WO2020066999A1 - 多流体気液噴出混合ノズル、バーナー、燃焼機器、ボイラー、内燃機関、動力機器および環境浄化殺菌農園ハウス - Google Patents

多流体気液噴出混合ノズル、バーナー、燃焼機器、ボイラー、内燃機関、動力機器および環境浄化殺菌農園ハウス Download PDF

Info

Publication number
WO2020066999A1
WO2020066999A1 PCT/JP2019/037241 JP2019037241W WO2020066999A1 WO 2020066999 A1 WO2020066999 A1 WO 2020066999A1 JP 2019037241 W JP2019037241 W JP 2019037241W WO 2020066999 A1 WO2020066999 A1 WO 2020066999A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
liquid
center
air
fluid gas
Prior art date
Application number
PCT/JP2019/037241
Other languages
English (en)
French (fr)
Inventor
工藤 泰士
Original Assignee
泰工技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰工技研工業株式会社 filed Critical 泰工技研工業株式会社
Publication of WO2020066999A1 publication Critical patent/WO2020066999A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/38Nozzles; Cleaning devices therefor

Definitions

  • the present invention relates to a multi-fluid gas-liquid jet mixing nozzle, a burner, a combustion device, a boiler, an internal combustion engine, a power device, and an environmental purification sterilizing farm house.
  • Patent No. 5651869 US Patent No. 8,955,470 European Patent No. 2495051
  • the problem to be solved by the present invention is to further develop the gas-liquid mixing nozzles of Patent Documents 1 to 3 to greatly improve energy efficiency, significantly reduce emissions of carbon dioxide and nitrogen oxides, and significantly reduce fuel slag.
  • the present invention relates to a technique for converting unused thermal energy into high-temperature steam energy.
  • hot air for igniting a fuel oil combustion nozzle is ejected from the center of the nozzle. Then, combustion is started by injecting fuel into the vicinity of the periphery.
  • the temperature of the hot air is selected as necessary, but is set to, for example, about 650 ° C. in order to heat the tip of the nozzle such as an air diffusion member (air diffusion piece) described later sufficiently quickly.
  • the multi-fluid gas-liquid mixing and spraying nozzle of the present invention has a fuel center at the center of the center.
  • a hot air flow for igniting by oil jetting, and a central air jet flow channel (central air flow channel) for jetting air around the hot air, and air jet from an outer peripheral portion of the nozzle jet port 2 A spiral swirling flow air flow path on the outer peripheral side of the flow path, and a liquid flowing between the central spiral air flow path and the outer peripheral spiral swirling air flow path of the two flow paths, and the liquid of fuel and water flows to the ejection port.
  • At least two liquid spiral swirling flow paths for causing the air to be mixed at the front center side air ejection flow path, the liquid spiral swirling flow path, and the spouts of the outer spiral swirling air flow paths of the two flow paths Of liquid and liquid collide in swirling flow
  • An impact member rotating (impact piece), comprising a spout of the liquid jet flow channel is installed in the rear of the spout of the center-side air injection passage (central air flow channel).
  • the multi-fluid gas-liquid jet mixing nozzle of the present invention typically has a central air flow channel for jetting air toward the center of the nozzle jet, and a jet 2 for jetting air from the outer peripheral portion of the nozzle jet.
  • the outer spiral circulating air flow path of the flow path is disposed between the central air flow path and the outer helical spiral flow air flow path of the two flow paths, and the fuel and water liquid are discharged to the jet outlet.
  • At least two or more liquid spiral swirling flow paths including a leading spiral swirling flow path, and facing a gas of the mixture swirling flow of the central air flowing flow path and the outer air spiral swirling flow of the two flow paths.
  • the multi-fluid gas-liquid jet mixing nozzle of the present invention typically flows through a central air flow channel that jets air toward the center of the nozzle, and the jet channel that goes toward the jet port goes straight to eject air. And a plurality of flow paths from which air is jetted toward the outer circumferential direction of the flow path at 90 degrees. It is characterized in that it is divided into air and jetted, and it is characterized by jetting hot air from the two flow paths and diffusing and flowing, and jetting into a mixed swirling airflow formed by mixing and forming swirling air from the outer periphery. It is characterized in that the atomized liquid fine particles are scattered and atomized by the effect of the rotating impact member (impact piece) and are uniformly mixed in the air.
  • hot air for igniting the mist formed by the fuel oil ejection is ejected to the center of the nozzle, and water is injected into the combustion flame to mix the mist with the combustion flame. It is characterized by making it.
  • the gas-liquid mixed swirling fluid generated by the multi-fluid gas-liquid jet mixing nozzle is formed by the liquid spiral swirling flow channel and the outer air spiral swirling flow channel of the two channels. After being ejected at the ejection port, the mixed fluid flows and diffuses while swirling, whereby air outside the swirling fluid is entrained and flows.
  • the mixed swirling fluid of each of the seven ejected fluids of the liquid is typically individually controlled by a microcomputer to flow through a spiral swirling flow path to generate a swirling gas-liquid mixed fluid. Generates a gas-liquid mixed mist (gas) uniformly mixed.
  • the ignited swirling flow combustion flame controls the high temperature and high temperature by the vaporization heat effect of water particles to suppress the generation of nitrogen oxides, and the swirling flow combustion flame containing water particles entrains surrounding air, resulting in combustion efficiency
  • the combustion of the combustion flame in which air (oxygen), the mist of the fuel particles, and the mist of the water molecules are uniformly mixed, without causing the fuel particles to be nano-fine by injection of ultra-high pressure from ultra-fine holes, It is characterized in that the air ratio can be reduced to an ideal value of 1.1 or less, CO 2 emission is reduced, and energy saving is realized.
  • the multi-fluid gas-liquid jet mixing nozzle of the present invention typically has a central air flow channel for jetting toward the center of the nozzle orifice, and an outer periphery of two flow channels for jetting air from the outer peripheral portion of the nozzle. It has two or more liquid spiral swirl flow channels installed between the air spiral swirl flow channel, and is generated by a jet fluid of gas and liquid spouting from the spout of the multi-fluid gas-liquid spouting mixing nozzle.
  • the combustion flame ignited by the gas-liquid mixture gas contains fine water particles, can generate high-temperature steam by increasing the amount of water jet, and can generate a combustion flame in a high-temperature steam atmosphere.
  • a high-frequency transmitter that applies high frequency to a steam atmosphere can be installed.
  • a plasma can be generated by using electromagnetic waves in the high-temperature steam atmosphere generated by the multi-fluid gas-liquid jet mixing nozzle of the present invention.
  • a spark terminal can be provided for continuously generating a spark toward the high-temperature steam atmosphere generated by the multi-fluid gas-liquid jet mixing nozzle of the present invention.
  • the multi-fluid gas-liquid jet mixing nozzle typically supplies hot air (for example, 650 ° C. or higher) for igniting a liquid particulate gas mixture mist (gas) of a gas-liquid mixture fluid generated by the nozzle. It has a hot air jet and a hot air flow channel that jets out, and a ceramic red hot ring that glows at a high temperature in front of the gas-liquid jet of the nozzle is provided, and can be glowed by hot air blown into the combustion chamber. It is characterized in that the glow of the ceramic glow ring which glows red by the combustion flame ignited by the liquid mixture gas is stably maintained. Far-infrared rays generated when the ceramic red-hot ring glows have the effect of stabilizing combustion.
  • the multi-fluid gas-liquid jet mixing nozzle of the present invention can be applied to, for example, a burner.
  • a multi-fluid gas-liquid jet mixing nozzle is housed in an outer cylinder, and natural flow air can be introduced into a gap between the multi-fluid gas-liquid jet mixing nozzle and the outer cylinder.
  • spiral blades can be formed on the inner surface of the outer cylinder to swirl the natural flow air thus taken in.
  • the burner is provided with a ceramic combustion ring that emits ultraviolet light during the flow of the generated combustion flame of the swirling flow, and the position of the burner is adjusted freely from the flame outlet to adjust the ultraviolet emission and flame. You can do it.
  • the purpose of the multi-fluid gas-liquid jet mixing nozzle of the present invention is typically to generate a combustion flame containing a large amount of high-temperature steam in the generated combustion flame.
  • the fuel combustion system using the multi-fluid gas-liquid jet mixing nozzle includes a burner, a combustion device using the burner (powder charcoal combustion device, etc.), an internal combustion engine, a boiler, and the like (in a broad sense, a burner, a combustion device, an internal combustion engine). , Boilers, etc. are also included in the combustion equipment).
  • These fuel combustion systems typically include an air supply that supplies air, a fuel supply that supplies fuel, a water supply that supplies water, and a liquid that supplies liquids such as glycerin and aqueous glycerin. And a source.
  • these air supply source, fuel supply source, water supply source and liquid supply source and the multi-fluid gas-liquid jet mixing nozzle are incorporated in a fuel injection device, and the air supply source, the fuel supply source , The air, the fuel, the water, and the liquid are respectively introduced from the water supply source and the liquid supply source, and the air and the fuel for forming a gas-liquid mixture that can be completely burned in a combustion chamber.
  • the microcomputer controls the jetting of the water and the liquid individually to generate a gas-liquid mixed mist.
  • the multi-fluid gas-liquid jet mixing nozzle of the present invention typically includes a ceramic red-hot ring which glows red by hot air and a combustion flame in front of a jet port for jetting gas and liquid, and further jets hot air to the center of the nozzle.
  • a gas and liquid jet port is provided with an impact piece that rotates by jetting gas and liquid, and hot wind and A ceramic glowing ring that glows red in response to the flame is provided.
  • a central air outlet is provided with a vertically long outlet at the center of the nozzle that emits hot air and a heat source that generates hot air.
  • a fuel jet port on the outer periphery thereof a water jet port is provided outside the fuel jet port, and a liquid jet port provided for combustion such as glycerin is provided outside the fuel jet port, and a swirl flow path is provided as each flow path.
  • a flow path is provided, and an air outlet of a flow path provided with a swirling flow path is provided on the outer periphery thereof.
  • Central air, hot air air, fuel, water, liquid (liquid glycerin used for combustion, etc.), 2nd stream The air requires a vertically long flow path individually, a temperature sensor that detects the temperature of red heat, a temperature sensor that detects the combustion flame temperature, and a cylinder that wraps the main part of the multi-fluid gas-liquid jet mixing nozzle .
  • the multi-fluid gas-liquid jet mixing nozzle of the present invention is suitable for application to a house farm.
  • This multi-fluid gas-liquid jet mixing nozzle has a large proportion of heating costs in house farms, and contains a large amount of impurities and cannot be used unless it is carbon dioxide that has passed through a filter.
  • Combustion using glycerin generated from methane allows the carbon dioxide to be discharged to be supplied directly into the house without using a filter, and also allows effective utilization of glycerin, which is both advantageous.
  • a gas-liquid mixed gas containing a large amount of water fine particles in a house can be generated and used for plant growth.
  • the generation of pests is suppressed by generating ultraviolet rays by using ultraviolet-emitting ceramics toward a water vapor atmosphere containing and mixing air supplied into the farm house.
  • ozone is generated toward a gas-liquid mixture gas generated in the farmhouse and filled with a large amount of water particles, thereby suppressing the generation of pests.
  • a low-temperature plasma is generated in a farm house toward a gas-liquid mixed gas containing a large amount of water fine particles generated by water jetting from the multi-fluid gas-liquid jet mixing nozzle of the present invention, thereby suppressing the occurrence of pests. Promotes plant growth.
  • the multi-fluid gas-liquid jet mixing nozzle of the present invention typically includes a heater at the center of the nozzle, a ceramic glowing ring in front of the nozzle jet port, and a rotatable impact on the insult port from which each fluid jets.
  • Each of the liquid outlets, a flow path toward each of these outlets, a supply source, and a temperature sensor are provided, and each fluid is controlled by a microcomputer.
  • the microcomputer turns on the air compressor that flows through the center of the heater under the command of the microcomputer, and then turns on the heater and blows out hot air from the nozzle at the center of the nozzle, blowing it onto the ceramic glowing ring.
  • the microcomputer instructed the fuel injection and ignited by the command from the temperature sensor which detected the red heat of the ceramic glowing ring which was glowed and glowed, and instructed the ejection of the central air to increase the combustion flame and increase the temperature.
  • a command is issued to blow out the swirling air.
  • the jetting water particles mix with the clean flame to suppress the temperature rise of the flame, and the outer edge of the swirling flow combustion flame affected by the water particles is entrained by the air to produce a clear transparent large combustion flame of the swirling flow. Realize and continue.
  • the microcomputer that has received the stable combustion flame detection signal prompts the ejection of, for example, glycerin, which is a tertiary alcohol, so that the combustion flame becomes a larger, more pure and transparent combustion flame.
  • glycerin which is a tertiary alcohol
  • a temperature sensor grasps the temperature and the size of the flame to promote suppression of fuel injection, suppresses fossil fuel ejection, and sustains and burns an appropriate combustion flame.
  • the microcomputer used for the control continuously and continuously blasts the hot air that is sprayed and diffused in the center, so that the red heat of the ceramic glowing ring is stably maintained and the central air is blown out.
  • the outward jet of swirling air to the center of the jet outlet is stable, the jet of fuel is stably maintained, the jet of water is stably maintained, and glycerin, etc.
  • Control the fossil fuel supply so as to control the jetting of the liquid to continue stably and control the expansion of the combustion flame flow, and continue the appropriate combustion flame.
  • the combustion flame of the multi-fluid gas-liquid jet mixing nozzle of the present invention sufficient air is supplied to the center, hot air having a temperature required for ignition is supplied stably, and liquids such as fuel, water, and glycerin are supplied stably.
  • Multi-fluid gas-liquid jet mixing of a mixture of air gas that has reached the ignition temperature, a liquid for combustion, and water that suppresses superheating is swirling, and a gas-liquid mixed flame swirling flow of the ignited multi-fluid
  • the temperature of the flame that formed the combustion flame did not exceed 900 ° C. Energy saving, reduction of nitrogen oxide emissions, and reduction of carbon dioxide emissions were realized, and trade-offs were eliminated.
  • the microcomputer can control the timing and amount according to the rotational speed of the internal combustion engine to continue the optimal combustion flame.
  • the internal combustion engine utilizing the multi-fluid gas-liquid jet mixing nozzle of the present invention is equipped with a microcomputer, and in the suction process, the cylinder opens the suction valve halfway to minimize the amount of air suction, and the multi-fluid gas-liquid jet mixing nozzle A large amount of hot air is blown in from the cylinder, compressing the air in the cylinder that has already reached the ignition temperature at the time of moving to the compression process, injecting the fuel at the instant that passes the top dead center, the thermal expansion energy of the ignited flame is The water that is injected without delay converts the thermal energy of the fuel combustion present in the cylinder into high-temperature steam expansion energy, and the expansion energy becomes the power energy for piston operation, doubling the piston operation force.
  • the power is increased, the power is increased, and in the next exhaust process, the combustion slag and residual water vapor of the combustion flame are discharged, and
  • the vaporization heat energy of the steam takes away the heat of the internal combustion engine and suppresses the heating of the internal combustion engine, and the cooling control stabilizes the compression ratio in the compression process and controls the overheating of the internal combustion engine, so that the radiator does not switch on Cycle operation becomes possible.
  • the present invention is suitable for use in an internal combustion engine that efficiently converts heat energy into high-temperature steam energy (power energy, vaporization heat energy).
  • the cooling effect of the vaporized heat energy can eliminate and reduce the heat energy loss of the cooling loss and the exhaust loss, and the radiator can be eliminated.
  • the present invention A central air flow passage for ejecting air to the center of the nozzle outlet, A straight flow path for ejecting hot air at the center of the nozzle ejection port, A plurality of liquid flow channels for ejecting liquid to the center of the nozzle ejection port, A plurality of through-holes attached to the tip of the central air flow channel and penetrating outward in a direction at an angle of 90 degrees to the straight flow channel, and having an outlet at the center A flow diffusion member; Is a multi-fluid gas-liquid jet mixing nozzle having:
  • the present invention Having at least one multi-fluid gas-liquid jet mixing nozzle,
  • the multi-fluid gas-liquid jet mixing nozzle A central air flow passage for ejecting air to the center of the nozzle outlet, A straight flow path for ejecting hot air at the center of the nozzle ejection port, A plurality of liquid flow channels for ejecting liquid to the center of the nozzle ejection port, A plurality of through-holes attached to the tip of the central air flow channel and penetrating outward in a direction at an angle of 90 degrees to the straight flow channel, and having an outlet at the center A flow diffusion member; It is a burner having.
  • the present invention Has at least one burner,
  • the burner has at least one multi-fluid gas-liquid jet mixing nozzle,
  • the multi-fluid gas-liquid jet mixing nozzle has at least one multi-fluid gas-liquid jet mixing nozzle,
  • a plurality of through-holes attached to the tip of the central air flow channel and penetrating outward in a direction at an angle of 90 degrees to the straight flow channel, and having an outlet at the center A flow diffusion member; It is a combustion apparatus having.
  • the present invention Has at least one burner,
  • the burner has at least one multi-fluid gas-liquid jet mixing nozzle,
  • the multi-fluid gas-liquid jet mixing nozzle has at least one multi-fluid gas-liquid jet mixing nozzle,
  • a plurality of through-holes attached to the tip of the central air flow channel and penetrating outward in a direction at an angle of 90 degrees to the straight flow channel, and having an outlet at the center A flow diffusion member;
  • It is a boiler which has.
  • the present invention Having at least one multi-fluid gas-liquid jet mixing nozzle attached to the cylinder,
  • the multi-fluid gas-liquid jet mixing nozzle A central air flow passage for ejecting air to the center of the nozzle outlet, A straight flow path for ejecting hot air at the center of the nozzle ejection port, A plurality of liquid flow channels for ejecting liquid to the center of the nozzle ejection port, A plurality of through-holes attached to the tip of the central air flow channel and penetrating outward in a direction at an angle of 90 degrees to the straight flow channel, and having an outlet at the center A flow diffusion member;
  • An internal combustion engine having:
  • the present invention Having at least one multi-fluid gas-liquid jet mixing nozzle,
  • the multi-fluid gas-liquid jet mixing nozzle A central air flow passage for ejecting air to the center of the nozzle outlet, A straight flow path for ejecting hot air at the center of the nozzle ejection port, A plurality of liquid flow channels for ejecting liquid to the center of the nozzle ejection port, A plurality of through-holes attached to the tip of the central air flow channel and penetrating outward in a direction at an angle of 90 degrees to the straight flow channel, and having an outlet at the center A flow diffusion member; It is a power device having.
  • the present invention Having at least one multi-fluid gas-liquid jet mixing nozzle installed in the house,
  • the multi-fluid gas-liquid jet mixing nozzle A central air flow passage for ejecting air to the center of the nozzle outlet, A straight flow path for ejecting hot air at the center of the nozzle ejection port, A plurality of liquid flow channels for ejecting liquid to the center of the nozzle ejection port, A plurality of through-holes attached to the tip of the central air flow channel and penetrating outward in a direction at an angle of 90 degrees to the straight flow channel, and having an outlet at the center A flow diffusion member; It is an environmental purification and sterilization farm house that has
  • a high-performance multi-fluid gas-liquid jet mixing nozzle capable of significantly improving energy efficiency, greatly reducing emissions of carbon dioxide and nitrogen oxides, significantly reducing fuel slag, and the like.
  • 1 is a front view showing a multi-fluid gas-liquid mixing jet nozzle according to a first embodiment of the present invention.
  • 1 is a bottom view showing a multi-fluid gas-liquid mixing jet nozzle according to a first embodiment of the present invention.
  • 1 is a front view showing a state in which a ceramic red-hot ring is removed from a nozzle body of a multi-fluid gas-liquid mixing jet nozzle according to a first embodiment of the present invention. It is a top view showing the state where the ceramics red hot ring was removed from the nozzle main part of the multi-fluid gas-liquid mixing jet nozzle by a 1st embodiment of this invention.
  • FIG. 2 is an exploded view showing an exploded main part of a nozzle body of the multi-fluid gas-liquid mixing jet nozzle according to the first embodiment of the present invention.
  • FIG. 2 is a plan view showing an impact piece of the multi-fluid gas-liquid mixing jet nozzle according to the first embodiment of the present invention.
  • FIG. 2 is a bottom view showing an impact piece of the multi-fluid gas-liquid mixing jet nozzle according to the first embodiment of the present invention.
  • FIG. 2 is a plan view showing a nozzle body of the multi-fluid gas-liquid mixing jet nozzle according to the first embodiment of the present invention. It is a front view showing a ceramic glowing ring of a multi-fluid gas-liquid mixing jet nozzle by a 1st embodiment of this invention.
  • FIG. 6 is a plan view showing a fuel oil combustion burner according to a second embodiment of the present invention. It is a right view which shows the fuel oil combustion burner by 2nd Embodiment of this invention. It is a bottom view showing a fuel oil combustion burner according to a second embodiment of the present invention. It is a left view which shows the fuel oil combustion burner by 2nd Embodiment of this invention. It is a front view which shows the fuel oil combustion burner by 2nd Embodiment of this invention. It is a schematic diagram showing the whole including the control system of the fuel oil combustion burner by a 2nd embodiment of this invention. It is an approximate line figure showing the principal part when the fuel oil burner by a 2nd embodiment of this invention is seen from the bottom.
  • FIG. 6 is a plan view showing a fuel oil combustion burner according to a second embodiment of the present invention. It is a right view which shows the fuel oil combustion burner by 2nd Embodiment of this invention. It is a bottom view showing a fuel oil combustion burner according to a second embodiment of the
  • FIG. 9 is a schematic diagram illustrating a swirl blade provided on an inner surface of an outer cylinder in a fuel oil combustion burner according to a second embodiment of the present invention.
  • FIG. 6 is a plan view showing a combustion ring of a fuel oil combustion burner according to a second embodiment of the present invention. It is a front view showing a combustion ring of a fuel oil combustion burner according to a second embodiment of the present invention. It is a bottom view showing the pulverized coal combustion device by a 3rd embodiment of this invention. It is a right view which shows the pulverized-coal combustion apparatus by 3rd Embodiment of this invention. It is a left view which shows the pulverized-coal combustion apparatus by 3rd Embodiment of this invention.
  • FIG. 14 is a schematic diagram illustrating a multi-fluid gas-liquid mixing jet nozzle according to a fifth embodiment of the present invention.
  • FIG. 14 is a plan view of a multi-fluid gas-liquid mixing jet nozzle according to a fifth embodiment of the present invention, as viewed from a direction perpendicular to the central axis.
  • FIG. 14 is a sectional view showing an internal combustion engine according to a sixth embodiment of the present invention.
  • FIG. 14 is a sectional view showing an internal combustion engine according to a sixth embodiment of the present invention.
  • FIG. 14 is a sectional view showing an internal combustion engine according to a sixth embodiment of the present invention.
  • FIG. 14 is a sectional view showing an internal combustion engine according to a sixth embodiment of the present invention.
  • FIG. 14 is a sectional view showing an internal combustion engine according to a sixth embodiment of the present invention.
  • FIG. 14 is a sectional view showing an internal combustion engine according to a sixth embodiment of the present invention.
  • FIG. 14 is a sectional view showing an internal combustion engine according to a sixth embodiment of the present invention.
  • FIG. 14 is a sectional view showing an internal combustion engine according to a sixth embodiment of the present invention.
  • FIG. 14 is a sectional view showing an internal combustion engine according to a seventh embodiment of the present invention.
  • FIG. 14 is a sectional view showing an internal combustion engine according to a seventh embodiment of the present invention.
  • FIG. 14 is a sectional view showing an internal combustion engine according to a seventh embodiment of the present invention.
  • FIG. 14 is a sectional view showing an internal combustion engine according to a seventh embodiment of the present invention.
  • FIG. 14 is a sectional view showing an internal combustion engine according to a seventh embodiment of the present invention.
  • FIG. 14 is a sectional view showing an internal combustion engine according to a seventh embodiment of the present invention.
  • FIG. 14 is a sectional view showing an
  • FIG. 14 is a sectional view showing an internal combustion engine according to a seventh embodiment of the present invention.
  • FIG. 14 is a sectional view showing an internal combustion engine according to a seventh embodiment of the present invention.
  • FIG. 14 is a sectional view showing an internal combustion engine according to a seventh embodiment of the present invention.
  • FIG. 14 is a sectional view showing an internal combustion engine according to a seventh embodiment of the present invention.
  • FIG. 14 is a sectional view showing an internal combustion engine according to a seventh embodiment of the present invention.
  • FIG. 14 is a sectional view showing an internal combustion engine according to a seventh embodiment of the present invention.
  • FIG. 16 is a plan view showing a turbine engine according to an eighth embodiment of the present invention.
  • FIGS. 1A and 1B are a front view and a bottom view showing a multi-fluid gas-liquid mixing jet nozzle 100 according to the first embodiment.
  • FIGS. 2A and 2B show a ceramic red hot ring of the multi-fluid gas-liquid mixing jet nozzle 100. It is the front view and top view (top view) which show the nozzle body of the state which removed.
  • FIG. 3 is an exploded view showing the main components constituting the nozzle body of the multi-fluid gas-liquid mixing jet nozzle 100 in an exploded manner.
  • This multi-fluid gas-liquid mixing jet nozzle is a multi-fluid gas-liquid mixing jet nozzle that forms a flow path for each of gas and liquid toward the jet port, and is housed in a cylinder to constitute a fluid mechanism. .
  • a nozzle body 100A is housed inside a cylinder 112 coaxially with the cylinder 112.
  • the lower end of the cylinder 112 is closed by attaching a circular lid 113 having an outer diameter equal to the outer diameter of the cylinder 112.
  • a ring 113A having an outer diameter substantially equal to the inner diameter of the cylinder 112 is provided on the upper surface of the lid 113 slightly inside the outer periphery of the lid 113, and the ring 113A is press-fitted to the cylinder 112. .
  • a disk 114 having an outer diameter equal to the inner diameter of the cylinder 112 is mounted inside the cylinder 112 slightly below the upper end.
  • a circular through hole having an inner diameter equal to the outer diameter of the nozzle body 100A at the same height position as the disk 114 is formed at the center of the disk 114, and the nozzle body 100A penetrates this through hole.
  • the nozzle body 100A has cylindrical portions 101, 102, 103, 104 and 105 whose diameters increase in the direction from the lower end to the upper end of the cylinder 112.
  • These cylindrical portions 101 to 105 are integrated by, for example, sequentially press-fitting. That is, for example, the root portion of the cylindrical portion 101 is press-fitted inside the root portion of the cylindrical portion 102, the root portion of the cylindrical portion 102 is press-fitted inside the root portion of the cylindrical portion 103, and The root portion is press-fitted inside the cylindrical portion 104, and the root portion of the cylindrical portion 104 is press-fitted inside the cylindrical portion 105.
  • the configuration and method of forming the nozzle body 100A, the method of forming each flow path described below inside the cylindrical portions 101 to 105, and the like are similar to Patent Documents 1 to 3.
  • a central air intake 101A is provided on the side surface of the cylindrical portion 101 so that air can be taken in from the central air intake 101A.
  • the air taken in from the central air intake 101A is jetted toward an impact piece 107 described later through an air flow channel formed by a gap between the cylindrical portion 101 and a straight hot air distribution pipe 111B described later.
  • a fuel intake port 102A is provided on a side surface of the cylindrical portion 102, and fuel can be introduced from the fuel intake port 102A.
  • the fuel taken in from the fuel inlet 102A is ejected toward an impact piece 107 described later through a fuel flow channel formed by a gap between the cylindrical portion 101 and the cylindrical portion 102.
  • a water intake 103A is provided on a side surface of the cylindrical portion 103, and water can be taken in from the water intake 103A.
  • the water taken in from the water intake 103A is jetted toward a later-described impact piece 107 through a water flow channel formed by a gap between the cylindrical portion 102 and the cylindrical portion 103.
  • a glycerin intake 104A is provided on the side surface of the cylindrical portion 104, and glycerin can be introduced from the glycerin intake 104A. Note that an aqueous glycerin solution may be used instead of glycerin.
  • the glycerin taken in from the glycerin intake 104A is ejected toward a later-described impact piece 107 through a glycerin flow channel formed by a gap between the cylindrical portion 103 and the cylindrical portion 104.
  • Right and left air intakes 105A and 105B are provided at opposing portions of the lower side surface of the cylindrical portion 105, and air can be taken in from the right and left air intakes 105A and 105B, respectively. It has become.
  • the air taken in from the right air intake 105A and the left air intake 105B is transported upward through an air flow channel formed by a gap between the cylindrical portions 104 and 105, and finally, as described later.
  • a swirling flow is formed around the central axis of the nozzle body 100A.
  • the central air intake 101A, the left air intake 105B, the water intake 103A, the glycerin intake 104A, the right air intake 105A, and the fuel intake 102A are each provided in parallel with the central axis of the nozzle body 100a.
  • the pipe 121, the fuel transport pipe 122, the left air transport pipe 122, the water transport pipe 123, the glycerin transport pipe 124, the right air transport pipe 125, and the fuel transport pipe 126 are connected.
  • the lower ends of the central air transport pipe 121, the left air transport pipe 122, the water transport pipe 123, the glycerin transport pipe 124, the right air transport pipe 125, and the fuel transport pipe 126 pass through through holes provided in the lid 113.
  • Transport tubes (not shown) are connected to the joints 131 to 136, respectively.
  • the joints 131 to 136 are located at the apexes of a substantially regular hexagon around the center of the lid 113.
  • a flange portion is provided at a lower end of each of the central air transport pipe 121, the left air transport pipe 122, the water transport pipe 123, the glycerin transport pipe 124, the right air transport pipe 125, and the fuel transport pipe 126. It is fixed to the upper surface of the lid 113 with bolts (not shown).
  • temperature sensors 115 and 116 in which thermocouples are housed in protective tubes are provided.
  • the temperature sensor 115 extends linearly in parallel with the central axis of the nozzle body 100A from the lower part to the middle part of the upper part of the cylindrical part 105, and passes through a positioning through hole provided in the disk 114 halfway therefrom.
  • the temperature sensor 116 extends linearly from the lower portion to a height higher than a ceramic glow ring 109 to be described later in a straight line parallel to the central axis of the nozzle body 100A, and passes through a positioning through hole provided in the disk 114 on the way.
  • Leads 141 and 142 are taken out from the lower end of the temperature sensor 115, and leads 143 and 144 are taken out from the lower end of the temperature sensor 116.
  • the cylindrical portion 101 is provided with a heat source 111.
  • a vertically long heater 111A formed coaxially with the nozzle body 100A and a cylindrical straight hot air flow pipe 111B coaxial with the heater 111A are provided above the heat source 111, surrounding the heater 111A. Have been.
  • the upper end of the straight hot air flow pipe 111B is at a height position in the middle of an air flow diffusion piece 106 described later.
  • the upper end of the heater 111A is located at a position slightly lower than the upper end of the straight hot air flow pipe 111B.
  • An air introduction pipe (not shown) for supplying air for forming hot air to the straight hot air flow pipe 111B and energizing lead wires 145 and 146 connected to the heater 111A are housed below the heat source 111. Have been. As shown in FIG. 3, one end of the air introduction pipe is connected to the air intake port 111C. The lower portion of the heat source 111 passes through a through hole provided at the center of the lid 113 and is fixed to the lid 113 by a fixture 147. A transport tube (not shown) is connected to the air intake port 111C.
  • FIGS. 3 and 2B four grooves are spirally engraved on the outer periphery of the distal end portion 101B of the cylindrical portion 101 at equal intervals in the circumferential direction, and the cylindrical portion 101 and the distal end of the cylindrical portion 101 are formed.
  • a groove 151 between the cylindrical portion 102 into which the portion 101B is press-fitted serves as a fuel flow path. The fuel is ejected as a swirling flow by passing through the fuel passage.
  • Four grooves are helically engraved on the outer periphery of the distal end portion 102B of the cylindrical portion 102 at equal intervals in the circumferential direction, and the cylindrical portion 102 and the cylindrical portion into which the distal end portion 102B of the cylindrical portion 102 are press-fitted.
  • a groove 152 between the groove 103 and the groove 103 serves as a water flow path. Water is ejected as a swirling flow by passing through this water flow path.
  • Four grooves are helically carved at equal intervals in the circumferential direction on the outer periphery of the distal end portion 103B of the cylindrical portion 103, and the cylindrical portion 103 and the cylindrical portion 103 are press-fitted.
  • the groove 153 between the groove 104 and the groove 104 serves as a glycerin flow path. Glycerin is ejected as a swirling flow through the glycerin flow path.
  • the distal end portion 104B of the cylindrical portion 104 is a gradient portion (taper portion) whose diameter decreases linearly toward the distal end, and a total of 12 grooves are spirally formed at equal intervals in the circumferential direction on the outer periphery of the gradient portion. It is engraved in the shape.
  • the cylindrical portion 105 of the cylindrical portion 104 facing the inclined portion is formed in parallel with the inclined portion, and is formed between the inclined portion of the cylindrical portion 104 and the cylindrical portion 105 into which the inclined portion is press-fitted. As the air passes through the groove 154 from below to above, a swirling flow around the central axis of the nozzle body 100A is formed below the impact piece 107 described later.
  • the air flow diffusion piece 106 is fitted into the outlet at the upper end of the cylindrical portion 101.
  • the air flow diffusion piece 106 includes a lower portion having a constant inner diameter formed with a small thickness and a first intermediate portion in which the inner diameter connected to the lower portion is linearly reduced, which is sequentially provided in the central axis direction. It comprises a second intermediate portion having a constant inner diameter connected thereto, a third intermediate portion having a linearly reduced inner diameter connected to the second intermediate portion, and an upper portion having a constant inner diameter connected to the third intermediate portion.
  • a ring-shaped projection is provided outside the air flow diffusion piece 106 at a position corresponding to the boundary between the first intermediate portion and the second intermediate portion, and the air flow diffusion piece 106 is provided at the outlet of the cylindrical portion 101.
  • the air flow diffusion piece 106 is positioned with respect to the cylindrical portion 101.
  • the through-hole at the top of the air flow diffusion piece 106 constitutes a jet port 106A.
  • a plurality of flow channels including through holes are provided vertically in two stages in a direction perpendicular to the central axis of the nozzle body 100A. In FIG. 2A, only the upper flow channel is shown.
  • a ring-shaped projection is provided outside the second intermediate portion of the air flow diffusion piece 106 at a portion between the flow channels composed of through holes provided in upper and lower stages. Further, a ring-shaped projection is provided outside the air flow diffusion piece 106 at a position corresponding to the boundary between the second intermediate portion and the third intermediate portion. The outer diameters of these projections are the same.
  • a ring-shaped impact piece 107 is provided outside the air flow diffusion piece 106 coaxially with the air flow diffusion piece 106.
  • 4A and 4B are a plan view (top view) and a bottom view of the impact piece 107. FIG. As shown in FIG. 4A and FIG.
  • the impact piece 107 has substantially the same shape as a whole, in which the top of a straight cone having a cylindrical through-hole on a conical axis is cut off parallel to the bottom surface.
  • a plurality of spiral grooves 107A are provided on the conical surface at equal intervals in the circumferential direction.
  • On the upper surface of the impact piece 107 a ring-shaped projection 107B is provided just outside the circumference of the through hole.
  • the protrusion 107B is located at the same height as the protrusion on the upper side of the air flow diffusion piece 106.
  • the impact piece 107 is configured to be stopped by a stop 110 via a ring 108.
  • the impact piece 107 is configured to be rotatable around the central axis with respect to the air flow diffusion piece 106.
  • FIG. 2B shows an example of the shape of the cylindrical portions 101, 102, 103, 104, 105 and the shape and arrangement of the outlets of the grooves 151 to 154 when the nozzle body 100a is viewed from above.
  • the illustration of the air flow diffusion piece 106 and the impact piece 107 is omitted except for the ejection port 106A.
  • an outlet of the groove 151 is provided at a cross position (90 ° interval) between the cylindrical portion 101 and the cylindrical portion 102, and the groove 151 is provided between the cylindrical portion 102 and the cylindrical portion 103.
  • An outlet of the groove 152 is provided at a cross position (90 ° interval) shifted from the outlet, and a groove is provided between the cylindrical portion 103 and the cylindrical portion 104 at a cross position (90 ° interval) shifted from the outlet of the groove 152.
  • An outlet 153 is provided, and an outlet of the groove 154 is provided between the cylindrical portion 104 and the cylindrical portion 105 at a position shifted from the outlet of the groove 153.
  • FIG. 5 shows a ceramic glowing ring 109 having a conical outer shape whose entire top is cut off is fitted into the outer periphery of the tip of the cylindrical portion 105.
  • FIG. 6 shows the ceramic glowing ring 109.
  • the ceramic glowing ring 109 includes a lower ring portion 109A and a frame portion 109B integrally formed with the ring portion 109A.
  • the frame portion 109B includes four linear portions extending in the cross direction on the conical surface when the ceramic red-hot ring 109 is viewed from above, a ring portion connected to the upper portions of these four linear portions, And four arc portions connected to the base of the four linear portions, and these arc portions are integrated with the inner surface of the ring portion 109A.
  • the central axis of the ring portion of the frame portion 109B matches the central axis of the jet port 106A.
  • ceramics are baked on the exposed surface of the frame portion 109B.
  • each component constituting the multi-fluid gas-liquid mixing jet nozzle 100 As a material of each component constituting the multi-fluid gas-liquid mixing jet nozzle 100, a conventionally known general material, typically, stainless steel or the like can be used. The size of each part of the multi-fluid gas-liquid mixing jet nozzle 100 is selected as necessary. For example, the maximum diameter of the nozzle body 100 is about 2 cm and the length is about 16 cm.
  • a heater 111A for generating hot air As shown in FIG. 1A, current flowing through a heater 111A for generating hot air, delivery of air for forming hot wind to a straight hot-air flow pipe 111B, delivery of fuel to a fuel flow channel, and glycerin flow of glycerin Delivery to the channel, delivery of water to the water flow channel, delivery of central air to the central air flow channel, delivery of right air to the right air flow channel, left air to the left air flow channel Transmission and the like are controlled by a controller 160 using a microcomputer.
  • the central air control unit is controlled by the controller 160 to start a compressor (not shown) to take in air from the central air intake 101A, and the straight air flow in the gap between the cylindrical portion 101 and the hot air flow pipe 111B.
  • the heater is controlled by controlling the heater control unit to supply a current to the heater 111A, thereby generating hot air of, for example, 650 ° C. or higher, and ejecting the hot air from the outlet of the hot air flow pipe 111B. Let it.
  • the hot air blown out from the outlet of the hot air flow pipe 111B is transmitted to the central straight flow path toward the injection port 106A of the air flow diffusion piece 106 having the flow path composed of the through holes provided in two stages and the two-stage flow channel.
  • the hot air blown out from the outlet 106A of the air flow diffusion piece 106 causes the ceramics in the ceramic red-hot ring 109 to glow, and the controller 160 issues a fuel injection command by detecting the temperature of the temperature sensor 115 that detects the red-hot temperature.
  • the fuel taken in from 102A flows through the fuel flow channel and is injected from the groove 151 between the distal end portion 101A of the cylindrical portion 101 and the cylindrical portion 102.
  • the fuel Since the fuel is jetted at a high ignition temperature, it becomes an ignition flame. Subsequently, the central air is taken in from the central air intake 101A, the right air is taken in from the right air intake 105A, and the left air is taken in from the left air intake 105B, and is ejected from the outlet of the groove 150 and the outlet of the groove 155. The right air and the left air ejected from the outlet of the groove 155 pass through the groove 155 and are ejected as a swirling flow. The size of the flame near the ceramic red hot ring 109 is detected by the temperature sensor 116.
  • the controller 160 When the temperature reaches, for example, about 650 ° C., the controller 160 prompts a water supply command, and the water is supplied from the water intake 104A of the cylindrical portion 103 to the water. Then, the taken-in water flows through the water flow channel between the cylindrical portion 102 and the cylindrical portion 103, and water is ejected from the groove 152 between the distal end portion 102B of the cylindrical portion 102 and the cylindrical portion 103.
  • the water thus ejected is a swirling air vortex formed by the hot air from the straight hot air flow pipe 111B and the air flowing out of the groove 154 between the tip of the cylindrical portion 105 and the slope of the tip of the cylindrical portion 104.
  • the controller 160 prompts a command for jetting glycerin, takes in glycerin from the glycerin intake port 104A of the cylindrical portion 104, and the taken-in glycerin flows through the glycerin flow channel between the cylindrical portion 103 and the cylindrical portion 102 to form a cylinder.
  • the glycerin ejected from the groove 153 between the distal end portion 103B of the portion 103 and the cylindrical portion 104, and the ejected glycerin is caught in the swirling flame, whereby the flame expands and expands.
  • the controller 160 By detecting the temperature of the temperature sensor 116, the controller 160 prompts the controller 160 to reduce the ejection of the fossil fuel, and controls the amount of the fossil fuel from the fuel intake 102 ⁇ / b> A of the cylindrical portion 102 so as to obtain an optimal combustion flame.
  • Each fluid controls a control combustion flame temperature (for example, 860 ° C.) by the controller 160 for normalization of the combustion flame.
  • the first embodiment it is possible to generate an optimal combustion flame while minimizing the consumption of fossil fuels, greatly improve energy efficiency, and emit carbon dioxide and nitrogen oxides. And a high-performance multi-fluid gas-liquid jet mixing nozzle 100 capable of significantly reducing the amount of fuel residue and the amount of fuel residue can be realized.
  • FIGSecond embodiment> are a plan view and a left side view showing the fuel oil combustion burner 300 according to the second embodiment (the fuel oil combustion burner 300 shown in FIG. 7A is viewed from below).
  • FIG. 7B shows a bottom view, a right side view (a view of the fuel oil combustion burner 300 shown in FIG. 7A as viewed from above), and a front view (a view of the fuel oil combustion burner 300 shown in FIG. 7C as viewed from the right).
  • FIG. 8 is a schematic diagram showing the entire fuel oil combustion burner 300 including the control system.
  • the fuel oil combustion burner 300 is a fuel oil combustion burner used for a boiler or the like, which is installed around the multi-fluid gas-liquid mixing jet nozzle 100 according to the first embodiment.
  • the multi-fluid gas-liquid mixing jet nozzle 100 is provided outside the multi-fluid gas-liquid mixing jet nozzle 100.
  • a cylindrical outer cylinder 301 is provided so as to surround a portion excluding both ends.
  • a sufficiently wide gap is provided between the outer cylinder 301 and the multi-fluid gas-liquid mixing jet nozzle 100.
  • fan storage boxes 321 and 322 each having a rectangular parallelepiped shape are provided to face each other. The outer surfaces of the fan storage boxes 321 and 322 are open.
  • a right fan 307A is mounted in the fan storage box 321 at a position shifted to one side in the diameter direction of the outer cylinder 301 perpendicular to the fan storage boxes 321 and 322, and a left fan is mounted in the fan storage box 322.
  • 307B is attached to the outer cylinder 301 perpendicular to the fan storage boxes 321 and 322 at a position displaced to the other side in the diametric direction.
  • a circular through hole for passing air sent from the right fan 307A is formed coaxially with the axis of the right fan 307A on the back surface of the fan storage box 321 corresponding to the right fan 307A.
  • the side surface of the outer cylinder 301 is provided with a notch larger than this through hole having a rectangular shape when viewed in a direction perpendicular to the center axis of the outer cylinder 301.
  • a square tube 323 perpendicular to the back of the fan storage box 321 is provided on the outer periphery of the notch and connected to the back of the fan storage box 321. By doing so, air can be sent into the outer cylinder 301 through these through holes and notches without air leakage when the right fan 307A operates.
  • a circular through hole for passing air sent from the left fan 307B is formed coaxially with the axis of the left fan 307B in the fan storage box 322 corresponding to the left fan 307B.
  • a notch larger than this through hole having a rectangular shape when viewed from a direction perpendicular to the central axis of the outer cylinder 301 is provided on a side surface of the outer cylinder 301 in a portion.
  • a square tube 324 perpendicular to the back of the fan storage box 322 is provided on the outer periphery of the notch and connected to the back of the fan storage box 322.
  • the right fan 307A and the left fan 307B are attached to the diametrical directions of the outer cylinder 301 perpendicular to the fan storage boxes 321 and 322 so as to be shifted from each other at positions opposite to each other, so that the right fan 307A and the By operating the left fan 307B, air can be sent from the opposite directions to the gap between the outer cylinder 301 and the multi-fluid gas-liquid mixing jet nozzle 100. By doing so, a swirling flow can be generated in the gap between the outer cylinder 301 and the multi-fluid gas-liquid mixing jet nozzle 100. As shown in FIG.
  • FIG. 10 shows the shape of the swirling flow blade 305.
  • a cover 331 having a U-shaped cross section is provided between the fan storage boxes 321 and 322.
  • the center of the cover 331 is attached to one end surface of the outer cylinder 301.
  • the cover 331 is provided with fan-shaped openings 331A and 331B opposed to each other with the multi-fluid gas-liquid mixing jet nozzle 100 interposed therebetween.
  • the arcs of these openings 331A, 331B are substantially equal to the inner diameter of the outer cylinder 301.
  • These openings 331A and 331B are for taking in natural wind.
  • the natural wind introduced from these openings 331A and 331B enters a gap between the outer cylinder 301 and the multi-fluid gas-liquid mixing jet nozzle 100, and is taken in the swirling flow.
  • the degree of opening of these openings 331A, 331B is configured to be variable by adjusting a shutter (not shown).
  • a scale 332 indicating the degree of opening is provided outside the arc portion of the openings 331A and 331B, and the degree of opening can be accurately set using the scale 332.
  • LThree L-shaped brackets 341, 342, 343 are fixed at equal intervals by bolts (not shown) on one side surface of the cover 331 parallel to the central axis of the multi-fluid gas-liquid mixing jet nozzle 100. Then, a water pump 308, a fuel pump 309, and a glycerin pump 310 are fixed on the tips of the L-shaped fittings 341, 342, and 343, respectively, at the portions perpendicular to the central axis of the multi-fluid gas-liquid mixing jet nozzle 100.
  • the inlet of the water pump 308 is provided with a joint 308A for connecting a tube for transporting water (not shown, and similarly the tube is not shown in the following description), and the outlet for connecting a tube for transporting water.
  • a joint 308B is provided.
  • the tube connected to the joint 308A is connected to the water tank, and the tube connected to the joint 308B is connected to the joint 133 at the water inlet of the multi-fluid gas-liquid mixing jet nozzle 100.
  • a joint 309A for connecting a tube for transporting fuel is provided at the inlet of the fuel pump 309, and a joint 309B for connecting a tube for transporting fuel is provided at the outlet.
  • the tube connected to the joint 309A is connected to the fuel tank, and the tube connected to the joint 309B is connected to the joint 136 at the fuel inlet of the multi-fluid gas-liquid mixing jet nozzle 100.
  • the inlet of the glycerin pump 310 is provided with a joint 310A for connecting a tube for transporting glycerin, and the outlet is provided with a joint 310B for connecting a tube for transporting glycerin.
  • the tube connected to the joint 310A is connected to the glycerin tank, and the tube connected to the joint 310B is connected to the joint 134 at the glycerin inlet of the multi-fluid gas-liquid mixing jet nozzle 100.
  • a cylindrical combustion ring 304 having an inner diameter substantially equal to the outer diameter of the outer cylinder 301 and having a closed upper end is inserted into an upper portion of the outer cylinder 301.
  • 11A and 11B show a plan view and a side view of the combustion ring 304.
  • FIG. As shown in FIGS. 11A and 11B, an ultraviolet light emitting ceramic 311 is provided on the upper surface of the combustion ring 304. Water molecules in a high-temperature steam atmosphere can be ionized by the ultraviolet light emitted from the ultraviolet light emitting ceramics 311.
  • the ultraviolet light emitting ceramics 311 has a shape in which a double concentric circle and a radiating portion provided in a cross shape intersect.
  • a plurality of circular openings are provided in a row along the pattern of the ultraviolet light emitting ceramics 311 on the upper surface of the combustion ring 304 below the ultraviolet light emitting ceramics 311.
  • the combustion ring 304 is slidable with respect to the outer cylinder 301, so that the position of the combustion ring 304 with respect to the outer cylinder 301 can be changed while observing the state of the burner flame.
  • 7A and 8 illustrate only the ultraviolet light emitting ceramics 311 of the combustion ring 304.
  • 7B, 7C, 7D, and 7E the illustration of the combustion ring 304 is omitted.
  • the outer cylinder 301 is provided with a circular mounting plate 303 whose outer peripheral part is partially cut away, perpendicular to the central axis of the outer cylinder 301.
  • the mounting plate 303 is for mounting the fuel oil combustion burner 300 to an external device or the like.
  • the operation of the multi-fluid gas-liquid mixing jet nozzle 100 is the same as that of the first embodiment. However, in this fuel oil combustion burner 300, air necessary for combustion is supplied to the outer cylinder 301 and the multi-fluid gas-liquid mixing jet nozzle 100. Is generated as a swirling flow by the operation of the right fan 307A and the left fan 307B in the space between them, and the swirling flow is supplied to the tip of the multi-fluid gas-liquid mixing jet nozzle 100. By doing so, the flame of the combustion flame can be swirled instead of flowing straight.
  • the control of the air volume and the like is controlled by the controller 350 so as to generate an optimum combustion flame, similarly to other fluids such as air, fuel, water, and glycerin.
  • a high-performance fuel oil combustion burner 300 can be realized by using the high-performance multi-fluid gas-liquid mixing jet nozzle 100.
  • FIG. 12A, 12B, 12C, and 12D are a bottom view, a right side view (a view of the pulverized coal combustion device 500 shown in FIG. 12A as viewed from above) showing the pulverized coal combustion device 500 according to the third embodiment, The left side view (the figure which looked at the pulverized coal combustion apparatus 500 shown in FIG. 12A from the lower side) and the front view (the figure which looked at the pulverized coal combustion apparatus 500 shown in FIG. 12A from the right side) are shown.
  • FIG. 13 is a schematic diagram showing the entire pulverized coal combustion device 500 including the control system.
  • This powdered coal combustion device 500 is a powdered coal combustion device for burning powdered coal using the fuel oil combustion burner 300 according to the second embodiment.
  • a pulverized coal supply device 550 is attached to the fuel oil combustion burner 300.
  • the fuel oil combustion burner 300 is attached to three U-shaped fittings 345, 346, and 347 attached to a flat plate 344 provided on one side of the cover 331 parallel to the central axis of the multi-fluid gas-liquid mixing jet nozzle 100, respectively.
  • the difference from the second embodiment is that the water pump 308, the fuel pump 309, and the glycerin pump 310 are fixed.
  • FIG. 14A is a view in which U-shaped brackets 345, 346, 347, a water pump 308, a fuel pump 309, and a glycerin pump 310 are omitted in FIG. 12A
  • FIG. 14B is a view of FIG. 14A viewed from above
  • FIG. FIG. 14D is a view of FIG. 14A as viewed from the right side.
  • the powdered charcoal supply device 550 is attached to a cover 331 on the front surface of the fuel oil combustion burner 300.
  • the powdered coal supply device 550 has a rectangular parallelepiped right tank body 502 and a left tank body 503 that are open on one side.
  • FIGS. 15A and 15B show details of the right tank body 502, FIG. 15A is a front view, and FIG. 15B is a sectional view. 16A and 16B show details of the left tank body 502, FIG. 16A is a front view, and FIG. 16B is a sectional view.
  • a funnel-shaped rotary tank 504 is provided on the central axis of the right tank main body 502.
  • the rotary tank 504 includes a conical portion and a tubular shaft connected to the top of the conical portion.
  • a plurality of spiral blades 506 are regularly provided on the inner surface of the conical portion of the rotary tank 504 in the circumferential direction, and a stop blade 510 is provided at the top.
  • the shaft of the rotary tank 504 passes through a cylindrical portion provided on the back of the right tank body 502.
  • a thin shaft 508 is provided at the center of the spiral blade 506.
  • the shaft 508 passes through the inside of the shaft of the rotary tank 504.
  • the shaft 508 is externally threaded.
  • a tank gear 512 is attached to the shaft of the rotary tank 504 at the end of the right tank body 502. The rotation of the tank gear 512 causes the rotation tank 504 and the spiral blade 506 to rotate. Therefore, when powdered charcoal is supplied to the conical portion of the rotary tank 504 (typically dropped from above the conical portion), the powdered charcoal is sent to the inside of the shaft portion of the rotary tank 504 by the spiral blades 506, and subsequently.
  • a funnel-shaped rotary tank 505 is provided on the center axis of the left tank main body 503.
  • the rotating tank 505 includes a conical portion and a tubular shaft connected to the top of the conical portion.
  • a plurality of spiral blades 507 are regularly provided on the inner surface of the conical portion of the rotary tank 505 in the circumferential direction, and a stop blade 511 is provided at the top.
  • the shaft of the rotary tank 505 passes through a cylindrical portion provided on the back of the right tank body 503.
  • a thin shaft 509 is provided at the center of the spiral blade 507.
  • This shaft 509 passes through the inside of the shaft of the rotary tank 505.
  • the shaft 509 is externally threaded.
  • a tank gear 513 is attached to the shaft of the rotary tank 505 at the end of the cylindrical portion of the left tank body 503. As the tank gear 513 rotates, the rotating tank 505 and the spiral blade 507 rotate. For this reason, when powdered coal is supplied to the conical portion of the rotating tank 505, the powdered coal is sent to the inside of the shaft of the rotating tank 505 by the spiral blades 507, and then by the male screw of the shaft 509 inside this shaft. It is sent to the front end side and discharged from the front end of the shaft of the rotating tank 505.
  • the shaft of the rotating tank 505 is longer than the shaft of the rotating tank 504.
  • the shaft of the rotating tank 504 and the shaft of the rotating tank 505 are provided at the same height as the shaft of the right fan 307A and the shaft of the left fan 307B, respectively. I have.
  • the tip of the shaft of the rotary tank 504 passes through a through-hole provided in a square tube provided in the outer cylinder 301 and is located substantially on the circumference of the outer cylinder 301.
  • the tip of the shaft of the rotary tank 505 passes through a through-hole provided in the outer cylinder 301 and is located in a gap between the outer cylinder 301 and the multi-fluid gas-liquid mixing jet nozzle 100.
  • the tank gear 512 attached to the shaft of the rotary tank 504 is engaged with the gear 518 attached to one end of the shaft 541.
  • the shaft 541 is supported by bearings 516 and 522 attached to support members attached to both side surfaces of the right fan 307A.
  • a bevel gear 512 is attached to a portion of the shaft 541 near the shaft of the right fan 307A.
  • This bevel gear 512 meshes with a bevel gear 561 attached to the tip of the motor shaft of the right fan 307A.
  • These bevel gears 512 and 561 are housed in a case 562 fixed to the front surface of the motor of the right fan 307A.
  • the rotation of the right fan 307A rotates the bevel gear 561, thereby rotating the bevel gear 512, thereby rotating the shaft 541, thereby rotating the gear 518, and finally rotating the tank gear 512, thereby finally rotating the rotating tank. 504 is designed to rotate.
  • a tank gear 513 attached to the shaft of the rotating tank 505 meshes with a gear 519 attached to one end of the shaft 542.
  • the shaft 541 is supported by bearings 517 and 523 attached to support members attached to both side surfaces of the left fan 307B.
  • a bevel gear 513 is attached to a portion of the shaft 542 near the shaft of the right fan 307B.
  • the bevel gear 513 meshes with a bevel gear 562 attached to the tip of the motor shaft of the right fan 307B.
  • These bevel gears 513 and 562 are housed in a case 563 fixed to the front surface of the motor of the left fan 307B.
  • the rotation of the left fan 307B causes the bevel gear 562 to rotate, thereby rotating the bevel gear 513, thereby rotating the shaft 542, thereby rotating the gear 519, and finally rotating the tank gear 513 to eventually rotate the rotary tank 505. Is designed to rotate.
  • the control of the pulverized coal combustion device 500 is performed by a controller 580 using a microcomputer.
  • the rotary tanks 504 and 505 are rotated while supplying the powdered coal, and the powdered coal is discharged from the tip of the shaft of the rotary tank 505 and supplied to the combustion flame. Burn.
  • a high-performance pulverized coal combustion device 500 can be realized by using the high-performance multi-fluid gas-liquid mixing jet nozzle 100.
  • FIG. 18 is a schematic diagram showing the entire boiler 800 including the control system and auxiliary equipment.
  • This boiler 800 is a boiler using the fuel oil combustion burner 300 according to the second embodiment.
  • the boiler 800 includes heat exchangers 802 to 804, a spark plug 807, and a high-frequency oscillation terminal 812 as superheaters for water in a rectangular parallelepiped main body 801.
  • 19A and 19B are a plan view and a front view, respectively, of the main body 801.
  • FIGS. 19C, 19D, and 19E show heat exchangers 802, 803, and 804, respectively.
  • the heat exchangers 802, 803, and 804 correspond to a low-temperature water temperature section, a medium-temperature water temperature section, and a high-temperature water temperature section, respectively.
  • the outer wall of the main body 801 has a double structure, and water can circulate through the outer wall.
  • the fuel oil combustion burner 300 is installed on the upper part of the main body 801.
  • the fuel oil combustion burner 300 is attached to a through hole 801A provided on the upper surface of the main body 801 and the tip of the multi-fluid gas-liquid mixing jet nozzle 100 faces downward.
  • the main body 801 is provided with a supply pipe 813 for supplying water to the boiler 800, a take-out pipe 814 for taking out high-temperature water (hot water) and water vapor, and an exhaust pipe 815.
  • FIG. 18 shows the whole of the boiler 800 including the control system and auxiliary equipment.
  • the joints at the inlets of the water pump 308, the fuel pump 309, and the glycerin pump 310 of the fuel oil combustion burner 300 are connected to a water tank 809, a fuel tank 810, and a glycerin tank 811 respectively.
  • the center air, the right air, the left air, and the hot air forming air to the multi-fluid gas-liquid mixing jet nozzle 100 are sent by the compressors 526 to 528.
  • the high frequency oscillation terminal 812 is connected to the high frequency oscillator 816.
  • a combustion flame is generated inside the main body 801 by the fuel oil combustion burner 300.
  • the combustion flame exchanges heat with all of the heat exchangers 802, 803, 804.
  • high-temperature water (hot water) or steam is taken out from the take-out pipe 814.
  • a combustion flame in an atmosphere of a large amount of fine water particles is generated by injecting water twice or more as much as fuel oil consumed when the multi-fluid gas-liquid mixing jet nozzle 100 operates.
  • a high-performance boiler 800 can be realized by using the high-performance fuel oil combustion burner 300 using the high-performance multi-fluid gas-liquid mixing jet nozzle 100. .
  • FIG. 20 shows the whole multi-fluid gas-liquid mixing jet nozzle 1000 according to the fourth embodiment including the control system.
  • the multi-fluid gas-liquid mixing jet nozzle 1000 in FIG. 20 is in a state where the tip is viewed from above.
  • FIG. 21 is a side view of the multi-fluid gas-liquid mixing jet nozzle 1000.
  • the principle of the multi-fluid gas-liquid mixing jet nozzle 1000 is basically the same as that of the multi-fluid gas-liquid mixing jet nozzle 100 according to the first embodiment.
  • a fluid such as fuel, water, air, glycerin, etc. is introduced, whereas the multi-fluid gas-liquid mixing jet nozzle 1000 includes individual flow paths (fluid supply nozzles) for fuel, water, air, and glycerin, The difference is that each fluid flows from these flow paths to the ejection port, and each fluid is ejected individually.
  • the multi-fluid gas-liquid mixing jet nozzle 1000 is suitable for application to an internal combustion engine, for example.
  • the multi-fluid gas-liquid mixing jet nozzle 1000 includes a nozzle main body 1010 and air, fuel, water, and glycerin fluids attached to side surfaces of the nozzle main body 1010.
  • the apparatus has fluid supply nozzles 1001, 1002, 1003, and 1004 for supplying the fluid to the inside of the main body 1010, respectively.
  • the nozzle body 1010 corresponds to the nozzle body 100A of the multi-fluid gas-liquid mixing jet nozzle 100 according to the first embodiment, but includes a central air transport pipe 121, a left air transport pipe 122, a water transport pipe 123, and glycerin transport.
  • the pipe 124, the right air transport pipe 125, and the fuel transport pipe 126 are not provided, and instead, fluid supply nozzles 1001, 1002, 1003, and 1004 are provided.
  • These fluid supply nozzles 1001, 1002, 1003, and 1004 are provided with solenoid valves 1001P, 1002P, 1003P, and 1004P, respectively, and supply of each fluid is controlled by these solenoid valves 1001P, 1002P, 1003P, and 1004P. You can do it.
  • the tips of the fluid supply nozzles 1001, 1002, 1003, 1004 are connected to the air intake, fuel intake, water intake, and glycerin intake provided in the nozzle body 1010.
  • the flow paths of the air, fuel, water, and glycerin that are taken in from the air intake, the fuel intake, the water intake, and the glycerin intake to the tip of the nozzle body 1010 are the same as those of the nozzle body 100A.
  • the heat source 1005 of the nozzle body 1010 has the same configuration as the heat source 111 of the nozzle body 100A.
  • a ceramic glowing ring 109 is provided at the tip of the nozzle body 100A, whereas a ceramic glowing body 1007 is provided at the tip of the nozzle body 1010.
  • the ceramic red hot body 1007 plays the same role as the ceramic red hot ring 109.
  • the control of the multi-fluid gas-liquid mixing jet nozzle 1000 is performed by a controller 1050 using a microcomputer.
  • the operation method of the multi-fluid gas-liquid mixing jet nozzle 1000 is according to the first embodiment except that fuel, water, air, and glycerin are taken in using the fluid supply nozzles 1001, 1002, 1003, and 1004. This is the same as the multi-fluid gas-liquid mixing jet nozzle 100.
  • FIGS. 22A to 22F show the structure and operation of an internal combustion engine 1100 according to the sixth embodiment.
  • This internal combustion engine uses the multi-fluid gas-liquid mixing jet nozzle 1000 according to the fifth embodiment.
  • an internal combustion engine 1100 includes a cylinder 1101, a lid 1102 attached to the open end of the cylinder 1101, and a multi-fluid gas-liquid mixing jet nozzle with an electromagnetic valve for fluid control attached to the center of the lid 1102. 1000, a piston 1103 provided inside the cylinder 1101, a crankshaft 1104 connected to the piston 1103, and a crank 1105 connected to the crankshaft 1104.
  • the lid 1102 is provided with an intake valve 1102A and an exhaust valve 1102B.
  • This internal combustion engine 1100 is basically the same as a general internal combustion engine except that a multi-fluid gas-liquid mixing jet nozzle 1000 is used.
  • FIG. 22A to 22F An operation method of the internal combustion engine 1100 will be described with reference to FIGS. 22A to 22F.
  • the operation is performed by the controller 1050 using the microcomputer of the multi-fluid gas-liquid mixing / ejection nozzle 1000 using the following four steps from suction to exhaust. (1) At the same time when the multi-fluid gas-liquid mixing jet nozzle 1000 is turned on, the compressor that sends air to the heater of the heat source 1005 for forming hot air is turned on, and then the heater is turned on. (2) Next, as shown in FIG.
  • the suction valve 1102A of the cylinder 1101 in the suction process, is slightly opened to suck a very small amount of air, and a large amount of hot air is blown out of the hot air nozzle of the multi-fluid gas-liquid mixing jet nozzle 1100. Is blown into the space in front of the piston 1103.
  • the piston 1103 injects fuel at an instant after passing the top dead center, ignites, ignites, expands, delays by one breath, water injection, expansion promotion, and water expansion rate. The effect doubles the operating force of the piston 1103.
  • the piston 1103 becomes the bottom dead center due to the secondary injection, the expansion coefficient effect of water, and the hot air injection, and performs the exhaust (the microcomputer determines whether the secondary injection is required and does not perform the injection). There is also a cycle).
  • the internal combustion engine 1100 in the cooling step of the internal combustion engine 1100, the internal combustion engine 1100 is cooled by the steam vaporization heat effect (the heat that must be discarded is not produced).
  • the exhaust valve 1102B is opened to discharge the combustion slag and residual steam.
  • the suction valve 1102A is opened halfway in the suction step (2) and hot air is blown from the nozzle to start the next cycle.
  • a high-performance internal combustion engine 1100 can be realized by using the high-performance multi-fluid gas-liquid mixing jet nozzle 1000.
  • FIGS. 23A to 23J show the structure and operation of an internal combustion engine 1200 according to the seventh embodiment.
  • This internal combustion engine 1200 is an internal combustion engine using two multi-fluid gas-liquid mixing jet nozzles 1000 according to the fifth embodiment.
  • an internal combustion engine 1200 includes a cylinder 1201, a piston 1202 provided inside the cylinder 1001, a shaft 1203 connected to the piston 1202, a temperature rise controller 1204 attached to both ends of the cylinder 1201, 1205, a control cylinder 1206 and a multi-fluid gas-liquid mixing jet nozzle 1000A, 1000B with a solenoid valve for fluid control attached to the side of the cylinder 1001.
  • Two through holes 1001A and 1001B are provided in the side surface of the cylinder 1001 corresponding to the control cylinder 1206.
  • the temperature rise controllers 1204 and 1205 prevent the cylinder 1001 from overheating. Water is supplied to the temperature rise controllers 1204 and 1205 as necessary, so that the cylinder 1201 can be cooled.
  • the control cylinder 1206 includes a shaft 1206A and two pistons 1206B and 1206C attached to the shaft 1206A.
  • the control cylinder 1206 is provided with a discharge port 1207.
  • the cylinder 1201 is overheated, but the temperature rise is controlled by the heat of vaporization of the water jetted from the multi-fluid gas-liquid mixing jet nozzles 1000A and 1000B, which hinders the operation of the piston 1202. Don't do it.
  • FIGS. 23A to 23J An operation method of the internal combustion engine 1200 will be described with reference to FIGS. 23A to 23J.
  • the operation is performed by the controller 1050 using the microcomputer of the multi-fluid gas-liquid mixing jet nozzle 1000 using the multi-fluid gas-liquid mixing jet nozzle 1000A and 1000B alternately to perform the following four steps from suction to exhaust as follows. .
  • Hot air is injected from the tip injection port, and air and fuel are injected.
  • the space between the left wall of the cylinder 1201 and the piston 1202 expands under the pressure of the high-temperature steam.
  • the tip of the multi-fluid gas-liquid mixing / injecting nozzle 1000B is set. Injects air and water from the section to promote expansion.
  • a high-performance internal combustion engine 1100 can be realized by using the high-performance multi-fluid gas-liquid mixing jet nozzle 1000.
  • FIG. 25 shows a turbine engine 1300 according to the eighth embodiment.
  • This turbine engine 1300 uses a plurality of multi-fluid gas-liquid mixing jet nozzles 1000 according to the fifth embodiment.
  • the turbine engine 1300 includes a shaft 1301, a drum 1302 provided integrally with the shaft 1301, a turbine 1303 provided outside the drum 1302, a steam introduction passage 1304 provided on the outer periphery of the turbine 1303, and It has four multi-fluid gas-liquid mixing jet nozzles 1000A, 1000B, 1000C and 1000D provided on the outer periphery of the rotating body 1303.
  • the turbine 1303 can be easily rotated with respect to the drum 1302 by bearings provided on the drum 1302.
  • the multi-fluid gas-liquid mixing jet nozzles 1000A, 1000B, 1000C, and 1000D are provided with their tips inserted into the steam introduction path 1304.
  • FIG. 25 shows a state in which the tip of the multi-fluid gas-liquid mixing jet nozzle 1000A is inserted into the steam introduction path 1304.
  • the central axes of the multi-fluid gas-liquid mixing jet nozzles 1000A, 1000B, 1000C, and 1000D coincide with the tangential direction of the steam introduction path 1304 when viewed from the central axis direction of the shaft 1301.
  • the steam introduction path 1304 is provided with a backflow prevention member 1305 for preventing the backflow of the high-temperature steam-containing combustion flame.
  • the inside of the turbine 1303 is provided with a blade to which a high-temperature steam-containing combustion flame is applied, similar to a conventionally known turbine.
  • a high-temperature steam-containing combustion flame is injected from the tips of the multi-fluid gas-liquid mixing jet nozzles 1000A, 1000B, 1000C, and 1000D, and pressure is applied to the blades inside the turbine 1303 by the high-temperature steam-containing combustion flame introduced into the steam introduction passage 1304.
  • the turbine 1303 is rotated with respect to the drum 1302.
  • a high-performance turbine engine 1300 can be realized by using the high-performance multi-fluid gas-liquid mixing jet nozzle 1000.
  • this turbine engine 1300 since steam can be generated by the multi-fluid gas-liquid mixing jet nozzle 1000, it is not necessary to carry steam from outside as in a conventional steam cylinder. It is possible to control.
  • FIG. 26 shows an environmental purification and sterilization farm house 1400 according to the ninth embodiment.
  • This environmental purification sterilizing farm house 1400 uses the fuel oil combustion burner 300 according to the second embodiment.
  • two fuel oil combustion burners 300 are installed on the roof of the house 1403.
  • the tip of the multi-fluid gas-liquid mixing jet nozzle 100 of the fuel oil combustion burner 300 is located immediately below the roof of the house 1403 and faces downward.
  • the inlets of the fuel pump, water pump, and glycerin pump of the fuel oil combustion burner 300 are connected to a fuel tank 1408, a water tank 1409, and a glycerin tank 1410, respectively.
  • the central air, the right air, the left air, and the air for forming the hot air to the multi-fluid gas-liquid mixing jet nozzle 100 are sent by the compressors 1404 to 1407.
  • a nozzle for discharging mineral water into the house 1403 is installed next to the fuel oil combustion burner 300. Mineral water is used as needed.
  • the house 1403 is provided with an ozone generator 1411, a plasma generator 1412, and an ultraviolet light emitting device 1413, so that ozone, plasma, and ultraviolet light can be generated in the house 1403, respectively.
  • Control of each fluid, temperature, ozone generator 1411, plasma generator 1412, ultraviolet light emitting device 1413, etc. supplied to fuel oil combustion burner 300 is performed by controller 1450 using a microcomputer.
  • the vicinity of the jet port of the multi-fluid gas-liquid mixing jet nozzle 100 is a high-temperature steam atmosphere, in which plasma is generated by the operation of the plasma generator 1412 to promote the generation of nitrogen fertilizer.
  • the gas to be injected and burned from the fuel oil combustion burner 300 equipped with the multi-fluid gas-liquid mixed injection nozzle 100 is capable of converting carbohydrates under the condition that carbon dioxide generated by glycerin combustion and water vapor by water spray are ultraviolet rays. It can synthesize and promote the growth of plants in house 1403.
  • the ninth embodiment by installing the high-performance fuel oil combustion burner 300 in the house 1403, not only can sterilization and disinfection in the house 1403 be performed, but also plant growth is promoted. It is possible to realize an environmental purification and sterilization farm house 1400 in an optimal environment.
  • the position at which the fluid is jetted from the multi-fluid gas-liquid jet mixing nozzle 100 can be changed, or the position of the hot air jet can be changed.

Abstract

多流体気液噴出混合ノズルは、ノズル噴出口の中心に空気を噴出させるための中心部空気流動流路と、ノズル噴出口の中心に熱風を噴出させるための直進流動流路と、ノズル噴出口の中心に液体を噴出させるための複数の液体流動流路と、中心部空気流動流路の先端に取り付けられた、前記直進流動流路に対して90度をなす方向に外方に向かって貫通した複数の貫通孔が設けられ、中心に噴出口を有する空気流動拡散部材とを有する。

Description

多流体気液噴出混合ノズル、バーナー、燃焼機器、ボイラー、内燃機関、動力機器および環境浄化殺菌農園ハウス
 この発明は、多流体気液噴出混合ノズル、バーナー、燃焼機器、ボイラー、内燃機関、動力機器および環境浄化殺菌農園ハウスに関する。
 環境問題についての関心の高まりにより、従来より、例えばディーゼル機関の排気ガスの浄化を実現するための技術等が種々提案されている。このような背景の下で、本発明者は先に、気体と液体とを効率よく混合することができ、かつ液体のしずくの発生を抑えてより微細な粒子を生成することができる気液混合ノズルを提案した(特許文献1~3参照)。この気液混合ノズルによれば、従来技術では困難であった燃料と空気と水との完全な混合およびこれらの吐出が可能となり、エマルジョン燃料の最適な状態を確保するための維持および管理の技術が不要となり、水を混合する際に従来技術では必要であった水噴射装置が不要となる等の利点を得ることができる。
特許第5651869号明細書 米国特許第8,955,470号明細書 欧州特許第2495051号明細書
 この発明が解決しようとする課題は、特許文献1~3の気液混合ノズルをさらに発展させ、エネルギー効率の大幅な向上、二酸化炭素および窒素酸化物の排出量の大幅な削減、燃料滓の大幅な削減等を図ることができる高性能の多流体気液噴出混合ノズルならびにこの多流体気液噴出混合ノズルを用いたバーナー、燃焼機器、ボイラー、内燃機関、動力機器および環境浄化殺菌農園ハウスを提供することである。
 前記課題および他の課題は、本明細書の以下の記述によって明らかとなるであろう。
 この発明は、利用されず損失している熱エネルギーを高温水蒸気エネルギーに変換する技術に関するものであり、効率よくエネルギー変換するには、燃料油燃焼ノズルの着火のための熱風をノズルの中央から噴出しその近接外周に燃料を噴出することにより燃焼を開始する。熱風の温度は必要に応じて選ばれるが、後述の空気拡散部材(空気拡散駒)などのノズル先端部を充分に早く熱するためには例えば650℃前後とする。
 高圧噴出で微細にした燃料の霧の、特にノズル噴出口の中心部において空気(酸素)不足による不完全燃焼を鑑みて、この発明の多流体気液混合噴出ノズルは、中央部の中心に燃料油噴出による着火のための熱風を噴出しこの熱風の周りに向けて空気を噴出させる中央側空気噴出流路(中心部空気流動流路)と、ノズル噴出口の外周部から空気を噴出させる2流路の外周側螺旋旋回流空気流動流路と、前記中央側空気流動流路と前記2流路の外周螺旋旋回空気流動流路との間に配置され燃料および水の液体を噴出口に流動させるための少なくとも2つの液体螺旋旋回流動流路と、前中央側空気噴出流路、前記液体螺旋旋回流動流路および前記2流路の外周螺旋旋回空気流動流路の噴出口で混合された空気および液体の混合体が旋回流で衝突し回転する衝撃部材(衝撃駒)と、を備え、前記液体噴出流動流路の噴出口は前記中央側空気噴出流路(中央空気流動流路)の噴出口の後方に設置されている。
 この発明の多流体気液噴出混合ノズルは、典型的には、ノズル噴出口の中心部に向けて空気を噴出させる中央空気流動流路と、前記ノズル噴出口の外周部から空気を噴出させる2流路の外周螺旋旋回流空気の流動流路と、前記中央空気流動流路と前記2流路の外周螺旋旋回流空気流動流路との間に配置され、燃料および水の液体を噴出口まで導く螺旋旋回流動流路を含む少なくとも2つ以上の液体螺旋旋回流動流路と、を備え、前記中央空気流動流路と前記2流路の外周空気螺旋旋回流動の混合気旋回流の気体に向かい、燃料の旋回流噴射、水の旋回流噴射およびグリセリン、グリセリン水溶液、植物油等の液体の旋回流噴射を行って、衝撃部材(衝撃駒)への衝撃で気体と液体との多流体を飛散混合させて旋回流動させ、衝撃部材を衝撃力と混合流体の旋回流動力とにより回転させることが特徴である。
 さらに、この発明の多流体気液噴出混合ノズルは、典型的には、空気をノズル中心部に向けて噴出する中央空気流動流路を流動し噴出口に向かう噴出流路が直進し空気が噴出する流路と、前記流路の外周方向90度に向かい空気が噴出する複数の流路と、を備え、中心部を直進し噴出する空気と、前記外周方向に噴出する空気との2通りの空気に分かれ噴流動させることを特徴とし、前記2通りの流路から熱風を噴出し拡散流動することを特徴とし、外周部からの旋回流空気が混合し形成する混合旋回空気流の中に噴出する液体微粒子が回転する衝撃部材(衝撃駒)の効果で飛散微粒化が促進され空気中に均一に混合することを特徴とする。
 さらに、この発明では、典型的には、燃料油噴出により形成された霧に着火させるための熱風をノズル中心部に噴出すること、および、燃焼火炎に水を噴射しこの霧を燃焼火炎に混合させることを特徴とする。
 また、この発明では、典型的には、多流体気液噴出混合ノズルにより生成する気液の混合旋回流体が、前記液体螺旋旋回流動流路と、前記2流路の外周空気螺旋旋回流動流路を流動し噴出口で噴射された後に混合した混合流体の流動が旋回流動しながら拡散流動することにより旋回流体の外の空気を巻き込み流動することを特徴としている。
 この発明の多流体気液噴出混合ノズルで生成する、中心に噴出する熱風空気と空気3流体との気体の4流体と、燃料、水、液体(グリセリン、グリセリン水溶液、植物油等)との気体および液体の7流体のそれぞれの噴出流体の混合旋回流体は、典型的には、それぞれ個別にマイクロコンピューターにより制御され、螺旋旋回流動流路を流動させ、旋回流動の気液混合流体を生成し気液が均一に混合した気液混合霧(ガス)を生成する。着火させた旋回流動の燃焼火炎は、水粒子の気化熱効果で高温高熱化を制御して窒素酸化物生成を抑制し、水粒子を含む旋回流動の燃焼火炎は周囲の空気を巻き込み、燃焼効率は上昇し、超微細孔からの超高圧の噴射による燃料粒子のナノ微細化によることなく、空気(酸素)と燃料粒子の霧と水分子の霧とが均一に混合された燃焼火炎の燃焼は空気比を理想的な1.1以下にすることができて、CO排出を低減し省エネも実現することを特徴とする。
 また、この発明の多流体気液噴出混合ノズルは、典型的には、ノズル噴出口の中心部に向けて噴出させる中央空気流動流路と、ノズル外周部から空気を噴出させる2流路の外周空気螺旋旋回流動流路との間に設置する2つ以上の液体螺旋旋回流動流路を有し、前記多流体気液噴出混合ノズルの噴出口から噴出する気体と液体との噴出流体により生成した気液混合ガスに着火させた燃焼火炎は、水微粒子を含み、水噴出を増量させることにより高温水蒸気を発生させることができ、高温水蒸気雰囲気の燃焼火炎を生成することができ、さらにはこの高温水蒸気雰囲気に高周波を当てる高周波発信装置を設置できる。
 必要に応じて、この発明の多流体気液噴出混合ノズルにより生成した高温水蒸気雰囲気には電磁波を用いてプラズマを生成させることができる。また、必要に応じて、この発明の多流体気液噴出混合ノズルにより生成した高温水蒸気雰囲気に向かい持続的にスパークを起こさせるスパーク端子を設けることができる。
 この発明に係る多流体気液噴出混合ノズルには、典型的には、ノズルで生成する気液混合流体の液体微粒子気体混合霧(ガス)に着火させるための熱風(例えば、650℃以上)を噴出する、熱風噴出口及び熱風流動流路を備え、前記ノズルの気液の噴出口前方に高温で赤熱するセラミックス赤熱環を設け、燃焼室内に吹き込む熱風により赤熱することができることを特徴とし、気液混合ガスに着火させた燃焼火炎により赤熱するセラミックス赤熱環の赤熱が安定的に持続することを特徴とする。セラミックス赤熱環が赤熱することにより発生する遠赤外線は燃焼を安定化させる効果がある。
 この発明の多流体気液噴出混合ノズルは、例えばバーナーに適用することができる。このバーナーにおいては、例えば、多流体気液噴出混合ノズルを外筒に収容し、多流体気液噴出混合ノズルと外筒の間の隙間に自然流の空気を取り入れることができるが、生成する旋回流の火炎を確実な旋回流とするために、こうして取り入れる自然流の空気も旋回させるための螺旋羽根を外筒の内面に形成することができる。
 バーナーは、必要に応じて、生成した旋回流の燃焼火炎が流動する途中に紫外線を発光するセラミックス燃焼環を設け火炎噴出口から前方へと位置を自在に調整し、紫外線発光および火炎の調整ができるようにすることができる。
 この発明の多流体気液噴出混合ノズルの目的は、典型的には、生成した燃焼火炎に高温水蒸気を多量に含有した燃焼火炎を生成することにある。
 この発明の多流体気液噴出混合ノズルによる燃料燃焼システムはバーナー、バーナーを用いた燃焼機器(粉末炭燃焼装置等)、内燃機関、ボイラー等を含む(広義には、バーナー、燃焼機器、内燃機関、ボイラー等も燃焼機器に含まれる)。これらの燃料燃焼システムは、典型的には、空気を供給する空気供給源と、燃料を供給する燃料供給源と、水を供給する水供給源と、グリセリン、グリセリン水溶液等の液体を供給する液体供給源とを有する。この燃料燃焼システムでは、これらの空気供給源、燃料供給源、水供給源および液体供給源と前記多流体気液噴出混合ノズルとが燃料噴射装置に組み込まれ、前記空気供給源、前記燃料供給源、前記水供給源、前記液体供給源から、前記空気、前記燃料、前記水、前記液体がそれぞれ導入され、燃焼室内で完全燃焼可能な気液混合体を形成するための前記空気、前記燃料、前記水、前記液体を個別に噴出して気液混合霧を生成させることをマイクロコンピューターで制御する。
 この発明の多流体気液噴出混合ノズルは、典型的には、気体および液体を噴出する噴出口の前方に熱風および燃焼火炎により赤熱するセラミックス赤熱環を備え、さらに、ノズル中心部に熱風を噴出する直進熱風流通管と、この直進熱風流通管の後ろに空気を流動する流路を備えた、熱風を生成する熱源と、この熱源の外周を流動する流路を備えた流路を通過する中央空気噴出口と、この外周に燃料を流動させる流路を通過し旋回流路を備え、その流路を流動し噴出する燃料噴出口と、この外側外周に水を流動する流路を備えた流路を通過しさらに旋回流動路を通過し噴出する水噴出口と、この外側外周に燃焼に供する液体を旋回流動させる流路を流動し噴出する噴出口と、この液体の液体噴出口の外側外周に旋回流路を備えた2流路からの空気噴出口とを備え、セラミックス赤熱環の赤熱を温度センサーにより検知し、マイクロコンピューターにより各流体を個別に制御し燃焼火炎を自在に制御する。
 この発明の多流体気液噴出混合ノズルは、バーナー等に用いる場合には、典型的には、気体および液体の噴出口に気体および液体の噴出により回転する衝撃駒を備え、この前方に熱風および火炎に反応し赤熱するセラミックス赤熱環を設け、ノズル中心部に熱風を噴出する噴出口と熱風を生成する熱源を中心部に縦長に設け、その外を近接して空気を噴出する中央空気噴出口を設け、その外側外周に燃料噴出口を設け、その外に水の噴出口を設け、そのその外にグリセリン等の燃焼に供する液体の噴出口を設け、それぞれの流路として旋回流動路を備えた流動路を設け、この外側外周に旋回流動流路を備えた流路の空気噴出口を設け、それぞれ中央空気、熱風空気、燃料、水、液体(燃焼に供する液体グリセリン等)、外周旋回流動の2流体空気は個別に縦長の流路を要し、赤熱の温度を検知する温度センサーと、燃焼火炎温度を検知する温度センサーとを設け、さらに多流体気液噴出混合ノズルの主要部を包み込む円筒に収める。
 この発明の多流体気液噴出混合ノズルはハウス農園に適用して好適である。この多流体気液噴出混合ノズルは、ハウス農園での暖房費の費用割合が大きくまた不純物を多量に含みフィルターを通過した二酸化炭素でなければ使用できない化石燃料燃焼に比べて市場に過剰気味の植物油から生成するグリセリンを使用し燃焼することにより、排出する二酸化炭素はフィルターを使用することなくハウス内へそのまま供給できる上にグリセリンの有効利用を図ることができ、一挙両得である。
 この発明の多流体気液噴出混合ノズルを活用することにより、ハウス内に水微粒子を多量に含む気液混合ガスを生成して植物の生育に供することができる。
 好適には、農園ハウス内に供給する空気を含み混合する水蒸気雰囲気に向かい、紫外線発光セラミックスにより紫外線を生成することにより病害虫の発生を抑制する。
 好適には、農園ハウス内に生成し水微粒子が多量に充満した気液混合のガスに向かいオゾンを発生させて病害虫の発生を抑制する。
 好適には、農園ハウス内にこの発明の多流体気液噴出混合ノズルからの水噴出により生成された水微粒子を多量に含む気液混合ガスに向かい低温プラズマを生成させ、病害虫の発生の抑制と植物の生育を促す。
 また、この発明の多流体気液噴出混合ノズルは、典型的には、ノズル中央部にヒーターを備え、ノズル噴出口前方にセラミックス赤熱環を備え、各流体が噴出する憤出口に回転自在の衝撃駒を備え、中心部噴出口に熱風を噴出する熱風噴出口と、外周部から中央部に向かい旋回流動の空気を噴出する左右からの空気供給路と、液体の燃料油、水、グリセリン等の液体のそれぞれの噴出口とこれらの噴出口に向かうそれぞれの流路と供給源と温度センサーとを備え、マイクロコンピューターによりそれぞれの流体をコントロールする。
 典型的には、マイクロコンピューターの指令によりヒーターの中心を流動する空気のコンプレッサーにスイッチが入り、続いてヒーターにスイッチが入り熱風をノズル中心部の噴出口から噴出してセラミックス赤熱環に吹き付け、熱風が吹き付けられて赤熱したセラミックス赤熱環の赤熱を検知した温度センサーからの指令により、マイクロコンピューターは、燃料の噴射を指令し着火して、中央空気の噴出を指令して燃焼火炎を増大させ、温度センサーからの温度検知の知らせを受け外周旋回流空気の噴出を指令する。
 続いて水の噴射を指令するが、このとき燃焼火炎は安定化炎となり火炎温度の温度上昇を抑え、火炎中央部に存在する充分な空気の影響で酸素不足による燃え滓、煤等は発生せず清廉な火炎を形成することができる。
 さらに、噴出する水微粒子は清廉火炎に混合し火炎の温度高温化を抑制し水微粒子の影響受けた旋回流動の燃焼火炎の外縁はその空気が巻き込まれ旋回流動の清廉な透明の大きな燃焼火炎を実現し継続させる。
 安定的な燃焼火炎の検知の信号を受けたマイクロコンピューターは、例えば第三価のアルコールであるグリセリンの噴出を促し噴出させ、こうすることで燃焼火炎はさらに大きな清廉で透明な燃焼火炎となる。
 典型的には、温度センサーが、火炎の温度および火炎の大きさを把握して燃料噴射の抑制を促し、化石燃料の噴出を抑制し妥当とする燃焼火炎を持続し燃焼させる。
 コントロールに用いるマイクロコンコンピューターは、最適な火炎を得るためには、中心部の噴射拡散する熱風を連続持続して噴出することにより、セラミックス赤熱環の赤熱が安定的に持続し、中央空気の噴出が安定的に持続して、外方側噴出旋回流空気の噴出口中央への噴出が安定して燃料の噴出が安定的に持続して、水の噴出が安定的に持続し、グリセリン等の液体の噴出が安定的に持続し続けるように制御し、燃焼火炎流動拡大を制御するために化石燃料供給を制御して適切な燃焼火炎を継続させる。
 この発明の多流体気液噴出混合ノズルの燃焼火炎は、中心部に充分な空気を供給され、着火に必要な温度の熱風が安定的に供給され、燃料、水、グリセリン等の液体が安定的に供給され、着火温度に達した空気の気体と燃焼に供する液体と過熱化を抑制する水との混合の多流体気液噴出混合は旋回流動し、着火した多流体の気液混合火炎旋回流の燃焼火炎を形成した火炎の温度は900℃を超えず省エネと窒素酸化物排出抑制、二酸化炭素排出抑制が実現してトレードオフは解消し一挙両得以上を実現し、燃料噴出と水噴出とをそれぞれ独立して、例えば内燃機関の回転数に応じたタイミングと量とをマイクロコンピューターによりコントロールして最適な燃焼火炎を継続することができる。
 この発明の多流体気液噴出混合ノズルを活用する内燃機関は、マイクロコンピューターを搭載し、吸入工程ではシリンダーは吸入弁を半開きにして空気の吸入量を極力抑え、前記多流体気液噴出混合ノズルから大量の熱風を吹き込み、圧縮工程に移行する時点で既に着火温度に達するシリンダー内の空気を圧縮し、上死点を過ぎる瞬時点で燃料を噴射して,着火した火炎の熱膨張エネルギーはピストンを押し下げ、間を置かず噴射する水は、シリンダー内に存在する燃料燃焼の熱エネルギーを高温水蒸気膨張エネルギーにエネルギー変換し、前記膨張エネルギーがピストン作動の動力エネルギーとなりピストン作動力を倍増させて作動力を向上して、動力を増加させ、次の排気工程では燃焼火炎の燃焼滓と残留水蒸気の排出を行い、前記高温水蒸気の気化熱エネルギーは内燃機関の熱を奪い内燃機関の高熱化を抑え、冷却化は圧縮工程の圧縮比が安定させ内燃機関の温度の過熱化を制御し、このためラジエーターにスイッチが入らずにサイクル運転が可能となる。このように熱エネルギーから高温水蒸気エネルギーにエネルギー変換することで、ラジエータ-を必要としない軽量な車体の内燃機関の誕生とともに省エネを実現することができる。結論を端的に表現すると、この発明は、熱エネルギーを高温水蒸気エネルギー(動力エネルギー、気化熱エネルギー)に効率的にエネルギー変換する、内燃機関に活用して好適なものである。
 ここで、水の膨張の威力について説明する。標準状態0℃、1気圧=101325Pa(N/m)では、水1モルの体積は22.4L(リットル)であり、気体定数は8.314J・K-1・mol-1(1モルの気体定数)であるから、水が高温水蒸気に変化するときの膨張は、高温100℃を超えるときには
1×8.314×(100+273)/101325=30.6L
である。水の分子量は18、0℃、1気圧での水1モル(18g)の体積は0.018Lであるから、水の体積は0.018:30.6=1:1700、すなわち1700倍(化石燃料の2.4倍)に増加する。この膨張により生じる膨張力を動力に活用し、気化熱エネルギーの冷却効果で冷却損失と排気損失の熱エネルギー損失を解消して削減し、ラジエーターを削除することができる。これによって、シリンダー内で燃焼により水が高温水蒸気になるに充分なカロリーを発生できてピストン作動を行うことができ、水噴射により膨張率が化石燃料の2.4倍の膨張力を活用することで燃料は少量で済み、排出ガスは清廉となり、水の気化熱は内燃機関を冷却し、余分な熱を発生させず、熱交換ラジエーターは必要としない内燃機関と蒸気機関とが組み合わさった動力機関を実現することができる。
 以上の説明から、次のような発明を導くことができることが明らかである。
 すなわち、この発明は、
 ノズル噴出口の中心に空気を噴出させるための中心部空気流動流路と、
 前記ノズル噴出口の中心に熱風を噴出させるための直進流動流路と、
 前記ノズル噴出口の中心に液体を噴出させるための複数の液体流動流路と、
 前記中心部空気流動流路の先端に取り付けられた、前記直進流動流路に対して90度をなす方向に外方に向かって貫通した複数の貫通孔が設けられ、中心に噴出口を有する空気流動拡散部材と、
を有する多流体気液噴出混合ノズルである。
 また、この発明は、
 少なくとも一つの多流体気液噴出混合ノズルを有し、
 前記多流体気液噴出混合ノズルは、
 ノズル噴出口の中心に空気を噴出させるための中心部空気流動流路と、
 前記ノズル噴出口の中心に熱風を噴出させるための直進流動流路と、
 前記ノズル噴出口の中心に液体を噴出させるための複数の液体流動流路と、
 前記中心部空気流動流路の先端に取り付けられた、前記直進流動流路に対して90度をなす方向に外方に向かって貫通した複数の貫通孔が設けられ、中心に噴出口を有する空気流動拡散部材と、
を有するバーナーである。
 また、この発明は、
 少なくとも一つのバーナーを有し、
 前記バーナーは少なくとも一つの多流体気液噴出混合ノズルを有し、
 前記多流体気液噴出混合ノズルは、
 ノズル噴出口の中心に空気を噴出させるための中心部空気流動流路と、
 前記ノズル噴出口の中心に熱風を噴出させるための直進流動流路と、
 前記ノズル噴出口の中心に液体を噴出させるための複数の液体流動流路と、
 前記中心部空気流動流路の先端に取り付けられた、前記直進流動流路に対して90度をなす方向に外方に向かって貫通した複数の貫通孔が設けられ、中心に噴出口を有する空気流動拡散部材と、
を有する燃焼機器である。
 また、この発明は、
 少なくとも一つのバーナーを有し、
 前記バーナーは少なくとも一つの多流体気液噴出混合ノズルを有し、
 前記多流体気液噴出混合ノズルは、
 ノズル噴出口の中心に空気を噴出させるための中心部空気流動流路と、
 前記ノズル噴出口の中心に熱風を噴出させるための直進流動流路と、
 前記ノズル噴出口の中心に液体を噴出させるための複数の液体流動流路と、
 前記中心部空気流動流路の先端に取り付けられた、前記直進流動流路に対して90度をなす方向に外方に向かって貫通した複数の貫通孔が設けられ、中心に噴出口を有する空気流動拡散部材と、
を有するボイラーである。
 また、この発明は、
 シリンダーに取り付けられた少なくとも一つの多流体気液噴出混合ノズルを有し、
 前記多流体気液噴出混合ノズルは、
 ノズル噴出口の中心に空気を噴出させるための中心部空気流動流路と、
 前記ノズル噴出口の中心に熱風を噴出させるための直進流動流路と、
 前記ノズル噴出口の中心に液体を噴出させるための複数の液体流動流路と、
 前記中心部空気流動流路の先端に取り付けられた、前記直進流動流路に対して90度をなす方向に外方に向かって貫通した複数の貫通孔が設けられ、中心に噴出口を有する空気流動拡散部材と、
を有する内燃機関である。
 また、この発明は、
 少なくとも一つの多流体気液噴出混合ノズルを有し、
 前記多流体気液噴出混合ノズルは、
 ノズル噴出口の中心に空気を噴出させるための中心部空気流動流路と、
 前記ノズル噴出口の中心に熱風を噴出させるための直進流動流路と、
 前記ノズル噴出口の中心に液体を噴出させるための複数の液体流動流路と、
 前記中心部空気流動流路の先端に取り付けられた、前記直進流動流路に対して90度をなす方向に外方に向かって貫通した複数の貫通孔が設けられ、中心に噴出口を有する空気流動拡散部材と、
を有する動力機器である。
 また、この発明は、
 ハウスに設置された少なくとも一つの多流体気液噴出混合ノズルを有し、
 前記多流体気液噴出混合ノズルは、
 ノズル噴出口の中心に空気を噴出させるための中心部空気流動流路と、
 前記ノズル噴出口の中心に熱風を噴出させるための直進流動流路と、
 前記ノズル噴出口の中心に液体を噴出させるための複数の液体流動流路と、
 前記中心部空気流動流路の先端に取り付けられた、前記直進流動流路に対して90度をなす方向に外方に向かって貫通した複数の貫通孔が設けられ、中心に噴出口を有する空気流動拡散部材と、
を有する環境浄化殺菌農園ハウスである。
 この発明によれば、エネルギー効率の大幅な向上、二酸化炭素および窒素酸化物の排出量の大幅な削減、燃料滓の大幅な削減等を図ることができる高性能の多流体気液噴出混合ノズルを得ることができ、この高性能の多流体気液噴出混合ノズルを用いることにより高性能バーナー、燃焼機器、ボイラー、内燃機関、動力機器および環境浄化殺菌農園ハウスを実現することができる。
この発明の第1の実施の形態による多流体気液混合噴出ノズルを示す正面図である。 この発明の第1の実施の形態による多流体気液混合噴出ノズルを示す底面図である。 この発明の第1の実施の形態による多流体気液混合噴出ノズルのノズル本体においてセラミックス赤熱環を取り外した状態を示す正面図である。 この発明の第1の実施の形態による多流体気液混合噴出ノズルのノズル本体においてセラミックス赤熱環を取り外した状態を示す平面図である。 この発明の第1の実施の形態による多流体気液混合噴出ノズルのノズル本体を構成する主要部品を分解して示す分解図である。 この発明の第1の実施の形態による多流体気液混合噴出ノズルの衝撃駒を示す平面図である。 この発明の第1の実施の形態による多流体気液混合噴出ノズルの衝撃駒を示す底面図である。 この発明の第1の実施の形態による多流体気液混合噴出ノズルのノズル本体を示す平面図である。 この発明の第1の実施の形態による多流体気液混合噴出ノズルのセラミックス赤熱環を示す正面図である。 この発明の第2の実施の形態による燃料油燃焼バーナーを示す平面図である。 この発明の第2の実施の形態による燃料油燃焼バーナーを示す右側面図である。 この発明の第2の実施の形態による燃料油燃焼バーナーを示す底面図である。 この発明の第2の実施の形態による燃料油燃焼バーナーを示す左側面図である。 この発明の第2の実施の形態による燃料油燃焼バーナーを示す前面図である。 この発明の第2の実施の形態による燃料油燃焼バーナーのコントロール系を含めた全体を示す略線図である。 この発明の第2の実施の形態による燃料油燃焼バーナーを底面から見たときの主要部を示す略線図である。 この発明の第2の実施の形態による燃料油燃焼バーナーにおいて外筒の内面に設けられる旋回流羽根を示す略線図である。 この発明の第2の実施の形態による燃料油燃焼バーナーの燃焼環を示す平面図である。 この発明の第2の実施の形態による燃料油燃焼バーナーの燃焼環を示す正面図である。 この発明の第3の実施の形態による粉末炭燃焼装置を示す底面図である。 この発明の第3の実施の形態による粉末炭燃焼装置を示す右側面図である。 この発明の第3の実施の形態による粉末炭燃焼装置を示す左側面図である。 この発明の第3の実施の形態による粉末炭燃焼装置を示す前面図である。 この発明の第3の実施の形態による粉末炭燃焼装置のコントロール系を含めた全体を示す略線図である。 この発明の第3の実施の形態による粉末炭燃焼装置の詳細構造を示す平面図である。 この発明の第3の実施の形態による粉末炭燃焼装置の詳細構造を示す右側面図である。 この発明の第3の実施の形態による粉末炭燃焼装置の詳細構造を示す左側面図である。 この発明の第3の実施の形態による粉末炭燃焼装置の詳細構造を示す前面図である。 この発明の第3の実施の形態による粉末炭燃焼装置の粉末炭供給装置の詳細構造を示す正面図である。 この発明の第3の実施の形態による粉末炭燃焼装置の粉末炭供給装置の詳細構造を示す断面図である。 この発明の第3の実施の形態による粉末炭燃焼装置の粉末炭供給装置の詳細構造を示す正面図である。 この発明の第3の実施の形態による粉末炭燃焼装置の粉末炭供給装置の詳細構造を示す断面図である。 この発明の第4の実施の形態によるボイラーを示す平面図である。 この発明の第4の実施の形態によるボイラーを示す正面図である。 この発明の第4の実施の形態によるボイラーを示す側面図である。 この発明の第4の実施の形態によるボイラーのコントロール系を含めた全体を示す略線図である。 この発明の第4の実施の形態によるボイラーの本体を示す平面図である。 この発明の第4の実施の形態によるボイラーの本体を示す正面図である。 この発明の第4の実施の形態によるボイラーの熱交換802を示す正面図である。 この発明の第4の実施の形態によるボイラーの熱交換803を示す正面図である。 この発明の第4の実施の形態によるボイラーの熱交換804を示す正面図である。 この発明の第5の実施の形態による多流体気液混合噴出ノズルを示す略線図である。 この発明の第5の実施の形態による多流体気液混合噴出ノズルの中心軸に垂直な方向から見た平面図である。 この発明の第6の実施の形態による内燃機関を示す断面図である。 この発明の第6の実施の形態による内燃機関を示す断面図である。 この発明の第6の実施の形態による内燃機関を示す断面図である。 この発明の第6の実施の形態による内燃機関を示す断面図である。 この発明の第6の実施の形態による内燃機関を示す断面図である。 この発明の第6の実施の形態による内燃機関を示す断面図である。 この発明の第7の実施の形態による内燃機関を示す断面図である。 この発明の第7の実施の形態による内燃機関を示す断面図である。 この発明の第7の実施の形態による内燃機関を示す断面図である。 この発明の第7の実施の形態による内燃機関を示す断面図である。 この発明の第7の実施の形態による内燃機関を示す断面図である。 この発明の第7の実施の形態による内燃機関を示す断面図である。 この発明の第7の実施の形態による内燃機関を示す断面図である。 この発明の第7の実施の形態による内燃機関を示す断面図である。 この発明の第7の実施の形態による内燃機関を示す断面図である。 この発明の第7の実施の形態による内燃機関を示す断面図である。 この発明の第8の実施の形態によるタービン機関を示す平面図である。 この発明の第8の実施の形態によるタービン機関の多流体気液混合噴出ノズルの先端部が蒸気導入路に挿入されている様子を示す断面図である。 この発明の第9の実施の形態による環境浄化殺菌農園ハウスを示す略線図である。
 以下、発明を実施するための形態(以下、「実施の形態」という。)について図面を参照しながら説明する。
〈第1の実施の形態〉
[多流体気液混合噴出ノズル]
 図1Aおよび図1Bは第1の実施の形態による多流体気液混合噴出ノズル100を示す正面図および底面図、図2Aおよび図2Bはこの多流体気液混合噴出ノズル100の、セラミックス赤熱環を取り外した状態のノズル本体を示す正面図および平面図(上面図)である。図3はこの多流体気液混合噴出ノズル100のノズル本体を構成する主要部品を分解して示す分解図である。この多流体気液混合噴出ノズルは、噴出口に向かい気・液の各流体がそれぞれに流路を形成し、筒の中に収められて流体機構を構成する多流体気液混合噴出ノズルである。
 図1Aおよび図1Bに示すように、この多流体気液混合噴出ノズル100においては、円筒112の内部にこの円筒112と同軸にノズル本体100Aが収容されている。円筒112の下端は、この円筒112の外径と等しい外径を有する円形の蓋113が取り付けられて塞がれている。蓋113の上面には、蓋113の外周より少し内側に、円筒112の内径とほぼ等しい外径を有するリング部113Aが設けられており、このリング部113Aが円筒112に圧入嵌合されている。円筒112の上端側には、上端から少し下の位置の円筒112の内部にこの円筒112の内径と等しい外径を有する円板114が取り付けられている。円板114の中心部には、この円板114と同じ高さ位置におけるノズル本体100Aの外径と等しい内径を有する円形の貫通孔が形成されており、この貫通孔をノズル本体100Aが貫通し位置決めされている。
 図1A、図2Aおよび図3に示すように、ノズル本体100Aは、円筒112の下端から上端に向かう方向に順に直径が大きくなる円筒部101、102、103、104、105を有する。これらの円筒部101~105は、例えば、順次圧入嵌合されることにより一体化されている。すなわち、例えば、円筒部101の根元部は円筒部102の根元部の内部に圧入嵌合され、円筒部102の根元部は円筒部103の根元部の内部に圧入嵌合され、円筒部103の根元部は円筒部104の根元部の内部に圧入嵌合され、円筒部104の根元部は円筒部105の根元部の内部に圧入嵌合されている。ノズル本体100Aの構成および形成方法、円筒部101~105の内部に後述の各流路を形成する方法等は特許文献1~3と類似する。
 円筒部101の側面には中央空気取り入れ口101Aが設けられ、この中央空気取り入れ口101Aから空気を取り入れることができるようになっている。この中央空気取り入れ口101Aから取り入れられた空気は、円筒部101と後述の直進熱風流通管111Bとの隙間からなる空気流動流路を通って後述の衝撃駒107に向かって噴出される。円筒部102の側面には燃料取り入れ口102Aが設けられ、この燃料取り入れ口102Aから燃料を取り入れることができるようになっている。燃料取り入れ口102Aから取り入れられた燃料は、円筒部101と円筒部102との間の隙間からなる燃料流動流路を通って後述の衝撃駒107に向かって噴出される。円筒部103の側面には水取り入れ口103Aが設けられ、この水取り入れ口103Aから水を取り入れることができるようになっている。水取り入れ口103Aから取り入れられた水は、円筒部102と円筒部103との間の隙間からなる水流動流路を通って後述の衝撃駒107に向かって噴出される。円筒部104の側面にはグリセリン取り入れ口104Aが設けられ、このグリセリン取り入れ口104Aからグリセリンを取り入れることができるようになっている。なお、グリセリンの代わりにグリセリン水溶液を用いてもよい。グリセリン取り入れ口104Aから取り入れられたグリセリンは、円筒部103と円筒部104との間の隙間からなるグリセリン流動流路を通って後述の衝撃駒107に向かって噴出される。円筒部105の下部の側面の互いに対向する部位には右側空気取り入れ口105Aおよび左側空気取り入れ口105Bが設けられ、これらの右側空気取り入れ口105Aおよび左側空気取り入れ口105Bからそれぞれ空気を取り入れることができるようになっている。右側空気取り入れ口105Aおよび左側空気取り入れ口105Bから取り入れられた空気は円筒部104と円筒部105との間の隙間からなる空気流動流路を通って上方に輸送され、後述のように最終的に外部に噴出されることでノズル本体100Aの中心軸を中心とする旋回流が形成される。中央空気取り入れ口101A、左側空気取り入れ口105B、水取り入れ口103A、グリセリン取り入れ口104A、右側空気取り入れ口105Aおよび燃料取り入れ口102Aはそれぞれ、ノズル本体100aの中心軸と平行に設けられた中央空気輸送管121、燃料輸送管122、左側空気輸送管122、水輸送管123、グリセリン輸送管124、右側空気輸送管125および燃料輸送管126と接続されている。これらの中央空気輸送管121、左側空気輸送管122、水輸送管123、グリセリン輸送管124、右側空気輸送管125および燃料輸送管126のそれぞれの下端部は蓋113に設けられた貫通孔を通り、蓋113の外部に取り付けられた継手131~136にそれぞれ接続されている。継手131~136にはそれぞれ輸送用のチューブ(図示せず)が接続される。図1Bに示すように、継手131~136は、蓋113の中心の周りにほぼ正六角形の頂点に位置している。中央空気輸送管121、左側空気輸送管122、水輸送管123、グリセリン輸送管124、右側空気輸送管125および燃料輸送管126のそれぞれの下端にはフランジ部が設けられており、このフランジ部が蓋113の上面にボルト(図示せず)で固定されている。円筒112とノズル本体100Aとの間の空間には、熱電対を保護管に収納した温度センサー115、116が設けられている。温度センサー115は、下部から円筒部105の上部の途中の高さまではノズル本体100Aの中心軸に平行に直線状に延び、そこから途中で円板114に設けられた位置決め用の貫通孔を通ってノズル本体100aの中心軸に向かって直線状に折れ曲がり、末端は後述の衝撃駒107の近傍に位置している。温度センサー116は、下部から後述のセラミック赤熱環109よりも高い高さまでノズル本体100Aの中心軸に平行に直線状に延び、途中で円板114に設けられた位置決め用の貫通孔を通っている。温度センサー115の下端からリード線141、142が取り出され、温度センサー116の下端からリード線143、144が取り出されている。
 円筒部101には熱源111が設けられている。図3に示すように、熱源111の上部には、ノズル本体100Aと同軸に形成された縦長のヒーター111Aおよびこのヒーター111Aを囲む、このヒーター111Aと同軸の円筒状の直進熱風流通管111Bが設けられている。この直進熱風流通管111Bの上端は後述の空気流通拡散駒106の途中の高さ位置にある。ヒーター111Aの上端はこの直進熱風流通管111Bの上端より少し低い位置にある。熱源111の下部には、熱風を形成するための空気を直進熱風流通管111Bに供給するための空気導入管(図示せず)およびヒーター111Aに接続された通電用のリード線145、146が収納されている。図3に示すように、この空気導入管の一端は空気取り入れ口111Cと接続されている。熱源111の下部は蓋113の中心に設けられた貫通孔を通り、固定具147により蓋113に固定されている。空気取り入れ口111Cには輸送用のチューブ(図示せず)が接続される。
 図3および図2Bに示すように、円筒部101の先端部101Bの外周には4本の溝が円周方向に等間隔に螺旋状に彫り込まれ、この円筒部101とこの円筒部101の先端部101Bが圧入嵌合された円筒部102との間の溝151が燃料流路となる。燃料はこの燃料流路を通ることで旋回流として噴出される。円筒部102の先端部102Bの外周には4本の溝が円周方向に等間隔に螺旋状に彫り込まれ、この円筒部102とこの円筒部102の先端部102Bが圧入嵌合された円筒部103との間の溝152が水流路となる。水はこの水流路を通ることで旋回流として噴出される。円筒部103の先端部103Bの外周には4本の溝が円周方向に等間隔に螺旋状に彫り込まれ、この円筒部103とこの円筒部103の先端部103Bが圧入嵌合された円筒部104との間の溝153がグリセリン流路となる。グリセリンはこのグリセリン流路を通ることで旋回流として噴出される。円筒部104の先端部104Bは先端に向かって直径が直線的に減少する勾配部(テーパー部)となっており、この勾配部の外周に合計12本の溝が円周方向に等間隔に螺旋状に彫り込まれている。円筒部104の勾配部と対向する部分の円筒部105はこの勾配部と平行に形成されており、この円筒部104の勾配部とこの勾配部が圧入嵌合された円筒部105との間の溝154を空気が下から上に通り抜けることで後述の衝撃駒107の下側にノズル本体100Aの中心軸の周りの旋回流が形成される。
 円筒部101の上端部の出口には筒状の空気流通拡散駒106が嵌め込まれている。空気流通拡散駒106は、中心軸方向に順次設けられた、肉厚が小さく形成された一定の内径を有する下部、下部に連なる内径が直線的に減少する第1中間部、第1中間部に連なる一定の内径を有する第2中間部、第2中間部に連なる内径が直線的に減少する第3中間部および第3中間部に連なる一定の内径を有する上部からなる。空気流通拡散駒106の外部の、第1中間部と第2中間部との境界部に対応する位置にはリング状の突起が設けられており、円筒部101の出口に空気流通拡散駒106を嵌めるときにこの突起が円筒部101の上端と接触することで円筒部101に対して空気流通拡散駒106が位置決めされている。空気流通拡散駒106の上部の貫通孔は噴出口106Aを構成する。空気流通拡散駒106の第2中間部には上下二段にノズル本体100Aの中心軸に垂直な方向に貫通孔からなる複数の流動流路が設けられている。図2Aにおいては、上段の流動流路のみ図示されている。空気流通拡散駒106の第2中間部の外側には上下二段に設けられた貫通孔からなる流動流路の間の部分にリング状の突起が設けられている。また、空気流通拡散駒106の外部の、第2中間部と第3中間部との境界部に対応する位置にはリング状の突起が設けられている。これらの突起の外径は互いに同一である。空気流通拡散駒106の外部にはこの空気流通拡散駒106と同軸にリング状の衝撃駒107が設けられている。衝撃駒107の平面図(上面図)および底面図を図4Aおよび図4Bに示す。図4Aおよび図4Bに示すように、衝撃駒107は、全体として、円錐軸上に円柱状の貫通孔を有する直円錐の頂部を底面に平行に切除した形状とほぼ同じ形状を有し、その円錐面には複数の螺旋状の溝107Aが円周方向に等間隔に設けられている。衝撃駒107の上面にはその貫通孔の円周の直ぐ外側にリング状の突起部107Bが設けられている。この突起部107Bは空気流通拡散駒106の上側の突起と同じ高さの位置にある。衝撃駒107はリング108を介して、は止め110により止められる構成となっている。衝撃駒107は、空気流通拡散駒106に対してその中心軸の周りに回転自在に構成されている。
 図2Bに、ノズル本体100aを上側から見たときの、円筒部101、102、103、104、105の形状および溝151~154の出口の形状および配置の一例を示す。ただし、図2Bにおいては空気流通拡散駒106および衝撃駒107の図示は噴出口106Aを除いて省略している。図2Bに示すように、円筒部101と円筒部102との間に十字の位置(90°間隔)に溝151の出口が設けられ、円筒部102と円筒部103との間に、溝151の出口とずれた十字の位置(90°間隔)に溝152の出口が設けられ、円筒部103と円筒部104との間に、溝152の出口とずれた十字の位置(90°間隔)に溝153の出口が設けられ、円筒部104と円筒部105との間に、溝153の出口とずれた位置に溝154の出口が設けられている。
 図5に示すように、円筒部105の先端部の外周には、全体として頂部が切除された円錐状の外形を有するセラミックス赤熱環109が嵌め込まれている。図6にセラミックス赤熱環109を示す。セラミックス赤熱環109は、下部のリング部109Aとこのリング部109Aと一体に形成されたフレーム部109Bとからなる。フレーム部109Bは、セラミックス赤熱環109を上側から見た場合に円錐面上を十字の方向に延びる四本の線状部、これらの四本の線状部の上部と接続されたリング部、これらの四本の線状部の根元に連なる四つの円弧部とからなり、これらの円弧部がリング部109Aの内面と一体となっている。フレーム部109Bのリング部の中心軸は噴出口106Aの中心軸と一致している。図示は省略するが、フレーム部109Bの露出した表面にセラミックスが焼き付けられている。
 この多流体気液混合噴出ノズル100を構成する各部品の材料は従来公知の一般的な材料、典型的にはステンレス鋼等を用いることができる。また、この多流体気液混合噴出ノズル100の各部のサイズは必要に応じて選ばれるが、一例を挙げると、ノズル本体100の最大径は2cm程度、長さは16cm程度である。
 図1Aに示すように、熱風を発生させるためのヒーター111Aに流す電流、熱風を形成するための空気の直進熱風流通管111Bへの送出、燃料の燃料流動流路への送出、グリセリンのグリセリン流動流路への送出、水の水流動流路への送出、中央空気の中央空気流動流路への送出、右側空気の右側空気流動流路への送出、左側空気の左側空気流動流路への送出等はマイクロコンピューターを用いたコントローラー160により制御される。
[多流体気液混合噴出ノズルの動作方法]
 まず、コントローラー160により中央空気コントロール部を制御してコンプレッサー(図示せず)を起動し中央空気取り入れ口101Aから空気を取り込み、円筒部101と熱風流通管111Bとの間の空隙の直進空気流動流路に空気を上方に向かって流した後、ヒーターコントロール部を制御してヒーター111Aに電流を流すことにより空気を加熱し、例えば650℃以上の熱風を発生させ、熱風流通管111Bの出口から噴出させる。
 熱風流通管111Bの出口から噴出した熱風は、二段に設けられた貫通孔からなる流動流路を有する空気流通拡散駒106の噴出口106Aに向かう中央直進流路と二段の流動流路に沿って円周上外周に向かう複数の流路とに別れ拡散噴出する。空気流通拡散駒106の噴出口106Aから噴出される熱風はセラミックス赤熱環109のセラミックスを赤熱させ、赤熱温度を検知する温度センサー115の温度検知によりコントローラー160が燃料噴射の指令を出し、燃料取り入れ口102Aから取り入れた燃料が燃料流動流路を流動して円筒部101の先端部101Aと円筒部102との間の溝151から噴射する。燃料の噴出先は着火温度の高温になっているので着火火炎となる。続いて中央空気取り入れ口101Aから中央空気を、右側空気取り入れ口105Aから右側空気を、左側空気取り入れ口105Bから左側空気をそれぞれ取り入れ、溝150の出口、溝155の出口から噴出する。溝155の出口から噴出する右側空気および左側空気は溝155を通ることで旋回流となって噴出する。セラミックス赤熱環109の近傍の火炎の大きさを温度センサー116により検知し、温度が例えば650℃程度になったら、コントローラー160が水の供給の指令を促し、円筒部103の水取り入れ口104Aから水を取り入れ、取り入れた水を円筒部102と円筒部103との間の水流動流路を流動し、円筒部102の先端部102Bと円筒部103との間の溝152から水が噴出する。こうして噴出された水は直進熱風流通管111Bからの熱風と円筒部105の先端部と円筒部104の先端の勾配部との間の溝154から出た空気により形成される旋回流の空気の渦に巻き込まれ、衝撃駒107がこの旋回流が当たって回転することで均一に混合され、これによって燃焼火炎の高温化が抑制され清廉な火炎が生成する。さらに、コントローラー160はグリセリンの噴出の指令を促し、円筒部104のグリセリン取り入れ口104Aからグリセリンを取り入れ、取り入れたグリセリンは円筒部103と円筒部102との間のグリセリン流動流路を流動して円筒部103の先端部103Bと円筒部104との間の溝153から噴出し、噴出されたグリセリンは旋回流動の火炎に巻き込まれることで火炎は拡大膨張する。温度センサー116の温度検知により化石燃料である燃料の噴出縮小をコントローラー160に促し、最適な燃焼火炎となるように円筒部102の燃料取り入れ口102Aからの化石燃料の量を制御する。各流体は燃焼火炎の正常化のためにコントローラー160により制御燃焼火炎温度(例えば860℃)をコントロールする。
 この第1の実施の形態によれば、化石燃料の消費量を最小限に抑制しながら最適な燃焼火炎を生成することができ、エネルギー効率の大幅な向上、二酸化炭素および窒素酸化物の排出量の大幅な削減、燃料滓の大幅な削減等を図ることができる高性能の多流体気液噴出混合ノズル100を実現することができる。
〈第2の実施の形態〉
[燃料油燃焼バーナー]
 図7A、図7B、図7C、図7Dおよび図7Eは第2の実施の形態による燃料油燃焼バーナー300を示す平面図、左側面図(図7Aに示す燃料油燃焼バーナー300を下側から見た図)、底面図、右側面図(図7Aに示す燃料油燃焼バーナー300を上側から見た図)および前面図(図7Cに示す燃料油燃焼バーナー300を右側から見た図)を示す。図8はコントロール系を含めた燃料油燃焼バーナー300の全体を示す略線図である。この燃料油燃焼バーナー300は、第1の実施の形態による多流体気液混合噴出ノズル100を中心に据え付け使用する、ボイラー等に使用される燃料油燃焼バーナーである。
 図7A、図7B、図7C、図7Dおよび図7Eに示すように、この燃料油燃焼バーナー300においては、多流体気液混合噴出ノズル100の外部に、この多流体気液混合噴出ノズル100の両端部を除く部分を囲むように円筒状の外筒301が設けられている。外筒301と多流体気液混合噴出ノズル100との間には十分に広い隙間が設けられている。外筒301の両側には直方体状のファン収納ボックス321、322が互いに対向して設けられている。ファン収納ボックス321、322の外側の面は開放されている。ファン収納ボックス321内には右側ファン307Aが、ファン収納ボックス321、322に対して垂直な外筒301の直径方向に関し一方の側にずれた位置に取り付けられ、ファン収納ボックス322内には左側ファン307Bが、ファン収納ボックス321、322に対して垂直な外筒301の上記直径方向に関し他方の側にずれた位置に取り付けられている。右側ファン307Aに対応する部分のファン収納ボックス321の背面には右側ファン307Aから送られる空気を通すための円形の貫通孔が右側ファン307Aの軸と同軸に形成され、この貫通孔に対応する部分の外筒301の側面には、外筒301の中心軸と垂直な方向か見たときに長方形の形状を有するこの貫通孔より大きい切欠きが設けられている。図9に示すように、この切欠きの外周にはファン収納ボックス321の背面に垂直な角管323がファン収納ボックス321の背面と接続されて設けられている。こうすることで、右側ファン307Aの運転時に、空気が漏れることなく、これらの貫通孔および切欠きを通して外筒301の内部に空気を送ることができる。同様に、左側ファン307Bに対応する部分のファン収納ボックス322には左側ファン307Bから送られる空気を通すための円形の貫通孔が左側ファン307Bの軸と同軸に形成され、この貫通孔に対応する部分の外筒301の側面には、外筒301の中心軸と垂直な方向から見たときに長方形の形状を有するこの貫通孔より大きい切欠きが設けられている。図9に示すように、この切欠きの外周にはファン収納ボックス322の背面に垂直な角管324がファン収納ボックス322の背面と接続されて設けられている。こうすることで、空気が漏れることなく、左側ファン307Bの運転時にこれらの貫通孔および切欠きを通して外筒301の内部に空気を送ることができる。上述のように右側ファン307Aおよび左側ファン307Bは、ファン収納ボックス321、322に対して垂直な外筒301の直径方向に関し互いに反対側の位置にずれて取り付けられていることにより、右側ファン307Aおよび左側ファン307Bの運転により、外筒301と多流体気液混合噴出ノズル100との間の隙間に互いに逆方向から空気を送ることができる。こうすることで、外筒301と多流体気液混合噴出ノズル100との間の隙間に旋回流を発生させることができる。図9に示すように、外筒301の内面には外筒301に近接する旋回流羽根305が円周方向に等間隔に4枚設けられている。図10に旋回流羽根305の形状を示す。このように旋回流羽根305が設けられていることにより、右側ファン307Aおよび左側ファン307Bの運転により、多流体気液混合噴出ノズル100の先端部に空気の旋回流を確実に発生させることができる。
 図7Cに示すように、ファン収納ボックス321、322の間にはU字状の断面形状のカバー331が設けられている。カバー331の中央部は外筒301の一端面に取り付けられている。カバー331には多流体気液混合噴出ノズル100を挟んで互いに対向して扇形の開口331A、331Bが設けられている。これらの開口331A、331Bの円弧は外筒301の内径とほぼ等しい。これらの開口331A、331Bは自然風を取り入れるためのものである。これらの開口331A、331Bから取り入れられた自然風は外筒301と多流体気液混合噴出ノズル100との間に隙間に入り、旋回流に取り込まれる。これらの開口331A、331Bの開口度は、図示省略したシャッターの調節により可変に構成されている。開口331A、331Bの円弧部の外側に開口度を示す目盛332が設けられており、この目盛332を用いて開口度を正確に設定することができる。
 カバー331の、多流体気液混合噴出ノズル100の中心軸に平行な一方の側面には、三つのL字金具341、342、343が、図示省略したボルトで等間隔に固定されている。そして、多流体気液混合噴出ノズル100の中心軸に垂直な部分のL字金具341、342、343の先端部の上にそれぞれ水ポンプ308、燃料ポンプ309およびグリセリンポンプ310が固定されている。水ポンプ308の入口には水を輸送するチューブ(図示せず、以下同様にチューブは図示せず)を接続するための継手308Aが設けられ、出口には水を輸送するチューブを接続するための継手308Bが設けられている。継手308Aに接続されたチューブは水タンクに接続され、継手308Bに接続されたチューブは多流体気液混合噴出ノズル100の水導入口の継手133に接続される。同様に、燃料ポンプ309の入口には燃料を輸送するチューブを接続するための継手309Aが設けられ、出口には燃料を輸送するチューブを接続するための継手309Bが設けられている。継手309Aに接続されたチューブは燃料タンクに接続され、継手309Bに接続されたチューブは多流体気液混合噴出ノズル100の燃料導入口の継手136に接続される。また、グリセリンポンプ310の入口にはグリセリンを輸送するチューブを接続するための継手310Aが設けられ、出口にはグリセリンを輸送するチューブを接続するための継手310Bが設けられている。継手310Aに接続されたチューブはグリセリンタンクに接続され、継手310Bに接続されたチューブは多流体気液混合噴出ノズル100のグリセリン導入口の継手134に接続される。
 外筒301の上部には、外筒301の外径とほぼ同一の内径を有する、上端が閉じた円筒状の燃焼環304が差し込まれている。燃焼環304の平面図および側面図を図11Aおよび図11Bに示す。図11Aおよび図11Bに示すように、燃焼環304の上面には紫外線発光セラミックス311が設けられている。この紫外線発光セラミックス311から発光する紫外線により高温水蒸気雰囲気の水分子のイオン化を行うことができる。この紫外線発光セラミックス311は二重の同心円と十字状に設けられた放射部とが交差した形状を有する。紫外線発光セラミックス311の下部の燃焼環304の上面には円形の開口(図示せず)が紫外線発光セラミックス311のパターンに沿って一列に複数設けられている。燃焼環304は外筒301に対して摺動可能になっており、バーナーの炎の様子を見ながら外筒301に対する位置を変えることができるようになっている。図7Aおよび図8においては燃焼環304の紫外線発光セラミックス311のみ図示されている。図7B、図7C、図7Dおよび図7Eにおいては燃焼環304の図示を省略している。
 外筒301には、外周部が部分的に切除された円形の取付板303が外筒301の中心軸に垂直に設けられている。取付板303は、この燃料油燃焼バーナー300を外部の機器等に取り付けるためのものである。
[燃料油燃焼バーナーの動作方法]
 多流体気液混合噴出ノズル100の動作は第1の実施の形態と同様であるが、この燃料油燃焼バーナー300では、燃焼に必要な空気を、外筒301と多流体気液混合噴出ノズル100との間の空間に右側ファン307Aおよび左側ファン307Bの運転により旋回流として発生させ、この旋回流を多流体気液混合噴出ノズル100の先端部に供給する。こうすることで、燃焼火炎の炎を直進流動ではなく旋回流動させることができる。風量等のコントロールは、空気、燃料、水、グリセリン等の他の流体と同様に、コントローラー350により最適な燃焼火炎を生成するように制御される。
 この第2の実施の形態によれば、高性能の多流体気液混合噴出ノズル100を用いていることにより高性能の燃料油燃焼バーナー300を実現することができる。
〈第3の実施の形態〉
[粉末炭燃焼装置]
 図12A、図12B、図12Cおよび図12Dは第3の実施の形態による粉末炭燃焼装置500を示す底面図、右側面図(図12Aに示す粉末炭燃焼装置500を上側から見た図)、左側面図(図12Aに示す粉末炭燃焼装置500を下側から見た図)および前面図(図12Aに示す粉末炭燃焼装置500を右側から見た図)を示す。図13はコントロール系を含めた粉末炭燃焼装置500の全体を示す略線図である。この粉末炭燃焼装置500は、第2の実施の形態による燃料油燃焼バーナー300を用いて粉末炭を燃焼させる粉末炭燃焼装置である。
 図12A、図12B、図12Cおよび図12Dに示すように、この粉末炭燃焼装置500においては、燃料油燃焼バーナー300に粉末炭供給装置550が取り付けられている。燃料油燃焼バーナー300は、カバー331の、多流体気液混合噴出ノズル100の中心軸に平行な一方の側面に設けられた平板344に取り付けられた三つのU字金具345、346、347にそれぞれ水ポンプ308、燃料ポンプ309およびグリセリンポンプ310が固定されていることが第2の実施の形態と異なる。
 図14Aは図12AにおいてU字金具345、346、347、水ポンプ308、燃料ポンプ309およびグリセリンポンプ310の図示を省略した図、図14Bは図14Aを上側から見た図、図14Cは図14Aを下側から見た図、図14Dは図14Aを右側から見た図である。図14A、図14B、図14Cおよび図14Dに示すように、粉末炭供給装置550は、燃料油燃焼バーナー300の前面のカバー331に取り付けられている。粉末炭供給装置550は、一面が開放された直方体状の右側タンク本体502および左側タンク本体503を有する。図15Aおよび図15Bは右側タンク本体502の詳細を示し、図15Aは正面図、図15Bは断面図である。図16Aおよび図16Bは左側タンク本体502の詳細を示し、図16Aは正面図、図16Bは断面図である。図15Aおよび図15Bに示すように、右側タンク本体502の中心軸上には漏斗状の回転タンク504が設けられている。この回転タンク504は、円錐部とこの円錐部の頂部に繋がった管状の軸部とからなる。この回転タンク504の円錐部の内面には複数の螺旋状羽根506が円周方向に規則的に設けられ、頂部には止まり羽根510が設けられている。この回転タンク504の軸部は右側タンク本体502の背面に設けられた円筒部を貫通している。螺旋状羽根506の中心部には細い軸508が設けられている。この軸508は回転タンク504の軸部の内部に通されている。この軸508には雄ねじが切られている。右側タンク本体502の末端における回転タンク504の軸部にはタンクギア512が取り付けられている。タンクギア512が回転することにより回転タンク504および螺旋状羽根506が回転する。このため、回転タンク504の円錐部に粉末炭を供給(典型的には円錐部の上から落下)すると、粉末炭は螺旋状羽根506により回転タンク504の軸部の内部に送られ、続いてこの軸部の内部にある軸508の雄ねじにより先端側に送られ、回転タンク504の軸部の先端から放出される。以上のことは、左側タンク本体503についても同様である。すなわち、図16Aおよび図16Bに示すように、左側タンク本体503の中心軸上には漏斗状の回転タンク505が設けられている。この回転タンク505は、円錐部とこの円錐部の頂部に繋がった管状の軸部とからなる。この回転タンク505の円錐部の内面には複数の螺旋状羽根507が円周方向に規則的に設けられ、頂部には止まり羽根511が設けられている。この回転タンク505の軸部は右側タンク本体503の背面に設けられた円筒部を貫通している。螺旋状羽根507の中心部には細い軸509が設けられている。この軸509は回転タンク505の軸部の内部に通されている。この軸509には雄ねじが切られている。左側タンク本体503の円筒部の末端における回転タンク505の軸部にはタンクギア513が取り付けられている。タンクギア513が回転することにより回転タンク505および螺旋状羽根507が回転する。このため、回転タンク505の円錐部に粉末炭を供給すると、粉末炭は螺旋状羽根507により回転タンク505の軸部の内部に送られ、続いてこの軸部の内部にある軸509の雄ねじにより先端側に送られ、回転タンク505の軸部の先端から放出される。回転タンク505の軸部は回転タンク504の軸部より長くなっている。
 図14A、図14B、図14Cおよび図14Dに示すように、回転タンク504の軸部および回転タンク505の軸部はそれぞれ右側ファン307Aの軸および左側ファン307Bの軸と同じ高さに設けられている。回転タンク504の軸部の先端部は外筒301に設けられた角管に設けられた貫通孔を通り、ほぼ外筒301の円周上に位置している。また、回転タンク505の軸部の先端部は外筒301に設けられた貫通孔を通り、外筒301と多流体気液混合噴出ノズル100との間の隙間に位置している。
 図14Aに示すように、回転タンク504の軸部に取り付けられたタンクギア512は軸541の一端に取り付けられたギア518と噛み合っている。軸541は右側ファン307Aの両側面に取り付けられた支持部材に取り付けられた軸受け516、522により支持されている。軸541の右側ファン307Aの軸に近い部分には傘歯車512が取り付けられている。この傘歯車512は、右側ファン307Aのモーターの軸の先端に取り付けられた傘歯車561と噛み合っている。これらの傘歯車512、561は右側ファン307Aのモーターの前面に固定されたケース562に収容されている。右側ファン307Aの回転により傘歯車561が回転し、それによって傘歯車512が回転することにより軸541が回転し、それによってギア518が回転し、さらにタンクギア512が回転することにより最終的に回転タンク504が回転するようになっている。同様に、回転タンク505の軸部に取り付けられたタンクギア513は軸542の一端に取り付けられたギア519と噛み合っている。軸541は左側ファン307Bの両側面に取り付けられた支持部材に取り付けられた軸受け517、523により支持されている。軸542の右側ファン307Bの軸に近い部分には傘歯車513が取り付けられている。この傘歯車513は、右側ファン307Bのモーターの軸の先端に取り付けられた傘歯車562と噛み合っている。これらの傘歯車513、562は左側ファン307Bのモーターの前面に固定されたケース563に収容されている。左側ファン307Bの回転により傘歯車562が回転し、それによって傘歯車513が回転することにより軸542が回転し、それによってギア519が回転し、タンクギア513が回転することにより最終的に回転タンク505が回転するようになっている。
 図13に示すように、この粉末炭燃焼装置500のコントロールは、マイクロコンピュータを用いたコントローラー580により行う。
[粉末炭燃焼装置の動作方法]
 燃料油燃焼バーナー300の動作は第2の実施の形態と同様であるが、この粉末炭燃焼装置500では、燃料油燃焼バーナー300の多流体気液混合噴出ノズル100の燃焼火炎に粉末炭を供給することにより燃焼させる。具体的には、燃焼に必要な空気を、外筒301と多流体気液混合噴出ノズル100との間の空間に右側ファン307Aおよび左側ファン307Bの運転により旋回流として発生させ、この旋回流を多流体気液混合噴出ノズル100の先端部に供給し、燃料油燃焼バーナー300の燃焼を開始する。右側ファン307Aおよび左側ファン307Bの運転と同期して、粉末炭を供給しながら回転タンク504、505を回転させ、回転タンク505の軸部の先端から粉末炭を放出し、燃焼火炎に供給し、燃焼させる。
 この第3の実施の形態によれば、高性能の多流体気液混合噴出ノズル100を用いていることにより高性能の粉末炭燃焼装置500を実現することができる。
〈第4の実施の形態〉
[ボイラー]
 図17A、図17Bおよび図17Cは第4の実施の形態によるボイラー800を示す平面図、部分的に破断した正面図および右側面図である。図18はコントロール系および付帯機器を含めたボイラー800の全体を示す略線図である。このボイラー800は、第2の実施の形態による燃料油燃焼バーナー300を用いたボイラーである。
 図17A、図17Bおよび図17Cに示すように、ボイラー800は、直方体状の本体801に水の過熱装置として熱交換器802~804、スパークプラグ807および高周波発振端子812を内蔵している。図19Aおよび図19Bにそれぞれ本体801の平面図および正面図、図19C、図19Dおよび図19Eにそれぞれ熱交換器802、803、804を示す。熱交換器802、803、804はそれぞれ低温水温部、中温水温部、高温水温部に対応する。本体801の外壁は二重構造となっており、この外壁を水が循環することができるようになっている。本体801の上部には燃料油燃焼バーナー300が設置されている。燃料油燃焼バーナー300は本体801の上面に設けられた貫通孔801Aに取り付けられており、多流体気液混合噴出ノズル100の先端部は下方に向いている。本体801には、ボイラー800に水を供給する供給管813、高温の水(湯)や水蒸気が取り出される取り出し管814、排気管815が設けられている。
 図18はボイラー800のコントロール系および付帯機器を含めた全体を示す。図18に示すように、燃料油燃焼バーナー300の水ポンプ308、燃料ポンプ309およびグリセリンポンプ310の入口の継手はそれぞれ水タンク809、燃料タンク810およびグリセリンタンク811と接続されている。多流体気液混合噴出ノズル100への中央空気、右側空気、左側空気および熱風形成用の空気はコンプレッサー526~528により送られる。高周波発振端子812は高周波発振機816と接続されている。
[ボイラーの動作方法]
 燃料油燃焼バーナー300により本体801の内部に燃焼火炎を発生させる。燃焼火炎は熱交換器802、803、804の全てと熱交換する。供給管813から供給される水は本体801の外壁を循環した後、熱交換器804内を巡回し、熱交換器805に流入し、、さらに熱交換器802を通って準備熱交換を行うことにより高温の水(湯)や水蒸気となり、取り出し管814から取り出される。本体801の燃焼室内は、例えば、多流体気液混合噴出ノズル100の稼働時において消費する燃料油の2倍以上の水を噴射することにより多量水微粒子雰囲気の燃焼火炎を生成する。
 この第4の実施の形態によれば、高性能の多流体気液混合噴出ノズル100を用いた高性能の燃料油燃焼バーナー300を用いていることにより高性能のボイラー800を実現することができる。
〈第5の実施の形態〉
[多流体気液混合噴出ノズル]
 図20は第4の実施の形態による多流体気液混合噴出ノズル1000のコントロール系も含めた全体を示す。図20中の多流体気液混合噴出ノズル1000は上方から先端部を見た状態である。図21は多流体気液混合噴出ノズル1000の側面図である。この多流体気液混合噴出ノズル1000の原理は第1実施の形態による多流体気液混合噴出ノズル100と基本的には同様であるが、多流体気液混合噴出ノズル100ではノズル本体100Aの底部から燃料、水、空気、グリセリンなどの流体を導入するのに対し、この多流体気液混合噴出ノズル1000は、燃料、水、空気、グリセリンの個別の流路(流体供給用ノズル)を備え、それらの流路から各流体を噴出口に流動させ、各流体を個別に噴出することが異なる。この多流体気液混合噴出ノズル1000は、例えば、内燃機関に適用して好適なものである。
 すなわち、図20および図21に示すように、この多流体気液混合噴出ノズル1000は、ノズル本体1010と、このノズル本体1010の側面に取り付けられた空気、燃料、水、グリセリンの各流体をノズル本体1010の内部にそれぞれ供給するための流体供給用ノズル1001、1002、1003、1004とを有する。ノズル本体1010は第1の実施の形態による多流体気液混合噴出ノズル100のノズル本体100Aに対応するものであるが、中央空気輸送管121、左側空気輸送管122、水輸送管123、グリセリン輸送管124、右側空気輸送管125および燃料輸送管126が設けられておらず、代わりに流体供給用ノズル1001、1002、1003、1004が設けられている。これらの流体供給用ノズル1001、1002、1003、1004にはそれぞれ電磁弁1001P、1002P、1003P、1004Pが設けられており、これらの電磁弁1001P、1002P、1003P、1004Pにより各流体の供給を制御することができるようになっている。流体供給用ノズル1001、1002、1003、1004の先端はノズル本体1010に設けられた空気取り入れ口、燃料取り入れ口、水取り入れ口およびグリセリン取り入れ口に接続されている。これらの空気取り入れ口、燃料取り入れ口、水取り入れ口およびグリセリン取り入れ口から取り入れられた空気、燃料、水、グリセリンがノズル本体1010の先端に至る流路はノズル本体100Aと同様である。ノズル本体1010の熱源1005はノズル本体100Aの熱源111と同様な構成を有する。ノズル本体100Aの先端にはセラミックス赤熱環109が設けられているのに対し、ノズル本体1010の先端にはセラミックス赤熱体1007が設けられている。セラミックス赤熱体1007はセラミックス赤熱環109と同様な役割を果たす。
 図20に示すように、この多流体気液混合噴出ノズル1000のコントロールは、マイクロコンピュータを用いたコントローラー1050により行う。
[多流体気液混合噴出ノズルの動作方法]
 この多流体気液混合噴出ノズル1000の動作方法は、燃料、水、空気、グリセリンの取り入れを流体供給用ノズル1001、1002、1003、1004を用いて行うことを除いて第1の実施の形態による多流体気液混合噴出ノズル100と同様である。
〈第6の実施の形態〉
[内燃機関]
 図22A~図22Fは第6の実施の形態による内燃機関1100の構造および動作を示す。この内燃機関は第5の実施の形態による多流体気液混合噴出ノズル1000を用いたものである。
 図22Aに示すように、内燃機関1100は、シリンダー1101、シリンダー1101の開放端に取り付けられた蓋1102、蓋1102の中心に取り付けられた、流体制御用の電磁弁付き多流体気液混合噴出ノズル1000、シリンダー1101の内部に設けられたピストン1103、このピストン1103に接続されたクランクシャフト1104およびクランクシャフト1104と接続されたクランク1105を有する。蓋1102には吸気弁1102Aおよび排気弁1102Bが設けられている。この内燃機関1100は、多流体気液混合噴出ノズル1000を用いていることを除いて基本的には一般的な内燃機関と同様である。
[内燃機関の動作方法]
 図22A~図22Fに従って内燃機関1100の動作方法を説明する。動作は、多流体気液混合噴出ノズル1000のマイクロコンピューターを用いたコントローラー1050により、以下のように吸入から排気までの4工程を実施する。
(1)多流体気液混合噴出ノズル1000のスイッチオンと同時に、熱風形成のために熱源1005のヒーターに空気を送るコンプレッサーをスイッチオンし、続いてヒーターのスイッチをオンとする。
(2)次に、図22Aに示すように、吸入工程ではシリンダー1101の吸入弁1102Aが少し開いて空気を極少量吸入し、多流体気液混合噴出ノズル1100の熱風ノズルから熱風を多量噴出し、ピストン1103の前方の空間に吹き込む。
(3)図22Bに示すように、圧縮工程では、熱風混合の空気を圧縮し、空気の高温化をさらに促進する。
(4)図22Cに示すように、燃焼膨張工程では、ピストン1103が上死点を過ぎた瞬時点で燃料噴射し点火、着火、膨張、一呼吸遅れて水噴射、膨張促進、水の膨張率効果によりピストン1103の作動力が倍増する。
(5)図22Dに示すように、二次噴射、水の膨張率効果、熱風噴射によりピストン1103は下死点となり、排気を行う(二次噴射を必要とするかマイクロコンピューターが判断し噴射しないサイクルもある) 。
(6)図22Eに示すように、内燃機関1100の冷却工程では、水蒸気気化熱効果で冷却する(捨てなければならない熱を作らない)。
(7)次サイクルのために熱風用コンプレッサーをスイッチオンする。
(8)図22Fに示すように、排気工程では、排気弁1102Bを開き、燃焼滓および残留水蒸気を排出する。
(9)以上の4工程が終わり過熱化しない内燃機関1100は(2)の吸入工程で吸入弁1102Aを半開きにして熱風をノズルから吹き込み次のサイクルが始まる。
 この第6の実施の形態によれば、高性能の多流体気液混合噴出ノズル1000を用いていることにより高性能の内燃機関1100を実現することができる。
〈第7の実施の形態〉
[内燃機関]
 図23A~図23Jは第7の実施の形態による内燃機関1200の構造および動作を示す。この内燃機関1200は第5の実施の形態による多流体気液混合噴出ノズル1000を二つ用いた内燃機関である。
 図23Aに示すように、内燃機関1200は、シリンダー1201、シリンダー1001の内部に設けられたピストン1202、このピストン1202に接続されたシャフト1203、シリンダー1201の両端に取り付けられた温度上昇制御器1204、1205、コントロールシリンダー1206およびシリンダー1001の側面に取り付けられた、流体制御用の電磁弁付き多流体気液混合噴出ノズル1000A、1000Bを有する。コントロールシリンダー1206に対応する部分のシリンダー1001の側面には二つの貫通孔1001A、1001Bが設けられている。温度上昇制御器1204、1205はシリンダー1001の過熱を防止するためのものである。温度上昇制御器1204、1205には必要に応じて水が流され、シリンダー1201の冷却を行うことができるようになっている。その場合、必要に応じて、温度上昇制御器1204、1205から排出される水を、多流体気液混合噴出ノズル1000A、1000B用の水に用いることができる。コントロールシリンダー1206は、シャフト1206Aとこのシャフト1206Aに取り付けられた二つのピストン1206B、1206Cとからなる。コントロールシリンダー1206には排出口1207が設けられている。
 内燃機関1200の動作時にはシリンダー1201は過熱するが、多流体気液混合噴出ノズル1000A、1000Bから噴出される水の水の気化熱で温度上昇は制御されるため、ピストン1202の作動に支障を来たさない。
[内燃機関の動作方法]
 図23A~図23Jに従って内燃機関1200の動作方法を説明する。動作は、多流体気液混合噴出ノズル1000のマイクロコンピューターを用いたコントローラー1050により、多流体気液混合噴出ノズル1000A、1000Bを交互に用いて以下のように吸入から排気までの4工程を実施する。
(1)まず、図23Aに示すように、コントロールシリンダー1206のピストン1206Cは貫通孔1201Aを塞ぎ、ピストン1206Bは貫通孔1201Bを塞がない状態において、多流体気液混合噴出ノズル1000Aをスイッチオンし、ノズル中央部から熱風を噴射し、ノズル先端の噴射口のセラミックス赤熱環109を赤熱し、ノズル先端部から空気および燃料を噴射して着火させ燃焼火炎を生成する。シリンダー1201の右側の壁とピストン1202との間の空間は高温水蒸気の圧力で膨張する。
(2)次に、図23Bに示すように、コントロールシリンダー1206のピストン1206Cは貫通孔1201Aを塞ぎ、ピストン1206Bは貫通孔1201Bを塞がない状態において、多流体気液混合噴出ノズル1000Aの先端部から空気および水を噴射し、膨張を促進する。
(3)次に、図23Cに示すように、コントロールシリンダー1206のピストン1206Cは貫通孔1201Aを塞ぎ、ピストン1206Bは貫通孔1201Bを塞がない状態において、多流体気液混合噴出ノズル1000Aの先端部から水を二次的に噴射し、燃焼火炎を増強する。
(4)次に、図23Dに示すように、コントロールシリンダー1206のピストン1206Cは貫通孔1201Aを塞ぎ、ピストン1206Bは貫通孔1201Bを塞いだ状態において、ピストン1202は下死点に到達する。この時点で多流体気液混合噴射ノズル1000Bをスイッチオンとする。
(5)次に、図23Eに示すように、コントロールシリンダー1206のピストン1206Cは貫通孔1201Aを塞がず、ピストン1206Bは貫通孔1201Bを塞いだ状態において、コントロールシリンダー1206の排出口1207から燃焼ガスの滓および残留水蒸気を排出する。この時点で多流体気液混合噴出ノズル100Aをスイッチオフとする。
(6)次に、図23Fに示すように、コントロールシリンダー1206のピストン1206Cは貫通孔1201Aを塞がず、ピストン1206Bは貫通孔1201Bを塞いだ状態において、多流体気液混合噴射ノズル1000Bのノズル先端噴射口から熱風を噴射、空気、燃料を噴射する。シリンダー1201の左側の壁とピストン1202との間の空間は高温水蒸気の圧力で膨張する。
(7)次に、図23Gに示すように、コントロールシリンダー1206のピストン1206Cは貫通孔1201Aを塞がず、ピストン1206Bは貫通孔1201Bを塞いだ状態において、多流体気液混合噴射ノズル1000Bの先端部から空気および水を噴射し、膨張を促進する。
(8)次に、図23Hに示すように、コントロールシリンダー1206のピストン1206Cは貫通孔1201Aを塞がず、ピストン1206Bは貫通孔1201Bを塞いだ状態において、多流体気液混合噴出ノズル1000Bの先端部から水を二次的に噴射し、燃焼火炎を増強する。
(9)次に、図23Iに示すように、コントロールシリンダー1206のピストン1206Cは貫通孔1201Aを塞がず、ピストン1206Bは貫通孔1201Bを塞いだ状態において、ピストン1202は上死点に到達する。この時点で多流体気液混合噴出ノズル1000Aをスイッチオン、多流体気液混合噴出ノズル1000Bをスイッチオフとする。
(10)次に、図24Jに示すように、コントロールシリンダー1206のピストン1206Cは貫通孔1201Aを塞がず、ピストン1206Bは貫通孔1201Bを塞がない状態において、コントロールシリンダー1206の排出口1207から燃焼ガスの滓および残留水蒸気を排出する。続いて次のサイクルが始まる。
 この第7の実施の形態によれば、高性能の多流体気液混合噴出ノズル1000を用いていることにより高性能の内燃機関1100を実現することができる。
〈第8の実施の形態〉
[タービン機関]
 図25は第8の実施の形態によるタービン機関1300を示す。このタービン機関1300は第5の実施の形態による多流体気液混合噴出ノズル1000を複数用いたものである。
 図24に示すように、タービン機関1300は、シャフト1301、シャフト1301と一体に設けられたドラム1302、ドラム1302の外部に設けられたタービン1303、タービン1303の外周に設けられた蒸気導入路1304および回転体1303の外周に設けられた四つの多流体気液混合噴出ノズル1000A、1000B、1000C、1000Dを有する。タービン1303はドラム1302に設けられたベアリングによりドラム1302に対して容易に回転することができるようになっている。多流体気液混合噴出ノズル1000A、1000B、1000C、1000Dは蒸気導入路1304にその先端部が挿入された状態で設けられている。図25に多流体気液混合噴出ノズル1000Aの先端部が蒸気導入路1304に挿通された状態を示す。これらの多流体気液混合噴出ノズル1000A、1000B、1000C、1000Dの中心軸は、シャフト1301の中心軸方向から見たときに蒸気導入路1304の接線方向と一致している。蒸気導入路1304には高温水蒸気含有燃焼火炎の逆流を防ぐための逆流防止部材1305が設けられている。図示は省略するが、タービン1303の内部には、従来公知のタービンと同様な、高温水蒸気含有燃焼火炎が当たる羽根が設けられている。
[タービン機関の動作方法]
 多流体気液混合噴出ノズル1000A、1000B、1000C、1000Dの先端部から高温水蒸気含有燃焼火炎を噴射し、蒸気導入路1304に導入された高温水蒸気含有燃焼火炎によりタービン1303の内部の羽根に圧力を加え、タービン1303をドラム1302に対して回転させる。
 この第8の実施の形態によれば、高性能の多流体気液混合噴出ノズル1000を用いていることにより高性能のタービン機関1300を実現することができる。加えて、このタービン機関1300では、多流体気液混合噴出ノズル1000により水蒸気を発生させることができるため、従来の蒸気シリンダーのように外部から蒸気を運び込むことが不要であり、その場で水蒸気をコントロールすることが可能である。
〈第9の実施の形態〉
[環境浄化殺菌農園ハウス]
 図26は第9の実施の形態による環境浄化殺菌農園ハウス1400を示す。この環境浄化殺菌農園ハウス1400は、第2の実施の形態による燃料油燃焼バーナー300を用いたものである。
 図26に示すように、この環境浄化殺菌農園ハウス1400においては、ハウス1403の屋根に燃料油燃焼バーナー300が2台、設置されている。燃料油燃焼バーナー300の多流体気液混合噴出ノズル100の先端部はハウス1403の屋根の直ぐ下に位置し、下方に向いている。燃料油燃焼バーナー300の燃料ポンプ、水ポンプ、グリセリンポンプの入口はそれぞれ燃料タンク1408、水タンク1409、グリセリンタンク1410に接続されている。多流体気液混合噴出ノズル100への中央空気、右側空気、左側空気および熱風形成用の空気はコンプレッサー1404~1407により送られる。ハウス1403の屋根には、燃料油燃焼バーナー300の横に、ハウス1403内にミネラル水を放出するノズル(図示せず)が設置されている。ミネラル水は必要に応じて使用される。ハウス1403にはオゾン発生器1411、プラズマ発生装置1412および紫外線発光装置1413が設けられ、ハウス1403内にそれぞれオゾン、プラズマおよび紫外線を発生させることができるようになっている。
 燃料油燃焼バーナー300に供給する各流体、温度、オゾン発生器1411、プラズマ発生装置1412、紫外線発光装置1413等のコントロールはマイクロコンピュータを用いたコントローラー1450により行われる。
[環境浄化殺菌農園ハウスの動作方法]
(1)多流体気液混合噴出ノズル100から噴射した熱風の温度を検知し、適温となった時点で燃料を噴射する。セラミック赤熱環109は赤熱し、空気の噴射に続き、水の噴射により、ハウス1403内は高温水蒸気の雰囲気になる。多流体気液混合噴出ノズル100から噴出される高温水蒸気含有燃焼火炎の様子を図26において矢印で示す。
(2)オゾン発生器1411を作動させハウス1403内にオゾンを生成することでハウス1403内の殺菌、消毒を開始する。
(3)多流体気液混合噴出ノズル100の噴出口の近傍は高温水蒸気雰囲気であり、そこにプラズマ発生装置1412の作動によりプラズマを発生させ、窒素肥料の生成を促す。
(4)紫外線不足を補うための燃料油燃焼バーナー300に備えられている紫外線発光セラミックス311と紫外線発光装置1413を使用し水と空気中の二酸化炭素とを化合させて炭水化物を合成し、植物の生育の支障を解決する。言い換えると、多流体気液混合噴射ノズル100を搭載の燃料油燃焼バーナー300から噴射し燃焼するガスは、グリセリン燃焼で生成する二酸化炭素と水噴霧による水蒸気は紫外線との条件が揃うことで炭水化物を合成し、ハウス1403内の植物の成長を促すことができる。
 この第9の実施の形態によれば、ハウス1403に高性能の燃料油燃焼バーナー300を設置していることにより、ハウス1403内の殺菌、消毒を行うことができるだけでなく、植物の成長を促す最適な環境の環境浄化殺菌農園ハウス1400を実現することができる。
 以上、この発明の実施の形態について具体的に説明したが、この発明は、上述の実施の形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施の形態において挙げた数値、構成、構造、形状、配置等はあくまでも例に過ぎず、必要に応じて、これらと異なる数値、構成、構造、形状、配置等を用いてもよい。
 例えば、必要に応じて、多流体気液噴出混合ノズル100から流体が噴出する位置を変えたり、熱風噴出の位置を変えたりすることができる。
 100 多流体気液噴出混合ノズル
 101~105 円筒部
 106 空気流通拡散駒
 107 衝撃駒
 109 セラミック赤熱環
 115、116 温度センサー
 300 燃料油燃焼バーナー
 301 外筒
 304 燃焼環
 305 旋回流羽根
 307A 右側ファン
 307B 左側ファン
 308 水ポンプ
 309 燃料ポンプ
 310 グリセリンポンプ
 311 紫外線発光セラミックス
 500 粉末炭燃焼装置
 502 右側タンク本体
 503 左側タンク本体
 504 回転タンク
 505 回転タンク
 550 粉末炭供給装置
 800 ボイラー
 802~804 熱交換機
 812 高周波発振端子
 807 スパークプラグ
 513 高周波発信機
 1000 多流体気液噴出混合ノズル
 1100、1200 内燃機関
 1300 タービン機関
 1400 環境浄化殺菌農園ハウス
 1403 ハウス

Claims (13)

  1.  ノズル噴出口の中心に空気を噴出させるための中心部空気流動流路と、
     前記ノズル噴出口の中心に熱風を噴出させるための直進流動流路と、
     前記ノズル噴出口の中心に液体を噴出させるための複数の液体流動流路と、
     前記中心部空気流動流路の先端に取り付けられた、前記直進流動流路に対して90度をなす方向に外方に向かって貫通した複数の貫通孔が設けられ、中心に噴出口を有する空気流動拡散部材と、
    を有する多流体気液噴出混合ノズル。
  2.  前記ノズル噴出口の中心にノズル中心軸に対して互いに反対の側方から空気を噴出させるための一対の空気流動流路をさらに有する請求項1記載の多流体気液噴出混合ノズル。
  3.  前記直進流動流路はノズル中心軸上に設けられ、前記中心部空気流動流路は前記直進流動流路の外側に設けられ、前記複数の液体流動流路は前記中心部空気流動流路の外側に設けられ、前記一対の空気流動流路は前記複数の液体流動流路の外側に設けられている請求項2記載の多流体気液噴出混合ノズル。
  4.  前記一対の空気流動流路の噴出口の近傍の部分はノズル中心軸の周りの旋回流を形成するための螺旋状の流路を有する請求項2記載の多流体気液噴出混合ノズル。
  5.  前記空気流動拡散部材に前記空気流動拡散部材と同軸に、かつ前記空気流動拡散部材に対して回転自在に設けられた衝撃部材をさらに有する請求項1記載の多流体気液噴出混合ノズル。
  6.  前記空気流動拡散部材の先端に取り付けられたセラミックス赤熱環をさらに有する請求項1記載の多流体気液噴出混合ノズル。
  7.  前記中心部空気流動流路に外部から空気を供給するための流体供給用ノズルと、前記複数の液体流動流路に外部からそれぞれ液体を供給するための流体供給用ノズルとをさらに有する請求項1記載の多流体気液噴出混合ノズル。
  8.  少なくとも一つの多流体気液噴出混合ノズルを有し、
     前記多流体気液噴出混合ノズルは、
     ノズル噴出口の中心に空気を噴出させるための中心部空気流動流路と、
     前記ノズル噴出口の中心に熱風を噴出させるための直進流動流路と、
     前記ノズル噴出口の中心に液体を噴出させるための複数の液体流動流路と、
     前記中心部空気流動流路の先端に取り付けられた、前記直進流動流路に対して90度をなす方向に外方に向かって貫通した複数の貫通孔が設けられ、中心に噴出口を有する空気流動拡散部材と、
    を有するバーナー。
  9.  少なくとも一つのバーナーを有し、
     前記バーナーは少なくとも一つの多流体気液噴出混合ノズルを有し、
     前記多流体気液噴出混合ノズルは、
     ノズル噴出口の中心に空気を噴出させるための中心部空気流動流路と、
     前記ノズル噴出口の中心に熱風を噴出させるための直進流動流路と、
     前記ノズル噴出口の中心に液体を噴出させるための複数の液体流動流路と、
     前記中心部空気流動流路の先端に取り付けられた、前記直進流動流路に対して90度をなす方向に外方に向かって貫通した複数の貫通孔が設けられ、中心に噴出口を有する空気流動拡散部材と、
    を有する燃焼機器。
  10.  少なくとも一つのバーナーを有し、
     前記バーナーは少なくとも一つの多流体気液噴出混合ノズルを有し、
     前記多流体気液噴出混合ノズルは、
     ノズル噴出口の中心に空気を噴出させるための中心部空気流動流路と、
     前記ノズル噴出口の中心に熱風を噴出させるための直進流動流路と、
     前記ノズル噴出口の中心に液体を噴出させるための複数の液体流動流路と、
     前記中心部空気流動流路の先端に取り付けられた、前記直進流動流路に対して90度をなす方向に外方に向かって貫通した複数の貫通孔が設けられ、中心に噴出口を有する空気流動拡散部材と、
    を有するボイラー。
  11.  シリンダーに取り付けられた少なくとも一つの多流体気液噴出混合ノズルを有し、
     前記多流体気液噴出混合ノズルは、
     ノズル噴出口の中心に空気を噴出させるための中心部空気流動流路と、
     前記ノズル噴出口の中心に熱風を噴出させるための直進流動流路と、
     前記ノズル噴出口の中心に液体を噴出させるための複数の液体流動流路と、
     前記中心部空気流動流路の先端に取り付けられた、前記直進流動流路に対して90度をなす方向に外方に向かって貫通した複数の貫通孔が設けられ、中心に噴出口を有する空気流動拡散部材と、
    を有する内燃機関。
  12.  少なくとも一つの多流体気液噴出混合ノズルを有し、
     前記多流体気液噴出混合ノズルは、
     ノズル噴出口の中心に空気を噴出させるための中心部空気流動流路と、
     前記ノズル噴出口の中心に熱風を噴出させるための直進流動流路と、
     前記ノズル噴出口の中心に液体を噴出させるための複数の液体流動流路と、
     前記中心部空気流動流路の先端に取り付けられた、前記直進流動流路に対して90度をなす方向に外方に向かって貫通した複数の貫通孔が設けられ、中心に噴出口を有する空気流動拡散部材と、
    を有する動力機器。
  13.  ハウスに設置された少なくとも一つの多流体気液噴出混合ノズルを有し、
     前記多流体気液噴出混合ノズルは、
     ノズル噴出口の中心に空気を噴出させるための中心部空気流動流路と、
     前記ノズル噴出口の中心に熱風を噴出させるための直進流動流路と、
     前記ノズル噴出口の中心に液体を噴出させるための複数の液体流動流路と、
     前記中心部空気流動流路の先端に取り付けられた、前記直進流動流路に対して90度をなす方向に外方に向かって貫通した複数の貫通孔が設けられ、中心に噴出口を有する空気流動拡散部材と、
    を有する農園ハウス。
PCT/JP2019/037241 2018-09-25 2019-09-24 多流体気液噴出混合ノズル、バーナー、燃焼機器、ボイラー、内燃機関、動力機器および環境浄化殺菌農園ハウス WO2020066999A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-193858 2018-09-25
JP2018193858 2018-09-25

Publications (1)

Publication Number Publication Date
WO2020066999A1 true WO2020066999A1 (ja) 2020-04-02

Family

ID=69952699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037241 WO2020066999A1 (ja) 2018-09-25 2019-09-24 多流体気液噴出混合ノズル、バーナー、燃焼機器、ボイラー、内燃機関、動力機器および環境浄化殺菌農園ハウス

Country Status (1)

Country Link
WO (1) WO2020066999A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4981434U (ja) * 1972-11-02 1974-07-15
JPS5938517A (ja) * 1982-08-28 1984-03-02 Miura Eng Internatl Kk 重油の燃焼方法
JPS60176320U (ja) * 1984-04-25 1985-11-22 トヨタ自動車株式会社 噴霧ノズル装置
JPS62198335U (ja) * 1986-06-02 1987-12-17
JPS62198327U (ja) * 1986-06-02 1987-12-17
JPH02293510A (ja) * 1989-04-20 1990-12-04 Asea Brown Boveri Ag バーナ装置
JP2003047892A (ja) * 2001-08-01 2003-02-18 National Aerospace Laboratory Of Japan 壁面衝突式液体微粒化ノズル
JP2011038722A (ja) * 2009-08-12 2011-02-24 Climax-Japan:Kk 燃料噴射ノズル
JP2011092889A (ja) * 2009-10-30 2011-05-12 Lead Kogyo Kk 気液混合ノズル、およびこの気液混合ノズルを用いたエマルジョン燃料燃焼システムならびに環境浄化液体噴霧システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4981434U (ja) * 1972-11-02 1974-07-15
JPS5938517A (ja) * 1982-08-28 1984-03-02 Miura Eng Internatl Kk 重油の燃焼方法
JPS60176320U (ja) * 1984-04-25 1985-11-22 トヨタ自動車株式会社 噴霧ノズル装置
JPS62198335U (ja) * 1986-06-02 1987-12-17
JPS62198327U (ja) * 1986-06-02 1987-12-17
JPH02293510A (ja) * 1989-04-20 1990-12-04 Asea Brown Boveri Ag バーナ装置
JP2003047892A (ja) * 2001-08-01 2003-02-18 National Aerospace Laboratory Of Japan 壁面衝突式液体微粒化ノズル
JP2011038722A (ja) * 2009-08-12 2011-02-24 Climax-Japan:Kk 燃料噴射ノズル
JP2011092889A (ja) * 2009-10-30 2011-05-12 Lead Kogyo Kk 気液混合ノズル、およびこの気液混合ノズルを用いたエマルジョン燃料燃焼システムならびに環境浄化液体噴霧システム

Similar Documents

Publication Publication Date Title
CN101206029B (zh) 一种微型燃气轮机燃烧室喷嘴
CN101435585B (zh) 一种燃气轮机组合式燃油蒸发雾化燃烧装置
CN106461219B (zh) 燃烧装置的燃烧器布置
JP2010159957A (ja) タービンエンジンにおける燃料噴射方法及び装置
CN107084390B (zh) 一种清洁的气液双燃料双旋流燃烧器
HUT65222A (en) Burner preferably oil or combined oil and gas fuelled one
EA012937B1 (ru) Способ сжигания низкокалорийного горючего газа, горелка и установка
US4364725A (en) Blue-flame oil burner
CN108779918A (zh) 用于产生能量、特别是电能的涡轮机、尤其是包括蓄热器的具有热力学循环的涡轮机的燃烧室
KR101019516B1 (ko) 액체연료용 저녹스 고효율 버너노즐 및 이를 이용한 연소장치
WO2020066999A1 (ja) 多流体気液噴出混合ノズル、バーナー、燃焼機器、ボイラー、内燃機関、動力機器および環境浄化殺菌農園ハウス
WO2016160037A1 (en) Fuel combustion system
RU2456510C1 (ru) Камера сгорания непрерывного действия
KR20190044599A (ko) 혼소용 버너 장치
CN103047646B (zh) 一种液态醇基燃料汽化燃烧器
JP2002038970A (ja) ガスタービン燃焼器
JP7311388B2 (ja) ガスタービンの燃焼室、ガスタービン及びガスタービンの運転方法
JP2001280604A (ja) 混焼バーナおよびそれを用いた排ガス処理装置
CN109322750B (zh) 微型气液两用高能点火器
CA2288420C (en) Gas incinerator
CN206958924U (zh) 一种蒸汽锅炉装置用低氧化氮油气联合燃烧器
RU2270402C1 (ru) Устройство для сжигания топлива
RU2798653C1 (ru) Горелочное устройство
CN217604077U (zh) 一种可降低火焰温度的甲醇高温裂解制氢低氮燃烧器
RU38218U1 (ru) Устройство для подготовки и подачи топливовоздушной смеси в камеру сгорания

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19866505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: JP