添加剤の合計量は特に制限されず、一般に層(B)の総質量に対して好ましくは0.01質量%以上、より好ましくは0.05質量%以上であり、好ましくは20質量%以下、より好ましくは10質量%以下、特に好ましくは5質量%以下である。 The total amount of the various additives is not particularly limited, and is generally preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and preferably 20% by mass, based on the total mass of the layer (B). Or less, more preferably 10% by mass or less, particularly preferably 5% by mass or less.
 紫外線吸収剤、酸化防止剤、光安定剤としては、前述した層(A)において含有され得るものを使用できる。 As the ultraviolet absorber, antioxidant and light stabilizer, those which can be contained in the above-mentioned layer (A) can be used.
<熱劣化防止剤>
 熱劣化防止剤は、実質上無酸素の状態下で高熱にさらされたときに生じるポリマーラジカルを捕捉することによって樹脂の熱劣化を防止できるものである。熱劣化防止剤としては、2-t-ブチル-6-(3’-t-ブチル-5’-メチル-ヒドロキシベンジル)-4-メチルフェニルアクリレート(住友化学株式会社製;商品名スミライザーGM)、及び2,4-ジt-アミル-6-(3’,5’-ジt-アミル-2’-ヒドロキシ-α-メチルベンジル)フェニルアクリレート(住友化学株式会社製;商品名スミライザーGS)等が好ましい。
<Heat deterioration inhibitor>
The thermal degradation inhibitor is capable of preventing thermal degradation of a resin by capturing polymer radicals generated when exposed to high heat under a substantially oxygen-free state. Examples of the thermal deterioration inhibitor include 2-t-butyl-6- (3′-t-butyl-5′-methyl-hydroxybenzyl) -4-methylphenyl acrylate (Sumitomo Chemical Co., Ltd .; trade name Sumilizer GM); And 2,4-di-t-amyl-6- (3 ', 5'-di-t-amyl-2'-hydroxy-α-methylbenzyl) phenyl acrylate (Sumitomo Chemical Co., Ltd .; trade name Sumilizer GS). preferable.
<高分子加工助剤>
 高分子加工助剤としては、例えば、乳化重合法によって製造され、60質量%以上のメタクリル酸メチル単位及びこれと共重合可能な40質量%以下のビニル系単量体単位からなる重合体粒子が用いられる。高分子加工助剤は、極限粘度が3~6dl/gであることが好ましい。
<Polymer processing aid>
As the polymer processing aid, for example, polymer particles produced by an emulsion polymerization method and comprising 60% by mass or more of a methyl methacrylate unit and 40% by mass or less of a vinyl monomer unit copolymerizable therewith may be used. Used. The polymer processing aid preferably has an intrinsic viscosity of 3 to 6 dl / g.
 層(B)に熱線遮蔽性機能を有する金属酸化物微粒子を含有させる場合、金属酸化物微粒子の含有量は、層(B)中の熱可塑性樹脂100質量部に対して、好ましくは0.001質量部以上、より好ましくは0.002質量部以上であり、好ましくは2質量部以下、より好ましくは1.5質量部以下である。金属酸化物微粒子の含有量が前記下限値以上であると、期待する熱線遮蔽効果を得やすく、金属酸化物微粒子の含有量が前記上限値以下であると、層(B)の良好な透明性が保持されやすい。
 本発明の好ましい一態様では、層(B)は熱線遮蔽性機能を有する金属酸化物微粒子を含有する。
When the layer (B) contains metal oxide fine particles having a heat ray shielding function, the content of the metal oxide fine particles is preferably 0.001 to 100 parts by mass of the thermoplastic resin in the layer (B). It is at least 0.002 parts by mass, more preferably at least 0.002 parts by mass, preferably at most 2 parts by mass, more preferably at most 1.5 parts by mass. When the content of the metal oxide fine particles is equal to or more than the lower limit, the expected heat ray shielding effect is easily obtained. When the content of the metal oxide fine particles is equal to or less than the upper limit, good transparency of the layer (B) is obtained. Is easy to be retained.
In a preferred embodiment of the present invention, the layer (B) contains metal oxide fine particles having a heat ray shielding function.
<層間接着調整剤>
 層(B)と層(A)との接着力を調整するため、層(B)又は層(A)に層間接着調整剤を添加してもよい。層(B)に添加してよい層間接着調整剤としては、カルボキシル基、カルボキシル基の誘導体基、エポキシ基、ボロン酸基、ボロン酸基の誘導体基、アルコキシル基、又はアルコキシル基の誘導体基等の接着性官能基を有するポリオレフィン類が挙げられる。
<Interlayer adhesion regulator>
In order to adjust the adhesive strength between the layer (B) and the layer (A), an interlayer adhesion modifier may be added to the layer (B) or the layer (A). Examples of the interlayer adhesion modifier that may be added to the layer (B) include carboxyl groups, carboxyl derivative groups, epoxy groups, boronic acid groups, boronic acid group derivative groups, alkoxyl groups, and alkoxyl group derivative groups. Examples include polyolefins having an adhesive functional group.
 特に、接着性官能基を有するポリオレフィン類を層(B)に添加することで、層(B)と層(A)との接着力を好適に調整することができる。接着性官能基を有するポリオレフィン類の添加量は、層(B)の熱可塑性樹脂100質量部に対して、20質量部以下であることが好ましく、15質量部以下であることがより好ましく、10質量部以下であることがさらに好ましい。接着性官能基を有するポリオレフィン類の添加量が20質量部を超えると、合わせガラスを作製した際に、ヘイズが悪化することがある。接着性官能基を有するポリオレフィン類としては、上記ポリオレフィン類の中でもカルボキシル基を含有するポリプロピレンが、入手の容易さ、接着性の調整の及びしやすさ、及びヘイズの調整のしやすさの観点から好適である。 Particularly, by adding a polyolefin having an adhesive functional group to the layer (B), the adhesive strength between the layer (B) and the layer (A) can be suitably adjusted. The addition amount of the polyolefin having an adhesive functional group is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and preferably 10 parts by mass or less, based on 100 parts by mass of the thermoplastic resin of the layer (B). More preferably, the amount is not more than part by mass. If the amount of the polyolefin having an adhesive functional group exceeds 20 parts by mass, haze may be deteriorated when a laminated glass is produced. As the polyolefin having an adhesive functional group, among the above-mentioned polyolefins, a polypropylene containing a carboxyl group is easily available, easy to adjust adhesiveness, and from the viewpoint of easy adjustment of haze. It is suitable.
 層(B)の製造方法は特に限定されない。先に記載した層(A)の製造方法を採用できる。また、層(B)として市販のフィルムも使用できる。例えば、市販のアクリル系フィルムとしては、株式会社クラレ製のPARAPURE(登録商標)JS及びPARAPURE(登録商標)HI等が挙げられ、市販のPETフィルムとしては、東洋紡株式会社製のコスモシャイン(登録商標)A4300、等が挙げられる。 方法 The method for producing the layer (B) is not particularly limited. The method for manufacturing the layer (A) described above can be employed. A commercially available film can be used as the layer (B). For example, commercially available acrylic films include PARAPURE (registered trademark) JS and PARAPURE (registered trademark) HI manufactured by Kuraray Co., Ltd., and commercially available PET films include Cosmoshine (registered trademark) manufactured by Toyobo Co., Ltd. A4300).
[別のポリビニルアセタール樹脂層(C)]
 本発明の好ましい一態様では、積層フィルムは、さらに別のポリビニルアセタール樹脂層(C)を有する。積層フィルムが層(C)を有する場合、層(C)は一層でも複層でもよく、積層フィルムのいずれの位置に配置されていてもよい。
[Another polyvinyl acetal resin layer (C)]
In a preferred embodiment of the present invention, the laminated film further has another polyvinyl acetal resin layer (C). When the laminated film has the layer (C), the layer (C) may be a single layer or a multilayer, and may be arranged at any position of the laminated film.
 層(C)は、ポリビニルアセタール樹脂及び可塑剤を含有する。層(C)に含まれるポリビニルアセタール樹脂又は可塑剤としては、層(A)に関して記載したポリビニルアセタール樹脂又は可塑剤を使用できる。層(A)に関して記載したそれらの好ましい態様及び製造方法等は、層(C)について以下で特に言及をする態様を除き、層(C)に関して同様に適用できる。 The layer (C) contains a polyvinyl acetal resin and a plasticizer. As the polyvinyl acetal resin or the plasticizer contained in the layer (C), the polyvinyl acetal resin or the plasticizer described for the layer (A) can be used. Those preferred embodiments, manufacturing methods, and the like described for the layer (A) can be similarly applied to the layer (C), except for the embodiments specifically mentioned below for the layer (C).
 層(C)中のポリビニルアセタール樹脂の含有量は特に制限されない。層(C)の総質量に基づいて、好ましくは84.0質量%以下、より好ましくは60.0~83.9質量%である。
 層(C)中の可塑剤の含有量は、積層前の初期状態において、層(C)の総質量に基づいて、好ましくは16.0質量%以上、より好ましくは16.1質量%以上、さらに好ましくは20.0質量%超、さらにより好ましくは22.0質量%以上、特に好ましくは26.0質量%以上であり、好ましくは36.0質量%以下、より好ましくは32.0質量%以下、特に好ましくは30.0質量%以下である。可塑剤含有量が前記した下限値と上限値との範囲内であると、耐衝撃性に優れた合わせガラスを得やすい。また、層(C)として、遮音性を有する層(C)を用いることもできる。その場合、可塑剤の含有量は、前記初期状態において、層(C)の総質量に基づいて、好ましくは30質量%以上、より好ましくは30~50質量%、さらに好ましくは31~45質量%、特に好ましくは32~42質量%である。
 層(C)は、ポリビニルアセタール樹脂及び可塑剤に加えて、必要に応じて、先の層(A)に関する〔他の添加剤〕の段落において記載した添加剤を含有してよい。ただし、層(C)中のポリビニルアセタール樹脂及び可塑剤の合計量は90質量%以上であることが好ましい。
The content of the polyvinyl acetal resin in the layer (C) is not particularly limited. It is preferably 84.0% by mass or less, more preferably 60.0 to 83.9% by mass, based on the total mass of the layer (C).
In the initial state before lamination, the content of the plasticizer in the layer (C) is preferably 16.0% by mass or more, more preferably 16.1% by mass or more, based on the total mass of the layer (C). More preferably, it is more than 20.0% by mass, still more preferably 22.0% by mass or more, particularly preferably 26.0% by mass or more, preferably 36.0% by mass or less, more preferably 32.0% by mass. Or less, particularly preferably 30.0% by mass or less. When the plasticizer content is in the range between the lower limit and the upper limit, a laminated glass having excellent impact resistance is easily obtained. Further, a layer (C) having a sound insulating property can be used as the layer (C). In this case, the content of the plasticizer in the initial state is preferably 30% by mass or more, more preferably 30 to 50% by mass, and still more preferably 31 to 45% by mass, based on the total mass of the layer (C). It is particularly preferably from 32 to 42% by mass.
The layer (C) may contain, in addition to the polyvinyl acetal resin and the plasticizer, the additives described in the paragraph of [Other additives] for the layer (A) as necessary. However, the total amount of the polyvinyl acetal resin and the plasticizer in the layer (C) is preferably 90% by mass or more.
 層(C)は、一方の端面側が厚く、他方の端面側が薄い楔形の断面形状を有していてもよい。その場合、断面形状は、一方の端面側から他方の端面側に漸次的に薄くなるような全体が楔形である形状であってもよいし、一方の端面から該端面と他方の端面の間の任意の位置までは同一の厚さで、該任意の位置から他方の端面まで漸次的に薄くなるような、断面の一部が楔形のものであってもよいし、製造上問題とならない限り、位置によらず任意の断面形状を有していてもよい。断面厚さが変わる層は、全ての層であってもよいし、一部の層のみであってもよい。層(C)がこのような断面形状を有することにより、本発明の積層フィルムは、層(C)以外のフィルム又は層の厚さプロファイルが平行平面である場合でも、楔形の厚さプロファイルを有することができ、自動車フロントガラスにおいてヘッドアップディスプレイ(HUD)に使用できる。 The layer (C) may have a wedge-shaped cross-sectional shape with one end face being thick and the other end face being thin. In that case, the cross-sectional shape may be a shape that is entirely wedge-shaped so that the thickness gradually decreases from one end face side to the other end face side, or a section between the one end face and the other end face. The cross-section may be wedge-shaped so that the thickness is the same up to an arbitrary position and the thickness gradually decreases from the arbitrary position to the other end surface, or as long as there is no problem in manufacturing, It may have an arbitrary cross-sectional shape regardless of the position. The layer whose cross-sectional thickness changes may be all layers or only some layers. When the layer (C) has such a cross-sectional shape, the laminated film of the present invention has a wedge-shaped thickness profile even when the thickness profile of a film or a layer other than the layer (C) is a parallel plane. And can be used in head-up displays (HUD) in automotive windshields.
 層(C)は、単層でも複層でもよく、層(C)の合計厚さは、好ましくは1100~100μm、より好ましくは1000~200μm、特に好ましくは900~300μmである。層(C)の合計厚さが前記範囲内であると、層(C)の機能(例えば耐衝撃性又は遮音性等)の発現及び軽量化を両立しやすい。層(C)の厚さは、厚み計又はレーザー顕微鏡等を用いて測定できる。 The layer (C) may be a single layer or a multilayer, and the total thickness of the layer (C) is preferably 1100 to 100 μm, more preferably 1000 to 200 μm, and particularly preferably 900 to 300 μm. When the total thickness of the layer (C) is within the above range, it is easy to achieve both the expression of the function of the layer (C) (for example, impact resistance or sound insulation) and reduction in weight. The thickness of the layer (C) can be measured using a thickness gauge or a laser microscope.
 層(C)はまた、市販の可塑剤含有ポリビニルアセタール樹脂シートであってもよい。
 層(C)を構成する樹脂材料の40℃における引張貯蔵弾性率E’(40)は好ましくは1000MPa未満であり、又は、層(C)を構成する樹脂材料の100℃における引張貯蔵弾性率E’(100)は好ましくは10MPa未満である。
Layer (C) may also be a commercially available plasticizer-containing polyvinyl acetal resin sheet.
The tensile storage modulus E ′ (40) at 40 ° C. of the resin material constituting the layer (C) is preferably less than 1000 MPa, or the tensile storage modulus E at 100 ° C. of the resin material constituting the layer (C). '(100) is preferably less than 10 MPa.
[機能性層(D)]
 本発明の好ましい一態様では、積層フィルムは、さらに機能性層(D)を有する。積層フィルムが層(D)を有する場合、層(D)は一層でも複層でもよく、積層フィルムのいずれの位置に配置されていてもよい。積層フィルムが複数の層(D)を有する場合、それぞれの機能性層の種類は同じであってもよいし、異なっていてもよい。層(D)の歪み又は合わせガラスの透明性の悪化を抑制でき、形状への追従性が要求される3D形状の合わせガラスを得やすい観点から、層(A)のいずれか一方の面、又は層(B)が有する2つの面のうち算術平均粗さ(Ra)が0.15μm以下である面に、層(D)を設けることが好ましい。
 機能性層(D)は、着色層、光吸収層(赤外線吸収層又は紫外線吸収層のような特定波長電磁波吸収層)、光反射層(例えば赤外線反射層又は紫外線反射層のような特定波長電磁波反射層)、熱線遮蔽性被覆層、光散乱層、発光層(蛍光又は発光層)、導電層(導電性構造体)、繊維層、二重像防止層、色補正層、エレクトロクロミック層、フォトクロミック層、サーモクロミック層、意匠性層及び高弾性率層からなる群から選択される1以上の層である。積層フィルムが層(D)を有する場合、層(D)は積層フィルムの全面に積層されていてもよいし、その一部に積層されていてもよい。
[Functional layer (D)]
In a preferred embodiment of the present invention, the laminated film further has a functional layer (D). When the laminated film has the layer (D), the layer (D) may be a single layer or a multilayer, and may be arranged at any position of the laminated film. When the laminated film has a plurality of layers (D), the type of each functional layer may be the same or different. From the viewpoint that it is possible to suppress the distortion of the layer (D) or the deterioration of the transparency of the laminated glass and to easily obtain a laminated glass having a 3D shape that is required to follow the shape, either one of the surfaces of the layer (A) or The layer (D) is preferably provided on a surface having an arithmetic average roughness (Ra) of 0.15 μm or less among the two surfaces of the layer (B).
The functional layer (D) includes a colored layer, a light absorbing layer (an electromagnetic wave absorbing layer having a specific wavelength such as an infrared absorbing layer or an ultraviolet absorbing layer), and a light reflecting layer (for example, an electromagnetic wave having a specific wavelength such as an infrared reflecting layer or an ultraviolet reflecting layer). (Reflective layer), heat ray shielding coating layer, light scattering layer, light emitting layer (fluorescent or light emitting layer), conductive layer (conductive structure), fiber layer, double image prevention layer, color correction layer, electrochromic layer, photochromic At least one layer selected from the group consisting of a layer, a thermochromic layer, a design layer, and a high elastic modulus layer. When the laminated film has the layer (D), the layer (D) may be laminated on the entire surface of the laminated film, or may be laminated on a part thereof.
 層(D)の厚さは、好ましくは2~300μm、より好ましくは5~200μmである。層(D)の厚さが前記範囲内であると、層(D)の所望される機能(例えば、導電性、熱線遮蔽性又は光吸収性等)が発現されやすい。層(D)の厚さは、厚み計又はレーザー顕微鏡等を用いて測定できる。 The thickness of the layer (D) is preferably 2 to 300 μm, more preferably 5 to 200 μm. When the thickness of the layer (D) is within the above range, a desired function of the layer (D) (for example, conductivity, heat ray shielding property, light absorbing property, or the like) is likely to be exhibited. The thickness of the layer (D) can be measured using a thickness gauge, a laser microscope, or the like.
 本発明の好ましい一態様では、層(D)は0.01~200μmの厚さの熱線遮蔽性被覆層である。層(D)としての熱線遮蔽性被覆層の厚さは、好ましくは100μm以下、より好ましくは60μm以下である。熱線遮蔽性被覆層の厚さが前記上限値以下であると、積層フィルムの優れた透明性が確保されやすい。 好 ま し い In a preferred embodiment of the present invention, the layer (D) is a heat ray shielding coating layer having a thickness of 0.01 to 200 μm. The thickness of the heat ray shielding coating layer as the layer (D) is preferably 100 μm or less, more preferably 60 μm or less. When the thickness of the heat ray shielding coating layer is equal to or less than the upper limit, excellent transparency of the laminated film is easily secured.
 本発明の別の好ましい一態様では、層(D)は導電性構造体である。本発明において、導電性構造体とは不連続な導電性構造体も含まれ、平面の層ではなく、個々に識別可能な構造体、例えば導体路、導線、それらで構成される網目状構造物、点又はそれらの組み合わせである。不連続の導電性構造体は、層(A)又は層(B)の表面に設けられるか、又はその表面に埋め込まれてもよい。 で は In another preferred embodiment of the present invention, the layer (D) is a conductive structure. In the present invention, the conductive structure includes a discontinuous conductive structure, and is not a planar layer, but an individually identifiable structure, for example, a conductor track, a conductive wire, and a mesh-like structure composed of them. , A point, or a combination thereof. The discontinuous conductive structure may be provided on the surface of the layer (A) or the layer (B), or may be embedded in the surface.
 導電性構造体は、金属(例えば、金、銀、銅、インジウム、亜鉛、鉄、アルミニウム)及び/又は金属酸化物を導電性材料として含んでいることが好ましい。前記導電性材料に代えて又は前記導電性材料と組み合わせて、半導体材料も適切に層(B)に配置することができる。さらに、導電性構造体には、炭素系の導電性材料、例えばグラファイト、CNT(カーボンナノチューブ)又はグラフェンが含まれていてよい。
 本発明の好ましい一態様では、導電性構造体は、金、銀、銅及び金属酸化物からなる群から選択される少なくとも1つの導電性材料を含有する。
The conductive structure preferably contains a metal (for example, gold, silver, copper, indium, zinc, iron, or aluminum) and / or a metal oxide as a conductive material. Instead of or in combination with the conductive material, a semiconductor material can also be suitably arranged in layer (B). Further, the conductive structure may include a carbon-based conductive material, for example, graphite, CNT (carbon nanotube), or graphene.
In a preferred embodiment of the present invention, the conductive structure contains at least one conductive material selected from the group consisting of gold, silver, copper and metal oxide.
 層(D)の積層は、層(A)又は層(B)のいずれかの少なくとも片面に層(D)を構成する材料をコート、ラミネート又は印刷する方法又は層(D)に層(A)又は層(B)のいずれかを構成する材料をコート、ラミネート又は印刷する方法により実施できる。前記材料をコート、ラミネート又は印刷する方法は特に限定されない。 The lamination of the layer (D) is performed by coating, laminating or printing the material constituting the layer (D) on at least one surface of either the layer (A) or the layer (B), or the layer (D) by the layer (A). Alternatively, it can be carried out by a method of coating, laminating, or printing a material constituting any of the layers (B). The method of coating, laminating or printing the material is not particularly limited.
 前記材料をコートする方法としては、例えば、層(A)又は層(B)のいずれかを構成する樹脂材料の溶融物を層(D)にコートする方法〔例えば、層(D)上に前記樹脂材料を溶融押出する方法、若しくは層(D)上に前記樹脂材料をナイフ塗布等により塗布する方法〕;層(A)又は層(B)のいずれかに蒸着、スパッタリング又は電気蒸着により層(D)を付与する方法;層(D)が樹脂材料からなる場合に、層(A)又は層(B)のいずれかを構成する樹脂材料と層(D)を構成する樹脂材料とを同時に押出する方法;又は層(D)を構成する樹脂材料の溶液中に層(A)又は層(B)のいずれかをディップする方法;が挙げられる。 As a method of coating the material, for example, a method of coating the layer (D) with a melt of a resin material constituting either the layer (A) or the layer (B) [for example, A method of melt-extruding a resin material, or a method of applying the resin material on the layer (D) by knife coating or the like]; a layer (A) or a layer (B) formed by vapor deposition, sputtering or electric vapor deposition. A method of applying D); when the layer (D) is made of a resin material, simultaneously extruding the resin material constituting either the layer (A) or the layer (B) and the resin material constituting the layer (D); Or a method of dipping either the layer (A) or the layer (B) in a solution of the resin material constituting the layer (D).
 前記材料をラミネートする方法としては、例えば、層(D)と層(A)又は層(B)のいずれかとを重ねて熱圧着させる方法;溶媒、若しくは層(A)又は層(B)のいずれかに含まれる樹脂及び溶媒を含む樹脂材料の溶液を、層(D)及び層(A)又は層(B)のいずれかの一方若しくは両方に塗布するか、又は層(D)と層(A)又は層(B)のいずれかとの間に注入し、層(D)と層(A)又は層(B)のいずれかとを接合させる方法;又は接着剤で層(D)と層(A)又は層(B)のいずれかとを接合させる方法;が挙げられる。接着剤を使用して接合する方法において使用される接着剤は、当技術分野において一般的に使用されている接着剤を使用してよく、その例としては、アクリレート系接着剤、ウレタン系接着剤、エポキシ系接着剤及びホットメルト接着剤が挙げられる。光学的に優れた特性が求められる態様では、接着剤に由来するヘイズが生じない観点から、接着剤を使用せずに層(D)と層(A)又は層(B)のいずれかとを接合する方法が好ましい。 As a method of laminating the material, for example, a method of laminating the layer (D) and any of the layer (A) or the layer (B) and thermocompression bonding; a solvent or any of the layer (A) or the layer (B) A solution of the resin material containing the resin and the solvent contained in the layer (D) and / or the layer (A) or the layer (B), or the layer (D) and the layer (A). ) Or the layer (B), and bonding the layer (D) and the layer (A) or the layer (B); or the layer (D) and the layer (A) with an adhesive. Or a method of bonding with any of the layers (B). The adhesive used in the bonding method using the adhesive may be an adhesive generally used in the art, such as an acrylate adhesive, a urethane adhesive. , Epoxy-based adhesives and hot-melt adhesives. In an aspect in which excellent optical characteristics are required, the layer (D) is joined to either the layer (A) or the layer (B) without using an adhesive from the viewpoint that haze derived from the adhesive does not occur. Is preferred.
 前記材料を印刷する方法としては、例えば、スクリーン印刷、フレキソ印刷、又はグラビア印刷が挙げられる。上記印刷する方法では、層を有するポリビニルアセタール樹脂フィルムを後続工程において積層する前に、乾燥するか又は熱若しくは光により硬化するインクが使用される。印刷法(「プリンテッド・エレクトロニクス(printed electronics)」)を使用する場合、使用されるインク若しくは印刷用インクは、導電性粒子を含有する。導電性粒子は、金属粒子、例えば金、銀、銅、亜鉛、鉄若しくはアルミニウムの粒子、金属で被覆された材料、例えば銀めっきされたガラス繊維若しくはガラス小球粒子、又は導電性カーボンブラック、カーボンナノチューブ、グラファイト若しくはグラフェンの粒子であってよい。さらに、半導体の粒子、例えば、導電性金属酸化物、例えばインジウムドープ酸化スズ、インジウムドープ酸化亜鉛又はアンチモンドープ酸化スズの粒子である。なかでも、導電性粒子としては、金、銀、銅又は導電性金属酸化物の粒子が好ましい。
 本発明の好ましい一態様では、導電性構造体は、印刷法、エッチング法又は蒸着法で形成されたものである。
Examples of a method for printing the material include screen printing, flexographic printing, and gravure printing. In the printing method, an ink that is dried or cured by heat or light is used before laminating a polyvinyl acetal resin film having a layer in a subsequent process. When a printing method ("printed electronics") is used, the ink or printing ink used contains conductive particles. The conductive particles are metal particles, for example, gold, silver, copper, zinc, iron or aluminum particles, metal-coated materials, for example, silver-plated glass fiber or glass globule particles, or conductive carbon black, carbon It can be a particle of nanotubes, graphite or graphene. Further, semiconductor particles, for example, particles of a conductive metal oxide such as indium-doped tin oxide, indium-doped zinc oxide or antimony-doped tin oxide. Among them, as the conductive particles, particles of gold, silver, copper, or a conductive metal oxide are preferable.
In a preferred embodiment of the present invention, the conductive structure is formed by a printing method, an etching method, or an evaporation method.
 層(D)が導電性構造体であり、導電性構造体が金属箔に基づく態様では、金属箔と層(A)又は層(B)とを接合させる工程は、例えば下記方法(I)~(III)により実施される。
(I)層(A)又は層(B)と金属箔とを重ねて熱圧着させる方法、
(II)金属箔上に層(A)又は層(B)を構成する樹脂材料の溶融物を被覆して接合する方法、例えば、金属箔上に前記樹脂材料を溶融押出する方法、若しくは金属箔上に前記樹脂材料をナイフ塗布等により塗布する方法、又は
(III)溶媒、若しくは層(A)又は層(B)に含まれる樹脂及び溶媒を含む樹脂材料の溶液又は分散液を、金属箔及び層(A)又は層(B)の一方若しくは両方に塗布するか、又は金属箔と層(A)又は層(B)との間に注入し、金属箔と層(A)又は層(B)とを接合させる方法。
In a mode in which the layer (D) is a conductive structure and the conductive structure is based on a metal foil, the step of bonding the metal foil to the layer (A) or the layer (B) includes, for example, the following method (I) to (III).
(I) a method in which the layer (A) or the layer (B) and the metal foil are overlapped and thermocompression-bonded,
(II) A method of coating and joining a melt of the resin material constituting the layer (A) or the layer (B) on the metal foil, for example, a method of melt-extruding the resin material on the metal foil, or a method of melting the metal foil A method in which the resin material is applied thereon by knife coating or the like, or (III) a solvent or a solution or a dispersion of the resin material containing the resin and the solvent contained in the layer (A) or the layer (B), using a metal foil and It is applied to one or both of the layer (A) and the layer (B), or is injected between the metal foil and the layer (A) or the layer (B), and the metal foil and the layer (A) or the layer (B) are injected. And how to join.
 上記方法(I)における熱圧着時の接合温度は、層(A)又は層(B)に含まれる樹脂の種類に依存するが、通常は90~170℃、好ましくは100~160℃、より好ましくは110~155℃、さらに好ましくは110~150℃である。接合温度が上記範囲内であると、良好な接合強度が得られやすい。
 上記方法(II)における押出時の樹脂温度は、層(A)又は層(B)中の揮発性物質の含有量を低下させる観点から、150~250℃が好ましく、170~230℃がより好ましい。また、揮発性物質を効率的に除去するためには、押出機のベント口から、減圧により揮発性物質を除去することが好ましい。
 上記方法(III)における溶媒としては、ポリビニルアセタール樹脂に通常使用される可塑剤を使用することが好ましい。そのような可塑剤としては、先の<可塑剤>の段落に記載されているものが使用される。
The bonding temperature at the time of thermocompression bonding in the above method (I) depends on the kind of the resin contained in the layer (A) or the layer (B), but is usually 90 to 170 ° C, preferably 100 to 160 ° C, more preferably. Is 110 to 155 ° C, more preferably 110 to 150 ° C. When the joining temperature is within the above range, good joining strength is easily obtained.
The resin temperature during extrusion in the above method (II) is preferably from 150 to 250 ° C, more preferably from 170 to 230 ° C, from the viewpoint of reducing the content of volatile substances in the layer (A) or the layer (B). . In order to remove volatile substances efficiently, it is preferable to remove the volatile substances from the vent port of the extruder under reduced pressure.
As the solvent in the above method (III), it is preferable to use a plasticizer usually used for a polyvinyl acetal resin. As such a plasticizer, those described in the paragraph <Plasticizer> above are used.
 得られた金属箔付層(A)又は層(B)から導電性構造体の所望の形状を形成する工程は、公知のフォトリソグラフィの手法を用いて実施される。前記工程は、例えば後の実施例に記載のとおり、まず、金属箔付層(A)又は層(B)の金属箔上にドライフィルムレジストをラミネートした後、フォトリソグラフィの手法を用いてエッチング抵抗パターンを形成し、次いで、エッチング抵抗パターンが付与された層(A)又は層(B)を銅エッチング液に浸漬して導電性構造体の形状を形成した後、公知の方法により残存するフォトレジスト層を除去することによって実施される。 工程 The step of forming a desired shape of the conductive structure from the obtained metal foil-attached layer (A) or layer (B) is performed by using a known photolithography technique. In this step, for example, as described in Examples below, first, a dry film resist is laminated on the metal foil of the layer (A) or the layer (B) with a metal foil, and then the etching resistance is determined using a photolithography technique. After the pattern is formed, the layer (A) or the layer (B) provided with the etching resistance pattern is immersed in a copper etching solution to form the shape of the conductive structure, and the remaining photoresist is formed by a known method. This is done by removing the layer.
 一般に、導電性構造体は、周波電磁界を電磁遮蔽するため又は合わせガラスの一部若しくは全面を加熱するため、電気回路、例えば配線又は送信及び/若しくは受信アンテナ並びに別の機能を作製するために使用することができるものである。積層フィルムが導電性構造体を有することによって、例えば加熱エレメントを合わせガラスに導入することができ、アンテナを例えば自動車分野においてラジオ波の受信のために、又は車両間通信において使用することができる。 In general, conductive structures are used to electromagnetically shield frequency electromagnetic fields or to heat part or all of laminated glass, to create electrical circuits, such as wiring or transmitting and / or receiving antennas and other functions. What can be used. Due to the fact that the laminated film has a conductive structure, for example, a heating element can be introduced into the laminated glass, and the antenna can be used, for example, for receiving radio waves in the automotive field or in inter-vehicle communication.
 導電性構造体は、接触センサーとして仕上げられていてもよく、このことは、他の電子部材と相互に作用する合わせガラスの製造を可能にする。従って、例えば、合わせガラス(例えば乗用車のフロントガラス若しくはサイドガラス、又は扉のガラス)上での情報入力をアクセス制御に利用することができる。 The conductive structure may be finished as a contact sensor, which allows the production of laminated glass that interacts with other electronic components. Thus, for example, information input on a laminated glass (for example, a windshield or side glass of a passenger car, or a glass of a door) can be used for access control.
 導電性構造体が電子構成部品、つまり導電性及び誘電性の構造体の多層構造体である場合は、さらに電子回路又は構成部品全体を設けることができる。そのような電子回路又は構成部品全体には、特にトランジスタ、抵抗器、チップ、センサー、ディスプレイ、発光ダイオード(例えばOLED)及び/又はスマートラベルが包含される。 If the conductive structure is an electronic component, that is, a multilayer structure of conductive and dielectric structures, an additional electronic circuit or component may be provided. All such electronic circuits or components include, in particular, transistors, resistors, chips, sensors, displays, light emitting diodes (eg OLEDs) and / or smart labels.
 導電性構造体は、非常に小さいことがあり、肉眼では充分に認識することができない場合がある。導電性構造体の幅は、好ましくは1μm以上であり、好ましくは30μm以下、より好ましくは20μm以下、特に好ましくは15μm以下である。特に、平坦な加熱領域(Heizfelder)の場合、フィラメントの幅は25μm未満である。加熱領域は、局所的にのみ、例えばフロントガラスの上側の光学センサー系の前にのみ導入されてもよい。 The conductive structure may be very small and may not be sufficiently recognized by the naked eye. The width of the conductive structure is preferably 1 μm or more, preferably 30 μm or less, more preferably 20 μm or less, and particularly preferably 15 μm or less. In particular, in the case of a flat heating zone (Heizfelder), the width of the filament is less than 25 μm. The heating area may be introduced only locally, for example only before the optical sensor system above the windshield.
[剥離可能な保護フィルム]
 本発明の積層フィルムは、その最外層に剥離可能な保護フィルムを有してよい。よって、本発明の別の対象は、積層フィルムの最外層に剥離可能な保護フィルムを有する、保護フィルム付き積層フィルムである。そのような保護フィルムとしては、当技術分野で一般的なものを使用できる。
[Peelable protective film]
The laminated film of the present invention may have a peelable protective film on the outermost layer. Therefore, another object of the present invention is a laminated film with a protective film having a peelable protective film on the outermost layer of the laminated film. As such a protective film, those commonly used in the art can be used.
[積層フィルム]
 本発明の積層フィルムにおける積層構成は目的によって決められる。例えば下記積層構成を有してよいが、これらに限定されない。
・層(A)/層(B)/層(A)、層(A)/層(B)/層(C)、層(A)/層(B)/層(D)、
・層(A)/層(B)/層(A)/層(B)、層(A)/層(B)/層(C)/層(A)、層(A)/層(B)/層(A)/層(C)、層(A)/層(B)/層(D)/層(C)、
・層(A)/層(B)/層(A)/層(B)/層(A)、層(A)/層(C)/層(B)/層(C)/層(A)、層(A)/層(C)/層(B)/層(A)/層(C)、層(A)/層(B)/層(C)/層(A)/層(C)、層(C)/層(A)/層(B)/層(A)/層(C)、層(A)/層(B)/層(D)/層(C)/層(A)、
・層(C)/層(A)/層(B)/層(C)/層(A)/層(C)及び
・層(C)/層(A)/層(C)/層(B)/層(C)/層(A)/層(C)。
 この中でも、特に、層(A)/層(B)/層(C)、層(A)/層(B)/層(D)及び層(A)/層(B)/層(D)/層(C)の構成が好ましく、特に層(A)/層(B)/層(D)/層(C)の構成が好ましい。
[Laminated film]
The laminated structure in the laminated film of the present invention is determined depending on the purpose. For example, it may have the following laminated structure, but is not limited thereto.
Layer (A) / layer (B) / layer (A), layer (A) / layer (B) / layer (C), layer (A) / layer (B) / layer (D),
Layer (A) / layer (B) / layer (A) / layer (B), layer (A) / layer (B) / layer (C) / layer (A), layer (A) / layer (B) / Layer (A) / layer (C), layer (A) / layer (B) / layer (D) / layer (C),
Layer (A) / layer (B) / layer (A) / layer (B) / layer (A), layer (A) / layer (C) / layer (B) / layer (C) / layer (A) , Layer (A) / layer (C) / layer (B) / layer (A) / layer (C), layer (A) / layer (B) / layer (C) / layer (A) / layer (C) , Layer (C) / layer (A) / layer (B) / layer (A) / layer (C), layer (A) / layer (B) / layer (D) / layer (C) / layer (A) ,
Layer (C) / layer (A) / layer (B) / layer (C) / layer (A) / layer (C) and layer (C) / layer (A) / layer (C) / layer (B ) / Layer (C) / layer (A) / layer (C).
Among them, particularly, layer (A) / layer (B) / layer (C), layer (A) / layer (B) / layer (D) and layer (A) / layer (B) / layer (D) / The configuration of the layer (C) is preferred, and the configuration of the layer (A) / layer (B) / layer (D) / layer (C) is particularly preferred.
 上記の中でも、少なくとも2つの層(A)の間に層(B)が積層された積層構成が好ましく、また、ガラスとの良好な接着力を得やすい観点から、層(A)が最外層の少なくとも一層を構成していることが好ましい。
 また、合わせガラスとした際の耐貫通性の観点から、積層フィルムが層(A)及び層(B)に加えて少なくとも1層の層(C)を有することが好ましい。この場合、層(C)は層(A)/層(B)の層(B)側と接していることが好ましく、層(A)又は層(B)上に層(D)が存在する場合は層(D)と接していることが好ましい。
Among the above, a laminated structure in which the layer (B) is laminated between at least two layers (A) is preferable, and from the viewpoint of easily obtaining good adhesion to glass, the layer (A) is the outermost layer. It is preferable that at least one layer is formed.
Further, from the viewpoint of penetration resistance when the laminated glass is used, the laminated film preferably has at least one layer (C) in addition to the layer (A) and the layer (B). In this case, the layer (C) is preferably in contact with the layer (B) side of the layer (A) / layer (B), and the layer (D) exists on the layer (A) or the layer (B). Is preferably in contact with the layer (D).
 本発明の積層フィルムにおいて、層(C)が存在する場合、層(A)中のポリビニルアセタール樹脂のビニルアルコール単位含有量と、層(C)中のポリビニルブチラール樹脂のビニルアルコール単位含有量との差は、好ましくは6モル%以下、より好ましくは4モル%以下、特に好ましくは3モル%以下である。層(A)中及び/又は層(C)中のポリビニルブチラール樹脂が複数の樹脂の混合物からなる場合、層(A)に含まれる少なくとも1つのポリビニルアセタール樹脂のビニルアルコール単位含有量と、層(C)に含まれる少なくとも1つのポリビニルアセタール樹脂のビニルアルコール単位含有量との差が前記上限値以下であることが好ましい。前記差が前記上限値以下であると、積層フィルムにおいて可塑剤が移行した後の平衡状態において層(A)と層(C)との屈折率差が小さくなることから、互いに寸法が異なる層(C)と層(A)とを使用した場合にその境界が視認しにくいため好ましい。
 一方、層(A)中のポリビニルアセタール樹脂のビニルアルコール単位含有量を、層(C)中のポリビニルブチラール樹脂のビニルアルコール単位含有量よりも低くすることで、積層フィルムにおいて可塑剤が移行した後の平衡状態における層(A)中の平均可塑剤量を30質量%以上とすることも好ましい態様の1つである。その場合、層(A)中のポリビニルアセタール樹脂のビニルアルコール単位含有量は、層(C)中のポリビニルブチラール樹脂のビニルアルコール単位含有量よりも、好ましくは6モル%以上低く、より好ましくは10モル%以上低い。前記ビニルアルコール単位含有量の差が前記下限値以上であると、平衡状態での層(A)の可塑剤量を十分に高くすることができ、遮音機能が付与された合わせガラスを得やすいため好ましい。
When the layer (C) is present in the laminated film of the present invention, the content of the vinyl alcohol unit in the polyvinyl acetal resin in the layer (A) and the content of the vinyl alcohol unit in the polyvinyl butyral resin in the layer (C) are determined. The difference is preferably at most 6 mol%, more preferably at most 4 mol%, particularly preferably at most 3 mol%. When the polyvinyl butyral resin in the layer (A) and / or the layer (C) is composed of a mixture of a plurality of resins, the vinyl alcohol unit content of at least one polyvinyl acetal resin contained in the layer (A) and the layer ( It is preferable that the difference from the vinyl alcohol unit content of at least one polyvinyl acetal resin contained in C) is equal to or less than the upper limit. When the difference is equal to or less than the upper limit, the difference in the refractive index between the layer (A) and the layer (C) in an equilibrium state after the plasticizer has migrated in the laminated film is small. It is preferable to use the layer (A) and the layer (A) because the boundary between them is difficult to see.
On the other hand, by making the vinyl alcohol unit content of the polyvinyl acetal resin in the layer (A) lower than the vinyl alcohol unit content of the polyvinyl butyral resin in the layer (C), It is also one of the preferable embodiments that the average amount of the plasticizer in the layer (A) in the equilibrium state is set to 30% by mass or more. In that case, the vinyl alcohol unit content of the polyvinyl acetal resin in the layer (A) is preferably at least 6 mol% lower than the vinyl alcohol unit content of the polyvinyl butyral resin in the layer (C), and more preferably 10% or less. Mol% or less. When the difference in the vinyl alcohol unit content is equal to or larger than the lower limit, the amount of the plasticizer in the layer (A) in the equilibrium state can be sufficiently increased, and a laminated glass having a sound insulation function can be easily obtained. preferable.
 層(A)が層(D)と接する構成である場合、層(A)の層(D)との接合面について、十点平均粗さRz値は、好ましくは20μm以下、より好ましくは5μm以下、特に好ましくは3μm以下であり、凹凸の平均間隔Sm値は、好ましくは500μm以上、より好ましくは1000μm以上、特に好ましくは1300μm以上である。Rz値が前記上限値以下であり、又は、Sm値が前記下限値以上であると、均一な印刷、コート又はラミネートが達成されやすく、層(A)とインク又は金属箔等との接合のむらが抑制されやすい。 When the layer (A) is in contact with the layer (D), the ten-point average roughness Rz value of the bonding surface of the layer (A) with the layer (D) is preferably 20 μm or less, more preferably 5 μm or less. It is particularly preferably 3 μm or less, and the average interval Sm value of the unevenness is preferably 500 μm or more, more preferably 1000 μm or more, particularly preferably 1300 μm or more. When the Rz value is equal to or less than the upper limit value or the Sm value is equal to or greater than the lower limit value, uniform printing, coating or lamination is easily achieved, and uneven bonding between the layer (A) and the ink or metal foil or the like is caused. Easy to be suppressed.
 層(A)がガラスと接する構成である場合、層(A)のガラスとの接合面について、十点平均粗さRz値は、好ましくは20μm以下、より好ましくは10μm以下であり、好ましくは1μm以上、より好ましくは2μm以上であり、凹凸の平均間隔Sm値は、好ましくは1500μm以下、より好ましくは1000μm以下、特に好ましくは700μm以下である。Rz値が前記上限値以下であり、又は、Sm値が前記上限値以下であると、脱気性に優れ、層(D)の歪みや割れを抑制できるとともに、しわが発生しにくくなる。 When the layer (A) has a structure in contact with glass, the ten-point average roughness Rz value of the bonding surface of the layer (A) with glass is preferably 20 μm or less, more preferably 10 μm or less, and preferably 1 μm. The above is more preferably 2 μm or more, and the average interval Sm value of the unevenness is preferably 1500 μm or less, more preferably 1000 μm or less, particularly preferably 700 μm or less. When the Rz value is equal to or less than the upper limit value or the Sm value is equal to or less than the upper limit value, the layer (D) is excellent in degassing property, can suppress the distortion and crack of the layer (D), and hardly generate wrinkles.
 Rz値及びSm値は、表面粗さ計又はレーザー顕微鏡を用いて、JIS B0601-1994に準拠して測定される。
 Rz値を前記上限値以下に、またSm値を前記下限値以上に調整する方法としては、溶融押出法(例えば、Tダイを用いる方法若しくはインフレーション成形する方法等)又は溶媒キャスト法等を採用できる。好ましくは、Rz値及びSm値は、Tダイから押出した溶融物を平滑な冷却ロールにより製膜することにより調整できる。また、より平滑な面を形成するために、弾性ロールと鏡面金属ロールとを組み合わせて用いることが好ましく、金属弾性ロールと鏡面金属ロールとを組み合わせて用いることがより好ましい。
The Rz value and the Sm value are measured using a surface roughness meter or a laser microscope in accordance with JIS B0601-1994.
As a method for adjusting the Rz value to the upper limit or less and the Sm value to the lower limit or more, a melt extrusion method (for example, a method using a T-die or a method of inflation molding), a solvent casting method, or the like can be adopted. . Preferably, the Rz value and the Sm value can be adjusted by forming a film of the melt extruded from the T-die using a smooth cooling roll. Further, in order to form a smoother surface, it is preferable to use a combination of an elastic roll and a mirror-finished metal roll, and it is more preferable to use a combination of a metal elastic roll and a mirror-finished metal roll.
 本発明の積層フィルムについて、ASTM D542に基づいて測定される層(A)の屈折率と層(B)の屈折率との屈折率差は好ましくは0.10以下、より好ましくは0.08以下である。屈折率差が前記上限値以下であると、得られる合わせガラスの優れた透明性を得やすい。屈折率差は、例えば、層(A)をポリビニルアセタール樹脂材料で構成し、層(B)を先に述べた樹脂材料で構成することにより前記上限値以下に調整できる。 Regarding the laminated film of the present invention, the difference in refractive index between the refractive index of the layer (A) and the refractive index of the layer (B) measured based on ASTM D542 is preferably 0.10 or less, more preferably 0.08 or less. It is. When the refractive index difference is equal to or less than the upper limit, excellent transparency of the obtained laminated glass is easily obtained. The refractive index difference can be adjusted to the upper limit or less by, for example, configuring the layer (A) with a polyvinyl acetal resin material and configuring the layer (B) with the resin material described above.
 また、本発明の積層フィルムについて、2枚のガラスで積層フィルムを挟持した合わせガラスのJIS K7136に基づくヘイズ値は好ましくは1.5%以下、より好ましくは1.0%以下、特に好ましくは0.8%以下である。ヘイズ値が前記上限値以下であることは、得られる合わせガラスが優れた透明性を有することを意味する。ヘイズ値は、例えば、層(A)をポリビニルアセタール樹脂材料で構成し、層(B)を先に述べた樹脂材料で構成することにより前記上限値以下に調整できる。 Further, with respect to the laminated film of the present invention, the haze value based on JIS K7136 of the laminated glass sandwiching the laminated film between two glasses is preferably 1.5% or less, more preferably 1.0% or less, and particularly preferably 0% or less. 0.8% or less. When the haze value is equal to or less than the upper limit, the obtained laminated glass has excellent transparency. The haze value can be adjusted to the upper limit or less, for example, by configuring the layer (A) with a polyvinyl acetal resin material and configuring the layer (B) with the resin material described above.
 本発明の積層フィルムは、層(A)及び層(B)の間に、接着剤層を有していてもよいが、積層フィルムの透明性の観点から、接着剤層を有さないことが好ましい。 The laminated film of the present invention may have an adhesive layer between the layer (A) and the layer (B), but from the viewpoint of transparency of the laminated film, it may not have an adhesive layer. preferable.
[積層フィルムの製造方法]
 本発明の積層フィルムは、層(A)及び層(B)、並びに場合により層(C)及び場合により層(D)を有する。その製造方法は特に限定されない。積層フィルムは、先の[機能性層(D)]の段落で述べたようなコート、ラミネート又は印刷による方法と同様の方法により製造できる。
 積層フィルムが剥離可能な保護フィルムを有する場合は、得られた積層フィルムに、当技術分野で一般的な方法によって保護フィルムを積層すればよい。
[Production method of laminated film]
The laminated film of the present invention has a layer (A) and a layer (B), and optionally a layer (C) and optionally a layer (D). The manufacturing method is not particularly limited. The laminated film can be manufactured by the same method as the method of coating, laminating or printing as described in the paragraph of [Functional Layer (D)].
When the laminated film has a peelable protective film, the protective film may be laminated on the obtained laminated film by a method common in the art.
[合わせガラス]
 本発明はまた、本発明の積層フィルム又は本発明の保護フィルム付き積層フィルムから保護フィルムが剥離された積層フィルムが、2枚のガラスの間に挟持された合わせガラスを対象とする。
[Laminated glass]
The present invention is also directed to a laminated glass in which the laminated film of the present invention or the laminated film obtained by peeling the protective film from the laminated film with a protective film of the present invention is sandwiched between two glasses.
 本発明におけるガラスは、透明性、耐候性及び力学的強度の観点から、好ましくは有機ガラス又は無機ガラスである。具体的には、好ましくは無機ガラス(本明細書においては、単に「ガラス」と称することもある)、又はメタクリル樹脂シート、ポリカーボネート樹脂シート、ポリスチレン系樹脂シート、ポリエステル系樹脂シート、若しくはポリシクロオレフィン系樹脂シート等の有機ガラスであり、より好ましくは無機ガラス、メタクリル樹脂シート又はポリカーボネート樹脂シートであり、特に好ましくは無機ガラスである。無機ガラスとしては、特に制限されないが、フロートガラス、強化ガラス、半強化ガラス、化学強化ガラス、グリーンガラス又は石英ガラス等が挙げられる。 ガ ラ ス The glass in the present invention is preferably an organic glass or an inorganic glass from the viewpoint of transparency, weather resistance and mechanical strength. Specifically, preferably, an inorganic glass (also simply referred to as “glass” in the present specification), or a methacrylic resin sheet, a polycarbonate resin sheet, a polystyrene-based resin sheet, a polyester-based resin sheet, or a polycycloolefin Organic glass such as a system resin sheet, more preferably an inorganic glass, a methacrylic resin sheet or a polycarbonate resin sheet, and particularly preferably an inorganic glass. Examples of the inorganic glass include, but are not particularly limited to, float glass, tempered glass, semi-tempered glass, chemically strengthened glass, green glass, and quartz glass.
 本発明の合わせガラスは、従来公知の方法で製造することが可能である。例えば、ガラスの上に、本発明の積層フィルム又は本発明の保護フィルム付き積層フィルムから保護フィルムが剥離された積層フィルムを配置し、さらにもう1枚のガラスを重ねたものを、予備圧着により全面又は局所的に相互に融着させ、次いでオートクレーブで処理することで、合わせガラスを製造できる。
 また、積層フィルムの製造を合わせガラスの製造と同時に行うこともできる。即ち、ガラスの上に、例えば、層(A)及び層(B)並びに任意に層(C)及び任意に層(D)を、又は一部の層を予め積層した積層フィルム(例えば層A/層B/層D)と1層以上の層(C)を、任意の順で重ねて配置し、さらにもう1枚のガラスを重ねたものを、予備圧着により全面又は局所的に相互に融着させ、次いでオートクレーブで処理することで、合わせガラスを製造できる。
The laminated glass of the present invention can be manufactured by a conventionally known method. For example, on a glass, a laminated film in which the protective film is peeled off from the laminated film of the present invention or the laminated film with the protective film of the present invention is arranged, and another glass is further laminated by pre-compression bonding. Alternatively, a laminated glass can be produced by locally fusing each other and then treating in an autoclave.
Further, the production of the laminated film can be performed simultaneously with the production of the laminated glass. That is, for example, a layered film (for example, a layer A / A) in which a layer (A) and a layer (B) and optionally a layer (C) and an optional layer (D) are laminated on glass, or a part of the layers is laminated in advance. Layer B / Layer D) and one or more layers (C) are superposed in any order, and another glass is superimposed and fused to the whole surface or locally by pre-compression bonding Then, by treating in an autoclave, a laminated glass can be produced.
 予備圧着工程としては、過剰の空気を除去したり隣接する層同士の軽い接合を実施したりする観点から、バキュームバッグ、バキュームリング又は真空ラミネーター等の方法により減圧下に脱気する方法、ニップロールを用いて脱気する方法、及び高温下に圧縮成形する方法等が挙げられる。 As a preliminary pressure bonding step, from the viewpoint of removing excess air or performing light joining of adjacent layers, a method of degassing under reduced pressure by a method such as a vacuum bag, a vacuum ring or a vacuum laminator, a nip roll And a method of compression molding at a high temperature.
 例えばEP 1235683 B1に記載されているように、バキュームバッグ法又はバキュームリング法は約2×10Pa及び100~145℃で実施される。
 真空ラミネーターは加熱可能かつ真空可能なチャンバーからなり、このチャンバーにおいて約20~60分の時間内に合わせガラスが形成される。通常は1Pa~3×10Paの減圧及び100~200℃、特に130~160℃の温度で実施される。真空ラミネーターを用いる場合、温度及び圧力に応じて後続のオートクレーブ処理を行わなくてもよい。
The vacuum bag method or the vacuum ring method is performed at about 2 × 10 4 Pa and 100 to 145 ° C., for example, as described in EP 1235683 B1.
The vacuum laminator comprises a heatable and vacuumable chamber in which laminated glass is formed within a time period of about 20-60 minutes. Usually, it is carried out at a reduced pressure of 1 Pa to 3 × 10 4 Pa and a temperature of 100 to 200 ° C., particularly 130 to 160 ° C. When a vacuum laminator is used, the subsequent autoclave may not be performed depending on the temperature and the pressure.
 オートクレーブでの処理を行う場合は、例えば約1×10~1.5×10Paの圧力及び約100~145℃の温度で20分~2時間程度実施される。 When the treatment is performed in an autoclave, the treatment is performed, for example, at a pressure of about 1 × 10 6 to 1.5 × 10 6 Pa and a temperature of about 100 to 145 ° C. for about 20 minutes to 2 hours.
 本発明の合わせガラスは、例えば建物又は乗物における合わせガラスとして使用される。乗物用のガラスとしては、汽車、電車、自動車、船舶又は航空機といった乗物のための、フロントガラス、リアガラス、ルーフガラス又はサイドガラス等が挙げられる。 The laminated glass of the present invention is used, for example, as a laminated glass in a building or a vehicle. Examples of the vehicle glass include a windshield, a rear glass, a roof glass, a side glass, and the like for vehicles such as trains, trains, automobiles, ships, and aircraft.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はかかる実施例により何ら限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.
[評価項目及び評価方法]
<耐熱クリープ性値の測定>
 後述の実施例又は比較例で作製した層(A)/層(B)の積層フィルム及び層(C)としての可塑化ポリビニルブチラール樹脂フィルムを、幅100mm及び長さ270mmの寸法にカットした。カットした試料を、図1に示すように、長さ方向に30mmずらした幅100mm、長さ300mm及び厚さ3mmのガラスA及びBの間に収まるよう、層(A)/層(B)の積層フィルムと層(C)としての可塑化ポリビニルブチラール樹脂フィルムとを重ねて下記「構成1」の順に配置し、真空ラミネーターを用いて140℃で接合を行った後、オートクレーブを用いて140℃、1.2MPaで30分間処理することにより、合わせガラスを作製した。
 [構成1]ガラスA/積層フィルム(層A/層B)/可塑化ポリビニルブチラール樹脂フィルム(層C)/ガラスB
 続いて、図2に示すように、ガラスBの、可塑化ポリビニルブチラール樹脂フィルムとの接合面と反対側の面に1kgの鉄板を接着剤で接着し、図3に示すように、長さ方向に30mm突出している部分を上にして、鉄板付き試料が水平面に対して80~90°となり、ガラスBの鉄板が接着された部分が試料上部又は上面となるようにガラスAを固定した状態で、100℃の恒温槽に1週間放置した後に、ガラスBのずれた距離(mm)を測定し、この値を耐熱クリープ性値とした。鉄板付き試料の水平面に対する角度が80~90°のいずれの角度であっても、同等の耐熱クリープ性値が得られる。通常は、前記角度を85°にして、耐熱クリープ性値を測定する。
 各評価結果の判定基準は以下に従って実施した。
  A:15mm以下
  B:15mmより長い
[Evaluation items and evaluation methods]
<Measurement of heat creep resistance>
A layered film of layer (A) / layer (B) and a plasticized polyvinyl butyral resin film as layer (C) prepared in Examples and Comparative Examples described later were cut into dimensions of 100 mm in width and 270 mm in length. As shown in FIG. 1, the cut sample was placed between the layers A and B so that the cut sample was placed between glasses A and B having a width of 100 mm, a length of 300 mm, and a thickness of 3 mm shifted by 30 mm in the length direction. After laminating the laminated film and the plasticized polyvinyl butyral resin film as the layer (C) and arranging them in the order of “Configuration 1” below, joining them at 140 ° C. using a vacuum laminator, and then 140 ° C. using an autoclave, By treating at 1.2 MPa for 30 minutes, a laminated glass was produced.
[Configuration 1] Glass A / Laminated film (Layer A / Layer B) / Plasticized polyvinyl butyral resin film (Layer C) / Glass B
Subsequently, as shown in FIG. 2, a 1 kg iron plate is adhered to the surface of the glass B on the side opposite to the bonding surface with the plasticized polyvinyl butyral resin film with an adhesive, and as shown in FIG. The glass A is fixed so that the sample with the iron plate is at an angle of 80 to 90 ° with respect to the horizontal plane, and the portion where the iron plate of glass B is attached is the upper or upper surface of the sample, with the part protruding 30 mm upward. After leaving the glass B for one week in a thermostat at 100 ° C., the shifted distance (mm) of the glass B was measured, and this value was defined as the heat creep resistance value. Even when the angle of the sample with the iron plate with respect to the horizontal plane is any angle of 80 to 90 °, the same heat resistance creep resistance value can be obtained. Usually, the above-mentioned angle is set to 85 °, and the heat creep resistance value is measured.
The evaluation criteria for each evaluation result were as follows.
A: 15mm or less B: Longer than 15mm
<ヘイズ値の測定>
 後述の実施例又は比較例において層(A)、層(B)及び層(C)として用いた樹脂フィルム並びに層(A)~層(C)を用いて作製した合わせガラスについて、ヘイズメーター(スガ試験機社製)を用い、JIS K7136に準拠してヘイズ値を測定した。
<Measurement of haze value>
For the resin films used as the layers (A), (B) and (C) and the laminated glass manufactured using the layers (A) to (C) in Examples and Comparative Examples described later, a haze meter (Suga The haze value was measured according to JIS K7136 using a test machine (manufactured by Testing Machine Co., Ltd.).
<屈折率の測定>
 後述の実施例及び比較例において層(A)及び層(B)として用いた各樹脂フィルムについて、カルニュー光学工業株式会社「KPR-20」を用い、ASTM D542に準拠して屈折率を測定した。
<Measurement of refractive index>
The refractive index of each resin film used as the layer (A) and the layer (B) in Examples and Comparative Examples described later was measured using Calnew Optical Co., Ltd. “KPR-20” in accordance with ASTM D542.
<算術平均粗さ(Ra)の測定>
 後述の実施例及び比較例において層(B)として用いた各樹脂フィルムについて、レーザー顕微鏡を利用してJIS B0601:2001に準じて算術平均粗さ(Ra)を測定した。算術平均粗さ(Ra)はフィルム表面の任意の5箇所において測定された個々の算術平均粗さ(Ra)の平均値として求めることができ、この値をμmで表したものをいう。各樹脂フィルムにおいて、層(C)又は層(D)と接することになる面を測定し、その値を算術平均粗さ(Ra)として採用し、表3に記載した。
<Measurement of arithmetic average roughness (Ra)>
The arithmetic average roughness (Ra) of each resin film used as the layer (B) in Examples and Comparative Examples described below was measured using a laser microscope according to JIS B0601: 2001. The arithmetic average roughness (Ra) can be obtained as an average value of the individual arithmetic average roughness (Ra) measured at any five places on the film surface, and this value is expressed in μm. In each resin film, the surface that comes into contact with the layer (C) or the layer (D) was measured, and the value was adopted as the arithmetic average roughness (Ra).
<引張貯蔵弾性率の測定>
 実施例及び比較例において層(B)として用いた樹脂フィルムについて、下記方法により引張貯蔵弾性率E’(40)、E’(100)及びE’(120)を測定した。
 層(B)として用いた樹脂フィルムを、幅3mm及び長さ3cmの寸法にカットし、動的粘弾性測定用サンプルを作製した。動的粘弾性装置(株式会社ユービーエム製、Rheogel-E4000)を用い、20mmのチャック間距離、0.3Hzの周波数、自動調整(10μm、0.05%)の歪み制御、自動静荷重(最低静荷重25g、自動制御値200%)の静荷重制御、-100℃から140℃まで3℃/分の昇温速度、及び引張モードで分析を行った。
<Measurement of tensile storage modulus>
For the resin films used as the layer (B) in the examples and comparative examples, the tensile storage elastic moduli E ′ (40), E ′ (100) and E ′ (120) were measured by the following method.
The resin film used as the layer (B) was cut into dimensions of 3 mm in width and 3 cm in length to prepare a sample for dynamic viscoelasticity measurement. Using a dynamic viscoelastic apparatus (Rheogel-E4000 manufactured by UBM Co., Ltd.), a distance between chucks of 20 mm, a frequency of 0.3 Hz, distortion control of automatic adjustment (10 μm, 0.05%), automatic static load (minimum) The analysis was performed under static load control with a static load of 25 g and an automatic control value of 200%), at a temperature rising rate of 3 ° C./min from −100 ° C. to 140 ° C., and in a tensile mode.
<3D形状合わせガラスの中間膜のしわ・切れ評価方法>
 実施例及び比較例において、後述の方法で作製される3D形状合わせガラスの中間膜のしわ・切れ評価方法としては、導電性インクを用いて層(B)に2.5mm間隔で書いた格子状の線を加飾層とみなし、目視による判別方法で実施した。各評価結果の判定基準は以下に従って実施した。
  A:中間膜のしわや切れが見られない。
  B:わずかに中間膜のしわや切れが見られる。
  C:中間膜しわや切れが見られる。
<Evaluation method for wrinkles and cuts of interlayer film of 3D laminated glass>
In Examples and Comparative Examples, as a method for evaluating wrinkles / cuts of an intermediate film of a 3D laminated glass produced by a method described later, a grid-like pattern written on a layer (B) using a conductive ink at 2.5 mm intervals was used. This line was regarded as a decorative layer, and the determination was performed by a visual discrimination method. The evaluation criteria for each evaluation result were as follows.
A: No wrinkles or cuts in the interlayer film are seen.
B: Wrinkles and cuts of the intermediate film are slightly observed.
C: Interlayer wrinkles and cuts are observed.
<3D形状合わせガラスの中間膜の歪み評価方法>
 実施例及び比較例において、後述の方法で作製される3D形状合わせガラスの中間膜の歪み評価方法としては、導電性インクを用いて層(B)に2.5mm間隔で書いた格子状の線を導電性構造体又は加飾層とみなし、その線が曲がっている度合を目視により確認する方法で実施した。各評価結果の判定基準は以下に従って実施した。
  A:格子状の線の歪みが見られない。
  B:格子状の線に大きな歪みが見られる。
<Method for evaluating distortion of interlayer film of 3D laminated glass>
In Examples and Comparative Examples, as a method for evaluating the distortion of the intermediate film of the 3D laminated glass produced by the method described below, a grid-like line written on the layer (B) at 2.5 mm intervals using conductive ink was used. Was regarded as a conductive structure or a decorative layer, and the degree of bending of the line was visually confirmed. The evaluation criteria for each evaluation result were as follows.
A: No lattice line distortion is observed.
B: Large distortion is seen in the grid lines.
実施例1
 ポリビニルブチラール樹脂1(以下、「樹脂1」と称する)としての樹脂A-1及びポリビニルブチラール樹脂2(以下、「樹脂2」と称する)としての樹脂A-2を、75:25の質量比で混合し、溶融混練してストランド状に押出し、ペレット化した。得られたペレットを単軸押出機及びTダイを用いて下記条件で溶融押出し、金属弾性ロールを用いて表面が平滑な厚さ50μmのポリビニルアセタール樹脂フィルムaを得、これを層(A)として用いた。
  溶融押出条件
   押出機の設定温度(樹脂材料の溶融温度):200℃、
   Tダイの幅:500mm、
   Tダイのリップ開度:0.5mm、
   Tダイからの溶融樹脂の吐出量:15kg/h
Example 1
Resin A-1 as polyvinyl butyral resin 1 (hereinafter, referred to as “resin 1”) and resin A-2 as polyvinyl butyral resin 2 (hereinafter, referred to as “resin 2”) in a mass ratio of 75:25. They were mixed, melt-kneaded, extruded into strands, and pelletized. The obtained pellets were melt-extruded using a single screw extruder and a T-die under the following conditions, and a 50 μm-thick polyvinyl acetal resin film a having a smooth surface was obtained using a metal elastic roll, and this was used as a layer (A). Using.
Melt extrusion conditions Set temperature of extruder (melting temperature of resin material): 200 ° C,
T die width: 500mm,
T die lip opening: 0.5mm,
Discharge rate of molten resin from T-die: 15 kg / h
 層(B)として、厚さが50μmであり、両面の算術平均粗さ(Ra)が0.15μm以下である株式会社クラレ製PARAPURE(登録商標)JS(アクリル系フィルム)を用いた。以下において、このフィルムを「PMMA-1」と称する。
 層(A)と層(B)とを、熱プレス機を用いて140℃で10分間加熱した後、1.2MPaで15分間加圧し、層(A)/層(B)の積層フィルムを得た。
As the layer (B), PARAPURE (registered trademark) JS (acrylic film) manufactured by Kuraray Co., Ltd., having a thickness of 50 μm and an arithmetic average roughness (Ra) of 0.15 μm or less on both surfaces, was used. Hereinafter, this film is referred to as “PMMA-1”.
The layer (A) and the layer (B) are heated at 140 ° C. for 10 minutes using a hot press machine, and then pressurized at 1.2 MPa for 15 minutes to obtain a layer (A) / layer (B) laminated film. Was.
 アセタール化度70モル%、酢酸ビニル単位含有量0.9モル%かつ原料としたポリビニルアルコールの粘度平均重合度約1700のポリビニルブチラール樹脂72質量%と、3GO(可塑剤)28質量%とを二軸押出機で溶融混練し、ストランド状に押出し、ペレット化した。得られたペレットをスクリュー径65mm及びスクリュー径50mmの単軸ベント押出機に投入し、Tダイからフィルム状に押出し、厚さ760μmの可塑化ポリビニルブチラール樹脂フィルム(以下、「PVB-1」と称する)を得、これを層(C)として用いた。 72% by mass of a polyvinyl butyral resin having a degree of acetalization of 70% by mol, a vinyl acetate unit content of 0.9% by mol and a viscosity average degree of polymerization of polyvinyl alcohol of about 1700 as a raw material, and 28% by mass of 3GO (plasticizer). The mixture was melt-kneaded with a screw extruder, extruded into strands, and pelletized. The obtained pellets are introduced into a uniaxial vent extruder having a screw diameter of 65 mm and a screw diameter of 50 mm, extruded from a T-die into a film, and formed into a plasticized polyvinyl butyral resin film having a thickness of 760 μm (hereinafter referred to as “PVB-1”). ), Which was used as layer (C).
<光学性能評価(ヘイズ値測定)用合わせガラスの作製>
 まず、層(A)/層(B)の積層フィルム及び層(C)としてのPVB-1を50mm×50mmの寸法にカットし、積層フィルム(層A/層B)、層(C)の順に重ね、熱プレス機を用いて140℃で10分間加熱した後、1.2MPaで15分間加圧し、積層フィルム(層A/層B/層C)を得た。次いで、厚さ2mm、50mm×50mmの寸法の2枚のガラスの間に積層フィルム(層A/層B/層C)を配置してバキュームバッグに投入し、真空引きしながら100℃で30分間静置した。バキュームバッグから中身を取り出し、さらにオートクレーブにて140℃で60分間静置し、目的の合わせガラスを得た。
<Preparation of laminated glass for optical performance evaluation (haze value measurement)>
First, the laminated film of layer (A) / layer (B) and PVB-1 as layer (C) are cut into a size of 50 mm × 50 mm, and laminated film (layer A / layer B) and layer (C) in this order. After stacking and heating at 140 ° C. for 10 minutes using a hot press machine, pressure was applied at 1.2 MPa for 15 minutes to obtain a laminated film (layer A / layer B / layer C). Next, a laminated film (layer A / layer B / layer C) is placed between two pieces of glass having a thickness of 2 mm and dimensions of 50 mm × 50 mm, put into a vacuum bag, and evacuated at 100 ° C. for 30 minutes. It was left still. The contents were taken out of the vacuum bag, and left still at 140 ° C. for 60 minutes in an autoclave to obtain a target laminated glass.
<3D形状評価用合わせガラスの作製方法>
 層(A)/層(B)の積層フィルム及び層(C)としてのPVB-1を、それぞれ直径150mmの大きさの円状に切り出し、積層フィルムの層(B)の表面には1つの格子の大きさが5mm×5mmとなるよう導電性インクで格子状の線を描いた。次いで、積層フィルム(層A/層B)、層(C)の順に重ね、熱プレス機を用いて140℃で10分間加熱した後、1.2MPaで15分間加圧し、積層フィルム(層A/層B/層C)を得た。次いで、図4に示す積層順となるように、直径150mm、高さ15mmの2枚の円盤状時計皿(3D形状のガラス31及び32)の間に積層フィルム〔層A(33)/層B(34)/層C(35)〕を配置してバキュームバッグに投入し、真空引きしながら100℃で30分間静置した。バキュームバッグから中身を取り出し、さらにオートクレーブにて140℃で60分間静置し、目的の合わせガラス40を得た。
<Method for producing laminated glass for 3D shape evaluation>
The layered film of layer (A) / layer (B) and PVB-1 as layer (C) are cut out into circles each having a size of 150 mm in diameter, and one grid is formed on the surface of layer (B) of the layered film. Lattice-shaped lines were drawn with conductive ink so that the size was 5 mm × 5 mm. Next, the laminated film (layer A / layer B) and the layer (C) were laminated in this order, heated at 140 ° C. for 10 minutes using a hot press machine, and then pressed at 1.2 MPa for 15 minutes to form a laminated film (layer A / layer A / B). Layer B / layer C) was obtained. Next, a laminated film [Layer A (33) / Layer B] is placed between two disc-shaped watch glasses (3D-shaped glasses 31 and 32) having a diameter of 150 mm and a height of 15 mm so that the lamination order shown in FIG. (34) / layer C (35)] was placed and placed in a vacuum bag, and allowed to stand at 100 ° C. for 30 minutes while evacuating. The contents were taken out of the vacuum bag, and further left still at 140 ° C. for 60 minutes in an autoclave to obtain a target laminated glass 40.
 実施例1で作製した層(A)、層(B)、層(C)又は合わせガラスについて各種評価を行った。評価結果を表3に示す。 各種 Various evaluations were performed on the layer (A), the layer (B), the layer (C) or the laminated glass manufactured in Example 1. Table 3 shows the evaluation results.
実施例2
 層(B)として、厚さが50μmであり、両面の算術平均粗さ(Ra)が0.15μm以下である株式会社クラレ製PARAPURE(登録商標)JSに代えて、厚さ50μmの株式会社クラレ製PARAPURE(登録商標)HI(アクリル系フィルム。以下、「PMMA-2」と称する)を使用したこと以外は実施例1と同様にして、積層フィルム及び合わせガラスを作製し、各種評価を行った。評価結果を表3に示す。
Example 2
As the layer (B), Kuraray Co., Ltd. having a thickness of 50 μm is used in place of PARAPURE (registered trademark) JS manufactured by Kuraray Co., Ltd., which has a thickness of 50 μm and an arithmetic average roughness (Ra) of 0.15 μm or less on both surfaces. A laminated film and a laminated glass were prepared and various evaluations were performed in the same manner as in Example 1 except that PARAPURE (registered trademark) HI (acrylic film; hereinafter, referred to as “PMMA-2”) was used. . Table 3 shows the evaluation results.
実施例3
 樹脂1としての樹脂A-1及び樹脂2としての樹脂A-2を25:75の質量比で混合し、得られた混合物82質量%と3GO(18質量%)とを二軸押出機で溶融混練してストランド状に押出し、ペレット化した。得られたペレットを単軸押出機及びTダイを用いて溶融押出し、金属弾性ロールを用いて表面が平滑な厚さ50μmのポリビニルアセタール樹脂フィルムbを得た。層(A)として樹脂フィルムaに代えて樹脂フィルムbを使用したこと以外は実施例2と同様にして、積層フィルム及び合わせガラスを作製し、各種評価を行った。評価結果を表3に示す。
Example 3
The resin A-1 as the resin 1 and the resin A-2 as the resin 2 were mixed at a mass ratio of 25:75, and 82% by mass of the obtained mixture and 3GO (18% by mass) were melted by a twin-screw extruder. The mixture was kneaded, extruded into a strand, and pelletized. The obtained pellet was melt-extruded using a single screw extruder and a T-die, and a 50 μm-thick polyvinyl acetal resin film b having a smooth surface was obtained using a metal elastic roll. A laminated film and a laminated glass were prepared and various evaluations were performed in the same manner as in Example 2 except that the resin film b was used instead of the resin film a as the layer (A). Table 3 shows the evaluation results.
実施例4
 樹脂1としての樹脂A-2(72質量%)と3GO(28質量%)とを二軸押出機で溶融混練してストランド状に押出し、ペレット化した。得られたペレットを単軸押出機及びTダイを用いて溶融押出し、金属弾性ロールを用いて表面が平滑な厚さ100μmのポリビニルアセタール樹脂フィルムcを得た。層(A)として樹脂フィルムaに代えて樹脂フィルムcを使用したこと以外は実施例2と同様にして、積層フィルム及び合わせガラスを作製し、各種評価を行った。評価結果を表3に示す。
Example 4
Resin A-2 (72% by mass) and 3GO (28% by mass) as resin 1 were melt-kneaded with a twin-screw extruder, extruded into strands, and pelletized. The obtained pellets were melt-extruded using a single screw extruder and a T-die, and a 100 μm-thick polyvinyl acetal resin film c having a smooth surface was obtained using a metal elastic roll. A laminated film and laminated glass were prepared and various evaluations were performed in the same manner as in Example 2 except that the resin film c was used instead of the resin film a as the layer (A). Table 3 shows the evaluation results.
実施例5
 アセトアルデヒドによりアセタール化された、アセタール化度70モル%、酢酸ビニル単位含有量0.9モル%かつ原料としたポリビニルアルコールの粘度平均重合度約2400のポリビニルアセタール樹脂をスクリュー径65mm及びスクリュー径50mmの単軸ベント押出機に投入し、Tダイからフィルム状に押出し、厚さが50μmであり、両面の算術平均粗さ(Ra)が0.15μm以下である熱可塑性樹脂フィルム「PVX-1」を得た。層(B)としてPMMA-1に代えてPVX-1を使用したこと以外は、実施例1と同様にして、積層フィルム及び合わせガラスを作製し、各種評価を行った。評価結果を表3に示す。
Example 5
A polyvinyl acetal resin having a degree of acetalization of 70 mol%, a vinyl acetate unit content of 0.9 mol%, and a viscosity average degree of polymerization of polyvinyl alcohol of about 2400, which was acetalized with acetaldehyde, and having a screw diameter of 65 mm and a screw diameter of 50 mm was used. A thermoplastic resin film “PVX-1” having a thickness of 50 μm and an arithmetic average roughness (Ra) of 0.15 μm or less on both sides is put into a single-screw vent extruder and extruded from a T-die into a film. Obtained. A laminated film and a laminated glass were prepared and various evaluations were performed in the same manner as in Example 1 except that PVX-1 was used instead of PMMA-1 as the layer (B). Table 3 shows the evaluation results.
実施例6
 ブチルアルデヒド及びアセトアルデヒドによりアセタール化された(ブチルアルデヒド:アセトアルデヒド=1:1)、アセタール化度70モル%、酢酸ビニル単位含有量0.9モル%かつ原料としたポリビニルアルコールの粘度平均重合度約1700のポリビニルアセタール樹脂をスクリュー径65mm及びスクリュー径50mmの単軸ベント押出機に投入し、Tダイからフィルム状に押出し、厚さが50μmであり、両面の算術平均粗さ(Ra)が0.15μm以下である熱可塑性樹脂フィルム「PVX-2」を得た。層(B)としてPMMA-1に代えてPVX-2を使用したこと以外は実施例1と同様にして、積層フィルム及び合わせガラスを作製し、各種評価を行った。評価結果を表3に示す。
Example 6
Acetalized with butyraldehyde and acetaldehyde (butyraldehyde: acetaldehyde = 1: 1), acetalization degree 70 mol%, vinyl acetate unit content 0.9 mol%, and viscosity average degree of polymerization of polyvinyl alcohol used as a raw material about 1700 Is charged into a uniaxial vent extruder having a screw diameter of 65 mm and a screw diameter of 50 mm, and extruded from a T-die into a film. The thickness is 50 μm, and the arithmetic average roughness (Ra) of both sides is 0.15 μm. The following thermoplastic resin film "PVX-2" was obtained. A laminated film and a laminated glass were prepared and various evaluations were performed in the same manner as in Example 1 except that PVX-2 was used instead of PMMA-1 as the layer (B). Table 3 shows the evaluation results.
実施例7
 層(B)としてPMMA-1に代えて東洋紡株式会社製PET(コスモシャイン(登録商標)A4300、厚さ50μm、両面の算術平均粗さ0.15μm以下である)を使用したこと以外は実施例1と同様にして、積層フィルム及び合わせガラスを作製し、各種評価を行った。評価結果を表3に示す。
Example 7
Example except that PET (Cosmoshine (registered trademark) A4300, thickness 50 μm, arithmetic average roughness of both sides 0.15 μm or less) manufactured by Toyobo Co., Ltd. was used as the layer (B) instead of PMMA-1. In the same manner as in Example 1, a laminated film and a laminated glass were produced, and various evaluations were performed. Table 3 shows the evaluation results.
実施例8
 層(B)としてPMMA-1に代えて東洋紡株式会社製PET(コスモシャイン(登録商標)A4300、厚さ125μm、両面の算術平均粗さ0.15μm以下である)を使用したこと以外は実施例1と同様にして、積層フィルム及び合わせガラスを作製し、各種評価を行った。評価結果を表3に示す。
Example 8
Example except that PET (Cosmoshine® A4300, thickness 125 μm, arithmetic mean roughness of both sides 0.15 μm or less) manufactured by Toyobo Co., Ltd. was used instead of PMMA-1 as the layer (B). In the same manner as in Example 1, a laminated film and a laminated glass were produced, and various evaluations were performed. Table 3 shows the evaluation results.
実施例9
 樹脂フィルムaの原料樹脂99質量%とCIKナノテック株式会社製ITO(錫ドープ酸化インジウム、ITO-R(登録商標))0.2質量%とを二軸押出機で溶融混練し、ストランド状に押出し、ペレット化した。得られたペレットを単軸押出機及びTダイを用いて溶融押出し、金属弾性ロールを用いて表面が平滑な厚さ50μmのポリビニルアセタール樹脂フィルムeを得た。層(A)として樹脂フィルムaに代えて樹脂フィルムeを使用したこと以外は実施例1と同様にして、積層フィルム及び合わせガラスを作製し、各種評価を行った。評価結果を表3に示す。
Example 9
99 mass% of the raw material resin of the resin film a and 0.2 mass% of ITO (tin-doped indium oxide, ITO-R (registered trademark) manufactured by CIK Nanotech Co., Ltd.) are melt-kneaded with a twin-screw extruder and extruded into strands. And pelletized. The obtained pellet was melt-extruded using a single screw extruder and a T-die, and a 50 μm-thick polyvinyl acetal resin film e having a smooth surface was obtained using a metal elastic roll. A laminated film and a laminated glass were produced and various evaluations were performed in the same manner as in Example 1 except that the resin film e was used instead of the resin film a as the layer (A). Table 3 shows the evaluation results.
実施例10
 株式会社クラレ製PARAPURE(登録商標)JSの原料樹脂99.7質量%とITO(0.3質量%)とを二軸押出機で溶融混練し、ストランド状に押出し、ペレット化した。得られたペレットを単軸押出機及びTダイを用いて溶融押出し、金属弾性ロールを用いて表面が平滑な(算術平均粗さが0.15μm以下である)厚さ100μmの熱可塑性樹脂フィルム「PMMA-3」を得た。層(B)としてPMMA-1に代えてPMMA-3を使用したこと以外は実施例1と同様にして、積層フィルム及び合わせガラスを作製し、各種評価を行った。評価結果を表3に示す。
Example 10
99.7% by mass of a raw resin of PARAPURE (registered trademark) JS manufactured by Kuraray Co., Ltd. and ITO (0.3% by mass) were melt-kneaded with a twin-screw extruder, extruded into strands, and pelletized. The obtained pellets are melt-extruded using a single screw extruder and a T-die, and a thermoplastic resin film having a smooth surface (having an arithmetic average roughness of 0.15 μm or less) and a thickness of 100 μm using a metal elastic roll. PMMA-3 "was obtained. A laminated film and a laminated glass were produced and various evaluations were performed in the same manner as in Example 1 except that PMMA-3 was used instead of PMMA-1 as the layer (B). Table 3 shows the evaluation results.
実施例11
 アセタール化度70モル%、酢酸ビニル単位含有量0.9モル%かつ原料としたポリビニルアルコールの粘度平均重合度約1700のポリビニルブチラール樹脂71.9質量%、3GO(28質量%)及びITO(0.1質量%)を二軸押出機で溶融混練し、ストランド状に押出し、ペレット化した。得られたペレットをスクリュー径65mm及びスクリュー径50mmの単軸ベント押出機に投入し、Tダイからフィルム状に押出し、厚さ760μmのITO含有可塑化ポリビニルブチラール樹脂フィルム(以下、「ITO含有PVB」と称する)を得た。層(C)としてPVB-1に代えてITO含有PVBを使用したこと以外は実施例1と同様にして、積層フィルム及び合わせガラスを作製し、各種評価を行った。評価結果を表3に示す。
Example 11
Polyvinyl butyral resin having an acetalization degree of 70 mol%, a vinyl acetate unit content of 0.9 mol%, and a viscosity average degree of polymerization of polyvinyl alcohol of about 1700 was 71.9 mass%, 3GO (28 mass%) and ITO (0 mass%). .1% by mass) was melt-kneaded with a twin-screw extruder, extruded into strands, and pelletized. The obtained pellets are introduced into a uniaxial vent extruder having a screw diameter of 65 mm and a screw diameter of 50 mm, extruded into a film from a T-die, and formed into a 760 μm-thick ITO-containing plasticized polyvinyl butyral resin film (hereinafter, “ITO-containing PVB”). ). A laminated film and a laminated glass were produced and various evaluations were performed in the same manner as in Example 1 except that ITO-containing PVB was used instead of PVB-1 as the layer (C). Table 3 shows the evaluation results.
実施例12
 実施例1で得られた層(A)/層(B)の積層フィルムに、片面が黒化処理された厚さ7μmの銅箔を、黒化処理面と層(B)とが接するような向きで重ねた。ここで、JIS R 3106に準じて測定された黒化処理面の可視光反射率は5.2%であった。次に、層(A)/層(B)の積層フィルムと層(D)としての銅箔とを重ねた積層物の上下を厚さ50μmのPETフィルムで挟み、120℃に設定した熱圧着ロールの間を通過(圧力:0.2MPa、速度0.5m/分)させた後、PETフィルムをはがすことで、積層フィルム(層A/層B/銅箔)を得た。
 次いで、積層フィルム(層A/層B/銅箔)の銅箔上に、ドライフィルムレジストをラミネートした後、フォトリソグラフィの手法を用いてエッチング抵抗パターンを形成した。次に、前記エッチング抵抗パターンが形成された積層フィルムを、銅エッチング液に浸漬して導電層(導電性構造体)を形成した後、常法により、残存するフォトレジスト層を除去した。これにより、層(D)として導電層を有する、積層フィルム(層A/層B/層D)を得た。この積層フィルムは、層(B)と層(D)である導電層との間に接着剤層を有していない。導電層は、縦横各5cmの正方形の内部に、線幅10μmの銅線が500μm間隔で格子状に並んだ銅メッシュ構造を有し、その上辺及び下辺がバスバーに相当する幅5mmの銅線構造と接続された構造を有していた。
 層(D)として導電層を有する、積層フィルム(層A/層B/層D)について、3D形状評価を行った。しわ、切れ及び歪みは観察されなかった。またこの際に、層(D)の導電層については、断線も変形も発生しなかった。
Example 12
The layer (A) / layer (B) laminated film obtained in Example 1 was coated with a 7 μm-thick copper foil having one surface blackened so that the blackened surface was in contact with the layer (B). Stacked in orientation. Here, the visible light reflectance of the blackened surface measured according to JIS R 3106 was 5.2%. Next, the upper and lower sides of a laminate in which a layered film of layer (A) / layer (B) and a copper foil as layer (D) are sandwiched between a 50 μm-thick PET film, and a thermocompression roll set at 120 ° C. After passing through (pressure: 0.2 MPa, speed: 0.5 m / min), the PET film was peeled off to obtain a laminated film (layer A / layer B / copper foil).
Next, after laminating a dry film resist on the copper foil of the laminated film (layer A / layer B / copper foil), an etching resistance pattern was formed using a photolithography technique. Next, the laminated film on which the etching resistance pattern was formed was immersed in a copper etching solution to form a conductive layer (conductive structure), and the remaining photoresist layer was removed by a conventional method. Thus, a laminated film (layer A / layer B / layer D) having a conductive layer as layer (D) was obtained. This laminated film has no adhesive layer between the layer (B) and the conductive layer that is the layer (D). The conductive layer has a copper mesh structure in which copper wires having a line width of 10 μm are arranged in a grid at intervals of 500 μm inside a square having a length of 5 cm and a width of 5 cm, and an upper side and a lower side thereof have a width of 5 mm corresponding to a bus bar. And a structure connected to the
A 3D shape evaluation was performed on a laminated film (layer A / layer B / layer D) having a conductive layer as layer (D). No wrinkles, cuts and distortions were observed. At this time, no disconnection or deformation occurred in the conductive layer (D).
実施例13
 積層フィルム(層A/層B/層C)に代えて積層フィルム(層A/層B/層D/層C)を作製するよう、層(A)/層(B)の積層フィルムと層(C)としてのPVB-1との間に層(D)としての熱線遮蔽性被覆層(株式会社3M製クリスタリン70、厚さ50μm)をさらに積層したこと以外は実施例1と同様にして、積層フィルム及び合わせガラスを作製した。3D形状評価を行ったところ、しわ、切れ及び歪みは観察されなかった。また、耐熱クリープ性値はA評価であり、合わせガラスのヘイズ値は0.9であった。
Example 13
In order to prepare a laminated film (layer A / layer B / layer D / layer C) in place of the laminated film (layer A / layer B / layer C), the laminated film of layer (A) / layer (B) and the layer ( Laminating was carried out in the same manner as in Example 1 except that a heat ray shielding coating layer (Crystallin 70 manufactured by 3M Co., Ltd., thickness: 50 μm) as a layer (D) was further laminated between PVB-1 as C). A film and a laminated glass were produced. When the 3D shape was evaluated, no wrinkles, cuts or distortions were observed. The heat creep resistance was rated A, and the haze value of the laminated glass was 0.9.
実施例14
 層(B)の原料として、実施例6の熱可塑性樹脂フィルム「PVX-2」の原料樹脂を、エタノールに溶解させ、7質量%エタノール溶液を調製した。調製したエタノール溶液を、実施例1と同様に得た厚さ50μmの樹脂フィルムa上にアプリケーターを用いてコーティングし、常温・常圧で乾燥させ、厚さが10μmであり、両面の算術平均粗さ(Ra)が0.15μm以下である熱可塑性樹脂フィルム「PVX-3」を層(A)上に作製し、層(A)/層(B)の積層フィルムを得た。層(B)としてPMMA-1に代えてPVX-3を使用したこと、及び層(A)/層(B)の積層フィルムをコーティングにより得たこと以外は実施例1と同様にして、合わせガラスを作製し、各種評価を行った。評価結果を表3に示す。
Example 14
As a raw material for the layer (B), a raw resin for the thermoplastic resin film “PVX-2” of Example 6 was dissolved in ethanol to prepare a 7% by mass ethanol solution. The prepared ethanol solution was coated on a resin film a having a thickness of 50 μm obtained in the same manner as in Example 1 using an applicator, and dried at normal temperature and normal pressure. The thickness was 10 μm, and the arithmetic mean A thermoplastic resin film “PVX-3” having a thickness (Ra) of 0.15 μm or less was formed on the layer (A) to obtain a layer (A) / layer (B) laminated film. A laminated glass was produced in the same manner as in Example 1 except that PVX-3 was used instead of PMMA-1 as the layer (B), and a layer (A) / layer (B) laminated film was obtained by coating. Were prepared and various evaluations were made. Table 3 shows the evaluation results.
比較例1
 樹脂1としての樹脂A-1(72質量%)と3GO(28質量%)とを二軸押出機で溶融混練してストランド状に押出し、ペレット化した。得られたペレットを単軸押出機及びTダイを用いて溶融押出し、金属弾性ロールを用いて表面が平滑な厚さ100μmのポリビニルアセタール樹脂フィルムdを得た。層(A)として樹脂フィルムaに代えて樹脂フィルムdを使用したこと以外は実施例2と同様にして、積層フィルム及び合わせガラスを作製し、各種評価を行った。評価結果を表3に示す。
Comparative Example 1
Resin A-1 (72% by mass) and 3GO (28% by mass) as resin 1 were melt-kneaded with a twin-screw extruder, extruded into strands, and pelletized. The obtained pellet was melt-extruded using a single screw extruder and a T-die, and a 100 μm-thick polyvinyl acetal resin film d having a smooth surface was obtained using a metal elastic roll. A laminated film and a laminated glass were prepared and various evaluations were performed in the same manner as in Example 2, except that the resin film d was used instead of the resin film a as the layer (A). Table 3 shows the evaluation results.
比較例2
 厚さを500μmに変更したこと以外は樹脂フィルムcと同様にして樹脂フィルムc’を作製し、層(A)として樹脂フィルムaに代えて樹脂フィルムc’を使用したこと以外は実施例7と同様にして、積層フィルム及び合わせガラスを作製し、各種評価を行った。評価結果を表3に示す。
Comparative Example 2
A resin film c ′ was prepared in the same manner as the resin film c except that the thickness was changed to 500 μm, and was the same as in Example 7 except that the resin film c ′ was used instead of the resin film a as the layer (A). Similarly, a laminated film and a laminated glass were prepared and various evaluations were performed. Table 3 shows the evaluation results.
比較例3
 層(B)として〔E’(40)=1900MPa及びE’(100)=700MPaを有する〕PMMA-1に代えて〔E’(40)=600MPa及びE’(100)=0.5MPaを有する〕厚さ50μmの樹脂フィルムaを使用したこと以外は実施例1と同様にして、積層フィルム及び合わせガラスを作製し、各種評価を行った。評価結果を表3に示す。
Comparative Example 3
As layer (B) [having E '(40) = 1900 MPa and E' (100) = 700 MPa] instead of PMMA-1 [having E '(40) = 600 MPa and E' (100) = 0.5 MPa A laminated film and a laminated glass were produced in the same manner as in Example 1 except that the resin film a having a thickness of 50 μm was used, and various evaluations were made. Table 3 shows the evaluation results.
 実施例及び比較例において使用した樹脂A-1及び樹脂A-2の物性値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the physical property values of Resin A-1 and Resin A-2 used in Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
 実施例及び比較例において使用したポリビニルアセタール樹脂フィルムa~eを構成する樹脂材料の組成及びガラス転移温度を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 ポリビニルアセタール樹脂フィルムa~eを構成する樹脂材料の40℃における引張貯蔵弾性率E’(40)は1000MPa未満であり、100℃における引張貯蔵弾性率E’(100)は10MPa未満であった。
Table 2 shows the compositions and glass transition temperatures of the resin materials constituting the polyvinyl acetal resin films a to e used in the examples and comparative examples.
Figure JPOXMLDOC01-appb-T000002
The tensile storage elastic modulus E ′ (40) at 40 ° C. of the resin material constituting the polyvinyl acetal resin films a to e was less than 1000 MPa, and the tensile storage elastic modulus E ′ (100) at 100 ° C. was less than 10 MPa.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明の実施例1~14では、本発明の積層フィルムが、優れた耐熱クリープ性及び3D形状ガラスへの良好な追従性を併せ持ち、さらに、高い透明性を有する合わせガラスをもたらすことが示された。耐熱クリープ性に優れることは、機能性層の歪みを良好に抑制できることを意味する。
 一方、比較例1では、層(A)に含まれる樹脂成分として、ブルックフィールド型(B型)粘度計を用いて20℃、30rpmで測定された、濃度10質量%のトルエン/エタノール=1/1(質量比)溶液の粘度が200mPa・s未満のポリビニルアセタール樹脂を使用したことに起因して、不十分な耐熱クリープ性しか得られなかった。
 また、比較例2では、350μmを超える厚さを有する層(A)を使用したことに起因して、3D形状ガラスへの追従性が悪化し、合わせガラスにおいてしわ又は切れが観察された。
 また、比較例3では、式(1)及び式(2)を満たさない層(B)を使用したことに起因して3D形状ガラスへの追従性が悪化し、格子の歪みが観察された。これは、機能性層(D)を積層した場合にその歪みが十分抑制されないことを示している。
In Examples 1 to 14 of the present invention, it is shown that the laminated film of the present invention has both excellent heat creep resistance and good followability to 3D-shaped glass, and also provides a laminated glass having high transparency. Was. Being superior in heat creep resistance means that the distortion of the functional layer can be favorably suppressed.
On the other hand, in Comparative Example 1, as a resin component contained in the layer (A), toluene / ethanol having a concentration of 10% by mass, which was measured at 20 ° C. and 30 rpm using a Brookfield type (B type) viscometer, was 1/1/1. Due to the use of a polyvinyl acetal resin having a viscosity of 1 (mass ratio) of less than 200 mPa · s, only insufficient heat creep resistance was obtained.
Further, in Comparative Example 2, the use of the layer (A) having a thickness exceeding 350 μm deteriorated the ability to follow the 3D shape glass, and wrinkles or cuts were observed in the laminated glass.
In Comparative Example 3, the use of the layer (B) that does not satisfy the formulas (1) and (2) deteriorated the ability to follow the 3D-shaped glass, and lattice distortion was observed. This indicates that when the functional layer (D) is laminated, the distortion is not sufficiently suppressed.
 本発明の積層フィルムは、合わせガラスの中間膜として用いた際に機能性層の歪み又は合わせガラスの透明性の悪化を抑制でき、また、3D形状への追従性に優れるため、建築用合わせガラス、ディスプレイの表面保護用の合わせガラス、又は自動車用合わせガラスの中間膜として好適に利用できる。 The laminated film of the present invention can suppress the distortion of the functional layer or the deterioration of the transparency of the laminated glass when used as the interlayer of the laminated glass, and is excellent in conformability to the 3D shape. It can be suitably used as a laminated glass for protecting the surface of a display or an interlayer film of a laminated glass for automobiles.
  10  耐熱クリープ性値測定用合わせガラス
  11  ガラスA
  12  ガラスB
  13  積層フィルム(層A/層B)と可塑化ポリビニルブチラール樹脂フィルム(層C)との積層フィルム
  13A 積層フィルム(層A/層B)
  13B 可塑化ポリビニルブチラール樹脂フィルム(層C)
  20  鉄板が接着された耐熱クリープ性値測定用合わせガラス
  21  鉄板
  31  3D形状のガラス
  32  3D形状のガラス
  33  層(A)
  34  層(B)
  35  層(C)
  40  3D形状評価用合わせガラス
10 Laminated glass for heat resistance creep resistance measurement 11 Glass A
12 Glass B
13 Laminated film of laminated film (layer A / layer B) and plasticized polyvinyl butyral resin film (layer C) 13A Laminated film (layer A / layer B)
13B Plasticized polyvinyl butyral resin film (layer C)
Reference Signs List 20 laminated glass for heat resistance creep resistance measurement bonded with iron plate 21 iron plate 31 3D-shaped glass 32 3D-shaped glass 33 layer (A)
34 layers (B)
35 layers (C)
40 Laminated glass for 3D shape evaluation

Claims (15)

  1.  ポリビニルアセタール樹脂層(A)と熱可塑性樹脂層(B)とを少なくとも有する積層フィルムであって、層(A)中のポリビニルアセタール樹脂の、ブルックフィールド型(B型)粘度計を用いて20℃、30rpmで測定された、濃度10質量%のトルエン/エタノール=1/1(質量比)溶液の粘度が200mPa・sより大きく、層(A)中の可塑剤の量が層(A)の総質量に対して0~35質量%であり、層(A)の厚さが10~350μmであり、層(B)を構成する樹脂材料の40℃における引張貯蔵弾性率E’(40)及び100℃における引張貯蔵弾性率E’(100)が式(1)及び式(2)を満たす、積層フィルム。
    (1)E’(40)≧1000MPa
    (2)E’(100)≧10MPa
    A laminated film having at least a polyvinyl acetal resin layer (A) and a thermoplastic resin layer (B), wherein the polyvinyl acetal resin in the layer (A) is at 20 ° C. using a Brookfield type (B type) viscometer. The viscosity of a 10 mass% toluene / ethanol = 1/1 (mass ratio) solution measured at 30 rpm is greater than 200 mPa · s, and the amount of plasticizer in the layer (A) is The layer (A) has a thickness of 10 to 350 μm, and the resin material constituting the layer (B) has a tensile storage modulus E ′ (40) and 40 ′ at 40 ° C. A laminated film having a tensile storage modulus E ′ (100) at ° C. satisfying the formulas (1) and (2).
    (1) E '(40) ≧ 1000 MPa
    (2) E '(100) ≧ 10 MPa
  2.  ASTM D542に基づいて測定される層(A)の屈折率と層(B)の屈折率との屈折率差が0.10以下であり、2枚のガラスで前記積層フィルムを挟持した合わせガラスのJIS K7136に基づくヘイズ値が1.5%以下である、請求項1に記載の積層フィルム。 The difference in the refractive index between the refractive index of the layer (A) and the refractive index of the layer (B) measured based on ASTM D542 is 0.10 or less, and the laminated glass in which the laminated film is sandwiched between two glasses. The laminated film according to claim 1, wherein a haze value based on JIS # K7136 is 1.5% or less.
  3.  層(B)の厚さが150μm以下である、請求項1又は2に記載の積層フィルム。 The laminated film according to claim 1 or 2, wherein the thickness of the layer (B) is 150 µm or less.
  4.  層(B)を構成する樹脂材料の120℃における引張貯蔵弾性率E’(120)が式(3)を満たす、請求項1~3のいずれかに記載の積層フィルム。
    (3)E’(120)≦500MPa
    The laminated film according to any one of claims 1 to 3, wherein the resin material constituting the layer (B) has a tensile storage elastic modulus E '(120) at 120 ° C that satisfies the formula (3).
    (3) E ′ (120) ≦ 500 MPa
  5.  層(B)の少なくとも一方の表面の算術平均粗さ(Ra)が0.15μm以下である、請求項1~4のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 4, wherein the arithmetic average roughness (Ra) of at least one surface of the layer (B) is 0.15 μm or less.
  6.  層(B)が熱線遮蔽性機能を有する金属酸化物微粒子を含有する、請求項1~5のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 5, wherein the layer (B) contains metal oxide fine particles having a heat ray shielding function.
  7.  さらに別のポリビニルアセタール樹脂層(C)を有する、請求項1~6のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 6, further comprising another polyvinyl acetal resin layer (C).
  8.  さらに機能性層(D)を有する、請求項1~7のいずれかに記載の積層フィルム。 (8) The laminated film according to any one of (1) to (7), further comprising a functional layer (D).
  9.  層(D)が0.01~200μmの厚さの熱線遮蔽性被覆層である、請求項8に記載の積層フィルム。 The laminated film according to claim 8, wherein the layer (D) is a heat ray shielding coating layer having a thickness of 0.01 to 200 μm.
  10.  層(D)が導電性構造体である、請求項8又は9に記載の積層フィルム。 積 層 The laminated film according to claim 8 or 9, wherein the layer (D) is a conductive structure.
  11.  導電性構造体が印刷法、エッチング法又は蒸着法で形成されたものである、請求項10に記載の積層フィルム。 The laminated film according to claim 10, wherein the conductive structure is formed by a printing method, an etching method, or a vapor deposition method.
  12.  導電性構造体が、金、銀、銅及び金属酸化物からなる群から選択される少なくとも1つの導電性材料を含有する、請求項10又は11に記載の積層フィルム。 The laminated film according to claim 10, wherein the conductive structure contains at least one conductive material selected from the group consisting of gold, silver, copper, and metal oxide.
  13.  層(A)が熱線遮蔽性機能を有する金属酸化物微粒子を含有する、請求項1~12のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 12, wherein the layer (A) contains metal oxide fine particles having a heat ray shielding function.
  14.  請求項1~13のいずれかに記載の積層フィルムの最外層に剥離可能な保護フィルムを有する、保護フィルム付き積層フィルム。 (14) A laminated film with a protective film, comprising a peelable protective film on the outermost layer of the laminated film according to any one of (1) to (13).
  15.  請求項1~13のいずれかに記載の積層フィルム又は請求項14に記載の保護フィルム付き積層フィルムから保護フィルムが剥離された積層フィルムが、2枚のガラスの間に挟持された合わせガラス。 A laminated glass in which the laminated film according to any one of claims 1 to 13 or the laminated film obtained by peeling the protective film from the laminated film with the protective film according to claim 14 is sandwiched between two glasses.
PCT/JP2019/037440 2018-09-26 2019-09-25 Multilayer film WO2020067083A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020549249A JPWO2020067083A1 (en) 2018-09-26 2019-09-25 Laminated film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-180970 2018-09-26
JP2018180970 2018-09-26

Publications (1)

Publication Number Publication Date
WO2020067083A1 true WO2020067083A1 (en) 2020-04-02

Family

ID=69953462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037440 WO2020067083A1 (en) 2018-09-26 2019-09-25 Multilayer film

Country Status (2)

Country Link
JP (1) JPWO2020067083A1 (en)
WO (1) WO2020067083A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06926A (en) * 1992-04-23 1994-01-11 Sekisui Chem Co Ltd Intermediate film for laminated glass
JP2005530627A (en) * 2002-02-28 2005-10-13 ソリユテイア・インコーポレイテツド Embossed reflective laminate
WO2017170861A1 (en) * 2016-03-31 2017-10-05 積水化学工業株式会社 Interlayer for laminated glass, laminated glass, and laminated glass system
US20180029335A1 (en) * 2016-07-29 2018-02-01 Hyundai Motor Company Resin film for laminated glass, laminated glass including the same, and vehicle including the same
WO2018181386A1 (en) * 2017-03-27 2018-10-04 株式会社クラレ Polyvinyl acetal resin film for laminated glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06926A (en) * 1992-04-23 1994-01-11 Sekisui Chem Co Ltd Intermediate film for laminated glass
JP2005530627A (en) * 2002-02-28 2005-10-13 ソリユテイア・インコーポレイテツド Embossed reflective laminate
WO2017170861A1 (en) * 2016-03-31 2017-10-05 積水化学工業株式会社 Interlayer for laminated glass, laminated glass, and laminated glass system
US20180029335A1 (en) * 2016-07-29 2018-02-01 Hyundai Motor Company Resin film for laminated glass, laminated glass including the same, and vehicle including the same
WO2018181386A1 (en) * 2017-03-27 2018-10-04 株式会社クラレ Polyvinyl acetal resin film for laminated glass

Also Published As

Publication number Publication date
JPWO2020067083A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
JP7046789B2 (en) Polyvinyl acetal resin film for laminated glass
US11673381B2 (en) Ionomer interlayer with enhanced adhesion properties
JP6487131B2 (en) Polyvinyl acetal resin film for laminated glass
US11981835B2 (en) Interlayer filler material for touch panels, and laminate
JP6903569B2 (en) Laminated glass interlayer film, laminated glass and method for manufacturing laminated glass
WO2018181758A1 (en) Interlayer for laminated glass, and laminated glass
JP2018161889A (en) Polyvinyl acetal resin film having polyvinyl acetal resin layer and conductive structure based on metal foil, and laminate glass having the film
EP3459916A1 (en) Laminated glass interlayer and laminated glass
JP6971147B2 (en) Polyvinyl acetal ionomer resin film and laminated glass
JP6949757B2 (en) Laminated glass interlayer film and laminated glass manufacturing method
WO2022260084A1 (en) Resin film, laminated glass, and screen
WO2020067083A1 (en) Multilayer film
WO2017171041A1 (en) Polyvinyl acetal ionomer resin material, polyvinyl acetal ionomer resin film, and laminated glass
WO2018181747A1 (en) Intermediate film for laminated glass, and laminated glass
WO2018198677A1 (en) Laminated glass
WO2020067082A1 (en) Method for producing poly(vinyl acetal) resin film containing plasticizer absorbed therein
JP6949836B2 (en) Laminated glass interlayer film and laminated glass
JP6974212B2 (en) Laminated glass interlayer film and laminated glass
WO2022255393A1 (en) Resin film, laminated glass and screen
WO2022260083A1 (en) Resin film, laminated glass and screen
WO2020067176A1 (en) Polyvinyl acetal resin film and multilayer body containing same
JP2022189700A (en) Resin film, laminated glass and screen
WO2018168904A1 (en) Intermediate film for laminated glasses, and laminated glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549249

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867648

Country of ref document: EP

Kind code of ref document: A1