WO2020066971A1 - Charge confirmation device, power receiving device, and wireless power feeding system - Google Patents

Charge confirmation device, power receiving device, and wireless power feeding system Download PDF

Info

Publication number
WO2020066971A1
WO2020066971A1 PCT/JP2019/037183 JP2019037183W WO2020066971A1 WO 2020066971 A1 WO2020066971 A1 WO 2020066971A1 JP 2019037183 W JP2019037183 W JP 2019037183W WO 2020066971 A1 WO2020066971 A1 WO 2020066971A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
unit
power supply
power
power receiving
Prior art date
Application number
PCT/JP2019/037183
Other languages
French (fr)
Japanese (ja)
Inventor
一仁 渡邉
晃一 島崎
理寛 ▲高▼安
貴文 菰田
陽治 田崎
智 彦根
亘紀 内田
篤 市之瀬
Original Assignee
双葉電子工業株式会社
日油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 双葉電子工業株式会社, 日油株式会社 filed Critical 双葉電子工業株式会社
Priority to JP2020549191A priority Critical patent/JP6975345B2/en
Publication of WO2020066971A1 publication Critical patent/WO2020066971A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a charging confirmation device that is a device on the power supply side, a power receiving device that receives wireless power supply to charge a power storage unit, and a wireless power supply system including the charging confirmation device and a plurality of power receiving devices.
  • Patent Literature 1 discloses a technology related to a power transmitting device and a power receiving device in a system that performs wireless power feeding. In particular, it describes that the power receiving device transmits a completion notification in response to the completion of charging.
  • the wireless power supply device ends the wireless power supply in response to detecting the completion of charging in each power receiving device.
  • the charging completion timing on each power receiving device side is undefined, it is necessary for the power feeding device to receive a notification of the charging completion from each power receiving device. Therefore, an inquiry is made from the power supply device, and the power receiving device notifies the completion of the charging in response to the inquiry.
  • the timing of completion of charging in the power receiving device is uncertain, it is difficult to make an inquiry from the power feeding device, and the power feeding operation may be continued uselessly.
  • the receiving device that is being charged or has completed charging must wastefully consume power to perform a reception process in order to receive an inquiry from the power supply device. In some cases, the power was used up and the original operation became impossible.
  • a charging confirmation device includes a communication unit that performs wireless communication with a plurality of power receiving devices that charge a power storage unit in response to wireless power supply, and a control unit.
  • the control unit transmits a charging operation setting signal to the plurality of power receiving devices from the communication unit during wireless power supply, and waits for reception without performing inquiry transmission to the power receiving device. And confirming whether or not a charging completion signal has been received from the device. That is, in this case, after transmitting the charging operation setting signal to each power receiving device, the charging confirmation device waits for a charging completion signal from each power receiving device without performing any transmission.
  • the charging operation setting signal may include time information for specifying a sleep time in the power receiving device.
  • the sleep time to be performed during charging is designated from the charging confirmation device side.
  • the charging operation setting signal includes count information specifying the number of repetitions of sleep and charging completion confirmation in the power receiving device.
  • the number of times to repeat the sleep during charging and the charging completion confirmation after wake-up is designated from the charging confirmation device side.
  • the power receiving device includes a power supply unit that charges a power storage unit mounted as an operation power supply in response to wireless power supply, a communication unit that performs wireless communication with an external charging confirmation device, and a control unit.
  • the control unit shifts to a sleep state after receiving a charging operation setting signal received by the communication unit, wakes up after a predetermined time has elapsed, performs a process of confirming charging completion of the power storage unit, and completes charging. If so, processing for transmitting a charge completion signal from the communication unit to the charge confirmation device is performed. That is, the power receiving device voluntarily checks the completion of charging when waking up from the sleep state, and transmits a charging completion signal when it is determined that charging is completed.
  • the charging operation setting signal includes time information specifying a sleep time, and the control unit shifts to a sleep state, and then wakes up after a predetermined time specified by the time information has elapsed. It is conceivable to perform a process of confirming the completion of charging of the power storage unit.
  • the power receiving device sleeps during charging for the time indicated by the time information included in the charging operation setting signal, and concentrates the received power on charging.
  • the charging operation setting signal includes count information specifying the number of repetitions of sleep and charging completion confirmation in the power receiving device, and the control unit shifts to a sleep state and wakes up to complete charging of the power storage unit. It is conceivable that the confirmation process is repeatedly performed the number of times indicated by the number-of-times information.
  • the power receiving apparatus repeats sleep during charging and confirmation of completion of charging after waking up (transmission of a charging completion signal as necessary) the number of times indicated by the number of times information included in the charging operation setting signal. .
  • the control unit may wait for a set delay time, transmit a response signal, and shift to a sleep state.
  • Each power receiving device has its own delay time set, and after a lapse of the delay time from the reception timing of the charging operation setting signal, transmits a response and shifts to sleep.
  • a wireless power supply system is a system including the above-described charging confirmation device and a plurality of the above-described power receiving devices.
  • the power receiving device is provided in the detonating device, and the power storage unit is used as a power source for the detonating operation.
  • the charging confirmation device does not perform the charging completion inquiry communication during the charging. For this reason, the power receiving device side does not need to perform the process of receiving the inquiry about the completion of charging, so that unnecessary power consumption does not occur. Therefore, charging can be performed efficiently, and power consumption due to reception processing after charging is completed is also eliminated.
  • the charging confirmation device only needs to wait for a charging completion signal from each power receiving device. Receiving the charging completion signal can properly confirm the charging completion of each power receiving device.
  • FIG. 1 is an explanatory diagram of a wireless power supply system according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a parent device and a child device according to the embodiment.
  • FIG. 7 is an explanatory diagram of communication between a master unit and a slave unit in a comparative example.
  • FIG. 4 is an explanatory diagram of communication and operation between a master unit and a slave unit according to the embodiment; It is a flowchart of the pre-processing of the parent device and the child device of the embodiment. It is a flowchart of the charging process of the parent device and the child device of the embodiment.
  • FIG. 1 shows a master unit MD and slave units SD (SD1 to SD9) constituting the wireless power supply system.
  • the master unit MD is arranged apart from a number of slave units SD.
  • the master unit MD has a configuration as a power supply device, and the slave unit SD is a power receiving device that receives wireless power supply and charges a built-in power storage unit (for example, a secondary battery or a capacitor).
  • a built-in power storage unit for example, a secondary battery or a capacitor
  • This wireless power supply system performs wireless power supply from a master unit MD to each slave unit SD.
  • Each slave unit SD charges the built-in power storage unit using the supplied power.
  • wireless communication is performed between the master unit MD and each slave unit SD for setting a charging operation and confirming charging completion.
  • the number of slave units SD is nine, that is, the slave units SD1 to SD9.
  • the present system assumes that there are two or more slave units SD. Is assumed to be 100 to 200 or more.
  • a unique child device address (hereinafter simply referred to as “address”) is set for each of the child devices SD1 to SD9.
  • (001) to (009) are shown for the slave units SD1 to SD9, respectively, which are used as addresses.
  • the address of the slave unit SD1 is (001)
  • the address of the slave unit SD2 is (002).
  • FIG. 2 shows a configuration of the master unit MD and the slave unit SD.
  • the master unit MD of the configuration example in FIG. 2 is a device having a function of executing power supply of the wireless power supply system and a function as a charging confirmation device described in claims, that is, a function of confirming charging of the slave unit SD.
  • the master unit MD includes a charging confirmation device 1 and a power supply device 2.
  • the power supply device 2 performs wireless power supply to the slave unit SD.
  • the wireless power supply there are known an electromagnetic induction method using electromagnetic induction, an electromagnetic field resonance method using an electromagnetic resonance phenomenon, and a radio wave method in which electric power is converted into electromagnetic waves and transmitted and received via an antenna.
  • the power supply method itself is not limited. That is, the power supply device 2 may be any device unit that performs wireless power supply in any system.
  • the charging confirmation device 1 in the parent machine MD includes a parent machine control unit 10 and a communication unit 11.
  • the communication unit 11 performs wireless communication with a plurality of slave units SD each serving as a power receiving device for wireless power feeding from the power feeding device 2.
  • the base unit control unit 10 is configured by a microcomputer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like.
  • the master unit control unit 10 performs communication processing with the slave unit SD via the communication unit 11 and controls the power supply device 2. That is, the base unit control unit 10 controls the start of power supply by the power supply device 2, and after starting the power supply, confirms the completion of charging on the side of the child device SD by wireless communication with the child device SD.
  • control is performed to terminate the power supply to the power supply device 2.
  • the communication unit 11 performs a reception process of receiving uplink communication from the communication unit 21 of the slave unit SD described later. Transmission (downlink communication) of various signals from the master unit MD to the slave unit SD is performed by modulating a power supply signal from the power supply device 2. Note that the master unit MD may perform signal transmission (downlink communication) to the slave unit SD using a carrier different from the power supply signal.
  • the slave unit SD is a power receiving device that receives the wireless power supply and charges the power storage units (31, 32).
  • the slave unit SD includes a slave unit control unit 20, a communication unit 21, a power supply unit 22, and a function unit 24.
  • the power supply unit 22 includes a power receiving unit 30, a first power storage unit 31, a second power storage unit 32, and a switch 33 that receive wireless power supply from the power supply device 2 and convert the power into electric energy.
  • the power supply unit 22 uses the first power storage unit 31 and the second power storage unit 32 as power supplies and outputs operating voltages V1, V2,... Required for each unit.
  • the first power storage unit 31 is mainly used as an operation power supply of the slave unit control unit 20 and the communication unit 21, and the second power supply unit 32 is mainly used as an operation power supply of the function unit 24.
  • the first power storage unit 31 and the second power storage unit 32 are configured by a secondary battery or a capacitor, and are charged by receiving the current obtained by the power receiving unit 30.
  • the switch 33 When the switch 33 is off, the charging current obtained by the power receiving unit 30 is supplied to the first power storage unit 31, and the first power storage unit 31 is charged.
  • switch 33 When switch 33 is turned on, the charging current obtained by power reception unit 30 is supplied to first power storage unit 31 and second power storage unit 32, and first power storage unit 31 and second power storage unit 32 are charged.
  • the configuration example is merely an example, and for example, the switch 33 may be a switch that allows the first power storage unit 31 and the second power storage unit 32 to be selectively charged. Further, only one power storage unit may be provided. Further, for example, a plurality of secondary batteries and capacitors may be connected in parallel or in series at a common terminal to form one power storage unit.
  • the communication unit 21 performs wireless communication with the communication unit 11 on the master device MD side. That is, the communication unit 21 modulates and transmits a signal to be notified to the master unit MD.
  • the communication unit 21 (or the power receiving unit 30) is provided with a demodulation circuit that demodulates the modulated power supply signal, and the demodulated signal, that is, the signal transmitted from the master unit MD is transmitted to the slave unit control unit 20. Supplied.
  • the slave unit control unit 20 is configured by a microcomputer including a CPU, a RAM, a ROM, and the like, for example.
  • the slave unit control unit 20 performs communication processing with the master unit MD via the communication unit 21 and controls the entire operation of the slave unit SD. That is, the slave unit control unit 20 controls the operation of the power supply unit 22 and the function unit 24, and checks the charging status of the power supply unit 22 during wireless power supply.
  • the function unit 24 indicates a part that executes an operation function as the slave unit SD.
  • the slave unit SD There are various possibilities for what kind of device the slave unit SD is actually.
  • a light emitting device, a sound emitting device, a display device, various motor driving devices, a control device, a switch device, a detecting device, a signal amplifying device, an arithmetic device, a trigger generating device, a starting device, and other electric control and operation are possible. Any device is envisioned.
  • the function unit 24 is a part that executes functions necessary for these various devices. In the present embodiment, for example, a case is described in which this wireless power supply system is applied to a detonation system.
  • the slave unit SD is mounted on a dynamite primer or the like
  • the functional unit 24 is a detonating unit of the primer. And it is detonated by the control by communication from the base unit.
  • the power storage unit 22 supplies power necessary for the operation of the detonating unit as the function unit 24.
  • the second power storage unit 32 is a power source for operating the detonating unit. In such a detonation system, by controlling the detonation and various other settings, and by charging the battery wirelessly, it has improved the safety of workers, streamlined work, and simplified the installation of detonators. Is done.
  • FIG. 3 shows, in chronological order, an example of communication normally assumed between the master unit MD and a number of slave units SD when performing wireless power supply.
  • master device MD starts wireless power supply by power supply device 2 and transmits power supply start notification signal CHGS to all slave devices SD.
  • Each slave unit SD that has received the power supply start notification signal CHGS starts charging with the power supply unit 22 and transmits a confirmation signal RS to the master unit MD.
  • the master MD can recognize that charging has started in all the slaves SD.
  • the timing of completion of charging is completely uncertain due to a difference in distance between each slave unit SD and the master unit MD, a state of the power storage unit, an error in charging efficiency, and the like.
  • the charging completion timings of the slave units SD1, SD2, and SD9 are defined as time points te1, te2, and te9, respectively.
  • the charging completion confirmation signal CHGE is sent to each slave unit SD, for example, when a predetermined time TW has elapsed after transmitting the power supply start notification signal CHGS. Send.
  • the charging completion confirmation signal CHGE is a signal having a meaning as an inquiry as to whether or not charging is completed.
  • the slave unit SD that has been charged transmits a charge completion signal FINC to the master unit MD in response to the charge completion confirmation signal CHGE.
  • the charging completion confirmation signal CHGE when the charging completion confirmation signal CHGE is transmitted, the slave units SD1 and SD2 have already completed charging, and each of them transmits the charging completion signal FINC as a response.
  • the child device SD9 has not yet completed charging, and has not transmitted the charging completion signal FINC (a signal indicating charging incompletion may be transmitted).
  • the master unit MD Upon confirming the charge completion signal FINC from all the slaves SD, the master unit MD determines that the charging is completed and stops the power supply operation of the power supply device 2. On the other hand, if there is a slave unit SD that has not yet sent the charge completion signal FINC as shown in the figure, it waits for a certain period of time (constant time TW), and then transmits the charge completion confirmation signal CHGE again to make an inquiry. I do.
  • TW constant time
  • the figure shows a state where the charging completion signal FINC has been transmitted from all the slaves SD in response to the charging completion confirmation signal transmitted again.
  • the master unit MD can confirm the completion of charging of all the slave units SD, but in this case, it is difficult to set the transmission timing of the charging completion confirmation signal CHGE.
  • the set time TW is not always an appropriate time since the time until the completion of charging of each slave unit SD greatly changes depending on the installation location, the installation environment, the distance from the master unit MD, and the like.
  • the fixed time TW is a time during which charging of all the slaves SD can be sufficiently completed. However, if the fixed time TW is too long, a useless power supply time occurs. For example, in the case of FIG.
  • the power supply device 2 starts wireless power supply and transmits a charging operation setting signal CAR to all the child devices SD.
  • the charging operation setting signal CAR includes time information T (T seconds) indicating a sleep time and count information n (n times: for example, three times) that specifies the number of repetitions of sleep and charging completion confirmation.
  • the number-of-times information n can be set to 1 or more. If the number of seconds of the time information T can be selected within an appropriate time range according to the capacity and charging time of the first power storage unit 31 and the second power storage unit 32 of the slave unit SD, the type and number of power storage units, and the like. Good.
  • each slave unit SD charging is started by the power supply unit 22 when the power supply device 2 starts wireless power supply.
  • Each slave device SD that has received the charging operation setting signal CAR acquires the setting specified by the charging operation setting signal CAR with the start of charging by the power supply unit 22.
  • a response signal ACK is transmitted to master device MD.
  • Each slave unit SD adds its own address ((001) (002), etc.) to the response signal ACK, and the master unit MD that has received it recognizes which slave unit SD is the response signal ACK from. it can.
  • the response signal ACK is shown with addresses such as “ACK001” and “ACK002”.
  • each slave unit SD transmits the response signal ACK with a standby time corresponding to its own address value from the reception timing, for example. By doing so, the transmission timing from each slave unit SD is shifted, and no interference occurs.
  • the figure shows that slave units SD1, SD2,..., SD9 transmit a response signal ACK after waiting for a standby time corresponding to the address value.
  • the slave unit SD1 is (1 ⁇ Td) time corresponding to the address (001)
  • the slave unit SD2 is (2 ⁇ Td) time corresponding to the address (002), and so on.
  • “Td” is a constant for setting the standby time.
  • the slave unit control unit 20 of each slave unit SD immediately shifts to the sleep state after transmitting the response signal ACK.
  • the sleep time is T seconds
  • the T seconds is a time value specified as the sleep time information T in the charging operation setting signal CAR. Therefore, the slave unit control unit 20 of the slave unit SD1 enters a sleep state for T seconds immediately after the transmission of the response signal ACK001.
  • the slave unit control unit 20 of the slave unit SD2 enters a sleep state for T seconds immediately after the transmission of the response signal ACK002.
  • the slave unit control unit 20 of the slave unit SD9 enters a sleep state for T seconds immediately after the transmission of the response signal ACK009. In the drawing, the sleep state is indicated by a broken line. Since the transmission timing of the response signals ACK001... ACK009 is shifted, the transition timing to the sleep is also shifted in each slave unit SD.
  • the charging after the charging operation setting signal CAR is performed for both the first power storage unit 31 and the second power storage unit 32 when the switch 33 is turned on. As described later, first, the switch 33 is turned off for preprocessing, and only the first power storage unit 31 is charged. Then, the charging of the first power storage unit 31 enables the operation of the slave unit control unit 20 and the communication unit 21, and pre-processing of charging is performed.
  • the charging in FIG. 4 is started at a later point in time, and in FIG. 4, the second power storage unit 32 is also charged for the detonation operation. Then, while the slave unit control unit 20 is sleeping, the communication operation of the slave unit control unit 20 and the communication unit 21 is not particularly performed, so that the charging is continued with only the minimum consumption of the sleep power. .
  • the slave unit control unit 20 of each slave unit SD wakes up after the elapse of T seconds and checks whether the charging of the first power storage unit 31 and the second power storage unit 32 is completed.
  • the slave unit control unit 20 transmits a charge completion signal FINC if the charging is completed.
  • the confirmation of the completion of charging may be performed only on the second power storage unit 32.
  • FIG. 4 shows a state in which the charging of the slave unit SD1 is completed at the time point te10, and the charging completion signal FINC001 is transmitted when T seconds have elapsed after the start of the first sleep. After transmitting the charging completion signal FINC001, the child device control unit 20 of the child device SD shifts to sleep again. By shifting to sleep even after charging is completed, power consumption can be avoided as much as possible.
  • the charging of the slave units SD2 and SD9 is not completed, and at the time of the first wake-up, the slave unit does not transmit the charging completion signal FINC and sleeps again.
  • the charging of the slave unit SD2 is completed at the time point te20, and the charging of the slave unit SD9 is completed at the time point te90.
  • each slave unit SD wakes up again after the elapse of T seconds to confirm charging completion.
  • the slave SD1 transmits the charge completion signal FINC001
  • the slave SD2 transmits the charge completion signal FINC002.
  • the slave unit SD9 has not completed charging and does not transmit the charge completion signal FINC. Then, the slave unit control unit 20 of each slave unit SD shifts to sleep again.
  • the slave unit SD1 it is not always necessary for the slave unit SD1 to send the charging completion signal FINC001 again.
  • a cordless handset that has been charged early can be considered to be in an environment that is advantageous for wireless charging, and even if power consumption increases due to transmission, it can be considered that there is enough room. Absent.
  • the slave unit SD that has once transmitted the charge completion signal FINC may not be transmitted during the subsequent wake-up.
  • each slave unit SD wakes up after T seconds have elapsed from the start of sleep to confirm charging completion, and transmits a charging completion signal FIN.
  • the master unit MD confirms the completion of charging by receiving the charge completion signal FINC from all the slave units SD, and ends the power supply operation.
  • FIGS. 5 and 6 show processing examples of the master unit MD and each slave unit SD for realizing the operation as shown in FIG.
  • the processes (S101 to S159) on the master unit shown in the figure are processes executed by the master unit control unit 10 according to the operation program.
  • the processing (S201 to S259) on the child device side shown in the drawing is a process executed by the child device control unit 20 in each child device SD according to the operation program.
  • FIG. 5 shows the pre-processing for charging shown in FIG. 4, and FIG. 6 shows the charging processing (charging processing including the second power storage unit 32).
  • FIG. 5 shows the pre-processing for charging shown in FIG. 4
  • FIG. 6 shows the charging processing (charging processing including the second power storage unit 32).
  • step S101 of FIG. 5 master device control unit 10 first controls power supply device 2 to start the wireless power supply operation.
  • the switch 33 is turned off as an initial state in which there is no power supply, for example. For this reason, the charging current obtained by the power reception in the power receiving unit 30 flows to the first power storage unit 31, and the first power storage unit 31 is charged.
  • Master device control unit 10 waits for a predetermined time to elapse in step S102. This waits for a period during which the necessary charging of the first power storage unit 31 on the slave unit SD side is performed.
  • the slave unit control unit 9 and the communication unit 21 can operate when the first power storage unit 31 is charged.
  • master device control section 10 determines that the slave device SD has been able to perform pre-processing, and proceeds to step S103 to perform slave device setting. Specifically, master unit control unit 10 transmits setting information including information on the address and the explosion delay time to slave unit control unit 20 of each slave unit SD. A serial number is set in advance for each slave unit SD. Therefore, base unit control section 10 transmits information of the address and the detonation delay time corresponding to each serial number.
  • the address to be transmitted here is an address such as (001) or (002) described above, and is an address for setting a response signal ACK and a delay time of sleep start.
  • the detonation delay time is a delay time from when the parent device control unit 10 transmits the detonation trigger to when the child device control unit 20 actually performs the detonation process.
  • an explosion delay time is set for each slave unit SD.
  • the slave unit control unit 20 Upon receiving the setting information in step S201, the slave unit control unit 20 acquires the address and the explosion delay time information and the like in accordance with its own serial number in step S202, and sets it as its own setting.
  • step S104 master unit control unit 10 instructs slave unit control unit 20 of each slave unit SD to check the continuity of the detonating unit (primer).
  • the slave control unit 20 of each slave SD Upon receiving the continuity check instruction in step S203, the slave control unit 20 of each slave SD performs a continuity check in step S204.
  • the slave unit control unit 20 performs a continuity check of necessary parts such as the function unit 24.
  • the slave unit control unit 20 transmits the check result to the master unit control unit 10 in step S205.
  • Master device control portion 10 receives and checks the check result from child device control portion 20 in step S105.
  • the check results from all the slaves SD are confirmed.
  • the check result is received in step S105 and the reception from all the slave units SD is monitored unless the time is up in step S107.
  • If a result of “conduction is not possible” is obtained as a check result from one slave unit SD, or if a check result is not received from one slave unit SD, error processing is performed in step S108. . That is, as an emergency stop, the subsequent processing is stopped.
  • proper operation of all primers is important for achieving work objectives and ensuring safety. Therefore, if an abnormality is detected even in one slave unit SD, it is preferable to stop the processing progress.
  • the charging process is a charging process by wireless power supply to the second power storage unit 32 which is a main power source of at least the original function (the function unit 24). Subsequent to the above pre-processing, this charging processing is started.
  • step S150 in FIG. 6 master device control unit 10 controls power supply device 2 to start the wireless power supply operation. However, if the wireless power supply started in step S101 is continued as it is, this control is unnecessary.
  • step S151 master unit control unit 10 transmits charging operation setting signal CAR to slave unit control unit 20 of each slave unit SD.
  • the charging operation setting signal CAR includes the time information T and the number-of-times information n.
  • the slave control unit 20 of the slave SD waits for a response timing in step S252. This waits for a delay time corresponding to the address given to itself. After a delay time corresponding to the address has elapsed, the slave unit control unit 20 transmits a response signal ACK in step S253, and immediately shifts to a sleep state in step S254.
  • Master device control section 10 performs reception processing of response signal ACK in step S152.
  • the reception processing in step S152 is performed until it is determined in step S153 that the response waiting time for all the slaves SD has elapsed. Since the response signal ACK is transmitted from each child device SD with a time difference, the response waiting time is set according to the delay time for the response of the child device SD (for example, SD009) that transmits last. Time.
  • the process proceeds from step S153 to S154, and an internal timer for counting time is started to recognize the limit of waiting for reception thereafter.
  • step S153 if the response waiting time has elapsed in step S153 and the response signals ACK from all the slave units SD have not been received (the slave unit SD in which no response signal ACK can be confirmed). If there is), it is desirable to stop the charging process for detonation as an error process.
  • step S254 After sleeping in step S254, the slave unit control unit 20 of each slave unit SD automatically wakes up when T seconds have elapsed (S255). Then, the child device control unit 20 confirms the charging completion in step S256. If charging has been completed, the slave unit control unit 20 proceeds to step S257 and performs processing for transmitting a charge completion signal FINC. If the charging has not been completed, the process of step S257 is skipped. Then, child device control unit 20 increments variable C in step S258, and if variable C has not reached number-of-times information n in step S259, returns to step S254 and shifts to sleep.
  • slave unit control unit 20 ends a series of processes. Although not shown, after that, when the charging operation setting signal CAR is received again, the processing from step S250 is performed.
  • Master device control unit 10 performs a reception process of charging completion signal FINC in step S155. This receiving process is continuously performed until it is determined in step S156 that the charging duration time has elapsed.
  • the charging duration is a time set based on the value of (time information T) ⁇ (number-of-times information n). That is, it is the time until the slave unit SD determines that C ⁇ n in step S259.
  • Master device control unit 10 confirms in step S156 whether or not the time counting started in step S154 has reached the charging duration time.
  • the master unit control unit 10 outputs the charge completion signal FINC in step S155 until the slave unit SD performs the sleep / wakeup three times to confirm the charge completion. Will be monitored.
  • the master unit control unit 10 proceeds to step S157, and checks whether or not charging of all the slave units SD has been completed. That is, it is to confirm whether or not the charging completion signal FINC has been obtained from all the slaves SD. If the charging of all the slaves SD has been completed, the master unit control unit 10 controls the power supply device 2 to end the wireless power supply operation in step S159. Then, the charging process of FIG. 6 ends. If at least one of the charging has not been completed, the number of retransmissions of the charging operation setting signal CAR is confirmed in step S158. The number of retransmissions is the number of times selected in advance (for example, set by the operator), and can be set to one or more values.
  • master controller control unit 10 returns to step S151 and performs the same processing. If the set number of retransmissions has been completed, master device control unit 10 terminates the power supply operation by power supply device 2 in step S159, and ends the process. This makes it possible to repeat the processing of FIG. 6 up to the number of retransmissions until charging of all the slaves SD is completed. If there is a slave unit SD whose charging is not completed even if the process of FIG. 6 is repeated by the number of retransmissions, it is desirable to stop the charging process for detonation as an error process.
  • the charging confirmation device 1 includes a communication unit 11 that performs wireless communication with a plurality of slave units SD (power receiving devices) each of which charges a power storage unit corresponding to wireless power supply, and a base unit control unit.
  • a section 10 is provided.
  • base unit control unit 10 transmits charging operation setting signal CAR from communication unit 11 to a plurality of slave units SD at the time of wireless power supply (S151), and receives the inquiry operation without sending inquiry to slave unit SD. And performs processing (S155, S156, S157) for confirming whether or not charging completion signals have been received from all the power receiving apparatuses.
  • the slave unit SD (power receiving device) according to the embodiment includes a power supply unit 22 that charges a power storage unit (a first power storage unit 31 and a second power storage unit 32) mounted as an operation power supply in response to wireless power supply. And a communication unit 21 for performing wireless communication with an external charging confirmation device, and a slave unit control unit 20.
  • the slave unit control unit 20 shifts to the sleep state after receiving the charging operation setting signal CAR received by the communication unit 21 (S250 to S254), wakes up after a predetermined time has elapsed, and confirms the completion of charging of the power storage unit.
  • the process (S255 to S257) for transmitting the charging completion signal FINC to the charging confirmation device 1 of the master unit MD from the communication unit 21 is performed.
  • the master unit control unit 10 waits for the transmission completion signal FINC from each slave unit SD without performing any transmission.
  • the slave unit control unit 20 voluntarily checks charging completion when waking up from the sleep state, and transmits a charging completion signal when it is determined that charging is completed.
  • the master unit MD only needs to wait for the charging completion signal FINC from the slave unit SD, and does not need to perform a process such as predicting the progress of charging of the slave unit SD and making an inquiry, thereby facilitating the process.
  • the master unit MD since the master unit MD does not transmit an inquiry, it is not necessary to perform a reception process during charging, and power consumption can be reduced.
  • the effect of reducing the power consumption on the slave unit SD side by not performing the receiving process is extremely high.
  • the slave unit SD performs charging while sleeping, power consumption of the power storage unit during charging hardly occurs.
  • charging can proceed efficiently and quickly on the slave unit SD side, and it is also desirable for securing the power for the operation of the functional unit 24 and the communication after the charging.
  • capacitors may be used as the first power storage unit 31 and the second power storage unit 32, but these capacitors are not so large in capacity, and are used for communication and detonation. It is assumed that it can be a necessary minimum power supply. Then you want to avoid power consumption at all. Therefore, not consuming power without performing reception processing is extremely advantageous for normal detonation operation.
  • the power supply unit 22 may have a configuration including at least one power storage unit. Of course, various types of secondary batteries and capacitors can be considered as the power storage unit.
  • the first power storage unit 31 and the second power storage unit 32 are separated, so that even if some communication is performed after the charging is completed, the first power storage unit 31 is provided as long as the first power storage unit 31 can obtain power. It is possible to use the power supply 31 and prevent the second power storage unit 32 from being consumed as much as possible. Therefore, at the time of detonation, it is possible to avoid a situation in which detonation cannot be performed due to a voltage drop of the second power storage unit 32.
  • the charging operation setting signal CAR includes the time information T specifying the sleep time in the slave unit SD. Then, after shifting to the sleep state, slave unit control unit 20 wakes up after a lapse of a predetermined time specified by time information T, and performs a process of confirming charging completion of the power storage unit.
  • the system operation can be flexibly set by designating the sleep time to be performed during charging on the slave unit SD side from the master unit MD side. For example, the sleep time can be appropriately set according to the situation (the arrangement of each slave unit SD, the charging capacity, and the like). In the slave unit SD, the sleep of the slave unit control unit 20 increases the charging efficiency, so that charging can be completed as soon as possible.
  • the master unit MD can know the approximate time at which the transmission of the charging completion signal is transmitted. For example, the charging duration determined in step S156 is known. Thereby, the reception processing of the charge completion signal FINC of all the slaves SD is performed in an appropriate period, and it is possible to determine the presence or absence thereof.
  • the time information T is a fixed value, may be a value set in advance in the slave unit control units 20 of all the slave units SD, and may be a known value in the master unit control unit 10. If at least the time information of the sleep time is included in the charging operation setting signal CAR, the sleep time can be variably set on the system.
  • the charging operation setting signal CAR includes count information n specifying the number of repetitions of sleep and charging completion confirmation in the slave unit SD.
  • the slave unit control unit 20 repeatedly executes the transition to the sleep state and the process of confirming the completion of charging of the power storage unit performed by waking up the number of times indicated by the count information n.
  • the system operation can be flexibly set by designating the number of times the parent machine MD repeats sleep during charging of the child machine SD and wake-up and checks the completion of charging (transmission of a charge completion signal as necessary).
  • the number-of-times information n can be appropriately set according to the situation (arrangement, charging capacity, and the like of each slave unit SD).
  • the number of operation cycles during charging on the slave unit SD side is defined by the number information n, and it is possible to prevent the sleep and the completion of charging from being performed indefinitely, thereby preventing a problem in system operation.
  • the number of repetitions may be a fixed number, and may be a value known in advance by the slave unit control units 20 and the master unit control units 10 of all the slave units SD. If at least the information on the number of repetitions is included in the charging operation setting signal CAR, the number of repetitions can be variably set on the system.
  • the charging operation setting signal CAR includes both the time information of the sleep time in the slave unit SD and the frequency information indicating the number of repetitions of the sleep and the charging completion confirmation. Need not always be included in the charging operation setting signal CAR.
  • the slave unit control unit 20 waits for a set delay time, transmits a response signal ACK, and shifts to a sleep state. It was taken. That is, each slave unit SD has its own unique address set, and after a delay time corresponding to the address has elapsed from the reception timing of the charging operation setting signal CAR, transmission of the response signal ACK and transition to sleep. As a result, in each slave unit SD, the timing of transmitting the response signal ACK and the timing of shifting to the sleep mode are shifted. By shifting the timing of transmitting the response signal ACK, the master unit MD can appropriately receive the response signal ACK from each slave unit SD without interference.
  • each slave unit SD transmits the response signal ACK at its own timing, there is a possibility that the response signal ACK is transmitted from a plurality of slave units SD at the same time, and interference occurs, and the power supply device cannot recognize the notification. There is. Such a situation can be avoided by shifting the transmission timing of the response signal ACK using the delay time according to the address. Also, the shift in the shift timing to the sleep shifts the wake-up timing of each slave unit SD, and as a result, the transmission timing of the charge completion signal FINC does not become the same. Therefore, the master unit MD can appropriately receive the charge completion signal FINC of each slave unit SD without interference. As a result, the master unit MD can correctly detect the status of each slave unit SD.
  • each slave unit MD voluntarily transmits the charge completion signal FINC to the master unit MD when charging is completed, the transmission timing of the charge completion signal FINC of each slave unit SD overlaps, causing interference, and the master unit MD recognizes. Some things cannot be done. In the present embodiment, such a situation can be avoided by shifting the wake-up timing of each slave unit SD.
  • the slave unit SD which has already transmitted the charge completion signal FINC in the n cycles also transmits the charge completion signal FINC again for confirmation when waking up next time.
  • the transmission after the second time may be stopped. This can avoid wasteful power consumption and reduce the amount of communication in the system.
  • SYMBOLS 1 Charge confirmation apparatus, 2 ... Wireless 4 power supply apparatus, 10 ... Master unit control part, 11 ... Communication part, 12 ... Power supply part, 20 ... Slave unit control part, 21 ... Communication part, 22 ... Power supply part, 30 ... Power receiving unit, 31: first power storage unit, 32: second power storage unit, 33: switch, MD: master unit, SD (SD1 to SD9): slave unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Engineering & Computer Science (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A charge confirmation device that performs control of a power feeding side, and a system of a plurality of power receiving devices that perform charging in accordance with wireless power feeding, wherein confirming that charging of the power receiving devices is complete can be efficiently carried out. The charge confirmation device performs a process of transmitting a charge operation setting signal to the plurality of power receiving devices in accordance with the start of wireless power feeding, and a process of waiting without performing transmission to the power receiving devices, and confirming whether the charge completion signal has been received from all the power receiving devices. The power receiving device shifts to a sleep state after receiving the charge operation setting signal, wakes up after a prescribed time has elapsed, performs the process of confirming charging of the power storage unit is complete, and transmits the charge completion signal to the charge confirmation device once charging is complete.

Description

充電確認装置、受電装置、ワイヤレス給電システムCharging confirmation device, power receiving device, wireless power supply system
 本発明は、給電側の装置である充電確認装置と、ワイヤレス給電を受けて蓄電部への充電を行う受電装置、及び充電確認装置と複数の受電装置を有するワイヤレス給電システムに関する。 The present invention relates to a charging confirmation device that is a device on the power supply side, a power receiving device that receives wireless power supply to charge a power storage unit, and a wireless power supply system including the charging confirmation device and a plurality of power receiving devices.
 充電池に対する充電のための手法としてワイヤレス給電が知られている。
 下記特許文献1にはワイヤレス給電を行うシステムにおける送電装置、受電装置に関する技術が開示されている。特に受電装置で充電の完了に応じて完了通知を送信することが記載されている。
Wireless charging is known as a method for charging a rechargeable battery.
Patent Literature 1 below discloses a technology related to a power transmitting device and a power receiving device in a system that performs wireless power feeding. In particular, it describes that the power receiving device transmits a completion notification in response to the completion of charging.
特開2012-200056号公報JP 2012-200056 A
 ワイヤレス給電装置により多数の受電装置に対して給電することを考える。ワイヤレス給電装置側では、各受電装置での充電完了を検知することに応じてワイヤレス給電を終了する。しかし各受電装置側の充電完了タイミングは不定であるため、給電装置は各受電装置から充電完了の通知を受けるようにすることが必要となる。
 そこで給電装置から問い合わせを行って、それに対して受電装置が充電完了通知を行うようにしていた。しかし受電装置での充電完了タイミングが不定なため給電装置から問い合わせを行うタイミングが難しく、給電動作が無駄に継続されてしまうことがある。
 また、この場合、充電中や充電完了した受電装置が、給電装置からの問い合わせの受信のために無駄に電力を消費して受信処理を行わなければならず、これによって充電効率が落ちたり、充電電力が使い切られて本来の動作が不能となるということもあった。
Consider that power is supplied to a large number of power receiving devices by a wireless power supply device. The wireless power supply device ends the wireless power supply in response to detecting the completion of charging in each power receiving device. However, since the charging completion timing on each power receiving device side is undefined, it is necessary for the power feeding device to receive a notification of the charging completion from each power receiving device.
Therefore, an inquiry is made from the power supply device, and the power receiving device notifies the completion of the charging in response to the inquiry. However, since the timing of completion of charging in the power receiving device is uncertain, it is difficult to make an inquiry from the power feeding device, and the power feeding operation may be continued uselessly.
Also, in this case, the receiving device that is being charged or has completed charging must wastefully consume power to perform a reception process in order to receive an inquiry from the power supply device. In some cases, the power was used up and the original operation became impossible.
 そこで本発明では、複数の受電装置の充電完了を適切に実行でき、またむやみに電力消費を生じさせないようにすることを目的とする。 Therefore, it is an object of the present invention to appropriately execute charging of a plurality of power receiving devices and to prevent unnecessary power consumption.
 本発明に係る充電確認装置は、それぞれがワイヤレス給電に対応して蓄電部への充電を行う複数の受電装置との間で無線通信を行う通信部と、制御部とを備える。そして前記制御部は、ワイヤレス給電の際に充電動作設定信号を前記通信部から複数の受電装置に送信させる処理と、前記受電装置への問い合わせ送信を行わない状態で受信を待機し、全ての受電装置からの充電完了信号が受信されたか否かを確認する処理とを行うようにする。
 即ちこの場合、充電確認装置は、各受電装置に対し、充電動作設定信号を送った後は、何の送信を行わずに、各受電装置からの充電完了信号を待機する。
A charging confirmation device according to the present invention includes a communication unit that performs wireless communication with a plurality of power receiving devices that charge a power storage unit in response to wireless power supply, and a control unit. The control unit transmits a charging operation setting signal to the plurality of power receiving devices from the communication unit during wireless power supply, and waits for reception without performing inquiry transmission to the power receiving device. And confirming whether or not a charging completion signal has been received from the device.
That is, in this case, after transmitting the charging operation setting signal to each power receiving device, the charging confirmation device waits for a charging completion signal from each power receiving device without performing any transmission.
 上記した充電確認装置においては、前記充電動作設定信号は、前記受電装置におけるスリープ時間を指定する時間情報を含むことが考えられる。
 受電装置側において、充電中に行うスリープ時間を充電確認装置側から指定するようにする。
In the above-described charging confirmation device, the charging operation setting signal may include time information for specifying a sleep time in the power receiving device.
On the power receiving device side, the sleep time to be performed during charging is designated from the charging confirmation device side.
 上記した充電確認装置においては、前記充電動作設定信号は、前記受電装置におけるスリープ及び充電完了確認の繰り返し回数を指定する回数情報を含むことが考えられる。
 受電装置側において、充電中のスリープと、ウェイクアップしての充電完了確認(必要に応じての充電完了信号送信)を繰り返す回数を、充電確認装置側から指定するようにする。
In the above-described charging confirmation device, it is conceivable that the charging operation setting signal includes count information specifying the number of repetitions of sleep and charging completion confirmation in the power receiving device.
On the power receiving device side, the number of times to repeat the sleep during charging and the charging completion confirmation after wake-up (transmission of the charging completion signal as necessary) is designated from the charging confirmation device side.
 本発明に係る受電装置は、動作電源として搭載する蓄電部に対して、ワイヤレス給電に対応して充電を行う電源部と、外部の充電確認装置との間で無線通信を行う通信部と、制御部とを備える。そして前記制御部は、前記通信部により受信される充電動作設定信号を受信した後にスリープ状態に移行し、所定時間経過後にウェイクアップして前記蓄電部の充電完了確認の処理を行い、充電が完了していた場合には、前記充電確認装置に対して充電完了信号を前記通信部から送信させる処理を行うようにする。
 即ち受電装置側は、スリープ状態からウェイクアップしたときに、自主的に充電完了確認を行い、充電完了と判断された場合に、充電完了信号を送信する。
The power receiving device according to the present invention includes a power supply unit that charges a power storage unit mounted as an operation power supply in response to wireless power supply, a communication unit that performs wireless communication with an external charging confirmation device, and a control unit. Unit. The control unit shifts to a sleep state after receiving a charging operation setting signal received by the communication unit, wakes up after a predetermined time has elapsed, performs a process of confirming charging completion of the power storage unit, and completes charging. If so, processing for transmitting a charge completion signal from the communication unit to the charge confirmation device is performed.
That is, the power receiving device voluntarily checks the completion of charging when waking up from the sleep state, and transmits a charging completion signal when it is determined that charging is completed.
 上記した受電装置においては、前記充電動作設定信号はスリープ時間を指定する時間情報を含み、前記制御部は、スリープ状態に移行した後、前記時間情報で指定された所定時間経過後にウェイクアップして前記蓄電部の充電完了確認の処理を行うことが考えられる。
 受電装置側は、充電動作設定信号に含まれる時間情報で示される時間、充電中にスリープして、受電電力を充電に集中させるようにする。
In the above-described power receiving device, the charging operation setting signal includes time information specifying a sleep time, and the control unit shifts to a sleep state, and then wakes up after a predetermined time specified by the time information has elapsed. It is conceivable to perform a process of confirming the completion of charging of the power storage unit.
The power receiving device sleeps during charging for the time indicated by the time information included in the charging operation setting signal, and concentrates the received power on charging.
 前記充電動作設定信号は、前記受電装置におけるスリープ及び充電完了確認の繰り返し回数を指定する回数情報を含み、前記制御部は、スリープ状態への移行と、ウェイクアップして行う前記蓄電部の充電完了確認の処理を、前記回数情報に示される回数、繰り返し実行することが考えられる。
 受電装置側は、充電動作設定信号に含まれる回数情報で示される回数だけ、充電中のスリープと、ウェイクアップしての充電完了確認(必要に応じての充電完了信号送信)を繰り返すようにする。
The charging operation setting signal includes count information specifying the number of repetitions of sleep and charging completion confirmation in the power receiving device, and the control unit shifts to a sleep state and wakes up to complete charging of the power storage unit. It is conceivable that the confirmation process is repeatedly performed the number of times indicated by the number-of-times information.
The power receiving apparatus repeats sleep during charging and confirmation of completion of charging after waking up (transmission of a charging completion signal as necessary) the number of times indicated by the number of times information included in the charging operation setting signal. .
 前記制御部は、前記通信部により受信される充電動作設定信号を受信した後に、設定された遅延時間を待機してから応答信号を送信するとともにスリープ状態に移行することが考えられる。
 各受電装置は、それぞれ自己に固有の遅延時間が設定されており、その充電動作設定信号の受信タイミングから遅延時間を経過した後に、応答の送信とスリープへの移行を行う。
After receiving the charging operation setting signal received by the communication unit, the control unit may wait for a set delay time, transmit a response signal, and shift to a sleep state.
Each power receiving device has its own delay time set, and after a lapse of the delay time from the reception timing of the charging operation setting signal, transmits a response and shifts to sleep.
 本発明に係るワイヤレス給電システムは、上記の充電確認装置と、複数の上記の受電装置を有して構成されるシステムである。
 特にこのワイヤレス給電システムにおいては、受電装置は起爆装置に設けられ、蓄電部は起爆動作のための電源として用いられるようにする。
A wireless power supply system according to the present invention is a system including the above-described charging confirmation device and a plurality of the above-described power receiving devices.
In particular, in this wireless power supply system, the power receiving device is provided in the detonating device, and the power storage unit is used as a power source for the detonating operation.
 本発明によれば、充電確認装置は充電中に充電完了の問い合わせ通信を行わない。このため、受電装置側では充電完了の問い合わせの受信処理が不要であり、無駄な電力消費が生じない。従って効率良く充電ができ、また充電完了後に受信処理により電力を消費するといったことも解消される。
 充電確認装置側では各受電装置からの充電完了信号を待機していればよく、充電完了信号の受信により各受電装置の充電完了を適切に確認できる。
According to the present invention, the charging confirmation device does not perform the charging completion inquiry communication during the charging. For this reason, the power receiving device side does not need to perform the process of receiving the inquiry about the completion of charging, so that unnecessary power consumption does not occur. Therefore, charging can be performed efficiently, and power consumption due to reception processing after charging is completed is also eliminated.
The charging confirmation device only needs to wait for a charging completion signal from each power receiving device. Receiving the charging completion signal can properly confirm the charging completion of each power receiving device.
本発明の実施の形態のワイヤレス給電システムの説明図である。FIG. 1 is an explanatory diagram of a wireless power supply system according to an embodiment of the present invention. 実施の形態の親機と子機のブロック図である。FIG. 3 is a block diagram of a parent device and a child device according to the embodiment. 比較例の親機と子機の通信の説明図である。FIG. 7 is an explanatory diagram of communication between a master unit and a slave unit in a comparative example. 実施の形態の親機と子機の通信及び動作の説明図である。FIG. 4 is an explanatory diagram of communication and operation between a master unit and a slave unit according to the embodiment; 実施の形態の親機と子機の事前処理のフローチャートである。It is a flowchart of the pre-processing of the parent device and the child device of the embodiment. 実施の形態の親機と子機の充電処理のフローチャートである。It is a flowchart of the charging process of the parent device and the child device of the embodiment.
<構成例>
 以下、本発明の実施の形態を説明する。まずワイヤレス給電システムの構成について述べる。
 図1にワイヤレス給電システムを構成する親機MDと子機SD(SD1~SD9)を示している。親機MDは、多数の子機SDとは離間して配置される。
 親機MDは給電装置としての構成を備え、子機SDはワイヤレス給電を受けて内蔵の蓄電部(例えば二次電池やコンデンサ)に充電を行う受電装置である。
<Example of configuration>
Hereinafter, embodiments of the present invention will be described. First, the configuration of the wireless power supply system will be described.
FIG. 1 shows a master unit MD and slave units SD (SD1 to SD9) constituting the wireless power supply system. The master unit MD is arranged apart from a number of slave units SD.
The master unit MD has a configuration as a power supply device, and the slave unit SD is a power receiving device that receives wireless power supply and charges a built-in power storage unit (for example, a secondary battery or a capacitor).
 このワイヤレス給電システムは、親機MDから各子機SDにワイヤレス給電を行う。各子機SDは給電された電力を用いて内蔵の蓄電部に充電を行う。
 また親機MDと各子機SDの間では、充電動作設定や充電完了の確認のための無線通信を行う。
 子機SDの数は、図1では子機SD1からSD9の9台としているが、本システムは子機SDが2台以上の複数台であること想定しており、実際には、子機SDが100台から200台、或いはそれ以上などの場合を想定している。
This wireless power supply system performs wireless power supply from a master unit MD to each slave unit SD. Each slave unit SD charges the built-in power storage unit using the supplied power.
In addition, wireless communication is performed between the master unit MD and each slave unit SD for setting a charging operation and confirming charging completion.
In FIG. 1, the number of slave units SD is nine, that is, the slave units SD1 to SD9. However, the present system assumes that there are two or more slave units SD. Is assumed to be 100 to 200 or more.
 子機SD1~SD9については、それぞれにユニークな子機アドレス(以下、単に「アドレス」という)が設定される。図には子機SD1~SD9のそれぞれに(001)~(009)を示しているが、これをアドレスとする。例えば子機SD1のアドレスは(001)、子機SD2のアドレスは(002)というようになる。 ユ ニ ー ク A unique child device address (hereinafter simply referred to as “address”) is set for each of the child devices SD1 to SD9. In the figure, (001) to (009) are shown for the slave units SD1 to SD9, respectively, which are used as addresses. For example, the address of the slave unit SD1 is (001), and the address of the slave unit SD2 is (002).
 図2に親機MDと子機SDの構成を示す。
 図2の構成例の親機MDは、ワイヤレス給電システムの給電を実行する機能と、請求項にいう充電確認装置としての機能、即ち子機SDの充電を確認する機能を備えた装置である。
FIG. 2 shows a configuration of the master unit MD and the slave unit SD.
The master unit MD of the configuration example in FIG. 2 is a device having a function of executing power supply of the wireless power supply system and a function as a charging confirmation device described in claims, that is, a function of confirming charging of the slave unit SD.
 親機MDは充電確認装置1と給電装置2を備える。
 給電装置2は子機SDに対するワイヤレス給電を行う。ワイヤレス給電には、電磁誘導を用いた電磁誘導方式、電磁界の共鳴現象を利用した電磁界共鳴方式、電力を電磁波に変換しアンテナを介して送受信する電波方式などが知られているが、本実施の形態では、給電方式自体は限定されない。つまり給電装置2は、どのような方式であれ、ワイヤレス給電を行う装置部であれば良い。
The master unit MD includes a charging confirmation device 1 and a power supply device 2.
The power supply device 2 performs wireless power supply to the slave unit SD. As the wireless power supply, there are known an electromagnetic induction method using electromagnetic induction, an electromagnetic field resonance method using an electromagnetic resonance phenomenon, and a radio wave method in which electric power is converted into electromagnetic waves and transmitted and received via an antenna. In the embodiment, the power supply method itself is not limited. That is, the power supply device 2 may be any device unit that performs wireless power supply in any system.
 親機MDにおける充電確認装置1は、親機制御部10と通信部11を備える。
 通信部11は、それぞれが給電装置2からのワイヤレス給電の受電装置となる複数の子機SDにとの間で無線通信を行う。
 親機制御部10は例えばCPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を内蔵したマイクロコンピュータにより構成される。この親機制御部10は、通信部11を介した子機SDとの間の通信処理を行うとともに、給電装置2の制御を行う。即ち親機制御部10は、給電装置2による給電の開始制御を行い、給電を開始させた後、子機SDとの無線通信により子機SD側での充電完了の確認を行う。全ての子機SDで充電完了が確認されたら、給電装置2に給電を終了させる制御を行う。
 この例では通信部11は、後述する子機SDの通信部21からの上り通信を受信する受信処理を行う。親機MDから子機SDへの各種信号の送信(下り通信)については、給電装置2からの給電信号を変調することで実行する。
 なお、親機MD側では子機SDへの信号送信(下り通信)を給電信号とは別個のキャリアを用いて行うようにしてもよい。
The charging confirmation device 1 in the parent machine MD includes a parent machine control unit 10 and a communication unit 11.
The communication unit 11 performs wireless communication with a plurality of slave units SD each serving as a power receiving device for wireless power feeding from the power feeding device 2.
The base unit control unit 10 is configured by a microcomputer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like. The master unit control unit 10 performs communication processing with the slave unit SD via the communication unit 11 and controls the power supply device 2. That is, the base unit control unit 10 controls the start of power supply by the power supply device 2, and after starting the power supply, confirms the completion of charging on the side of the child device SD by wireless communication with the child device SD. When the charging completion is confirmed in all the slave units SD, control is performed to terminate the power supply to the power supply device 2.
In this example, the communication unit 11 performs a reception process of receiving uplink communication from the communication unit 21 of the slave unit SD described later. Transmission (downlink communication) of various signals from the master unit MD to the slave unit SD is performed by modulating a power supply signal from the power supply device 2.
Note that the master unit MD may perform signal transmission (downlink communication) to the slave unit SD using a carrier different from the power supply signal.
 子機SDはワイヤレス給電を受けて蓄電部(31,32)への充電を行う受電装置である。
 子機SDは子機制御部20、通信部21、電源部22、機能部24を備える。
 電源部22は、給電装置2からのワイヤレス給電を受けて電気エネルギーに変換する受電部30、第1蓄電部31、第2蓄電部32、スイッチ33を有している。
 この電源部22は、第1蓄電部31、第2蓄電部32を電源として、各部に必要な動作電圧V1,V2・・・を出力する。
 第1蓄電部31は、例えば主に子機制御部20や通信部21の動作電源とされ、第2電源部32は主に機能部24の動作電源とされる。
The slave unit SD is a power receiving device that receives the wireless power supply and charges the power storage units (31, 32).
The slave unit SD includes a slave unit control unit 20, a communication unit 21, a power supply unit 22, and a function unit 24.
The power supply unit 22 includes a power receiving unit 30, a first power storage unit 31, a second power storage unit 32, and a switch 33 that receive wireless power supply from the power supply device 2 and convert the power into electric energy.
The power supply unit 22 uses the first power storage unit 31 and the second power storage unit 32 as power supplies and outputs operating voltages V1, V2,... Required for each unit.
For example, the first power storage unit 31 is mainly used as an operation power supply of the slave unit control unit 20 and the communication unit 21, and the second power supply unit 32 is mainly used as an operation power supply of the function unit 24.
 第1蓄電部31、第2蓄電部32は、二次電池やコンデンサにより構成され、受電部30で得られた電流が与えられて充電される。
 スイッチ33がオフの状態では、受電部30で得られた充電電流は第1蓄電部31に供給され、第1蓄電部31の充電が行われる。
 スイッチ33がオンとされると、受電部30で得られた充電電流は第1蓄電部31と第2蓄電部32に供給され、第1蓄電部31と第2蓄電部32の充電が行われる。
 なお構成例は一例であり、例えばスイッチ33は、第1蓄電部31と第2蓄電部32を選択的に充電できるようにするスイッチとされてもよい。
 また蓄電部が1つだけ設けられるものとされてもよい。
 また例えば二次電池やコンデンサの複数個が、共通端子で並列接続されたり直列接続されたりして1つの蓄電部を構成するものとされてもよい。
The first power storage unit 31 and the second power storage unit 32 are configured by a secondary battery or a capacitor, and are charged by receiving the current obtained by the power receiving unit 30.
When the switch 33 is off, the charging current obtained by the power receiving unit 30 is supplied to the first power storage unit 31, and the first power storage unit 31 is charged.
When switch 33 is turned on, the charging current obtained by power reception unit 30 is supplied to first power storage unit 31 and second power storage unit 32, and first power storage unit 31 and second power storage unit 32 are charged. .
Note that the configuration example is merely an example, and for example, the switch 33 may be a switch that allows the first power storage unit 31 and the second power storage unit 32 to be selectively charged.
Further, only one power storage unit may be provided.
Further, for example, a plurality of secondary batteries and capacitors may be connected in parallel or in series at a common terminal to form one power storage unit.
 通信部21は、親機MD側の通信部11との間で無線通信を行う。即ち通信部21は、親機MDに通知する信号を変調して送信する。
 また通信部21(又は受電部30)には変調された給電信号を復調する復調回路が設けられており、復調された信号、つまり親機MDから送信されてきた信号は子機制御部20に供給される。
 子機制御部20は例えばCPU、RAM、ROM等を内蔵したマイクロコンピュータにより構成される。子機制御部20は、通信部21を介した親機MDとの間の通信処理を行うとともに、子機SDの全体の動作制御を行う。即ち子機制御部20は、電源部22や機能部24の動作制御や、ワイヤレス給電時の電源部22における充電状況の確認などを行う。
The communication unit 21 performs wireless communication with the communication unit 11 on the master device MD side. That is, the communication unit 21 modulates and transmits a signal to be notified to the master unit MD.
The communication unit 21 (or the power receiving unit 30) is provided with a demodulation circuit that demodulates the modulated power supply signal, and the demodulated signal, that is, the signal transmitted from the master unit MD is transmitted to the slave unit control unit 20. Supplied.
The slave unit control unit 20 is configured by a microcomputer including a CPU, a RAM, a ROM, and the like, for example. The slave unit control unit 20 performs communication processing with the master unit MD via the communication unit 21 and controls the entire operation of the slave unit SD. That is, the slave unit control unit 20 controls the operation of the power supply unit 22 and the function unit 24, and checks the charging status of the power supply unit 22 during wireless power supply.
 機能部24は、子機SDとしての動作機能を実行する部位を示している。
 子機SDが実際にどのような機器であるかは多様に考えられる。例えば発光装置、発音装置、表示装置、各種のモータ駆動装置、制御装置、スイッチ装置、検出装置、信号増幅装置、演算装置、トリガ発生装置、起動装置、その他、電気的な制御・動作が可能なあらゆる装置が想定される。機能部24はこれらの各種装置として必要な機能を実行する部位である。
 本実施の形態では、例えばこのワイヤレス給電システムを起爆システムに適用する場合を例に挙げる。即ち、子機SDはダイナマイトの雷管などに搭載され、機能部24とは雷管の起爆部であるとする。そして親機からの通信による制御により起爆される。
 蓄電部22は、機能部24としての起爆部の動作に必要な電源供給を行うものとされる。特に第2蓄電部32は、起爆部の動作のための電源となる。
 このような起爆システムでは、起爆等の制御や各種の設定、さらには充電を無線で行うようにすることで、作業員の安全性向上や作業の合理化、雷管の配設の容易化などが実現される。
The function unit 24 indicates a part that executes an operation function as the slave unit SD.
There are various possibilities for what kind of device the slave unit SD is actually. For example, a light emitting device, a sound emitting device, a display device, various motor driving devices, a control device, a switch device, a detecting device, a signal amplifying device, an arithmetic device, a trigger generating device, a starting device, and other electric control and operation are possible. Any device is envisioned. The function unit 24 is a part that executes functions necessary for these various devices.
In the present embodiment, for example, a case is described in which this wireless power supply system is applied to a detonation system. That is, it is assumed that the slave unit SD is mounted on a dynamite primer or the like, and the functional unit 24 is a detonating unit of the primer. And it is detonated by the control by communication from the base unit.
The power storage unit 22 supplies power necessary for the operation of the detonating unit as the function unit 24. In particular, the second power storage unit 32 is a power source for operating the detonating unit.
In such a detonation system, by controlling the detonation and various other settings, and by charging the battery wirelessly, it has improved the safety of workers, streamlined work, and simplified the installation of detonators. Is done.
<比較例>
 本実施の形態は、各子機SDの充電中の受信動作による電力消費を削減しながら、親機MDが各子機SDにおける充電確認を適切に実行できるようにするものである。ここでは実施の形態の動作に先立って、比較例としての充電確認動作を説明する。
 図3は、ワイヤレス給電実行時に、親機MDと多数の子機SDの間で通常想定される通信の例を時系列的に示している。
<Comparative example>
The present embodiment enables the master unit MD to appropriately execute charging confirmation in each slave unit SD while reducing power consumption due to a reception operation during charging of each slave unit SD. Here, a charging confirmation operation as a comparative example will be described prior to the operation of the embodiment.
FIG. 3 shows, in chronological order, an example of communication normally assumed between the master unit MD and a number of slave units SD when performing wireless power supply.
 給電開始の際、親機MDは、給電装置2によるワイヤレス給電を開始するとともに、全子機SDへ給電開始通知信号CHGSを送信する。
 給電開始通知信号CHGSを受信した各子機SDでは、電源部22で充電を開始するとともに、親機MDに対して確認信号RSを送信する。
 全ての子機SDからの確認信号RSを受信することで、親機MDは全子機SDで充電が開始されたことを認識できる。
At the start of power supply, master device MD starts wireless power supply by power supply device 2 and transmits power supply start notification signal CHGS to all slave devices SD.
Each slave unit SD that has received the power supply start notification signal CHGS starts charging with the power supply unit 22 and transmits a confirmation signal RS to the master unit MD.
By receiving the confirmation signals RS from all the slaves SD, the master MD can recognize that charging has started in all the slaves SD.
 その後、各子機SDで充電が進捗していくが、各子機SDと親機MDの離間距離の差、蓄電部の状況、充電効率の誤差などにより、充電完了のタイミングは全く不定である。図3では、それぞれ子機SD1、SD2、SD9の充電完了タイミングを時点te1、te2、te9としている。 Thereafter, charging progresses in each slave unit SD, but the timing of completion of charging is completely uncertain due to a difference in distance between each slave unit SD and the master unit MD, a state of the power storage unit, an error in charging efficiency, and the like. . In FIG. 3, the charging completion timings of the slave units SD1, SD2, and SD9 are defined as time points te1, te2, and te9, respectively.
 親機MDにとっては、各子機SDの充電状況がわからないため、例えば給電開始通知信号CHGSを送信してから一定時間TWを経過したときに、各子機SDに対して充電完了確認信号CHGEを送信する。充電完了確認信号CHGEは、充電が完了したか否かの問い合わせとしての意味を持つ信号である。
 充電が完了している子機SDは、充電完了確認信号CHGEに応じて、充電完了信号FINCを親機MDに送信する。
 図では、充電完了確認信号CHGEが送信されたときに、子機SD1,SD2が既に充電を完了しており、それぞれ応答として充電完了信号FINCを送信している様子を示している。子機SD9はまだ充電を完了しておらず、充電完了信号FINCを送信していない(充電未完了を示す信号を送信してもよい)。
Since the master unit MD does not know the charging status of each slave unit SD, the charging completion confirmation signal CHGE is sent to each slave unit SD, for example, when a predetermined time TW has elapsed after transmitting the power supply start notification signal CHGS. Send. The charging completion confirmation signal CHGE is a signal having a meaning as an inquiry as to whether or not charging is completed.
The slave unit SD that has been charged transmits a charge completion signal FINC to the master unit MD in response to the charge completion confirmation signal CHGE.
In the drawing, when the charging completion confirmation signal CHGE is transmitted, the slave units SD1 and SD2 have already completed charging, and each of them transmits the charging completion signal FINC as a response. The child device SD9 has not yet completed charging, and has not transmitted the charging completion signal FINC (a signal indicating charging incompletion may be transmitted).
 親機MDは、全子機SDからの充電完了信号FINCを確認すれば、充電完了として給電装置2の給電動作を停止させる。
 一方、図のようにまだ充電完了信号FINCを送ってこない子機SDがある場合は、またある程度の時間(一定時間TW)を待機してから、再度、充電完了確認信号CHGEを送信し、問い合わせを行う。
 図では、再度送信した充電完了確認信号に対応して、全子機SDからの充電完了信号FINCが送られてきた状態を示している。
Upon confirming the charge completion signal FINC from all the slaves SD, the master unit MD determines that the charging is completed and stops the power supply operation of the power supply device 2.
On the other hand, if there is a slave unit SD that has not yet sent the charge completion signal FINC as shown in the figure, it waits for a certain period of time (constant time TW), and then transmits the charge completion confirmation signal CHGE again to make an inquiry. I do.
The figure shows a state where the charging completion signal FINC has been transmitted from all the slaves SD in response to the charging completion confirmation signal transmitted again.
 このような通信により、親機MDが全子機SDの充電完了を確認することができるが、この場合、充電完了確認信号CHGEの送信タイミングの設定が難しい。
 各子機SDの充電完了までの時間は、設置場所、設置環境、親機MDとの距離などにより大きく変わるため、設定した一定時間TWが必ずしも適度な時間とならないためである。
 一定時間TWは、全ての子機SDが十分に充電完了できる時間とすることが考えられる。しかし一定時間TWが長すぎると、無駄な給電時間が発生してしまう。例えば図3の場合、時点te9で全ての子機SDで充電が完了したとすると、時点te9から次の充電完了確認信号CHGEの送信タイミングまでは、無駄な給電を行っていることになる。またこれによって充電完了を確認できるまでの時間が長時間化してしまい、各子機SDでの充電完了確認後の本来の動作開始が遅れるということも生ずる。
 一方で、一定時間TWをあまり短くすると、まだ充電を完了していない子機SDが多くなり、その後、何度も繰り返し問い合わせる必要が生じてしまうことが想定される。すると、充電完了した子機SDにとっては、何度も充電完了確認信号CHGEに対応した通信を行う必要があり、せっかく満充電となった蓄電部の電力を、通信により消費させることになってしまう。
By such communication, the master unit MD can confirm the completion of charging of all the slave units SD, but in this case, it is difficult to set the transmission timing of the charging completion confirmation signal CHGE.
This is because the set time TW is not always an appropriate time since the time until the completion of charging of each slave unit SD greatly changes depending on the installation location, the installation environment, the distance from the master unit MD, and the like.
It is conceivable that the fixed time TW is a time during which charging of all the slaves SD can be sufficiently completed. However, if the fixed time TW is too long, a useless power supply time occurs. For example, in the case of FIG. 3, if charging is completed in all the slave units SD at the time point te9, useless power supply is performed from the time point te9 to the transmission timing of the next charge completion confirmation signal CHGE. In addition, as a result, the time required for confirming the completion of charging is lengthened, and the actual operation start after confirmation of completion of charging in each slave unit SD may be delayed.
On the other hand, if the fixed time TW is set too short, it is assumed that the number of slaves SD that have not been completely charged increases, and thereafter, it is necessary to make an inquiry many times. Then, it is necessary for the slave unit SD which has been charged to perform communication corresponding to the charge completion confirmation signal CHGE many times, and the power of the fully charged power storage unit is consumed by the communication. .
<実施の形態の通信例>
 本実施の形態では、上記の比較例で生じる事情に鑑み、子機SDが受信のための無駄な電力消費をしないようにし、かつ親機MDが子機SDの充電完了を適切に確認できるようにしたものである。
 図4により実施の形態で行われるワイヤレス給電時の通信動作を説明する。これらは図3と同じく、親機MDと多数の子機SDの間で行われる通信の例を時系列的に示している。各通信は、親機制御部10と子機制御部20の間で、通信部11,21を介して行われる。
<Communication Example of Embodiment>
In the present embodiment, in view of the circumstances that occur in the above-described comparative example, the slave unit SD is prevented from consuming unnecessary power for reception, and the master unit MD can appropriately confirm the completion of charging of the slave unit SD. It was made.
A communication operation at the time of wireless power supply performed in the embodiment will be described with reference to FIG. These show time-series examples of communication performed between the master unit MD and a number of slave units SD, similarly to FIG. Each communication is performed between the parent device control unit 10 and the child device control unit 20 via the communication units 11 and 21.
 給電開始の際、親機MD側では、給電装置2がワイヤレス給電を開始するとともに、全子機SDへ向けて充電動作設定信号CARを送信する。
 充電動作設定信号CARには、スリープ時間を示す時間情報T(T秒)と、スリープ及び充電完了確認の繰り返し回数を指定する回数情報n(n回:例えば3回)が含まれる。回数情報nは1以上が設定可能である。時間情報Tの秒数は子機SDの第1蓄電部31及び第2蓄電部32の容量や充電時間、蓄電部の種類、数などに応じた適切な時間範囲内で選択可能とされればよい。
At the start of power supply, on the master device MD side, the power supply device 2 starts wireless power supply and transmits a charging operation setting signal CAR to all the child devices SD.
The charging operation setting signal CAR includes time information T (T seconds) indicating a sleep time and count information n (n times: for example, three times) that specifies the number of repetitions of sleep and charging completion confirmation. The number-of-times information n can be set to 1 or more. If the number of seconds of the time information T can be selected within an appropriate time range according to the capacity and charging time of the first power storage unit 31 and the second power storage unit 32 of the slave unit SD, the type and number of power storage units, and the like. Good.
 各子機SDでは、給電装置2がワイヤレス給電を開始することで、電源部22で充電が開始される。充電動作設定信号CARを受信した各子機SDでは、電源部22での充電の開始に伴って充電動作設定信号CARで指定される設定を取得することになる。そして親機MDに対して応答信号ACKを送信する。
 各子機SDが応答信号ACKに自己のアドレス((001)(002)等)を付加することで、それを受信した親機MDは、どの子機SDからの応答信号ACKであるかを認識できる。図では「ACK001」「ACK002」のようにアドレスを付した状態で応答信号ACKを示している。
In each slave unit SD, charging is started by the power supply unit 22 when the power supply device 2 starts wireless power supply. Each slave device SD that has received the charging operation setting signal CAR acquires the setting specified by the charging operation setting signal CAR with the start of charging by the power supply unit 22. Then, a response signal ACK is transmitted to master device MD.
Each slave unit SD adds its own address ((001) (002), etc.) to the response signal ACK, and the master unit MD that has received it recognizes which slave unit SD is the response signal ACK from. it can. In the figure, the response signal ACK is shown with addresses such as “ACK001” and “ACK002”.
 なお、一度の充電動作設定信号CARに対して、全ての子機SDが応答信号ACKを返すことになるが、混信を避ける必要がある。そこで各子機SDは、例えば受信タイミングから自己のアドレス値に対応する待機時間をもって応答信号ACKを送信する。このようにすることで各子機SDからの送信タイミングがずれ、混信が生じない。
 図では、子機SD1、SD2、・・・SD9が、そのアドレス値に応じた待機時間を待ってから応答信号ACKを送信する様子を示している。
 例えば子機SD1はアドレス(001)に対応して(1×Td)時間、子機SD2はアドレス(002)に対応して(2×Td)時間・・・というような例である。なお「Td」は待機時間を設定する定数である。
 全ての子機SDからの応答信号ACKを受信することで、親機MDは全子機SDで充電が開始されたことを認識できる。
Note that all the slave units SD return a response signal ACK to one charging operation setting signal CAR, but it is necessary to avoid interference. Therefore, each slave unit SD transmits the response signal ACK with a standby time corresponding to its own address value from the reception timing, for example. By doing so, the transmission timing from each slave unit SD is shifted, and no interference occurs.
The figure shows that slave units SD1, SD2,..., SD9 transmit a response signal ACK after waiting for a standby time corresponding to the address value.
For example, the slave unit SD1 is (1 × Td) time corresponding to the address (001), the slave unit SD2 is (2 × Td) time corresponding to the address (002), and so on. “Td” is a constant for setting the standby time.
By receiving the response signals ACK from all the slaves SD, the master MD can recognize that charging has started in all the slaves SD.
 各子機SDの子機制御部20は、それぞれ応答信号ACKを送信したら、即座にスリープ状態へ移行する。このスリープ時間はT秒とし、当該T秒は、充電動作設定信号CARにおいてスリープ時間の時間情報Tとして指示された時間値である。
 従って子機SD1の子機制御部20は、応答信号ACK001の送信直後からT秒間のスリープに入る。子機SD2の子機制御部20は、応答信号ACK002の送信直後からT秒間のスリープに入る。子機SD9の子機制御部20は、応答信号ACK009の送信直後からT秒間のスリープに入る。図ではスリープ状態であることを破線で示している。
 応答信号ACK001・・・ACK009の送信タイミングがずれることで、スリープへの移行タイミングも各子機SDにおいて互いにずれることになる。
The slave unit control unit 20 of each slave unit SD immediately shifts to the sleep state after transmitting the response signal ACK. The sleep time is T seconds, and the T seconds is a time value specified as the sleep time information T in the charging operation setting signal CAR.
Therefore, the slave unit control unit 20 of the slave unit SD1 enters a sleep state for T seconds immediately after the transmission of the response signal ACK001. The slave unit control unit 20 of the slave unit SD2 enters a sleep state for T seconds immediately after the transmission of the response signal ACK002. The slave unit control unit 20 of the slave unit SD9 enters a sleep state for T seconds immediately after the transmission of the response signal ACK009. In the drawing, the sleep state is indicated by a broken line.
Since the transmission timing of the response signals ACK001... ACK009 is shifted, the transition timing to the sleep is also shifted in each slave unit SD.
 なお、充電動作設定信号CARの後の充電は、スイッチ33がオンとされることで、第1蓄電部31,第2蓄電部32の両方に対して行われる。
 後述するが、最初は事前処理のためにスイッチ33がオフとされ、第1蓄電部31のみが充電される。そして第1蓄電部31の充電により、子機制御部20及び通信部21の動作が可能になり、充電の事前処理が行われる。図4の充電が開始されるのは、その後の時点のことであり、図4では、起爆動作のために第2蓄電部32に対しても充電が行われることになる。
 そして子機制御部20がスリープしている間は、特に子機制御部20や通信部21の通信動作は行われないため、最低限のスリープ電力の消費のみで充電が継続されることになる。
Note that the charging after the charging operation setting signal CAR is performed for both the first power storage unit 31 and the second power storage unit 32 when the switch 33 is turned on.
As described later, first, the switch 33 is turned off for preprocessing, and only the first power storage unit 31 is charged. Then, the charging of the first power storage unit 31 enables the operation of the slave unit control unit 20 and the communication unit 21, and pre-processing of charging is performed. The charging in FIG. 4 is started at a later point in time, and in FIG. 4, the second power storage unit 32 is also charged for the detonation operation.
Then, while the slave unit control unit 20 is sleeping, the communication operation of the slave unit control unit 20 and the communication unit 21 is not particularly performed, so that the charging is continued with only the minimum consumption of the sleep power. .
 各子機SDの子機制御部20は、T秒経過によりウェイクアップし、第1蓄電部31及び第2蓄電部32の充電が完了したか否かを確認する。子機制御部20は、もし充電が完了していたら、充電完了信号FINCを送信する。なお、充電完了の確認は第2蓄電部32のみを対象としてもよい。
 図4では時点te10で子機SD1の充電が完了しており、最初のスリープを開始してT秒経過したときに充電完了信号FINC001を送信している状態を示している。
 子機SDの子機制御部20は、充電完了信号FINC001を送信したら、またスリープへ移行する。充電完了後もスリープに移行することで、極力電力消費を避けることができる。
 子機SD2、SD9については充電が完了しておらず、最初のウェイクアップの際には、充電完了信号FINCを送信せずに、再びスリープする。この例では、時点te20で子機SD2の充電が完了し、時点te90で子機SD9の充電が完了したとしている。
The slave unit control unit 20 of each slave unit SD wakes up after the elapse of T seconds and checks whether the charging of the first power storage unit 31 and the second power storage unit 32 is completed. The slave unit control unit 20 transmits a charge completion signal FINC if the charging is completed. The confirmation of the completion of charging may be performed only on the second power storage unit 32.
FIG. 4 shows a state in which the charging of the slave unit SD1 is completed at the time point te10, and the charging completion signal FINC001 is transmitted when T seconds have elapsed after the start of the first sleep.
After transmitting the charging completion signal FINC001, the child device control unit 20 of the child device SD shifts to sleep again. By shifting to sleep even after charging is completed, power consumption can be avoided as much as possible.
The charging of the slave units SD2 and SD9 is not completed, and at the time of the first wake-up, the slave unit does not transmit the charging completion signal FINC and sleeps again. In this example, it is assumed that the charging of the slave unit SD2 is completed at the time point te20, and the charging of the slave unit SD9 is completed at the time point te90.
 2回目のスリープの後、各子機SDは、それぞれ再度T秒経過後にウェイクアップして充電完了確認を行う。この例では、2回目のウェイクアップ時点では、子機SD1,SD2が充電完了しているので、子機SD1が充電完了信号FINC001を送信し、子機SD2が充電完了信号FINC002を送信する。子機SD9は充電が未完了であり充電完了信号FINCを送信しない。そして各子機SDの子機制御部20はまたスリープへ移行する。 の 後 After the second sleep, each slave unit SD wakes up again after the elapse of T seconds to confirm charging completion. In this example, at the time of the second wake-up, since the slaves SD1 and SD2 have been charged, the slave SD1 transmits the charge completion signal FINC001, and the slave SD2 transmits the charge completion signal FINC002. The slave unit SD9 has not completed charging and does not transmit the charge completion signal FINC. Then, the slave unit control unit 20 of each slave unit SD shifts to sleep again.
 ここで子機SD1が再び充電完了信号FINC001を送ることは必ずしも必要ではないが、親機MD側での全子機SDの充電確認を確実に確認するために、毎回送信するようにすることが考えられる。特に早く充電が完了した子機は、ワイヤレス充電に有利な環境にあると考えることができ、送信により電力消費が増えても、余裕があると考えることができるため、毎回送信しても問題はない。
 但し、特に蓄電部の容量が小さい場合などは、一度充電完了信号FINCを送信した子機SDは、その後のウェイクアップの際に送信を行わないようにしてもよい。
Here, it is not always necessary for the slave unit SD1 to send the charging completion signal FINC001 again. However, in order to surely confirm the charge confirmation of all the slave units SD on the master unit MD side, it may be transmitted every time. Conceivable. In particular, a cordless handset that has been charged early can be considered to be in an environment that is advantageous for wireless charging, and even if power consumption increases due to transmission, it can be considered that there is enough room. Absent.
However, especially when the capacity of the power storage unit is small, the slave unit SD that has once transmitted the charge completion signal FINC may not be transmitted during the subsequent wake-up.
 図4の例では、3回目のスリープの後の時点までに、各子機SDで充電が完了したとしている。この場合、各子機SDは、それぞれスリープ開始からT秒経過後にウェイクアップして充電完了確認を行い、充電完了信号FINを送信する。
 この際、親機MD側では、全ての子機SDから充電完了信号FINCを受信できたことで、充電完了を確認し、給電動作を終了させる。
 なおここで繰り返し回数を指定する回数情報n=3とされていたとすると、この時点でも全子機SDで充電完了が確認できないときは、既に3回のスリープとウェイクアップしての充電確認というサイクルを終えたことになるため、エラーとして動作を終了したり、或いは充電動作設定信号CARの送信からやり直すことになる。
In the example of FIG. 4, it is assumed that charging has been completed in each slave unit SD by the time after the third sleep. In this case, each slave unit SD wakes up after T seconds have elapsed from the start of sleep to confirm charging completion, and transmits a charging completion signal FIN.
At this time, the master unit MD confirms the completion of charging by receiving the charge completion signal FINC from all the slave units SD, and ends the power supply operation.
Here, assuming that the number information n = 3 for designating the number of repetitions, if the charging completion cannot be confirmed in all the slave units SD even at this point, a cycle of three sleeps and a charge confirmation after waking up has already been performed. Therefore, the operation is terminated as an error, or the transmission is started again from the transmission of the charging operation setting signal CAR.
 以上のような通信により、全ての子機SDについての充電完了確認が可能となる。
 この図4のような動作を実現するための親機MDと各子機SDの処理例を図5,図6に示す。図示する親機側の処理(S101~S159)は、親機制御部10が動作プログラムに従って実行する処理である。図示する子機側の処理(S201~S259)は、各子機SDにおける子機制御部20が動作プログラムに従って実行する処理である。
By the communication as described above, it is possible to confirm the charging completion for all the slaves SD.
FIGS. 5 and 6 show processing examples of the master unit MD and each slave unit SD for realizing the operation as shown in FIG. The processes (S101 to S159) on the master unit shown in the figure are processes executed by the master unit control unit 10 according to the operation program. The processing (S201 to S259) on the child device side shown in the drawing is a process executed by the child device control unit 20 in each child device SD according to the operation program.
 図5は図4に示した充電のための事前処理を示し、図6は充電処理(第2蓄電部32を含む充電処理)を示す。まず図5の事前処理について説明する。 FIG. 5 shows the pre-processing for charging shown in FIG. 4, and FIG. 6 shows the charging processing (charging processing including the second power storage unit 32). First, the preliminary processing of FIG. 5 will be described.
 図5のステップS101で親機制御部10は、まず給電装置2を制御してワイヤレス給電動作を開始させる。
 子機SD側は、例えば無電源状態である初期状態としてスイッチ33がオフになっている。このため、受電部30での受電により得られた充電電流は第1蓄電部31に流れ、第1蓄電部31の充電が行われる。
 親機制御部10は、ステップS102で一定時間の経過を待機する。これは、子機SD側の第1蓄電部31に必要な充電が行われる期間を待機するものとなる。子機制御部9及び通信部21は、第1蓄電部31が充電されることで動作が可能となる。
In step S101 of FIG. 5, master device control unit 10 first controls power supply device 2 to start the wireless power supply operation.
On the slave unit SD side, the switch 33 is turned off as an initial state in which there is no power supply, for example. For this reason, the charging current obtained by the power reception in the power receiving unit 30 flows to the first power storage unit 31, and the first power storage unit 31 is charged.
Master device control unit 10 waits for a predetermined time to elapse in step S102. This waits for a period during which the necessary charging of the first power storage unit 31 on the slave unit SD side is performed. The slave unit control unit 9 and the communication unit 21 can operate when the first power storage unit 31 is charged.
 一定時間の充電が行われた時点で、親機制御部10は子機SD側が事前処理可能となったと判断してステップS103に進み子機設定を行う。具体的には、親機制御部10は各子機SDの子機制御部20に対してアドレス及び起爆遅延時間の情報を含む設定情報を送信する。各子機SDにはシリアルナンバが予め設定されている。そこで親機制御部10は、それぞれのシリアルナンバに対応してアドレスと起爆遅延時間の情報を送信する。
 ここで送信するアドレスとは、上述の(001)(002)等のアドレスであり、応答信号ACKやスリープ開始の遅延時間を設定するアドレスである。
 また起爆遅延時間とは、親機制御部10が起爆トリガを送信した後、子機制御部20が実際に起爆処理を行うまでの遅延時間である。各所に設置した多数のダイナマイトを爆破させる場合、目的の破砕状態を得るためには起爆の順序や時間差は重要になる。そのため各子機SDには起爆遅延時間が設定されるようにしている。
At the point in time when charging has been performed for a certain period of time, master device control section 10 determines that the slave device SD has been able to perform pre-processing, and proceeds to step S103 to perform slave device setting. Specifically, master unit control unit 10 transmits setting information including information on the address and the explosion delay time to slave unit control unit 20 of each slave unit SD. A serial number is set in advance for each slave unit SD. Therefore, base unit control section 10 transmits information of the address and the detonation delay time corresponding to each serial number.
The address to be transmitted here is an address such as (001) or (002) described above, and is an address for setting a response signal ACK and a delay time of sleep start.
The detonation delay time is a delay time from when the parent device control unit 10 transmits the detonation trigger to when the child device control unit 20 actually performs the detonation process. When blasting a large number of dynamites installed in various places, the order and time difference of detonation are important to obtain the desired crushing state. Therefore, an explosion delay time is set for each slave unit SD.
 子機制御部20は、ステップS201で設定情報を受信すると、ステップS202で自己のシリアルナンバにあわせてアドレス及び起爆遅延時間の情報等を取得し、自己の設定としてセットする。 Upon receiving the setting information in step S201, the slave unit control unit 20 acquires the address and the explosion delay time information and the like in accordance with its own serial number in step S202, and sets it as its own setting.
 続いて親機制御部10はステップS104で各子機SDの子機制御部20に対して起爆部(雷管)の導通チェックを指示する。
 各子機SDの子機制御部20は、ステップS203で導通チェックの指示を受信したら、ステップS204で導通チェックを行う。例えば子機制御部20は機能部24等の必要箇所の導通チェックを行う。そして子機制御部20はステップS205でチェック結果を親機制御部10に送信する。
Subsequently, in step S104, master unit control unit 10 instructs slave unit control unit 20 of each slave unit SD to check the continuity of the detonating unit (primer).
Upon receiving the continuity check instruction in step S203, the slave control unit 20 of each slave SD performs a continuity check in step S204. For example, the slave unit control unit 20 performs a continuity check of necessary parts such as the function unit 24. Then, the slave unit control unit 20 transmits the check result to the master unit control unit 10 in step S205.
 親機制御部10は、ステップS105で子機制御部20からのチェック結果を受信して確認する。ここでは全ての子機SDからのチェック結果を確認する。
 即ち、全子機についてステップS106でチェックOKと確認できるまで、ステップS107でタイムアップとならない限り、ステップS105でのチェック結果受信を行い、全子機SDからの受信を監視する。
 もし、1つの子機SDからでもチェック結果として「導通不可」の結果が得られた場合、もしくは1つの子機SDからでも、チェック結果が受信できなかった場合は、ステップS108でエラー処理を行う。つまり緊急停止として、これ以降の処理の進行を中止する。特に起爆システムの場合、全ての雷管の動作が適切に行われることが、作業目的の達成や安全性の確保に重要となる。そこで1つの子機SDであっても異常が検知された場合は、処理進行を中止することが好適となる。
Master device control portion 10 receives and checks the check result from child device control portion 20 in step S105. Here, the check results from all the slaves SD are confirmed.
In other words, until the check is completed in step S106 for all the slave units, the check result is received in step S105 and the reception from all the slave units SD is monitored unless the time is up in step S107.
If a result of “conduction is not possible” is obtained as a check result from one slave unit SD, or if a check result is not received from one slave unit SD, error processing is performed in step S108. . That is, as an emergency stop, the subsequent processing is stopped. In the case of detonation systems in particular, proper operation of all primers is important for achieving work objectives and ensuring safety. Therefore, if an abnormality is detected even in one slave unit SD, it is preferable to stop the processing progress.
 全ての子機SDの導通チェックがOKであった場合、図6の充電処理に進む。ここでいう充電処理とは、少なくとも本来の機能(機能部24)の主たる電源となる第2蓄電部32へのワイヤレス給電による充電処理である。上記の事前処理に続いて、この充電処理が開始される。 If the continuity check of all the slaves SD is OK, the process proceeds to the charging process in FIG. Here, the charging process is a charging process by wireless power supply to the second power storage unit 32 which is a main power source of at least the original function (the function unit 24). Subsequent to the above pre-processing, this charging processing is started.
 図6のステップS150で親機制御部10は、給電装置2を制御してワイヤレス給電動作を開始させる。但し、先のステップS101で開始したワイヤレス給電をそのまま継続している場合は、この制御は不要である。 で At step S150 in FIG. 6, master device control unit 10 controls power supply device 2 to start the wireless power supply operation. However, if the wireless power supply started in step S101 is continued as it is, this control is unnecessary.
 ステップS151で親機制御部10は、各子機SDの子機制御部20に対して、充電動作設定信号CARを送信する。上述のように充電動作設定信号CARには時間情報Tと回数情報nが含まれる。
 各子機SDの子機制御部20は、ステップS250で充電動作設定信号CARを受信したら、ステップS251で時間情報T及び回数情報nを記憶し、またスイッチ33をオンとし、さらに変数C=1とする。変数Cは繰り返し回数を確認するための変数である。
 スイッチ33をオンとすることで、第1蓄電部31に加えて第2蓄電部32への充電が開始される。
In step S151, master unit control unit 10 transmits charging operation setting signal CAR to slave unit control unit 20 of each slave unit SD. As described above, the charging operation setting signal CAR includes the time information T and the number-of-times information n.
Upon receiving the charging operation setting signal CAR in step S250, the slave unit control unit 20 of each slave unit SD stores the time information T and the count information n in step S251, turns on the switch 33, and further sets the variable C = 1. And The variable C is a variable for confirming the number of repetitions.
By turning on switch 33, charging of second power storage unit 32 in addition to first power storage unit 31 is started.
 子機SDの子機制御部20はステップS252で応答タイミングを待機する。これは自己に与えられたアドレスに応じた遅延時間を待機するものとなる。
 アドレスに応じた遅延時間を経過したら子機制御部20はステップS253で応答信号ACKを送信し、そして即座にステップS254でスリープ状態に移行する。
The slave control unit 20 of the slave SD waits for a response timing in step S252. This waits for a delay time corresponding to the address given to itself.
After a delay time corresponding to the address has elapsed, the slave unit control unit 20 transmits a response signal ACK in step S253, and immediately shifts to a sleep state in step S254.
 親機制御部10はステップS152で応答信号ACKの受信処理を行う。このステップS152の受信処理はステップS153で、全子機SDに対する応答待ち時間を経過したと判断されるまで行う。各子機SDからは時間差で応答信号ACKを送信してくるため、応答待ち時間とは、最後に送信してくる子機SD(例えばSD009)の応答のための遅延時間に応じて設定される時間となる。
 全ての子機SDから応答信号ACKを受信したら、ステップS153からS154に進み、以降受信待機する限度を認識するために時間をカウントする内部タイマをスタートさせる。
 なお、図示を省略したが、ステップS153で応答待ち時間を経過して、全ての子機SDからの応答信号ACKが受信できた状態でなければ(1つでも応答信号ACKが確認できない子機SDがあれば)、エラー処理として起爆のための充電処理を停止させることが望ましい。
Master device control section 10 performs reception processing of response signal ACK in step S152. The reception processing in step S152 is performed until it is determined in step S153 that the response waiting time for all the slaves SD has elapsed. Since the response signal ACK is transmitted from each child device SD with a time difference, the response waiting time is set according to the delay time for the response of the child device SD (for example, SD009) that transmits last. Time.
When the response signals ACK have been received from all the slaves SD, the process proceeds from step S153 to S154, and an internal timer for counting time is started to recognize the limit of waiting for reception thereafter.
Although not shown, if the response waiting time has elapsed in step S153 and the response signals ACK from all the slave units SD have not been received (the slave unit SD in which no response signal ACK can be confirmed). If there is), it is desirable to stop the charging process for detonation as an error process.
 各子機SDの子機制御部20は、ステップS254でスリープした後、T秒経過した時点で自動的にウェイクアップする(S255)。そして子機制御部20はステップS256で充電完了確認を行う。充電が完了していれば、子機制御部20はステップS257に進み充電完了信号FINCを送信する処理を行う。充電が完了していなければステップS257の処理をスキップする。
 そして子機制御部20はステップS258で変数Cをインクリメントし、ステップS259で変数Cが回数情報nに達していなければ、ステップS254に戻ってスリープへ移行する。
After sleeping in step S254, the slave unit control unit 20 of each slave unit SD automatically wakes up when T seconds have elapsed (S255). Then, the child device control unit 20 confirms the charging completion in step S256. If charging has been completed, the slave unit control unit 20 proceeds to step S257 and performs processing for transmitting a charge completion signal FINC. If the charging has not been completed, the process of step S257 is skipped.
Then, child device control unit 20 increments variable C in step S258, and if variable C has not reached number-of-times information n in step S259, returns to step S254 and shifts to sleep.
 もしステップS259で変数Cが回数情報nに達していれば子機制御部20は一連の処理を終える。
 なお図示していないが、その後は、再び充電動作設定信号CARを受信したら、ステップS250からの処理を行うようにする。
If variable C has reached number-of-times information n in step S259, slave unit control unit 20 ends a series of processes.
Although not shown, after that, when the charging operation setting signal CAR is received again, the processing from step S250 is performed.
 親機制御部10はステップS155で充電完了信号FINCの受信処理を行う。
 この受信処理は、ステップS156で充電継続時間が経過したと判断されるまで継続して行われる。充電継続時間とは、(時間情報T)×(回数情報n)の値に基づいて設定される時間である。即ち子機SD側がステップS259でC≧nと判定されるまでの時間となる。親機制御部10はステップS154で開始した時間計数が、この充電継続時間に達したか否かをステップS156で確認する。
 従って、例えば回数情報n=3の場合、子機SD側で3回のスリープ/ウェイクアップしての充電完了確認が行われるまでの期間、親機制御部10はステップS155で充電完了信号FINCを監視することになる。
Master device control unit 10 performs a reception process of charging completion signal FINC in step S155.
This receiving process is continuously performed until it is determined in step S156 that the charging duration time has elapsed. The charging duration is a time set based on the value of (time information T) × (number-of-times information n). That is, it is the time until the slave unit SD determines that C ≧ n in step S259. Master device control unit 10 confirms in step S156 whether or not the time counting started in step S154 has reached the charging duration time.
Therefore, for example, in the case of the number-of-times information n = 3, the master unit control unit 10 outputs the charge completion signal FINC in step S155 until the slave unit SD performs the sleep / wakeup three times to confirm the charge completion. Will be monitored.
 充電継続時間が経過したら、親機制御部10はステップS157に進み、全子機SDの充電が完了したか否かを確認する。即ち全ての子機SDから充電完了信号FINCが得られた否かの確認である。全子機SDの充電が完了していれば、ステップS159で親機制御部10は、給電装置2を制御してワイヤレス給電動作を終了させる。そして図6の充電処理を終える。
 もし1つでも充電が完了していない場合は、ステップS158で、充電動作設定信号CARの再送回数を確認する。再送回数とは、予め選択した(例えばオペレータが設定した)回数であり、1回以上の値に設定できる。
 まだ再送回数が残っていれば、親機制御部10はステップS151に戻って同様の処理を行う。設定した再送回数が完了していれば、親機制御部10はステップS159で給電装置2による給電動作を終了させて処理を終える。
 これにより、全ての子機SDの充電が完了するまで、再送回数を限度として図6の処理を繰り返すことが可能となる。
 再送回数だけ図6の処理を繰り返しても、充電完了とならない子機SDが存在する場合は、エラー処理として起爆のための充電処理を停止させることが望ましい。
After the charging duration time has elapsed, the master unit control unit 10 proceeds to step S157, and checks whether or not charging of all the slave units SD has been completed. That is, it is to confirm whether or not the charging completion signal FINC has been obtained from all the slaves SD. If the charging of all the slaves SD has been completed, the master unit control unit 10 controls the power supply device 2 to end the wireless power supply operation in step S159. Then, the charging process of FIG. 6 ends.
If at least one of the charging has not been completed, the number of retransmissions of the charging operation setting signal CAR is confirmed in step S158. The number of retransmissions is the number of times selected in advance (for example, set by the operator), and can be set to one or more values.
If the number of retransmissions still remains, master controller control unit 10 returns to step S151 and performs the same processing. If the set number of retransmissions has been completed, master device control unit 10 terminates the power supply operation by power supply device 2 in step S159, and ends the process.
This makes it possible to repeat the processing of FIG. 6 up to the number of retransmissions until charging of all the slaves SD is completed.
If there is a slave unit SD whose charging is not completed even if the process of FIG. 6 is repeated by the number of retransmissions, it is desirable to stop the charging process for detonation as an error process.
<まとめ及び変形例>
 以上の実施の形態では、次のような効果が得られる。
 実施の形態の充電確認装置1は、それぞれがワイヤレス給電に対応して蓄電部への充電を行う複数の子機SD(受電装置)との間で無線通信を行う通信部11と、親機制御部10を備えている。そして親機制御部10は、ワイヤレス給電の際に充電動作設定信号CARを通信部11から複数の子機SDに送信させる処理(S151)と、子機SDへの問い合わせ送信を行わない状態で受信を待機し、全ての受電装置からの充電完了信号が受信されたか否かを確認する処理(S155、S156、S157)とを行う。
 また実施の形態の子機SD(受電装置)は、動作電源として搭載する蓄電部(第1蓄電部31、第2蓄電部32)に対して、ワイヤレス給電に対応して充電を行う電源部22と、外部の充電確認装置との間で無線通信を行う通信部21と、子機制御部20を備えている。そして子機制御部20は、通信部21により受信される充電動作設定信号CARを受信した後にスリープ状態に移行し(S250~S254)、所定時間経過後にウェイクアップして蓄電部の充電完了確認の処理を行い、充電が完了していた場合には、親機MDの充電確認装置1に対して充電完了信号FINCを通信部21から送信させる処理(S255~S257)を行う。
 即ち親機制御部10は、各子機SDに対し、充電動作設定信号CARを送った後は、何の送信を行わずに、各子機SDからの送信完了信号FINCを待機する。
 一方子機制御部20は、スリープ状態からウェイクアップしたときに、自主的に充電完了確認を行い、充電完了と判断された場合に、充電完了信号を送信する。
 親機MDとしては、単に子機SDからの充電完了信号FINCを待機していれば良く、子機SDの充電の進行等を予測して問い合わせるなどの処理は不要で、処理が容易となる。
 子機SDでは、親機MDが問い合わせの送信を行わないため、充電中に受信処理を行うことが不要になり、消費電力を削減できる。更にいえば、図3の比較例のように複数回の受信処理が行われる場合を考えれば、受信処理を行わないことによる子機SD側での消費電力削減効果は極めて高い。また子機SD側はスリープしながら充電を行うため充電中の蓄電部の電力消費も殆ど生じない。
 これらにより子機SD側では充電を効率良く迅速に進めることができ、また充電後の機能部24の動作や通信のための電力確保のためにも望ましいものとなる。
 特に実施の形態で述べたような起爆システムの場合、第1蓄電部31、第2蓄電部32としてコンデンサが用いられることもあるが、これらのコンデンサはさほどの大容量でなく、通信や起爆に必要な最小限の電源となりうるものとされる。すると、少しでも電力消費を避けたいということになる。従って受信処理を行なわずに電力を消費しないことは、正常な起爆動作に極めて有利となる。
<Summary and Modifications>
In the above embodiment, the following effects can be obtained.
The charging confirmation device 1 according to the embodiment includes a communication unit 11 that performs wireless communication with a plurality of slave units SD (power receiving devices) each of which charges a power storage unit corresponding to wireless power supply, and a base unit control unit. A section 10 is provided. Then, base unit control unit 10 transmits charging operation setting signal CAR from communication unit 11 to a plurality of slave units SD at the time of wireless power supply (S151), and receives the inquiry operation without sending inquiry to slave unit SD. And performs processing (S155, S156, S157) for confirming whether or not charging completion signals have been received from all the power receiving apparatuses.
The slave unit SD (power receiving device) according to the embodiment includes a power supply unit 22 that charges a power storage unit (a first power storage unit 31 and a second power storage unit 32) mounted as an operation power supply in response to wireless power supply. And a communication unit 21 for performing wireless communication with an external charging confirmation device, and a slave unit control unit 20. The slave unit control unit 20 shifts to the sleep state after receiving the charging operation setting signal CAR received by the communication unit 21 (S250 to S254), wakes up after a predetermined time has elapsed, and confirms the completion of charging of the power storage unit. When the charging is completed, the process (S255 to S257) for transmitting the charging completion signal FINC to the charging confirmation device 1 of the master unit MD from the communication unit 21 is performed.
That is, after sending the charging operation setting signal CAR to each slave unit SD, the master unit control unit 10 waits for the transmission completion signal FINC from each slave unit SD without performing any transmission.
On the other hand, the slave unit control unit 20 voluntarily checks charging completion when waking up from the sleep state, and transmits a charging completion signal when it is determined that charging is completed.
The master unit MD only needs to wait for the charging completion signal FINC from the slave unit SD, and does not need to perform a process such as predicting the progress of charging of the slave unit SD and making an inquiry, thereby facilitating the process.
In the slave unit SD, since the master unit MD does not transmit an inquiry, it is not necessary to perform a reception process during charging, and power consumption can be reduced. Furthermore, considering the case where the receiving process is performed a plurality of times as in the comparative example of FIG. 3, the effect of reducing the power consumption on the slave unit SD side by not performing the receiving process is extremely high. Further, since the slave unit SD performs charging while sleeping, power consumption of the power storage unit during charging hardly occurs.
Thus, charging can proceed efficiently and quickly on the slave unit SD side, and it is also desirable for securing the power for the operation of the functional unit 24 and the communication after the charging.
In particular, in the case of the detonation system as described in the embodiment, capacitors may be used as the first power storage unit 31 and the second power storage unit 32, but these capacitors are not so large in capacity, and are used for communication and detonation. It is assumed that it can be a necessary minimum power supply. Then you want to avoid power consumption at all. Therefore, not consuming power without performing reception processing is extremely advantageous for normal detonation operation.
 なお、第1蓄電部31、第2蓄電部32を有するものとしたが、これは一例である。電源部22は少なくとも1つの蓄電部を有する構成であればよい。もちろん蓄電部は各種の二次電池やコンデンサが考えられる。
 実施の形態では、第1蓄電部31、第2蓄電部32を分けていることにより、充電完了後に何らかの通信が行われても、第1蓄電部31により電力が得られる限りは第1蓄電部31を電源とするようにし、なるべく第2蓄電部32が消費されないようにすることができる。従って、起爆の際に、第2蓄電部32の電圧低下で起爆が実行できないような事態を回避できる。
Note that the first power storage unit 31 and the second power storage unit 32 are provided, but this is an example. The power supply unit 22 may have a configuration including at least one power storage unit. Of course, various types of secondary batteries and capacitors can be considered as the power storage unit.
In the embodiment, the first power storage unit 31 and the second power storage unit 32 are separated, so that even if some communication is performed after the charging is completed, the first power storage unit 31 is provided as long as the first power storage unit 31 can obtain power. It is possible to use the power supply 31 and prevent the second power storage unit 32 from being consumed as much as possible. Therefore, at the time of detonation, it is possible to avoid a situation in which detonation cannot be performed due to a voltage drop of the second power storage unit 32.
 実施の形態では、充電動作設定信号CARは、子機SDにおけるスリープ時間を指定する時間情報Tを含むものとした。
 そして子機制御部20は、スリープ状態に移行した後、時間情報Tで指定された所定時間経過後にウェイクアップして蓄電部の充電完了確認の処理を行う。
 親機MD側から、子機SD側で充電中に行うスリープ時間を指定することで、システム動作を柔軟に設定できることになる。例えばスリープ時間を状況(各子機SDの配置や充電容量等)に応じて適切に設定できる。
 子機SDでは、子機制御部20がスリープすることで、充電効率を上げ、なるべく早く充電が完了できるようにすることができる。
 また親機MD側では、スリープ時間を指示することで、充電完了信号送信が送信されてくるおおよその時刻がわかる。例えばステップS156で判断する充電継続時間がわかる。それによって、適切な期間に、全子機SDの充電完了信号FINCの受信処理を行い、その有無を判定できる。
 なお、時間情報Tは固定値とされ、予め全ての子機SDの子機制御部20において設定された値とし、親機制御部10でも既知の値としてもよい。少なくとも充電動作設定信号CARにスリープ時間の時間情報が含まれるようにすれば、システム上、スリープ時間を可変設定できることになる。
In the embodiment, the charging operation setting signal CAR includes the time information T specifying the sleep time in the slave unit SD.
Then, after shifting to the sleep state, slave unit control unit 20 wakes up after a lapse of a predetermined time specified by time information T, and performs a process of confirming charging completion of the power storage unit.
The system operation can be flexibly set by designating the sleep time to be performed during charging on the slave unit SD side from the master unit MD side. For example, the sleep time can be appropriately set according to the situation (the arrangement of each slave unit SD, the charging capacity, and the like).
In the slave unit SD, the sleep of the slave unit control unit 20 increases the charging efficiency, so that charging can be completed as soon as possible.
By instructing the sleep time, the master unit MD can know the approximate time at which the transmission of the charging completion signal is transmitted. For example, the charging duration determined in step S156 is known. Thereby, the reception processing of the charge completion signal FINC of all the slaves SD is performed in an appropriate period, and it is possible to determine the presence or absence thereof.
In addition, the time information T is a fixed value, may be a value set in advance in the slave unit control units 20 of all the slave units SD, and may be a known value in the master unit control unit 10. If at least the time information of the sleep time is included in the charging operation setting signal CAR, the sleep time can be variably set on the system.
 実施の形態では、充電動作設定信号CARは、子機SDにおけるスリープ及び充電完了確認の繰り返し回数を指定する回数情報nを含むものとした。
 そして子機制御部20は、スリープ状態への移行と、ウェイクアップして行う蓄電部の充電完了確認の処理を、回数情報nに示される回数、繰り返し実行する。
 親機MDから子機SDの充電中のスリープとウェイクアップしての充電完了確認(必要に応じての充電完了信号送信)を繰り返す回数を指定することで、システム動作を柔軟に設定できることになる。例えば回数情報nを状況(各子機SDの配置や充電容量等)に応じて適切に設定できる。
 子機SD側では、固定の動作サイクル回数だけこのような処理を実行するばかりでなく、親機MD側から、作業の内容や都合に応じて柔軟に対応できるようになる。
 また回数情報nで子機SD側の充電中の動作サイクルの回数を規定し、無制限にスリープ及び充電完了確認が行われてシステム動作に不具合が生ずることを防止できる。
 なお、繰り返し回数も固定回数とし、予め全ての子機SDの子機制御部20及び親機制御部10で既知の値としてもよい。少なくとも充電動作設定信号CARに繰り返し回数の回数情報が含まれるようにすれば、システム上、繰り返し回数を可変設定できることになる。
 なお、実施の形態では、充電動作設定信号CARには子機SDにおけるスリープ時間の時間情報と、スリープ及び充電完了確認の繰り返し回数を示す回数情報の両方が含まれているものとしたが、これらは必ずしも両方が充電動作設定信号CARに含まれている必要はない。
In the embodiment, the charging operation setting signal CAR includes count information n specifying the number of repetitions of sleep and charging completion confirmation in the slave unit SD.
The slave unit control unit 20 repeatedly executes the transition to the sleep state and the process of confirming the completion of charging of the power storage unit performed by waking up the number of times indicated by the count information n.
The system operation can be flexibly set by designating the number of times the parent machine MD repeats sleep during charging of the child machine SD and wake-up and checks the completion of charging (transmission of a charge completion signal as necessary). . For example, the number-of-times information n can be appropriately set according to the situation (arrangement, charging capacity, and the like of each slave unit SD).
On the slave unit SD side, such processing is executed not only for a fixed number of operation cycles, but also on the master unit MD side, it is possible to flexibly cope with work contents and convenience.
In addition, the number of operation cycles during charging on the slave unit SD side is defined by the number information n, and it is possible to prevent the sleep and the completion of charging from being performed indefinitely, thereby preventing a problem in system operation.
The number of repetitions may be a fixed number, and may be a value known in advance by the slave unit control units 20 and the master unit control units 10 of all the slave units SD. If at least the information on the number of repetitions is included in the charging operation setting signal CAR, the number of repetitions can be variably set on the system.
In the embodiment, the charging operation setting signal CAR includes both the time information of the sleep time in the slave unit SD and the frequency information indicating the number of repetitions of the sleep and the charging completion confirmation. Need not always be included in the charging operation setting signal CAR.
 実施の形態では子機制御部20は、通信部21により受信される充電動作設定信号CARを受信した後に、設定された遅延時間を待機してから応答信号ACKを送信するとともにスリープ状態に移行するものとした。
 即ち各子機SDは、それぞれ自己に固有のアドレスが設定され、充電動作設定信号CARの受信タイミングからアドレスに応じた遅延時間を経過した後に、応答信号ACKの送信とスリープへの移行を行う。
 これにより各子機SDは、それぞれ応答信号ACKを送信するタイミング及びスリープに移行するタイミングがずれることになる。
 応答信号ACKを送信するタイミングがずれることで、親機MD側は各子機SDからの応答信号ACKを混信なく適切に受信できる。各子機SDが独自のタイミングで応答信号ACKを送信すると、複数の子機SDから同時に応答信号ACKが送信される可能性が生じ、混信が発生して、給電装置側で通知を認識できないことがある。アドレスに応じた遅延時間を用いて応答信号ACKの送信タイミングずらすことで、このような事態を回避できる。
 またスリープへの移行タイミングがずれることで、各子機SDのウェイクアップタイミングもずれ、結果として充電完了信号FINCの送信タイミングも同一にはならない。従って、親機MD側は、各子機SDの充電完了信号FINCも混信なく適切に受信できる。これにより親機MDは、各子機SDの状況を正しく検出できる。
 特に各子機MDが充電完了の際に自主的に親機MDに充電完了信号FINCを送信する場合、各子機SDの充電完了信号FINCの送信タイミングが重なって混信し、親機MDが認識できないことも生ずる。本実施の形態では、各子機SDのウェイクアップタイミングがずれることで、このような事態を避けることができる。
In the embodiment, after receiving the charging operation setting signal CAR received by the communication unit 21, the slave unit control unit 20 waits for a set delay time, transmits a response signal ACK, and shifts to a sleep state. It was taken.
That is, each slave unit SD has its own unique address set, and after a delay time corresponding to the address has elapsed from the reception timing of the charging operation setting signal CAR, transmission of the response signal ACK and transition to sleep.
As a result, in each slave unit SD, the timing of transmitting the response signal ACK and the timing of shifting to the sleep mode are shifted.
By shifting the timing of transmitting the response signal ACK, the master unit MD can appropriately receive the response signal ACK from each slave unit SD without interference. If each slave unit SD transmits the response signal ACK at its own timing, there is a possibility that the response signal ACK is transmitted from a plurality of slave units SD at the same time, and interference occurs, and the power supply device cannot recognize the notification. There is. Such a situation can be avoided by shifting the transmission timing of the response signal ACK using the delay time according to the address.
Also, the shift in the shift timing to the sleep shifts the wake-up timing of each slave unit SD, and as a result, the transmission timing of the charge completion signal FINC does not become the same. Therefore, the master unit MD can appropriately receive the charge completion signal FINC of each slave unit SD without interference. As a result, the master unit MD can correctly detect the status of each slave unit SD.
Particularly, when each slave unit MD voluntarily transmits the charge completion signal FINC to the master unit MD when charging is completed, the transmission timing of the charge completion signal FINC of each slave unit SD overlaps, causing interference, and the master unit MD recognizes. Some things cannot be done. In the present embodiment, such a situation can be avoided by shifting the wake-up timing of each slave unit SD.
 なお実施の形態では、n回のサイクルのうち、既に充電完了信号FINCを送信した子機SDでも、次にウェイクアップしたときに、確認のために再び充電完了信号FINCを送信するものとしたが、このような2回目以降の送信は止めるようにしてもよい。これにより無駄な電力消費を回避できるとともに、システム内の通信量を削減できる。 In the embodiment, the slave unit SD which has already transmitted the charge completion signal FINC in the n cycles also transmits the charge completion signal FINC again for confirmation when waking up next time. The transmission after the second time may be stopped. This can avoid wasteful power consumption and reduce the amount of communication in the system.
 1…充電確認装置、2…ワイヤ4レス給電装置、10…親機制御部、11…通信部、12…給電部、20…子機制御部、21…通信部、22…電源部、30…受電部、31…第1蓄電部、32…第2蓄電部、33…スイッチ、MD…親機、SD(SD1~SD9)…子機 DESCRIPTION OF SYMBOLS 1 ... Charge confirmation apparatus, 2 ... Wireless 4 power supply apparatus, 10 ... Master unit control part, 11 ... Communication part, 12 ... Power supply part, 20 ... Slave unit control part, 21 ... Communication part, 22 ... Power supply part, 30 ... Power receiving unit, 31: first power storage unit, 32: second power storage unit, 33: switch, MD: master unit, SD (SD1 to SD9): slave unit

Claims (9)

  1.  それぞれがワイヤレス給電に対応して蓄電部への充電を行う複数の受電装置との間で無線通信を行う通信部と、
     制御部と、を備え、
     前記制御部は、
     ワイヤレス給電の際に充電動作設定信号を前記通信部から複数の受電装置に送信させる処理と、
     前記受電装置への問い合わせ送信を行わない状態で受信を待機し、全ての受電装置からの充電完了信号が受信されたか否かを確認する処理と、を行う
     充電確認装置。
    A communication unit that performs wireless communication with a plurality of power receiving devices, each of which charges a power storage unit corresponding to wireless power supply,
    And a control unit,
    The control unit includes:
    A process of transmitting a charging operation setting signal to the plurality of power receiving devices from the communication unit during wireless power supply,
    And a process of waiting for reception without sending an inquiry to the power receiving device and confirming whether or not charging completion signals from all the power receiving devices have been received.
  2.  前記充電動作設定信号は、前記受電装置におけるスリープ時間を指定する時間情報を含む
     請求項1に記載の充電確認装置。
    The charging confirmation device according to claim 1, wherein the charging operation setting signal includes time information specifying a sleep time in the power receiving device.
  3.  前記充電動作設定信号は、前記受電装置におけるスリープ及び充電完了確認の繰り返し回数を指定する回数情報を含む
     請求項1又は請求項2に記載の充電確認装置。
    The charging confirmation device according to claim 1, wherein the charging operation setting signal includes count information specifying the number of repetitions of sleep and charging completion confirmation in the power receiving device.
  4.  動作電源として搭載する蓄電部に対して、ワイヤレス給電に対応して充電を行う電源部と、
     外部の充電確認装置との間で無線通信を行う通信部と、
     制御部と、を備え、
     前記制御部は、
     前記通信部により受信される充電動作設定信号を受信した後にスリープ状態に移行し、所定時間経過後にウェイクアップして前記蓄電部の充電完了確認の処理を行い、充電が完了していた場合には、前記充電確認装置に対して充電完了信号を前記通信部から送信させる処理を行う
     受電装置。
    A power supply unit for charging the power storage unit mounted as an operation power supply in accordance with wireless power supply,
    A communication unit that performs wireless communication with an external charging confirmation device;
    And a control unit,
    The control unit includes:
    After receiving the charging operation setting signal received by the communication unit, transition to a sleep state, wake up after a lapse of a predetermined time, perform a process of confirming the completion of charging of the power storage unit, and if charging has been completed, A power receiving device that performs a process of transmitting a charging completion signal from the communication unit to the charging confirmation device.
  5.  前記充電動作設定信号はスリープ時間を指定する時間情報を含み、
     前記制御部は、スリープ状態に移行した後、前記時間情報で指定された所定時間経過後にウェイクアップして前記蓄電部の充電完了確認の処理を行う
     請求項4に記載の受電装置。
    The charging operation setting signal includes time information specifying a sleep time,
    5. The power receiving device according to claim 4, wherein after transitioning to a sleep state, the control unit wakes up after a lapse of a predetermined time specified by the time information and performs a process of confirming charging completion of the power storage unit.
  6.  前記充電動作設定信号は、前記受電装置におけるスリープ及び充電完了確認の繰り返し回数を指定する回数情報を含み、
     前記制御部は、スリープ状態への移行と、ウェイクアップして行う前記蓄電部の充電完了確認の処理を、前記回数情報に示される回数、繰り返し実行する
     請求項4又は請求項5に記載の受電装置。
    The charging operation setting signal includes count information specifying the number of repetitions of sleep and charging completion confirmation in the power receiving device,
    The power receiving device according to claim 4, wherein the control unit repeatedly performs a transition to a sleep state and a process of confirming charging completion of the power storage unit performed by waking up the number of times indicated by the number-of-times information. apparatus.
  7.  前記制御部は、
     前記通信部により受信される充電動作設定信号を受信した後に、設定された遅延時間を待機してから応答信号を送信するとともにスリープ状態に移行する
     請求項4乃至請求項6のいずれかに記載の受電装置。
    The control unit includes:
    The reception device according to any one of claims 4 to 6, wherein after receiving the charging operation setting signal received by the communication unit, the device waits for a set delay time, transmits a response signal, and shifts to a sleep state. Power receiving device.
  8.  充電確認装置と、複数の受電装置を有して構成されるワイヤレス給電システムであって、
     前記充電確認装置は、
     複数の受電装置との間で無線通信を行う第1の通信部と、
     第1の制御部と、を備え、
     前記第1の制御部は、
     ワイヤレス給電の際に充電動作設定信号を前記第1の通信部から複数の受電装置に送信させる処理と、
     前記受電装置への問い合わせ送信を行わない状態で受信を待機し、全ての受電装置からの充電完了信号が受信されたか否かを確認する処理と、
     を行い
     前記受電装置は、
     動作電源として搭載する蓄電部に対して、ワイヤレス給電に対応して充電を行う電源部と、
     前記充電確認装置との間で無線通信を行う第2の通信部と、
     第2の制御部と、を備え、
     前記第2の制御部は、
     前記第2の通信部により受信される充電動作設定信号を受信した後にスリープ状態に移行し、所定時間経過後にウェイクアップして前記蓄電部の充電完了確認の処理を行い、充電が完了していた場合には、前記充電確認装置に対して充電完了信号を前記第2の通信部から送信させる処理を行う
     ワイヤレス給電システム。
    A charge confirmation device and a wireless power supply system including a plurality of power reception devices,
    The charging confirmation device,
    A first communication unit that performs wireless communication with a plurality of power receiving devices;
    A first control unit;
    The first control unit includes:
    Processing of transmitting a charging operation setting signal from the first communication unit to a plurality of power receiving devices during wireless power supply;
    A process of waiting for reception in a state where the inquiry transmission to the power receiving device is not performed, and confirming whether or not charging completion signals from all the power receiving devices have been received,
    The power receiving device,
    A power supply unit for charging the power storage unit mounted as an operation power supply in accordance with wireless power supply,
    A second communication unit that performs wireless communication with the charging confirmation device;
    A second control unit,
    The second control unit includes:
    After the charging operation setting signal received by the second communication unit is received, the sleep mode is entered, and after a predetermined time elapses, the power storage unit is charged and the charging is completed. In this case, the wireless power supply system performs a process of transmitting a charge completion signal from the second communication unit to the charge confirmation device.
  9.  前記受電装置は、起爆装置に設けられ、前記蓄電部は起爆動作のための電源として用いられる
     請求項8に記載のワイヤレス給電システム。
    The wireless power supply system according to claim 8, wherein the power receiving device is provided in a detonating device, and the power storage unit is used as a power source for a detonating operation.
PCT/JP2019/037183 2018-09-27 2019-09-24 Charge confirmation device, power receiving device, and wireless power feeding system WO2020066971A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020549191A JP6975345B2 (en) 2018-09-27 2019-09-24 Charge confirmation device, power receiving device, wireless power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018181859 2018-09-27
JP2018-181859 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020066971A1 true WO2020066971A1 (en) 2020-04-02

Family

ID=69952184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037183 WO2020066971A1 (en) 2018-09-27 2019-09-24 Charge confirmation device, power receiving device, and wireless power feeding system

Country Status (2)

Country Link
JP (1) JP6975345B2 (en)
WO (1) WO2020066971A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230100860A (en) * 2021-12-29 2023-07-06 주식회사 한화 Apparatus and method for operating electronic detonator with auxiliary power function

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153598A (en) * 1999-11-22 2001-06-08 Asahi Kasei Corp Remote wireless detonation apparatus and power energy transmission equipment and wireless detonator unit used in the apparatus
WO2008098302A1 (en) * 2007-02-16 2008-08-21 Orica Explosives Technology Pty Ltd Method of communication at a blast site, and corresponding blasting apparatus
JP2011012903A (en) * 2009-07-02 2011-01-20 Hiroto Hanyu Device and method for radio ignition of pyrotechnic for rocket
JP2012200056A (en) * 2011-03-18 2012-10-18 Fujitsu Ten Ltd Power reception device, power transmission device, and control method
WO2017183662A1 (en) * 2016-04-20 2017-10-26 日油株式会社 Wireless detonator, wireless detonation system, and wireless detonation method
WO2018131501A1 (en) * 2017-01-11 2018-07-19 双葉電子工業株式会社 Charging confirmation device, power reception device, and wireless power supply system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153598A (en) * 1999-11-22 2001-06-08 Asahi Kasei Corp Remote wireless detonation apparatus and power energy transmission equipment and wireless detonator unit used in the apparatus
WO2008098302A1 (en) * 2007-02-16 2008-08-21 Orica Explosives Technology Pty Ltd Method of communication at a blast site, and corresponding blasting apparatus
JP2011012903A (en) * 2009-07-02 2011-01-20 Hiroto Hanyu Device and method for radio ignition of pyrotechnic for rocket
JP2012200056A (en) * 2011-03-18 2012-10-18 Fujitsu Ten Ltd Power reception device, power transmission device, and control method
WO2017183662A1 (en) * 2016-04-20 2017-10-26 日油株式会社 Wireless detonator, wireless detonation system, and wireless detonation method
WO2018131501A1 (en) * 2017-01-11 2018-07-19 双葉電子工業株式会社 Charging confirmation device, power reception device, and wireless power supply system

Also Published As

Publication number Publication date
JPWO2020066971A1 (en) 2021-08-30
JP6975345B2 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
WO2011132507A1 (en) Non-contact power transmission device
KR101812444B1 (en) Wireless charging device for detection foreign object and method for detection foreign object of detection foreign object
JP2008161052A (en) Charging system
US10547216B2 (en) Power receiving apparatus, power feeding system, power feeding method, power source management method, computer readable recording medium storing power feeding program, and computer readable recording medium storing power source management program
JP2011049721A (en) Low standby-power type radio communication system by characteristic frequency monitoring
JP2015008608A (en) Non-contact power transmission and reception system
WO2020066971A1 (en) Charge confirmation device, power receiving device, and wireless power feeding system
WO2014208056A2 (en) Wireless power transmission/reception apparatus
KR101399958B1 (en) Wireless charging apparatus for cutting off standby power and method for controlling thereof
WO2023197720A1 (en) Charging method, charging station, system, and storage medium
JP2005086425A (en) Apparatus and system for data communication
US10542234B2 (en) Electronic apparatus
JP7456184B2 (en) Wireless power supply system
EP1145404B1 (en) Method of, and circuit for, controlling the discharge of a battery
WO2018131501A1 (en) Charging confirmation device, power reception device, and wireless power supply system
JP4977943B2 (en) Communications system
JP4744572B2 (en) Communication equipment, communication system
CN111224441B (en) Wireless charging control method and device for non-power supply equipment
JP2005045669A (en) Mobile communication device
JP7218641B2 (en) Remote Ignition Systems for Fireworks, Wireless Ignition Units, and Wireless Ignition Operators
JP2007166196A (en) Communication terminal device, its starting method and communication system
JP7380929B1 (en) Wireless power supply communication system
JP2020092568A (en) Charger, power receiver, and power supply system
JP6161376B2 (en) apparatus
KR102268156B1 (en) Wireless power receivig apparatus, wireless power receivig method, and wireless power transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866249

Country of ref document: EP

Kind code of ref document: A1