WO2020066336A1 - Detection method and assessment method - Google Patents

Detection method and assessment method Download PDF

Info

Publication number
WO2020066336A1
WO2020066336A1 PCT/JP2019/031419 JP2019031419W WO2020066336A1 WO 2020066336 A1 WO2020066336 A1 WO 2020066336A1 JP 2019031419 W JP2019031419 W JP 2019031419W WO 2020066336 A1 WO2020066336 A1 WO 2020066336A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
fluorescent
blinking
particles
fluorescent dye
Prior art date
Application number
PCT/JP2019/031419
Other languages
French (fr)
Japanese (ja)
Inventor
拓司 相宮
古澤 直子
中野 寧
幸祐 権田
成史 北村
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020548125A priority Critical patent/JPWO2020066336A1/en
Publication of WO2020066336A1 publication Critical patent/WO2020066336A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/537Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with separation of immune complex from unbound antigen or antibody
    • G01N33/539Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with separation of immune complex from unbound antigen or antibody involving precipitating reagent, e.g. ammonium sulfate
    • G01N33/541Double or second antibody, i.e. precipitating antibody
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Definitions

  • the present invention relates to a detection method and an evaluation method using the detection method.
  • Trastuzumab (Herceptin (registered trademark); Chugai Pharmaceutical Co., Ltd.) is an antibody drug frequently used as an anticancer drug.
  • Trastuzumab is an antibody drug that specifically binds to the HER2 protein, which has gene amplification and overexpression in many types of cancer.Trastuzumab activates antibody-dependent cytotoxicity by binding to the HER2 protein, It is known to exert an antitumor effect by suppressing a cell proliferation signal.
  • Pertuzumab (Perjeta (registered trademark); Chugai Pharmaceutical Co., Ltd.), which has been recently developed, is also an antibody drug targeting HER2 targeting cancer. It is well known that HER2 forms a heterodimer with the same family of receptors, HER3. Hereinafter, the heterodimer formed from HER2 and HER3 is also referred to as HER2 / HER3 heterodimer. For example, downstream of the HER2 / HER3 heterodimer, the PI3K / Akt pathway that is mainly involved in cell proliferation, cell cycle progression, and maintenance of cell survival is activated (Non-patent Documents 1 and 2), and pertuzumab has HER2 and HER3.
  • Non-Patent Document 1 lactinib
  • lapatinib Tetrahydroxy-3-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-Nyrosine kinase activity of the two receptors suppresses downstream signal transduction and suppresses cancer progression (Non-Patent Document 3).
  • the detection of heterodimers including HER2 is considered to be greatly related to the proliferation of cancer cells and the progression or exacerbation of cancer, and the detection of such heterodimers is important in the field of drug discovery. It is.
  • FRET fluorescence resonance energy transfer
  • Patent Document 1 describes a method for determining whether a heterodimer containing HER2 is formed by measuring FRET between two fluorescent substances using two kinds of antibodies containing different fluorescent substances. (Patent Document 1).
  • the present inventors have attempted to detect a HER2 / HER3 heterodimer by FRET using two types of fluorescent dyes, and found that the color fading occurred within a few seconds in fluorescence observation, which made imaging difficult.
  • FRET was performed using quantum dots with high light durability and fluorescent dye-integrated particles instead of fluorescent dyes as the fluorescent substance, but the fluorescent dye-integrated particles were excited by excitation light having a wavelength that excites the quantum dots. In some cases, such non-specific fluorescent dye-integrated particles emit fluorescent light, so that it was not possible to reliably determine whether or not the target heterodimer was formed.
  • an object of the present invention is to provide a detection method capable of detecting a protein complex such as a heterodimer with high sensitivity, and a method for evaluating a drug using the detection method.
  • the present inventors have conceived to utilize a phenomenon called blinking, which is observed in quantum dots, in order to solve the above-mentioned problem of emission of nonspecific acceptor fluorescent particles.
  • Blinking is a phenomenon in which a fluorescent substance repeatedly blinks at time intervals of milliseconds to seconds, and is a phenomenon observed in fluorescent molecules used in one molecule such as fluorescent proteins, organic fluorescent dyes, quantum dots, etc.
  • Non-patent document 4 such flickering is not normally seen in fluorescent dye-integrated particles.
  • the present inventors have found that when fluorescent particles that cause blinking and fluorescent particles that do not cause blinking are used, if both are present at extremely close distances, the fluorescent light that causes excited blinking is generated. It has been found that energy transfer from the luminescent particles may cause the fluorescent particles that do not cause blinking to blink.
  • the present inventors have completed a protein complex detection method using the phenomenon for detection of a protein complex.
  • the present invention provides, for example, the following [1] to [12].
  • a method for detecting a protein complex comprising a protein (A) and a protein (B), Step (a) of labeling the protein (A) with an antibody bound to fluorescent particles that cause blinking and labeling the protein (B) with an antibody bound to fluorescent particles that do not cause blinking Step (b), afterwards, Simultaneously with irradiating the light of the excitation wavelength of the fluorescent particles that cause the blinking, to detect the fluorescent bright spot of the emission wavelength of the fluorescent particles that do not cause the blinking, Extracting a flickering luminescent spot from the fluorescent luminescent spots having the emission wavelength of the fluorescent particles that do not cause blinking, A method for detecting a protein complex, wherein the blinking bright spot represents a complex of the protein (A) and the protein (B).
  • the fluorescent particles that cause the blinking are quantum dots
  • the fluorescent particles that do not cause blinking are fluorescent dye-integrated particles, Item 10.
  • the method for detecting a protein complex according to Item 1. [3] Item 3. The protein according to item 1 or 2, further comprising a step (d) of calculating the number of proteins (A) not forming a protein complex and the number of proteins (B) not forming a protein complex. Complex detection method.
  • Item 4. The method for detecting a protein complex according to any one of Items 1 to 3, wherein the protein complex is a heterodimer comprising a protein (A) and a protein (B). [5] 5.
  • a method for evaluating a drug effect comprising a step of performing the method for detecting a protein complex according to any one of Items 1 to 4 before and after addition of a drug to a sample.
  • Item 6 The evaluation method according to Item 5, wherein the agent is an agent that inhibits formation of a protein complex.
  • Item 7 The evaluation method according to Item 5 or 6, wherein the drug is a heterodimer formation inhibitor.
  • Item 8 The evaluation method according to any one of Items 5 to 7, wherein the protein complex is a heterodimer composed of HER2 and HER3.
  • Item 9 Item 9. The evaluation method according to any one of Items 5 to 8, wherein the drug is pertuzumab, trastuzumab, or lapatinib.
  • Item 10 The evaluation method according to any one of Items 5 to 9, wherein the quantum dots and the fluorescent dye-integrated particles have different excitation wavelengths.
  • Item 5. The excitation wavelength band of the quantum dot, wherein the excitation spectrum intensity per fluorescent dye-integrated particle is 1/10 or less of the excitation spectrum intensity per quantum dot particle. Evaluation method described in. [12] Item 5.
  • the excitation wavelength band of the quantum dot, wherein the excitation spectrum intensity per fluorescent dye-integrated particle is 1/100 or less of the excitation spectrum intensity per quantum dot particle. Evaluation method described in.
  • non-specific fluorescence emission of the fluorescent particles that do not cause blinking such as fluorescent dye-integrated particles (fluorescence that does not cause blinking and does not depend on the light of the excitation wavelength of the fluorescent particles that cause blinking) Since non-specific fluorescent emission of the luminescent particles does not blink and can be excluded from the detection target, the target protein complex can be detected with high sensitivity.
  • the fluorescent particles that do not cause blinking such as the fluorescent dye-integrated particles are flickering
  • the fluorescent light-emitting particles that cause blinking such as quantum dots and the blinking of the fluorescent dye-integrated particles and the like are used. It can be seen that the fluorescent particles that do not cause kinging are located at such a short distance that energy transfer occurs.This indicates that the antibody to which the fluorescent particles that cause blinking binds to the labeled protein. It is possible to detect with high accuracy a protein complex in which an antibody to which fluorescent light-emitting particles are not bound and a labeled protein are bound.
  • HER2 and HER3 are appropriately combined with an antibody bound to a fluorescent particle that causes blinking and an antibody bound to a fluorescent particle that does not cause blinking to cause blinking.
  • the number of HER2 / HER3 heterodimers formed by irradiating light of the excitation wavelength of the fluorescent particles and observing the flashing fluorescent spots of the fluorescent wavelength of the fluorescent particles that do not cause blinking. Can be measured with high accuracy.
  • autofluorescence which is nonspecific fluorescence from a substance present in the cell, may be detected. Also, since it does not flicker, higher detection accuracy of the target protein complex can be expected.
  • the effect of the drug can be evaluated by using the method.
  • the formation of a HER2 / HER3 heterodimer is greatly involved in the growth of cancer cells and the like. Therefore, by observing changes in the number of heterodimers before and after a candidate drug for an anticancer drug using a tumor-derived cultured cell or an experimental animal such as a tumor-bearing animal, the candidate drug becomes HER2 / HER3. It is possible to determine whether or not the formation of heterodimers can be inhibited, and thus it is possible to predict and evaluate the efficacy of the candidate drug against cancer.
  • FIG. 1 (A) is a schematic diagram of HER2 labeled in Example 1 with a quantum dot-conjugated anti-HER2 mouse monoclonal antibody.
  • FIG. 1B is a schematic view of a label which is one embodiment of the present invention.
  • an anti-HER2 mouse antibody (having no quantum dots) is bound to HER2
  • FIG. 4 is a schematic diagram of HER2 labeled with a quantum dot-conjugated anti-mouse IgG antibody prepared in the same manner as in Preparation Example 1 instead of the anti-HER2 antibody.
  • FIG. 2 (A) is a schematic diagram of HER3 prepared in Preparation Example 2 and labeled with a fluorescent dye-integrated particle-conjugated anti-HER3 mouse monoclonal antibody.
  • FIG. 2 (B) is a schematic diagram of a label which is one embodiment of the present invention.
  • FIG. 7 is a schematic diagram of HER3 labeled with a fluorescent dye-integrated particle-conjugated anti-mouse IgG antibody prepared in the same manner as in Preparation Example 2 instead of the fluorescent dye-incorporated particle-bound anti-HER3 mouse monoclonal antibody.
  • FIG. 3 is a schematic diagram of a heterodimer comprising HER2 labeled with a quantum dot-conjugated anti-HER2 mouse monoclonal antibody and HER3 labeled with a fluorescent dye-collected particle-conjugated anti-HER3 mouse monoclonal antibody, and detection of the heterodimer.
  • a protein complex consisting of the protein (A) and the protein (B) is targeted for detection.
  • Detection method> Steps (a) and (b)
  • the step (a) may be performed first, the step (b) may be performed first, or the steps (a) and (b) may be performed simultaneously. Is also good.
  • an antibody bound to fluorescent particles that cause blinking and an antibody bound to fluorescent particles that do not cause blinking are dispersed in a diluent. It can be performed by adding a staining solution to a specimen (cultured cells, tissue sections, and the like).
  • quantum dots are selected as the fluorescent particles that cause blinking
  • fluorescent dye-integrated particles are typically selected as the fluorescent particles that do not cause blinking.
  • the step (a ′) of labeling the protein (A) with a quantum dot-bound antibody and the step (b ′) of labeling the protein (B) with a fluorescent dye-incorporated particle-bound antibody are preferred.
  • the fluorescent particles that cause blinking are quantum dots
  • the fluorescent particles that do not cause blinking are fluorescent dye-integrated particles.
  • the quantum dot-bound antibody is obtained by directly or indirectly binding an antibody that specifically recognizes the protein (A) to a quantum dot having a desired excitation wavelength.
  • the fluorescent particles that cause blinking such as quantum dots, together with the blinking phenomenon that is caused by being excited by irradiating light of the excitation wavelength of the particles, together with the fluorescent light that does not cause blinking It is considered that since energy transfer occurs to the particles, flickering of the fluorescent particles that does not cause blinking is detected.
  • the emission wavelength of the quantum dot is a wavelength that can excite the fluorescent dye-integrated particles.
  • quantum dots and fluorescent dye-integrated particles examples include those described in the section of ⁇ quantum dots> and ⁇ fluorescent dye-integrated particles> below.
  • quantum dot and the fluorescent dye-integrated particles suitable for the present invention include particle dot-fluorescent dye-integrated particle), specifically, Qdot (registered trademark) 585 (ThemoFisher @ Scientific) -Texas Red, Qdot @ 585 -Perylenediimide, Qdot @ 525-AlexaFluor532, Qdot @ 545-Cy3, Qdot @ 565-AlexaFluor568, Qdot @ 625-Cy5, Qdot@655-Cy5.5 and the like.
  • Qdot registered trademark
  • 585 ThemoFisher @ Scientific
  • the quantum dots and the fluorescent dye-integrated particles preferably have different excitation wavelengths.
  • the excitation wavelength band of the quantum dot is preferably an excitation wavelength band in which the excitation spectrum intensity per fluorescent dye-integrated particle is 1/10 or less of the excitation spectrum intensity per quantum dot particle. An excitation wavelength band of 1 or less is particularly preferred.
  • the excitation wavelength band of the fluorescent dye-integrated particles is preferably an excitation wavelength band in which the excitation spectrum intensity per quantum dot particle is one-tenth or less of the excitation spectrum intensity per the fluorescent dye-integrated particle.
  • an excitation wavelength band that is 1/100 or less is particularly preferable.
  • the quantum dots and the fluorescent dye-integrated particles preferably have different emission wavelengths, respectively, and the difference between the emission wavelengths is preferably from 10 nm to 40 nm, particularly preferably from 30 nm to 40 nm. .
  • An antibody that specifically recognizes the protein (A) and an antibody that specifically recognizes the protein (B) are not particularly limited, but it is preferable to select an antibody that does not affect the formation of the protein complex.
  • the antibody that specifically recognizes the protein (A) and the antibody that specifically recognizes the protein (B) are different from each other.
  • An antibody that recognizes an epitope is preferred.
  • the antibody used for each is preferably a monoclonal antibody.
  • the type of animal that produces the antibody (immunized animal) is not particularly limited, and may be selected from mice, rats, guinea pigs, rabbits, goats, sheep, and the like, as in the related art. For example, it is preferable to use an anti-HER2 mouse monoclonal antibody when HER2 is selected as the protein (A) and an anti-HER3 mouse monoclonal antibody when HER3 is selected as the protein (B).
  • antibody fragments or antibody derivatives such as chimeric antibodies (humanized antibodies, etc.) and multifunctional antibodies are used, as long as they have the ability to specifically recognize and bind to the target protein, instead of natural full-length antibodies. You can also.
  • the mode of binding between the quantum dot or the fluorescent dye-bound particle and the antibody is not particularly limited, and the quantum dot or the fluorescent dye-bound particle and the antibody are directly Examples of the mode of bonding to a compound include a covalent bond, an ionic bond, a hydrogen bond, a coordination bond, physical adsorption, and chemical adsorption. Further, if a product in which a desired quantum dot or a fluorescent dye-integrated particle is bound to a desired antibody in advance is commercially available, it may be used, or may be prepared based on a known method. Good.
  • the mode in which the quantum dot or the fluorescent dye-integrated particle and the antibody are indirectly bound may be, for example, bound in a known manner via avidins and biotin, or bound via a linker molecule. May be.
  • the quantum dot-bound antibody is obtained by binding a secondary antibody that specifically recognizes the primary antibody to an antibody (so-called primary antibody) that specifically recognizes the protein (A), and further binding the quantum dot. There may be.
  • the fluorescent dye-aggregated particle-bound antibody is obtained by binding a secondary antibody specifically recognizing the primary antibody to an antibody (so-called primary antibody) that specifically recognizes the protein (B). May be combined.
  • the fluorescent dye-integrated particle-bound antibody is bound to the primary antibody and the secondary antibody, and It is preferable that the fluorescent dye-incorporated particles are bound, but at this time, the primary antibody in the quantum dot-bound antibody and the primary antibody in the fluorescent dye-bound particle-bound antibody are preferably derived from different immunized animals. .
  • the primary antibody in the quantum dot-bound antibody and the primary antibody in the fluorescent dye-bound particle-bound antibody are preferably derived from different immunized animals.
  • Step (c) In the present invention, after performing the above-mentioned steps (a) and (b), at the same time as irradiating light of the excitation wavelength of the fluorescent particles which cause blinking of the quantum dots or the like, blinking of the fluorescent dye-integrated particles or the like is performed.
  • the microscope for detecting the fluorescent bright spot is not particularly limited as long as it can detect fluorescence, so-called "fluorescence microscope", for example, epi-fluorescence microscope, confocal laser microscope, total reflection illumination fluorescence microscope, Examples include a transmission fluorescence microscope, a multiphoton excitation microscope, and a structured illumination microscope.
  • fluorescence microscope for example, epi-fluorescence microscope, confocal laser microscope, total reflection illumination fluorescence microscope.
  • Examples include a transmission fluorescence microscope, a multiphoton excitation microscope, and a structured illumination microscope.
  • the flickering bright spots extracted in the step (c) represent a protein complex in which the protein (A) and the protein (B) are bound. Therefore, the amount of the protein complex can be quantified by extracting the blinking bright points and measuring the number of the bright points.
  • the blinking interval at the bright spot of the fluorescent dye-integrated particles depends on the blinking interval of the quantum dot, but is usually 1/1000 sec to 1 sec, and from the viewpoint of easy detection, it is 1/4 sec to 1 sec. An interval of seconds is used.
  • the excitation light is radiated by, for example, a light source such as an ultra-high pressure mercury lamp, a Xe lamp, an LED (light emitting diode), a laser device, or the like provided in a fluorescence microscope, and an excitation light optic that selectively transmits a predetermined wavelength as necessary. Irradiation can be performed by using a filter.
  • a light source such as an ultra-high pressure mercury lamp, a Xe lamp, an LED (light emitting diode), a laser device, or the like provided in a fluorescence microscope
  • an excitation light optic that selectively transmits a predetermined wavelength as necessary. Irradiation can be performed by using a filter.
  • the fluorescent bright point ⁇ can be acquired as a fluorescent image by, for example, capturing an image with a device capable of capturing a fluorescent image, for example, a digital camera provided in a fluorescent microscope.
  • excitation light that includes only fluorescence of a target wavelength, and becomes undesired fluorescence or noise, and other light.
  • a fluorescent image excluding the light can be taken.
  • the fluorescent image may be a moving image or a plurality of fluorescent images acquired successively from a plurality of still images (time-lapse photography). Further, the time-lapsed image may be converted into a moving image by using known software. The number of frames per second when performing moving image shooting and the shooting interval when performing time-lapse shooting can be arbitrarily adjusted in accordance with the flashing interval of the fluorescent dye-integrated particles.
  • the acquired fluorescent image is preferably converted as a digital image, and may be processed or image-processed by a known means.
  • Software that can be used for image processing includes, for example, “ImageJ” (open source).
  • ImageJ open source
  • image processing software from a fluorescent image, detection of a luminescent point of a predetermined wavelength, extraction of a blinking luminescent point, measurement of the number of luminescent points of a predetermined luminance or more, and the like, as desired.
  • the process of superimposing a plurality of images, the process of counting the number of cells included in the images, and the like can be performed semi-automatically and quickly.
  • the number of quantum dots that is, the total number of proteins (A) can be measured by irradiating the excitation wavelength of the quantum dots and simultaneously detecting the emission wavelength of the quantum dots.
  • the total number of proteins (B) can be detected by measuring the emission wavelength of the fluorescent integrated particles while irradiating the excitation wavelength of the fluorescent integrated particles. Therefore, by performing these detections, the number of proteins (A) not forming a protein complex, the number of proteins (B) not forming a protein complex, and the number of proteins (A) and protein (B) Information on the number of protein complexes consisting of
  • the number of the proteins (A) not forming the protein complexes can be calculated, and the number of the proteins (B) can be calculated.
  • the number of proteins (B) that do not form a protein complex can be calculated.
  • the ratio of the protein (A) forming the protein complex is calculated by dividing the number of proteins (A) forming the protein complex by the total number of proteins (A).
  • the ratio of the protein (B) forming the protein complex can be calculated in the same manner.
  • the protein complex is formed by using the same method as described above.
  • the number of the protein (A) (protein (B)) and the number of unformed proteins can be calculated.
  • staining for bright field observation can be performed.
  • the staining method for bright field observation is not particularly limited, but typically, hematoxylin and eosin staining (HE staining) is performed.
  • HE staining hematoxylin and eosin staining
  • a morphological observation staining step is included, it is preferably performed after the steps (a) and (b).
  • the morphological observation staining step for example, information such as the number of protein complexes per cell and the localization of the protein complexes in the specimen tissue can be obtained.
  • the amount of the protein complex quantified by extracting the number of blinking bright spots in the step (c) may be determined as, for example, the average number of protein complexes per cell, or the fluorescence used for the detection. The average number per unit area of the image may be obtained.
  • the method for staining the nucleus is not particularly limited, but it is preferable to perform fluorescent staining using a fluorescent substance having a wavelength characteristic different from the excitation wavelength and emission wavelength of the quantum dots and fluorescent integrated particles.
  • a fluorescent substance is not particularly limited, DAPI (4 ′) is used in view of easiness of staining treatment and handling, and strong distinction of nucleus by emitting strong fluorescence by strongly binding to nuclear DNA. , 6-diamidino-2-phenylindole) is preferably used.
  • the protein complex detected in the present invention is a protein (A) and a protein (B) which form a complex by an arbitrary bonding mode (hydrogen bond, intermolecular force, etc.).
  • the protein (A) and the protein (B) may be the same or different, but are preferably different proteins. Further, it is more preferable that each is a protein that binds in a cell (including on the cell membrane), and it is more preferable that each is a protein involved in signal transduction by binding in a cell to form a complex. .
  • the protein complex is a heterodimer consisting of protein (A) and protein (B).
  • the location where the protein (A) and the protein (B) are expressed is not particularly limited, but those that are expressed on the cell membrane of a cancer cell are typically selected.
  • the protein complex comprising the protein (A) and the protein (B) is, for example, a combination that can form a complex (preferably a dimer) between HER families, more specifically, HER2 / HER3, HER2 / HER2, HER2 / HER4, HER3 / HER4, HER4 / HER4, HER2 / CD74, ER ⁇ / ER ⁇ , ER ⁇ / ER ⁇ , Oct4 / Smad3, Integrin ⁇ V / ⁇ 6, HOX / PBX, EGFR / HER2, EGFR / EGFR, EGFR / HER4, VEGFR-1 It is preferably selected from protein complexes such as / VEGFR-1, VEGFR-2 / VEGFR-2, VEGFR-3 / VEGFR-3, PDGFR / c-kit.
  • Quantum dots are nano-sized particles made of a semiconductor that emit fluorescence when irradiated with light, and usually have a particle size of 0.5 to 100 nm, preferably 0.5 to 50 nm, more preferably 0.5 to 50 nm. Preferably it is 1 to 10 nm.
  • quantum dots used in the present invention include those containing a II-VI compound, a III-V compound, or a IV element. Specifically, CdSe, CdS, CdTe, ZnSe, ZnS , ZnTe, InP, InN, InAs, InGaP, GaP, GaAs, Si, Ge, and the like.
  • the quantum dot may be a quantum dot having a core / shell structure, for example, quantum dots such as CdSe / ZnSe (core / shell), InP / ZnS (core / shell), and InGaP / ZnS (core / shell). Dots can be used. Specific examples of such quantum dots include, for example, Qdot (registered trademark) 585, Qdot565, Qdot605, Qdot655, Qdot705, and Qdot800 manufactured by Thermo Fisher Scientific.
  • the excitation wavelength and emission wavelength of the quantum dot are not particularly limited, but it is preferable to select a quantum dot different from the excitation wavelength and emission wavelength of the fluorescent dye-integrated particles described later.
  • the fluorescent dye-accumulated particles used in the present invention have a structure in which a plurality of fluorescent dyes are accumulated (encapsulated) inside and / or adsorbed on the surface of a mother body made of an organic or inorganic substance. Having nano-sized particles.
  • the fluorescent substance may be dispersed in the base, and may or may not be chemically bonded to the base itself.
  • the base for example, resin
  • the fluorescent dye may be bonded by electrostatic interaction or may be covalently bonded.
  • the excitation wavelength and emission wavelength of the fluorescent dye-integrated particles are not particularly limited, but it is preferable to select fluorescent dye-integrated particles different from the excitation wavelength and the emission wavelength of the quantum dots.
  • the “fluorescent dye” is irradiated with an electromagnetic wave (X-ray, ultraviolet light, or visible light) having a predetermined wavelength and absorbs its energy to excite electrons, and returns from the excited state to the ground state.
  • an organic fluorescent dye that is a substance that emits excess energy as an electromagnetic wave, that is, emits “fluorescence”, and is an organic fluorescent compound having a carbon skeleton is preferable.
  • fluorescence has a broad meaning, and includes phosphorescence having a long luminescence lifetime in which luminescence continues even when irradiation of electromagnetic waves for excitation is stopped, and fluorescence in a narrow sense having a short luminescence lifetime.
  • the fluorescent dye examples include a rhodamine dye, a squarylium dye, a cyanine dye, an aromatic ring dye, an oxazine dye, a carbopironine dye, and a pyromesene dye.
  • Alexa Fluor registered trademark
  • BODIPY registered trademark, manufactured by Invitrogen
  • Cy registered trademark, manufactured by GE Healthcare
  • DY registered trademark, manufactured by DYOMICS
  • HiLite registered trademark
  • DyLight registered trademark, manufactured by Thermo Scientific
  • ATTO registered trademark, manufactured by ATTO-TEC
  • MFP registered trademark, manufactured by Mobitec
  • dyes are generically named based on the main structure (skeleton) or registered trademark in the compound, and the range of the fluorescent dye belonging to each dye can be determined by those skilled in the art without undue trial and error. It can be properly grasped.
  • organic substances include resins generally classified as thermosetting resins such as melamine resin, urea resin, aniline resin, guanamine resin, phenol resin, xylene resin, and furan resin; styrene.
  • Resins generally classified as thermoplastic resins such as resin, acrylic resin, acrylonitrile resin, AS resin (acrylonitrile-styrene copolymer), ASA resin (acrylonitrile-styrene-methyl acrylate copolymer); polylactic acid, etc.
  • Fluorescent dye-integrated particles can be produced by a known method for producing desired fluorescent dye-integrated particles, for example, according to the method described in JP-A-2013-57937. Specifically, for example, a fluorescent dye-integrated particle having silica as a base, a solution in which a fluorescent dye and a silica precursor are dissolved is dropped into a solution in which ethanol and ammonia are dissolved, and the silica precursor Can be produced by hydrolyzing the resin, and the fluorescent dye-integrated resin particles having a resin as a matrix are prepared in advance by preparing a solution of the resin or a dispersion of fine particles, and adding a fluorescent dye thereto. It can be prepared by stirring.
  • the average particle size of the fluorescent dye-integrated particles is not particularly limited as long as it is a particle size suitable for fluorescent staining, but is usually 10 to 500 nm, preferably 50 to 200 nm in consideration of easy detection as a bright spot. It is. Further, the coefficient of variation indicating the variation of the particle diameter is usually 20% or less, and preferably 5 to 15%.
  • the fluorescent dye-integrated particles satisfying such conditions can be manufactured by adjusting the manufacturing conditions. For example, when producing fluorescent dye-integrated particles by an emulsion polymerization method, the particle size can be adjusted by the amount of surfactant added.
  • the particle diameters of the quantum dots and the fluorescent dye-integrated particles be determined by taking an electron micrograph using a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the average particle diameter and the coefficient of variation of a group consisting of a plurality of phosphor-integrated particles are calculated as described above for a sufficient number (for example, 1000) of phosphor-integrated particles. It is calculated as an average, and the coefficient of variation is calculated by the formula: 100 ⁇ standard deviation of particle size / average particle size.
  • the method for evaluating a drug effect of the present invention includes a step of performing the above-described method for detecting a protein complex before and after addition of a drug to a specimen (cultured cells, tissue slices, or the like) at each time point.
  • a specimen for example, when the drug is an anticancer agent, a tissue section collected from an experimental animal such as a tumor-bearing animal or a cultured cell derived from a tumor tissue can be used.
  • the agent that affects the formation of the protein complex is preferably an agent that inhibits the formation of the protein complex.
  • the agent is preferably a heterodimer formation inhibitor. More preferably, for example, it is particularly preferable to be a heterodimer formation inhibitor composed of HER2 and HER3, and most preferably, the drug is pertuzumab, lapatinib, or afatinib.
  • the protein complex is a homodimer, it is preferably a homodimer formation inhibitor, and the drug is trastuzumab (trade name: Herceptin (registered trademark), Chugai Pharmaceutical Co., Ltd.), cetuximab (trade name: Arbitux) (Registered trademark), Bristol-Myers @ Squibb) and panitumumab (trade name: Vectibix (registered trademark), Amgen).
  • trastuzumab trade name: Herceptin (registered trademark), Chugai Pharmaceutical Co., Ltd.
  • cetuximab trade name: Arbitux
  • panitumumab trade name: Vectibix (registered trademark), Amgen
  • the effect of the drug can be evaluated by calculating the number of proteins (A) (protein (B)) forming a protein complex before and after the addition of the drug and the number of the proteins not forming the protein complex.
  • the candidate drug can inhibit the formation of the protein complex.
  • the efficacy of a candidate drug can be predicted and evaluated.
  • Qdot (registered trademark) 585 @ streptavidin conjugate (Invitrogen) (2 nM) is mixed with the biotin-labeled anti-HER2 antibody (20 ⁇ g / mL), and quantum dots (Qdot (registered trademark) 585; excitation wavelength 365 nm, emission wavelength 585 nm) was bound to obtain an anti-HER2 antibody.
  • the obtained quantum dot-conjugated anti-HER2 antibody was obtained by diluting a diluent Power Block (10 ⁇ Concentrated) (BIOGENEX LABORATORIES, INC; Code No.B-HK0855) ten times with pure water. It was used.
  • the solution was stirred for 20 minutes while maintaining the temperature at 70 ° C.
  • 1.5 g of a melamine resin "Nikarac MX-035" (Nippon Carbide Industry Co., Ltd.) was added, and the mixture was further heated and stirred under the same conditions for 5 minutes.
  • 100 ⁇ L of formic acid was added to the solution after stirring, and the solution was stirred for 20 minutes while maintaining the temperature of the solution at 60 ° C. Then, the solution was allowed to cool to room temperature.
  • the cooled solution was dispensed into a plurality of centrifuge tubes and centrifuged at 12,000 rpm for 20 minutes to precipitate the Texas Red-integrated melamine resin particles (hereinafter, fluorescent dye-incorporated particles) contained in the solution.
  • the average particle size was 80 nm.
  • the surface-aminated particles were adjusted to 3 nM using PBS (phosphate buffered saline) containing 2 mM EDTA (ethylenediaminetetraacetic acid), and the solution was adjusted to a final concentration of 10 mM.
  • SM (PEG) 12 succinimidyl-[(N-maleimidopropionamido) -dodecaethyleneglycol] ester
  • PBS containing 2 mM of EDTA was added to disperse the precipitate, and the mixture was centrifuged again. The same procedure was repeated three times to obtain maleimide-modified fluorescent dye-integrated particles.
  • streptavidin (Wako Pure Chemical Industries, Ltd.) is subjected to a thiol group addition treatment using N-succinimidyl S-acetylthioacetate (SATA), followed by filtration through a gel filtration column to obtain maleimide-modified fluorescent dye-integrated particles.
  • SATA N-succinimidyl S-acetylthioacetate
  • Example 1 1.0 ⁇ 10 7 human breast cancer-derived cultured cells (cell name AU565; ATCC (registered trademark) NO. CRL-235; Sumisho Pharma International Co., Ltd.) are suspended in a 4% paraformaldehyde solution and reacted at room temperature for 10 minutes. After immobilization, a cell block embedded in an alginate gel was prepared.
  • AU565 is known to be a cell expressing both HER2 and HER3 (HER2 positive; HER3 positive).
  • the prepared cell block was cut into a paraffin section having a thickness of 3 ⁇ m, and the quantum dot-bound anti-HER2 antibody prepared in Preparation Example 1 and the fluorescent dye-integrated particle-bound anti-HER3 antibody prepared in Preparation Example 2 were brought to a final concentration of 10%. Was added to the cells and left at 4 ° C. for 8 hours for staining.
  • the excitation wavelength is a wavelength at which Qdot (registered trademark) 585 is excited, and a wavelength at which Texas Red of the fluorescent dye-integrated particles is not excited.
  • Time-lapse photography was performed by continuously photographing for 60 seconds at an exposure time of 250 msec and a scan speed of 400 msec / 1 frame.
  • the average blink frequency of Qdot (registered trademark) 585 was measured from the result of the photographing, it was 0.5 seconds / time.
  • the fluorescent luminescent spot derived from the fluorescent dye-integrated particles was measured under the same conditions as in the imaging of Qdot (registered trademark) 585 (exposure time 250 ms, 400 ms / Time-lapse photography was performed at a scan speed of one frame for 60 seconds (continuous photography), and photography was performed using an optical filter for fluorescence (558 to 584 nm).
  • the number of cells in one screen is visually determined from the fluorescence derived from the autofluorescence of the cells using the image analysis software ImageJ (open source).
  • the number of all bright spots in one screen and the number of only bright spots blinking from the bright spots were measured.
  • the number of bright spots per cell was calculated by dividing the number of blinking bright spots derived from the fluorescent dye-accumulated particles in one screen by the number of cells in one screen. Table 1 shows the results.
  • the extraction of the blinking bright points only the bright points that emit light at the time of blinking and have a luminance of a predetermined value or more are extracted and measured.
  • a signal whose luminance or magnitude was larger than a certain value eg, the average value of the observed phosphor-integrated particles was determined to be an aggregated bright spot.
  • the extraction and measurement of the number of the blinking bright points and the measurement of the number of the bright points included in the aggregated bright points can be performed by using the image analysis software ImageJ.
  • the average blinking frequency of the fluorescent dye-integrated particles was measured from the results of the above photographing and found to be 0.5 seconds / time. This coincides with the blink interval of Qdot (registered trademark) 585. From this, the energy of the fluorescent emission of Qdot (registered trademark) 585 is transferred to the fluorescent dye-integrated particles, so that the blinking of the fluorescent dye-integrated particles occurs. Suggests that
  • Example 2 Human ovarian cancer-derived cultured cells (cell name SKOV3; ATCC (registered trademark) NO. HTB-77; Sumisho Pharma International Co., Ltd.) were cultured, and staining and detection of blinking spots were performed in the same manner as in Experimental Example 1. . It is known that SKOV3 expresses HER2 while HER3 is a cell that expresses only a small amount. As in Experimental Example 1, the number of bright spots per cell was determined by dividing the number of blinking bright spots derived from the fluorescent dye-integrated particles in one screen by the number of cells in one screen. Table 1 shows the results.
  • one cell was obtained by dividing the number of blinking points derived from the fluorescent dye-accumulated particles in one screen by the number of cells in one screen visually determined from the fluorescence derived from the autofluorescence of the cells. The number of bright spots per was obtained. Table 1 shows the results.
  • the SKOV3 cell of Experimental Example 2 has a smaller HER3 expression level than the AU565 cell, so that 45 luminescent spots derived from the fluorescent dye-integrated particles under the conditions of the excitation wavelength of 352 to 388 nm are 45 and the AU565 cell It was small compared to.
  • 45 is the sum of the blinking fluorescent dye-integrated particles and the non-specifically excited fluorescent dye-integrated particles at the wavelength of 370 nm, which is the excitation wavelength of the quantum dots. It was also found that there were 25 blinking bright spots, and at least 20 bright spots were not based on the formation of the HER2 / HER3 dimer. That is, it can be understood that about 44% of the bright spots are non-specific due to the excitation light of the quantum dots.
  • MCF7 hardly expresses HER2 as described above, but HER3 is expressed. Since HER2 is hardly expressed, the number of bright spots of the fluorescent dye-integrated particles flickering due to the influence of the fluorescent light emission of the quantum dots is very small correspondingly (10 bright spots per cell). . The total number of bright spots was 15, indicating that at least 5 bright spots were not based on the formation of the HER2 / HER3 dimer. In other words, it can be understood that about 33% of the bright spot quantum dots are non-specific due to the excitation light.
  • Example 4 A paraffin section (AU565: (HER2 positive; HER3 positive) cell) prepared in the same manner as in Experimental Example 1 was subjected to the quantum dot-conjugated anti-HER2 antibody prepared in Preparation Example 1 and the fluorescent dye prepared in Preparation Example 2. Staining was performed under the same conditions as in Experimental Example 1 using the anti-HER3 antibody bound to the accumulated particles.
  • Qdot (registered trademark) 585 is irradiated with ultraviolet light having an excitation wavelength of 352 to 388 nm, which is a wavelength that is excited but is not excited by Texas Red of the fluorescent dye-integrated particles. Fluorescence observation was performed on Qdot (registered trademark) 585.
  • ImageJ image processing software “ImageJ” (open source)
  • the number of bright spots derived from Qdot (registered trademark) 585 and fluorescent dye-integrated particles (Texas Red) contained in one captured image is measured, and the bright spots are measured.
  • the number of bright spots per cell was obtained by dividing by the number of cells in one screen.
  • the number of HER2s can be detected by irradiating the excitation wavelength of the quantum dot and simultaneously detecting the fluorescence of the quantum dot.
  • the number of HER3 can be detected by detecting the emission wavelength of.
  • the number of HER2 / HER3 dimers can also be detected by obtaining the fluorescence of the flickering fluorescent dye-integrated particles together with these detections.
  • HER2 and HER3 can be quantified using the same section as that obtained by quantifying the HER2 / HER3 dimer.
  • pertuzumab (Perjeta (registered trademark); Chugai Pharmaceutical Co., Ltd.) diluted with a culture solution to a final concentration of 20 ⁇ g / mL was added to the cells.
  • pertuzumab Number of fluorescent dye-integrated particles (Texas Red) flickering at an excitation wavelength of 352 to 388 nm (discussion)
  • the addition of pertuzumab significantly reduced the number of blinking bright spots to less than one-tenth. This indicates that the HER2 / HER3 dimer was reduced by pertuzumab, and the effect of pertuzumab on inhibiting the formation of the HER2 / HER3 dimer could be visualized.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present invention provides a method for detecting a protein complex by causing blinking of a fluorescent particle, which does not exhibit blinking, due to energy transfer from a fluorescent particle which exhibits excited blinking. The detection method for a protein complex of a protein (A) and a protein (B) according to the present invention, comprises a step (a) for labeling the protein (A) with an antibody to which a fluorescent particle which exhibits blinking is linked, a step (b) for labeling the protein (B) with an antibody to which a fluorescent particle which does not exhibit blinking is linked, and a step (c) for, after steps (a) and (b), irradiating, with light having an excitation wavelength, the fluorescent particle which exhibits blinking, at the same time, detecting bright points of fluorescence of the emission wavelength of the fluorescent particles which do not exhibit blinking, and extracting a blinking bright point from the bright points of fluorescence of the emission wavelength of the fluorescent particles which do not exhibit blinking.

Description

検出方法および評価方法Detection method and evaluation method
 本発明は、検出方法および、該検出方法を利用した評価方法に関する。 The present invention relates to a detection method and an evaluation method using the detection method.
 抗がん剤として、従来から低分子医薬品が広く用いられてきたが、近年ではより血漿中での安定性が高く、選択性や治療効果が高く副作用の少ない抗体医薬が数多く開発され、臨床に用いられている。 Although low-molecular-weight drugs have been widely used as anticancer drugs, many antibody drugs with higher stability in plasma, higher selectivity, higher therapeutic effect and fewer side effects have been developed in recent years, Used.
 抗がん剤としてよく用いられている抗体医薬にトラスツズマブ(Trastuzumab)(ハーセプチン(登録商標);中外製薬株式会社)がある。トラスツズマブは多くの種類のがんで遺伝子増幅および過剰発現がみられるHER2タンパク質に特異的に結合する抗体医薬であり、トラスツズマブがHER2タンパク質に結合することで抗体依存性細胞障害作用を活性化したり、また細胞増殖シグナルを抑制したりすることから、抗腫瘍効果を発揮することが知られている。 抗体 Trastuzumab (Herceptin (registered trademark); Chugai Pharmaceutical Co., Ltd.) is an antibody drug frequently used as an anticancer drug. Trastuzumab is an antibody drug that specifically binds to the HER2 protein, which has gene amplification and overexpression in many types of cancer.Trastuzumab activates antibody-dependent cytotoxicity by binding to the HER2 protein, It is known to exert an antitumor effect by suppressing a cell proliferation signal.
 近年開発されたペルツズマブ(Pertuzumab)(パージェタ(登録商標);中外製薬株式会社)もHER2を標的とするがんを対象疾患とする抗体医薬である。HER2は、同じファミリー受容体であるHER3とヘテロダイマーを形成することはよく知られている。以下、HER2と、HER3とから形成されるヘテロダイマーを、HER2/HER3ヘテロダイマーとも記す。例えば、HER2/HER3ヘテロダイマーの下流では主に細胞増殖、細胞周期進行、細胞生存の維持に関わるPI3K/Akt経路が活性化されていること(非特許文献1、2)、ペルツズマブはHER2とHER3とのダイマー形成を強力に阻害することでPI3K/Aktシグナルを抑制することでがんの進行を抑制すること(非特許文献1)、ラパチニブ(タイケルブ(登録商標);グラクソ・スミスクライン株式会社)はHER2とEGFRとのダイマー形成を阻害し、2つの受容体のチロシンキナーゼ活性を阻害することで、下流のシグナル伝達を抑制してがんの進行を抑制すること(非特許文献3)が報告されている。したがって、HER2を含むヘテロダイマーの検出は、がん細胞の増殖、がんの進行や増悪と大きく関連していると考えられ、このようなヘテロダイマーを検出することは創薬分野にとって重要なことである。 Pertuzumab (Perjeta (registered trademark); Chugai Pharmaceutical Co., Ltd.), which has been recently developed, is also an antibody drug targeting HER2 targeting cancer. It is well known that HER2 forms a heterodimer with the same family of receptors, HER3. Hereinafter, the heterodimer formed from HER2 and HER3 is also referred to as HER2 / HER3 heterodimer. For example, downstream of the HER2 / HER3 heterodimer, the PI3K / Akt pathway that is mainly involved in cell proliferation, cell cycle progression, and maintenance of cell survival is activated (Non-patent Documents 1 and 2), and pertuzumab has HER2 and HER3. Suppresses the progression of cancer by suppressing the PI3K / Akt signal by strongly inhibiting the dimer formation with lactinib (Non-Patent Document 1), lapatinib (Tykerb (registered trademark); GlaxoSmithKline Co., Ltd.) Reported that inhibiting the dimer formation between HER2 and EGFR and inhibiting the tyrosine kinase activity of the two receptors suppresses downstream signal transduction and suppresses cancer progression (Non-Patent Document 3). Have been. Therefore, the detection of heterodimers including HER2 is considered to be greatly related to the proliferation of cancer cells and the progression or exacerbation of cancer, and the detection of such heterodimers is important in the field of drug discovery. It is.
 タンパク質の結合や相互作用の検出に蛍光共鳴エネルギー移動(FRET)を用いる方法が知られている。FRETは、異なる蛍光発色団が1~10nm程度の距離に存在する場合において、一つの蛍光色素の蛍光スペクトルがもう一つの蛍光色素の励起スペクトルに重なる場合、最初に励起された蛍光色素(ドナー蛍光体)の電子と2番目の蛍光色素(アクセプター蛍光体)の電子が共鳴してアクセプター蛍光体の蛍光発光が起こる現象であり、バイオテクノロジー分野においては、例えばドナー蛍光体またはアクセプター蛍光体にそれぞれ目的となるタンパク質を結合させてこの現象を検出することで、それらのタンパク質の結合などの相互作用を検出する方法に用いられている。 方法 A method using fluorescence resonance energy transfer (FRET) to detect protein binding and interaction is known. FRET is based on the fact that, when different fluorescent chromophores are present at a distance of about 1 to 10 nm and the fluorescent spectrum of one fluorescent dye overlaps the excitation spectrum of another fluorescent dye, the first excited fluorescent dye (donor fluorescence In the biotechnology field, for example, a donor fluorescent substance or an acceptor fluorescent substance is used as a fluorescent substance to emit light by resonating the electrons of the second fluorescent dye (acceptor fluorescent substance) with the electrons of the second fluorescent dye (acceptor fluorescent substance). These phenomena are detected by binding proteins to each other to detect an interaction such as binding of those proteins.
 具体的にはドナー蛍光体を結合させたドナー蛍光体結合タンパク質とアクセプター蛍光体を結合させたアクセプター蛍光体結合タンパク質とが複合体を形成していた場合、二つの蛍光体は極めて近距離に存在するため、ドナー蛍光体の励起光を照射するとアクセプター蛍光体が蛍光発光することから、それぞれのタンパク質の結合を判定できる。 Specifically, when a donor fluorophore-bound protein bound to a donor fluorophore and an acceptor fluorophore-bound protein bound to an acceptor fluorophore form a complex, the two fluorophores exist at extremely short distances. Therefore, when the donor phosphor is irradiated with excitation light, the acceptor phosphor emits fluorescence, so that the binding of each protein can be determined.
 特許文献1には異なった蛍光物質を含む2種類の抗体を使い、それぞれの蛍光物質間のFRETを測定することでHER2を含むヘテロダイマーが形成されているかどうかを決定する方法が記載されている(特許文献1)。 Patent Document 1 describes a method for determining whether a heterodimer containing HER2 is formed by measuring FRET between two fluorescent substances using two kinds of antibodies containing different fluorescent substances. (Patent Document 1).
特開2014-237667号JP 2014-237667 A
 発明者らは、2種類の蛍光色素を用いたFRETによりHER2/HER3ヘテロダイマーの検出を試みたところ、蛍光観察において数秒以内に退色が起こり、撮影が容易ではないという問題を見出した。 (4) The present inventors have attempted to detect a HER2 / HER3 heterodimer by FRET using two types of fluorescent dyes, and found that the color fading occurred within a few seconds in fluorescence observation, which made imaging difficult.
 代替案として、蛍光物質として蛍光色素の代わりに、光耐久性の高い量子ドットと蛍光色素集積粒子を用いたFRETを行ったが、量子ドットを励起させる波長の励起光により蛍光色素集積粒子が励起されてしまう場合があり、そのような非特異的な蛍光色素集積粒子の蛍光発光のため、目的となるヘテロダイマーが形成されているかどうかの確実な判別ができなかった。 As an alternative, FRET was performed using quantum dots with high light durability and fluorescent dye-integrated particles instead of fluorescent dyes as the fluorescent substance, but the fluorescent dye-integrated particles were excited by excitation light having a wavelength that excites the quantum dots. In some cases, such non-specific fluorescent dye-integrated particles emit fluorescent light, so that it was not possible to reliably determine whether or not the target heterodimer was formed.
 本発明は、このような現状に鑑み、ヘテロダイマー等のタンパク質複合体を、高感度で検出可能な検出方法、該検出方法を利用した薬剤の評価方法を提供することを課題とする。 In view of such circumstances, an object of the present invention is to provide a detection method capable of detecting a protein complex such as a heterodimer with high sensitivity, and a method for evaluating a drug using the detection method.
 本発明者らは上述のような非特異的なアクセプター蛍光粒子の発光という問題を解決するため、量子ドットにみられるブリンキングと呼ばれる現象を利用することを着想した。 The present inventors have conceived to utilize a phenomenon called blinking, which is observed in quantum dots, in order to solve the above-mentioned problem of emission of nonspecific acceptor fluorescent particles.
 ブリンキングとは、ミリ秒から秒の時間間隔で蛍光発光性物質が明滅を繰り返す現象であり、蛍光タンパク質、有機蛍光色素、量子ドットなど、1分子で用いられる蛍光分子においてみられる現象であり(非特許文献4)、このような明滅は蛍光色素集積粒子においては本来であれば見られない。 Blinking is a phenomenon in which a fluorescent substance repeatedly blinks at time intervals of milliseconds to seconds, and is a phenomenon observed in fluorescent molecules used in one molecule such as fluorescent proteins, organic fluorescent dyes, quantum dots, etc. Non-patent document 4), such flickering is not normally seen in fluorescent dye-integrated particles.
 しかしながら、本発明者らはブリンキングを生じる蛍光発光性粒子とブリンキングを生じない蛍光発光性粒子とを用いた場合に、両者が極めて近接した距離に存在すると、励起されたブリンキングを生じる蛍光発光性粒子からのエネルギー移動により、ブリンキングを生じない蛍光発光性粒子が明滅することがあるということを見出した。また、本発明者らは、該現象をタンパク質複合体の検出に利用する、タンパク質複合体の検出方法を完成させた。 However, the present inventors have found that when fluorescent particles that cause blinking and fluorescent particles that do not cause blinking are used, if both are present at extremely close distances, the fluorescent light that causes excited blinking is generated. It has been found that energy transfer from the luminescent particles may cause the fluorescent particles that do not cause blinking to blink. In addition, the present inventors have completed a protein complex detection method using the phenomenon for detection of a protein complex.
 すなわち、本発明は例えば以下の[1]~[12]を提供する。
[1]
 タンパク質(A)とタンパク質(B)とからなるタンパク質複合体の検出方法であって、
 タンパク質(A)を、ブリンキングを生じる蛍光発光性粒子を結合した抗体を用いて標識する工程(a)および
 タンパク質(B)を、ブリンキングを生じない蛍光発光性粒子を結合した抗体で標識する工程(b)を含み、
 その後、
 前記ブリンキングを生じる蛍光発光性粒子の励起波長の光を照射すると同時に、ブリンキングを生じない蛍光発光性粒子の発光波長の蛍光輝点を検出し、
 前記ブリンキングを生じない蛍光発光性粒子の発光波長の蛍光輝点から、明滅する輝点を抽出する工程(c)を含み、
 前記明滅する輝点が前記タンパク質(A)と前記タンパク質(B)との複合体をあらわすタンパク質複合体の検出方法。
[2]
 前記ブリンキングを生じる蛍光発光性粒子が量子ドットであり、
 前記ブリンキングを生じない蛍光発光性粒子が蛍光色素集積粒子である、
 項1に記載のタンパク質複合体の検出方法。
[3]
 さらに、タンパク質複合体を形成していないタンパク質(A)の数、およびタンパク質複合体を形成していないタンパク質(B)の数を算出する工程(d)を含む、項1または2に記載のタンパク質複合体の検出方法。
[4]
 前記タンパク質複合体が、タンパク質(A)とタンパク質(B)とからなるヘテロダイマーである、項1~3のいずれか一項に記載のタンパク質複合体の検出方法。
[5]
  検体に薬剤を添加する前および添加した後のそれぞれの時点において、項1~4のいずれか一項に記載のタンパク質複合体の検出方法を行う工程を含む、薬剤効果の評価方法。
[6]
 前記薬剤がタンパク質複合体の形成を阻害する薬剤である、項5に記載の評価方法。
[7]
 前記薬剤がヘテロダイマー形成阻害薬である、項5または6に記載の評価方法。
[8]
 前記タンパク質複合体がHER2とHER3とからなるヘテロダイマーである、項5~7のいずれか一項に記載の評価方法。
[9]
 前記薬剤がペルツズマブ、トラスツズマブ、またはラパチニブである、項5~8のいずれか一項に記載の評価方法。
[10]
 前記量子ドットと前記蛍光色素集積粒子とは、それぞれ異なった励起波長を有する、項5~9のいずれか一項に記載の評価方法。
[11]
 前記量子ドットの励起波長帯が、前記蛍光色素集積粒子1粒子あたりの励起スペクトル強度が前記量子ドット1粒子あたりの励起スペクトル強度の10分の1以下である、項5~10のいずれか一項に記載の評価方法。
[12]
 前記量子ドットの励起波長帯が、前記蛍光色素集積粒子1粒子あたりの励起スペクトル強度が前記量子ドット1粒子あたりの励起スペクトル強度の100分の1以下である、項5~11のいずれか一項に記載の評価方法。
That is, the present invention provides, for example, the following [1] to [12].
[1]
A method for detecting a protein complex comprising a protein (A) and a protein (B),
Step (a) of labeling the protein (A) with an antibody bound to fluorescent particles that cause blinking and labeling the protein (B) with an antibody bound to fluorescent particles that do not cause blinking Step (b),
afterwards,
Simultaneously with irradiating the light of the excitation wavelength of the fluorescent particles that cause the blinking, to detect the fluorescent bright spot of the emission wavelength of the fluorescent particles that do not cause the blinking,
Extracting a flickering luminescent spot from the fluorescent luminescent spots having the emission wavelength of the fluorescent particles that do not cause blinking,
A method for detecting a protein complex, wherein the blinking bright spot represents a complex of the protein (A) and the protein (B).
[2]
The fluorescent particles that cause the blinking are quantum dots,
The fluorescent particles that do not cause blinking are fluorescent dye-integrated particles,
Item 10. The method for detecting a protein complex according to Item 1.
[3]
Item 3. The protein according to item 1 or 2, further comprising a step (d) of calculating the number of proteins (A) not forming a protein complex and the number of proteins (B) not forming a protein complex. Complex detection method.
[4]
Item 4. The method for detecting a protein complex according to any one of Items 1 to 3, wherein the protein complex is a heterodimer comprising a protein (A) and a protein (B).
[5]
5. A method for evaluating a drug effect, comprising a step of performing the method for detecting a protein complex according to any one of Items 1 to 4 before and after addition of a drug to a sample.
[6]
Item 6. The evaluation method according to Item 5, wherein the agent is an agent that inhibits formation of a protein complex.
[7]
Item 7. The evaluation method according to Item 5 or 6, wherein the drug is a heterodimer formation inhibitor.
[8]
Item 8. The evaluation method according to any one of Items 5 to 7, wherein the protein complex is a heterodimer composed of HER2 and HER3.
[9]
Item 9. The evaluation method according to any one of Items 5 to 8, wherein the drug is pertuzumab, trastuzumab, or lapatinib.
[10]
Item 10. The evaluation method according to any one of Items 5 to 9, wherein the quantum dots and the fluorescent dye-integrated particles have different excitation wavelengths.
[11]
Item 5. The excitation wavelength band of the quantum dot, wherein the excitation spectrum intensity per fluorescent dye-integrated particle is 1/10 or less of the excitation spectrum intensity per quantum dot particle. Evaluation method described in.
[12]
Item 5. The excitation wavelength band of the quantum dot, wherein the excitation spectrum intensity per fluorescent dye-integrated particle is 1/100 or less of the excitation spectrum intensity per quantum dot particle. Evaluation method described in.
 上記手法により、蛍光色素集積粒子等のブリンキングを生じない蛍光発光性粒子の非特異的な蛍光発光(ブリンキングを生じる蛍光発光性粒子の励起波長の光によらない、ブリンキングを生じない蛍光発光性粒子の非特異的な蛍光発光)は明滅しないために検出対象から除くことができるため、目的とするタンパク質複合体の検出を高感度で行うことができる。 According to the above-mentioned method, non-specific fluorescence emission of the fluorescent particles that do not cause blinking such as fluorescent dye-integrated particles (fluorescence that does not cause blinking and does not depend on the light of the excitation wavelength of the fluorescent particles that cause blinking) Since non-specific fluorescent emission of the luminescent particles does not blink and can be excluded from the detection target, the target protein complex can be detected with high sensitivity.
 この手段によると、蛍光色素集積粒子等のブリンキングを生じない蛍光発光性粒子が明滅を起こしている場合には、量子ドット等のブリンキングを生じる蛍光発光性粒子および蛍光色素集積粒子等のブリンキングを生じない蛍光発光性粒子が、エネルギー移動が起きるほどの近距離に存在していることがわかり、このことからブリンキングを生じる蛍光発光性粒子を結合した抗体が標識したタンパク質とブリンキングを生じない蛍光発光性粒子が結合した抗体が標識したタンパク質とが結合した、タンパク質複合体を高い精度で検出できる。 According to this means, when the fluorescent particles that do not cause blinking such as the fluorescent dye-integrated particles are flickering, the fluorescent light-emitting particles that cause blinking such as quantum dots and the blinking of the fluorescent dye-integrated particles and the like are used. It can be seen that the fluorescent particles that do not cause kinging are located at such a short distance that energy transfer occurs.This indicates that the antibody to which the fluorescent particles that cause blinking binds to the labeled protein. It is possible to detect with high accuracy a protein complex in which an antibody to which fluorescent light-emitting particles are not bound and a labeled protein are bound.
 具体的には、例えばHER2およびHER3にそれぞれ適当な組み合わせの、ブリンキングを生じる蛍光発光性粒子を結合した抗体およびブリンキングを生じない蛍光発光性粒子を結合した抗体で標識し、ブリンキングを生じる蛍光発光性粒子の励起波長の光を照射し、ブリンキングを生じない蛍光発光性粒子の発光波長の明滅している蛍光輝点を観察することにより、HER2/HER3ヘテロダイマーが形成されている数を高い精度で計測することができる。 Specifically, for example, HER2 and HER3 are appropriately combined with an antibody bound to a fluorescent particle that causes blinking and an antibody bound to a fluorescent particle that does not cause blinking to cause blinking. The number of HER2 / HER3 heterodimers formed by irradiating light of the excitation wavelength of the fluorescent particles and observing the flashing fluorescent spots of the fluorescent wavelength of the fluorescent particles that do not cause blinking. Can be measured with high accuracy.
 さらに上記のような蛍光観察において、細胞に励起光を照射すると細胞内に存在する物質からの非特異的な蛍光である、いわゆる自家蛍光といわれるものも検出されることもあるが、この自家蛍光もまた明滅しないために、さらに目的のタンパク質複合体を高い検出精度が期待できる。 Furthermore, in the fluorescence observation as described above, when the cell is irradiated with excitation light, what is called autofluorescence, which is nonspecific fluorescence from a substance present in the cell, may be detected. Also, since it does not flicker, higher detection accuracy of the target protein complex can be expected.
 また当該方法を用いることで薬剤の効果について評価することができる。例えば上述したようにHER2/HER3ヘテロダイマーの形成は、がん細胞の増殖等に大きく関与している。したがって腫瘍由来の培養細胞や担がん動物等の実験動物等を用いて、抗がん剤の候補薬剤の前後におけるヘテロダイマーの数の変化などを観察することで、当該候補薬剤がHER2/HER3ヘテロダイマーの形成を阻害し得るかどうかを判別することができ、したがって当該候補薬剤のがんに対する薬効を予測・評価することができる。 In addition, the effect of the drug can be evaluated by using the method. For example, as described above, the formation of a HER2 / HER3 heterodimer is greatly involved in the growth of cancer cells and the like. Therefore, by observing changes in the number of heterodimers before and after a candidate drug for an anticancer drug using a tumor-derived cultured cell or an experimental animal such as a tumor-bearing animal, the candidate drug becomes HER2 / HER3. It is possible to determine whether or not the formation of heterodimers can be inhibited, and thus it is possible to predict and evaluate the efficacy of the candidate drug against cancer.
図1(A)は作製例1で作製した、量子ドット結合抗HER2マウスモノクローナル抗体で標識した、HER2の模式図である。FIG. 1 (A) is a schematic diagram of HER2 labeled in Example 1 with a quantum dot-conjugated anti-HER2 mouse monoclonal antibody.
 図1(B)は本発明の一様態である標識の模式図であって、HER2に(量子ドットを結合していない)抗HER2マウス抗体を結合させ、さらに作製例1で作製した量子ドット結合抗HER2抗体の代わりに、作製例1と同じ手法で作製した量子ドット結合抗マウスIgG抗体で標識したHER2の模式図である。
図2(A)は作製例2で作製した、蛍光色素集積粒子結合抗HER3マウスモノクローナル抗体で標識した、HER3の模式図である。図2(B)は本発明の一様態である標識の模式図であって、HER3に(蛍光色素集積粒子を結合していない)抗HER3マウスモノクローナル抗体を結合させ、さらに作製例2で作製した蛍光色素集積粒子結合抗HER3マウスモノクローナル抗体の代わりに、作製例2と同じ手法で作製した蛍光色素集積粒子結合抗マウスIgG抗体で標識したHER3の模式図である。 図3は量子ドット結合抗HER2マウスモノクローナル抗体で標識したHER2と蛍光色素集積粒子結合抗HER3マウスモノクローナル抗体で標識したHER3とからなるヘテロダイマー、および当該ヘテロダイマーの検出の模式図である。
FIG. 1B is a schematic view of a label which is one embodiment of the present invention. In FIG. 1B, an anti-HER2 mouse antibody (having no quantum dots) is bound to HER2, FIG. 4 is a schematic diagram of HER2 labeled with a quantum dot-conjugated anti-mouse IgG antibody prepared in the same manner as in Preparation Example 1 instead of the anti-HER2 antibody.
FIG. 2 (A) is a schematic diagram of HER3 prepared in Preparation Example 2 and labeled with a fluorescent dye-integrated particle-conjugated anti-HER3 mouse monoclonal antibody. FIG. 2 (B) is a schematic diagram of a label which is one embodiment of the present invention. An anti-HER3 mouse monoclonal antibody (without fluorescent dye-incorporated particles) was bound to HER3, and further produced in Preparation Example 2. FIG. 7 is a schematic diagram of HER3 labeled with a fluorescent dye-integrated particle-conjugated anti-mouse IgG antibody prepared in the same manner as in Preparation Example 2 instead of the fluorescent dye-incorporated particle-bound anti-HER3 mouse monoclonal antibody. FIG. 3 is a schematic diagram of a heterodimer comprising HER2 labeled with a quantum dot-conjugated anti-HER2 mouse monoclonal antibody and HER3 labeled with a fluorescent dye-collected particle-conjugated anti-HER3 mouse monoclonal antibody, and detection of the heterodimer.
 本発明の「検出方法」においては、タンパク質(A)とタンパク質(B)とからなるタンパク質複合体を検出の対象とする。
<検出方法>
(工程(a)および(b))
 本発明に係る検出方法は、タンパク質(A)を、ブリンキングを生じる蛍光発光性粒子を結合した抗体で標識する工程(a)、タンパク質(B)を、ブリンキングを生じない蛍光発光性粒子を結合した抗体で標識する工程(b)を含む。工程(a)および(b)は、工程(a)を先に行ってもよいし、工程(b)を先に行ってもよいし、工程(a)と工程(b)とを同時に行ってもよい。
In the “detection method” of the present invention, a protein complex consisting of the protein (A) and the protein (B) is targeted for detection.
<Detection method>
(Steps (a) and (b))
In the detection method according to the present invention, the step (a) of labeling the protein (A) with an antibody bound to fluorescent particles that cause blinking, and the step of labeling the protein (B) with fluorescent particles that do not cause blinking (B) labeling with the bound antibody. In the steps (a) and (b), the step (a) may be performed first, the step (b) may be performed first, or the steps (a) and (b) may be performed simultaneously. Is also good.
 工程(a)および工程(b)は、具体的には、例えばブリンキングを生じる蛍光発光性粒子を結合した抗体およびブリンキングを生じない蛍光発光性粒子を結合した抗体を希釈液に分散させた染色液を、検体(培養細胞や組織切片等)に対して添加することで行うことができる。 In the steps (a) and (b), specifically, for example, an antibody bound to fluorescent particles that cause blinking and an antibody bound to fluorescent particles that do not cause blinking are dispersed in a diluent. It can be performed by adding a staining solution to a specimen (cultured cells, tissue sections, and the like).
 ブリンキングを生じる蛍光発光性粒子としては典型的には量子ドットが選択され、ブリンキングを生じない蛍光発光性粒子としては典型的には蛍光色素集積粒子が選択される。 量子 Typically, quantum dots are selected as the fluorescent particles that cause blinking, and fluorescent dye-integrated particles are typically selected as the fluorescent particles that do not cause blinking.
 したがって好ましくは、本発明の検出方法においては、タンパク質(A)を量子ドット結合抗体で標識する工程(a')、タンパク質(B)を蛍光色素集積粒子結合抗体で標識する工程(b')を含む。以下の説明では、ブリンキングを生じる蛍光発光性粒子が量子ドットであり、ブリンキングを生じない蛍光発光性粒子が蛍光色素集積粒子である場合を中心に説明する。 Therefore, preferably, in the detection method of the present invention, the step (a ′) of labeling the protein (A) with a quantum dot-bound antibody and the step (b ′) of labeling the protein (B) with a fluorescent dye-incorporated particle-bound antibody are preferred. Including. In the following description, the case will be mainly described where the fluorescent particles that cause blinking are quantum dots, and the fluorescent particles that do not cause blinking are fluorescent dye-integrated particles.
 量子ドット結合抗体はタンパク質(A)を特異的に認識する抗体と所望の励起波長を有する量子ドットとを直接的または間接的に結合させたものであり、蛍光色素集積粒子結合抗体もまた同様に、タンパク質(B)を特異的に認識する抗体と所望の励起波長を有する蛍光色素集積粒子とを直接的または間接的に結合させたものである。 The quantum dot-bound antibody is obtained by directly or indirectly binding an antibody that specifically recognizes the protein (A) to a quantum dot having a desired excitation wavelength. An antibody in which an antibody that specifically recognizes the protein (B) is directly or indirectly bound to a fluorescent dye-integrated particle having a desired excitation wavelength.
 本発明において、ブリンキングを生じない蛍光発光性粒子が明滅する理由は明らかではないが、本発明者らは、励起されたブリンキングを生じる蛍光発光性粒子から、ブリンキングを生じない蛍光発光性粒子へのエネルギー移動がその主因であると推測した。 In the present invention, the reason why the non-blinking fluorescent particles flicker is not clear, but the present inventors have found that the non-blinking fluorescent particles do not cause the excited blinking fluorescent particles. It was speculated that energy transfer to the particles was the main cause.
 すなわち、本発明では、量子ドット等のブリンキングを生じる蛍光発光性粒子が、該粒子の励起波長の光が照射されることで励起されて起きるブリンキング現象と共に、ブリンキングを生じない蛍光発光性粒子へエネルギー移動が起こるため、ブリンキングを生じない蛍光発光性粒子の明滅が検出されると考えられる。 That is, in the present invention, the fluorescent particles that cause blinking such as quantum dots, together with the blinking phenomenon that is caused by being excited by irradiating light of the excitation wavelength of the particles, together with the fluorescent light that does not cause blinking It is considered that since energy transfer occurs to the particles, flickering of the fluorescent particles that does not cause blinking is detected.
 したがって量子ドットの発光波長が蛍光色素集積粒子を励起させ得る波長である組み合わせを選択する必要がある。 Therefore, it is necessary to select a combination in which the emission wavelength of the quantum dot is a wavelength that can excite the fluorescent dye-integrated particles.
 本発明に用いることが可能な量子ドットおよび蛍光色素集積粒子としては、後述の<量子ドット>の項、<蛍光色素集積粒子>の項で記載したものが挙げられる。 量子 Examples of the quantum dots and fluorescent dye-integrated particles that can be used in the present invention include those described in the section of <quantum dots> and <fluorescent dye-integrated particles> below.
 本発明に好適な量子ドットと、蛍光色素集積粒子との組み合わせとしては、(粒子ドット-蛍光色素集積粒子)具体的には、Qdot(登録商標)585(ThemoFisher Scientific社)-テキサスレッド、Qdot 585-ペリレンジイミド、Qdot 525-AlexaFluor532、Qdot 545-Cy3、Qdot 565-AlexaFluor568、Qdot 625-Cy5、Qdot 655-Cy5.5等の組み合わせが挙げられる。 As a combination of the quantum dot and the fluorescent dye-integrated particles suitable for the present invention, (particle dot-fluorescent dye-integrated particle), specifically, Qdot (registered trademark) 585 (ThemoFisher @ Scientific) -Texas Red, Qdot @ 585 -Perylenediimide, Qdot @ 525-AlexaFluor532, Qdot @ 545-Cy3, Qdot @ 565-AlexaFluor568, Qdot @ 625-Cy5, Qdot@655-Cy5.5 and the like.
 前記量子ドットと前記蛍光色素集積粒子とは、それぞれ異なった励起波長を有することが好ましい。前記量子ドットの励起波長帯としては、前記蛍光色素集積粒子1粒子あたりの励起スペクトル強度が前記量子ドット1粒子あたりの励起スペクトル強度の10分の1以下となる励起波長帯が好ましく、100分の1以下となる励起波長帯が特に好ましい。 量子 The quantum dots and the fluorescent dye-integrated particles preferably have different excitation wavelengths. The excitation wavelength band of the quantum dot is preferably an excitation wavelength band in which the excitation spectrum intensity per fluorescent dye-integrated particle is 1/10 or less of the excitation spectrum intensity per quantum dot particle. An excitation wavelength band of 1 or less is particularly preferred.
 また、前記蛍光色素集積粒子の励起波長帯としては、前記量子ドット1粒子あたりの励起スペクトル強度が前記蛍光色素集積粒子1粒子あたりの励起スペクトル強度の10分の1以下となる励起波長帯が好ましく、100分の1以下となる励起波長帯が特に好ましい。また、前記量子ドットと前記蛍光色素集積粒子とは、それぞれ異なった発光波長を有することが好ましく、それぞれの発光波長の差が10nm~40nmであることが好ましく、30nm~40nmであることが特に好ましい。 The excitation wavelength band of the fluorescent dye-integrated particles is preferably an excitation wavelength band in which the excitation spectrum intensity per quantum dot particle is one-tenth or less of the excitation spectrum intensity per the fluorescent dye-integrated particle. , And an excitation wavelength band that is 1/100 or less is particularly preferable. Further, the quantum dots and the fluorescent dye-integrated particles preferably have different emission wavelengths, respectively, and the difference between the emission wavelengths is preferably from 10 nm to 40 nm, particularly preferably from 30 nm to 40 nm. .
 前記タンパク質(A)を特異的に認識する抗体およびタンパク質(B)を特異的に認識する抗体は特に限定されないが、前記タンパク質複合体の形成に影響を与えない抗体を選択することが好ましい。また、タンパク質(A)とタンパク質(B)とが同じタンパク質である場合には、前記タンパク質(A)を特異的に認識する抗体とタンパク質(B)を特異的に認識する抗体は、それぞれ異なったエピトープを認識する抗体であることが好ましい。なお、いずれに用いられる抗体もモノクローナル抗体が好ましい。抗体を産生する動物(免疫動物)の種類は特に限定されるものではなく、従来と同様、マウス、ラット、モルモット、ウサギ、ヤギ、ヒツジなどから選択すればよい。例えば、タンパク質(A)としてHER2を選択する場合には抗HER2マウス モノクローナル抗体、タンパク質(B)としてHER3を選択する場合には抗HER3マウスモノクローナル抗体を用いることが好ましい。 抗体 An antibody that specifically recognizes the protein (A) and an antibody that specifically recognizes the protein (B) are not particularly limited, but it is preferable to select an antibody that does not affect the formation of the protein complex. When the protein (A) and the protein (B) are the same protein, the antibody that specifically recognizes the protein (A) and the antibody that specifically recognizes the protein (B) are different from each other. An antibody that recognizes an epitope is preferred. In addition, the antibody used for each is preferably a monoclonal antibody. The type of animal that produces the antibody (immunized animal) is not particularly limited, and may be selected from mice, rats, guinea pigs, rabbits, goats, sheep, and the like, as in the related art. For example, it is preferable to use an anti-HER2 mouse monoclonal antibody when HER2 is selected as the protein (A) and an anti-HER3 mouse monoclonal antibody when HER3 is selected as the protein (B).
 さらに目的のタンパク質を特異的に認識して結合する能力を有するものであれば、天然の全長の抗体でなく、抗体断片またはキメラ抗体(ヒト化抗体等)および多機能抗体等の抗体誘導体を用いることもできる。 Furthermore, antibody fragments or antibody derivatives such as chimeric antibodies (humanized antibodies, etc.) and multifunctional antibodies are used, as long as they have the ability to specifically recognize and bind to the target protein, instead of natural full-length antibodies. You can also.
 前記量子ドット結合抗体および蛍光色素集積粒子結合抗体における、量子ドットまたは蛍光色素集積粒子と、抗体との結合の態様としては特に限定されず、量子ドットまたは蛍光色素集積粒子と、抗体とが直接的に結合する場合の様態としては、例えば、共有結合、イオン結合、水素結合、配位結合、物理吸着または化学吸着等が挙げられる。また、あらかじめ所望の抗体に所望の量子ドットまたは蛍光色素集積粒子が結合されている製品が市販されていれば、それを利用してもよいし、また、公知の手法に基づいて作製してもよい。 In the quantum dot-bound antibody and the fluorescent dye-bound particle-bound antibody, the mode of binding between the quantum dot or the fluorescent dye-bound particle and the antibody is not particularly limited, and the quantum dot or the fluorescent dye-bound particle and the antibody are directly Examples of the mode of bonding to a compound include a covalent bond, an ionic bond, a hydrogen bond, a coordination bond, physical adsorption, and chemical adsorption. Further, if a product in which a desired quantum dot or a fluorescent dye-integrated particle is bound to a desired antibody in advance is commercially available, it may be used, or may be prepared based on a known method. Good.
 量子ドットまたは蛍光色素集積粒子と、抗体とが間接的に結合する場合の様態としては、例えば、アビジン類およびビオチンを介して公知の様態により結合していてもよいし、リンカー分子を介して結合してもよい。 The mode in which the quantum dot or the fluorescent dye-integrated particle and the antibody are indirectly bound may be, for example, bound in a known manner via avidins and biotin, or bound via a linker molecule. May be.
 量子ドット結合抗体は、前記タンパク質(A)を特異的に認識する抗体(いわゆる一次抗体)に、当該一次抗体を特異的に認識する二次抗体を結合させ、さらに量子ドットを結合させた様態であってもよい。 The quantum dot-bound antibody is obtained by binding a secondary antibody that specifically recognizes the primary antibody to an antibody (so-called primary antibody) that specifically recognizes the protein (A), and further binding the quantum dot. There may be.
 また、蛍光色素集積粒子結合抗体は、前記タンパク質(B)を特異的に認識する抗体(いわゆる一次抗体)に、当該一次抗体を特異的に認識する二次抗体を結合させ、さらに蛍光色素集積粒子を結合させた様態であってもよい。 Further, the fluorescent dye-aggregated particle-bound antibody is obtained by binding a secondary antibody specifically recognizing the primary antibody to an antibody (so-called primary antibody) that specifically recognizes the protein (B). May be combined.
 量子ドット結合抗体が、一次抗体に、二次抗体を結合させ、さらに量子ドットを結合させた様態である場合には、蛍光色素集積粒子結合抗体は、一次抗体に二次抗体と結合させ、さらに蛍光色素集積粒子を結合させた様態であることが好ましいが、このとき量子ドット結合抗体における一次抗体と蛍光色素集積粒子結合抗体における一次抗体はそれぞれ異なった免疫動物に由来するものであることが好ましい。同じ免疫動物に由来した一次抗体を用いる際には、量子ドット結合抗体および蛍光色素集積粒子結合抗体における二次抗体は、交差反応を防ぐため、異なったエピトープを認識する抗体をそれぞれ用いる必要がある。
(工程(c))
 本発明においては、前記工程(a)および(b)を行った後、前記量子ドット等のブリンキングを生じる蛍光発光性粒子の励起波長の光を照射すると同時に、蛍光色素集積粒子等のブリンキングを生じない蛍光発光性粒子の発光波長の蛍光輝点を顕微鏡により検出し、前記蛍光色素集積粒子の発光波長の蛍光輝点から、明滅する輝点を抽出する工程(c)を行う。
When the quantum dot-bound antibody is in a form in which the secondary antibody is bound to the primary antibody and the quantum dot is further bound, the fluorescent dye-integrated particle-bound antibody is bound to the primary antibody and the secondary antibody, and It is preferable that the fluorescent dye-incorporated particles are bound, but at this time, the primary antibody in the quantum dot-bound antibody and the primary antibody in the fluorescent dye-bound particle-bound antibody are preferably derived from different immunized animals. . When using a primary antibody derived from the same immunized animal, it is necessary to use an antibody that recognizes a different epitope for the quantum dot-bound antibody and the secondary antibody in the fluorescent dye-bound particle-bound antibody, respectively, in order to prevent cross-reactivity. .
(Step (c))
In the present invention, after performing the above-mentioned steps (a) and (b), at the same time as irradiating light of the excitation wavelength of the fluorescent particles which cause blinking of the quantum dots or the like, blinking of the fluorescent dye-integrated particles or the like is performed. The step (c) of detecting, by a microscope, a fluorescent bright point having an emission wavelength of the fluorescent light-emitting particles which does not cause the phenomenon, and extracting a blinking bright point from the fluorescent bright points having the emission wavelength of the fluorescent dye-integrated particles.
 前記蛍光輝点を検出する顕微鏡は、蛍光を検出できる、いわゆる「蛍光顕微鏡」と総称されるものであれば特に限定されないが、例えば、落射蛍光顕微鏡、共焦点レーザー顕微鏡、全反射照明蛍光顕微鏡、透過型蛍光顕微鏡、多光子励起顕微鏡、構造化照明顕微鏡などが挙げられる。 The microscope for detecting the fluorescent bright spot is not particularly limited as long as it can detect fluorescence, so-called "fluorescence microscope", for example, epi-fluorescence microscope, confocal laser microscope, total reflection illumination fluorescence microscope, Examples include a transmission fluorescence microscope, a multiphoton excitation microscope, and a structured illumination microscope.
 本工程(c)において抽出した明滅する輝点は、タンパク質(A)とタンパク質(B)とが結合したタンパク質複合体をあらわす。したがって明滅する輝点を抽出してその輝点数を計測することで、タンパク質複合体の量を定量することができる。 滅 The flickering bright spots extracted in the step (c) represent a protein complex in which the protein (A) and the protein (B) are bound. Therefore, the amount of the protein complex can be quantified by extracting the blinking bright points and measuring the number of the bright points.
 蛍光色素集積粒子の輝点における明滅の間隔は、前記量子ドットの明滅の間隔に依存するが、通常は1/1000秒~1秒であり、検出の容易さという観点から1/4秒~1秒の間隔であるものが用いられる。 The blinking interval at the bright spot of the fluorescent dye-integrated particles depends on the blinking interval of the quantum dot, but is usually 1/1000 sec to 1 sec, and from the viewpoint of easy detection, it is 1/4 sec to 1 sec. An interval of seconds is used.
 励起光の照射は、例えば、蛍光顕微鏡が備える超高圧水銀灯、Xeランプ、LED(light emitting diode)、レーザー装置等の光源と、必要に応じて所定の波長を選択的に透過させる励起光用光学フィルターを用いることで照射することができる。 The excitation light is radiated by, for example, a light source such as an ultra-high pressure mercury lamp, a Xe lamp, an LED (light emitting diode), a laser device, or the like provided in a fluorescence microscope, and an excitation light optic that selectively transmits a predetermined wavelength as necessary. Irradiation can be performed by using a filter.
 前記蛍光輝点は、 例えば、蛍光画像の撮影を行うことができる装置、例えば蛍光顕微鏡が備えるデジタルカメラによって撮影することで蛍光画像として取得することができる。 {The fluorescent bright point} can be acquired as a fluorescent image by, for example, capturing an image with a device capable of capturing a fluorescent image, for example, a digital camera provided in a fluorescent microscope.
 撮影の際には、必要に応じて所定の波長を選択的に透過させる蛍光用光学フィルターを用いることで、目的とする波長の蛍光のみを含み、目的としない蛍光やノイズとなる励起光およびその他の光を排除した蛍光画像を撮影することができる。 At the time of photographing, by using an optical filter for fluorescence that selectively transmits a predetermined wavelength as necessary, excitation light that includes only fluorescence of a target wavelength, and becomes undesired fluorescence or noise, and other light. A fluorescent image excluding the light can be taken.
 蛍光画像は動画であってもよいし複数枚の静止画(タイムラプス撮影)により継時的に複数の蛍光画像を取得したものでもよい。また、タイムラプス撮影した画像は公知のソフトを用いて動画に変換してもよい。動画撮影を行う場合の1秒間あたりのコマ数や、タイムラプス撮影を行う場合の撮影の間隔は、前記蛍光色素集積粒子の明滅の間隔に併せて任意に調節することができる。 (4) The fluorescent image may be a moving image or a plurality of fluorescent images acquired successively from a plurality of still images (time-lapse photography). Further, the time-lapsed image may be converted into a moving image by using known software. The number of frames per second when performing moving image shooting and the shooting interval when performing time-lapse shooting can be arbitrarily adjusted in accordance with the flashing interval of the fluorescent dye-integrated particles.
 取得された蛍光画像はデジタル画像として変換されていることが好ましく、また公知の手段によって加工または画像処理がされていてもよい。 蛍 光 The acquired fluorescent image is preferably converted as a digital image, and may be processed or image-processed by a known means.
 画像処理に用いることができるソフトウェアとしては、例えば「ImageJ」(オープンソース)が挙げられる。このような画像処理ソフトウェアを利用することにより、蛍光画像から、所定の波長の輝点の検出、明滅している輝点の抽出、所定の輝度以上の輝点の数の計測等、さらに所望により複数の画像を重ね合わせる処理、画像に含まれる細胞数を計測する処理等を半自動的かつ迅速に行うことができる。
(工程(d))
 また、量子ドットの励起波長を照射すると同時に量子ドットの発光波長を検出することで量子ドットの数、すなわち、タンパク質(A)の総数を計測することができる。また、蛍光集積粒子の励起波長を照射すると同時に蛍光集積粒子の発光波長を計測することでタンパク質(B)の総数を検出することができる。したがってこれらの検出を行うことにより、タンパク質複合体を形成していないタンパク質(A)の数、タンパク質複合体を形成していないタンパク質(B)の数、およびタンパク質(A)とタンパク質(B)とからなるタンパク質複合体の数についての情報を複合的に取得することができる。
Software that can be used for image processing includes, for example, “ImageJ” (open source). By using such image processing software, from a fluorescent image, detection of a luminescent point of a predetermined wavelength, extraction of a blinking luminescent point, measurement of the number of luminescent points of a predetermined luminance or more, and the like, as desired. The process of superimposing a plurality of images, the process of counting the number of cells included in the images, and the like can be performed semi-automatically and quickly.
(Step (d))
Further, the number of quantum dots, that is, the total number of proteins (A) can be measured by irradiating the excitation wavelength of the quantum dots and simultaneously detecting the emission wavelength of the quantum dots. In addition, the total number of proteins (B) can be detected by measuring the emission wavelength of the fluorescent integrated particles while irradiating the excitation wavelength of the fluorescent integrated particles. Therefore, by performing these detections, the number of proteins (A) not forming a protein complex, the number of proteins (B) not forming a protein complex, and the number of proteins (A) and protein (B) Information on the number of protein complexes consisting of
 具体的には、前記タンパク質(A)の総数から前記タンパク質複合体の数を引くことで、前記タンパク質複合体を形成していないタンパク質(A)の数が算出でき、また前記タンパク質(B)の総数から前記タンパク質複合体を引くことで、タンパク質複合体を形成していないタンパク質(B)の数を算出できる。 Specifically, by subtracting the number of the protein complexes from the total number of the proteins (A), the number of the proteins (A) not forming the protein complexes can be calculated, and the number of the proteins (B) can be calculated. By subtracting the protein complex from the total number, the number of proteins (B) that do not form a protein complex can be calculated.
 この手法により、例えばタンパク質複合体を形成しているタンパク質(A)の数をタンパク質の(A)の総数で除することにより、タンパク質複合体を形成しているタンパク質(A)の割合を算出することができるし、また、同様にタンパク質複合体を形成しているタンパク質(B)の割合を算出することができる。 By this method, for example, the ratio of the protein (A) forming the protein complex is calculated by dividing the number of proteins (A) forming the protein complex by the total number of proteins (A). The ratio of the protein (B) forming the protein complex can be calculated in the same manner.
 また、タンパク質(A)とタンパク質(B)とが同じタンパク質であり、タンパク質複合体が後述するようなホモダイマーである場合には上記と同様の手法を用いることで、タンパク質複合体を形成しているタンパク質(A)(タンパク質(B))と形成していない当該タンパク質との数を算出することができる。 When the protein (A) and the protein (B) are the same protein and the protein complex is a homodimer as described later, the protein complex is formed by using the same method as described above. The number of the protein (A) (protein (B)) and the number of unformed proteins can be calculated.
 また、もしも必要であれば、明視野観察用の染色を行うことができる。明視野観察用染色方法としては特に限定されないが、典型的にはヘマトキシリン・エオジン染色(HE染色)が行われる。形態観察染色工程を含める場合は、工程(a)および工程(b)の後に行うことが好ましい。当該形態観察染色工程を行う場合には例えば一細胞あたりのタンパク質複合体の数や、検体組織中のタンパク質複合体の局在等の情報を取得することができる。本工程(c)において明滅している輝点数を抽出することにより定量したタンパク質複合体の量を、例えば、1細胞あたりのタンパク質複合体の平均数として求めてもよいし、検出に用いた蛍光画像の単位面積あたりの平均数として求めてもよい。 染色 If necessary, staining for bright field observation can be performed. The staining method for bright field observation is not particularly limited, but typically, hematoxylin and eosin staining (HE staining) is performed. When a morphological observation staining step is included, it is preferably performed after the steps (a) and (b). When the morphological observation staining step is performed, for example, information such as the number of protein complexes per cell and the localization of the protein complexes in the specimen tissue can be obtained. The amount of the protein complex quantified by extracting the number of blinking bright spots in the step (c) may be determined as, for example, the average number of protein complexes per cell, or the fluorescence used for the detection. The average number per unit area of the image may be obtained.
 また、もしも必要であれば、組織切片に含まれる細胞の核染色を行うことができる。核を染色する方法としては特に限定されないが、前記量子ドットや蛍光集積粒子の励起波長および発光波長とは異なる波長特性を有する蛍光物質を用いた蛍光染色を行うことが好ましい。そのような蛍光物質も特に限定されないが、染色処理や取扱いの容易さ、および核内DNAと強力に結合することで強い蛍光を発することにより核を明確に判別できるという観点から、DAPI(4',6-diamidino-2-phenylindole)が好適に用いられる。
<タンパク質複合体>
 本発明において検出されるタンパク質複合体はタンパク質(A)とタンパク質(B)が任意の結合様式(水素結合、分子間力等)により複合体を形成したものである。タンパク質(A)とタンパク質(B)はそれぞれが同じものでも異なったものでもよいが、異なったタンパク質であることが好ましい。また、それぞれが細胞内(細胞膜上も含む)で結合するタンパク質であることがより好ましく、さらにそれぞれが細胞内で結合して複合体を形成することでシグナル伝達に関わるタンパク質であることがより好ましい。典型的には前記タンパク質複合体はタンパク質(A)とタンパク質(B)とからなるヘテロダイマーである。タンパク質(A)とタンパク質(B)が発現する場所は特に限定されないが、典型的にはがん細胞の細胞膜上に発現しているものが選択される。
If necessary, nuclear staining of cells contained in the tissue section can be performed. The method for staining the nucleus is not particularly limited, but it is preferable to perform fluorescent staining using a fluorescent substance having a wavelength characteristic different from the excitation wavelength and emission wavelength of the quantum dots and fluorescent integrated particles. Although such a fluorescent substance is not particularly limited, DAPI (4 ′) is used in view of easiness of staining treatment and handling, and strong distinction of nucleus by emitting strong fluorescence by strongly binding to nuclear DNA. , 6-diamidino-2-phenylindole) is preferably used.
<Protein complex>
The protein complex detected in the present invention is a protein (A) and a protein (B) which form a complex by an arbitrary bonding mode (hydrogen bond, intermolecular force, etc.). The protein (A) and the protein (B) may be the same or different, but are preferably different proteins. Further, it is more preferable that each is a protein that binds in a cell (including on the cell membrane), and it is more preferable that each is a protein involved in signal transduction by binding in a cell to form a complex. . Typically, the protein complex is a heterodimer consisting of protein (A) and protein (B). The location where the protein (A) and the protein (B) are expressed is not particularly limited, but those that are expressed on the cell membrane of a cancer cell are typically selected.
 タンパク質(A)とタンパク質(B)とからなるタンパク質複合体としては、例えば、HERファミリー間で複合体(好ましくはダイマー)となり得る組み合わせ、さらに具体的にはHER2/HER3、HER2/HER2、HER2/HER4、HER3/HER4、HER4/HER4、HER2/CD74、ERα/ERβ、ERα/ERα、Oct4/Smad3、Integrin αV/β6、HOX/PBX、EGFR/HER2、EGFR/EGFR、EGFR/HER4、VEGFR-1/VEGFR-1、VEGFR-2/VEGFR-2、VEGFR-3/VEGFR-3、PDGFR/c-kit等のタンパク質複合体から選択されることが好ましい。 The protein complex comprising the protein (A) and the protein (B) is, for example, a combination that can form a complex (preferably a dimer) between HER families, more specifically, HER2 / HER3, HER2 / HER2, HER2 / HER4, HER3 / HER4, HER4 / HER4, HER2 / CD74, ERα / ERβ, ERα / ERα, Oct4 / Smad3, Integrin αV / β6, HOX / PBX, EGFR / HER2, EGFR / EGFR, EGFR / HER4, VEGFR-1 It is preferably selected from protein complexes such as / VEGFR-1, VEGFR-2 / VEGFR-2, VEGFR-3 / VEGFR-3, PDGFR / c-kit.
 なかでも、タンパク質(A)とタンパク質(B)とが異なるヘテロダイマーであることがより好ましく、HER2とHER3とからなるヘテロダイマーが特に好ましい。
<量子ドット>
 量子ドット(半導体ナノ粒子とも称される)は光を照射すると、蛍光を発する半導体からなるナノサイズの粒子であり、通常、粒径が0.5~100nm、好ましくは0.5~50nm、より好ましくは1~10nmである。
Among them, it is more preferable that the protein (A) and the protein (B) are different heterodimers, and a heterodimer composed of HER2 and HER3 is particularly preferable.
<Quantum dot>
Quantum dots (also referred to as semiconductor nanoparticles) are nano-sized particles made of a semiconductor that emit fluorescence when irradiated with light, and usually have a particle size of 0.5 to 100 nm, preferably 0.5 to 50 nm, more preferably 0.5 to 50 nm. Preferably it is 1 to 10 nm.
 本発明において用いられる量子ドットとしては、例えば、II-VI族化合物、III-V族化合物、またはIV族元素を含有するものが挙げられ、具体的には、CdSe、CdS、CdTe、ZnSe、ZnS、ZnTe、InP、InN、InAs、InGaP、GaP、GaAs、Si、Geなどが挙げられる。 Examples of the quantum dots used in the present invention include those containing a II-VI compound, a III-V compound, or a IV element. Specifically, CdSe, CdS, CdTe, ZnSe, ZnS , ZnTe, InP, InN, InAs, InGaP, GaP, GaAs, Si, Ge, and the like.
 量子ドットとしては、コア/シェル構造を有する量子ドットであってもよく、例えば、CdSe/ZnSe(コア/シェル)、InP/ZnS(コア/シェル)、InGaP/ZnS(コア/シェル)等の量子ドットを用いることができる。このような量子ドットとして、具体的には例えば、Themo Fisher Scientific社の、Qdot(登録商標)585、Qdot565、Qdot605、Qdot655、Qdot705、Qdot800などが挙げられる。 The quantum dot may be a quantum dot having a core / shell structure, for example, quantum dots such as CdSe / ZnSe (core / shell), InP / ZnS (core / shell), and InGaP / ZnS (core / shell). Dots can be used. Specific examples of such quantum dots include, for example, Qdot (registered trademark) 585, Qdot565, Qdot605, Qdot655, Qdot705, and Qdot800 manufactured by Thermo Fisher Scientific.
 前記量子ドットの励起波長および発光波長は特に限定はされないが、後述する蛍光色素集積粒子の励起波長および発光波長とは異なる量子ドットを選択することが好ましい。
<蛍光色素集積粒子>
 本発明において用いられる蛍光色素集積粒子は、有機物または無機物でできた母体に、複数の蛍光色素が母体内部に集積している(内包されている)および/または母体表面に吸着している構造を有する、ナノサイズの粒子である。蛍光色素が母体に内包されている場合、蛍光体は母体内部に分散されていればよく、母体自体と化学的に結合していても、していなくてもよい。例えば、母体(例えば樹脂)と蛍光色素が静電的相互作用により結合していてもよいし、共有結合していてもよい。
The excitation wavelength and emission wavelength of the quantum dot are not particularly limited, but it is preferable to select a quantum dot different from the excitation wavelength and emission wavelength of the fluorescent dye-integrated particles described later.
<Fluorescent dye integrated particles>
The fluorescent dye-accumulated particles used in the present invention have a structure in which a plurality of fluorescent dyes are accumulated (encapsulated) inside and / or adsorbed on the surface of a mother body made of an organic or inorganic substance. Having nano-sized particles. When the fluorescent dye is included in the base, the fluorescent substance may be dispersed in the base, and may or may not be chemically bonded to the base itself. For example, the base (for example, resin) and the fluorescent dye may be bonded by electrostatic interaction or may be covalently bonded.
 前記蛍光色素集積粒子の励起波長および発光波長は特に限定はされないが、量子ドットの励起波長および発光波長とは異なる蛍光色素集積粒子を選択することが好ましい。 励 起 The excitation wavelength and emission wavelength of the fluorescent dye-integrated particles are not particularly limited, but it is preferable to select fluorescent dye-integrated particles different from the excitation wavelength and the emission wavelength of the quantum dots.
 なお、本明細書における「蛍光色素」は、所定の波長の電磁波(X線、紫外線または可視光線)が照射されてそのエネルギーを吸収することで電子が励起し、その励起状態から基底状態に戻る際に余剰のエネルギーを電磁波として放出する、つまり「蛍光」を発する物質であり、炭素骨格を有する有機蛍光化合物である有機蛍光色素であることが好ましい。また、「蛍光」は広義的な意味を持ち、励起のための電磁波の照射を止めても発光が持続する発光寿命の長い燐光と、発光寿命が短い狭義の蛍光とを包含する。 In the present specification, the “fluorescent dye” is irradiated with an electromagnetic wave (X-ray, ultraviolet light, or visible light) having a predetermined wavelength and absorbs its energy to excite electrons, and returns from the excited state to the ground state. In this case, an organic fluorescent dye that is a substance that emits excess energy as an electromagnetic wave, that is, emits “fluorescence”, and is an organic fluorescent compound having a carbon skeleton is preferable. In addition, “fluorescence” has a broad meaning, and includes phosphorescence having a long luminescence lifetime in which luminescence continues even when irradiation of electromagnetic waves for excitation is stopped, and fluorescence in a narrow sense having a short luminescence lifetime.
 蛍光色素としては、例えば、ローダミン系色素、スクアリリウム系色素、シアニン系色素、芳香環系色素、オキサジン系色素、カルボピロニン系色素、ピロメセン系色素などが挙げられ、具体的には、Alexa Fluor(登録商標、インビトロジェン社製)系色素、BODIPY(登録商標、インビトロジェン社製)系色素、Cy(登録商標、GEヘルスケア社製)系色素、DY(登録商標、DYOMICS社製)系色素、HiLyte(登録商標、アナスペック社製)系色素、DyLight(登録商標、サーモサイエンティフィック社製)系色素、ATTO(登録商標、ATTO-TEC社製)系色素、MFP(登録商標、Mobitec社製)系色素などを用いることができる。なお、このような色素の総称は、化合物中の主要な構造(骨格)または登録商標に基づき命名されており、それぞれに属する蛍光色素の範囲は当業者であれば過度の試行錯誤を要することなく適切に把握できるものである。 Examples of the fluorescent dye include a rhodamine dye, a squarylium dye, a cyanine dye, an aromatic ring dye, an oxazine dye, a carbopironine dye, and a pyromesene dye. Specifically, Alexa Fluor (registered trademark) , (Invitrogen), BODIPY (registered trademark, manufactured by Invitrogen), Cy (registered trademark, manufactured by GE Healthcare), DY (registered trademark, manufactured by DYOMICS), HiLite (registered trademark) , Anaspec), DyLight (registered trademark, manufactured by Thermo Scientific), ATTO (registered trademark, manufactured by ATTO-TEC), MFP (registered trademark, manufactured by Mobitec), etc. Can be used. In addition, such dyes are generically named based on the main structure (skeleton) or registered trademark in the compound, and the range of the fluorescent dye belonging to each dye can be determined by those skilled in the art without undue trial and error. It can be properly grasped.
 蛍光色素集積粒子を形作る母体のうち、有機物としては、メラミン樹脂、尿素樹脂、アニリン樹脂、グアナミン樹脂、フェノール樹脂、キシレン樹脂、フラン樹脂など、一般的に熱硬化性樹脂に分類される樹脂;スチレン樹脂、アクリル樹脂、アクリロニトリル樹脂、AS樹脂(アクリロニトリル-スチレン共重合体)、ASA樹脂(アクリロニトリル-スチレン-アクリル酸メチル共重合体)など、一般的に熱可塑性樹脂に分類される樹脂;ポリ乳酸等のその他の樹脂;多糖を例示することができ、無機物としてはシリカ、ガラスなどを例示することができる。 Among the matrixes that form the fluorescent dye-integrated particles, organic substances include resins generally classified as thermosetting resins such as melamine resin, urea resin, aniline resin, guanamine resin, phenol resin, xylene resin, and furan resin; styrene. Resins generally classified as thermoplastic resins such as resin, acrylic resin, acrylonitrile resin, AS resin (acrylonitrile-styrene copolymer), ASA resin (acrylonitrile-styrene-methyl acrylate copolymer); polylactic acid, etc. Other resins; polysaccharides can be exemplified, and inorganic substances include silica, glass and the like.
 蛍光色素集積粒子は所望の蛍光色素集積粒子を作製するための公知の方法で作製することができ、例えば特開2013-57937号公報に記載の方法に従って作製することができる。具体的には、例えば、シリカを母体とする蛍光色素集積粒子は、蛍光色素と、シリカ前駆体とが溶解している溶液を、エタノールおよびアンモニアが溶解している溶液に滴下し、シリカ前駆体を加水分解することにより作製することができ、樹脂を母体とする蛍光色素集積樹脂粒子は、それらの樹脂の溶液ないし微粒子の分散液を先に用意しておき、そこに蛍光色素を添加して撹拌することにより作製することができる。 Fluorescent dye-integrated particles can be produced by a known method for producing desired fluorescent dye-integrated particles, for example, according to the method described in JP-A-2013-57937. Specifically, for example, a fluorescent dye-integrated particle having silica as a base, a solution in which a fluorescent dye and a silica precursor are dissolved is dropped into a solution in which ethanol and ammonia are dissolved, and the silica precursor Can be produced by hydrolyzing the resin, and the fluorescent dye-integrated resin particles having a resin as a matrix are prepared in advance by preparing a solution of the resin or a dispersion of fine particles, and adding a fluorescent dye thereto. It can be prepared by stirring.
 蛍光色素集積粒子の平均粒径は、蛍光染色に適した粒径であれば特に限定されないが、輝点としての検出のしやすさなどを考慮すると、通常は10~500nm、好ましくは50~200nmである。また、粒径のばらつきを示す変動係数は、通常は20%以下であり、好ましくは5~15%である。このような条件を満たす蛍光色素集積粒子は、製造条件を調整することにより製造することができる。例えば、乳化重合法により蛍光色素集積粒子を作製する場合は、添加する界面活性剤の量によって粒径を調節することができる。 The average particle size of the fluorescent dye-integrated particles is not particularly limited as long as it is a particle size suitable for fluorescent staining, but is usually 10 to 500 nm, preferably 50 to 200 nm in consideration of easy detection as a bright spot. It is. Further, the coefficient of variation indicating the variation of the particle diameter is usually 20% or less, and preferably 5 to 15%. The fluorescent dye-integrated particles satisfying such conditions can be manufactured by adjusting the manufacturing conditions. For example, when producing fluorescent dye-integrated particles by an emulsion polymerization method, the particle size can be adjusted by the amount of surfactant added.
 なお、量子ドットおよび蛍光色素集積粒子の粒径は、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)を用いて電子顕微鏡写真を撮影して求めることが好ましい。複数の蛍光体集積粒子からなる集団の平均粒径および変動係数は、十分な数(例えば1000個)の蛍光体集積粒子について上記のようにして粒径を算出した後、平均粒径はその算術平均として算出され、変動係数は式:100×粒径の標準偏差/平均粒径、により算出される。
<薬剤効果の評価方法>
 本発明の薬剤効果の評価方法は、検体(培養細胞や組織切片等)に薬剤を添加する前および添加した後のそれぞれの時点において、前述の記載のタンパク質複合体の検出方法を行う工程を含む。前記検体は、例えば前記薬剤が抗がん剤である場合は、担がん動物等の実験動物から採取した組織切片や、腫瘍組織由来の培養細胞を用いることができる。
It is preferable that the particle diameters of the quantum dots and the fluorescent dye-integrated particles be determined by taking an electron micrograph using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The average particle diameter and the coefficient of variation of a group consisting of a plurality of phosphor-integrated particles are calculated as described above for a sufficient number (for example, 1000) of phosphor-integrated particles. It is calculated as an average, and the coefficient of variation is calculated by the formula: 100 × standard deviation of particle size / average particle size.
<Method of evaluating drug effect>
The method for evaluating a drug effect of the present invention includes a step of performing the above-described method for detecting a protein complex before and after addition of a drug to a specimen (cultured cells, tissue slices, or the like) at each time point. . As the specimen, for example, when the drug is an anticancer agent, a tissue section collected from an experimental animal such as a tumor-bearing animal or a cultured cell derived from a tumor tissue can be used.
 当該方法を用いることで薬剤添加前後のタンパク質複合体の量や、タンパク質複合体を形成しているタンパク質(A)やタンパク質(B)の割合変化などを観察することができることから、タンパク質複合体の形成に影響を及ぼす薬剤の効果について評価することができる。 By using this method, it is possible to observe the amount of the protein complex before and after the addition of the drug and the change in the ratio of the protein (A) and the protein (B) forming the protein complex. The effect of the drug on the formation can be evaluated.
 タンパク質複合体の形成に影響を及ぼす薬剤としては、タンパク質複合体の形成を阻害する薬剤であることが好ましく、前記タンパク質複合体がヘテロダイマーである場合には、ヘテロダイマー形成阻害薬であることがより好ましく、例えば、HER2とHER3とからなるヘテロダイマーの形成阻害薬であることが特に好ましく、前記薬剤がペルツズマブ、ラパチニブ、アファチニブであることが最も好ましい。 The agent that affects the formation of the protein complex is preferably an agent that inhibits the formation of the protein complex. When the protein complex is a heterodimer, the agent is preferably a heterodimer formation inhibitor. More preferably, for example, it is particularly preferable to be a heterodimer formation inhibitor composed of HER2 and HER3, and most preferably, the drug is pertuzumab, lapatinib, or afatinib.
 また、前記タンパク質複合体がホモダイマーである場合には、ホモダイマー形成阻害薬であることが好ましく、前記薬剤がトラスツズマブ(商品名:ハーセプチン(登録商標)、中外製薬株式会社)、セツキシマブ(商品名:アービタックス(登録商標)、ブリストルマイヤーズ スクイブ社)、パニツムマブ(商品名:ベクティビックス(登録商標)、アムジェン社)であることが好ましい。 When the protein complex is a homodimer, it is preferably a homodimer formation inhibitor, and the drug is trastuzumab (trade name: Herceptin (registered trademark), Chugai Pharmaceutical Co., Ltd.), cetuximab (trade name: Arbitux) (Registered trademark), Bristol-Myers @ Squibb) and panitumumab (trade name: Vectibix (registered trademark), Amgen).
 薬剤添加前後におけるタンパク質複合体を形成しているタンパク質(A)(タンパク質(B))と形成していない当該タンパク質との数を算出することにより薬剤の効果について評価することができる。 効果 The effect of the drug can be evaluated by calculating the number of proteins (A) (protein (B)) forming a protein complex before and after the addition of the drug and the number of the proteins not forming the protein complex.
 また、がん治療の候補薬剤の投与前後におけるタンパク質複合体の量の変化などを観察することで、当該候補薬剤がタンパク質複合体の形成を阻害し得るかどうかを判別することができ、したがって当該候補薬剤の薬効を予測・評価することができる。 Further, by observing a change in the amount of the protein complex before and after administration of the candidate drug for cancer treatment, it can be determined whether or not the candidate drug can inhibit the formation of the protein complex. The efficacy of a candidate drug can be predicted and evaluated.
 次に本発明について実験例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 Next, the present invention will be described in more detail with reference to experimental examples, but the present invention is not limited thereto.
 [作製例1]
<量子ドット結合抗HER2抗体>
 ビオチン標識キット(Biotin Labeling Kit-NH2;(株)同仁化学研究所)を用いて、抗HER2マウスモノクローナル抗体(Invitrogen社;製品番号3B5)をビオチン標識した。
[Production Example 1]
<Quantum dot-conjugated anti-HER2 antibody>
An anti-HER2 mouse monoclonal antibody (Invitrogen; product number 3B5) was labeled with biotin using a biotin labeling kit (Biotin Labeling Kit-NH2; Dojindo Laboratories).
 Qdot(登録商標)585 ストレプトアビジンコンジュゲート(Invitrogen社)2nMと前記ビオチン標識した抗HER2抗体20μg/mLとを混合して、量子ドット(Qdot(登録商標)585;励起波長365nm、発光波長585nm)が結合した抗HER2抗体を得た。以下の実験例においては、得られた量子ドット結合抗HER2抗体は、希釈液Power Block (10×Concentrated)(BIOGENEX LABORATORIES,INC;Code No.B-HK0855)を純水で10倍に希釈したものを使用した。 Qdot (registered trademark) 585 @ streptavidin conjugate (Invitrogen) (2 nM) is mixed with the biotin-labeled anti-HER2 antibody (20 μg / mL), and quantum dots (Qdot (registered trademark) 585; excitation wavelength 365 nm, emission wavelength 585 nm) Was bound to obtain an anti-HER2 antibody. In the following experimental examples, the obtained quantum dot-conjugated anti-HER2 antibody was obtained by diluting a diluent Power Block (10 × Concentrated) (BIOGENEX LABORATORIES, INC; Code No.B-HK0855) ten times with pure water. It was used.
 [作製例2]
<蛍光色素集積粒子結合抗HER3抗体>
(ビオチン標識抗体)
 ビオチン標識キット(Biotin Labeling Kit-NH2;(株)同仁化学研究所)を用いて、抗HER3マウスモノクローナル抗体(Santa Cruz Biotechnology, Inc.;製品番号5A12)をビオチン標識した。
(ストレプトアビジン標識抗体蛍光色素集積粒子)
 蛍光色素集積粒子は、テキサスレッド(登録商標)系色素「Sulforhodamine 101:;励起波長595nm、発光波長615nm)」(シグマアルドリッチ社)2.5mgを純水22.5mLに溶解した後、ホットスターラーにより溶液の温度を70℃に維持しながら20分間撹拌した。撹拌後の溶液に、メラミン樹脂「ニカラックMX-035」(日本カーバイド工業株式会社)1.5gを加え、さらに同一条件で5分間加熱撹拌した。撹拌後の溶液にギ酸100μLを加え、溶液の温度を60℃に維持しながら20分間攪拌した後、その溶液を放置して室温まで冷却した。冷却した後の溶液を複数の遠心用チューブに分注して、12,000rpmで20分間遠心分離して、溶液に含まれるテキサスレッド集積メラミン樹脂粒子(以下、蛍光色素集積粒子)を沈殿させた。上澄みを除去し、沈殿した蛍光色素集積粒子をエタノールおよび水で洗浄した。得られた蛍光色素集積粒子の1000個についてSEM観察を行い、平均粒子径を測定したところ、平均粒子径は80nmであった。
[Production Example 2]
<Anti-HER3 antibody conjugated with fluorescent dye particles>
(Biotin-labeled antibody)
An anti-HER3 mouse monoclonal antibody (Santa Cruz Biotechnology, Inc .; product number 5A12) was labeled with biotin using a biotin labeling kit (Biotin Labeling Kit-NH2; Dojindo Laboratories).
(Streptavidin-labeled antibody fluorescent dye integrated particles)
The fluorescent dye-integrated particles were prepared by dissolving 2.5 mg of Texas Red (registered trademark) dye “Sulforhodamine 101: excitation wavelength 595 nm, emission wavelength 615 nm” (Sigma-Aldrich) in 22.5 mL of pure water, and then using a hot stirrer. The solution was stirred for 20 minutes while maintaining the temperature at 70 ° C. To the solution after stirring, 1.5 g of a melamine resin "Nikarac MX-035" (Nippon Carbide Industry Co., Ltd.) was added, and the mixture was further heated and stirred under the same conditions for 5 minutes. 100 μL of formic acid was added to the solution after stirring, and the solution was stirred for 20 minutes while maintaining the temperature of the solution at 60 ° C. Then, the solution was allowed to cool to room temperature. The cooled solution was dispensed into a plurality of centrifuge tubes and centrifuged at 12,000 rpm for 20 minutes to precipitate the Texas Red-integrated melamine resin particles (hereinafter, fluorescent dye-incorporated particles) contained in the solution. . The supernatant was removed, and the precipitated fluorescent dye-collected particles were washed with ethanol and water. SEM observation was performed on 1000 of the obtained fluorescent dye-integrated particles, and the average particle size was measured. The average particle size was 80 nm.
 前記蛍光色素集積粒子0.1mgをEtOH1.5mL中に分散し、アミノプロピルトリメトキシシラン「LS-3150」(信越化学工業社)2μLを加えて8時間反応させて表面アミノ化処理を行なった。 (4) 0.1 mg of the fluorescent dye-integrated particles were dispersed in 1.5 mL of EtOH, and 2 μL of aminopropyltrimethoxysilane “LS-3150” (Shin-Etsu Chemical Co., Ltd.) was added, followed by a reaction for 8 hours to perform a surface amination treatment.
 次いで、EDTA(エチレンジアミン四酢酸)を2mM含有したPBS(リン酸緩衝液生理的食塩水)を用いて上記表面アミノ化処理を行なった粒子を3nMに調整し、この溶液に最終濃度10mMとなるようSM(PEG)12(サーモサイエンティフィック社、succinimidyl-[(N-maleimidopropionamido)-dodecaethyleneglycol]ester)を混合し、1時間反応させた。この混合液を10,000Gで20分遠心分離を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行うことでマレイミド修飾蛍光色素集積粒子を得た。 Next, the surface-aminated particles were adjusted to 3 nM using PBS (phosphate buffered saline) containing 2 mM EDTA (ethylenediaminetetraacetic acid), and the solution was adjusted to a final concentration of 10 mM. SM (PEG) 12 (Thermo Scientific, succinimidyl-[(N-maleimidopropionamido) -dodecaethyleneglycol] ester) was mixed and reacted for 1 hour. This mixture was centrifuged at 10,000 G for 20 minutes, and the supernatant was removed. Then, PBS containing 2 mM of EDTA was added to disperse the precipitate, and the mixture was centrifuged again. The same procedure was repeated three times to obtain maleimide-modified fluorescent dye-integrated particles.
 一方、ストレプトアビジン(和光純薬社)について、N-succinimidyl S-acetylthioacetate(SATA)を用いてチオール基付加処理を行ったのち、ゲルろ過カラムによるろ過を行なうことで、マレイミド修飾蛍光色素集積粒子に結合可能である、チオール基が付加されたストレプトアビジン溶液を得た。 On the other hand, streptavidin (Wako Pure Chemical Industries, Ltd.) is subjected to a thiol group addition treatment using N-succinimidyl S-acetylthioacetate (SATA), followed by filtration through a gel filtration column to obtain maleimide-modified fluorescent dye-integrated particles. A bondable streptavidin solution to which a thiol group was added was obtained.
 上記マレイミド修飾蛍光色素集積粒子と上記処理によりチオール基を付加したストレプトアビジンとを、EDTAを2mM含有したPBS中で混合し、室温で1時間反応させた。その後、10mMメルカプトエタノールを添加し、反応を停止させた。得られた混合液を遠心フィルターで濃縮後、精製用ゲルろ過カラムを用いて未反応のストレプトアビジン等を除去し、ストレプトアビジン修飾蛍光色素集積粒子を得た。 (4) The maleimide-modified fluorescent dye-integrated particles and streptavidin to which a thiol group had been added by the above treatment were mixed in PBS containing 2 mM of EDTA, and reacted at room temperature for 1 hour. Thereafter, 10 mM mercaptoethanol was added to stop the reaction. After concentrating the obtained mixture with a centrifugal filter, unreacted streptavidin and the like were removed using a gel filtration column for purification to obtain streptavidin-modified fluorescent dye-integrated particles.
 前記ビオチン標識した抗HER3抗体20μg/mLと前記ストレプトアビジン修飾蛍光色素集積粒子2nMとを混合して、蛍光色素集積粒子が結合した抗HER3抗体を得た。得られた蛍光色素集積粒子結合抗HER3抗体を作製例1と同様に希釈して、以下の実験例において使用した。 (4) The biotin-labeled anti-HER3 antibody (20 μg / mL) and the streptavidin-modified fluorescent dye-integrated particles (2 nM) were mixed to obtain an anti-HER3 antibody to which the fluorescent dye-integrated particles were bound. The obtained anti-HER3 antibody bound to the fluorescent dye-aggregated particles was diluted in the same manner as in Preparation Example 1 and used in the following experimental examples.
 [実験例1]
 ヒト乳がん由来培養細胞(細胞名 AU565;ATCC(登録商標)NO. CRL-235;住商ファーマインターナショナル株式会社)1.0×107個を、4%パラホルムアルデヒド溶液に懸濁して室温で10分間反応させることで固定化したのち、アルギン酸ゲル内に包埋した細胞ブロックを作製した。なお、AU565はHER2およびHER3をともに発現している(HER2陽性;HER3陽性)細胞であることが知られている。
[Experimental example 1]
1.0 × 10 7 human breast cancer-derived cultured cells (cell name AU565; ATCC (registered trademark) NO. CRL-235; Sumisho Pharma International Co., Ltd.) are suspended in a 4% paraformaldehyde solution and reacted at room temperature for 10 minutes. After immobilization, a cell block embedded in an alginate gel was prepared. AU565 is known to be a cell expressing both HER2 and HER3 (HER2 positive; HER3 positive).
 作成した細胞ブロックを3μmの厚さのパラフィン切片にし、作製例1で作製した量子ドット結合抗HER2抗体、および作製例2で作製した蛍光色素集積粒子結合抗HER3抗体を最終濃度10%となるように細胞に添加し、4℃で8時間静置することで染色を行った。 The prepared cell block was cut into a paraffin section having a thickness of 3 μm, and the quantum dot-bound anti-HER2 antibody prepared in Preparation Example 1 and the fluorescent dye-integrated particle-bound anti-HER3 antibody prepared in Preparation Example 2 were brought to a final concentration of 10%. Was added to the cells and left at 4 ° C. for 8 hours for staining.
 顕微鏡ステージにインキュベーター(株式会社東海ヒット)を取り付けたシステム生物正立顕微鏡 BX53(オリンパス株式会社)を用いて、37℃、5%CO2の環境下で、水銀ランプおよび励起光用光学フィルター(株式会社オプトライン「QDLP-C シングルバンド蛍光フィルターセット」)により、励起波長370/DF36(352~388nm)の紫外線を(露光時間250m秒、ND25、ゲイン×8)の条件下で細胞に照射することで、蛍光観察を行った。 Using a system biological erecting microscope BX53 (Olympus Corporation) equipped with an incubator (Tokai Hit Co., Ltd.) on the microscope stage, at 37 ° C, 5% CO 2 environment, a mercury lamp and an optical filter for excitation light (stock Irradiate the cells with ultraviolet light with an excitation wavelength of 370 / DF36 (352 to 388 nm) (exposure time 250 ms, ND25, gain x 8) by the company Optoline "QDLP-C Single Band Fluorescence Filter Set". Then, fluorescence observation was performed.
 なお、当該励起波長はQdot(登録商標)585は励起される波長であり、前記蛍光色素集積粒子のテキサスレッドは励起されない波長である。 The excitation wavelength is a wavelength at which Qdot (registered trademark) 585 is excited, and a wavelength at which Texas Red of the fluorescent dye-integrated particles is not excited.
 顕微鏡用デジタルカメラ(DP80:オリンパス株式会社)のモノクロモードにおいて、100倍油浸レンズを用い、解像度512×512、ピクセルサイズ64.5nm/pixel、Line Averageを16に設定したレゾナントスキャナーを用いて、露光時間250m秒、400ミリ秒/1フレームのスキャン速度で60秒間連続撮影することでタイムラプス撮影を行った。撮影の結果から、Qdot(登録商標)585の平均明滅頻度を計測したところ、0.5秒/回であった。 In the monochrome mode of a digital camera for microscope (DP80: Olympus Corporation), using a 100 × oil immersion lens, using a resonant scanner with a resolution of 512 × 512, a pixel size of 64.5 nm / pixel, and a Line Average set to 16, Time-lapse photography was performed by continuously photographing for 60 seconds at an exposure time of 250 msec and a scan speed of 400 msec / 1 frame. When the average blink frequency of Qdot (registered trademark) 585 was measured from the result of the photographing, it was 0.5 seconds / time.
 次に、同励起波長(352~388nm)における、蛍光色素集積粒子(テキサスレッド)に由来する蛍光輝点を、Qdot(登録商標)585の撮影と同条件(露光時間250m秒、400ミリ秒/1フレームのスキャン速度で60秒間連続撮影)におけるタイムラプス撮影を行い、蛍光用光学フィルター(558~584nm)を用いることで撮影した。 Next, at the same excitation wavelength (352 to 388 nm), the fluorescent luminescent spot derived from the fluorescent dye-integrated particles (Texas Red) was measured under the same conditions as in the imaging of Qdot (registered trademark) 585 (exposure time 250 ms, 400 ms / Time-lapse photography was performed at a scan speed of one frame for 60 seconds (continuous photography), and photography was performed using an optical filter for fluorescence (558 to 584 nm).
 上記撮影画像について、画像解析ソフトImageJ(オープンソース)を用いて、細胞の自家蛍光に由来する蛍光から目視により1画面内の細胞数を求め、さらに励起波長352~388nmにおける蛍光色素集積粒子に由来する一画面内の全輝点数、および当該輝点から明滅している輝点のみを抽出したもの数をそれぞれ測定した。さらに、1画面内の蛍光色素集積粒子に由来する明滅輝点数を1画面内の細胞数で除することにより、1細胞あたりの輝点数を算出した。結果を表1に示す。 Using the image analysis software ImageJ (open source), the number of cells in one screen is visually determined from the fluorescence derived from the autofluorescence of the cells using the image analysis software ImageJ (open source). The number of all bright spots in one screen and the number of only bright spots blinking from the bright spots were measured. Furthermore, the number of bright spots per cell was calculated by dividing the number of blinking bright spots derived from the fluorescent dye-accumulated particles in one screen by the number of cells in one screen. Table 1 shows the results.
 なお、前記明滅輝点の抽出は、点滅時に発光している輝点のうち輝度が所定の値以上のもののみを抽出して計測している。また、輝度または大きさが一定値(例;観測される蛍光体集積粒子の平均値)より大きなシグナルは凝集輝点と判断した。なお、前記明滅輝点の抽出および個数の計測、ならびに凝集輝点に含まれる輝点の個数の計測は、前記画像解析ソフトImageJを用いて行うことができる。 In the extraction of the blinking bright points, only the bright points that emit light at the time of blinking and have a luminance of a predetermined value or more are extracted and measured. In addition, a signal whose luminance or magnitude was larger than a certain value (eg, the average value of the observed phosphor-integrated particles) was determined to be an aggregated bright spot. The extraction and measurement of the number of the blinking bright points and the measurement of the number of the bright points included in the aggregated bright points can be performed by using the image analysis software ImageJ.
 なお、上記撮影の結果から、蛍光色素集積粒子(テキサスレッド)の平均明滅頻度を計測したところ、0.5秒/回であった。これはQdot(登録商標)585の明滅間隔と一致しており、このことから、Qdot(登録商標)585の蛍光発光によるエネルギーが、蛍光色素集積粒子にエネルギー移動することで蛍光色素集積粒子の明滅を引き起こしたことを示唆している。 平均 The average blinking frequency of the fluorescent dye-integrated particles (Texas Red) was measured from the results of the above photographing and found to be 0.5 seconds / time. This coincides with the blink interval of Qdot (registered trademark) 585. From this, the energy of the fluorescent emission of Qdot (registered trademark) 585 is transferred to the fluorescent dye-integrated particles, so that the blinking of the fluorescent dye-integrated particles occurs. Suggests that
 [実験例2]
 ヒト卵巣がん由来培養細胞(細胞名 SKOV3;ATCC(登録商標)NO.HTB-77;住商ファーマインターナショナル株式会社)を培養し、実験例1と同じ手法で染色および明滅輝点の検出を行った。なお、SKOV3はHER2を発現する一方、HER3は少量のみを発現する細胞であることが知られている。実験例1と同様に、1画面内の蛍光色素集積粒子に由来する明滅輝点数を1画面内の細胞数で除することにより1細胞あたりの輝点数を求めた。結果を表1に示す。
[Experimental example 2]
Human ovarian cancer-derived cultured cells (cell name SKOV3; ATCC (registered trademark) NO. HTB-77; Sumisho Pharma International Co., Ltd.) were cultured, and staining and detection of blinking spots were performed in the same manner as in Experimental Example 1. . It is known that SKOV3 expresses HER2 while HER3 is a cell that expresses only a small amount. As in Experimental Example 1, the number of bright spots per cell was determined by dividing the number of blinking bright spots derived from the fluorescent dye-integrated particles in one screen by the number of cells in one screen. Table 1 shows the results.
 [実験例3]
 ヒト卵巣がん由来培養細胞(細胞名 MCF7;ATCC(登録商標)NO.HTB-22;住商ファーマインターナショナル株式会社)を培養し、実験例1と同じ手法で染色および明滅輝点の検出を行った。なお、MCF7はHER2をほとんど発現せず一方で、HER3は発現する細胞であることが知られている。
[Experimental example 3]
Human ovarian cancer-derived cultured cells (cell name: MCF7; ATCC (registered trademark) NO. HTB-22; Sumisho Pharma International Co., Ltd.) were cultured, and staining and detection of blinking spots were performed in the same manner as in Experimental Example 1. . It is known that MCF7 hardly expresses HER2, while HER3 expresses HER2.
 実験例1と同様に、細胞の自家蛍光に由来する蛍光から目視により求めた1画面内の細胞数で、1画面内の蛍光色素集積粒子に由来する明滅輝点数を除することにより、1細胞あたりの輝点数を求めた。結果を表1に示す。 As in Experimental Example 1, one cell was obtained by dividing the number of blinking points derived from the fluorescent dye-accumulated particles in one screen by the number of cells in one screen visually determined from the fluorescence derived from the autofluorescence of the cells. The number of bright spots per was obtained. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
*:励起波長352~388nmで明滅する蛍光色素集積粒子(テキサスレッド)
**:全輝点数=励起波長352~388nmで明滅する蛍光色素集積粒子と明滅しない蛍光色素集積粒子との総和
(考察)
 実験例1のAU565細胞は、HER2とHER3とが共に発現している。そしてそのうち励起波長352~388nmの条件下で輝点が明滅しているものは量子ドット(HER2)の蛍光発光の影響により明滅している蛍光色素集積粒子(HER3)であり、つまりHER2/HER3ダイマーが形成されていると推測される。
Figure JPOXMLDOC01-appb-T000001
*: Fluorescent dye-integrated particles that flicker at excitation wavelengths of 352 to 388 nm (Texas Red)
**: Total number of bright spots = sum of fluorescent dye-integrated particles flickering at excitation wavelength of 352 to 388 nm and fluorescent dye-integrating particles not flickering (discussion)
AU565 cells of Experimental Example 1 express both HER2 and HER3. Among them, those whose bright spots are blinking under the condition of the excitation wavelength of 352 to 388 nm are the fluorescent dye-integrated particles (HER3) blinking under the influence of the fluorescent emission of the quantum dots (HER2), that is, the HER2 / HER3 dimer. Is presumed to be formed.
 したがって実験例1で観察された明滅しない蛍光色素集積粒子(HER3;550-400=150個)は、量子ドットの励起波長により非特異的に励起してしまった蛍光色素集積粒子であり、つまりこれらの蛍光色素集積粒子のHER3はHER2とダイマーを形成しているものではないことが推測できる。 Therefore, the non-blinking fluorescent dye-integrated particles (HER3; 550-400 = 150) observed in Experimental Example 1 are the fluorescent dye-integrated particles non-specifically excited by the excitation wavelength of the quantum dots. It can be inferred that HER3 of the fluorescent dye-integrated particles does not form a dimer with HER2.
 つまり本来蛍光色素集積粒子に対する励起波長ではない、352~388nmの条件下で観察される輝点のうち、約27%の輝点がHER2/HER3ダイマーの形成に基づくものではないことがわかる。 That is, about 27% of the bright spots observed under the condition of 352 to 388 nm, which are not originally the excitation wavelength for the fluorescent dye-integrated particles, are not based on the formation of the HER2 / HER3 dimer.
 次に実験例2のSKOV3細胞は、AU565細胞と比べるとHER3の発現量は少量であることから、励起波長352~388nmの条件下における蛍光色素集積粒子に由来する輝点は45個とAU565細胞と比べて少量であった。なお、「45個」は明滅している蛍光色素集積粒子と量子ドットの励起波長である370nmの波長で非特異的に励起した蛍光色素集積粒子の総和である。また、明滅している輝点は25個であり、少なくとも20個の輝点はHER2/HER3ダイマーの形成に基づくものではないことがわかった。つまり約44%の輝点は量子ドットの励起光による非特異的なものだとわかる。 Next, the SKOV3 cell of Experimental Example 2 has a smaller HER3 expression level than the AU565 cell, so that 45 luminescent spots derived from the fluorescent dye-integrated particles under the conditions of the excitation wavelength of 352 to 388 nm are 45 and the AU565 cell It was small compared to. Note that “45” is the sum of the blinking fluorescent dye-integrated particles and the non-specifically excited fluorescent dye-integrated particles at the wavelength of 370 nm, which is the excitation wavelength of the quantum dots. It was also found that there were 25 blinking bright spots, and at least 20 bright spots were not based on the formation of the HER2 / HER3 dimer. That is, it can be understood that about 44% of the bright spots are non-specific due to the excitation light of the quantum dots.
 同様に実験例3のMCF7細胞は、上述したようにMCF7はHER2をほとんど発現しないが、HER3は発現する。HER2はほとんど発現していないため、量子ドットの蛍光発光の影響により明滅している蛍光色素集積粒子の輝点数はそれに準して非常に少ないものとなった(1細胞当たり10個の輝点)。輝点数の総和は15個であり、少なくとも5個の輝点はHER2/HER3ダイマーの形成に基づくものではないことがわかった。つまり約33%の輝点量子ドットの励起光による非特異的なものだとわかる。 Similarly, in the MCF7 cells of Experimental Example 3, MCF7 hardly expresses HER2 as described above, but HER3 is expressed. Since HER2 is hardly expressed, the number of bright spots of the fluorescent dye-integrated particles flickering due to the influence of the fluorescent light emission of the quantum dots is very small correspondingly (10 bright spots per cell). . The total number of bright spots was 15, indicating that at least 5 bright spots were not based on the formation of the HER2 / HER3 dimer. In other words, it can be understood that about 33% of the bright spot quantum dots are non-specific due to the excitation light.
 以上の結果から、いずれの細胞においても明滅しない蛍光色素集積粒子が観察されることがわかる。このことは、明滅を利用しない従来技術では、ダイマーになっていないHER3(蛍光色素集積粒子)も検出の対象に含まれていることを示しており、本発明の方法においては、より正確にダイマーを形成したタンパク質複合体を検出できることがわかる。 From the above results, it can be seen that fluorescent dye-integrated particles that do not blink in any cells are observed. This indicates that HER3 (fluorescent dye-integrated particles) that is not a dimer is also included in the detection target in the conventional technique that does not use blinking, and in the method of the present invention, the dimer is more accurately detected. It can be seen that the protein complex that formed can be detected.
 [実験例4]
 実験例1と同様の手法で作成したパラフィン切片(AU565:(HER2陽性;HER3陽性)細胞)に対して、作製例1で作製した量子ドット結合抗HER2抗体、および作製例2で作製した蛍光色素集積粒子結合抗HER3抗体を用いて実験例1と同じ条件下において染色を行った。
[Experimental example 4]
A paraffin section (AU565: (HER2 positive; HER3 positive) cell) prepared in the same manner as in Experimental Example 1 was subjected to the quantum dot-conjugated anti-HER2 antibody prepared in Preparation Example 1 and the fluorescent dye prepared in Preparation Example 2. Staining was performed under the same conditions as in Experimental Example 1 using the anti-HER3 antibody bound to the accumulated particles.
 実験例1と同じ条件下で、Qdot(登録商標)585は励起される波長であるが前記蛍光色素集積粒子のテキサスレッドは励起されない波長である、352~388nmの紫外線を励起光として照射してQdot(登録商標)585についての蛍光観察を行った。 Under the same conditions as in Experimental Example 1, Qdot (registered trademark) 585 is irradiated with ultraviolet light having an excitation wavelength of 352 to 388 nm, which is a wavelength that is excited but is not excited by Texas Red of the fluorescent dye-integrated particles. Fluorescence observation was performed on Qdot (registered trademark) 585.
 さらに実験例1と同様の手法を用いて、Qdot(登録商標)585の輝点の画像撮影を行った。 Further, using the same method as in Experimental Example 1, an image of a bright spot of Qdot (registered trademark) 585 was taken.
 次に、実験例1と同条件(露光時間250m秒、400ミリ秒/1フレームのスキャン速度で60秒間連続撮影)下において同様に352~388nmの紫外線を励起光として照射して、蛍光用光学フィルター(558~584nm)を用いることで蛍光色素集積粒子のタイムラプス撮影を行った。 Next, under the same conditions as in Experimental Example 1 (exposure time 250 msec, continuous shooting at a scanning speed of 400 msec / 1 frame for 60 seconds), ultraviolet light of 352 to 388 nm was similarly irradiated as excitation light, and fluorescence Using a filter (558 to 584 nm), time-lapse photography of the fluorescent dye-integrated particles was performed.
 画像処理ソフトウェア「ImageJ」(オープンソース)を用いて、撮影した1画面内に含まれるQdot(登録商標)585、および蛍光色素集積粒子(テキサスレッド)由来の輝点数を計測し、該輝点を1画面内の細胞数で除することで、1細胞あたりの輝点数を求めた。 Using image processing software “ImageJ” (open source), the number of bright spots derived from Qdot (registered trademark) 585 and fluorescent dye-integrated particles (Texas Red) contained in one captured image is measured, and the bright spots are measured. The number of bright spots per cell was obtained by dividing by the number of cells in one screen.
 実験例4の結果を表2に示す。 Table 2 shows the results of Experimental Example 4.
Figure JPOXMLDOC01-appb-T000002
*:励起波長352~388nmで明滅する蛍光色素集積粒子(テキサスレッド)の数
**:全輝点数=励起波長352~388nmで明滅する蛍光色素集積粒子と明滅しない蛍光色素集積粒子との総和
(考察)
 上記のように、量子ドットの励起波長を照射すると同時に量子ドットの蛍光を検出することでHER2の数を検出することができ、また、同様に蛍光集積粒子の励起波長を照射すると同時に蛍光集積粒子の発光波長を検出することでHER3の数を検出することができる。さらにこれらの検出とともに、明滅する蛍光色素集積粒子の蛍光を求めることでHER2/HER3ダイマーの数を検出することもできる。
Figure JPOXMLDOC01-appb-T000002
*: Number of fluorescent dye-integrated particles (Texas Red) flickering at excitation wavelengths of 352 to 388 nm **: Total number of bright spots = sum of fluorescent dye-integrating particles flickering at excitation wavelengths of 352 to 388 nm and fluorescent dye-integrating particles that do not blink ( Discussion)
As described above, the number of HER2s can be detected by irradiating the excitation wavelength of the quantum dot and simultaneously detecting the fluorescence of the quantum dot. The number of HER3 can be detected by detecting the emission wavelength of. Furthermore, the number of HER2 / HER3 dimers can also be detected by obtaining the fluorescence of the flickering fluorescent dye-integrated particles together with these detections.
 このように本発明を用いることで、HER2/HER3ダイマーの定量を行ったものと同一切片を使用して、HER2およびHER3それぞれの定量も行うことができる。 Thus, by using the present invention, HER2 and HER3 can be quantified using the same section as that obtained by quantifying the HER2 / HER3 dimer.
 例えば量子ドット染色像をもとにHER2の輝点数を求めると480であり、一方実験例1でもとめたHER2/HER3ダイマーの輝点数は400と異なる。すなわちHER2のうち400÷480=83%がダイマー、のこりがモノマーとして存在していることまで求めることができる。 For example, the number of bright spots of HER2 based on the quantum dot stained image is 480, while the bright spot of HER2 / HER3 dimer obtained in Experimental Example 1 is different from 400. That is, it can be determined that 400 ÷ 480 = 83% of HER2 exists as a dimer and the residue exists as a monomer.
 [実験例5]
 ヒト乳がん由来培養細胞(細胞名 AU565;ATCC(登録商標)NO. CRL-235;住商ファーマインターナショナル株式会社)を培養し、35mm 培養ディッシュ No1.5に播種した。
[Experimental example 5]
Human breast cancer-derived cultured cells (cell name: AU565; ATCC (registered trademark) NO. CRL-235; Sumisho Pharma International Co., Ltd.) were cultured and seeded on a 35 mm culture dish No. 1.5.
 播種後1日後において、ペルツズマブ(Pertuzumab)(パージェタ(登録商標);中外製薬株式会社)を最終濃度20μg/mLとなるように培養液で希釈したものを細胞に添加した。 (1) One day after seeding, pertuzumab (Perjeta (registered trademark); Chugai Pharmaceutical Co., Ltd.) diluted with a culture solution to a final concentration of 20 μg / mL was added to the cells.
 ペルツズマブを細胞に添加してから24時間後、トリプシン処理によって細胞を回収し、実験例1と同じ手法で細胞ブロックを作製した。作製例1および2で作製した量子ドット結合抗HER2抗体、および蛍光色素集積粒子結合抗HER3抗体を用いて、実験例1と同じ手法で染色および明滅輝点の検出を行った。その結果、明滅輝点の数は18個であった。また、比較対象としてペルツズマブを作用させなかった細胞についても同様の操作を行って明滅輝点の数を測定したところ、その結果明滅輝点は225個確認された。 24 hours after adding pertuzumab to the cells, the cells were collected by trypsin treatment, and a cell block was prepared in the same manner as in Experimental Example 1. Using the quantum dot-conjugated anti-HER2 antibody and the fluorescent dye-integrated particle-conjugated anti-HER3 antibody prepared in Preparation Examples 1 and 2, staining and detection of a blinking spot were performed in the same manner as in Experimental Example 1. As a result, the number of blinking bright spots was 18. In addition, the same operation was performed on cells to which pertuzumab was not acted as a comparative object, and the number of blinking bright spots was measured. As a result, 225 blinking bright spots were confirmed.
Figure JPOXMLDOC01-appb-T000003
*:励起波長352~388nmで明滅する蛍光色素集積粒子(テキサスレッド)の数
(考察)
 ペルツズマブの添加により、明滅する輝点数が十分の一以下と、大幅に減少した。これはHER2/HER3ダイマーがペルツズマブにより減少したことを示しており、ペルツズマブのHER2/HER3ダイマーの形成阻害作用を可視化することができた。
Figure JPOXMLDOC01-appb-T000003
*: Number of fluorescent dye-integrated particles (Texas Red) flickering at an excitation wavelength of 352 to 388 nm (discussion)
The addition of pertuzumab significantly reduced the number of blinking bright spots to less than one-tenth. This indicates that the HER2 / HER3 dimer was reduced by pertuzumab, and the effect of pertuzumab on inhibiting the formation of the HER2 / HER3 dimer could be visualized.
1・・・HER2
3・・・細胞膜
5・・・抗HER2マウスモノクローナル抗体
6・・・抗マウスIgG抗体
10・・・量子ドット
20・・・HER3
25・・・抗HER3マウスモノクローナル抗体
30・・・蛍光色素集積粒子
40・・・HER2/HER3ヘテロダイマー
50・・・量子ドットの励起光
60・・・量子ドットからのエネルギー移動
1 ... HER2
3 ... Cell membrane 5 ... Anti-HER2 mouse monoclonal antibody 6 ... Anti-mouse IgG antibody 10 ... Quantum dot 20 ... HER3
25 anti-HER3 mouse monoclonal antibody 30 fluorescent dye-integrated particles 40 HER2 / HER3 heterodimer 50 excitation light of quantum dots 60 energy transfer from quantum dots

Claims (12)

  1.  タンパク質(A)とタンパク質(B)とからなるタンパク質複合体の検出方法であって、
     タンパク質(A)を、ブリンキングを生じる蛍光発光性粒子を結合した抗体を用いて標識する工程(a)および
     タンパク質(B)を、ブリンキングを生じない蛍光発光性粒子を結合した抗体で標識する工程(b)を含み、
     その後、
     前記ブリンキングを生じる蛍光発光性粒子の励起波長の光を照射すると同時に、ブリンキングを生じない蛍光発光性粒子の発光波長の蛍光輝点を検出し、
     前記ブリンキングを生じない蛍光発光性粒子の発光波長の蛍光輝点から、明滅する輝点を抽出する工程(c)を含み、
     前記明滅する輝点が前記タンパク質(A)と前記タンパク質(B)との複合体をあらわすタンパク質複合体の検出方法。
    A method for detecting a protein complex comprising a protein (A) and a protein (B),
    Step (a) of labeling the protein (A) with an antibody bound to fluorescent particles that cause blinking and labeling the protein (B) with an antibody bound to fluorescent particles that do not cause blinking Step (b),
    afterwards,
    Simultaneously with irradiating the light of the excitation wavelength of the fluorescent particles that cause the blinking, to detect the fluorescent bright spot of the emission wavelength of the fluorescent particles that do not cause the blinking,
    Extracting a flickering luminescent spot from the fluorescent luminescent spots having the emission wavelength of the fluorescent particles that do not cause blinking,
    A method for detecting a protein complex, wherein the blinking bright spot represents a complex of the protein (A) and the protein (B).
  2.  前記ブリンキングを生じる蛍光発光性粒子が量子ドットであり、
     前記ブリンキングを生じない蛍光発光性粒子が蛍光色素集積粒子である、
     請求項1に記載のタンパク質複合体の検出方法。
    The fluorescent particles that cause the blinking are quantum dots,
    The fluorescent particles that do not cause blinking are fluorescent dye-integrated particles,
    A method for detecting a protein complex according to claim 1.
  3.  さらに、タンパク質複合体を形成していないタンパク質(A)の数、およびタンパク質複合体を形成していないタンパク質(B)の数を算出する工程(d)を含む、請求項1または2に記載のタンパク質複合体の検出方法。 3. The method according to claim 1, further comprising the step (d) of calculating the number of proteins (A) not forming a protein complex and the number of proteins (B) not forming a protein complex. A method for detecting a protein complex.
  4.  前記タンパク質複合体が、タンパク質(A)とタンパク質(B)とからなるヘテロダイマーである、請求項1~3のいずれか一項に記載のタンパク質複合体の検出方法。 方法 The method for detecting a protein complex according to any one of claims 1 to 3, wherein the protein complex is a heterodimer composed of a protein (A) and a protein (B).
  5.  検体に薬剤を添加する前および添加した後のそれぞれの時点において、請求項1~4のいずれか一項に記載のタンパク質複合体の検出方法を行う工程を含む、薬剤効果の評価方法。 (5) A method for evaluating a drug effect, comprising a step of performing the method for detecting a protein complex according to any one of (1) to (4) before and after the addition of the drug to the sample.
  6.  前記薬剤がタンパク質複合体の形成を阻害する薬剤である、請求項5に記載の評価方法。 The evaluation method according to claim 5, wherein the drug is a drug that inhibits formation of a protein complex.
  7.  前記薬剤がヘテロダイマー形成阻害薬である、請求項5または6に記載の評価方法。 The evaluation method according to claim 5 or 6, wherein the drug is a heterodimer formation inhibitor.
  8.  前記タンパク質複合体がHER2とHER3とからなるヘテロダイマーである、請求項5~7のいずれか一項に記載の評価方法。 評 価 The evaluation method according to any one of claims 5 to 7, wherein the protein complex is a heterodimer composed of HER2 and HER3.
  9.  前記薬剤がペルツズマブ、トラスツズマブ、またはラパチニブである、請求項5~8のいずれか一項に記載の評価方法。 The evaluation method according to any one of claims 5 to 8, wherein the drug is pertuzumab, trastuzumab, or lapatinib.
  10.  前記量子ドットと前記蛍光色素集積粒子とは、それぞれ異なった励起波長を有する、請求項5~9のいずれか一項に記載の評価方法。 10. The evaluation method according to claim 5, wherein the quantum dots and the fluorescent dye-integrated particles have different excitation wavelengths.
  11.  前記量子ドットの励起波長帯が、前記蛍光色素集積粒子1粒子あたりの励起スペクトル強度が前記量子ドット1粒子あたりの励起スペクトル強度の10分の1以下である、請求項5~10のいずれか一項に記載の評価方法。 11. The excitation wavelength band of the quantum dot, wherein the excitation spectrum intensity per fluorescent dye-integrated particle is one tenth or less of the excitation spectrum intensity per quantum dot particle. Evaluation method described in section.
  12.  前記量子ドットの励起波長帯が、前記蛍光色素集積粒子1粒子あたりの励起スペクトル強度が前記量子ドット1粒子あたりの励起スペクトル強度の100分の1以下である、請求項5~11のいずれか一項に記載の評価方法。 12. The excitation wavelength band of the quantum dot, wherein the excitation spectrum intensity per fluorescent dye-integrated particle is one hundredth or less of the excitation spectrum intensity per quantum dot particle. Evaluation method described in section.
PCT/JP2019/031419 2018-09-26 2019-08-08 Detection method and assessment method WO2020066336A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020548125A JPWO2020066336A1 (en) 2018-09-26 2019-08-08 Detection method and evaluation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-180418 2018-09-26
JP2018180418 2018-09-26

Publications (1)

Publication Number Publication Date
WO2020066336A1 true WO2020066336A1 (en) 2020-04-02

Family

ID=69950486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031419 WO2020066336A1 (en) 2018-09-26 2019-08-08 Detection method and assessment method

Country Status (2)

Country Link
JP (1) JPWO2020066336A1 (en)
WO (1) WO2020066336A1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GONDA, K. ET AL.: "Quantitative diagnostic imaging of cancer tissues by using phosphor-integrated dots with ultra-high brightness", SCIENTIFIC REPORTS, vol. 7, no. 7509, 8 August 2017 (2017-08-08), XP055450482, Retrieved from the Internet <URL:http://www.nature.com/articles/s41598-017-06534-z><DOI:10.1038/s41598-017-06534-z> [retrieved on 20190910] *
GONDA, KOHSUKE ET AL.: "Quantitative nano-bio-imaging of cancer disease state", DRUG DELIVERY SYSTEM, vol. 33, no. 3, 25 July 2018 (2018-07-25), pages 179 - 189, XP055700869, ISSN: 0913-5006 *
OHUCHI, NORIAKI: "The Grants- in-Aid for Scientific Research Final Research Report Summary, Basic construction for treatment effect prediction of molecular targeted drugs by quantitative estimation of HER family receptor based on highly sensitive nanoparticle imaging, Database of Grants-in-Aid for Scientific Research", METHOD OF RESEARCH, 22 March 2018 (2018-03-22), Retrieved from the Internet <URL:https://kaken.nii.ac.jp/ja/file/KAKENHI-PROJECT-25253039/25253039seika.pdf> [retrieved on 20190911] *
REISCH, A. ET AL.: "Fluorescent polymer nanoparticles based on dyes: seeking brighter tools for bioimaging", SMALL, vol. 12, no. 15, 22 February 2016 (2016-02-22), pages 1968 - 1992, XP055700865, ISSN: 1613-6810 *

Also Published As

Publication number Publication date
JPWO2020066336A1 (en) 2021-09-24

Similar Documents

Publication Publication Date Title
US20210132067A1 (en) Antigen-coupled immunoreagents
US10509039B2 (en) Integrated phosphor nanoparticle marking agent, and fluorescent immunostaining employing same
JP5843054B1 (en) Biological substance quantification method based on multiple immunostaining
US11662348B2 (en) Method for detecting constituent component of antibody-drug conjugate
JP6687018B2 (en) Target biological material detection method and detection system
WO2019131727A1 (en) Method for assessing medicine
JP6658330B2 (en) How to prevent dissociation of fluorescent nanoparticles from tissue sections
WO2017014196A1 (en) Target biological substance analysis method and analysis system
WO2020066336A1 (en) Detection method and assessment method
JP6443581B2 (en) Information acquisition method for diagnosis or treatment of cancer or immune system related diseases
JP6583011B2 (en) Method for washing immunostained slides using acidic aqueous solution
JP2018155608A (en) Multistage fluorescent staining method using fluorescent accumulated grain composite body and fluorescent accumulated grain composite body
US10889720B2 (en) Phosphor integrated dots nanoparticles and labeling agent using same
WO2019131895A1 (en) Information acquisition system
US20100330592A1 (en) Method for detecting truncated molecules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548125

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864932

Country of ref document: EP

Kind code of ref document: A1