WO2020066709A1 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
WO2020066709A1
WO2020066709A1 PCT/JP2019/036180 JP2019036180W WO2020066709A1 WO 2020066709 A1 WO2020066709 A1 WO 2020066709A1 JP 2019036180 W JP2019036180 W JP 2019036180W WO 2020066709 A1 WO2020066709 A1 WO 2020066709A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
substrate
gap
light distribution
distribution device
Prior art date
Application number
PCT/JP2019/036180
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 宜弘
一樹 北村
拓磨 白井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020066709A1 publication Critical patent/WO2020066709A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses

Definitions

  • the present invention relates to an optical device.
  • Patent Document 1 discloses a structure provided with a mechanism for supplying and discharging a liquid to a retroreflective structure.
  • the structure described in Patent Document 1 when a liquid is supplied to the retroreflective structure, the structure becomes a transmission state, and when the liquid is not supplied, the structure becomes a reflection state, that is, a light-blocking state.
  • an object of the present invention is to provide an optical device that can efficiently take in light indoors when used in a window.
  • an optical device includes a light distribution device that distributes incident light and a container, and the light distribution device has a first substrate having a light-transmitting property.
  • a light-transmitting second substrate disposed opposite to the first substrate, a light-transmitting concavo-convex structure layer disposed on the first substrate side of the second substrate, and the concavo-convex structure layer And a gap provided between the first substrate and the first substrate, wherein the container accommodates a liquid injected into the gap and discharged from the gap.
  • optical device of the present invention when it is used for a window, light can be efficiently introduced indoors.
  • FIG. 1 is a schematic diagram illustrating a configuration of an optical device according to an embodiment.
  • FIG. 2 is a cross-sectional view of the light distribution device of the optical device according to the embodiment.
  • FIG. 3A is a cross-sectional view illustrating a state in which a liquid is injected into a gap of a light distribution device of the optical device according to the embodiment.
  • FIG. 3B is a cross-sectional view illustrating a state where the liquid is discharged from the gap of the light distribution device of the optical device according to the embodiment.
  • FIG. 3C is a cross-sectional view illustrating a state where the liquid is completely discharged from the gap of the light distribution device of the optical device according to the embodiment.
  • FIG. 3A is a cross-sectional view illustrating a state in which a liquid is injected into a gap of a light distribution device of the optical device according to the embodiment.
  • FIG. 3B is a cross-sectional view illustrating a state where the liquid is discharged from the gap
  • FIG. 4A is a cross-sectional view illustrating a transparent state of the light distribution device of the optical device according to the embodiment.
  • FIG. 4B is a cross-sectional view illustrating a light distribution state of the light distribution device of the optical device according to the embodiment.
  • FIG. 5A is a cross-sectional view showing a transparent state of the light distribution device of the optical device according to the first modification of the embodiment.
  • FIG. 5B is a cross-sectional view illustrating a light distribution state of the light distribution device of the optical device according to the first modification of the embodiment.
  • FIG. 6 is a cross-sectional view of a light distribution device of an optical device according to Modification 2 of the embodiment.
  • each drawing is a schematic diagram and is not necessarily strictly illustrated. Therefore, for example, the scales and the like do not always match in each drawing. Further, in each of the drawings, substantially the same configuration is denoted by the same reference numeral, and redundant description will be omitted or simplified.
  • the X axis, the Y axis, and the Z axis indicate three axes of a three-dimensional orthogonal coordinate system.
  • the Z-axis direction is the vertical direction
  • the direction perpendicular to the Z-axis is the horizontal direction.
  • the positive direction of the Z axis is defined as vertically upward.
  • the "thickness direction” means the thickness direction of the light distribution device, is a direction perpendicular to the main surface of the first substrate and the second substrate
  • plane view This refers to a state when viewed from a direction perpendicular to the main surface of the first substrate or the second substrate.
  • FIG. 1 is a schematic diagram illustrating a configuration of an optical device 1 according to the present embodiment.
  • FIG. 2 is a cross-sectional view of the light distribution device 2 of the optical device 1 according to the present embodiment.
  • the optical device 1 includes a light distribution device 2 and a container 3.
  • the optical device 1 further includes a pipe 4, a liquid feeding device 5, and a flow sensor 6.
  • FIG. 1 only the light distribution device 2 is illustrated in a plan view, and the connection relationship among the container 3, the pipe 4, the liquid feed device 5, and the flow sensor 6 is schematically illustrated.
  • the light distribution device 2 is a light control device that controls light incident on the light distribution device 2. Specifically, when transmitting the light incident on the light distribution device 2, the light distribution device 2 changes the traveling direction of the incident light and emits the light.
  • the light distribution device 2 includes a first substrate 10, a second substrate 20, an uneven structure layer 30, a gap 40, and a sealing member 50. .
  • the light distribution device 2 transmits light incident on the first substrate 10 and emits the light from the second substrate 20.
  • the first substrate 10, the gap 40, the uneven structure layer 30, and the second substrate 20 are arranged in this order along the thickness direction.
  • the optical device 1 includes the liquid 7 capable of filling the gap 40.
  • the optical device 1 controls the injection of the liquid 7 into the gap portion 40 and the discharge of the liquid 7 from the gap portion 40, so that the refractive index difference between the surface of the uneven structure layer 30 and the medium in contact with the surface is controlled. Can be changed.
  • the liquid 7 when the liquid 7 is injected into the gap 40, the liquid 7 becomes a medium that comes into contact with the surface of the uneven structure layer 30.
  • the refractive index difference between the liquid 7 and the uneven structure layer 30 becomes substantially equal, and the optical state of the light distribution device 2 becomes transparent.
  • the air 8 (see FIG. 3A) introduced into the gap 40 instead of the discharged liquid 7 becomes a medium that comes into contact with the surface of the uneven structure layer 30. .
  • the refractive index difference between the air 8 and the uneven structure layer 30 increases, and the optical state of the light distribution device 2 becomes a light distribution state.
  • light distribution means that, when transmitting incident light incident on the light distribution device 2, the traveling direction is bent in a specific direction and emitted.
  • the light distribution device 2 when the light distribution device 2 is arranged upright along the vertical direction, when transmitting light traveling obliquely downward, the light distribution device 2 totally reflects the light and emits obliquely upward. .
  • the specific optical action of the light distribution device 2 will be described later.
  • the light distribution device 2 can be realized as a window with a light distribution function by being installed in a window of a building, for example.
  • the light distribution device 2 is used by attaching it to a transparent base material such as an existing window glass through an adhesive layer, for example.
  • the light distribution device 2 may be used as a window of a building itself.
  • the light distribution device 2 is arranged, for example, such that the first substrate 10 is on the outdoor side and the second substrate 20 is on the indoor side.
  • the container 3 is a container for containing the liquid 7. As shown in FIG. 1, the container 3 is connected to the light distribution device 2 via a pipe 4. Specifically, as shown in FIG. 2, the pipe 4 is connected to an opening 54 provided in the sealing member 50 of the light distribution device 2. Note that the container 3 may be directly connected to the opening 54 of the light distribution device 2. That is, the optical device 1 does not need to include the pipe 4.
  • the capacity of the container 3 is, for example, not less than the capacity of the gap 40. Thereby, the container 3 can completely contain the liquid 7 injected into the gap 40. That is, the liquid 7 can be completely discharged from the gap 40.
  • the size and shape of the container 3 are not particularly limited.
  • the container 3 and the pipe 4 are formed using, for example, a resin material or a metal material.
  • the container 3 and the pipe 4 are formed using, for example, a material that does not react with the liquid 7.
  • the container 3 and the pipe 4 are provided, for example, embedded in a window frame, a wall, a floor or a ceiling of the building.
  • the container 3 and the pipe 4 may be provided indoors or outdoors of a building.
  • the liquid sending device 5 performs at least one of the injection of the liquid 7 into the gap 40 and the discharge of the liquid 7 from the gap 40. In the present embodiment, the liquid sending device 5 performs both the injection of the liquid 7 into the gap 40 and the discharge of the liquid 7 from the gap 40.
  • either the injection or the discharge of the liquid 7 may be performed using the weight of the liquid 7.
  • the container 3 is provided at a position higher than the gap 40, the injection of the liquid 7 from the container 3 into the gap 40 is easily performed by the weight of the liquid 7.
  • the container 3 is provided at a position lower than the gap 40, the discharge of the liquid 7 from the gap 40 to the container 3 is easily performed by the weight of the liquid 7.
  • the liquid feeding device 5 does not have to perform one of the injection and the discharge of the liquid 7 into and from the gap 40.
  • the liquid supply device 5 is, for example, a liquid pump capable of adjusting the flow rate of the liquid 7 flowing through the pipe 4.
  • the liquid feeding device 5 adjusts at least one of the injection amount and the discharge amount of the liquid 7 based on the flow rate measured by the flow sensor 6.
  • the liquid feeding device 5 calculates the total amount of the liquid 7 injected into the gap portion 40 using the flow rate measured by the flow rate sensor 6, and when the calculated total amount reaches the first value. Then, the injection of the liquid 7 is stopped.
  • the first value is a value equal to or less than the capacity of the gap 40. For example, when the first value is half of the capacity of the gap 40, a state where the lower half of the gap 40 is filled with the liquid 7 and the upper half is not filled with the liquid 7 can be formed. Thereby, the optical state of the light distribution device 2 can be made different for each region.
  • the liquid feeding device 5 calculates the total amount of the liquid 7 discharged from the gap portion 40 using the flow rate measured by the flow rate sensor 6, and when the calculated total amount reaches the second value, The discharge of the liquid 7 is stopped.
  • the second value is a value equal to or less than the capacity of the gap 40.
  • the first value and the second value are respectively the capacity (maximum value) of the gap 40, or half, 1/3, 2/3, 1/4 or 3/4 of the capacity of the gap 40. However, it is not limited to these.
  • the flow rate sensor 6 measures the flow rate of the liquid 7 flowing between the container 3 and the gap 40.
  • the flow sensor 6 is provided in the pipe 4 and measures the flow rate of the liquid 7 flowing in the pipe 4.
  • the optical device 1 may have a configuration capable of managing the flow rate instead of the flow rate sensor 6.
  • the liquid 7 is a liquid that is injected into the gap 40 and discharged from the gap 40. That is, after the liquid 7 is injected into the gap 40 at the first timing, it is discharged from the gap 40 at the second timing.
  • the discharged liquid 7 is stored in the container 3.
  • the discharged liquid 7 is injected into the gap 40 at a third timing. That is, the liquid 7 is repeatedly injected and discharged from the gap 40.
  • the volume of the liquid 7 is, for example, equal to the volume of the gap 40.
  • the gap 40 can be completely filled with the liquid 7.
  • the volume of the liquid 7 may be smaller or larger than the volume of the gap 40.
  • the liquid 7 has a refractive index substantially equal to the refractive index of the uneven structure layer 30 of the light distribution device 2. Specifically, when the refractive index of the uneven structure layer 30 is n1 and the refractive index of the liquid 7 is n2, the absolute value of n1 ⁇ n2 is 0.01 or less.
  • the liquid 7 is, for example, silicone oil.
  • the refractive index of the silicone oil is, for example, in the range of 1.5 or more and 1.6 or less.
  • the liquid 7 may be water having a refractive index of about 1.33 or alcohol having a refractive index of about 1.3.
  • the water may be pure water, tap water or sugar water.
  • the liquid 7 may be an aqueous solution containing nanoparticles or an organic material having a high refractive index.
  • the liquid 7 has a surface tension of 20 mN / m or more and 76 mN / m or less. Specifically, the liquid 7 has a surface tension of 20 mN / m to 76 mN / m in a range of 0 ° C to 40 ° C.
  • the surface tension is 20 mN or more, the liquid 7 can be easily injected into and discharged from the gap 40. For example, it is possible to suppress the remaining of the liquid 7 at the time of discharging, and to suppress the incorporation of bubbles into the liquid 7 at the time of injection. Thereby, the uniformity of the optical state in the plane of the light distribution device 2 can be improved.
  • the first substrate 10 is a transparent base material.
  • a glass substrate or a resin substrate can be used as the first substrate 10.
  • the material of the glass substrate examples include soda glass, non-alkali glass, and high refractive index glass.
  • the material of the resin substrate include resin materials such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), acrylic (PMMA), and epoxy.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PMMA acrylic
  • the glass substrate has the advantages of high light transmittance and low moisture permeability.
  • the resin substrate has an advantage that scattering at the time of destruction is small.
  • the first substrate 10 is a transparent glass substrate.
  • the first substrate 10 is, for example, a rigid substrate, but may be a flexible substrate.
  • the thickness of the first substrate 10 is, for example, 3 mm or more and 6 mm or less, but is not limited thereto.
  • the planar shape of the first substrate 10 is, for example, a rectangle or a square, but is not limited thereto, and may be a polygon other than a rectangle or a circle.
  • the second substrate 20 is a transparent base material.
  • the second substrate 20 is arranged to face the first substrate 10.
  • the second substrate 20 and the first substrate 10 are arranged in parallel with each other, and an interval between them is, for example, 1 mm.
  • the second substrate 20 includes a glass substrate 21, a film substrate 22, and an adhesive layer 23. It has a laminated structure in which a glass substrate 21, an adhesive layer 23, and a film substrate 22 are laminated in this order.
  • the second substrate 20 may have a single-layer structure, similarly to the first substrate 10.
  • the second substrate 20 may include only the glass substrate 21 or may include only the film substrate 22.
  • the glass substrate 21 is a transparent glass substrate and has, for example, the same configuration as the first substrate 10. Specifically, the thickness of the glass substrate 21 is, for example, not less than 3 mm and not more than 6 mm, but is not limited thereto.
  • the glass substrate 21 is, for example, a rigid substrate, but may be a flexible substrate.
  • the shape of the glass substrate 21 in a plan view is, for example, a rectangle or a square, but is not limited thereto, and may be a polygon other than a rectangle or a circle. Examples of the material of the glass substrate 21 include soda glass, non-alkali glass, and high refractive index glass.
  • the film substrate 22 is a light-transmitting resin substrate.
  • the material of the resin substrate include resin materials such as PET, PEN, PC, PMMA, and epoxy.
  • the film substrate 22 is a transparent resin substrate made of PET resin.
  • the thickness of the film substrate 22 is, for example, 1 ⁇ m or more and 1000 ⁇ m or less, but is not limited thereto.
  • the planar shape of the film substrate 22 is the same as the planar shape of the glass substrate 21.
  • the uneven structure layer 30 is provided on the main surface of the film substrate 22 on the first substrate 10 side.
  • the film substrate 22 is a member serving as a support substrate when forming the uneven structure layer 30.
  • the adhesive layer 23 fixes the glass substrate 21 and the film substrate 22.
  • the adhesive layer 23 is formed using, for example, a translucent resin material.
  • the adhesive layer 23 is, for example, a silicone resin, but is not limited thereto.
  • the first substrate 10 and the second substrate 20 are bonded to each other by a sealing member 50 provided in a frame shape along the outer periphery of each end.
  • a sealing member 50 provided in a frame shape along the outer periphery of each end.
  • a plurality of particulate spacers may be dispersed in the plane or a columnar structure may be formed in order to keep the distance constant. .
  • the concavo-convex structure layer 30 is a fine-shaped layer arranged on the first substrate 10 side of the second substrate 20.
  • the uneven structure layer 30 has a plurality of convex portions 31 as shown in FIG.
  • the concavo-convex structure layer 30 is a concavo-convex structure formed of a plurality of protrusions 31 having a micro-order size.
  • the plurality of protrusions 31 are individually separated from each other, and are supported by the base layer at the base (the second substrate 20 side). That is, a flat surface is provided between two adjacent protrusions 31.
  • the base layer is, for example, a portion left as a residual film when the plurality of protrusions 31 are molded.
  • the plurality of protrusions 31 may be connected to each other at the root, and a flat surface may not be provided between two adjacent protrusions 31.
  • the cross-sectional shape of the concave portion between two adjacent convex portions 31 may be V-shaped.
  • the concavo-convex structure layer 30 is provided in contact with the surface of the second substrate 20 on the first substrate 10 side without interposing other members such as an electrode layer.
  • a transparent adhesive layer or the like may be provided between the uneven structure layer 30 and the second substrate 20.
  • the plurality of convex portions 31 are arranged side by side in the Z-axis direction.
  • the plurality of protrusions 31 are long protrusions extending in a direction orthogonal to the arrangement direction (that is, the Z-axis direction).
  • the plurality of convex portions 31 are formed in a stripe shape extending in the X-axis direction.
  • the plurality of projections 31 are schematically shown by solid-line stripes.
  • each of the plurality of protrusions 31 is a triangular prism arranged sideways with respect to the second substrate 20.
  • the plurality of convex portions 31 may extend while meandering along the X-axis direction.
  • the plurality of convex portions 31 may be formed in a wavy stripe shape in plan view.
  • each of the plurality of protrusions 31 has a shape that tapers from the root to the tip.
  • the cross-sectional shape of each of the plurality of protrusions 31 is a tapered shape that tapers along the direction from the second substrate 20 to the first substrate 10.
  • the cross-sectional shape of the plurality of protrusions 31 in the YZ cross section is a triangle that tapers along the thickness direction of the light distribution device 2, but is not limited thereto.
  • the cross-sectional shape of the convex portion 31 may be a trapezoid, another polygon, a polygon including a curve, or the like.
  • the trapezoid or triangle also includes a trapezoid or triangle whose vertices are rounded.
  • the trapezoid or triangle may include a case where each side is not completely straight, for example, a case where each side is slightly bent with a displacement of about several percent of the length of each side, or a case where minute irregularities are included. included.
  • each of the plurality of projections 31 has side surfaces 32 and 33.
  • the side surfaces 32 and 33 are surfaces that intersect in the Z-axis direction. At least one of the side surfaces 32 and 33 is an inclined surface inclined at a predetermined inclination angle with respect to the Y-axis direction. The distance between the side surface 32 and the side surface 33, that is, the width of the protrusion 31 gradually decreases from the second substrate 20 toward the first substrate 10.
  • the side surface 32 is, for example, a vertically upper side surface among a plurality of side surfaces constituting the convex portion 31 when the light distribution device 2 is arranged so that the Z axis coincides with the vertical direction.
  • the side surface 32 is a refraction surface that refracts incident light.
  • the side surface 33 is, for example, a vertically lower side surface among a plurality of side surfaces constituting the convex portion 31 when the light distribution device 2 is arranged so that the Z axis coincides with the vertical direction.
  • the side surface 33 is a reflection surface that reflects incident light.
  • the reflection here is total reflection, and the side surface 33 functions as a total reflection surface.
  • the inclination angles of the side surfaces 32 and 33 are, for example, in a range of 0 ° or more and 25 ° or less.
  • the two base angles of the triangle or the trapezoid, which are the cross-sectional shapes of the protrusions 31, are each 65 ° or more and 90 ° or less.
  • the inclination angle of the side surface 32 and the inclination angle of the side surface 33 may be different from each other or may be equal.
  • the inclination angles of the side surfaces 32 of the plurality of convex portions 31 may be equal to each other or may be different.
  • the inclination angles of the side surfaces 33 of the plurality of convex portions 31 may be equal to each other or may be different.
  • each of the plurality of projections 31 is, for example, 100 ⁇ m or more.
  • a wide side surface 33 that reflects light can be secured. For this reason, the amount of light to be distributed increases, so that the light distribution rate can be increased.
  • the aspect ratio of each of the plurality of projections 31 is, for example, 2 or less.
  • the aspect ratio is the ratio of the height to the width of the root of the convex portion 31.
  • the aspect ratio is 2 or less, the physical strength of the projection 31 can be increased. For example, at the time of injecting and discharging the liquid 7, it is possible to suppress a change in the shape of the projection 31 due to the flow of the liquid 7.
  • the interval between two adjacent protrusions 31 is, for example, 10 ⁇ m or more and 40 ⁇ m or less.
  • the interval is a distance between the roots of two adjacent convex portions 31. That is, the interval corresponds to the width of the flat surface of the concave portion between two adjacent convex portions 31.
  • the interval between two adjacent convex portions 31 is 10 ⁇ m or more, the liquid 7 injected into the gap portion 40 is less likely to remain in the concave portion. Therefore, the liquid 7 can be quickly discharged.
  • the interval between two adjacent convex portions 31 is 40 ⁇ m or less, the in-plane density of the convex portions 31 having the side surfaces 33 that reflect light can be increased. For this reason, the amount of light to be distributed increases, so that the light distribution rate can be increased.
  • each of the plurality of protrusions 31 may be 1 mm or more. That is, the plurality of protrusions 31 may be protrusions of a millimeter order size. Even if the injected liquid 7 remains partially without being completely discharged, a sufficiently large reflecting surface can be secured as a whole.
  • the shapes of the plurality of protrusions 31 are the same as each other, but may be different.
  • the plurality of protrusions 31 may include a plurality of protrusions having different heights.
  • the heights of two adjacent protrusions 31 may be different.
  • the height of each of the plurality of protrusions 31 may be, for example, a value randomly selected from among a plurality of set values.
  • the uneven structure layer 30 is formed using, for example, an ultraviolet curable resin material.
  • the uneven structure layer 30 can be formed by molding, nanoimprinting, or the like.
  • a resin material using light transmittance such as an acrylic resin, an epoxy resin, or a silicone resin can be used.
  • the refractive index of the uneven structure layer 30 is, for example, in a range of 1.4 or more and 1.8 or less.
  • the uneven structure layer 30 is formed using, for example, an acrylic resin having a refractive index of about 1.5.
  • the contact angle of the surface of the uneven structure layer 30 with the liquid 7 is, for example, not less than 60 ° and not more than 120 °.
  • the contact angle may be 90 ° or more and 120 ° or less. That is, each of the side surfaces 32 and 33 of the convex portion 31 has liquid repellency (specifically, oil repellency or water repellency) or super liquid repellency with respect to the liquid 7.
  • the surface of the concavo-convex structure layer 30 may be coated with fluorine.
  • a fluorine-based functional group may be introduced in the molecular structure of the surface of the uneven structure layer 30, a fluorine-based functional group may be introduced. Note that a fluorine-based functional group may be introduced into the molecular structure of the liquid 7.
  • the surface of the uneven structure layer 30 may have lyophilicity (specifically, lipophilicity or hydrophilicity) or superhydrophilicity with respect to the liquid 7.
  • the contact angle of the surface of the uneven structure layer 30 with the liquid 7 may be less than 60 °.
  • the contact angle may be 40 ° or more.
  • the gap portion 40 is provided between the uneven structure layer 30 and the first substrate 10.
  • the gap portion 40 is, specifically, a space surrounded by the first substrate 10, the uneven structure layer 30, and the sealing member 50.
  • the liquid 7 is injected into the gap 40.
  • the injected liquid 7 contacts and covers the surface of the uneven structure layer 30, specifically, the side surfaces 32 and 33 of the convex portion 31.
  • the refractive index n2 of the liquid 7 is substantially equal to the refractive index n1 of the uneven structure layer 30, the difference in refractive index between the liquid 7 and the uneven structure layer 30 is sufficiently small. Accordingly, light passing through the gap portion 40 and the uneven structure layer 30 travels substantially straight without being subjected to optical actions such as reflection and refraction on the surface of the uneven structure layer 30.
  • the gap 40 is filled with, for example, air.
  • the difference in the refractive index between the gap 40 (that is, air) and the uneven structure layer 30 increases. Thereby, the light passing through the gap portion 40 and the uneven structure layer 30 is totally reflected by the side surface 33 of the convex portion 31 and emitted in a direction different from the incident direction.
  • the sealing member 50 is a ring-shaped member for forming a space for sealing the liquid 7 between the first substrate 10 and the second substrate 20, that is, a gap 40. Specifically, the sealing member 50 is provided along each end of the first substrate 10 and the second substrate 20. Since the planar shape of each of the first substrate 10 and the second substrate 20 is rectangular, the sealing member 50 is provided in a rectangular ring shape. That is, the sealing members 50 are provided along the four sides of each of the first substrate 10 and the second substrate 20 in plan view.
  • the sealing member 50 adheres the first substrate 10 and the second substrate 20 at a peripheral portion. By this bonding, the gap 40 is formed.
  • the sealing member 50 has a spacer 51 and adhesive layers 52 and 53. Further, the sealing member 50 has an opening 54 and an air hole 55.
  • the spacer 51 is a member for maintaining a distance between the first substrate 10 and the second substrate 20.
  • the spacer 51 is formed using, for example, a resin material such as PET. Alternatively, the spacer 51 may be a metal material.
  • the spacer 51 has a uniform thickness and is provided in a rectangular ring shape in plan view.
  • the spacer 51 may be formed of four linear members corresponding to each of the four sides of the first substrate 10 or the second substrate 20.
  • the bonding layer 52 bonds the spacer 51 and the first substrate 10 together.
  • the bonding layer 53 bonds the spacer 51 and the second substrate 20 together.
  • the adhesive layers 52 and 53 are formed using an adhesive resin material.
  • a thermosetting resin is used as a resin material for forming the adhesive layers 52 and 53.
  • the adhesive layers 52 and 53 are provided in a rectangular ring shape along the outer periphery of the first substrate 10 and the second substrate 20, respectively.
  • the opening 54 is an inlet and an outlet for the liquid 7.
  • the opening 54 is provided to penetrate the spacer 51, and the pipe 4 is connected.
  • the opening 54 is provided in, for example, a lower end surface of the light distribution device 2.
  • the liquid 7 is injected from below the light distribution device 2 and discharged from below.
  • the opening 54 may be provided on the upper end face of the light distribution device 2. That is, the liquid 7 may be injected from above the light distribution device 2 and discharged from above. Further, the opening 54 may be provided on a side end surface of the light distribution device 2. Alternatively, the opening 54 may be provided through one of the first substrate 10 and the second substrate 20.
  • the air hole 55 is a hole for taking in and out the air in the gap 40.
  • the air hole 55 is provided to penetrate the spacer 51.
  • the air hole 55 may be provided with a filter that suppresses the permeation of the liquid 7 and allows the gas to pass so that the liquid 7 does not leak.
  • the air hole 55 is provided on the upper end face of the light distribution device 2.
  • the injection and discharge of the liquid 7 into and from the gap 40 are repeatedly performed.
  • Each of the injection and the discharge may be performed, for example, at a timing when an instruction from the user is received, or at a timing indicated by a preset schedule.
  • FIG. 3A is a cross-sectional view showing how the liquid 7 is injected into the gap 40 of the light distribution device 2 of the optical device 1 according to the present embodiment.
  • the liquid sending device 5 sends out the liquid 7 stored in the container 3 to the pipe 4.
  • the liquid 7 flowing through the pipe 4 is injected into the gap 40 from the opening 54.
  • the opening 54 is provided in the lower end surface of the light distribution device 2
  • the liquid 7 fills the inside of the gap 40 from below as indicated by the solid arrow in FIG. 3A. I do.
  • the air 8 contained in the gap 40 is discharged to the outside through the air hole 55 so as to be pushed out by the liquid 7.
  • the liquid feeding device 5 stops injecting the liquid 7.
  • the pipe 4 may be provided with an openable / closable valve. The valve may be closed when the liquid feeding device 5 or the control device (not shown) stops the injection of the liquid 7.
  • the liquid supply device 5 may stop the injection of the liquid 7 before filling the entire gap 40 with the liquid 7.
  • different optical characteristics can be realized between the upper side and the lower side of the light distribution device 2. That is, by adjusting the height of the liquid surface of the liquid 7, different optical characteristics can be realized for each region of the light distribution device 2.
  • FIG. 3B is a cross-sectional view showing a state where the liquid 7 is discharged from the gap 40 of the light distribution device 2 of the optical device 1 according to the present embodiment.
  • the liquid supply device 5 stops the pressure applied to the liquid 7.
  • a valve is provided in the pipe 4, the valve is opened.
  • the liquid 7 is discharged from the opening 54 by its own weight.
  • the discharged liquid 7 is stored in the container 3 through the pipe 4.
  • the air 8 is introduced into the gap 40 after the liquid 7 is discharged via the air hole 55.
  • the liquid sending device 5 may be capable of flowing the liquid 7 in a direction opposite to the direction in which the liquid 7 is injected. As a result, the liquid 7 can be discharged more quickly.
  • FIG. 3C is a cross-sectional view showing a state where the liquid 7 is completely discharged from the gap 40 of the light distribution device 2 of the optical device 1 according to the present embodiment. After the liquid 7 has been completely drained, the gap 40 is filled with air 8.
  • the air 8 is, for example, air located around the light distribution device 2, but may be gas prepared in advance in a container or the like.
  • a container containing dry air, nitrogen, or an inert gas may be connected to the air hole 55.
  • the optical device 1 may include a container that stores a gas such as an inert gas.
  • the inert gas is, for example, argon, but is not particularly limited.
  • the injection and discharge of the liquid 7 into and from the gap 40 of the light distribution device 2 can be adjusted.
  • the optical state of the portion of the light distribution device 2 filled with the liquid 7 becomes transparent in plan view.
  • the optical state of the portion of the light distribution device 2 from which the liquid 7 is discharged, that is, the portion where the liquid 7 does not exist is a light distribution state. The specific optical state will be described below.
  • FIG. 4A is a cross-sectional view illustrating a transparent state of the light distribution device 2 of the optical device 1 according to the present embodiment.
  • the path of the light L obliquely incident on the light distribution device 2 is indicated by an arrow.
  • the light L corresponds to sunlight that enters obliquely downward from indoors to indoors.
  • FIG. 4B the same applies to FIG. 4B.
  • the gap 40 of the light distribution device 2 is filled with the liquid 7. Since the difference between the refractive index n1 of the concavo-convex structure layer 30 and the refractive index n2 of the liquid 7 is 0, the light L does not receive an optical action on any of the side surfaces 32 and 33 of the convex portion 31. That is, the light L incident on the first substrate 10 from outside travels straight from the liquid 7 to the concave-convex structure layer 30 without bending the traveling direction, and is emitted from the second substrate 20. That is, the light L is not totally reflected by the side surface 33 of the convex portion 31.
  • the optical state of the light distribution device 2 is a transparent state in which the incident light is transmitted substantially without changing the traveling direction. Since the optical state of the light distribution device 2 is a transparent state, for example, when a person who is indoors views the outside via the light distribution device 2, the outdoor scene can be clearly seen.
  • the light L is actually refracted according to the refractive index difference when the medium passing therethrough changes. Specifically, when the light L enters the first substrate 10, exits from the second substrate 20, passes through the interface between the first substrate 10 and the liquid 7, the light L When passing through the interface with the glass substrate 21 and through the respective interfaces of the film substrate 22, the adhesive layer 23, and the glass substrate 21 in the second substrate 20, the light is refracted according to the refractive index difference.
  • FIGS. 4B, 5A, and 5B described later are the same applies to FIGS. 4B, 5A, and 5B described later.
  • FIG. 4B is a cross-sectional view showing a light distribution state of light distribution device 2 of optical device 1 according to the present embodiment.
  • the liquid 7 is discharged from the gap 40 of the light distribution device 2, and the air 8 is introduced instead.
  • the refractive index of the air 8 is about 1. Since the difference between the refractive index n1 of the concavo-convex structure layer 30 and the refractive index of the air 8 is about 0.5, the light L is subjected to an optical action when entering the side surfaces 32 and 33 of the convex portion 31. Specifically, the light L incident on the first substrate 10 from outside is refracted by the side surface 32 of the convex portion 31 (not shown), and then totally reflected by the side surface 33 as shown in FIG. 4B. Thus, the light L is emitted from the second substrate 20 obliquely upward.
  • the light distribution device 2 is in a light distribution state in which incident light is transmitted while bending its traveling direction.
  • sunlight traveling obliquely downward can be bounced up by total reflection and emitted obliquely upward, so that the indoor ceiling can be illuminated brightly.
  • the light distribution device 2 can assist the lighting function, so that it contributes to power saving of indoor lighting equipment and the like, and energy saving can be realized.
  • the portion filled with the liquid 7 becomes transparent as shown in FIG. 4A, and the liquid 7 is not filled.
  • the portion enters a light distribution state as shown in FIG. 4B.
  • the height of the liquid surface of the liquid 7 in the gap portion 40 becomes a boundary between the transparent state and the light distribution state.
  • the height of the liquid surface of the liquid 7 in the gap portion 40 is adjusted by adjusting the amount of the liquid 7 injected into the gap portion 40 and the amount of discharge of the liquid 7 by the liquid sending device 5. Thereby, the ratio of the transparent state and the light distribution state in the plane of the light distribution device 2 can be adjusted.
  • the optical device 1 includes the light distribution device 2 that distributes incident light and the container 3.
  • the light distribution device 2 includes a first substrate 10 having a light-transmitting property, a second substrate 20 having a light-transmitting property disposed to face the first substrate 10, and a first substrate 10 side of the second substrate 20.
  • An uneven structure layer 30 having a light-transmitting property is provided, and a gap 40 provided between the uneven structure layer 30 and the first substrate 10 is provided.
  • the container 3 contains the liquid 7 injected into the gap 40 and discharged from the gap 40.
  • the optical state of the light distribution device 2 can be adjusted.
  • the liquid 7 is discharged from the gap 40, and the difference in the refractive index between the protrusion 31 and the gap 40 (that is, the air 8) increases.
  • the amount of light totally reflected by the side surface 33 of the convex portion 31 increases.
  • the amount of light that illuminates the indoor ceiling that is, the distributed light
  • the optical device 1 according to the present embodiment when used for a window, light can be efficiently introduced indoors.
  • n1 and n2 the absolute value of n1 ⁇ n2 is 0.01 or less.
  • the convex portion 31 is covered with the liquid 7. Since the absolute value of n1 ⁇ n2 is 0.01 or less, light passes through the interface between the convex portion 31 and the liquid 7 without receiving an optical effect. Thus, the optical state of the light distribution device 2 can be made transparent.
  • the uneven structure layer 30 has a plurality of convex portions 31.
  • the height of each of the plurality of protrusions 31 is 100 ⁇ m or more.
  • the aspect ratio of each of the plurality of protrusions 31 is 2 or less.
  • the interval between two adjacent protrusions 31 is not less than 10 ⁇ m and not more than 40 ⁇ m.
  • the contact angle of the surface of the uneven structure layer 30 with the liquid 7 is 40 ° or more and 120 ° or less.
  • the surface tension of the liquid 7 is not less than 20 mN / m and not more than 76 mN / m.
  • the optical device 1 further includes a liquid sending device 5 that performs at least one of injecting the liquid 7 into the gap 40 and discharging the liquid 7 from the gap 40.
  • the liquid 7 can be quickly injected into and discharged from the gap 40, and thus the optical state of the light distribution device 2 can be smoothly switched.
  • the optical device 1 further includes a flow rate sensor 6 that measures the flow rate of the liquid 7 flowing between the container 3 and the gap 40.
  • the liquid feeding device 5 adjusts at least one of the injection amount and the discharge amount of the liquid 7 based on the flow rate measured by the flow sensor 6.
  • FIGS. 5A and 5B are cross-sectional views showing the transparent state and the light distribution state of the light distribution device 102 of the optical device according to the first modification, respectively.
  • the optical device according to the present modification includes a container 3, a pipe 4, a liquid feeding device 5, and a flow sensor 6, as in the above-described embodiment.
  • the present modified example is different from the above-described embodiment in that the optical apparatus includes a light distribution device 102 instead of the light distribution device 2.
  • the light distribution device 102 includes a first substrate 120, a second substrate 110, an uneven structure layer 30, a gap 40, and a sealing member 50.
  • the second substrate 110 provided with the uneven structure layer 30 is on the outdoor side
  • the first substrate 120 is on the indoor side.
  • the second substrate 110 is, for example, the same as the first substrate 10.
  • the first substrate 120 is, for example, the same as the second substrate 20.
  • the uneven structure layer 30 is provided on the first substrate 120 side of the second substrate 110.
  • the gap 40 is provided between the uneven structure layer 30 and the first substrate 120.
  • the difference in the refractive index between the uneven structure layer 30 and the liquid 7 becomes substantially zero, so that the light enters the second substrate 110 from outside.
  • the light L travels straight as it is without receiving an optical action at the interface between the convex portion 31 and the liquid 7.
  • the optical state of the light distribution device 102 becomes a transparent state.
  • the light distribution state can be realized regardless of whether the uneven structure layer 30 is provided on the outdoor side or the indoor side.
  • FIG. 6 is a cross-sectional view of the light distribution device 202 of the optical device according to the second modification.
  • the optical device according to the present modification includes a container 3, a liquid sending device 5, and a flow sensor 6, similarly to the above embodiment.
  • This modification is different from the above-described embodiment in that the optical apparatus includes a light distribution device 202 instead of the light distribution device 2.
  • the light distribution device 202 includes a first substrate 220, a second substrate 110, an uneven structure layer 30, a gap 40, a sealing member 250, a fastener 260, and a heat shield.
  • a seat 270 and connection members 204 and 208 are provided.
  • the second substrate 110, the uneven structure layer 30, and the gap 40 are the same as those in the first embodiment or the first modification.
  • the first substrate 220 is different from the first substrate 120 in that an opening 254 and an air hole 255 are provided.
  • the sealing member 250 is different from the sealing member 50 in that the opening 54 and the air hole 55 are not provided.
  • the opening 254 functions as an inlet and an outlet for the liquid 7 (not shown in FIG. 6), like the opening 54 according to the embodiment.
  • the opening 254 is provided, for example, near the sealing member 50 below the first substrate 220.
  • a plurality of openings 254 may be provided in the first substrate 220.
  • connection member 204 is attached to the opening 254.
  • the connection member 204 is a member that connects the pipe 4 and the opening 254.
  • the connection member 204 is formed using, for example, a resin material or a metal material.
  • the connection member 204 detachably supports the end of the pipe 4.
  • the connection member 204 is, specifically, a female attachment having a through hole 204a. By inserting the end of the pipe 4 into the through hole 204a, the connection member 204 supports the end of the pipe 4.
  • the connection member 204 has a structure that suppresses leakage of the liquid 7.
  • the connection member 204 may be provided with an O-ring or the like in the through hole 204a.
  • connection member 204 When the end of the pipe 4 is inserted into the through hole 204a, leakage of the liquid 7 can be suppressed.
  • At least one of the end of the pipe 4 and the connection member 204 may be provided with an operation button or lever for attaching and detaching the end of the pipe 4.
  • the connection member 204 may be a male attachment. In the example shown in FIG. 6, the connection member 204 is provided so as to penetrate a part of the stopper 260.
  • the air hole 255 functions as an air inlet and an air outlet for the air 8 (not shown in FIG. 6), like the air hole 55 according to the embodiment.
  • the air hole 255 is provided, for example, near the sealing member 50 above the first substrate 220.
  • a plurality of air holes 255 may be provided in the first substrate 220.
  • connection member 208 is attached to the air hole 255.
  • the connection member 208 is a member that connects the pipe 207 and the air hole 255.
  • the connection member 208 is formed using, for example, a resin material or a metal material.
  • the connection member 208 detachably supports the end of the pipe 207.
  • the connection member 208 is, specifically, a female attachment having a through hole 208a. When the end of the pipe 207 is inserted into the through hole 208a, the connection member 208 supports the end of the pipe 207. At least one of the end of the pipe 207 and the connection member 208 may be provided with an operation button or lever for attaching and detaching the end of the pipe 207.
  • the connection member 208 may be a male attachment. In the example shown in FIG. 6, the connection member 208 is provided so as to penetrate a part of the stopper 260.
  • the pipe 207 is a pipe for passing the air 8.
  • the other end of the pipe 207 (the end on the side not connected to the connection member 208) is open, for example, indoors or outdoors, but may be connected to a nitrogen gas supply source or the like.
  • the pipe 207 is, for example, a hose formed using a resin material, but is not limited thereto. Note that the pipe 4 and the pipe 207 may be formed using the same material.
  • the stopper 260 sandwiches the first substrate 220, the second substrate 110, and the sealing member 50.
  • the stopper 260 is, for example, an annular member provided along the end of the light distribution device 202. By providing the stopper 260, damage to the end of the light distribution device 202 can be suppressed.
  • the heat shield sheet 270 is a heat shield sheet having a light transmitting property.
  • the heat shielding sheet 270 is formed using, for example, a resin material having low thermal conductivity.
  • the heat shield sheet 270 is provided on the main surface of the first substrate 220 on the side opposite to the gap 40.
  • the heat shield sheet 270 By providing the heat shield sheet 270, heat transfer from outdoors to indoors or vice versa can be suppressed.
  • deformation of the uneven structure layer 30 due to thermal expansion and the like can be suppressed.
  • the end of the heat shield sheet 270 is covered with the stopper 260. Thereby, detachment of the heat shield sheet 270 can be suppressed.
  • the opening 254 and the air hole 255 are provided in the first substrate 220 on the indoor side, but the present invention is not limited to this. At least one of the opening 254 and the air hole 255 may be provided in the second substrate 110 on the outdoor side.
  • optical device according to the present invention has been described based on the above-described embodiment and its modifications, but the present invention is not limited to the above-described embodiment.
  • the optical device 1 does not need to include the liquid feeding device 5.
  • the liquid 7 may be moved using the weight of the liquid 7.
  • the optical device 1 may include a drive mechanism that changes the height of the container 3. By raising the container 3 to a position higher than the gap 40, the liquid 7 can be injected from the container 3 into the gap 40. By lowering the container 3 to a position lower than the gap 40, the liquid 7 can be discharged from the gap 40 to the container 3.
  • the liquid 7 may not have translucency.
  • the liquid 7 may have a light scattering property or a light shielding property.
  • the liquid 7 may contain colored particles such as black, or may contain light scattering particles. Thereby, the light distribution device 2 can realize a scattering state or a light blocking state instead of the transparent state.
  • the liquid 7 may contain heat reflective particles or heat absorbing particles.
  • the container 3 may be provided with an opening for putting the liquid 7 in the container 3, and the liquid 7 may be replaceable. Alternatively, the container 3 may be detachable from the pipe 4.
  • n1 ⁇ n2 the absolute value of n1 ⁇ n2 may be larger than 0.01.
  • the capacity of the container 3 may be smaller than the capacity of the gap 40.
  • the sum of the capacity of the container 3 and the capacity of the pipe 4 may be equal to or larger than the capacity of the gap 40.
  • the liquid 7 may not be completely discharged from the gap 40. That is, the liquid 7 may remain in a part of the gap 40.
  • the upper part of the light distribution device 2 than the lower part is effectively used to take in light indoors.
  • the light under the light distribution device 2 is distributed, the light is likely to enter the eyes of a person who is indoors, which may cause glare.
  • the lower part of the light distribution device 2 is in a state where the gap portion 40 is always filled with the liquid 7, and the optical state may be a transparent state.
  • the liquid level of the liquid 7 in the gap 40 is adjusted in the upper 1 m range, and the liquid 7 is always filled in the lower 1 m range.
  • the uneven structure layer 30 may not be provided below the light distribution device 2. That is, the concavo-convex structure layer 30 may not be provided on the entire surface of the second substrate 20 and may be provided only on a part of the region.
  • the inlet and the outlet of the liquid 7 to the gap 40 may be different.
  • the sealing member 50 of the light distribution device 2 may have a plurality of openings 54.
  • the optical device 1 may include a plurality of pipes 4 connected to each of the plurality of openings 54. Thereby, by separating the inlet and the outlet of the liquid 7, the flow of the liquid 7 can be easily controlled, and the optical state of the light distribution device 2 can be smoothly switched.
  • each of the plurality of openings 54 may be an inlet and an outlet.
  • the plurality of openings 54 are respectively provided in the lower end surface of the light distribution device 2, for example. Alternatively, at least one of the plurality of openings 54 may be provided on an upper end surface or a side end surface of the light distribution device 2. Similarly, a plurality of air holes 55 may be provided.
  • a circulation path of the liquid 7 may be formed.
  • the liquid 7 may flow sequentially through the container 3, one pipe 4, one opening 54, the gap 40 of the light distribution device 2, another opening 54, and another pipe 4.
  • the optical device 1 may include a plurality of containers 3. Different types of liquids 7 are stored in each of the plurality of containers 3. Thereby, the optical state of the light distribution device 2 can be changed to not only two states of the transparent state and the light distribution state but also three or more states including, for example, a scattering state or a light shielding state.
  • the light incident on the light distribution device 2 is not limited to natural light such as sunlight, and may be light emitted from a light emitting device such as a lighting device.
  • the light distribution device 2 is not limited to being installed in a window of a building, but may be installed in a window of a car, for example. Further, the light distribution device 2 can be used for a light distribution control member such as a light-transmitting cover of a lighting fixture, for example. Alternatively, the light distribution device 2 can also be used as a blindfold member using light scattering at the interface of the uneven structure layer 30.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

This optical device is provided with: a light distribution device (2) which distributes incident light; and a container. The light distribution device (2) is provided with: a first substrate (10) that has light transmitting properties; a second substrate (20) that is arranged so as to face the first substrate (10) and has light transmitting properties; a recessed and projected structure layer (30) that is arranged on the first substrate (10) side of the second substrate (20) and has light transmitting properties; and a gap part (40) that is provided between the recessed and projected structure layer (30) and the first substrate (10). The container contains a liquid (7) which is injected into the gap part (40) and is discharged from the gap part (40).

Description

光学装置Optical device
 本発明は、光学装置に関する。 << The present invention relates to an optical device.
 特許文献1には、再帰性反射構造に液体を供給及び排出する機構を備える構造体が開示されている。特許文献1に記載の構造体では、再帰性反射構造に液体が供給された場合に透過状態になり、供給されない場合に反射状態、すなわち、遮光状態になる。 Patent Document 1 discloses a structure provided with a mechanism for supplying and discharging a liquid to a retroreflective structure. In the structure described in Patent Document 1, when a liquid is supplied to the retroreflective structure, the structure becomes a transmission state, and when the liquid is not supplied, the structure becomes a reflection state, that is, a light-blocking state.
特開2017-58605号公報JP 2017-58605 A
 上記従来の構造体を窓に利用した場合、構造体は、光を単に透過させるに過ぎない。このため、従来の構造体を窓に利用したとしても、屋内に光を効率良く採り入れることができない。 し た When the above-mentioned conventional structure is used for a window, the structure simply transmits light. For this reason, even if a conventional structure is used for a window, light cannot be efficiently introduced indoors.
 そこで、本発明は、窓に利用された場合に、効率良く光を屋内に採り入れることができる光学装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an optical device that can efficiently take in light indoors when used in a window.
 上記目的を達成するため、本発明の一態様に係る光学装置は、入射する光を配光する配光デバイスと、容器とを備え、前記配光デバイスは、透光性を有する第一基板と、前記第一基板に対向して配置された透光性を有する第二基板と、前記第二基板の前記第一基板側に配置され、透光性を有する凹凸構造層と、前記凹凸構造層と前記第一基板との間に設けられた間隙部とを備え、前記容器は、前記間隙部に注入され、かつ、前記間隙部から排出される液体を収容する。 In order to achieve the above object, an optical device according to one embodiment of the present invention includes a light distribution device that distributes incident light and a container, and the light distribution device has a first substrate having a light-transmitting property. A light-transmitting second substrate disposed opposite to the first substrate, a light-transmitting concavo-convex structure layer disposed on the first substrate side of the second substrate, and the concavo-convex structure layer And a gap provided between the first substrate and the first substrate, wherein the container accommodates a liquid injected into the gap and discharged from the gap.
 本発明に係る光学装置によれば、窓に利用された場合に、効率良く光を屋内に採り入れることができる。 According to the optical device of the present invention, when it is used for a window, light can be efficiently introduced indoors.
図1は、実施の形態に係る光学装置の構成を示す模式図である。FIG. 1 is a schematic diagram illustrating a configuration of an optical device according to an embodiment. 図2は、実施の形態に係る光学装置の配光デバイスの断面図である。FIG. 2 is a cross-sectional view of the light distribution device of the optical device according to the embodiment. 図3Aは、実施の形態に係る光学装置の配光デバイスの間隙部に液体を注入する様子を示す断面図である。FIG. 3A is a cross-sectional view illustrating a state in which a liquid is injected into a gap of a light distribution device of the optical device according to the embodiment. 図3Bは、実施の形態に係る光学装置の配光デバイスの間隙部から液体を排出する様子を示す断面図である。FIG. 3B is a cross-sectional view illustrating a state where the liquid is discharged from the gap of the light distribution device of the optical device according to the embodiment. 図3Cは、実施の形態に係る光学装置の配光デバイスの間隙部から液体を完全に排出した様子を示す断面図である。FIG. 3C is a cross-sectional view illustrating a state where the liquid is completely discharged from the gap of the light distribution device of the optical device according to the embodiment. 図4Aは、実施の形態に係る光学装置の配光デバイスの透明状態を示す断面図である。FIG. 4A is a cross-sectional view illustrating a transparent state of the light distribution device of the optical device according to the embodiment. 図4Bは、実施の形態に係る光学装置の配光デバイスの配光状態を示す断面図である。FIG. 4B is a cross-sectional view illustrating a light distribution state of the light distribution device of the optical device according to the embodiment. 図5Aは、実施の形態の変形例1に係る光学装置の配光デバイスの透明状態を示す断面図である。FIG. 5A is a cross-sectional view showing a transparent state of the light distribution device of the optical device according to the first modification of the embodiment. 図5Bは、実施の形態の変形例1に係る光学装置の配光デバイスの配光状態を示す断面図である。FIG. 5B is a cross-sectional view illustrating a light distribution state of the light distribution device of the optical device according to the first modification of the embodiment. 図6は、実施の形態の変形例2に係る光学装置の配光デバイスの断面図である。FIG. 6 is a cross-sectional view of a light distribution device of an optical device according to Modification 2 of the embodiment.
 以下では、本発明の実施の形態に係る光学装置について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, an optical device according to an embodiment of the present invention will be described in detail with reference to the drawings. Each of the embodiments described below shows a specific example of the present invention. Therefore, numerical values, shapes, materials, constituent elements, arrangement and connection forms of constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and do not limit the present invention. Therefore, among the components in the following embodiments, components not described in the independent claims are described as arbitrary components.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 図 Moreover, each drawing is a schematic diagram and is not necessarily strictly illustrated. Therefore, for example, the scales and the like do not always match in each drawing. Further, in each of the drawings, substantially the same configuration is denoted by the same reference numeral, and redundant description will be omitted or simplified.
 また、本明細書において、平行又は垂直などの要素間の関係性を示す用語、及び、三角形又は台形などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。 Also, in this specification, terms indicating relationships between elements such as parallel or vertical, and terms indicating the shape of elements such as triangles or trapezoids, and numerical ranges are not expressions expressing only strict meanings, Is a meaning that includes a substantially equivalent range, for example, a difference of about several percent.
 また、本明細書及び図面において、X軸、Y軸及びZ軸は、三次元直交座標系の三軸を示している。各実施の形態では、Z軸方向を鉛直方向とし、Z軸に垂直な方向(XY平面に平行な方向)を水平方向としている。なお、Z軸の正方向を鉛直上方としている。また、本明細書において、「厚み方向」とは、配光デバイスの厚み方向を意味し、第一基板及び第二基板の主面に垂直な方向のことであり、「平面視」とは、第一基板又は第二基板の主面に対して垂直な方向から見たときのことをいう。 In addition, in this specification and the drawings, the X axis, the Y axis, and the Z axis indicate three axes of a three-dimensional orthogonal coordinate system. In each embodiment, the Z-axis direction is the vertical direction, and the direction perpendicular to the Z-axis (the direction parallel to the XY plane) is the horizontal direction. Note that the positive direction of the Z axis is defined as vertically upward. Further, in the present specification, the "thickness direction" means the thickness direction of the light distribution device, is a direction perpendicular to the main surface of the first substrate and the second substrate, "plan view", This refers to a state when viewed from a direction perpendicular to the main surface of the first substrate or the second substrate.
 (実施の形態)
 [構成]
 まず、実施の形態に係る光学装置の構成について、図1及び図2を用いて説明する。図1は、本実施の形態に係る光学装置1の構成を示す模式図である。図2は、本実施の形態に係る光学装置1の配光デバイス2の断面図である。
(Embodiment)
[Constitution]
First, the configuration of the optical device according to the embodiment will be described with reference to FIGS. FIG. 1 is a schematic diagram illustrating a configuration of an optical device 1 according to the present embodiment. FIG. 2 is a cross-sectional view of the light distribution device 2 of the optical device 1 according to the present embodiment.
 図1に示されるように、光学装置1は、配光デバイス2と、容器3とを備える。本実施の形態では、光学装置1は、さらに、配管4と、送液装置5と、流量センサ6とを備える。なお、図1では、配光デバイス2のみを平面視で図示しており、容器3、配管4、送液装置5及び流量センサ6については互いの接続関係を模式的に図示している。 As shown in FIG. 1, the optical device 1 includes a light distribution device 2 and a container 3. In the present embodiment, the optical device 1 further includes a pipe 4, a liquid feeding device 5, and a flow sensor 6. In FIG. 1, only the light distribution device 2 is illustrated in a plan view, and the connection relationship among the container 3, the pipe 4, the liquid feed device 5, and the flow sensor 6 is schematically illustrated.
 配光デバイス2は、配光デバイス2に入射する光を制御する光制御デバイスである。具体的には、配光デバイス2は、配光デバイス2に入射する光を透過させる際に、入射した光の進行方向を変更して出射させる。 The light distribution device 2 is a light control device that controls light incident on the light distribution device 2. Specifically, when transmitting the light incident on the light distribution device 2, the light distribution device 2 changes the traveling direction of the incident light and emits the light.
 本実施の形態では、配光デバイス2は、図2に示されるように、第一基板10と、第二基板20と、凹凸構造層30と、間隙部40と、封止部材50とを備える。配光デバイス2は、第一基板10に入射する光を透過させて第二基板20から出射させる。第一基板10、間隙部40、凹凸構造層30及び第二基板20は、この順で厚み方向に沿って配置されている。 In the present embodiment, as shown in FIG. 2, the light distribution device 2 includes a first substrate 10, a second substrate 20, an uneven structure layer 30, a gap 40, and a sealing member 50. . The light distribution device 2 transmits light incident on the first substrate 10 and emits the light from the second substrate 20. The first substrate 10, the gap 40, the uneven structure layer 30, and the second substrate 20 are arranged in this order along the thickness direction.
 本実施の形態では、図2に示されるように、光学装置1は、間隙部40を充填可能な液体7を備える。光学装置1は、間隙部40への液体7の注入、及び、間隙部40からの液体7の排出を制御することで、凹凸構造層30の表面と当該表面に接触する媒体との屈折率差を変更することができる。 In the present embodiment, as shown in FIG. 2, the optical device 1 includes the liquid 7 capable of filling the gap 40. The optical device 1 controls the injection of the liquid 7 into the gap portion 40 and the discharge of the liquid 7 from the gap portion 40, so that the refractive index difference between the surface of the uneven structure layer 30 and the medium in contact with the surface is controlled. Can be changed.
 具体的には、間隙部40に液体7が注入された場合に、液体7が凹凸構造層30の表面に接触する媒体になる。液体7と凹凸構造層30との屈折率差が実質的に等しくなり、配光デバイス2の光学状態が透明状態になる。間隙部40から液体7が排出された場合に、排出された液体7の代わりに間隙部40に導入される空気8(図3Aを参照)が、凹凸構造層30の表面に接触する媒体になる。空気8と凹凸構造層30との屈折率差が大きくなり、配光デバイス2の光学状態が配光状態になる。 Specifically, when the liquid 7 is injected into the gap 40, the liquid 7 becomes a medium that comes into contact with the surface of the uneven structure layer 30. The refractive index difference between the liquid 7 and the uneven structure layer 30 becomes substantially equal, and the optical state of the light distribution device 2 becomes transparent. When the liquid 7 is discharged from the gap 40, the air 8 (see FIG. 3A) introduced into the gap 40 instead of the discharged liquid 7 becomes a medium that comes into contact with the surface of the uneven structure layer 30. . The refractive index difference between the air 8 and the uneven structure layer 30 increases, and the optical state of the light distribution device 2 becomes a light distribution state.
 本実施の形態では、「配光」とは、配光デバイス2に入射する入射光を透過する際に、その進行方向を特定の方向に曲げて出射させることである。例えば、配光デバイス2は、鉛直方向に沿って立てて配置された場合に、斜め下方に向けて進む光を透過させる際に、当該光を全反射することで、斜め上方に向けて出射する。配光デバイス2による具体的な光学作用については、後で説明する。 In the present embodiment, “light distribution” means that, when transmitting incident light incident on the light distribution device 2, the traveling direction is bent in a specific direction and emitted. For example, when the light distribution device 2 is arranged upright along the vertical direction, when transmitting light traveling obliquely downward, the light distribution device 2 totally reflects the light and emits obliquely upward. . The specific optical action of the light distribution device 2 will be described later.
 配光デバイス2は、例えば、建物の窓に設置されることで、配光機能付き窓として実現することができる。配光デバイス2は、例えば、粘着層を介して既存の窓ガラスなどの透明基材に貼り付けて使用される。あるいは、配光デバイス2は、建物の窓そのものとして利用されてもよい。配光デバイス2は、例えば、第一基板10が屋外側で、第二基板20が屋内側になるように配置される。 光 The light distribution device 2 can be realized as a window with a light distribution function by being installed in a window of a building, for example. The light distribution device 2 is used by attaching it to a transparent base material such as an existing window glass through an adhesive layer, for example. Alternatively, the light distribution device 2 may be used as a window of a building itself. The light distribution device 2 is arranged, for example, such that the first substrate 10 is on the outdoor side and the second substrate 20 is on the indoor side.
 配光デバイス2の具体的な構成については、後で説明する。 具体 The specific configuration of the light distribution device 2 will be described later.
 容器3は、液体7を収容するための容器である。図1に示されるように、容器3は、配管4を介して配光デバイス2に接続されている。具体的には、図2に示されるように、配管4は、配光デバイス2の封止部材50に設けられた開口54に接続されている。なお、容器3は、配光デバイス2の開口54に直接接続されていてもよい。つまり、光学装置1は、配管4を備えていなくてもよい。 The container 3 is a container for containing the liquid 7. As shown in FIG. 1, the container 3 is connected to the light distribution device 2 via a pipe 4. Specifically, as shown in FIG. 2, the pipe 4 is connected to an opening 54 provided in the sealing member 50 of the light distribution device 2. Note that the container 3 may be directly connected to the opening 54 of the light distribution device 2. That is, the optical device 1 does not need to include the pipe 4.
 容器3の容量は、例えば、間隙部40の容量以上である。これにより、容器3は、間隙部40に注入された液体7を完全に収容することができる。つまり、間隙部40から液体7を完全に排出させることができる。なお、容器3の大きさ及び形状は特に限定されない。容器3及び配管4は、例えば樹脂材料又は金属材料を用いて形成される。容器3及び配管4は、例えば、液体7に対して反応を起こさない材料を用いて形成されている。 容量 The capacity of the container 3 is, for example, not less than the capacity of the gap 40. Thereby, the container 3 can completely contain the liquid 7 injected into the gap 40. That is, the liquid 7 can be completely discharged from the gap 40. The size and shape of the container 3 are not particularly limited. The container 3 and the pipe 4 are formed using, for example, a resin material or a metal material. The container 3 and the pipe 4 are formed using, for example, a material that does not react with the liquid 7.
 配光デバイス2が建物の窓に利用された場合、容器3及び配管4は、例えば、建物の窓枠、壁、床又は天井などに埋め込んで設けられる。あるいは、容器3及び配管4は、建物の屋内又は屋外に設けられてもよい。 When the light distribution device 2 is used for a window of a building, the container 3 and the pipe 4 are provided, for example, embedded in a window frame, a wall, a floor or a ceiling of the building. Alternatively, the container 3 and the pipe 4 may be provided indoors or outdoors of a building.
 送液装置5は、間隙部40への液体7の注入、及び、間隙部40からの液体7の排出の少なくとも一方を行う。本実施の形態では、送液装置5は、間隙部40への液体7の注入、及び、間隙部40からの液体7の排出の両方を行う。 液 The liquid sending device 5 performs at least one of the injection of the liquid 7 into the gap 40 and the discharge of the liquid 7 from the gap 40. In the present embodiment, the liquid sending device 5 performs both the injection of the liquid 7 into the gap 40 and the discharge of the liquid 7 from the gap 40.
 なお、液体7の注入及び排出のいずれか一方は、液体7の自重を利用して行われてもよい。具体的には、容器3が間隙部40よりも高い位置に設けられている場合、容器3から間隙部40への液体7の注入は、液体7の自重によって容易に行われる。容器3が間隙部40よりも低い位置に設けられている場合、間隙部40から容器3への液体7の排出は、液体7の自重によって容易に行われる。このように、送液装置5は、間隙部40に対する液体7の注入及び排出の一方を行わなくてもよい。 Note that either the injection or the discharge of the liquid 7 may be performed using the weight of the liquid 7. Specifically, when the container 3 is provided at a position higher than the gap 40, the injection of the liquid 7 from the container 3 into the gap 40 is easily performed by the weight of the liquid 7. When the container 3 is provided at a position lower than the gap 40, the discharge of the liquid 7 from the gap 40 to the container 3 is easily performed by the weight of the liquid 7. As described above, the liquid feeding device 5 does not have to perform one of the injection and the discharge of the liquid 7 into and from the gap 40.
 送液装置5は、例えば、配管4を流れる液体7の流量を調整可能な液体ポンプである。送液装置5は、流量センサ6によって測定された流量に基づいて、液体7の注入量及び排出量の少なくとも一方を調整する。 The liquid supply device 5 is, for example, a liquid pump capable of adjusting the flow rate of the liquid 7 flowing through the pipe 4. The liquid feeding device 5 adjusts at least one of the injection amount and the discharge amount of the liquid 7 based on the flow rate measured by the flow sensor 6.
 具体的には、送液装置5は、流量センサ6によって測定された流量を用いて、間隙部40に注入された液体7の総量を算出し、算出した総量が第一の値に達した場合に、液体7の注入を停止する。第一の値は、間隙部40の容量以下の値である。例えば、第一の値が間隙部40の容量の半分である場合、間隙部40の下半分が液体7で充填され、上半分が液体7で充填されていない状態を形成することができる。これにより、配光デバイス2の光学状態を領域毎に異ならせることができる。 Specifically, the liquid feeding device 5 calculates the total amount of the liquid 7 injected into the gap portion 40 using the flow rate measured by the flow rate sensor 6, and when the calculated total amount reaches the first value. Then, the injection of the liquid 7 is stopped. The first value is a value equal to or less than the capacity of the gap 40. For example, when the first value is half of the capacity of the gap 40, a state where the lower half of the gap 40 is filled with the liquid 7 and the upper half is not filled with the liquid 7 can be formed. Thereby, the optical state of the light distribution device 2 can be made different for each region.
 同様に、送液装置5は、流量センサ6によって測定された流量を用いて、間隙部40から排出された液体7の総量を算出し、算出した総量が第二の値に達した場合に、液体7の排出を停止する。第二の値は、間隙部40の容量以下の値である。例えば、第二の値が間隙部40の容量の1/3である場合、間隙部40の下側の2/3が液体7で充填され、上側の1/3が液体7で充填されていない状態を形成することができる。これにより、配光デバイス2の光学状態を領域毎に異ならせることができる。第一の値及び第二の値はそれぞれ、間隙部40の容量(最大値)、又は、間隙部40の容量の半分、1/3、2/3、1/4若しくは3/4などであるが、これらに限定されない。 Similarly, the liquid feeding device 5 calculates the total amount of the liquid 7 discharged from the gap portion 40 using the flow rate measured by the flow rate sensor 6, and when the calculated total amount reaches the second value, The discharge of the liquid 7 is stopped. The second value is a value equal to or less than the capacity of the gap 40. For example, when the second value is 1/3 of the capacity of the gap 40, the lower 2/3 of the gap 40 is filled with the liquid 7, and the upper 1/3 is not filled with the liquid 7. A state can be formed. Thereby, the optical state of the light distribution device 2 can be made different for each region. The first value and the second value are respectively the capacity (maximum value) of the gap 40, or half, 1/3, 2/3, 1/4 or 3/4 of the capacity of the gap 40. However, it is not limited to these.
 流量センサ6は、容器3と間隙部40との間を流れる液体7の流量を測定する。具体的には、流量センサ6は、配管4に設けられており、配管4内を流れる液体7の流量を測定する。なお、光学装置1は、流量センサ6の代わりに、流量を管理できる構成を有してもよい。 The flow rate sensor 6 measures the flow rate of the liquid 7 flowing between the container 3 and the gap 40. Specifically, the flow sensor 6 is provided in the pipe 4 and measures the flow rate of the liquid 7 flowing in the pipe 4. In addition, the optical device 1 may have a configuration capable of managing the flow rate instead of the flow rate sensor 6.
 液体7は、間隙部40に注入され、かつ、間隙部40から排出される液体である。つまり、液体7は、第一のタイミングで間隙部40への注入された後、第二のタイミングで間隙部40から排出される。排出された液体7は、容器3に収容される。排出された液体7は、第三のタイミングで間隙部40へ注入される。つまり、液体7は、間隙部40に対する注入及び排出が繰り返し行われる。 The liquid 7 is a liquid that is injected into the gap 40 and discharged from the gap 40. That is, after the liquid 7 is injected into the gap 40 at the first timing, it is discharged from the gap 40 at the second timing. The discharged liquid 7 is stored in the container 3. The discharged liquid 7 is injected into the gap 40 at a third timing. That is, the liquid 7 is repeatedly injected and discharged from the gap 40.
 液体7の体積は、例えば、間隙部40の容積と等しい。これにより、液体7によって間隙部40を完全に充填することができる。なお、液体7の体積は、間隙部40の容積より少なくてもよく、多くてもよい。 体積 The volume of the liquid 7 is, for example, equal to the volume of the gap 40. Thus, the gap 40 can be completely filled with the liquid 7. Note that the volume of the liquid 7 may be smaller or larger than the volume of the gap 40.
 本実施の形態では、液体7は、配光デバイス2の凹凸構造層30の屈折率に実質的に等しい屈折率を有する。具体的には、凹凸構造層30の屈折率をn1とし、液体7の屈折率をn2とした場合に、n1-n2の絶対値は0.01以下である。 In the present embodiment, the liquid 7 has a refractive index substantially equal to the refractive index of the uneven structure layer 30 of the light distribution device 2. Specifically, when the refractive index of the uneven structure layer 30 is n1 and the refractive index of the liquid 7 is n2, the absolute value of n1−n2 is 0.01 or less.
 液体7は、例えば、シリコーンオイルである。シリコーンオイルの屈折率は、例えば1.5以上1.6以下の範囲である。あるいは、液体7は、屈折率が約1.33の水、又は、屈折率が約1.3のアルコールでもよい。水は、純水であってもよく、水道水又は砂糖水などであってもよい。あるいは、液体7は、屈折率が高いナノ粒子又は有機材料を含有する水溶液であってもよい。 The liquid 7 is, for example, silicone oil. The refractive index of the silicone oil is, for example, in the range of 1.5 or more and 1.6 or less. Alternatively, the liquid 7 may be water having a refractive index of about 1.33 or alcohol having a refractive index of about 1.3. The water may be pure water, tap water or sugar water. Alternatively, the liquid 7 may be an aqueous solution containing nanoparticles or an organic material having a high refractive index.
 液体7は、表面張力が20mN/m以上76mN/m以下である。具体的には、液体7は、0℃以上40℃以下の範囲における表面張力が20mN/m以上76mN/m以下である。表面張力が20mN以上であることで、液体7の間隙部40への注入及び排出が容易に行われる。例えば、排出時の液体7の残留を抑制し、かつ、注入時の液体7内への気泡の混入を抑制することができる。これにより、配光デバイス2の面内での光学状態の均一性を高めることができる。 The liquid 7 has a surface tension of 20 mN / m or more and 76 mN / m or less. Specifically, the liquid 7 has a surface tension of 20 mN / m to 76 mN / m in a range of 0 ° C to 40 ° C. When the surface tension is 20 mN or more, the liquid 7 can be easily injected into and discharged from the gap 40. For example, it is possible to suppress the remaining of the liquid 7 at the time of discharging, and to suppress the incorporation of bubbles into the liquid 7 at the time of injection. Thereby, the uniformity of the optical state in the plane of the light distribution device 2 can be improved.
 続いて、配光デバイス2の具体的な構成について説明する。 Next, a specific configuration of the light distribution device 2 will be described.
 [第一基板]
 第一基板10は、透光性を有する基材である。第一基板10としては、例えばガラス基板又は樹脂基板を用いることができる。
[First substrate]
The first substrate 10 is a transparent base material. As the first substrate 10, for example, a glass substrate or a resin substrate can be used.
 ガラス基板の材料としては、ソーダガラス、無アルカリガラス又は高屈折率ガラスなどが挙げられる。樹脂基板の材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、アクリル(PMMA)又はエポキシなどの樹脂材料が挙げられる。ガラス基板は、光透過率が高く、かつ、水分の透過性が低いという利点がある。一方、樹脂基板は、破壊時の飛散が少ないという利点がある。本実施の形態では、第一基板10は、透明ガラス基板である。 材料 Examples of the material of the glass substrate include soda glass, non-alkali glass, and high refractive index glass. Examples of the material of the resin substrate include resin materials such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), acrylic (PMMA), and epoxy. The glass substrate has the advantages of high light transmittance and low moisture permeability. On the other hand, the resin substrate has an advantage that scattering at the time of destruction is small. In the present embodiment, the first substrate 10 is a transparent glass substrate.
 第一基板10は、例えば、リジッド基板であるが、フレキシブル基板であってもよい。第一基板10の厚みは、例えば3mm以上6mm以下であるが、これに限らない。第一基板10の平面視形状は、例えば、長方形又は正方形などであるが、これに限らず、矩形以外の多角形、又は、円形であってもよい。 The first substrate 10 is, for example, a rigid substrate, but may be a flexible substrate. The thickness of the first substrate 10 is, for example, 3 mm or more and 6 mm or less, but is not limited thereto. The planar shape of the first substrate 10 is, for example, a rectangle or a square, but is not limited thereto, and may be a polygon other than a rectangle or a circle.
 [第二基板]
 第二基板20は、透光性を有する基材である。第二基板20は、第一基板10に対向して配置されている。第二基板20と第一基板10とは、互いに平行に配置されており、その間隔は、例えば1mmである。
[Second substrate]
The second substrate 20 is a transparent base material. The second substrate 20 is arranged to face the first substrate 10. The second substrate 20 and the first substrate 10 are arranged in parallel with each other, and an interval between them is, for example, 1 mm.
 本実施の形態では、図2に示されるように、第二基板20は、ガラス基板21と、フィルム基板22と、粘着層23とを備える。ガラス基板21、粘着層23及びフィルム基板22がこの順で積層された積層構造を有する。なお、第二基板20は、第一基板10と同様に、単層構造を有してもよい。例えば、第二基板20は、ガラス基板21のみを備えてもよく、フィルム基板22のみを備えてもよい。 In the present embodiment, as shown in FIG. 2, the second substrate 20 includes a glass substrate 21, a film substrate 22, and an adhesive layer 23. It has a laminated structure in which a glass substrate 21, an adhesive layer 23, and a film substrate 22 are laminated in this order. Note that the second substrate 20 may have a single-layer structure, similarly to the first substrate 10. For example, the second substrate 20 may include only the glass substrate 21 or may include only the film substrate 22.
 ガラス基板21は、透明ガラス基板であり、例えば第一基板10と同じ構成を有する。具体的には、ガラス基板21の厚みは、例えば3mm以上6mm以下であるが、これに限らない。ガラス基板21は、例えば、リジッド基板であるが、フレキシブル基板であってもよい。ガラス基板21の平面視形状は、例えば、長方形又は正方形などであるが、これに限らず、矩形以外の多角形、又は、円形であってもよい。ガラス基板21の材料としては、ソーダガラス、無アルカリガラス又は高屈折率ガラスなどが挙げられる。 The glass substrate 21 is a transparent glass substrate and has, for example, the same configuration as the first substrate 10. Specifically, the thickness of the glass substrate 21 is, for example, not less than 3 mm and not more than 6 mm, but is not limited thereto. The glass substrate 21 is, for example, a rigid substrate, but may be a flexible substrate. The shape of the glass substrate 21 in a plan view is, for example, a rectangle or a square, but is not limited thereto, and may be a polygon other than a rectangle or a circle. Examples of the material of the glass substrate 21 include soda glass, non-alkali glass, and high refractive index glass.
 フィルム基板22は、透光性を有する樹脂基板である。樹脂基板の材料としては、PET、PEN、PC、PMMA又はエポキシなどの樹脂材料が挙げられる。本実施の形態では、フィルム基板22は、PET樹脂からなる透明樹脂基板である。フィルム基板22の厚みは、例えば1μm以上1000μm以下であるが、これに限らない。フィルム基板22の平面視形状は、ガラス基板21の平面視形状と同じである。 The film substrate 22 is a light-transmitting resin substrate. Examples of the material of the resin substrate include resin materials such as PET, PEN, PC, PMMA, and epoxy. In the present embodiment, the film substrate 22 is a transparent resin substrate made of PET resin. The thickness of the film substrate 22 is, for example, 1 μm or more and 1000 μm or less, but is not limited thereto. The planar shape of the film substrate 22 is the same as the planar shape of the glass substrate 21.
 図2に示されるように、フィルム基板22の、第一基板10側の主面に凹凸構造層30が設けられている。フィルム基板22は、凹凸構造層30を形成する際の支持基板となる部材である。 凹凸 As shown in FIG. 2, the uneven structure layer 30 is provided on the main surface of the film substrate 22 on the first substrate 10 side. The film substrate 22 is a member serving as a support substrate when forming the uneven structure layer 30.
 粘着層23は、ガラス基板21とフィルム基板22とを固定する。粘着層23は、例えば、透光性の樹脂材料を用いて形成されている。粘着層23は、例えば、シリコーン樹脂であるが、これに限らない。 The adhesive layer 23 fixes the glass substrate 21 and the film substrate 22. The adhesive layer 23 is formed using, for example, a translucent resin material. The adhesive layer 23 is, for example, a silicone resin, but is not limited thereto.
 本実施の形態では、第一基板10と第二基板20とは、互いの端部の外周に沿って額縁状に設けられた封止部材50によって接着されている。第一基板10と第二基板20との間には、間隔を一定に保つために、粒子状の複数のスペーサが面内に分散されていてもよく、柱状の構造が形成されていてもよい。 In the present embodiment, the first substrate 10 and the second substrate 20 are bonded to each other by a sealing member 50 provided in a frame shape along the outer periphery of each end. Between the first substrate 10 and the second substrate 20, a plurality of particulate spacers may be dispersed in the plane or a columnar structure may be formed in order to keep the distance constant. .
 [凹凸構造層]
 凹凸構造層30は、第二基板20の第一基板10側に配置された微細形状層である。凹凸構造層30は、図2に示されるように、複数の凸部31を有する。
[Rough structure layer]
The concavo-convex structure layer 30 is a fine-shaped layer arranged on the first substrate 10 side of the second substrate 20. The uneven structure layer 30 has a plurality of convex portions 31 as shown in FIG.
 具体的には、凹凸構造層30は、マイクロオーダーサイズの複数の凸部31によって構成された凹凸構造体である。図2に示される例では、複数の凸部31が個々に離れて位置し、根元(第二基板20側)で基台層によって支持されている。つまり、隣り合う2つの凸部31の間には平坦面が設けられている。基台層は、例えば、複数の凸部31の成型の際に残膜として残った部分である。なお、複数の凸部31は、根元で互いに接続されていてもよく、隣り合う2つの凸部31の間には平坦面が設けられていなくてもよい。つまり、隣り合う2つの凸部31の間である凹部の断面形状は、V字状であってもよい。例えば、凹凸構造層30は、電極層など他の部材を介さずに、第二基板20の第一基板10側の面に接して設けられている。なお、凹凸構造層30と第二基板20との間には、透明の接着層などが設けられていてもよい。 Specifically, the concavo-convex structure layer 30 is a concavo-convex structure formed of a plurality of protrusions 31 having a micro-order size. In the example illustrated in FIG. 2, the plurality of protrusions 31 are individually separated from each other, and are supported by the base layer at the base (the second substrate 20 side). That is, a flat surface is provided between two adjacent protrusions 31. The base layer is, for example, a portion left as a residual film when the plurality of protrusions 31 are molded. The plurality of protrusions 31 may be connected to each other at the root, and a flat surface may not be provided between two adjacent protrusions 31. That is, the cross-sectional shape of the concave portion between two adjacent convex portions 31 may be V-shaped. For example, the concavo-convex structure layer 30 is provided in contact with the surface of the second substrate 20 on the first substrate 10 side without interposing other members such as an electrode layer. Note that a transparent adhesive layer or the like may be provided between the uneven structure layer 30 and the second substrate 20.
 複数の凸部31は、Z軸方向に並んで配置されている。複数の凸部31は、その並び方向(すなわち、Z軸方向)に直交する方向に延在する長尺の凸部である。具体的には、複数の凸部31は、X軸方向に延びたストライプ状に形成されている。なお、図1では、複数の凸部31を実線のストライプで模式的に示している。例えば、複数の凸部31の各々は、第二基板20に対して横倒しに配置された三角柱である。なお、複数の凸部31は、X軸方向に沿って蛇行しながら延びていてもよい。例えば、複数の凸部31は、平面視において、波線のストライプ状に形成されていてもよい。 The plurality of convex portions 31 are arranged side by side in the Z-axis direction. The plurality of protrusions 31 are long protrusions extending in a direction orthogonal to the arrangement direction (that is, the Z-axis direction). Specifically, the plurality of convex portions 31 are formed in a stripe shape extending in the X-axis direction. In FIG. 1, the plurality of projections 31 are schematically shown by solid-line stripes. For example, each of the plurality of protrusions 31 is a triangular prism arranged sideways with respect to the second substrate 20. Note that the plurality of convex portions 31 may extend while meandering along the X-axis direction. For example, the plurality of convex portions 31 may be formed in a wavy stripe shape in plan view.
 図2に示されるように、複数の凸部31の各々は、根元から先端にかけて先細る形状を有する。具体的には、複数の凸部31の各々の断面形状は、第二基板20から第一基板10に向かう方向に沿って先細りのテーパ形状である。本実施の形態では、複数の凸部31のYZ断面における断面形状は、配光デバイス2の厚み方向に沿って先細る三角形であるが、これに限らない。凸部31の断面形状は、台形でもよく、その他の多角形、又は、カーブを含む多角形などでもよい。 よ う As shown in FIG. 2, each of the plurality of protrusions 31 has a shape that tapers from the root to the tip. Specifically, the cross-sectional shape of each of the plurality of protrusions 31 is a tapered shape that tapers along the direction from the second substrate 20 to the first substrate 10. In the present embodiment, the cross-sectional shape of the plurality of protrusions 31 in the YZ cross section is a triangle that tapers along the thickness direction of the light distribution device 2, but is not limited thereto. The cross-sectional shape of the convex portion 31 may be a trapezoid, another polygon, a polygon including a curve, or the like.
 なお、台形又は三角形には、頂点が丸みを帯びた台形又は三角形も含まれる。また、台形又は三角形には、各辺が完全に直線ではない場合、例えば、各辺の長さの数%程度の変位で僅かに屈曲している場合、又は、微小な凹凸が含まれる場合も含まれる。 台 Note that the trapezoid or triangle also includes a trapezoid or triangle whose vertices are rounded. In addition, the trapezoid or triangle may include a case where each side is not completely straight, for example, a case where each side is slightly bent with a displacement of about several percent of the length of each side, or a case where minute irregularities are included. included.
 図2に示されるように、複数の凸部31の各々は、側面32及び33を有する。側面32及び33は、Z軸方向に交差する面である。側面32及び33の少なくとも一方は、Y軸方向に対して所定の傾斜角で傾斜する傾斜面である。側面32と側面33との間隔、すなわち、凸部31の幅は、第二基板20から第一基板10に向かって漸次小さくなっている。 凸 As shown in FIG. 2, each of the plurality of projections 31 has side surfaces 32 and 33. The side surfaces 32 and 33 are surfaces that intersect in the Z-axis direction. At least one of the side surfaces 32 and 33 is an inclined surface inclined at a predetermined inclination angle with respect to the Y-axis direction. The distance between the side surface 32 and the side surface 33, that is, the width of the protrusion 31 gradually decreases from the second substrate 20 toward the first substrate 10.
 側面32は、例えば、Z軸が鉛直方向に一致するように配光デバイス2を配置した場合に、凸部31を構成する複数の側面のうち、鉛直上方側の側面である。側面32は、入射光を屈折させる屈折面である。 The side surface 32 is, for example, a vertically upper side surface among a plurality of side surfaces constituting the convex portion 31 when the light distribution device 2 is arranged so that the Z axis coincides with the vertical direction. The side surface 32 is a refraction surface that refracts incident light.
 側面33は、例えば、Z軸が鉛直方向に一致するように配光デバイス2を配置した場合に、凸部31を構成する複数の側面のうち、鉛直下方側の側面である。側面33は、入射光を反射させる反射面である。ここでの反射は、全反射であり、側面33は、全反射面として機能する。 The side surface 33 is, for example, a vertically lower side surface among a plurality of side surfaces constituting the convex portion 31 when the light distribution device 2 is arranged so that the Z axis coincides with the vertical direction. The side surface 33 is a reflection surface that reflects incident light. The reflection here is total reflection, and the side surface 33 functions as a total reflection surface.
 側面32及び33の傾斜角は、例えば0°以上25°以下の範囲である。言い換えると、凸部31の断面形状である三角形又は台形の2つの底角はそれぞれ、65°以上90°以下である。側面32の傾斜角と側面33の傾斜角とは、互いに異なっていてもよく、等しくてもよい。複数の凸部31の各々の側面32の傾斜角は互いに等しくてもよく、異なっていてもよい。複数の凸部31の各々の側面33の傾斜角は互いに等しくてもよく、異なっていてもよい。 傾斜 The inclination angles of the side surfaces 32 and 33 are, for example, in a range of 0 ° or more and 25 ° or less. In other words, the two base angles of the triangle or the trapezoid, which are the cross-sectional shapes of the protrusions 31, are each 65 ° or more and 90 ° or less. The inclination angle of the side surface 32 and the inclination angle of the side surface 33 may be different from each other or may be equal. The inclination angles of the side surfaces 32 of the plurality of convex portions 31 may be equal to each other or may be different. The inclination angles of the side surfaces 33 of the plurality of convex portions 31 may be equal to each other or may be different.
 複数の凸部31の各々の高さは、例えば100μm以上である。高さが100μm以上であることで、光を反射する側面33を広く確保することができる。このため、配光される光の量が多くなるので、配光率を高めることができる。 各 々 The height of each of the plurality of projections 31 is, for example, 100 μm or more. When the height is 100 μm or more, a wide side surface 33 that reflects light can be secured. For this reason, the amount of light to be distributed increases, so that the light distribution rate can be increased.
 また、複数の凸部31の各々のアスペクト比は、例えば2以下である。なお、アスペクト比は、凸部31の根元の幅に対する高さの割合である。アスペクト比が2以下であることで、凸部31の物理的な強度を高めることができる。例えば、液体7の注入及び排出の際に、液体7の流れによって凸部31の形状が変化するのを抑制することができる。 The aspect ratio of each of the plurality of projections 31 is, for example, 2 or less. The aspect ratio is the ratio of the height to the width of the root of the convex portion 31. When the aspect ratio is 2 or less, the physical strength of the projection 31 can be increased. For example, at the time of injecting and discharging the liquid 7, it is possible to suppress a change in the shape of the projection 31 due to the flow of the liquid 7.
 また、隣り合う2つの凸部31の間隔は、例えば10μm以上40μm以下である。なお、当該間隔は、隣り合う2つの凸部31の根元間の距離である。つまり、当該間隔は、隣り合う2つの凸部31の間の凹部の平坦面の幅に相当する。隣り合う2つの凸部31の間隔が10μm以上であることで、間隙部40に注入された液体7が凹部に残留しにくくなる。このため、液体7を速やかに排出することができる。また、隣り合う2つの凸部31の間隔が40μm以下であることで、光を反射する側面33を有する凸部31の面内の密度を高めることができる。このため、配光される光の量が多くなるので、配光率を高めることができる。 {Circle around (2)} The interval between two adjacent protrusions 31 is, for example, 10 μm or more and 40 μm or less. The interval is a distance between the roots of two adjacent convex portions 31. That is, the interval corresponds to the width of the flat surface of the concave portion between two adjacent convex portions 31. When the interval between two adjacent convex portions 31 is 10 μm or more, the liquid 7 injected into the gap portion 40 is less likely to remain in the concave portion. Therefore, the liquid 7 can be quickly discharged. Further, when the interval between two adjacent convex portions 31 is 40 μm or less, the in-plane density of the convex portions 31 having the side surfaces 33 that reflect light can be increased. For this reason, the amount of light to be distributed increases, so that the light distribution rate can be increased.
 なお、複数の凸部31の各々の高さは、1mm以上であってもよい。つまり、複数の凸部31は、ミリオーダーサイズの凸部であってもよい。注入された液体7が完全に排出されずに部分的に残留したとしても、全体として十分な大きさの反射面を確保することができる。 The height of each of the plurality of protrusions 31 may be 1 mm or more. That is, the plurality of protrusions 31 may be protrusions of a millimeter order size. Even if the injected liquid 7 remains partially without being completely discharged, a sufficiently large reflecting surface can be secured as a whole.
 本実施の形態では、複数の凸部31の各々の形状は、互いに同じであるが、異なっていてもよい。例えば、複数の凸部31は、高さが互いに異なる複数の凸部を含んでいてもよい。例えば、隣り合う2つの凸部31の高さが異なっていてもよい。複数の凸部31の各々の高さは、例えば複数の設定値の中からランダムに選択された値であってもよい。 In the present embodiment, the shapes of the plurality of protrusions 31 are the same as each other, but may be different. For example, the plurality of protrusions 31 may include a plurality of protrusions having different heights. For example, the heights of two adjacent protrusions 31 may be different. The height of each of the plurality of protrusions 31 may be, for example, a value randomly selected from among a plurality of set values.
 凹凸構造層30は、例えば、紫外線硬化樹脂材料を用いて形成される。具体的には、凹凸構造層30は、モールド成型又はナノインプリントなどによって形成することができる。 The uneven structure layer 30 is formed using, for example, an ultraviolet curable resin material. Specifically, the uneven structure layer 30 can be formed by molding, nanoimprinting, or the like.
 凹凸構造層30の材料としては、例えば、アクリル樹脂、エポキシ樹脂又はシリコーン樹脂などの光透過性を用いる樹脂材料を用いることができる。凹凸構造層30の屈折率は、例えば1.4以上1.8以下の範囲である。本実施の形態では、凹凸構造層30は、例えば、屈折率が約1.5のアクリル樹脂を用いて形成される。 、 As a material of the uneven structure layer 30, for example, a resin material using light transmittance such as an acrylic resin, an epoxy resin, or a silicone resin can be used. The refractive index of the uneven structure layer 30 is, for example, in a range of 1.4 or more and 1.8 or less. In the present embodiment, the uneven structure layer 30 is formed using, for example, an acrylic resin having a refractive index of about 1.5.
 凹凸構造層30の表面の、液体7に対する接触角は、例えば、60°以上120°以下である。当該接触角は、90°以上120°以下であってもよい。つまり、凸部31の側面32及び33はそれぞれ、液体7に対して撥液性(具体的には、撥油性又は撥水性)又は超撥液性を有する。例えば、凹凸構造層30の表面は、フッ素コーティングが行われていてもよい。あるいは、凹凸構造層30の表面の分子構造では、フッ素系の官能基が導入されていてもよい。なお、液体7の分子構造に、フッ素系の官能基が導入されていてもよい。 The contact angle of the surface of the uneven structure layer 30 with the liquid 7 is, for example, not less than 60 ° and not more than 120 °. The contact angle may be 90 ° or more and 120 ° or less. That is, each of the side surfaces 32 and 33 of the convex portion 31 has liquid repellency (specifically, oil repellency or water repellency) or super liquid repellency with respect to the liquid 7. For example, the surface of the concavo-convex structure layer 30 may be coated with fluorine. Alternatively, in the molecular structure of the surface of the uneven structure layer 30, a fluorine-based functional group may be introduced. Note that a fluorine-based functional group may be introduced into the molecular structure of the liquid 7.
 また、凹凸構造層30の表面は、液体7に対して親液性(具体的には、親油性又は親水性)又は超親水性を有してもよい。例えば、凹凸構造層30の表面の、液体7に対する接触角は、60°未満でもよい。例えば、当該接触角は、40°以上であってもよい。 The surface of the uneven structure layer 30 may have lyophilicity (specifically, lipophilicity or hydrophilicity) or superhydrophilicity with respect to the liquid 7. For example, the contact angle of the surface of the uneven structure layer 30 with the liquid 7 may be less than 60 °. For example, the contact angle may be 40 ° or more.
 [間隙部]
 間隙部40は、凹凸構造層30と第一基板10との間に設けられている。間隙部40は、具体的には、第一基板10と、凹凸構造層30と、封止部材50とによって囲まれた空間である。
[Gap]
The gap portion 40 is provided between the uneven structure layer 30 and the first substrate 10. The gap portion 40 is, specifically, a space surrounded by the first substrate 10, the uneven structure layer 30, and the sealing member 50.
 間隙部40には、液体7が注入される。注入された液体7は、凹凸構造層30の表面、具体的には、凸部31の側面32及び33を接触して覆う。本実施の形態では、液体7の屈折率n2が凹凸構造層30の屈折率n1に実質的に等しいので、液体7と凹凸構造層30との間の屈折率差が十分に小さくなる。これにより、間隙部40及び凹凸構造層30を通過する光は、凹凸構造層30の表面で反射及び屈折などの光学作用を受けることなく、実質的にまっすぐ進行する。 液体 The liquid 7 is injected into the gap 40. The injected liquid 7 contacts and covers the surface of the uneven structure layer 30, specifically, the side surfaces 32 and 33 of the convex portion 31. In the present embodiment, since the refractive index n2 of the liquid 7 is substantially equal to the refractive index n1 of the uneven structure layer 30, the difference in refractive index between the liquid 7 and the uneven structure layer 30 is sufficiently small. Accordingly, light passing through the gap portion 40 and the uneven structure layer 30 travels substantially straight without being subjected to optical actions such as reflection and refraction on the surface of the uneven structure layer 30.
 間隙部40は、液体7が排出された後は、例えば空気で満たされる。液体7が間隙部40から排出されることで、間隙部40(すなわち、空気)と凹凸構造層30との間の屈折率差が大きくなる。これにより、間隙部40及び凹凸構造層30を通過する光は、凸部31の側面33で全反射されて、入射した方向とは異なる方向に向けて出射される。 (4) After the liquid 7 is discharged, the gap 40 is filled with, for example, air. When the liquid 7 is discharged from the gap 40, the difference in the refractive index between the gap 40 (that is, air) and the uneven structure layer 30 increases. Thereby, the light passing through the gap portion 40 and the uneven structure layer 30 is totally reflected by the side surface 33 of the convex portion 31 and emitted in a direction different from the incident direction.
 間隙部40内での液体7の有無による光学状態の違いについては、後で詳細に説明する。 The difference in the optical state depending on the presence or absence of the liquid 7 in the gap 40 will be described later in detail.
 [封止部材]
 封止部材50は、第一基板10と第二基板20との間に液体7を封止するための空間、すなわち、間隙部40を形成するための環状の部材である。具体的には、封止部材50は、第一基板10と第二基板20との各々の端部に沿って設けられている。第一基板10及び第二基板20の各々の平面視形状が矩形であるので、封止部材50は、矩形環状に設けられている。つまり、封止部材50は、平面視において、第一基板10及び第二基板20の各々の四辺に沿って設けられている。
[Sealing member]
The sealing member 50 is a ring-shaped member for forming a space for sealing the liquid 7 between the first substrate 10 and the second substrate 20, that is, a gap 40. Specifically, the sealing member 50 is provided along each end of the first substrate 10 and the second substrate 20. Since the planar shape of each of the first substrate 10 and the second substrate 20 is rectangular, the sealing member 50 is provided in a rectangular ring shape. That is, the sealing members 50 are provided along the four sides of each of the first substrate 10 and the second substrate 20 in plan view.
 封止部材50は、第一基板10と第二基板20とを周縁部分で接着している。この接着により、間隙部40が形成される。 The sealing member 50 adheres the first substrate 10 and the second substrate 20 at a peripheral portion. By this bonding, the gap 40 is formed.
 本実施の形態では、図2に示されるように、封止部材50は、スペーサ51と、接着層52及び53とを有する。さらに、封止部材50は、開口54と、空気孔55とを有する。 In the present embodiment, as shown in FIG. 2, the sealing member 50 has a spacer 51 and adhesive layers 52 and 53. Further, the sealing member 50 has an opening 54 and an air hole 55.
 スペーサ51は、第一基板10と第二基板20との間隔を維持する部材である。スペーサ51は、例えば、PETなどの樹脂材料を用いて形成されている。あるいは、スペーサ51は、金属材料であってもよい。スペーサ51は、厚みが均一で、平面視において矩形環状に設けられている。なお、スペーサ51は、第一基板10又は第二基板20の四辺の各々に対応した直線状の4つの部材から構成されてもよい。 The spacer 51 is a member for maintaining a distance between the first substrate 10 and the second substrate 20. The spacer 51 is formed using, for example, a resin material such as PET. Alternatively, the spacer 51 may be a metal material. The spacer 51 has a uniform thickness and is provided in a rectangular ring shape in plan view. The spacer 51 may be formed of four linear members corresponding to each of the four sides of the first substrate 10 or the second substrate 20.
 接着層52は、スペーサ51と第一基板10とを接着する。接着層53は、スペーサ51と第二基板20とを接着する。接着層52及び53は、接着性を有する樹脂材料を用いて形成されている。例えば、接着層52及び53を形成する樹脂材料として、熱硬化性樹脂が用いられる。接着層52及び53はそれぞれ、第一基板10及び第二基板20の外周に沿って矩形環状に設けられている。 The bonding layer 52 bonds the spacer 51 and the first substrate 10 together. The bonding layer 53 bonds the spacer 51 and the second substrate 20 together. The adhesive layers 52 and 53 are formed using an adhesive resin material. For example, a thermosetting resin is used as a resin material for forming the adhesive layers 52 and 53. The adhesive layers 52 and 53 are provided in a rectangular ring shape along the outer periphery of the first substrate 10 and the second substrate 20, respectively.
 開口54は、液体7の注入口及び排出口である。開口54は、スペーサ51を貫通するように設けられており、配管4が接続されている。開口54は、例えば、配光デバイス2の下部端面に設けられている。本実施の形態では、液体7は、配光デバイス2の下側から注入され、かつ、下側から排出される。 The opening 54 is an inlet and an outlet for the liquid 7. The opening 54 is provided to penetrate the spacer 51, and the pipe 4 is connected. The opening 54 is provided in, for example, a lower end surface of the light distribution device 2. In the present embodiment, the liquid 7 is injected from below the light distribution device 2 and discharged from below.
 なお、開口54は、配光デバイス2の上部端面に設けられていてもよい。つまり、液体7は、配光デバイス2の上側から注入され、かつ、上側から排出されてもよい。また、開口54は、配光デバイス2の側方端面に設けられていてもよい。あるいは、開口54は、第一基板10及び第二基板20の一方を貫通して設けられていてもよい。 The opening 54 may be provided on the upper end face of the light distribution device 2. That is, the liquid 7 may be injected from above the light distribution device 2 and discharged from above. Further, the opening 54 may be provided on a side end surface of the light distribution device 2. Alternatively, the opening 54 may be provided through one of the first substrate 10 and the second substrate 20.
 空気孔55は、間隙部40内の空気を出し入れするための孔である。空気孔55は、スペーサ51を貫通するように設けられている。空気孔55には、液体7が漏れ出ないように、液体7の透過を抑制し、かつ、気体を通過させるフィルタが設けられていてもよい。空気孔55は、配光デバイス2の上部端面に設けられている。 The air hole 55 is a hole for taking in and out the air in the gap 40. The air hole 55 is provided to penetrate the spacer 51. The air hole 55 may be provided with a filter that suppresses the permeation of the liquid 7 and allows the gas to pass so that the liquid 7 does not leak. The air hole 55 is provided on the upper end face of the light distribution device 2.
 [動作]
 続いて、本実施の形態に係る光学装置1の動作について、図3A~図3Cを用いて説明する。
[motion]
Subsequently, the operation of the optical device 1 according to the present embodiment will be described with reference to FIGS. 3A to 3C.
 光学装置1では、間隙部40に対する液体7の注入及び排出が繰り返し行われる。注入及び排出の各々は、例えば、ユーザからの指示を受け付けたタイミングで行われてもよく、予め設定されたスケジュールが示すタイミングで行われてもよい。 In the optical device 1, the injection and discharge of the liquid 7 into and from the gap 40 are repeatedly performed. Each of the injection and the discharge may be performed, for example, at a timing when an instruction from the user is received, or at a timing indicated by a preset schedule.
 まず、液体7の注入について図3Aを用いて説明する。図3Aは、本実施の形態に係る光学装置1の配光デバイス2の間隙部40に液体7を注入する様子を示す断面図である。 First, the injection of the liquid 7 will be described with reference to FIG. 3A. FIG. 3A is a cross-sectional view showing how the liquid 7 is injected into the gap 40 of the light distribution device 2 of the optical device 1 according to the present embodiment.
 まず、送液装置5は、容器3に収容された液体7を配管4に送り出す。配管4を流れた液体7は、開口54から間隙部40に注入される。本実施の形態では、開口54が配光デバイス2の下部端面に設けられているので、図3Aの実線の矢印で表されるように、液体7は、間隙部40の内部を下側から充填する。このとき、図3Aの破線の矢印で表されるように、間隙部40に含まれていた空気8は、液体7に押し出されるようにして空気孔55から外部に排出される。液体7が間隙部40の全体を充填した時点で、送液装置5は、液体7の注入を停止する。 {Circle around (1)} First, the liquid sending device 5 sends out the liquid 7 stored in the container 3 to the pipe 4. The liquid 7 flowing through the pipe 4 is injected into the gap 40 from the opening 54. In the present embodiment, since the opening 54 is provided in the lower end surface of the light distribution device 2, the liquid 7 fills the inside of the gap 40 from below as indicated by the solid arrow in FIG. 3A. I do. At this time, as indicated by the dashed arrow in FIG. 3A, the air 8 contained in the gap 40 is discharged to the outside through the air hole 55 so as to be pushed out by the liquid 7. When the liquid 7 fills the entire gap 40, the liquid feeding device 5 stops injecting the liquid 7.
 このとき、送液装置5は、液体7の自重に釣り合うように、液体7に対する圧力を維持する。これにより、液体7の逆流、すなわち、液体7の間隙部40からの排出を抑制することができる。なお、配管4には、開閉自在の弁が設けられていてもよい。送液装置5又は制御装置(図示せず)が、液体7の注入を停止した時点で弁を閉じてもよい。 At this time, the liquid feeding device 5 maintains the pressure on the liquid 7 so as to balance the weight of the liquid 7. Thereby, the backflow of the liquid 7, that is, the discharge of the liquid 7 from the gap 40 can be suppressed. The pipe 4 may be provided with an openable / closable valve. The valve may be closed when the liquid feeding device 5 or the control device (not shown) stops the injection of the liquid 7.
 また、送液装置5は、間隙部40の全体を液体7で充填する前に、液体7の注入を停止してもよい。この場合、配光デバイス2の上側と下側とで異なる光学特性を実現することができる。つまり、液体7の液面の高さを調整することで、配光デバイス2の領域毎に異なる光学特性を実現することができる。 The liquid supply device 5 may stop the injection of the liquid 7 before filling the entire gap 40 with the liquid 7. In this case, different optical characteristics can be realized between the upper side and the lower side of the light distribution device 2. That is, by adjusting the height of the liquid surface of the liquid 7, different optical characteristics can be realized for each region of the light distribution device 2.
 次に、液体7の排出について、図3Bを用いて説明する。図3Bは、本実施の形態に係る光学装置1の配光デバイス2の間隙部40から液体7を排出する様子を示す断面図である。 Next, discharge of the liquid 7 will be described with reference to FIG. 3B. FIG. 3B is a cross-sectional view showing a state where the liquid 7 is discharged from the gap 40 of the light distribution device 2 of the optical device 1 according to the present embodiment.
 送液装置5は、液体7に与える圧力を停止する。あるいは、配管4に弁が設けられている場合には、弁を開放する。これにより、図3Bの実線の矢印で表されるように、液体7は、自重によって開口54から液体7が排出される。排出された液体7は、配管4を通って容器3に収容される。図3Bの破線の矢印で表されるように、液体7が排出された後の間隙部40には、空気孔55を介して空気8が導入される。 液 The liquid supply device 5 stops the pressure applied to the liquid 7. Alternatively, when a valve is provided in the pipe 4, the valve is opened. As a result, as shown by the solid arrow in FIG. 3B, the liquid 7 is discharged from the opening 54 by its own weight. The discharged liquid 7 is stored in the container 3 through the pipe 4. As shown by the dashed arrow in FIG. 3B, the air 8 is introduced into the gap 40 after the liquid 7 is discharged via the air hole 55.
 なお、送液装置5は、液体7の注入とは逆方向に液体7を流すことができてもよい。これにより、液体7の排出をより速やかに行うことができる。 The liquid sending device 5 may be capable of flowing the liquid 7 in a direction opposite to the direction in which the liquid 7 is injected. As a result, the liquid 7 can be discharged more quickly.
 図3Cは、本実施の形態に係る光学装置1の配光デバイス2の間隙部40から液体7を完全に排出した様子を示す断面図である。液体7が完全に排出された後、間隙部40は、空気8で満たされる。 FIG. 3C is a cross-sectional view showing a state where the liquid 7 is completely discharged from the gap 40 of the light distribution device 2 of the optical device 1 according to the present embodiment. After the liquid 7 has been completely drained, the gap 40 is filled with air 8.
 空気8は、例えば、配光デバイス2の周辺に位置する空気であるが、容器などに予め用意された気体であってもよい。例えば、空気孔55には、乾燥空気、窒素、又は、不活性ガスを収容する容器が接続されていてもよい。つまり、光学装置1は、不活性ガスなどの気体を収容する容器を備えていてもよい。不活性ガスは、例えば、アルゴンなどであるが、特に限定されない。 The air 8 is, for example, air located around the light distribution device 2, but may be gas prepared in advance in a container or the like. For example, a container containing dry air, nitrogen, or an inert gas may be connected to the air hole 55. That is, the optical device 1 may include a container that stores a gas such as an inert gas. The inert gas is, for example, argon, but is not particularly limited.
 以上のように、本実施の形態に係る光学装置1では、配光デバイス2の間隙部40に対する液体7の注入及び排出を調整することができる。本実施の形態では、平面視において、配光デバイス2の液体7で充填された部分の光学状態は、透明状態になる。配光デバイス2の液体7が排出された部分、すなわち、液体7が存在しない部分の光学状態は、配光状態になる。具体的な光学状態については、次に説明する。 As described above, in the optical device 1 according to the present embodiment, the injection and discharge of the liquid 7 into and from the gap 40 of the light distribution device 2 can be adjusted. In the present embodiment, the optical state of the portion of the light distribution device 2 filled with the liquid 7 becomes transparent in plan view. The optical state of the portion of the light distribution device 2 from which the liquid 7 is discharged, that is, the portion where the liquid 7 does not exist is a light distribution state. The specific optical state will be described below.
 [光学状態]
 続いて、本実施の形態に係る配光デバイス2の光学状態について、図4A及び図4Bを用いて説明する。ここでは、凹凸構造層30の屈折率n1及び液体7の屈折率n2の屈折率がいずれも、1.5である場合を説明する。
[Optical state]
Subsequently, an optical state of the light distribution device 2 according to the present embodiment will be described with reference to FIGS. 4A and 4B. Here, a case where both the refractive index n1 of the uneven structure layer 30 and the refractive index n2 of the liquid 7 are 1.5 will be described.
 <透明状態>
 図4Aは、本実施の形態に係る光学装置1の配光デバイス2の透明状態を示す断面図である。図4Aには、配光デバイス2に対して斜めに入射する光Lの経路を矢印で示している。光Lは、配光デバイス2が窓に利用された場合に、屋外から屋内に斜め下方に向けて入射する太陽光に相当する。図4Bについても同様である。
<Transparent state>
FIG. 4A is a cross-sectional view illustrating a transparent state of the light distribution device 2 of the optical device 1 according to the present embodiment. In FIG. 4A, the path of the light L obliquely incident on the light distribution device 2 is indicated by an arrow. When the light distribution device 2 is used for a window, the light L corresponds to sunlight that enters obliquely downward from indoors to indoors. The same applies to FIG. 4B.
 図4Aに示されるように、配光デバイス2の間隙部40には、液体7が充填されている。凹凸構造層30の屈折率n1と液体7の屈折率n2との差が0であるため、光Lは、凸部31の側面32及び33のいずれにおいても光学作用を受けない。つまり、屋外から第一基板10に入射する光Lは、進行方向を曲げることなく、液体7から凹凸構造層30へ直進し、第二基板20から出射される。つまり、光Lは、凸部31の側面33によって全反射されない。 AAs shown in FIG. 4A, the gap 40 of the light distribution device 2 is filled with the liquid 7. Since the difference between the refractive index n1 of the concavo-convex structure layer 30 and the refractive index n2 of the liquid 7 is 0, the light L does not receive an optical action on any of the side surfaces 32 and 33 of the convex portion 31. That is, the light L incident on the first substrate 10 from outside travels straight from the liquid 7 to the concave-convex structure layer 30 without bending the traveling direction, and is emitted from the second substrate 20. That is, the light L is not totally reflected by the side surface 33 of the convex portion 31.
 このように、配光デバイス2の光学状態は、入射した光を実質的にそのまま進行方向を変えることなく透過させる透明状態になる。配光デバイス2の光学状態が透明状態であるので、例えば、屋内に居る人が配光デバイス2を介して屋外を見た場合に、屋外の景色をクリアに見ることができる。 As described above, the optical state of the light distribution device 2 is a transparent state in which the incident light is transmitted substantially without changing the traveling direction. Since the optical state of the light distribution device 2 is a transparent state, for example, when a person who is indoors views the outside via the light distribution device 2, the outdoor scene can be clearly seen.
 なお、説明を簡単にするため、図4Aでは図示していないが、光Lは、実際には、通過する媒体が変化するときに屈折率差に応じて屈折する。具体的には、光Lは、第一基板10に入射するとき、第二基板20から出射するとき、第一基板10と液体7との界面を通過するとき、凹凸構造層30と第二基板20との界面を通過するとき、及び、第二基板20内においてフィルム基板22、粘着層23及びガラス基板21の各々の界面を通過するときに、屈折率差に応じて屈折する。後述する図4B、図5A及び図5Bについても同様である。 Although not shown in FIG. 4A for the sake of simplicity, the light L is actually refracted according to the refractive index difference when the medium passing therethrough changes. Specifically, when the light L enters the first substrate 10, exits from the second substrate 20, passes through the interface between the first substrate 10 and the liquid 7, the light L When passing through the interface with the glass substrate 21 and through the respective interfaces of the film substrate 22, the adhesive layer 23, and the glass substrate 21 in the second substrate 20, the light is refracted according to the refractive index difference. The same applies to FIGS. 4B, 5A, and 5B described later.
 <配光状態>
 図4Bは、本実施の形態に係る光学装置1の配光デバイス2の配光状態を示す断面図である。
<Light distribution state>
FIG. 4B is a cross-sectional view showing a light distribution state of light distribution device 2 of optical device 1 according to the present embodiment.
 図4Bに示されるように、配光デバイス2の間隙部40からは液体7が排出され、代わりに空気8が導入されている。空気8の屈折率は、約1である。凹凸構造層30の屈折率n1と空気8の屈折率との差は約0.5であるため、光Lは、凸部31の側面32及び33に入射する際に光学作用を受ける。具体的には、屋外から第一基板10に入射する光Lは、凸部31の側面32で屈折した後(図示せず)、図4Bに示されるように、側面33で全反射される。これにより、光Lは、斜め上方に向かって第二基板20から出射される。 As shown in FIG. 4B, the liquid 7 is discharged from the gap 40 of the light distribution device 2, and the air 8 is introduced instead. The refractive index of the air 8 is about 1. Since the difference between the refractive index n1 of the concavo-convex structure layer 30 and the refractive index of the air 8 is about 0.5, the light L is subjected to an optical action when entering the side surfaces 32 and 33 of the convex portion 31. Specifically, the light L incident on the first substrate 10 from outside is refracted by the side surface 32 of the convex portion 31 (not shown), and then totally reflected by the side surface 33 as shown in FIG. 4B. Thus, the light L is emitted from the second substrate 20 obliquely upward.
 このように、配光デバイス2は、入射した光を、その進行方向を曲げて透過させる配光状態になる。配光デバイス2が窓に利用された場合には、斜め下方に向けて進む太陽光を全反射により跳ね上げて斜め上方に向けて出射させることができるので、屋内の天井を明るく照らすことができる。これにより、配光デバイス2は、照明機能を補助することができるので、屋内の照明機器の節電などに寄与し、省エネルギー化を実現することができる。 Thus, the light distribution device 2 is in a light distribution state in which incident light is transmitted while bending its traveling direction. When the light distribution device 2 is used for a window, sunlight traveling obliquely downward can be bounced up by total reflection and emitted obliquely upward, so that the indoor ceiling can be illuminated brightly. . Thereby, the light distribution device 2 can assist the lighting function, so that it contributes to power saving of indoor lighting equipment and the like, and energy saving can be realized.
 なお、液体7が間隙部40の一部のみに充填されている場合には、液体7が充填されている部分は、図4Aに示されるように透明状態になり、液体7が充填されていない部分は、図4Bに示されるように配光状態になる。具体的には、間隙部40内における液体7の液面の高さが、透明状態と配光状態との境界になる。例えば、送液装置5が間隙部40への液体7の注入量及び排出量を調整することで、間隙部40内における液体7の液面の高さが調整される。これにより、配光デバイス2の面内において、透明状態及び配光状態の占める割合を調整することができる。 When the liquid 7 is filled only in a part of the gap 40, the portion filled with the liquid 7 becomes transparent as shown in FIG. 4A, and the liquid 7 is not filled. The portion enters a light distribution state as shown in FIG. 4B. Specifically, the height of the liquid surface of the liquid 7 in the gap portion 40 becomes a boundary between the transparent state and the light distribution state. For example, the height of the liquid surface of the liquid 7 in the gap portion 40 is adjusted by adjusting the amount of the liquid 7 injected into the gap portion 40 and the amount of discharge of the liquid 7 by the liquid sending device 5. Thereby, the ratio of the transparent state and the light distribution state in the plane of the light distribution device 2 can be adjusted.
 [効果など]
 以上のように、本実施の形態に係る光学装置1は、入射する光を配光する配光デバイス2と、容器3とを備える。配光デバイス2は、透光性を有する第一基板10と、第一基板10に対向して配置された透光性を有する第二基板20と、第二基板20の第一基板10側に配置され、透光性を有する凹凸構造層30と、凹凸構造層30と第一基板10との間に設けられた間隙部40とを備える。容器3は、間隙部40に注入され、かつ、間隙部40から排出される液体7を収容する。
[Effects, etc.]
As described above, the optical device 1 according to the present embodiment includes the light distribution device 2 that distributes incident light and the container 3. The light distribution device 2 includes a first substrate 10 having a light-transmitting property, a second substrate 20 having a light-transmitting property disposed to face the first substrate 10, and a first substrate 10 side of the second substrate 20. An uneven structure layer 30 having a light-transmitting property is provided, and a gap 40 provided between the uneven structure layer 30 and the first substrate 10 is provided. The container 3 contains the liquid 7 injected into the gap 40 and discharged from the gap 40.
 これにより、間隙部40に対する液体7の注入及び排出を制御することによって、配光デバイス2の光学状態を調整することができる。配光状態では、間隙部40から液体7が排出されており、凸部31と間隙部40(すなわち、空気8)との屈折率差が大きくなる。このため、凸部31の側面33で全反射される光の量が多くなる。例えば、配光デバイス2が窓に設置された場合に、屋内の天井を照らす光(すなわち、配光された光)の光量が多くなる。このように、本実施の形態に係る光学装置1によれば、窓に利用された場合に、効率良く光を屋内に採り入れることができる。 By controlling the injection and discharge of the liquid 7 into and from the gap 40, the optical state of the light distribution device 2 can be adjusted. In the light distribution state, the liquid 7 is discharged from the gap 40, and the difference in the refractive index between the protrusion 31 and the gap 40 (that is, the air 8) increases. For this reason, the amount of light totally reflected by the side surface 33 of the convex portion 31 increases. For example, when the light distribution device 2 is installed in a window, the amount of light that illuminates the indoor ceiling (that is, the distributed light) increases. As described above, according to the optical device 1 according to the present embodiment, when used for a window, light can be efficiently introduced indoors.
 また、例えば、凹凸構造層30の屈折率をn1とし、液体7の屈折率をn2とした場合に、n1-n2の絶対値は、0.01以下である。 絶 対 Also, for example, when the refractive index of the uneven structure layer 30 is n1 and the refractive index of the liquid 7 is n2, the absolute value of n1−n2 is 0.01 or less.
 これにより、間隙部40に液体7が注入された場合に、凸部31は、液体7によって覆われる。n1-n2の絶対値が0.01以下であるので、凸部31と液体7との界面では光は光学作用を受けずにそのまま通過する。このように、配光デバイス2の光学状態を透明状態にすることができる。 Thereby, when the liquid 7 is injected into the gap portion 40, the convex portion 31 is covered with the liquid 7. Since the absolute value of n1−n2 is 0.01 or less, light passes through the interface between the convex portion 31 and the liquid 7 without receiving an optical effect. Thus, the optical state of the light distribution device 2 can be made transparent.
 また、例えば、凹凸構造層30は、複数の凸部31を有する。複数の凸部31の各々の高さは、100μm以上である。複数の凸部31の各々のアスペクト比は、2以下である。隣り合う2つの凸部31の間隔は、10μm以上40μm以下である。 凹凸 Further, for example, the uneven structure layer 30 has a plurality of convex portions 31. The height of each of the plurality of protrusions 31 is 100 μm or more. The aspect ratio of each of the plurality of protrusions 31 is 2 or less. The interval between two adjacent protrusions 31 is not less than 10 μm and not more than 40 μm.
 これにより、高い配光率を維持しながら、液体7の注入及び排出をスムーズに行うことができる。具体的には、液体7の注入時における気泡の混入、及び、液体7の排出時において液体7の残留を抑制することができるので、配光デバイス2の光学状態の面内の均一性を高めることができる。 This makes it possible to smoothly inject and discharge the liquid 7 while maintaining a high light distribution rate. Specifically, the incorporation of bubbles during the injection of the liquid 7 and the retention of the liquid 7 during the discharge of the liquid 7 can be suppressed, so that the in-plane uniformity of the optical state of the light distribution device 2 is improved. be able to.
 また、例えば、凹凸構造層30の表面の、液体7に対する接触角は、40°以上120°以下である。 接触 Also, for example, the contact angle of the surface of the uneven structure layer 30 with the liquid 7 is 40 ° or more and 120 ° or less.
 これにより、液体7の注入時における気泡の混入、及び、液体7の排出時において液体7の残留を抑制することができるので、配光デバイス2の光学状態の面内の均一性を高めることができる。 Thereby, the incorporation of bubbles at the time of injecting the liquid 7 and the remaining of the liquid 7 at the time of discharging the liquid 7 can be suppressed, so that the in-plane uniformity of the optical state of the light distribution device 2 can be improved. it can.
 また、例えば、液体7の表面張力は、20mN/m以上76mN/m以下である。 Further, for example, the surface tension of the liquid 7 is not less than 20 mN / m and not more than 76 mN / m.
 これにより、液体7の注入時における気泡の混入、及び、液体7の排出時において液体7の残留を抑制することができるので、配光デバイス2の光学状態の面内の均一性を高めることができる。 Thereby, the incorporation of bubbles at the time of injecting the liquid 7 and the remaining of the liquid 7 at the time of discharging the liquid 7 can be suppressed, so that the in-plane uniformity of the optical state of the light distribution device 2 can be improved. it can.
 また、例えば、光学装置1は、さらに、間隙部40への液体7の注入、及び、間隙部40からの液体7の排出の少なくとも一方を行う送液装置5を備える。 光学 Further, for example, the optical device 1 further includes a liquid sending device 5 that performs at least one of injecting the liquid 7 into the gap 40 and discharging the liquid 7 from the gap 40.
 これにより、間隙部40に対する液体7の注入及び排出を速やかに行うことができるので、配光デバイス2の光学状態の切り替えをスムーズに行うことができる。 (4) As a result, the liquid 7 can be quickly injected into and discharged from the gap 40, and thus the optical state of the light distribution device 2 can be smoothly switched.
 また、例えば、光学装置1は、さらに、容器3と間隙部40との間を流れる液体7の流量を測定する流量センサ6を備える。送液装置5は、流量センサ6によって測定された流量に基づいて、液体7の注入量及び排出量の少なくとも一方を調整する。 For example, the optical device 1 further includes a flow rate sensor 6 that measures the flow rate of the liquid 7 flowing between the container 3 and the gap 40. The liquid feeding device 5 adjusts at least one of the injection amount and the discharge amount of the liquid 7 based on the flow rate measured by the flow sensor 6.
 これにより、間隙部40に対する液体7の注入及び排出を精度良く行うことができる。例えば、液体7の過注入による液体7の漏出、及び、配光デバイス2の破損などを抑制することができる。 This allows the liquid 7 to be injected and discharged into the gap 40 with high accuracy. For example, leakage of the liquid 7 due to excessive injection of the liquid 7 and damage to the light distribution device 2 can be suppressed.
 (変形例)
 以下では、上記実施の形態に係る光学装置の変形例について説明する。
(Modification)
Hereinafter, modified examples of the optical device according to the above embodiment will be described.
 [変形例1]
 上記実施の形態では、凹凸構造層30が屋内側に設けられている例について説明したが、凹凸構造層30は、屋外側に設けられていてもよい。以下では、上記実施の形態との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
[Modification 1]
In the above embodiment, the example in which the uneven structure layer 30 is provided on the indoor side has been described, but the uneven structure layer 30 may be provided on the outdoor side. Hereinafter, differences from the above-described embodiment will be mainly described, and description of common points will be omitted or simplified.
 図5A及び図5Bはそれぞれ、変形例1に係る光学装置の配光デバイス102の透明状態及び配光状態を示す断面図である。図5A及び図5Bには示していないが、本変形例に係る光学装置は、上記実施の形態と同様に、容器3、配管4、送液装置5及び流量センサ6を備える。本変形例では、上記実施の形態と比較して、光学装置が配光デバイス2の代わりに配光デバイス102を備える点が相違する。 FIGS. 5A and 5B are cross-sectional views showing the transparent state and the light distribution state of the light distribution device 102 of the optical device according to the first modification, respectively. Although not shown in FIGS. 5A and 5B, the optical device according to the present modification includes a container 3, a pipe 4, a liquid feeding device 5, and a flow sensor 6, as in the above-described embodiment. The present modified example is different from the above-described embodiment in that the optical apparatus includes a light distribution device 102 instead of the light distribution device 2.
 配光デバイス102は、図5A及び図5Bに示されるように、第一基板120と、第二基板110と、凹凸構造層30と、間隙部40と、封止部材50とを備える。本変形例では、凹凸構造層30が設けられた第二基板110が屋外側であり、第一基板120が屋内側である。 5A and 5B, the light distribution device 102 includes a first substrate 120, a second substrate 110, an uneven structure layer 30, a gap 40, and a sealing member 50. In this modification, the second substrate 110 provided with the uneven structure layer 30 is on the outdoor side, and the first substrate 120 is on the indoor side.
 第二基板110は、例えば、第一基板10と同じである。第一基板120は、例えば、第二基板20と同じである。上記実施の形態と同様に、凹凸構造層30は、第二基板110の第一基板120側に設けられている。間隙部40は、凹凸構造層30と第一基板120との間に設けられている。 The second substrate 110 is, for example, the same as the first substrate 10. The first substrate 120 is, for example, the same as the second substrate 20. As in the above embodiment, the uneven structure layer 30 is provided on the first substrate 120 side of the second substrate 110. The gap 40 is provided between the uneven structure layer 30 and the first substrate 120.
 図5Aに示されるように、間隙部40に液体7が注入されている場合、凹凸構造層30と液体7との屈折率差が実質的に0になるので、屋外から第二基板110に入射する光Lは、凸部31と液体7との界面で光学作用を受けることなく、そのまま真っすぐに進行する。このように、間隙部40に液体7が注入された状態で、配光デバイス102の光学状態は、透明状態になる。 As shown in FIG. 5A, when the liquid 7 is injected into the gap 40, the difference in the refractive index between the uneven structure layer 30 and the liquid 7 becomes substantially zero, so that the light enters the second substrate 110 from outside. The light L travels straight as it is without receiving an optical action at the interface between the convex portion 31 and the liquid 7. As described above, in a state where the liquid 7 is injected into the gap 40, the optical state of the light distribution device 102 becomes a transparent state.
 図5Bに示されるように、間隙部40から液体7が排出された場合、凸部31と空気8とで屈折率差が大きくなる。これにより、屋外から第二基板110に入射する光Lは、凸部31の側面33で全反射されて、第一基板120から出射される。このように、間隙部40から液体7が排出された状態で、配光デバイス102の光学状態は、配光状態になる。 (5) As shown in FIG. 5B, when the liquid 7 is discharged from the gap 40, the difference in the refractive index between the projection 31 and the air 8 increases. As a result, the light L incident on the second substrate 110 from outside is totally reflected by the side surface 33 of the convex portion 31 and emitted from the first substrate 120. As described above, in a state where the liquid 7 is discharged from the gap 40, the optical state of the light distribution device 102 becomes a light distribution state.
 以上のように、凹凸構造層30が屋外側及び屋内側のいずれに設けられている場合であっても、配光状態を実現することができる。 As described above, the light distribution state can be realized regardless of whether the uneven structure layer 30 is provided on the outdoor side or the indoor side.
 [変形例2]
 上記実施の形態では、開口54及び空気孔55が封止部材50に設けられている例について説明したが、開口54及び空気孔55の少なくとも一方は、第一基板10又は第二基板20に設けられていてもよい。以下では、上記実施の形態との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
[Modification 2]
In the above-described embodiment, an example in which the opening 54 and the air hole 55 are provided in the sealing member 50 has been described, but at least one of the opening 54 and the air hole 55 is provided in the first substrate 10 or the second substrate 20. It may be. Hereinafter, differences from the above-described embodiment will be mainly described, and description of common points will be omitted or simplified.
 図6は、変形例2に係る光学装置の配光デバイス202の断面図である。図6には示していないが、本変形例に係る光学装置は、上記実施の形態と同様に、容器3、送液装置5及び流量センサ6を備える。本変形例では、上記実施の形態と比較して、光学装置が配光デバイス2の代わりに配光デバイス202を備える点が相違する。 FIG. 6 is a cross-sectional view of the light distribution device 202 of the optical device according to the second modification. Although not shown in FIG. 6, the optical device according to the present modification includes a container 3, a liquid sending device 5, and a flow sensor 6, similarly to the above embodiment. This modification is different from the above-described embodiment in that the optical apparatus includes a light distribution device 202 instead of the light distribution device 2.
 配光デバイス202は、図6に示されるように、第一基板220と、第二基板110と、凹凸構造層30と、間隙部40と、封止部材250と、止め金具260と、遮熱シート270と、接続部材204及び208とを備える。第二基板110、凹凸構造層30及び間隙部40は、実施の形態1又は変形例1と同じである。 As shown in FIG. 6, the light distribution device 202 includes a first substrate 220, a second substrate 110, an uneven structure layer 30, a gap 40, a sealing member 250, a fastener 260, and a heat shield. A seat 270 and connection members 204 and 208 are provided. The second substrate 110, the uneven structure layer 30, and the gap 40 are the same as those in the first embodiment or the first modification.
 第一基板220は、第一基板120と比較して、開口254及び空気孔255が設けられている点が相違する。封止部材250は、封止部材50と比較して、開口54及び空気孔55が設けられていない点が相違する。 The first substrate 220 is different from the first substrate 120 in that an opening 254 and an air hole 255 are provided. The sealing member 250 is different from the sealing member 50 in that the opening 54 and the air hole 55 are not provided.
 開口254は、実施の形態に係る開口54と同様に、液体7(図6には示していない)の注入口及び排出口として機能する。開口254は、例えば、第一基板220の下部において封止部材50の近傍に設けられている。第一基板220には、複数の開口254が設けられていてもよい。 The opening 254 functions as an inlet and an outlet for the liquid 7 (not shown in FIG. 6), like the opening 54 according to the embodiment. The opening 254 is provided, for example, near the sealing member 50 below the first substrate 220. A plurality of openings 254 may be provided in the first substrate 220.
 図6に示されるように、開口254には、接続部材204が取り付けられている。接続部材204は、配管4と開口254とを接続する部材である。接続部材204は、例えば、樹脂材料又は金属材料を用いて形成されている。接続部材204は、配管4の端部を着脱可能に支持する。接続部材204は、具体的には、貫通孔204aを有する雌型のアタッチメントである。貫通孔204aに配管4の端部が挿入されることで、接続部材204は、配管4の端部を支持する。接続部材204は、液体7の漏出を抑制する構造を有する。例えば、接続部材204は、貫通孔204a内にOリングなどが設けられていてもよい。貫通孔204aに配管4の端部が挿入された場合に、液体7の漏出を抑制することができる。配管4の端部及び接続部材204の少なくとも一方には、配管4の端部の着脱を行うための操作ボタン又はレバーが設けられていてもよい。なお、接続部材204は、雄型のアタッチメントであってもよい。図6に示される例では、止め金具260の一部を貫通するように接続部材204が設けられている。 接 続 As shown in FIG. 6, the connection member 204 is attached to the opening 254. The connection member 204 is a member that connects the pipe 4 and the opening 254. The connection member 204 is formed using, for example, a resin material or a metal material. The connection member 204 detachably supports the end of the pipe 4. The connection member 204 is, specifically, a female attachment having a through hole 204a. By inserting the end of the pipe 4 into the through hole 204a, the connection member 204 supports the end of the pipe 4. The connection member 204 has a structure that suppresses leakage of the liquid 7. For example, the connection member 204 may be provided with an O-ring or the like in the through hole 204a. When the end of the pipe 4 is inserted into the through hole 204a, leakage of the liquid 7 can be suppressed. At least one of the end of the pipe 4 and the connection member 204 may be provided with an operation button or lever for attaching and detaching the end of the pipe 4. Note that the connection member 204 may be a male attachment. In the example shown in FIG. 6, the connection member 204 is provided so as to penetrate a part of the stopper 260.
 空気孔255は、実施の形態に係る空気孔55と同様に、空気8(図6には示していない)の吸気口及び排気口として機能する。空気孔255は、例えば、第一基板220の上部において封止部材50の近傍に設けられている。第一基板220には、複数の空気孔255が設けられていてもよい。 The air hole 255 functions as an air inlet and an air outlet for the air 8 (not shown in FIG. 6), like the air hole 55 according to the embodiment. The air hole 255 is provided, for example, near the sealing member 50 above the first substrate 220. A plurality of air holes 255 may be provided in the first substrate 220.
 図6に示されるように、空気孔255には、接続部材208が取り付けられている。接続部材208は、配管207と空気孔255とを接続する部材である。接続部材208は、例えば、樹脂材料又は金属材料を用いて形成されている。接続部材208は、配管207の端部を着脱可能に支持する。接続部材208は、具体的には、貫通孔208aを有する雌型のアタッチメントである。貫通孔208aに配管207の端部が挿入されることで、接続部材208は、配管207の端部を支持する。配管207の端部及び接続部材208の少なくとも一方には、配管207の端部の着脱を行うための操作ボタン又はレバーが設けられていてもよい。なお、接続部材208は、雄型のアタッチメントであってもよい。図6に示される例では、止め金具260の一部を貫通するように接続部材208が設けられている。 接 続 As shown in FIG. 6, a connection member 208 is attached to the air hole 255. The connection member 208 is a member that connects the pipe 207 and the air hole 255. The connection member 208 is formed using, for example, a resin material or a metal material. The connection member 208 detachably supports the end of the pipe 207. The connection member 208 is, specifically, a female attachment having a through hole 208a. When the end of the pipe 207 is inserted into the through hole 208a, the connection member 208 supports the end of the pipe 207. At least one of the end of the pipe 207 and the connection member 208 may be provided with an operation button or lever for attaching and detaching the end of the pipe 207. Note that the connection member 208 may be a male attachment. In the example shown in FIG. 6, the connection member 208 is provided so as to penetrate a part of the stopper 260.
 配管207は、空気8を通すための管である。配管207の他端(接続部材208に接続されない側の端部)は、例えば屋内又は屋外に開放されているが、窒素ガスの供給源などに接続されていてもよい。配管207は、例えば、樹脂材料を用いて形成されたホースであるが、これに限らない。なお、配管4と配管207とは同じ材料を用いて形成されていてもよい。 The pipe 207 is a pipe for passing the air 8. The other end of the pipe 207 (the end on the side not connected to the connection member 208) is open, for example, indoors or outdoors, but may be connected to a nitrogen gas supply source or the like. The pipe 207 is, for example, a hose formed using a resin material, but is not limited thereto. Note that the pipe 4 and the pipe 207 may be formed using the same material.
 止め金具260は、第一基板220と、第二基板110と、封止部材50とを挟持する。止め金具260は、例えば、配光デバイス202の端部に沿って設けられた環状の部材である。止め金具260が設けられていることによって、配光デバイス202の端部の破損を抑制することができる。 The stopper 260 sandwiches the first substrate 220, the second substrate 110, and the sealing member 50. The stopper 260 is, for example, an annular member provided along the end of the light distribution device 202. By providing the stopper 260, damage to the end of the light distribution device 202 can be suppressed.
 遮熱シート270は、透光性を有する遮熱シートである。遮熱シート270は、例えば、熱伝導率が低い樹脂材料を用いて形成されている。本変形例では、遮熱シート270は、第一基板220の主面であって、間隙部40とは反対側の主面に設けられている。遮熱シート270が設けられていることによって、屋外から屋内へ又はその逆の伝熱を抑制することができる。また、熱膨張による凹凸構造層30の変形などを抑制することができる。図6に示される例では、遮熱シート270の端部は、止め金具260によって覆われている。これにより、遮熱シート270の脱離を抑制することができる。 熱 The heat shield sheet 270 is a heat shield sheet having a light transmitting property. The heat shielding sheet 270 is formed using, for example, a resin material having low thermal conductivity. In the present modification, the heat shield sheet 270 is provided on the main surface of the first substrate 220 on the side opposite to the gap 40. By providing the heat shield sheet 270, heat transfer from outdoors to indoors or vice versa can be suppressed. In addition, deformation of the uneven structure layer 30 due to thermal expansion and the like can be suppressed. In the example shown in FIG. 6, the end of the heat shield sheet 270 is covered with the stopper 260. Thereby, detachment of the heat shield sheet 270 can be suppressed.
 なお、本変形例では、屋内側の第一基板220に開口254及び空気孔255が設けられている例を示したが、これに限らない。開口254及び空気孔255の少なくとも一方は、屋外側の第二基板110に設けられていてもよい。 In this modification, the example in which the opening 254 and the air hole 255 are provided in the first substrate 220 on the indoor side is shown, but the present invention is not limited to this. At least one of the opening 254 and the air hole 255 may be provided in the second substrate 110 on the outdoor side.
 (その他)
 以上、本発明に係る光学装置について、上記の実施の形態及びその変形例に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
(Other)
As described above, the optical device according to the present invention has been described based on the above-described embodiment and its modifications, but the present invention is not limited to the above-described embodiment.
 例えば、光学装置1は、送液装置5を備えなくてもよい。液体7の自重を利用して、液体7を移動させてもよい。例えば、光学装置1は、容器3の高さを変更する駆動機構を備えてもよい。容器3を間隙部40より高い位置に持ち上げることで、容器3から間隙部40へ液体7を注入することができる。容器3を間隙部40より低い位置に下ろすことで、間隙部40から液体7を容器3に排出することができる。 For example, the optical device 1 does not need to include the liquid feeding device 5. The liquid 7 may be moved using the weight of the liquid 7. For example, the optical device 1 may include a drive mechanism that changes the height of the container 3. By raising the container 3 to a position higher than the gap 40, the liquid 7 can be injected from the container 3 into the gap 40. By lowering the container 3 to a position lower than the gap 40, the liquid 7 can be discharged from the gap 40 to the container 3.
 また、例えば、液体7は、透光性を有しなくてもよい。液体7は、光散乱性又は遮光性を有してもよい。例えば、液体7は、黒色などの有色の粒子を含有してもよく、光散乱性の粒子を含有してもよい。これにより、配光デバイス2は、透明状態の代わりに散乱状態又は遮光状態を実現することができる。あるいは、液体7は、熱反射性粒子又は熱吸収性粒子を含有してもよい。容器3には、容器3内に液体7を入れるための開口が設けられていてもよく、液体7は入れ替えが可能であってもよい。あるいは、容器3が配管4に対して着脱自在であってもよい。 液体 Further, for example, the liquid 7 may not have translucency. The liquid 7 may have a light scattering property or a light shielding property. For example, the liquid 7 may contain colored particles such as black, or may contain light scattering particles. Thereby, the light distribution device 2 can realize a scattering state or a light blocking state instead of the transparent state. Alternatively, the liquid 7 may contain heat reflective particles or heat absorbing particles. The container 3 may be provided with an opening for putting the liquid 7 in the container 3, and the liquid 7 may be replaceable. Alternatively, the container 3 may be detachable from the pipe 4.
 また、例えば、凹凸構造層30の屈折率をn1とし、液体7の屈折率をn2とした場合に、n1-n2の絶対値は0.01より大きくてもよい。 絶 対 Also, for example, when the refractive index of the uneven structure layer 30 is n1 and the refractive index of the liquid 7 is n2, the absolute value of n1−n2 may be larger than 0.01.
 また、例えば、容器3の容量は、間隙部40の容量より小さくてもよい。例えば、容器3の容量と配管4の容量との和が、間隙部40の容量以上であってもよい。これにより、間隙部40に注入された液体7の全てを容器3及び配管4に排出させることができる。 Further, for example, the capacity of the container 3 may be smaller than the capacity of the gap 40. For example, the sum of the capacity of the container 3 and the capacity of the pipe 4 may be equal to or larger than the capacity of the gap 40. Thereby, all of the liquid 7 injected into the gap 40 can be discharged to the container 3 and the pipe 4.
 あるいは、液体7は、間隙部40から完全に排出されなくてもよい。すなわち、間隙部40の一部に液体7が残留していてもよい。配光デバイス2が窓に利用された場合、配光デバイス2の下部よりも上部が、屋内に光を採り入れるのに有効に利用される。このとき、配光デバイス2の下部の光を配光した場合、屋内に居る人の目に光が入射しやすくなるため、眩しさを感じさせてしまう場合が起こり得る。このため、配光デバイス2の下部は、常に間隙部40に液体7が充填された状態であり、光学状態が透明状態であってもよい。例えば、高さ2mの配光デバイス2の場合、上側の1mの範囲で間隙部40内の液体7の液面の調整を行い、下側の1mの範囲は常に液体7が充填されていてもよい。また、配光デバイス2の下部では、凹凸構造層30が設けられていなくてもよい。つまり、凹凸構造層30は、第二基板20の全面に設けられていなくてもよく、一部の領域のみに設けられていてもよい。 Alternatively, the liquid 7 may not be completely discharged from the gap 40. That is, the liquid 7 may remain in a part of the gap 40. When the light distribution device 2 is used for a window, the upper part of the light distribution device 2 than the lower part is effectively used to take in light indoors. At this time, when the light under the light distribution device 2 is distributed, the light is likely to enter the eyes of a person who is indoors, which may cause glare. For this reason, the lower part of the light distribution device 2 is in a state where the gap portion 40 is always filled with the liquid 7, and the optical state may be a transparent state. For example, in the case of the light distribution device 2 having a height of 2 m, the liquid level of the liquid 7 in the gap 40 is adjusted in the upper 1 m range, and the liquid 7 is always filled in the lower 1 m range. Good. Further, the uneven structure layer 30 may not be provided below the light distribution device 2. That is, the concavo-convex structure layer 30 may not be provided on the entire surface of the second substrate 20 and may be provided only on a part of the region.
 また、例えば、間隙部40に対する液体7の注入口と排出口とは、異なっていてもよい。例えば、配光デバイス2の封止部材50は、複数の開口54を有してもよい。光学装置1は、複数の開口54の各々に接続された複数の配管4を備えてもよい。これにより、液体7の注入口と排出口とを分けることで、液体7の流れを制御しやすくすることができ、配光デバイス2の光学状態の切り替えをスムーズに行うことができる。なお、複数の開口54の各々が、注入口であり、かつ、排出口であってもよい。 Further, for example, the inlet and the outlet of the liquid 7 to the gap 40 may be different. For example, the sealing member 50 of the light distribution device 2 may have a plurality of openings 54. The optical device 1 may include a plurality of pipes 4 connected to each of the plurality of openings 54. Thereby, by separating the inlet and the outlet of the liquid 7, the flow of the liquid 7 can be easily controlled, and the optical state of the light distribution device 2 can be smoothly switched. Note that each of the plurality of openings 54 may be an inlet and an outlet.
 複数の開口54はそれぞれ、例えば、配光デバイス2の下部端面に設けられる。あるいは、複数の開口54の少なくとも1つは、配光デバイス2の上部端面又は側方端面に設けられてもよい。空気孔55も同様に、複数設けられていてもよい。 開口 The plurality of openings 54 are respectively provided in the lower end surface of the light distribution device 2, for example. Alternatively, at least one of the plurality of openings 54 may be provided on an upper end surface or a side end surface of the light distribution device 2. Similarly, a plurality of air holes 55 may be provided.
 また、液体7の循環経路が形成されてもよい。例えば、液体7は、容器3、1つの配管4、1つの開口54、配光デバイス2の間隙部40、別の開口54、別の配管4を順に流れてもよい。 循環 Further, a circulation path of the liquid 7 may be formed. For example, the liquid 7 may flow sequentially through the container 3, one pipe 4, one opening 54, the gap 40 of the light distribution device 2, another opening 54, and another pipe 4.
 なお、光学装置1は、複数の容器3を備えてもよい。複数の容器3の各々には、異なる種類の液体7が収容される。これにより、配光デバイス2の光学状態を透明状態及び配光状態の二つの状態だけでなく、例えば、散乱状態又は遮光状態などを含む三つ以上の状態に変化させることができる。 The optical device 1 may include a plurality of containers 3. Different types of liquids 7 are stored in each of the plurality of containers 3. Thereby, the optical state of the light distribution device 2 can be changed to not only two states of the transparent state and the light distribution state but also three or more states including, for example, a scattering state or a light shielding state.
 また、例えば、配光デバイス2に入射する光は、太陽光などの自然光に限定されず、照明装置などの発光装置が発する光であってもよい。 For example, the light incident on the light distribution device 2 is not limited to natural light such as sunlight, and may be light emitted from a light emitting device such as a lighting device.
 また、例えば、配光デバイス2は、建物の窓に設置する場合に限るものではなく、例えば、車の窓などに設置されてもよい。また、配光デバイス2は、例えば、照明器具の透光カバーなどの配光制御部材などに利用することもできる。あるいは、配光デバイス2は、凹凸構造層30の界面での光の散乱を利用した目隠し部材としても利用することができる。 Further, for example, the light distribution device 2 is not limited to being installed in a window of a building, but may be installed in a window of a car, for example. Further, the light distribution device 2 can be used for a light distribution control member such as a light-transmitting cover of a lighting fixture, for example. Alternatively, the light distribution device 2 can also be used as a blindfold member using light scattering at the interface of the uneven structure layer 30.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, a form obtained by applying various modifications that can be conceived by those skilled in the art to each embodiment, and a combination of components and functions in each embodiment without departing from the spirit of the present invention are realized. Embodiments are also included in the present invention.
1 光学装置
2、102、202 配光デバイス
3 容器
5 送液装置
6 流量センサ
7 液体
10、120、220 第一基板
20、110 第二基板
30 凹凸構造層
31 凸部
40 間隙部
Reference Signs List 1 optical device 2, 102, 202 light distribution device 3 container 5 liquid sending device 6 flow sensor 7 liquid 10, 120, 220 first substrate 20, 110 second substrate 30 concave / convex structure layer 31 convex portion 40 gap portion

Claims (7)

  1.  入射する光を配光する配光デバイスと、
     容器とを備え、
     前記配光デバイスは、
     透光性を有する第一基板と、
     前記第一基板に対向して配置された透光性を有する第二基板と、
     前記第二基板の前記第一基板側に配置され、透光性を有する凹凸構造層と、
     前記凹凸構造層と前記第一基板との間に設けられた間隙部とを備え、
     前記容器は、前記間隙部に注入され、かつ、前記間隙部から排出される液体を収容する
     光学装置。
    A light distribution device that distributes incident light;
    And a container,
    The light distribution device,
    A first substrate having translucency,
    A second substrate having a light-transmitting property arranged opposite to the first substrate,
    An uneven structure layer having a light-transmitting property, which is arranged on the first substrate side of the second substrate,
    Comprising a gap provided between the uneven structure layer and the first substrate,
    The optical device, wherein the container contains a liquid that is injected into the gap and that is discharged from the gap.
  2.  前記凹凸構造層の屈折率をn1とし、前記液体の屈折率をn2とした場合に、n1-n2の絶対値は、0.01以下である
     請求項1に記載の光学装置。
    2. The optical device according to claim 1, wherein an absolute value of n1−n2 is 0.01 or less, where n1 is a refractive index of the uneven structure layer and n2 is a refractive index of the liquid.
  3.  前記凹凸構造層は、複数の凸部を有し、
     前記複数の凸部の各々の高さは、100μm以上であり、
     前記複数の凸部の各々のアスペクト比は、2以下であり、
     隣り合う2つの凸部の間隔は、10μm以上40μm以下である
     請求項1又は2に記載の光学装置。
    The uneven structure layer has a plurality of convex portions,
    The height of each of the plurality of protrusions is 100 μm or more,
    The aspect ratio of each of the plurality of protrusions is 2 or less,
    The optical device according to claim 1, wherein an interval between two adjacent protrusions is 10 μm or more and 40 μm or less.
  4.  前記凹凸構造層の表面の、前記液体に対する接触角は、40°以上120°以下である
     請求項1~3のいずれか1項に記載の光学装置。
    The optical device according to any one of claims 1 to 3, wherein a contact angle of the surface of the uneven structure layer with the liquid is 40 ° or more and 120 ° or less.
  5.  前記液体の表面張力は、20mN/m以上76mN/m以下である
     請求項1~4のいずれか1項に記載の光学装置。
    The optical device according to any one of claims 1 to 4, wherein a surface tension of the liquid is not less than 20 mN / m and not more than 76 mN / m.
  6.  さらに、前記間隙部への前記液体の注入、及び、前記間隙部からの前記液体の排出の少なくとも一方を行う送液装置を備える
     請求項1~5のいずれか1項に記載の光学装置。
    The optical device according to any one of claims 1 to 5, further comprising a liquid sending device that performs at least one of injecting the liquid into the gap and discharging the liquid from the gap.
  7.  さらに、前記容器と前記間隙部との間を流れる前記液体の流量を測定する流量センサを備え、
     前記送液装置は、前記流量センサによって測定された流量に基づいて、前記液体の注入量及び排出量の少なくとも一方を調整する
     請求項6に記載の光学装置。
    Further, a flow sensor for measuring the flow rate of the liquid flowing between the container and the gap portion,
    The optical device according to claim 6, wherein the liquid feeding device adjusts at least one of an injection amount and a discharge amount of the liquid based on a flow rate measured by the flow rate sensor.
PCT/JP2019/036180 2018-09-27 2019-09-13 Optical device WO2020066709A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018182892 2018-09-27
JP2018-182892 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020066709A1 true WO2020066709A1 (en) 2020-04-02

Family

ID=69952118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036180 WO2020066709A1 (en) 2018-09-27 2019-09-13 Optical device

Country Status (1)

Country Link
WO (1) WO2020066709A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013156581A (en) * 2012-01-31 2013-08-15 Kyocera Display Corp Optical element and display device
US20180143425A1 (en) * 2016-11-23 2018-05-24 Bae Systems Information And Electronic Systems Integration Inc. Fluid filled beam steering prisms
WO2018100957A1 (en) * 2016-12-01 2018-06-07 パナソニックIpマネジメント株式会社 Daylighting system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013156581A (en) * 2012-01-31 2013-08-15 Kyocera Display Corp Optical element and display device
US20180143425A1 (en) * 2016-11-23 2018-05-24 Bae Systems Information And Electronic Systems Integration Inc. Fluid filled beam steering prisms
WO2018100957A1 (en) * 2016-12-01 2018-06-07 パナソニックIpマネジメント株式会社 Daylighting system

Similar Documents

Publication Publication Date Title
TWI794456B (en) optical device
KR101299528B1 (en) Side emitting light emitting diode lens, back light unit and display device including the same
US8807816B2 (en) Luminaire with Functionality-enhancing structure
JP6285783B2 (en) Light capture structure for light emitting applications
WO2016045159A1 (en) Light-emitting device of light-emitting diode (led), backlight module and display panel
JP2012504253A (en) Light guide device
WO2015156225A1 (en) Daylighting device
CN206479663U (en) Backlight module and display device
JP6745819B2 (en) Reflective polarization module with particles and backlight unit with the same
WO2020192300A1 (en) Optical collimating assembly, backlight module, and display device
JP2008546139A (en) Lighting device
TWI574049B (en) Lens and backlight module using the same
WO2020063155A1 (en) Led display screen
JP2008233824A (en) Viewing angle control sheet and liquid crystal display using the same
CN106646727B (en) Transparent display device
WO2020066709A1 (en) Optical device
KR20140011702A (en) Backlight assembly
JP2020068183A (en) Optical device
JP2013007985A5 (en)
JP2020181109A (en) Optical device
JP2020067618A (en) Optical device
JP2014002968A (en) Luminaire
JP2007128114A (en) Planar lighting apparatus
JP2020067619A (en) Optical device
JP2020068174A (en) Optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP