WO2020066293A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2020066293A1
WO2020066293A1 PCT/JP2019/030352 JP2019030352W WO2020066293A1 WO 2020066293 A1 WO2020066293 A1 WO 2020066293A1 JP 2019030352 W JP2019030352 W JP 2019030352W WO 2020066293 A1 WO2020066293 A1 WO 2020066293A1
Authority
WO
WIPO (PCT)
Prior art keywords
alignment film
polarizing plate
transmission axis
angle
initial alignment
Prior art date
Application number
PCT/JP2019/030352
Other languages
French (fr)
Japanese (ja)
Inventor
幸次朗 池田
正章 加邉
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2020066293A1 publication Critical patent/WO2020066293A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells

Definitions

  • the present invention relates to a display device.
  • Some liquid crystal display devices irradiate an image display panel having a liquid crystal layer with light from a backlight, and display an image using light transmitted through the liquid crystal layer.
  • Such a liquid crystal display device is required to have an improved contrast ratio.
  • Patent Document 1 describes that a contrast ratio is improved by overlapping two liquid crystal panels.
  • the present invention has been made in view of the above problems, and has as its object to provide a display device that suppresses a decrease in luminance.
  • a display device includes an image display panel having a plurality of pixels, a light source unit provided on a back side of the image display panel, and a light source unit provided between the image display panel and the light source unit.
  • a light control panel configured to be able to transmit on the back side of the display panel, and a lower polarizing plate provided between the light control panel and the light source unit, and the transmission axis of the lower polarizing plate is Not parallel and not perpendicular to the initial alignment direction of the lower alignment film It is along the direction.
  • FIG. 1 is a diagram illustrating a main configuration example of a display device according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a functional configuration example of the signal processing unit.
  • FIG. 3 is a diagram illustrating a stacked configuration of the display device according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of a pixel array of the image display panel.
  • FIG. 5 is a cross-sectional view illustrating an example of a schematic cross-sectional structure of the image display panel.
  • FIG. 6 is a diagram illustrating an example of a relationship between a display area and a display divided area.
  • FIG. 7 is a diagram illustrating an example of a main configuration of the light source unit.
  • FIG. 1 is a diagram illustrating a main configuration example of a display device according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a functional configuration example of the signal processing unit.
  • FIG. 3 is a diagram illustrating a stacked configuration of the display device
  • FIG. 8 is a diagram illustrating an example of a main configuration of the light control unit.
  • FIG. 9 is a cross-sectional view illustrating an example of a schematic cross-sectional structure of the light control panel.
  • FIG. 10 is a flowchart illustrating an example of the flow of processing of the signal processing unit.
  • FIG. 11 is a schematic diagram illustrating a transmission axis direction and an initial alignment direction according to the first embodiment.
  • FIG. 12 is a diagram illustrating the relationship between the transmission axis direction and the initial alignment direction in the first embodiment.
  • FIG. 13 is a graph illustrating an example of the luminance of the display device according to the first embodiment.
  • FIG. 14 is a graph illustrating an example of the contrast of the display device according to the first embodiment.
  • FIG. 15 is a schematic diagram illustrating a transmission axis direction and an initial alignment direction according to a first modification.
  • FIG. 16 is a diagram showing the relationship between the transmission axis direction and the initial alignment direction in the first modification.
  • FIG. 17 is a graph illustrating an example of the luminance of the display device according to the first modification.
  • FIG. 18 is a graph illustrating an example of the contrast of the display device according to the first modification.
  • FIG. 19 is a schematic diagram illustrating a transmission axis direction and an initial alignment direction according to the second embodiment.
  • FIG. 20 is a diagram illustrating the relationship between the transmission axis direction and the initial alignment direction in the second embodiment.
  • FIG. 21 is a graph illustrating an example of the luminance of the display device according to the second embodiment.
  • FIG. 22 is a graph illustrating an example of the contrast of the display device according to the second embodiment.
  • FIG. 23 is a schematic diagram illustrating a transmission axis direction and an initial alignment direction according to a second modification.
  • FIG. 24 is a diagram illustrating the relationship between the transmission axis direction and the initial alignment direction in the second modification.
  • FIG. 25 is a graph illustrating an example of the luminance of the display device according to the second modification.
  • FIG. 26 is a graph illustrating an example of the contrast of the display device according to the second modification.
  • FIG. 27 is a schematic diagram illustrating a transmission axis direction and an initial alignment direction according to the third embodiment.
  • FIG. 28 is a diagram illustrating the relationship between the transmission axis direction and the initial alignment direction in the third embodiment.
  • FIG. 29 is a graph illustrating an example of the luminance of the display device according to the third embodiment.
  • FIG. 30 is a graph illustrating an example of the contrast of the display device according to the third embodiment.
  • FIG. 31 is a schematic diagram illustrating a transmission axis direction and an initial alignment direction according to a third modification.
  • FIG. 32 is a diagram showing the relationship between the transmission axis direction and the initial alignment direction in the third modification.
  • FIG. 33 is a graph illustrating an example of the luminance of the display device according to the third modification.
  • FIG. 34 is a graph illustrating an example of the contrast of the display device according to the third modification.
  • FIG. 1 is a diagram illustrating a main configuration example of a display device according to the first embodiment.
  • the display device 1 according to the first embodiment includes a signal processing unit 10, a display unit 20, a light source unit 50, and a light control unit 70.
  • the signal processing unit 10 performs various outputs based on an input signal IP input from the external control device 2.
  • the input signal IP is a signal that functions as data for causing the display device 1 to display and output an image, and is, for example, an RGB image signal.
  • the signal processing unit 10 outputs the output image signal OP generated based on the input signal IP to the display unit 20.
  • the signal processing unit 10 outputs the local dimming signal DI generated based on the input signal IP to the dimming unit 70. Further, when the input signal IP is input, the signal processing unit 10 outputs a light source drive signal BL for operating the light source unit 50 to the light source unit 50.
  • FIG. 2 is a block diagram showing a functional configuration example of the signal processing unit.
  • the signal processing unit 10 is an integrated circuit such as an FPGA (Field-Programmable Gate Array).
  • the signal processing unit 10 includes, for example, an image analysis unit 11, a light control unit 12, a light control buffer 13, a correction unit 14, an image buffer 15, a synchronization unit 16, and a light source control unit 17.
  • the signal processing unit 10 performs various processes corresponding to these functions mounted on the integrated circuit based on the input signal IP.
  • the display unit 20 includes the image display panel 30 and the image display panel driving unit 40.
  • the image display panel 30 is a panel having a plurality of pixels 48, and more specifically, has a display area OA in which the plurality of pixels 48 are provided.
  • the plurality of pixels 48 are arranged, for example, in a matrix.
  • the image display panel 30 of the first embodiment is a liquid crystal image display panel.
  • the image display panel driving section 40 as a first signal output section has a signal output circuit 41 and a scanning circuit 42.
  • the signal output circuit 41 drives a plurality of pixels 48 according to the output image signal OP.
  • the scanning circuit 42 outputs a drive signal for scanning a plurality of pixels 48 arranged in a matrix in units of a predetermined row (for example, one row).
  • the pixel 48 is driven such that a grayscale value corresponding to the output image signal OP is output at the timing when the drive signal is output.
  • the light source unit 50 is a light source device that emits light toward the display area OA of the image display panel 30.
  • the light control unit 70 controls the amount of light emitted from the light source unit 50 and output through the display area OA.
  • the light control unit 70 includes a light control panel 80 and a circuit unit 90.
  • the light control panel 80 is disposed at a position overlapping the display area OA when the display area OA is viewed in a plan view, that is, when the display device is viewed from a Z direction described later, and is provided so as to change the light transmittance.
  • the light control area DA is provided.
  • the circuit unit 90 controls the light transmittance of the light control area DA.
  • FIG. 3 is a diagram showing a layered configuration of the display device according to the first embodiment.
  • the light source unit 50, the light control panel 80, and the image display panel 30 are superimposed in this order along the Z direction that is the superimposition direction, that is, It is laminated.
  • the light control panel 80 is stacked on the irradiation surface 50 s, which is the front surface (upper surface) of the light source unit 50 and the surface on which light is emitted.
  • the image display panel 30 is stacked on the opposite side of the light source unit 50 with the light control panel 80 interposed therebetween.
  • the light source unit 50 is provided on the back surface 30 s side opposite to the front surface 30 t of the image display panel 30, and the light control panel 80 is located between the light source unit 50 and the image display panel 30 in the Z direction. Is provided.
  • the light emitted from the irradiation surface 50 s of the light source unit 50 in the Z direction enters the light control area DA of the light control panel 80.
  • the light control panel 80 transmits the light incident on the light control area DA to the rear surface 30s side of the image display panel 30 so that the light transmittance, that is, the light amount can be changed.
  • the light transmitted from the light control panel 80 enters the back surface 30s of the image display panel 30, passes through the inside of the image display panel 30, and is emitted from the front surface 30t opposite to the back surface 30s.
  • the image display panel 30 displays and outputs an image on the front surface 30t side.
  • the light source unit 50 functions as a backlight that illuminates the display area OA of the image display panel 30 from the back.
  • two directions orthogonal to the Z direction are defined as an X direction and a Y direction.
  • the X direction and the Y direction are orthogonal.
  • the plurality of pixels 48 are arranged in a matrix along the X direction and the Y direction.
  • the position of the upper polarizing plate 58 with respect to the light source unit 50 is defined as an upper side (front side), and the position of the light source unit 50 with respect to the upper polarizing plate 58 is defined as a lower side (rear side).
  • the image display panel 30 has an array substrate 30a and a counter substrate 30b located on the front surface 30t side (upper side) of the array substrate 30a and facing the array substrate 30a in the Z direction.
  • a liquid crystal layer LC1 is disposed between the array substrate 30a and the counter substrate 30b (see FIG. 5).
  • the light control panel 80 includes a first substrate 80a, and a second substrate 80b located on the image display panel 30 side with respect to the first substrate 80a and facing the first substrate 80a.
  • a liquid crystal layer LC2 is arranged between the first substrate 80a and the second substrate 80b (see FIG. 9).
  • the display device 1 includes a light source unit 50, a lower polarizing plate 52, a dimming panel 80, a middle polarizing plate 54, an adhesive layer 56, an image display panel 30,
  • the upper polarizing plate 58 is laminated (superposed) in this order in the Z direction. That is, the lower polarizing plate 52 is provided between the light source unit 50 and the light control panel 80, the middle polarizing plate 54 is provided between the light control panel 80 and the image display panel 30, and the upper polarizing plate 58 is provided. , Is provided on the front surface 30 t side of the image display panel 30, that is, above the image display panel 30.
  • the lower polarizer 52, the middle polarizer 54, and the upper polarizer 58 transmit light of a component that oscillates in a predetermined direction of incident light and block light of a component that oscillates in a direction other than that direction. It is a polarizing plate.
  • the adhesive layer 56 is provided between the light control panel 80 and the image display panel 30, and bonds the light control panel 80 and the image display panel 30.
  • the adhesive layer 56 is formed of a transparent member that can transmit light, and in the present embodiment, is an optical elastic resin, that is, SVR (Super View Resin).
  • the adhesive layer 56 is provided between the middle polarizing plate 54 and the image display panel 30 in the first embodiment, but may be provided between the light control panel 80 and the image display panel 30. For example, it may be provided between the light control panel 80 and the middle polarizer 54.
  • a diffusion plate for diffusing light may be provided between the light control panel 80 and the image display panel 30, more specifically, between the middle polarizer 54 and the image display panel 30. By providing the diffusion plate, moire can be reduced.
  • FIG. 4 is a diagram illustrating an example of a pixel array of the image display panel.
  • the pixel 48 has, for example, a first sub-pixel 49R, a second sub-pixel 49G, a third sub-pixel 49B, and a fourth sub-pixel 49W.
  • the first sub-pixel 49R displays a first primary color (for example, red).
  • the second sub-pixel 49G displays a second primary color (for example, green).
  • the third sub-pixel 49B displays a third primary color (for example, blue).
  • the fourth sub-pixel 49W displays a fourth color (specifically, white).
  • the pixels 48 arranged in a matrix on the image display panel 30 include the first sub-pixel 49R for displaying the first color, the second sub-pixel 49G for displaying the second color, and the third color. It includes a third sub-pixel 49B for displaying and a fourth sub-pixel 49W for displaying a fourth color.
  • the first color, the second color, the third color, and the fourth color are not limited to the first primary color, the second primary color, the third primary color, and white, but may be different colors such as complementary colors.
  • the pixel 48 may not include the fourth sub-pixel 49W, but may include only three sub-pixels of the first sub-pixel 49R, the second sub-pixel 49G, and the third sub-pixel 49B.
  • the fourth sub-pixel 49W displaying the fourth color is irradiated with the same light source lighting amount
  • the first sub-pixel 49R displaying the first color
  • the second sub-pixel 49G displaying the second color
  • the third sub-pixel 49B that displays the third color be brighter.
  • sub-pixels 49 when it is not necessary to distinguish the first sub-pixel 49R, the second sub-pixel 49G, the third sub-pixel 49B, and the fourth sub-pixel 49W, they are referred to as sub-pixels 49.
  • the display device 1 is more specifically a transmission type color liquid crystal display device.
  • the image display panel 30 is a color liquid crystal display panel, in which a first color filter that allows the first primary color to pass is disposed between the first sub-pixel 49R and the image observer, and a second color filter is provided.
  • a second color filter that passes the second primary color is disposed between the sub-pixel 49G and the image observer, and a third color filter that transmits the third primary color is disposed between the third sub-pixel 49B and the image observer.
  • no color filter is arranged between the fourth sub-pixel 49W and the image observer. In this case, a large step occurs in the fourth sub-pixel 49W. Therefore, the fourth sub-pixel 49W may be provided with a transparent resin layer instead of the color filter. Thereby, it is possible to suppress the occurrence of a large step in the fourth sub-pixel 49W.
  • the signal output circuit 41 is electrically connected to the image display panel 30 by a signal line DTL.
  • the image display panel driving unit 40 selects a sub-pixel 49 in the image display panel 30 by the scanning circuit 42 and controls a switching element (for example, a thin film transistor (TFT)) for controlling the operation (light transmittance) of the sub-pixel 49. Film (Transistor)) is turned on (ON) and off (OFF).
  • the scanning circuit 42 is electrically connected to the image display panel 30 by a scanning line SCL.
  • the scanning line SCL extends along the X direction and the signal line DTL extends along the Y direction.
  • this is an example of the extending direction of the scanning line SCL and the signal line DTL, and is not limited thereto. However, it can be changed as appropriate.
  • FIG. 5 is a sectional view showing an example of a schematic sectional structure of the image display panel.
  • the array substrate 30a and the counter substrate 30b are stacked in this order along the Z direction, and a plurality of the substrates are arranged between the array substrate 30a and the counter substrate 30b.
  • a liquid crystal layer LC1 including the liquid crystal element LC is provided.
  • the array substrate 30a has a substrate 21, insulating films 22a, 22b, 22c, 22d, a switching element 24, a counter electrode 26, a pixel electrode 28, and a lower alignment film 29.
  • the counter substrate 30b has a substrate 31 and an upper alignment film 32.
  • the switching element 24 has a channel 24a, a source 24b, a gate 24c, and a drain 24d.
  • the laminated structure of the image display panel 30 will be described.
  • a substrate 21, an insulating film 22a, an insulating film 22b, an insulating film 22c, a counter electrode 26, an insulating film 22d, a pixel electrode 28, and a lower alignment film 29 are stacked (superimposed) in this order in the Z direction.
  • the substrate 21 is a substrate such as a glass substrate or a film substrate.
  • a channel 24a (island) of the switching element 24 is provided on the substrate 21, a channel 24a (island) of the switching element 24 is provided.
  • the insulating film 22a is provided on the substrate 21 and in contact with the channel 24a.
  • the gate 24c of the switching element 24 is provided on the insulating film 22a at a position overlapping with the channel 24a.
  • the insulating film 22b is provided on the insulating film 22a and in contact with the gate 24c.
  • the source 24b and the drain 24d of the switching element 24 are provided on the insulating film 22b at positions overlapping the channel 24a. Part of the source 24b and the drain 24d penetrate the insulating films 22b and 22a and are connected to the channel 24a.
  • the insulating film 22c is provided on the insulating film 22b and in contact with the source 24b and the drain 24d. Note that the gate 24c is disposed on the side opposite to the substrate with respect to the channel 24a, and the configuration of a so-called top gate has been described as an example, but the present invention is not limited to this.
  • the gate 24c may have a configuration of a bottom gate disposed between the channel 24a and the substrate via an insulating film.
  • the counter electrode 26 is an electrode arranged to face the pixel electrode 28, and in the present embodiment, is a common electrode provided in the display area OA of the image display panel 30.
  • the counter electrode 26 may be configured by a plurality of block-shaped electrodes extending in the X direction or the Y direction in the display area OA.
  • the insulating film 22d is provided on the counter electrode 26.
  • the pixel electrodes 28 that constitute the sub-pixels 49 are provided on the insulating film 22d, and a plurality of pixel electrodes 28 are provided in a matrix in the display area OA.
  • Each pixel electrode 28 has a shape provided with a plurality of groove-shaped openings extending in the Y direction. In other words, a plurality of band-shaped electrodes forming comb teeth extending in the Y direction. Is provided.
  • the insulating films 22a, 22b, 22c, and 22d are made of, for example, an insulating member such as a silicon nitride film (SiNx).
  • the counter electrode 26 and the pixel electrode 28 are transparent electrodes made of, for example, indium tin oxide (ITO). Further, in the present embodiment, the opposing electrode 26 is disposed between the pixel electrode 28 and the substrate 21, but is not limited to this.
  • the pixel electrode 28 may be disposed between the counter electrode 26 and the substrate 21, or the counter electrode 26 and the pixel electrode 28 may be disposed in the same layer.
  • the lower alignment film 29 is provided on the front surface side of the array substrate 30a, in other words, provided on the pixel electrode 28 and the insulating film 22d. That is, the lower alignment film 29 becomes the surface of the array substrate 30a on the liquid crystal layer LC1 side.
  • the initial alignment direction is a direction in which the lower alignment film 29 aligns the liquid crystal element LC when no electric field (voltage) is applied between the counter electrode 26 and the pixel electrode 28.
  • the rubbing direction can be said to be the initial alignment direction.
  • the lower alignment film 29 may be, for example, a rubbed film of a polyimide (PI) -based alignment film material.
  • the lower alignment film 29 may be configured to be able to align the liquid crystal element LC in the initial alignment direction by a process other than rubbing.
  • the lower alignment film 29 may be a photo alignment film.
  • the initial alignment direction of the lower alignment film 29 is the same as that of the array substrate 30a, that is, the back side (the side opposite to the front side) of the image display panel 30. ) Is the initial orientation direction of the substrate.
  • the upper alignment film 32 and the substrate 31 are stacked (superposed) in the Z direction in this direction.
  • the upper alignment film 32 is the surface of the counter substrate 30b on the liquid crystal layer LC1 side.
  • the initial alignment direction of the upper alignment film 32 is parallel to the initial alignment direction of the lower alignment film 29, and more specifically, is preferably the same direction as the initial alignment direction of the lower alignment film 29. Will be described later.
  • the upper alignment film 32 may be capable of aligning the liquid crystal element LC in the initial alignment direction by a rubbing process, or may be capable of aligning the liquid crystal element LC in the initial alignment direction by another process such as optical alignment. Orientation may be possible.
  • the upper alignment film 32 faces the lower alignment film 29 and can be said to be an alignment film provided on the front surface 30t side (upper side) of the image display panel 30 with respect to the lower alignment film 29. Further, since the upper alignment film 32 is an alignment film provided on the counter substrate 30 b side, the initial alignment direction of the upper alignment film 32 is the counter substrate 30 b, that is, the upper (front) side of the image display panel 30. Is the initial alignment direction.
  • the substrate 31 is a substrate such as a glass substrate or a film substrate, and forms the uppermost surface of the counter substrate 30b.
  • the alignment direction of the liquid crystal element LC changes according to the applied electric field (voltage).
  • the liquid crystal layer LC1 modulates light passing through the inside of the liquid crystal layer LC1 according to the state of the electric field.
  • the direction of the liquid crystal element LC changes due to an electric field (here, a horizontal electric field) applied between the pixel electrode 28 and the counter electrode 26, and the amount of light transmitted through the liquid crystal layer LC1 changes.
  • the liquid crystal element LC is aligned based on the initial alignment direction defined in the lower alignment film 29 and the upper alignment film 32 when no electric field is applied between the pixel electrode 28 and the counter electrode 26. .
  • each of the plurality of sub-pixels 49 has the pixel electrode 28.
  • the plurality of switching elements 24 for individually controlling the operations (light transmittance) of the plurality of sub-pixels 49 are electrically connected to the pixel electrodes 28, respectively.
  • the image display panel 30 is a horizontal electric field type liquid crystal display panel, and more specifically, an FFS (Fringe Field Switching) type liquid crystal display panel.
  • the image display panel 30 is not limited to the FFS type, and may be any type of liquid crystal display panel.
  • the image display panel 30 may be a horizontal electric field type IPS (In Plane Switching) type liquid crystal display panel or a vertical electric field type liquid crystal display panel.
  • the image display panel 30 may be a vertical electric field type VA (Vertical Alignment) liquid crystal display panel or a vertical electric field type TN (Twisted Nematic) liquid crystal display panel.
  • VA Vertical Alignment
  • TN Transmission Nematic
  • FIG. 6 is a diagram showing an example of the relationship between the display area and the display divided area.
  • the display area OA of the image display panel 30 has a plurality of display divided areas PA.
  • the display area OA is an area obtained by combining all of the plurality of display divided areas PA.
  • the display area OA shown in FIG. 6 is a total corresponding to a combination of the coordinates x1, x2,..., X9 set along the X direction and the coordinates y1, y2, y3, y4 set along the Y direction. It has a display divided area PA individually provided at a position corresponding to each of the 36 coordinates.
  • the number of display divided areas PA included in the display area OA is not limited to 36, and it is sufficient that two or more display divided areas PA are included.
  • the display area OA has the display divided area PA divided along both the XY directions, but is not limited thereto, and the display divided area divided only along one of the X direction and the Y direction. It may have PA.
  • the number and arrangement of the display divided areas PA included in the display area OA correspond to the number and arrangement of the first electrodes 81 included in the light control panel 80 described later.
  • One or more pixels 48 are arranged in each of the display divided areas PA.
  • FIG. 7 is a diagram illustrating an example of a main configuration of the light source unit.
  • the light source unit 50 has a side light positioned on the side of the display area OA when the display area OA is viewed in a plan view.
  • a plurality of light sources 51 are arranged along the X direction at both ends in the Y direction with respect to the light guide plate LA provided at a position corresponding to the display area OA in the XY plan view.
  • the light source 51 may be arranged only on one end side in the Y direction with respect to the light guide plate LA.
  • the light source 51 is, for example, a light emitting diode (LED: Light Emitting Diode) that emits white light, but is not limited to this and can be changed as appropriate.
  • Light from the light source 51 is guided to the light guide plate LA to illuminate the entire display area OA from the back surface 30s side.
  • the number of the light sources 51 arranged in a line along the X direction at each of one end side and the other end side in the Y direction is 9, and a total of 18 light sources 51 are arranged. It is an example of the number and the arrangement, and is not limited to this, and can be appropriately changed.
  • the light source unit 50 may be a so-called direct backlight having a light source such as an LED provided immediately below the display area OA when viewed in a plan view.
  • FIG. 7 schematically shows a plurality of light source areas GA corresponding to the coordinates of each of the plurality of display divided areas PA in order to show the correspondence between the light guide plate LA and the display area OA.
  • the light source 51 When the light source 51 is turned on, light is guided by the light guide plate LA, so that each of the plurality of light source areas GA emits substantially the same amount of light from the back side of the display division area PA corresponding to each position. That is, the light source unit 50 of the first embodiment emits light with a predetermined output without controlling the light amount corresponding to the light amount required in each of the plurality of display divided areas PA.
  • the light control unit 70 has a function related to control of the light amount corresponding to the light amount required in each of the plurality of display divided areas PA.
  • FIG. 8 is a diagram illustrating an example of a main configuration of the light control unit.
  • the light control panel 80 has a plurality of first electrodes 81 provided in the light control area DA.
  • the first electrodes 81 are arranged in a matrix in the X direction and the Y direction.
  • the light control panel 80 shown in FIG. 8 corresponds to a combination of the coordinates of x1, x2,..., X9 set along the X direction and the coordinates of y1, y2, y3, y4 set along the Y direction.
  • the first electrode 81 is provided individually at a position corresponding to each of the coordinates of the total 36.
  • Each of the plurality of first electrodes 81 is connected to the circuit section 90 via the wiring 86.
  • the circuit unit 90 as the second signal output unit individually controls the potential of the first electrode 81 in accordance with the local dimming signal DI, and thereby controls each of the plurality of regions LD where the first electrode 81 is individually provided.
  • Light transmittance is individually controlled.
  • the light control area DA is divided into a plurality of areas LD in which the transmittance of light can be individually controlled.
  • the positions of the plurality of display division areas PA correspond to the respective positions of the plurality of areas LD. It corresponds to the position.
  • the number of the areas LD included in the light control area DA is not limited to 36, and it is sufficient that at least two areas LD are included.
  • the dimming area DA includes the area LD arranged along both the X direction and the Y direction, but is not limited thereto, and the area LD arranged only along one of the X direction and the Y direction. May be provided.
  • the light control area DA is provided so as to cover the entire display area OA in a plan view, and the transmittance of light that is guided by the light guide plate LA and illuminates the entire display area OA from the back side is adjusted in each of the plurality of areas LD. They are individually controllable.
  • FIG. 9 is a cross-sectional view illustrating an example of a schematic cross-sectional structure of the light control panel according to the first embodiment.
  • the light control panel 80 is a TN type liquid crystal panel, and has a first substrate 80a and a second substrate 80b.
  • the first substrate 80a has a first electrode 81, a substrate 84, insulating films 85a, 85b, 85c, switching elements 88, and a lower alignment film 89.
  • the second substrate 80b has a substrate 72, a second electrode 82, and an upper alignment film 74.
  • the switching element 88 has a channel 88a, a source 88b, a gate 88c, and a drain 88d.
  • the laminated structure of the light control panel 80 will be described.
  • the first substrate 80a has a substrate 84, an insulating film 85a, an insulating film 85b, an insulating film 85c, a first electrode 81, and a lower alignment film 89 stacked (superposed) in this order in the Z direction.
  • the substrate 84 is a substrate such as a glass substrate or a film substrate.
  • a channel 88a (island) is provided on the substrate 84.
  • the insulating film 85a is provided on the substrate 84 and in contact with the channel 88a.
  • a gate 88c is provided on the insulating film 85a at a position overlapping with the channel 88a.
  • the insulating film 85b is provided on the insulating film 85a and in contact with the gate 88c.
  • a source 88b and a drain 88d are provided on the insulating film 85b at positions overlapping the channel 88a. Part of the source 88b and the drain 88d penetrate the insulating films 85b and 85a and are connected to the channel 88a.
  • the insulating film 85c is provided on the insulating film 85b and in contact with the source 88b and the drain 88d.
  • the gate 24c is disposed on the side opposite to the substrate with respect to the channel 24a, and the configuration of a so-called top gate has been described as an example, but the present invention is not limited to this.
  • the gate 24c may have a configuration of a bottom gate disposed between the channel 24a and the substrate via an insulating film.
  • the first electrode 81 is provided on the insulating film 85c, and is provided for each region LD.
  • the first electrode 81 is connected to the drain 88d.
  • the first electrode 81 has, for example, a rectangular shape.
  • the insulating films 85a, 85b, 85c are made of, for example, an insulating member such as a silicon nitride film (SiNx).
  • the first electrode 81 and the second electrode 82 are, for example, transparent electrodes made of indium tin oxide (ITO) or the like.
  • the lower alignment film 89 is provided on the uppermost side of the first substrate 80a, in other words, provided on the first electrode 81 and the insulating film 85c. That is, the lower alignment film 89 becomes the surface of the first substrate 80a on the liquid crystal layer LC2 side.
  • the liquid crystal element LC in the liquid crystal layer LC2 is aligned according to the initial alignment direction given to the lower alignment film 89. I do. For example, by rubbing the lower alignment film 89 on the surface on the liquid crystal layer LC2 side, a plurality of grooves are formed on the surface on the liquid crystal layer LC2 side in one direction, that is, along the rubbing direction.
  • the lower alignment film 89 may be, for example, a rubbed film of a polyimide (PI) -based alignment film material.
  • the lower alignment film 89 may be configured to be able to align the liquid crystal element LC in the initial alignment direction by a process other than rubbing such as optical alignment.
  • the lower alignment film 89 may be a photo alignment film. Since the lower alignment film 89 is an alignment film provided on the first substrate 80a side, the initial alignment direction of the lower alignment film 89 is lower than the second substrate 80b, that is, the lower side (upper side and lower side) of the light control panel 80. This is the initial orientation direction of the substrate on the opposite side).
  • the second substrate 80b has the upper alignment film 74, the second electrode 82, and the substrate 72 stacked (superposed) in the Z direction in this direction.
  • the upper alignment film 74 is the surface of the second substrate 80b on the liquid crystal layer LC2 side.
  • the initial alignment direction of the upper alignment film 74 is preferably orthogonal to the initial alignment direction of the lower alignment film 89, but the details of the initial alignment direction will be described later.
  • the upper alignment film 74 may be capable of aligning the liquid crystal element LC in the initial alignment direction by a rubbing process, or may be capable of aligning the liquid crystal element LC in the initial alignment direction by another process such as optical alignment. Orientation may be possible.
  • the upper alignment film 74 is an alignment film that is provided on the image display panel 30 side (upper side) of the lower alignment film 89 so as to face the lower alignment film 89. Further, since the upper alignment film 74 is an alignment film provided on the second substrate 80b side, the initial alignment direction of the upper alignment film 74 is on the second substrate 80b, that is, on the upper side (front side) of the light control panel 80. Is the initial orientation direction of the substrate.
  • the second electrode 82 is an electrode disposed to face the first electrode 81, and is a common electrode provided in the light control area DA of the light control panel 80 in the present embodiment. Note that the second electrode 82 may be configured with a plurality of block-shaped electrodes extending in the X direction or the Y direction in the light control area DA.
  • the substrate 72a is a substrate such as a glass substrate or a film substrate, and forms the uppermost surface of the second substrate 80b.
  • the light control panel 80 stacked in this manner transmits light irradiated from the light source unit 50 by the voltage applied between the first electrode 81 and the second electrode 82 within the liquid crystal layer LC2 so as to reduce the transmittance.
  • the light is transmitted to the rear surface 30 s of the image display panel 30 while being changed.
  • the alignment direction of the liquid crystal element LC changes according to an applied electric field (voltage).
  • the liquid crystal layer LC2 modulates light passing through the inside of the liquid crystal layer LC2 according to the state of the electric field.
  • the direction of the liquid crystal element LC changes due to an electric field (here, a horizontal electric field) applied between the second electrode 82 and the first electrode 81, and the amount of light transmitted through the liquid crystal layer LC2 changes.
  • the liquid crystal element LC is aligned based on the initial alignment direction defined in the lower alignment film 89 and the upper alignment film 74. ing. Then, when an electric field is applied between the second electrode 82 and the first electrode 81, the liquid crystal element LC is oriented in an alignment direction according to the strength of the applied electric field.
  • a predetermined output potential provided by the circuit section 90 is applied to the source 88b.
  • the drain 88d is electrically connected to the first electrode 81 via the wiring 86.
  • the switching element 88 switches whether or not the drain current flows through the first electrode 81 according to the presence or absence of a signal to the gate 88c.
  • the light control panel 80 is a vertical electric field type liquid crystal panel, and more specifically, a TN type liquid crystal panel.
  • the image analysis unit 11 performs an analysis process for specifying the gradation value of the pixel 48 driven at the highest gradation among the plurality of pixels 48 included in the display divided area PA.
  • the image analysis unit 11 individually performs an analysis process on each of the plurality of display divided areas PA.
  • the dimming control unit 12 controls the plurality of display divided areas PA such that the light amount corresponding to the gradation value of the pixel 48 driven at the highest gradation in each of the plurality of display divided areas PA is applied to each of the plurality of display divided areas PA.
  • the transmittance of each of the regions LD is determined.
  • the light amount required for the display divided area PA is the minimum.
  • the light amount becomes (0)
  • the transmittance of the area LD at the position corresponding to the display divided area PA becomes the lowest transmittance (0).
  • the tone value of the pixel 48 driven at the highest tone is
  • the light amount required for the position corresponding to the display divided area PA is
  • the transmittance of the region LD is the second lowest transmittance (0.25).
  • the amount of light required for the display divided area PA is the second largest light quantity (127), and the transmittance of the area LD corresponding to the display divided area PA is the second highest transmittance (0.5). Become.
  • the relationship between the light quantity required for the display divided area PA and the transmittance of the area LD is merely an example and is not limited to this. The specific relationship between the gradation value, the light quantity, and the transmittance is appropriately determined. Can be changed.
  • the image analysis unit 11 outputs information indicating the result of the analysis process to the light control unit 12 and the correction unit 14.
  • the dimming control unit 12 reflects, on the first signal DATA, information indicating the transmittance of each of the plurality of areas LD corresponding to the amount of light required for each of the plurality of display divided areas PA indicated by the analysis processing result.
  • the dimming signal DI is generated and output to the dimming buffer 13 and the correction unit 14.
  • the correction unit 14 performs a correction process of correcting the tone value of each of the plurality of pixels 48 included in each of the plurality of display divided areas PA according to the transmittance of each of the plurality of areas LD.
  • the correction process is a process in which the lowest transmittance is set to 0 and the highest transmittance is set to 1, and the reciprocal of the transmittance is multiplied by the gradation value.
  • the transmittance of the region LD at the position corresponding to the display divided region PA Is controlled so as to have the second highest transmittance, and the light amount applied to the display divided area PA becomes the second largest light amount (127).
  • the correction unit 14 updates the gradation value of the pixel 48 included in each of the plurality of display divided areas PA according to the transmittance of each of the plurality of areas LD. Note that the correction unit 14 may omit the correction process for the display divided area PA corresponding to the area LD having the maximum transmittance (1). Thus, the correction unit 14 corrects the signal output to the image display panel 30 according to the transmittance, and reflects the signal on the output image signal.
  • the image buffer 15 and the dimming buffer 13 are configured to function as a storage area configured by, for example, a RAM (Random Access Memory).
  • the synchronizer 16 is configured to output the image frame of the input signal IP that is the source of the output image signal OP stored in the image buffer 15 and the input signal IP that is the source of the local dimming signal DI stored in the dimming buffer 13.
  • the image buffer 15 and the dimming buffer 13 are output at the same timing by matching the image frame. This makes it possible to match the frame image displayed in the display area OA with the amount of light applied to the image display panel 30 when the frame image is displayed and output.
  • the light source control unit 17 outputs the light source driving signal BL to the light source unit 50 so as to operate the light source unit 50 during a period in which the local dimming signal DI is output in response to the input of the input signal IP.
  • the light source unit 50 turns on the plurality of light sources 51 according to the light source drive signal BL.
  • FIG. 10 is a flowchart illustrating an example of the flow of processing of the signal processing unit.
  • the image analysis unit 11 performs an analysis process and specifies the pixel 48 having the maximum gradation for each of the plurality of display divided areas PA (Step S1).
  • the dimming control unit 12 maps each of the plurality of areas LD included in the dimming area DA to the maximum gray level of each display division area PA according to the maximum gray level of each display division area PA specified in step S1. (Step S2). Specifically, the dimming control unit 12 generates, for example, a local dimming signal DI for setting each of the plurality of areas LD to have a transmittance corresponding to the maximum gradation for each display division area PA, and And the correction unit 14.
  • the correction unit 14 acquires the transmittance distribution of the light control area DA indicated by the transmittance of each of the plurality of areas LD output from the light control controller 12 (step S3).
  • the correction unit 14 corrects the gradation value of each pixel 48 according to the transmittance of each of the plurality of regions LD (Step S4).
  • the display device 1 has the configuration described above, and the light control panel 80 is superimposed on the image display panel 30.
  • the dimming panel 80 By providing the dimming panel 80 and controlling the transmittance of each region LD in this manner, it is possible to adjust the amount of light applied to the image display panel 30 and improve the contrast.
  • the display device 1 according to the present embodiment suppresses a decrease in luminance by devising the transmission axis direction of the lower polarizing plate 52, the initial alignment direction of the light control panel 80, and the like.
  • the transmission axis direction and the initial alignment direction will be described.
  • FIG. 11 is a schematic diagram illustrating the transmission axis direction and the initial alignment direction according to the first embodiment.
  • FIG. 11 shows the transmission axis direction or the initial alignment direction of each of the lower polarizing plate 52, the light control panel 80, the middle polarizing plate 54, the image display panel 30, and the upper polarizing plate 58 arranged along the Z direction.
  • the transmission axis direction is a direction along the transmission axis of the polarizing plate.
  • the transmission axis is an angle at which light that can be transmitted by the polarizing plate vibrates (polarization angle), and can be said to be a polarization axis.
  • the polarizing plate transmits light that vibrates in the X direction and does not transmit light that vibrates in a direction other than the X direction among the incident light.
  • the initial alignment direction is a direction set so that the liquid crystal element LC is aligned when no voltage (electric field) is applied to the liquid crystal panel.
  • the transmission axis direction of the lower polarizing plate 52 is referred to as a transmission axis direction D1.
  • the initial alignment direction of the first substrate 80a of the light control panel 80 that is, the initial alignment direction of the lower alignment film 89 is defined as the initial alignment direction D2
  • the initial alignment direction of the second substrate 80b of the light control panel 80 that is, the upper alignment direction.
  • the initial alignment direction of the film 74 is defined as an initial alignment direction D3.
  • the transmission axis direction of the middle polarizing plate 54 is defined as a transmission axis direction D4.
  • the initial alignment direction of the array substrate 30a of the image display panel 30, that is, the initial alignment direction of the lower alignment film 29 is defined as an initial alignment direction D5
  • the initial alignment direction of the counter substrate 30b of the image display panel 30, that is, the upper alignment film 32 Is referred to as an initial alignment direction D6
  • the transmission axis direction of the upper polarizing plate 58 is defined as a transmission axis direction D7.
  • a reference axis along a predetermined direction is set as a reference axis AX1
  • an axis orthogonal to the reference axis AX1 is set as a reference orthogonal axis AX2.
  • the reference axis AX1 may be an axis along any direction as long as it is an axis along the XY plane.
  • the reference axis AX1 is an axis along the X direction. That is, it can be said that the reference axis AX1 is a direction along one of the outer sides of the rectangular image display panel 30 or the light control panel 80, for example.
  • the reference orthogonal axis AX2 is an axis along the XY plane, and is an axis orthogonal to the reference axis AX1. Therefore, in the present embodiment, the reference orthogonal axis AX2 is an axis along the Y direction.
  • the liquid crystal element LC in the liquid crystal layer LC2 is aligned in a state where no voltage is applied to the first electrode 81 and the second electrode 82 due to the initial alignment direction D2 of the lower alignment film 89 and the initial alignment direction D3 of the upper alignment film 74.
  • the direction (initial alignment direction) is set. Specifically, the liquid crystal element LC in the liquid crystal layer LC2 is oriented so as to be gradually twisted about the Z direction as the center axis as going upward (toward the image display panel 30 from the lower polarizing plate 52). .
  • the liquid crystal element LC located near the lower alignment film 89 is aligned along the initial alignment direction D2 of the lower alignment film 89.
  • the plurality of liquid crystal elements LC in the liquid crystal layer LC2 gradually move from the initial alignment direction D2 of the lower alignment film 89 to the initial alignment direction D3 of the upper alignment film 74 toward the upper alignment film 74, that is, in the Z direction.
  • the alignment direction changes, and the liquid crystal element LC located near the upper alignment film 74 is aligned along the initial alignment direction D3 of the upper alignment film 74.
  • the plurality of liquid crystal elements LC in the liquid crystal layer LC2 are arranged in the initial alignment direction D3 as the upper alignment film 74 is arranged, and in the Z direction as the lower alignment film 89 is arranged in the initial alignment direction D2.
  • the initial alignment direction D2 of the lower alignment film 89 and the upper alignment film 74 are adjusted so that the twist direction of the liquid crystal element LC of the light control panel 80 is the clockwise direction T1 on the XY plane.
  • the initial alignment direction D3 is set. As shown in FIG.
  • the initial alignment direction D2 of the lower alignment film 89 is set so as to be directed to the X direction side
  • the initial alignment direction D3 of the upper alignment film 74 is set so as to be directed to the Y direction side.
  • the twist direction of the liquid crystal element LC of the light control panel 80 is the clockwise direction T1 on the XY plane.
  • the clockwise direction T1 is a clockwise direction with an axis orthogonal to the XY plane as a center axis.
  • the transmission axis direction D1 is the twist direction of the liquid crystal element LC of the light control panel 80 with respect to the reference axis AX1.
  • the transmission axis is set so as to incline in the same direction as.
  • the twisting direction of the liquid crystal element LC of the light control panel 80 is the clockwise direction T1. Therefore, in the first embodiment, the transmission axis direction D1 of the lower polarizing plate 52 is inclined in the clockwise direction T1 with respect to the reference axis AX1.
  • the medium polarizing plate 54 is set such that the transmission axis direction D4 is not inclined with respect to the reference orthogonal axis AX2 but is along (parallel to) the reference orthogonal axis AX2. I have. Therefore, the transmission axis direction D1 of the lower polarizing plate 52 is inclined in the same direction as the twist direction of the liquid crystal element LC (here, clockwise direction T1) with respect to an axis orthogonal to the transmission axis direction D4 of the middle polarizing plate 54. It can be said that.
  • the transmission axis direction D1 of the lower polarizing plate 52 is inclined with respect to the reference axis AX1, but is decomposed into a vector component in a direction along the reference axis AX1 and a vector component in a direction along the reference orthogonal axis AX2.
  • the vector component in the direction along the reference axis AX1 is higher than the vector component in the direction along the reference orthogonal axis AX2. That is, in the transmission axis direction D1, the inclination angle with respect to the reference axis AX1 is smaller than 45 degrees.
  • a preferable numerical range of the tilt angle will be described later.
  • the lower alignment film 89 of the first substrate 80a of the light control panel 80 has an initial alignment direction D2 in the XY plane (as viewed from the Z direction) whose liquid crystal element of the light control panel 80 is positioned with respect to the reference axis AX1.
  • the lower polarizing plate 52 is inclined in a direction opposite to the twisting direction of the LC, in other words, in a direction opposite to the direction in which the transmission axis direction D1 of the lower polarizing plate 52 is inclined with respect to the reference axis AX1. Therefore, in the first embodiment, the initial alignment direction D2 of the lower alignment film 89 is inclined in the counterclockwise direction T2 on the XY plane with respect to the reference axis AX1.
  • the counterclockwise direction T2 is a counterclockwise direction about an axis orthogonal to the XY plane as a center axis, and is a direction opposite to the clockwise direction T1.
  • the initial alignment direction D2 of the lower alignment film 89 is inclined with respect to the reference axis AX1, but is decomposed into a vector component in a direction along the reference axis AX1 and a vector component in a direction along the reference orthogonal axis AX2.
  • the vector component in the direction along the reference axis AX1 is higher than the vector component in the direction along the reference orthogonal axis AX2. That is, the inclination angle of the initial alignment direction D2 with respect to the reference axis AX1 is smaller than 45 degrees.
  • a preferable numerical range of the tilt angle will be described later.
  • the transmission axis direction D1 of the lower polarizing plate 52 is inclined in the clockwise direction T1 with respect to the reference axis AX1, and the initial alignment direction D2 of the lower alignment film 89 is inclined in the counterclockwise direction T2 with respect to the reference axis AX1. Therefore, it can be said that the transmission axis direction D1 of the lower polarizing plate 52 is not parallel and not orthogonal to the transmission axis direction of the light control panel 80, that is, the initial alignment direction D2 of the lower alignment film 89.
  • the transmission axis direction D1 of the lower polarizing plate 52 is not required to be parallel and perpendicular to the transmission axis direction of the light control panel 80, that is, the initial alignment direction D2 of the lower alignment film 89. It may be parallel or perpendicular to the axis AX1.
  • the initial alignment direction D2 of the lower alignment film 89 is not required to be parallel and not orthogonal to the transmission axis direction D1 of the lower polarizing plate 52.
  • the initial alignment direction D2 is parallel or orthogonal to the reference axis AX1. Is also good.
  • the transmission axis direction D1 of the lower polarizing plate 52 is inclined with respect to the reference axis AX1 in the same direction as the twisting direction of the liquid crystal element LC (here, clockwise direction T1).
  • the initial alignment direction D2 of the lower alignment film 89 is inclined with respect to the reference axis AX1 in a direction opposite to the direction of inclination of the transmission axis direction D1 of the lower polarizing plate 52 (here, a counterclockwise direction T2). Is preferred.
  • the upper alignment film 74 of the second substrate 80b of the light control panel 80 has a structure in which the initial alignment direction D3 is equal to the reference orthogonal axis AX2 in the XY plane (when viewed from the Z direction).
  • the element LC is tilted in the twisting direction, in other words, in the same direction as the direction in which the transmission axis direction D1 of the lower polarizing plate 52 is tilted with respect to the reference axis AX1. Therefore, in the first embodiment, the initial alignment direction D3 of the upper alignment film 74 is inclined in the clockwise direction T1 with respect to the reference orthogonal axis AX2.
  • the initial alignment direction D3 of the upper alignment film 74 is inclined with respect to the reference orthogonal axis AX2, it is decomposed into a vector component in a direction along the reference axis AX1 and a vector component in a direction along the reference orthogonal axis AX2.
  • the vector component in the direction along the reference orthogonal axis AX2 is higher than the vector component in the direction along the reference axis AX1. That is, the inclination angle of the initial alignment direction D2 with respect to the reference orthogonal axis AX2 is smaller than 45 degrees.
  • a preferable numerical range of the tilt angle will be described later.
  • the transmission axis direction D1 of the lower polarizing plate 52 does not necessarily need to be inclined with respect to the reference orthogonal axis AX2, and may be along the reference orthogonal axis AX2, for example.
  • the transmission axis direction D4 is not inclined with respect to the reference orthogonal axis AX2, and is along the reference orthogonal axis AX2 (parallel to the reference orthogonal axis AX2). Is set).
  • the initial alignment direction D5 is not inclined with respect to the reference orthogonal axis AX2 in the XY plane (as viewed from the Z direction), and (Parallel). That is, the initial alignment direction D5 of the lower alignment film 29 is along the transmission axis direction D4 of the middle polarizing plate 54.
  • the initial alignment direction D6 is along the initial alignment direction D5 of the lower alignment film 29 in the XY plane (as viewed from the Z direction). Parallel). That is, the initial alignment direction D6 of the upper alignment film 32 is along the reference orthogonal axis AX2, and more specifically, is along the transmission axis direction D4 of the middle polarizer 54.
  • the upper polarizing plate 58 is configured such that the transmission axis direction D7 is not inclined with respect to the reference axis AX1 and is along (referenced to) the reference axis AX1 in the XY plane (as viewed from the Z direction). Is set. That is, the transmission axis direction D7 of the upper polarizing plate 58 is orthogonal to the transmission axis direction D4 of the middle polarizing plate 54, the initial alignment direction D5 of the lower alignment film 29, and the initial alignment direction D6 of the upper alignment film 32. .
  • the angles of the transmission axis direction and the initial alignment direction described below indicate angles in the XY plane, that is, angles as viewed from the Z direction.
  • the angle of inclination of the transmission axis direction D1 of the lower polarizing plate 52 with respect to the reference axis AX1 is preferably, for example, not less than 0 degrees and not more than 5 degrees.
  • the magnitude of the angle at which the initial alignment direction D2 of the lower alignment film 89 is inclined with respect to the reference axis AX1 is preferably, for example, 0 degrees or more and 5 degrees or less.
  • the magnitude of the angle at which the initial alignment direction D3 of the upper alignment film 74 is inclined with respect to the reference orthogonal axis AX2 is preferably, for example, not less than 0 degrees and not more than 5 degrees. More specifically, the angle of the transmission axis direction D1 of the lower polarizing plate 52 with respect to the reference axis AX1, the angle of the initial alignment direction D2 of the lower alignment film 89 with respect to the reference axis AX1, and the upper alignment film It is preferable that the initial orientation direction D3 of 74 is equal to the angle of inclination with respect to the reference orthogonal axis AX2, but they may be different from each other.
  • FIG. 12 is a diagram illustrating the relationship between the transmission axis direction and the initial alignment direction in the first embodiment.
  • Angle theta 1 of Figure 12 is the angle between the initial orientation direction D2 of the transmission axis direction D1 and the lower alignment film 89 of the lower polarizing plate 52. That is, the initial alignment direction D2 of the lower alignment film 89 is counterclockwise T2 with respect to the transmission axis direction D1 of the lower polarizer 52, that is, in the direction opposite to the twisting direction of the liquid crystal element LC of the light control panel 80. It is inclined by an angle ⁇ 1.
  • Angle theta 1 is preferably less than 10 degrees than 0 degrees.
  • Angle theta 2 is preferably less 95 degrees 85 degrees. Since the angle theta 2 including the case is 90 degrees, the initial alignment direction D3 of the transmission axis direction D1 and the upper alignment film 74 of the lower polarizing plate 52 may be perpendicular.
  • the angle theta 3 in FIG. 12 is an angle formed between the transmission axis direction D4 of the transmission axis direction D1 and intermediate polarizing plate 54 of the lower polarizing plate 52. Angle theta 3 is preferably not more than 95 degrees 90 degrees.
  • the transmission axis direction D4 of the transmission axis direction D1 and intermediate polarizing plate 54 of the lower polarizer 52 may be perpendicular.
  • the transmission axis direction D4 of the intermediate polarizing plate 54 because it is along the reference orthogonal axis AX2, the angle theta 3 includes a transmission axis direction D1 and the reference quadrature axis AX2 of the lower polarizer 52 It can be said that it is the angle made.
  • the angle theta 4 in FIG. 12, an angle formed between the initial orientation direction D3 of the initial alignment direction D2 and the upper alignment film 74 of the lower alignment film 89.
  • Angle theta 4 is preferably 80 degrees or less than 90 degrees. Since the angle theta 2 including the case is 90 degrees, the initial alignment direction D3 of the initial alignment direction D2 and the upper alignment film 74 of the lower alignment film 89 may be orthogonal.
  • Angle theta 5 in FIG. 12 is an angle formed between the transmission axis direction D4 of the initial alignment direction D2 with intermediate polarizing plate 54 of the lower alignment layer 89. Angle theta 5 is preferably less 95 degrees 85 degrees.
  • the transmission axis direction D4 of the intermediate polarizing plate 54 and the initial alignment direction D2 of the lower alignment layer 89 may be orthogonal.
  • the angle ⁇ 5 is equal to the initial alignment direction D2 of the lower alignment film 89 and the reference orthogonal axis AX2. It can be said that it is the angle made.
  • the angle ⁇ 6 in FIG. 12 is an angle between the initial alignment direction D3 of the upper alignment film 74 and the transmission axis direction D4 of the middle polarizing plate 54.
  • the angle ⁇ 6 is preferably equal to or greater than 0 degrees and equal to or less than 5 degrees. Since the case where the angle ⁇ 6 is 0 degrees is included, the initial alignment direction D3 of the upper alignment film 74 and the transmission axis direction D4 of the middle polarizing plate 54 may be parallel.
  • the transmission axis direction D4 of the intermediate polarizing plate 54 because it is along the reference orthogonal axis AX2, the angle theta 5 is formed between the initial alignment direction D3 and the reference quadrature axis AX2 of the upper alignment film 74 It can be said that it is an angle.
  • FIG. 13 is a graph illustrating an example of the luminance of the display device according to the first embodiment.
  • the horizontal axis in FIG. 13 is the viewing angle, and the vertical axis is the luminance of the image.
  • the viewing angle refers to the angle of the viewpoint with respect to the screen of the display device. That is, when the viewing angle is 0 degrees, the viewpoint is in front of the screen of the display device, and as the viewing angle increases or decreases from 0 degrees, the viewpoint shifts from the front of the screen of the display device.
  • a line segment L1Z1 in FIG. 13 indicates the luminance at each viewing angle of the display device according to the first comparative example.
  • the display device according to the first comparative example has the layered structure shown in FIG.
  • the transmission axis and the initial alignment direction are parallel or orthogonal to each other. That is, in the display device according to the first comparative example, the transmission axis direction of the lower polarizing plate is perpendicular to the initial alignment direction of the lower alignment film of the light control panel, and the initial alignment direction of the lower alignment film of the light control panel is: The initial alignment direction of the upper alignment film of the light control panel is orthogonal to the initial alignment direction of the upper alignment film of the light control panel, and the transmission axis direction of the middle polarizer is parallel to the transmission axis direction of the middle polarizer.
  • the initial alignment direction of the lower alignment film and the upper alignment film of the image display panel is parallel, and the initial alignment direction of the lower alignment film and the upper alignment film of the image display panel is orthogonal to the transmission axis direction of the upper polarizing plate.
  • the twist direction of the liquid crystal element of the light control panel of the first comparative example is the same clockwise direction T1 as in the first embodiment.
  • a line segment L1 in FIG. 13 indicates the luminance for each viewing angle of the display device 1 according to the first embodiment.
  • the luminance of the display device 1 according to the first embodiment is higher than the luminance of the display device of the first comparative example indicated by the line segment L1Z1. That is, the brightness is increased by inclining the transmission axis and the initial alignment direction. More specifically, in the display device 1 according to the first embodiment, at least the transmission axis direction D1 of the lower polarizing plate 52 and the initial alignment direction D2 of the lower alignment film 89 of the light control panel 80 are not parallel and are not orthogonal. Is set as follows. Therefore, the light transmitted through the lower polarizing plate 52 is prevented from being completely blocked by the lower alignment film 89 of the light control panel 80. Therefore, according to the display device 1 according to the first embodiment, the amount of light transmitted through the light control panel 80 can be increased, and a decrease in luminance can be suppressed.
  • FIG. 14 is a graph showing an example of the contrast of the display device according to the first embodiment.
  • the horizontal axis in FIG. 14 is the viewing angle, and the vertical axis is the image contrast.
  • a line segment L2Z1 in FIG. 14 is a contrast for each viewing angle of the display device according to the first comparative example, and a line segment L2 is a contrast for each viewing angle of the display device 1 according to the first embodiment.
  • the display device 1 according to the first embodiment can increase the luminance while maintaining the contrast by tilting the transmission axis and the initial alignment direction.
  • the display device 1 includes the image display panel 30 having the plurality of pixels 48, the light source unit 50, the light control panel 80, and the lower polarizing plate 52.
  • the light source unit 50 is provided on the back surface 30 s side of the image display panel 30.
  • the light control panel 80 is provided between the image display panel 30 and the light source unit 50, and includes a lower alignment film 89 on the light source unit 50 side, a plurality of first electrodes 81 arranged in a matrix, and a lower alignment film 89.
  • An upper alignment film 74 provided on the image display panel 30 side of the lower alignment film 89 and the second electrode 82, and a liquid crystal layer LC2.
  • the light control panel 80 changes the transmittance of the light emitted from the light source unit 50 in the liquid crystal layer LC2 while changing the transmittance of the light, based on the voltage applied between the first electrode 81 and the second electrode 82.
  • the display panel 30 is configured to be able to transmit light to the back surface 30 s side.
  • the lower polarizing plate 52 is provided between the light control panel 80 and the light source unit 50.
  • the transmission axis direction D1 of the lower polarizing plate 52 is not parallel to the initial alignment direction D2 of the lower alignment film 89, and is along a direction that is not orthogonal.
  • This display device 1 improves the viewing angle characteristics by providing the light control panel 80 so as to be superimposed on the image display panel 30, and adjusts the transmission axis direction D1 of the lower polarizing plate 52 and the initial alignment direction of the light control panel 80. By not being parallel and not orthogonal, the amount of light transmitted through the light control panel 80 can be increased, and a decrease in luminance can be suppressed.
  • the transmission axis direction D1 of the lower polarizing plate 52 is one of clockwise and counterclockwise with respect to the reference axis AX1 along the predetermined direction (the clockwise direction T1 in the first embodiment).
  • the initial orientation direction D2 of the lower orientation film 89 is inclined to the other of the clockwise direction and the counterclockwise direction (the counterclockwise direction T2 side in the first embodiment) with respect to the reference axis.
  • this display device 1 by inclining the transmission axis direction D ⁇ b> 1 of the lower polarizing plate 52 and the initial alignment direction D ⁇ b> 2 of the lower alignment film 89 in the opposite directions, it is possible to appropriately suppress a decrease in luminance.
  • the initial alignment direction D3 of the upper alignment film 74 is one of clockwise and counterclockwise with respect to a reference orthogonal axis AX2 orthogonal to the reference axis AX1 (the clockwise direction T1 in the first embodiment). Leaning on. In this way, the display device 1 can appropriately suppress the decrease in luminance by tilting the initial alignment direction D3 of the upper alignment film 74 in the same direction as the transmission axis direction D1 of the lower polarizing plate 52.
  • the initial alignment direction D2 of the lower alignment film 89 and the initial alignment direction D3 of the upper alignment film 74 are determined by the state in which no voltage is applied to the first electrode 81 and the second electrode 82 of the liquid crystal element LC in the liquid crystal layer LC2. Then, as it goes from the lower polarizing plate 52 side to the image display panel 30 side (as it goes upward), it is twisted in one of clockwise and counterclockwise directions (clockwise direction T1 side in the first embodiment). Is set.
  • the display device 1 tilts the transmission axis direction D1 of the lower polarizing plate 52 in the same direction as the twisting direction of the liquid crystal element LC, and initializes the lower alignment film 89 in the direction opposite to the twisting direction of the liquid crystal element LC.
  • a decrease in luminance can be suitably suppressed.
  • the display device 1 includes a middle polarizing plate 54 provided between the light control panel 80 and the image display panel 30, and an upper polarizing plate 58 provided on the front surface 30 t opposite to the back surface 30 s of the image display panel 30. And In this display device 1, the lower polarizing plate 52, the light control panel 80, the middle polarizing plate 54, the image display panel 30, and the upper polarizing plate 58 are arranged in this order, so that the viewing angle characteristics are improved and the luminance is reduced. Can be suppressed.
  • the transmission axis direction D4 of the middle polarizing plate 54 is along the reference orthogonal axis AX2 orthogonal to the reference axis AX1.
  • the initial alignment directions D5 and D6 of the image display panel 30 are along the reference orthogonal axis AX2, and the transmission axis direction D7 of the upper polarizing plate 58 is along the reference axis AX1.
  • the display device 1A according to the first modified example is different from the first embodiment in the twist direction of the liquid crystal element LC.
  • description of portions having the same configuration as the first embodiment will be omitted.
  • FIG. 15 is a schematic diagram illustrating a transmission axis direction and an initial alignment direction according to a first modification.
  • the initial alignment of the lower alignment film 89 is performed so that the twisting direction of the liquid crystal element LC of the light control panel 80 is the counterclockwise direction T2 on the XY plane.
  • the direction D2 and the initial alignment direction D3 of the upper alignment film 74 are set. That is, the twisting direction of the liquid crystal element LC in the first modification is opposite to that in the first embodiment.
  • FIG. 15 is a schematic diagram illustrating a transmission axis direction and an initial alignment direction according to a first modification.
  • the initial alignment direction D2A of the lower alignment film 89 is set so as to face the X direction
  • the initial alignment direction D3A of the upper alignment film 74 is set so as to face the direction opposite to the Y direction. Accordingly, the twisting direction of the liquid crystal element LC of the light control panel 80 becomes the counterclockwise direction T2 on the XY plane.
  • the initial alignment direction D2A of the lower alignment film 89 is set to be in the same direction as the initial alignment direction D2 of the lower alignment film 89 of the first embodiment
  • the initial alignment direction D3A of the upper alignment film 74 is The first alignment direction is set to be opposite to the initial alignment direction D3 of the upper alignment film 74 of the first embodiment.
  • the transmission axis direction D1A of the lower polarizing plate 52 in the first modified example is, with respect to the reference axis AX1, in the XY plane (as viewed from the Z direction), the liquid crystal element LC of the light control panel 80.
  • the transmission axis direction D1A of the lower polarizing plate 52 is the same as the twist direction of the liquid crystal element LC (here, the anti-twist direction) with respect to the axis orthogonal to the transmission axis direction D4A of the middle polarizing plate 54 of the first modification. It can also be said that it is inclined in the clockwise direction T2).
  • the transmission axis direction D1A of the lower polarizing plate 52 is similar to the transmission axis direction D1 of the first embodiment in that the vector component in the direction along the reference axis AX1 is smaller than the vector component in the direction along the reference orthogonal axis AX2. Is also higher.
  • the initial alignment direction D2A of the lower alignment film 89 of the light control panel 80 according to the first modified example is different from the reference axis AX1 in the XY plane (as viewed from the Z direction). It is inclined in the direction opposite to the twisting direction of the LC (the direction opposite to the inclination of the transmission axis direction D1 of the lower polarizing plate 52), that is, in the clockwise direction T1.
  • the vector component in the direction along the reference axis AX1 is smaller than the vector component in the direction along the reference orthogonal axis AX2. Is also higher.
  • the initial alignment direction D3A of the upper alignment film 74 of the light control panel 80 according to the first modified example is different from the reference orthogonal axis AX2 in the XY plane (as viewed from the Z direction).
  • the element LC is inclined in the same direction as the twisting direction (the same direction as the inclination of the transmission axis direction D1 of the lower polarizing plate 52), that is, in the counterclockwise direction T2.
  • the initial alignment direction D3A of the upper alignment film 74 is similar to the initial alignment direction D3 of the first embodiment in that the vector component in the direction along the reference orthogonal axis AX2 is smaller than the vector component in the direction along the reference axis AX1. Is also higher.
  • the transmission axis direction D4A of the middle polarizing plate 54 according to the first modification is the same as the transmission axis direction D4 of the middle polarizing plate 54 according to the first embodiment.
  • the initial alignment direction D5A of the lower alignment film 29 and the initial alignment direction D6A of the upper alignment film 32 according to the first modification are the initial alignment direction D5 and the initial alignment direction according to the first embodiment, respectively. It is the same direction as the direction D6.
  • the transmission axis direction D7A of the upper polarizing plate 58 according to the first modification is the same as the transmission axis direction D7 of the upper polarizing plate 58 according to the first embodiment.
  • FIG. 16 is a diagram showing the relationship between the transmission axis direction and the initial alignment direction in the first modification.
  • the angle ⁇ 1A in FIG. 16 is an angle between the transmission axis direction D1A of the lower polarizing plate 52 and the initial alignment direction D2A of the lower alignment film 89. That is, the initial alignment direction D2A of the lower alignment film 89 is angled with respect to the transmission axis direction D1A of the lower polarizing plate 52 in the clockwise direction T1, that is, in the direction opposite to the twisting direction of the liquid crystal element LC of the light control panel 80. It is inclined by ⁇ 1A .
  • the angle ⁇ 1A is preferably greater than 0 degrees and 10 degrees or less.
  • the angle ⁇ 2A is the angle between the transmission axis direction D1A of the lower polarizing plate 52 and the initial alignment direction D3A of the upper alignment film 74. It is preferable that the angle ⁇ 2A is not less than 85 degrees and not more than 95 degrees.
  • the angle ⁇ 3A is an angle between the transmission axis direction D1A of the lower polarizing plate 52 and the transmission axis direction D4A of the middle polarizing plate 54. It is preferable that the angle ⁇ 3A is not less than 90 degrees and not more than 95 degrees.
  • the angle ⁇ 4A in FIG. 16 is the angle between the initial alignment direction D2A of the lower alignment film 89 and the initial alignment direction D3A of the upper alignment film 74.
  • the angle ⁇ 4A is preferably 80 degrees or more and 90 degrees or less.
  • the angle ⁇ 5A is an angle formed between the initial alignment direction D2A of the lower alignment film 89 and the transmission axis direction D4A of the middle polarizing plate 54. It is preferable that the angle ⁇ 5A is not less than 85 degrees and not more than 95 degrees.
  • the angle ⁇ 6A is an angle formed between the initial alignment direction D3A of the upper alignment film 74 and the transmission axis direction D4A of the middle polarizing plate 54.
  • the angle ⁇ 6A is preferably equal to or greater than 0 degree and equal to or less than 5 degrees.
  • the twisting direction of the liquid crystal element LC of the light control panel 80 is opposite to that of the first embodiment, so that the direction of the transmission axis direction D1A of the lower polarizing plate 52 is inclined.
  • the direction in which the initial alignment direction D2A of the lower alignment film 89 tilts and the direction in which the initial alignment direction D3A of the upper alignment film 74 tilts are also opposite to those in the first embodiment.
  • the display device 1A according to the first modified example has the transmission axis direction D1A of the lower polarizing plate 52 and the initial alignment direction D2A of the lower alignment film 89 of the light control panel 80, like the display device 1 according to the first embodiment. By not being parallel and not orthogonal, it is possible to suppress a decrease in luminance.
  • FIG. 17 is a graph illustrating an example of the luminance of the display device according to the first modification.
  • a line segment L1Z2 in FIG. 17 indicates the luminance at each viewing angle of the display device according to the second comparative example.
  • the twisting direction of the liquid crystal element of the light control panel is the counterclockwise direction T2 opposite to the first comparative example, but the other configurations are the same as those of the first comparative example. Is the same.
  • a line segment L1A in FIG. 17 indicates the luminance for each viewing angle of the display device 1A according to the first modification. As shown in FIG. 17, the brightness of the display device 1A according to the first modified example is higher than the brightness of the display device of the second comparative example.
  • FIG. 18 is a graph showing an example of the contrast of the display device according to the first modification.
  • the line segment L2Z2 in FIG. 18 is the contrast for each viewing angle of the display device according to the second comparative example, and the line segment L2A is the contrast for each viewing angle of the display device 1A according to the first modification.
  • the display device 1A according to the first modification can increase the luminance while maintaining the contrast by tilting the transmission axis and the initial alignment direction.
  • the display device 1B according to the second embodiment is also inclined in the transmission axis direction of the middle polarizer 54, the initial alignment direction of the image display panel 30, and the initial alignment direction of the upper polarizer 58, in the first embodiment. And different. In the second embodiment, description of portions having the same configuration as the first embodiment will be omitted.
  • FIG. 19 is a schematic diagram illustrating the transmission axis direction and the initial alignment direction according to the second embodiment.
  • the initial alignment direction of the lower alignment film 89 is set such that the twist direction of the liquid crystal element LC of the light control panel 80 is the clockwise direction T1 on the XY plane.
  • D2 and the initial alignment direction D3 of the upper alignment film 74 are set. That is, the twist direction of the liquid crystal element LC in the second embodiment is the same as that in the first embodiment.
  • the transmission axis direction D1B of the lower polarizing plate 52 in the second embodiment is the same as the transmission axis direction D1 in the first embodiment.
  • the initial alignment direction D2B of the lower alignment film 89 of the light control panel 80 according to the second embodiment is the same as the initial alignment direction D2 in the first embodiment.
  • the initial alignment direction D3B of the upper alignment film 74 of the light control panel 80 according to the second embodiment is the same as the initial alignment direction D3 in the first embodiment.
  • the transmission axis direction D4B in the XY plane (as viewed from the Z direction), has a twist of the liquid crystal element LC of the light control panel 80 with respect to the reference orthogonal axis AX2.
  • the transmission axis direction D1B of the lower polarizing plate 52 is inclined in the opposite direction to the reference axis AX1. Therefore, in the second embodiment, the transmission axis direction D4B of the middle polarizer 54 is inclined in the counterclockwise direction T2 with respect to the reference orthogonal axis AX2.
  • the transmission axis direction D4B of the middle polarizing plate 54 is inclined with respect to the reference orthogonal axis AX2, the vector component in the direction along the reference orthogonal axis AX2 is larger than the vector component in the direction along the reference axis AX1. Is getting higher. That is, in the transmission axis direction D4B, the inclination angle with respect to the reference orthogonal axis AX2 is smaller than 45 degrees. However, a preferable numerical range of the tilt angle will be described later.
  • the lower alignment film 29 of the image display panel 30 in the second embodiment has an initial alignment direction D5B in the XY plane (as viewed from the Z direction) of the light control panel 80 with respect to the reference orthogonal axis AX2.
  • the transmission axis direction D1B of the lower polarizing plate 52 is inclined in a direction opposite to the direction in which the liquid crystal element LC is twisted, in other words, in a direction opposite to the direction in which the transmission axis direction D1B of the lower polarizing plate 52 is inclined with respect to the reference axis AX1. Therefore, in the second embodiment, the initial alignment direction D5B of the lower alignment film 29 is inclined in the counterclockwise direction T2 with respect to the reference orthogonal axis AX2.
  • the initial alignment direction D5B of the lower alignment film 29 is inclined with respect to the reference orthogonal axis AX2, the vector component in the direction along the reference orthogonal axis AX2 is larger than the vector component in the direction along the reference axis AX1. Is getting higher. That is, in the transmission axis direction D4B, the inclination angle with respect to the reference orthogonal axis AX2 is smaller than 45 degrees.
  • the initial alignment direction D6B is along the initial alignment direction D5B of the lower alignment film 29.
  • the transmission axis direction D7B in the XY plane (as viewed from the Z direction), has a twist of the liquid crystal element LC of the light control panel 80 with respect to the reference axis AX1.
  • the transmission axis direction D1B of the lower polarizer 52 is inclined in the same direction as the reference axis AX1. Therefore, in the second embodiment, the transmission axis direction D7B of the upper polarizing plate 58 is inclined in the clockwise direction T1 with respect to the reference axis AX1.
  • the transmission axis direction D7B of the upper polarizing plate 58 is inclined with respect to the reference axis AX1, the vector component in the direction along the reference axis AX1 is higher than the vector component in the direction along the reference orthogonal axis AX2. Has become. That is, in the transmission axis direction D4B, the inclination angle with respect to the reference axis AX1 is smaller than 45 degrees.
  • the magnitude of the angle at which the transmission axis direction D4B of the middle polarizing plate 54 is inclined with respect to the reference orthogonal axis AX2 is, for example, 0 degrees or more and 5 degrees or less. Further, the magnitude of the angle at which the initial alignment directions D5B and D6B of the image display panel 30 are inclined with respect to the reference orthogonal axis AX2 is preferably, for example, 0 degrees or more and 5 degrees or less.
  • the magnitude of the angle at which the transmission axis direction D7B of the upper polarizing plate 58 is inclined with respect to the reference axis AX1 is, for example, 0 degrees or more and 5 degrees or less. More specifically, the magnitude of the angle at which the transmission axis direction D4B of the middle polarizing plate 54 is inclined with respect to the reference orthogonal axis AX2, and the magnitude of the angle at which the initial orientation directions D5B and D6B of the image display panel 30 are inclined with respect to the reference orthogonal axis AX2.
  • the angle of inclination of the transmission axis direction D7B of the upper polarizing plate 58 with respect to the reference axis AX1 is preferably equal, but may be different from each other.
  • the transmission axis directions D1B, D4B, and D7B and the initial alignment directions D2B, D3B, D5B, and D6B are preferably equal in inclination angle, they may be different from each other.
  • FIG. 20 is a diagram illustrating the relationship between the transmission axis direction and the initial alignment direction in the second embodiment.
  • the angle ⁇ 1B in FIG. 20 is an angle between the transmission axis direction D1B of the lower polarizing plate 52 and the initial alignment direction D2B of the lower alignment film 89. That is, the initial alignment direction D2B of the lower alignment film 89 is in a counterclockwise direction T2 with respect to the transmission axis direction D1B of the lower polarizing plate 52, that is, in a direction opposite to the twisting direction of the liquid crystal element LC of the light control panel 80. It is inclined by the angle ⁇ 1B .
  • the angle ⁇ 1B is preferably greater than 0 degrees and equal to or less than 10 degrees.
  • the angle ⁇ 2B is an angle between the transmission axis direction D1B of the lower polarizing plate 52 and the initial alignment direction D3B of the upper alignment film 74. It is preferable that the angle ⁇ 2B is not less than 85 degrees and not more than 95 degrees.
  • the angle ⁇ 3B is an angle formed between the transmission axis direction D1B of the lower polarizing plate 52 and the transmission axis direction D4B of the middle polarizing plate 54.
  • the angle ⁇ 3B is preferably 90 degrees or more and 100 degrees or less.
  • the angle ⁇ 7B is an angle between the transmission axis direction D1B of the lower polarizing plate 52 and the initial alignment directions D5B and D6B of the image display panel 30.
  • the angle ⁇ 7B is preferably 90 degrees or more and 100 degrees or less.
  • the angle ⁇ 8B is an angle between the transmission axis direction D1B of the lower polarizing plate 52 and the transmission axis direction D7B of the upper polarizing plate 58.
  • the angle ⁇ 8B is preferably equal to or greater than 0 degrees and equal to or less than 5 degrees.
  • the angle ⁇ 4A in FIG. 20 is the angle between the initial alignment direction D2B of the lower alignment film 89 and the initial alignment direction D3B of the upper alignment film 74.
  • Angle ⁇ 4B is preferably 80 degrees or more and 90 degrees or less.
  • the angle ⁇ 5B is an angle formed between the initial alignment direction D2B of the lower alignment film 89 and the transmission axis direction D4B of the middle polarizing plate 54.
  • the angle ⁇ 5B is preferably 85 degrees or more and 100 degrees or less.
  • the angle ⁇ 9B is an angle between the initial alignment direction D2B of the lower alignment film 89 and the initial alignment directions D5B and D6B of the image display panel 30. It is preferable that the angle ⁇ 9B is not less than 85 degrees and not more than 100 degrees.
  • the angle ⁇ 10B is an angle between the initial alignment direction D2B of the lower alignment film 89 and the transmission axis direction D7B of the upper polarizing plate 58.
  • the angle ⁇ 10B is preferably equal to or greater than 0 degree and equal to or less than 10 degrees.
  • the angle ⁇ 6B in FIG. 20 is an angle between the initial alignment direction D3B of the upper alignment film 74 and the transmission axis direction D4B of the middle polarizer 54. Angle ⁇ 6B is preferably equal to or greater than 0 degrees and equal to or less than 10 degrees.
  • the angle ⁇ 11B is an angle between the initial alignment direction D3B of the upper alignment film 74 and the initial alignment directions D5B and D6B of the image display panel 30.
  • the angle ⁇ 11B is preferably equal to or greater than 0 degrees and equal to or less than 10 degrees.
  • the angle ⁇ 12B is an angle formed between the initial alignment direction D3B of the upper alignment film 74 and the transmission axis direction D7B of the upper polarizing plate 58. It is preferable that the angle ⁇ 12B is not less than 85 degrees and not more than 95 degrees.
  • the angle ⁇ 13B in FIG. 20 is the angle between the transmission axis direction D4B of the middle polarizer 54 and the initial alignment directions D5B and D6B of the image display panel 30.
  • the angle ⁇ 13B is preferably equal to or greater than 0 degree and equal to or less than 5 degrees.
  • the angle ⁇ 14B is an angle formed between the transmission axis direction D4B of the middle polarizing plate 54 and the transmission axis direction D7B of the upper polarizing plate 58.
  • the angle ⁇ 14B is preferably 90 degrees or more and 100 degrees or less.
  • the angle ⁇ 15B in FIG. 20 is an angle formed between the initial alignment directions D5B and D6B of the image display panel 30 and the transmission axis direction D7B of the upper polarizing plate 58.
  • the angle ⁇ 15B is preferably equal to or greater than 90 degrees and equal to or less than 100 degrees.
  • the display device 1B according to the second embodiment includes the transmission axis direction D1B of the lower polarizing plate 52 and the initial alignment direction D2B of the lower alignment film 89 of the light control panel 80, as in the first embodiment.
  • the transmission axis direction D1B of the lower polarizing plate 52 and the initial alignment direction D2B of the lower alignment film 89 of the light control panel 80 are not parallel and not orthogonal to each other, it is possible to suppress a decrease in luminance.
  • the transmission axis direction D4B of the middle polarizing plate 54 is on the other side (here, counterclockwise direction T2) of the clockwise direction and the counterclockwise direction with respect to the reference orthogonal axis AX2. Leaning. In this manner, the display device 1B can appropriately suppress the decrease in luminance by tilting the transmission axis direction D4B of the middle polarizing plate 54 in the direction opposite to the transmission axis direction D1 of the lower polarizing plate 52.
  • the initial orientation directions D5B and D6B of the image display panel 30 are inclined to the other side (here, the counterclockwise direction T2) of the clockwise direction and the counterclockwise direction with respect to the reference orthogonal axis AX2.
  • the transmission axis direction D7B of the plate 58 is inclined with respect to the reference axis AX1 in one of clockwise and counterclockwise directions (here, clockwise direction T1).
  • the display device 1B can appropriately suppress the decrease in luminance by tilting the initial alignment directions D5B and D6B of the image display panel 30 and the transmission axis direction D7B of the upper polarizing plate 58.
  • FIG. 21 is a graph illustrating an example of the luminance of the display device according to the second embodiment.
  • a line segment L1Z1 in FIG. 21 indicates the luminance at each viewing angle of the display device according to the first comparative example.
  • the line segment L1B indicates the luminance for each viewing angle of the display device 1B according to the second embodiment.
  • the brightness of the display device 1B according to the second embodiment is higher than the brightness of the display device of the first comparative example.
  • FIG. 22 is a graph showing an example of the contrast of the display device according to the second embodiment.
  • a line segment L2Z1 in FIG. 22 is a contrast for each viewing angle of the display device according to the first comparative example
  • a line segment L2B is a contrast for each viewing angle of the display device 1B according to the second embodiment.
  • the display device 1B according to the second embodiment can increase the luminance while maintaining the contrast by tilting the transmission axis and the initial alignment direction.
  • FIG. 23 is a schematic diagram illustrating the transmission axis direction and the initial alignment direction according to the second modification.
  • the initial alignment of the lower alignment film 89 is performed so that the twisting direction of the liquid crystal element LC of the light control panel 80 is the counterclockwise direction T2 on the XY plane.
  • the direction D2C and the initial alignment direction D3C of the upper alignment film 74 are set.
  • the transmission axis direction D1C of the lower polarizing plate 52 in the second modification is the same as the transmission axis direction D1A (see FIG. 15) in the first modification.
  • the initial alignment direction D2C of the lower alignment film 89 of the light control panel 80 according to the second modification is the same as the initial alignment direction D2A (see FIG. 15) in the first modification.
  • the initial alignment direction D3C of the upper alignment film 74 of the light control panel 80 according to the second modification is the same as the initial alignment direction D3A (see FIG. 15) in the first modification.
  • the twisting direction of the liquid crystal element LC of the light control panel 80 is opposite to that of the second embodiment, so that the tilt direction of the transmission axis direction D1C of the lower polarizing plate 52 and the lower alignment film
  • the direction of inclination of the initial alignment direction D2C of 89 and the direction of inclination of the initial alignment direction D3C of the upper alignment film 74 are also opposite to those in the second embodiment.
  • the transmission axis direction D4C of the middle polarizing plate 54 in the second modification is the twist direction of the liquid crystal element LC of the light control panel 80 with respect to the reference orthogonal axis AX2 on the XY plane (as viewed from the Z direction).
  • the transmission axis direction D4C of the middle polarizing plate 54 is inclined in the counterclockwise direction T2 with respect to the reference orthogonal axis AX2.
  • the transmission axis direction D4C of the middle polarizing plate 54 is inclined in the counterclockwise direction T2 as in the second embodiment, but the twisting direction of the liquid crystal element LC of the light control panel 80 and the transmission axis direction of the lower polarizing plate 52 are different.
  • the direction of inclination of the direction D1C relative to the direction of inclination is opposite to that of the second embodiment.
  • the vector component in the direction along the reference orthogonal axis AX2 is higher than the vector component in the direction along the reference axis AX1.
  • the initial alignment direction D5C of the lower alignment film 29 of the image display panel 30 in the second modified example is such that the liquid crystal of the light control panel 80 is aligned with respect to the reference orthogonal axis AX2 on the XY plane (as viewed from the Z direction).
  • the element LC is tilted in the same direction as the twisting direction, in other words, in the same direction as the direction in which the transmission axis direction D1C of the lower polarizing plate 52 is tilted with respect to the reference axis AX1. Therefore, in the second modification, the initial alignment direction D5C of the lower alignment film 29 is inclined in the counterclockwise direction T2 with respect to the reference orthogonal axis AX2.
  • the initial alignment direction D5C of the lower alignment film 29 is inclined in the counterclockwise direction T2 as in the second embodiment, the twisting direction of the liquid crystal element LC of the light control panel 80 and the transmission axis of the lower polarizing plate 52 are different.
  • the direction of inclination of the direction D1C relative to the direction of inclination is opposite to that of the second embodiment.
  • the vector component in the direction along the reference orthogonal axis AX2 is higher than the vector component in the direction along the reference axis AX1.
  • the initial alignment direction D6C of the upper alignment film 32 of the image display panel 30 in the second modification is along the initial alignment direction D5C of the lower alignment film 29.
  • the transmission axis direction D7C of the upper polarizing plate 58 in the second modified example is the twist direction of the liquid crystal element LC of the light control panel 80 with respect to the reference axis AX1 on the XY plane (as viewed from the Z direction).
  • the transmission axis direction D7C of the upper polarizing plate 58 is inclined in the clockwise direction T1 with respect to the reference axis AX1.
  • the transmission axis direction D7C of the upper polarizing plate 58 is inclined in the clockwise direction T1 as in the second embodiment, but the twist direction of the liquid crystal element LC of the light control panel 80 and the transmission axis direction of the lower polarizing plate 52.
  • the inclination direction relative to the inclination direction of D1C is opposite to that of the second embodiment.
  • the vector component in the direction along the reference axis AX1 is higher than the vector component in the direction along the reference orthogonal axis AX2.
  • the magnitude of the angle at which the transmission axis direction D7C of 58 is inclined with respect to the reference axis AX1 is the same as in the second embodiment.
  • FIG. 24 is a diagram illustrating the relationship between the transmission axis direction and the initial alignment direction in the second modification.
  • Angle theta 1C of FIG. 24 an angle formed between the initial orientation direction D2C the transmission axis direction D1C and the lower alignment film 89 of the lower polarizing plate 52. That is, the initial alignment direction D2C of the lower alignment film 89 is angled with respect to the transmission axis direction D1C of the lower polarizing plate 52 in the clockwise direction T1, that is, in the direction opposite to the twisting direction of the liquid crystal element LC of the light control panel 80. It is inclined by ⁇ 1C .
  • the angle ⁇ 1C is preferably greater than 0 degree and equal to or less than 10 degrees.
  • the angle ⁇ 2C is an angle between the transmission axis direction D1C of the lower polarizing plate 52 and the initial alignment direction D3C of the upper alignment film 74. It is preferable that the angle ⁇ 2C is not less than 85 degrees and not more than 95 degrees.
  • the angle ⁇ 3C is an angle formed between the transmission axis direction D1C of the lower polarizing plate 52 and the transmission axis direction D4C of the middle polarizing plate 54.
  • the angle ⁇ 3C is preferably 85 degrees or more and 95 degrees or less.
  • the angle ⁇ 7C is an angle between the transmission axis direction D1C of the lower polarizing plate 52 and the initial alignment directions D5C and D6C of the image display panel 30.
  • Angle ⁇ 7C is preferably not less than 85 degrees and not more than 95 degrees.
  • the angle ⁇ 8C is the angle between the transmission axis direction D1C of the lower polarizing plate 52 and the transmission axis direction D7C of the upper polarizing plate 58.
  • the angle ⁇ 7C is preferably equal to or greater than 0 degree and equal to or less than 10 degrees.
  • the angle ⁇ 4C in FIG. 24 is the angle between the initial alignment direction D2C of the lower alignment film 89 and the initial alignment direction D3C of the upper alignment film 74.
  • the angle ⁇ 4C is preferably 90 degrees or more and 100 degrees or less.
  • the angle ⁇ 5C is an angle formed between the initial alignment direction D2C of the lower alignment film 89 and the transmission axis direction D4C of the middle polarizing plate 54.
  • Angle ⁇ 5C is preferably 90 degrees or more and 100 degrees or less.
  • the angle ⁇ 9C is an angle between the initial alignment direction D2C of the lower alignment film 89 and the initial alignment directions D5C and D6C of the image display panel 30.
  • the angle ⁇ 9C is preferably 90 degrees or more and 100 degrees or less.
  • the angle ⁇ 10C is an angle between the initial alignment direction D2C of the lower alignment film 89 and the transmission axis direction D7C of the upper polarizing plate 58.
  • the angle ⁇ 10C is preferably equal to or greater than 0 degree and equal to or less than 5 degrees.
  • the angle ⁇ 6C in FIG. 24 is the angle between the initial alignment direction D3C of the upper alignment film 74 and the transmission axis direction D4C of the middle polarizer 54.
  • the angle ⁇ 6C is preferably equal to or greater than 0 degrees and equal to or less than 5 degrees.
  • the angle ⁇ 11C is an angle between the initial alignment direction D3C of the upper alignment film 74 and the initial alignment directions D5C and D6C of the image display panel 30.
  • the angle ⁇ 11C is preferably equal to or greater than 0 degree and equal to or less than 5 degrees.
  • the angle ⁇ 12C is an angle between the initial alignment direction D3C of the upper alignment film 74 and the transmission axis direction D7C of the upper polarizing plate 58.
  • the angle ⁇ 12C is preferably 90 degrees or more and 100 degrees or less.
  • the angle ⁇ 13C in FIG. 24 is an angle between the transmission axis direction D4C of the middle polarizing plate 54 and the initial alignment directions D5C and D6C of the image display panel 30.
  • the angle ⁇ 13C is preferably equal to or greater than 0 degree and equal to or less than 5 degrees.
  • the angle ⁇ 14C is an angle between the transmission axis direction D4C of the middle polarizing plate 54 and the transmission axis direction D7C of the upper polarizing plate 58.
  • the angle ⁇ 14C is preferably 90 degrees or more and 100 degrees or less.
  • the angle theta 15C of FIG. 24 is an angle formed between the transmission axis direction D7C initial alignment direction D5C, D6C the upper polarizing plate 58 of the image display panel 30.
  • the angle ⁇ 15C is preferably 90 degrees or more and 100 degrees or less.
  • the display device 1C according to the second modification is similar to the display device 1B according to the second embodiment in that the transmission axis direction D1C of the lower polarizing plate 52 and the initial alignment direction D2C of the lower alignment film 89 of the light control panel 80 are different. By not being parallel and not orthogonal, it is possible to suppress a decrease in luminance.
  • FIG. 25 is a graph showing an example of the luminance of the display device according to the second modification.
  • a line segment L1Z2 in FIG. 25 indicates the luminance for each viewing angle of the display device according to the second comparative example.
  • the line segment L1C indicates the luminance for each viewing angle of the display device 1C according to the second modification. As shown in FIG. 25, the luminance of the display device 1C according to the second modification is higher than the luminance of the display device of the second comparative example.
  • FIG. 26 is a graph showing an example of the contrast of the display device according to the second modification.
  • the line segment L2Z2 in FIG. 26 is the contrast for each viewing angle of the display device according to the second comparative example
  • the line segment L2C is the contrast for each viewing angle of the display device 1C according to the second modification.
  • the display device 1C according to the second modification can increase the luminance while maintaining the contrast by tilting the transmission axis and the initial alignment direction.
  • the display device 1C according to the third embodiment differs from the second embodiment in the transmission axis direction of the middle polarizer 54, the initial orientation direction of the image display panel 30, and the initial orientation direction of the upper polarizer 58. .
  • description of portions having the same configuration as the second embodiment will be omitted.
  • FIG. 27 is a schematic diagram illustrating a transmission axis direction and an initial alignment direction according to the third embodiment.
  • the initial alignment direction of the lower alignment film 89 is set such that the twisting direction of the liquid crystal element LC of the light control panel 80 is the clockwise direction T1 on the XY plane.
  • D2 and the initial alignment direction D3 of the upper alignment film 74 are set. That is, the twist direction of the liquid crystal element LC in the third embodiment is the same as that in the second embodiment.
  • the transmission axis direction D1D of the lower polarizing plate 52 in the third embodiment is the same as the transmission axis direction D1B in the second embodiment.
  • the initial alignment direction D2D of the lower alignment film 89 of the light control panel 80 according to the third embodiment is the same as the initial alignment direction D2B in the second embodiment.
  • the initial alignment direction D3D of the upper alignment film 74 of the light control panel 80 according to the third embodiment is the same as the initial alignment direction D3B in the second embodiment.
  • the transmission axis direction D4D of the liquid crystal element LC of the light control panel 80 is twisted with respect to the reference orthogonal axis AX2 on the XY plane (as viewed from the Z direction).
  • the transmission axis direction D1D of the lower polarizer 52 is inclined in the same direction as the reference axis AX1. Therefore, in the third embodiment, the transmission axis direction D4D of the middle polarizing plate 54 is inclined in the clockwise direction T1 with respect to the reference orthogonal axis AX2.
  • the vector component in the direction along the reference orthogonal axis AX2 is higher than the vector component in the direction along the reference axis AX1. That is, in the transmission axis direction D4D, the inclination angle with respect to the reference orthogonal axis AX2 is smaller than 45 degrees.
  • the lower alignment film 29 of the image display panel 30 has an initial alignment direction D5D of the light control panel 80 with respect to the reference orthogonal axis AX2 in the XY plane (as viewed from the Z direction).
  • the liquid crystal element LC is tilted in the same direction as the twisting direction, in other words, in the same direction as the transmission axis direction D1D of the lower polarizing plate 52 is tilted with respect to the reference axis AX1. Therefore, in the third embodiment, the initial alignment direction D5D of the lower alignment film 29 is inclined in the clockwise direction T1 with respect to the reference orthogonal axis AX2.
  • the vector component in the direction along the reference orthogonal axis AX2 is higher than the vector component in the direction along the reference axis AX1. That is, in the transmission axis direction D4B, the inclination angle with respect to the reference orthogonal axis AX2 is smaller than 45 degrees.
  • the initial alignment direction D6D is along the initial alignment direction D5D of the lower alignment film 29.
  • the upper polarizing plate 58 is configured such that, in the XY plane (as viewed from the Z direction), the transmission axis direction D7D is twisted with respect to the reference axis AX1 of the liquid crystal element LC of the light control panel 80.
  • the transmission axis direction D1D of the lower polarizing plate 52 is inclined in the opposite direction to the reference axis AX1. Therefore, in the third embodiment, the transmission axis direction D7D of the upper polarizing plate 58 is inclined in the counterclockwise direction T2 with respect to the reference axis AX1.
  • the vector component in the direction along the reference axis AX1 is higher than the vector component in the direction along the reference orthogonal axis AX2. That is, in the transmission axis direction D4B, the inclination angle with respect to the reference axis AX1 is smaller than 45 degrees.
  • the magnitude of the angle at which the transmission axis direction D7D of 58 is inclined with respect to the reference axis AX1 is the same as in the second embodiment.
  • FIG. 28 is a diagram illustrating the relationship between the transmission axis direction and the initial alignment direction in the third embodiment.
  • the angle ⁇ 1D in FIG. 28 is an angle between the transmission axis direction D1D of the lower polarizing plate 52 and the initial alignment direction D2D of the lower alignment film 89. That is, the initial alignment direction D2D of the lower alignment film 89 is counterclockwise T2 with respect to the transmission axis direction D1D of the lower polarizer 52, that is, in the direction opposite to the twisting direction of the liquid crystal element LC of the light control panel 80, It is inclined by the angle ⁇ 1D .
  • the angle ⁇ 1D is preferably greater than 0 degrees and 10 degrees or less.
  • the angle ⁇ 2D is the angle between the transmission axis direction D1D of the lower polarizing plate 52 and the initial alignment direction D3D of the upper alignment film 74. It is preferable that the angle ⁇ 2D is not less than 85 degrees and not more than 95 degrees.
  • the angle ⁇ 3D is an angle between the transmission axis direction D1D of the lower polarizing plate 52 and the transmission axis direction D4D of the middle polarizing plate 54. It is preferable that the angle ⁇ 3D is not less than 85 degrees and not more than 95 degrees.
  • the angle ⁇ 7D is an angle between the transmission axis direction D1D of the lower polarizing plate 52 and the initial alignment directions D5D and D6D of the image display panel 30.
  • the angle ⁇ 7D is not less than 85 degrees and not more than 95 degrees.
  • the angle ⁇ 8D is the angle between the transmission axis direction D1D of the lower polarizing plate 52 and the transmission axis direction D7D of the upper polarizing plate 58.
  • the angle ⁇ 8D is preferably equal to or greater than 0 degrees and equal to or less than 10 degrees.
  • the angle ⁇ 4D in FIG. 28 is an angle formed between the initial alignment direction D2D of the lower alignment film 89 and the initial alignment direction D3D of the upper alignment film 74.
  • the angle ⁇ 4D is preferably 80 degrees or more and 90 degrees or less.
  • the angle ⁇ 5D is an angle formed between the initial alignment direction D2D of the lower alignment film 89 and the transmission axis direction D4D of the middle polarizing plate 54. It is preferable that the angle ⁇ 5D is not less than 80 degrees and not more than 90 degrees.
  • the angle ⁇ 9D is an angle between the initial alignment direction D2D of the lower alignment film 89 and the initial alignment directions D5D and D6D of the image display panel 30.
  • the angle ⁇ 9D is not less than 80 degrees and not more than 90 degrees.
  • the angle ⁇ 10D is an angle between the initial alignment direction D2D of the lower alignment film 89 and the transmission axis direction D7D of the upper polarizing plate 58.
  • the angle ⁇ 10D is preferably equal to or greater than 0 degree and equal to or less than 5 degrees.
  • the angle ⁇ 6D in FIG. 28 is the angle between the initial alignment direction D3D of the upper alignment film 74 and the transmission axis direction D4D of the middle polarizer 54.
  • the angle ⁇ 6D is preferably equal to or greater than 0 degree and equal to or less than 5 degrees.
  • the angle ⁇ 11D is an angle between the initial alignment direction D3D of the upper alignment film 74 and the initial alignment directions D5D and D6D of the image display panel 30. It is preferable that the angle ⁇ 11D is not less than 0 degrees and not more than 5 degrees.
  • the angle ⁇ 12D is an angle formed between the initial alignment direction D3D of the upper alignment film 74 and the transmission axis direction D7D of the upper polarizing plate 58.
  • the angle ⁇ 12D is preferably 80 degrees or more and 90 degrees or less.
  • the angle ⁇ 13D in FIG. 28 is an angle between the transmission axis direction D4D of the middle polarizing plate 54 and the initial alignment directions D5D and D6D of the image display panel 30. It is preferable that the angle ⁇ 13D is not less than 0 degrees and not more than 5 degrees.
  • the angle ⁇ 14D is an angle between the transmission axis direction D4D of the middle polarizing plate 54 and the transmission axis direction D7D of the upper polarizing plate 58.
  • the angle ⁇ 14D is preferably 80 degrees or more and 90 degrees or less.
  • the angle ⁇ 15D in FIG. 28 is an angle formed between the initial alignment directions D5D and D6D of the image display panel 30 and the transmission axis direction D7D of the upper polarizing plate 58.
  • the angle ⁇ 15D is preferably 80 degrees or more and 90 degrees or less.
  • the display device 1D according to the third embodiment includes the transmission axis direction D1D of the lower polarizing plate 52 and the initial alignment direction D2D of the lower alignment film 89 of the light control panel 80, as in the second embodiment.
  • the transmission axis direction D1D of the lower polarizing plate 52 and the initial alignment direction D2D of the lower alignment film 89 of the light control panel 80 are not parallel and not orthogonal to each other, it is possible to suppress a decrease in luminance.
  • the transmission axis direction D4D of the middle polarizer 54 is inclined in one of clockwise and counterclockwise directions (here, clockwise direction T1) with respect to the reference orthogonal axis AX2. ing.
  • the display device 1D can appropriately suppress the decrease in luminance by tilting the transmission axis direction D4B of the middle polarizing plate 54 in the same direction as the transmission axis direction D1 of the lower polarizing plate 52.
  • the initial alignment directions D5D and D6D of the image display panel 30 are inclined in one of clockwise and counterclockwise directions (here, clockwise direction T1) with respect to the reference orthogonal axis AX2.
  • the transmission axis direction D7D of 58 is inclined to the other side (here, counterclockwise direction T2) of the clockwise direction and the counterclockwise direction with respect to the reference axis AX1.
  • the display device 1D can appropriately suppress the decrease in luminance by tilting the initial alignment directions D5D and D6D of the image display panel 30 and the transmission axis direction D7D of the upper polarizing plate 58.
  • FIG. 29 is a graph showing an example of the luminance of the display device according to the third embodiment.
  • a line segment L1Z1 in FIG. 29 indicates the luminance at each viewing angle of the display device according to the first comparative example.
  • the line segment L1D indicates the luminance for each viewing angle of the display device 1D according to the third embodiment.
  • the brightness of the display device 1D according to the third embodiment is higher than the brightness of the display device of the first comparative example.
  • FIG. 30 is a graph showing an example of the contrast of the display device according to the third embodiment.
  • a line segment L2Z1 in FIG. 30 is a contrast for each viewing angle of the display device according to the first comparative example
  • a line segment L2D is a contrast for each viewing angle of the display device 1C according to the third embodiment.
  • the display device 1C according to the third embodiment can increase the luminance while maintaining the contrast by tilting the transmission axis and the initial alignment direction.
  • the display device 1E according to the third modification differs from the third embodiment in the twist direction of the liquid crystal element LC.
  • description of portions having the same configuration as the third embodiment will be omitted.
  • FIG. 31 is a schematic diagram illustrating a transmission axis direction and an initial alignment direction according to a third modification.
  • the initial alignment of the lower alignment film 89 is performed so that the twisting direction of the liquid crystal element LC of the light control panel 80 is the counterclockwise direction T2 on the XY plane.
  • the direction D2E and the initial alignment direction D3E of the upper alignment film 74 are set.
  • the transmission axis direction D1E of the lower polarizing plate 52 in the third modification is the same as the transmission axis direction D1C (see FIG. 23) in the second modification.
  • the initial alignment direction D2E of the lower alignment film 89 of the light control panel 80 according to the third modification is the same as the initial alignment direction D2C (see FIG. 23) in the second modification.
  • the initial alignment direction D3E of the upper alignment film 74 of the light control panel 80 according to the third modification is the same as the initial alignment direction D3C (see FIG. 23) in the second modification.
  • the twisting direction of the liquid crystal element LC of the light control panel 80 is opposite to that of the third embodiment, so that the tilt direction of the transmission axis direction D1E of the lower polarizing plate 52 and the lower alignment film
  • the inclination direction of the initial alignment direction D2E of 89 and the inclination direction of the initial alignment direction D3E of the upper alignment film 74 are also opposite to those in the third embodiment.
  • the transmission axis direction D4E of the middle polarizing plate 54 in the third modification is a twist direction of the liquid crystal element LC of the light control panel 80 with respect to the reference orthogonal axis AX2 on the XY plane (as viewed from the Z direction).
  • the transmission axis direction D4E of the middle polarizing plate 54 is inclined in the clockwise direction T1 with respect to the reference orthogonal axis AX2.
  • the transmission axis direction D4E of the middle polarizer 54 is inclined in the clockwise direction T1 as in the third embodiment, but the twist direction of the liquid crystal element LC of the light control panel 80 and the transmission axis direction of the lower polarizer 52.
  • the direction of inclination relative to the direction of inclination of D1E is opposite to that of the third embodiment.
  • the vector component in the direction along the reference orthogonal axis AX2 is higher than the vector component in the direction along the reference axis AX1.
  • the initial alignment direction D5E of the lower alignment film 29 of the image display panel 30 is equal to the liquid crystal of the light control panel 80 with respect to the reference orthogonal axis AX2 on the XY plane (as viewed from the Z direction).
  • the element LC is tilted in a direction opposite to the twisting direction, in other words, in a direction opposite to the direction in which the transmission axis direction D1E of the lower polarizing plate 52 is tilted with respect to the reference axis AX1. Therefore, in the third modification, the initial alignment direction D5E of the lower alignment film 29 is inclined in the clockwise direction T1 with respect to the reference orthogonal axis AX2.
  • the initial alignment direction D5E of the lower alignment film 29 is inclined in the clockwise direction T1 as in the third embodiment, but the twisting direction of the liquid crystal element LC of the light control panel 80 and the transmission axis direction of the lower polarizing plate 52.
  • the direction of inclination relative to the direction of inclination of D1E is opposite to that of the third embodiment.
  • the vector component in the direction along the reference orthogonal axis AX2 is higher than the vector component in the direction along the reference axis AX1.
  • the initial alignment direction D6E of the upper alignment film 32 of the image display panel 30 in the third modification is along the initial alignment direction D5E of the lower alignment film 29.
  • the transmission axis direction D7E of the upper polarizing plate 58 in the third embodiment is the twist direction of the liquid crystal element LC of the light control panel 80 with respect to the reference axis AX1 on the XY plane (as viewed from the Z direction).
  • the transmission axis direction D7E of the upper polarizing plate 58 is inclined in the counterclockwise direction T2 with respect to the reference axis AX1.
  • the transmission axis direction D7E of the upper polarizing plate 58 is inclined in the counterclockwise direction T2 as in the third embodiment, but the twisting direction of the liquid crystal element LC of the light control panel 80 and the transmission axis direction of the lower polarizing plate 52.
  • the direction of inclination of the direction D1E relative to the direction of inclination is opposite to that of the third embodiment.
  • the vector component in the direction along the reference axis AX1 is higher than the vector component in the direction along the reference orthogonal axis AX2.
  • the angles of the transmission axis direction and the initial alignment direction will be described.
  • the angle at which the transmission axis direction D4E of the middle polarizing plate 54 is inclined with respect to the reference orthogonal axis AX2 the angle at which the initial alignment directions D5E and D6E of the image display panel 30 are inclined with respect to the reference orthogonal axis AX2,
  • the magnitude of the angle at which the transmission axis direction D7E of 58 inclines with respect to the reference axis AX1 is the same as in the third embodiment.
  • FIG. 32 is a diagram showing the relationship between the transmission axis direction and the initial alignment direction in the third modification.
  • the angle ⁇ 1E in FIG. 24 is the angle between the transmission axis direction D1E of the lower polarizing plate 52 and the initial alignment direction D2E of the lower alignment film 89. That is, the initial alignment direction D2E of the lower alignment film 89 is angled with respect to the transmission axis direction D1E of the lower polarizing plate 52 in the clockwise direction T1, that is, in the direction opposite to the twisting direction of the liquid crystal element LC of the light control panel 80. It is inclined by ⁇ 1E . It is preferable that the angle ⁇ 1E is larger than 0 degree and equal to or smaller than 10 degrees.
  • the angle ⁇ 2E is an angle between the transmission axis direction D1E of the lower polarizing plate 52 and the initial alignment direction D3E of the upper alignment film 74. It is preferable that the angle ⁇ 2E is not less than 85 degrees and not more than 95 degrees.
  • the angle ⁇ 3E is an angle between the transmission axis direction D1E of the lower polarizing plate 52 and the transmission axis direction D4E of the middle polarizing plate 54.
  • the angle ⁇ 3E is preferably 80 degrees or more and 90 degrees or less.
  • the angle ⁇ 7E is an angle between the transmission axis direction D1E of the lower polarizing plate 52 and the initial alignment directions D5E and D6E of the image display panel 30.
  • Angle ⁇ 7E is preferably 80 degrees or more and 90 degrees or less.
  • the angle ⁇ 8E is an angle between the transmission axis direction D1E of the lower polarizing plate 52 and the transmission axis direction D7E of the upper polarizing plate 58.
  • the angle ⁇ 8E is preferably equal to or greater than 0 degrees and equal to or less than 5 degrees.
  • the angle ⁇ 4E in FIG. 32 is an angle formed between the initial alignment direction D2E of the lower alignment film 89 and the initial alignment direction D3E of the upper alignment film 74.
  • the angle ⁇ 4E is preferably 90 degrees or more and 100 degrees or less.
  • the angle ⁇ 5E is an angle formed between the initial alignment direction D2E of the lower alignment film 89 and the transmission axis direction D4E of the middle polarizing plate 54. Angle ⁇ 5E is preferably not less than 85 degrees and not more than 95 degrees.
  • the angle ⁇ 9E is an angle between the initial alignment direction D2E of the lower alignment film 89 and the initial alignment directions D5E and D6E of the image display panel 30.
  • the angle ⁇ 9E is not less than 85 degrees and not more than 95 degrees.
  • the angle ⁇ 10E is an angle between the initial alignment direction D2E of the lower alignment film 89 and the transmission axis direction D7E of the upper polarizing plate 58.
  • the angle ⁇ 10E is preferably equal to or greater than 0 degree and equal to or less than 10 degrees.
  • the angle ⁇ 6E in FIG. 32 is an angle between the initial alignment direction D3E of the upper alignment film 74 and the transmission axis direction D4E of the middle polarizer 54.
  • the angle ⁇ 6E is preferably equal to or greater than 0 degrees and equal to or less than 10 degrees.
  • the angle ⁇ 11E is an angle between the initial alignment direction D3E of the upper alignment film 74 and the initial alignment directions D5E and D6E of the image display panel 30. It is preferable that the angle ⁇ 11E is not less than 0 degree and not more than 10 degrees.
  • the angle ⁇ 12E is an angle formed between the initial alignment direction D3E of the upper alignment film 74 and the transmission axis direction D7E of the upper polarizing plate 58.
  • the angle ⁇ 12E is preferably equal to or greater than 85 degrees and equal to or less than 95 degrees.
  • the angle ⁇ 13E in FIG. 32 is an angle between the transmission axis direction D4E of the middle polarizing plate 54 and the initial alignment directions D5E and D6E of the image display panel 30.
  • the angle ⁇ 13E is preferably equal to or more than 0 degree and equal to or less than 5 degrees.
  • the angle ⁇ 14E is an angle formed between the transmission axis direction D4E of the middle polarizing plate 54 and the transmission axis direction D7E of the upper polarizing plate 58.
  • the angle ⁇ 14E is preferably 80 degrees or more and 90 degrees or less.
  • the angle theta 15E of FIG. 32 is an angle formed between the transmission axis direction D7E initial alignment direction D5E, D6E the upper polarizing plate 58 of the image display panel 30.
  • the angle ⁇ 15E is preferably 80 degrees or more and 90 degrees or less.
  • the display device 1E according to the third modification is similar to the display device 1D according to the third embodiment in that the transmission axis direction D1E of the lower polarizing plate 52 and the initial alignment direction D2E of the lower alignment film 89 of the light control panel 80 are different. By not being parallel and not orthogonal, it is possible to suppress a decrease in luminance.
  • FIG. 33 is a graph showing an example of the luminance of the display device according to the third modification.
  • a line segment L1Z2 in FIG. 33 indicates the luminance at each viewing angle of the display device according to the second comparative example.
  • the line segment L1E indicates the luminance for each viewing angle of the display device 1E according to the third modification. As shown in FIG. 33, the luminance of the display device 1E according to the third modification is higher than the luminance of the display device of the second comparative example.
  • FIG. 34 is a graph illustrating an example of the contrast of the display device according to the third modification.
  • the line segment L2Z2 in FIG. 34 is the contrast for each viewing angle of the display device according to the second comparative example
  • the line segment L2E is the contrast for each viewing angle of the display device 1E according to the third modification.
  • the display device 1E according to the third modification can increase the luminance while maintaining the contrast by tilting the transmission axis and the initial alignment direction.
  • Reference Signs List 1 display device 10 signal processing unit 20 display unit 29, 89 lower alignment film 30 image display panel 32, 74 upper alignment film 50 light source unit 52 lower polarizing plate 54 middle polarizing plate 56 adhesive layer 58 upper polarizing plate 70 light control unit 80 light control Light panel 81 First electrode 82 Second electrode D1, D4, D7 Transmission axis direction D2, D3, D5, D6 Initial alignment direction LC1, LC2 Liquid crystal layer

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

Provided is a display device that suppresses brightness reduction. This display device (1) comprises: an image display panel (30) having a plurality of pixels; a light source unit disposed on the same side of the image display panel (30) as the back surface (30s) of the image display panel (30); a light adjustment panel (80) that is disposed between the image display panel (30) and light source unit, has a lower alignment film (89) on the light source unit side thereof, a plurality of first electrodes arranged in a matrix, an upper alignment film (74) disposed further to the image display panel (30) side than the lower alignment film (89) so as to oppose the lower alignment film (89), second electrodes, and a liquid crystal layer, and is capable of transmitting light emitted by the light source unit to the back surface (30s) side of the image display panel (30) while changing the transmittance in the liquid crystal layer through the application of voltages between the first electrodes and second electrodes; and a lower polarizing plate (52) disposed between the light adjustment panel (80) and light source unit. The transmission axis of the lower polarizing plate (52) follows a direction that is not parallel with or orthogonal to the initial alignment direction of the lower alignment film (89).

Description

表示装置Display device
 本発明は、表示装置に関する。 << The present invention relates to a display device.
 液晶表示装置は、液晶層を有する画像表示パネルにバックライトからの光を照射させ、液晶層を透過した光により画像を表示するものがある。このような液晶表示装置は、コントラスト比の向上が求められる。例えば特許文献1には、2枚の液晶パネルを重畳させることで、コントラスト比を向上させる旨が記載されている。 Some liquid crystal display devices irradiate an image display panel having a liquid crystal layer with light from a backlight, and display an image using light transmitted through the liquid crystal layer. Such a liquid crystal display device is required to have an improved contrast ratio. For example, Patent Document 1 describes that a contrast ratio is improved by overlapping two liquid crystal panels.
特許第4878032号公報Japanese Patent No. 4878032
 しかし、2枚の液晶パネルを重畳させた場合、バックライトからの光は2枚の液晶パネルを通過することとなるため、光の透過量が少なくなり、輝度が低下するおそれがある。 However, when two liquid crystal panels are superimposed, light from the backlight passes through the two liquid crystal panels, so that the amount of transmitted light is reduced and luminance may be reduced.
 本発明は、上記の課題に鑑みてなされたもので、輝度の低下を抑制する表示装置を提供することを目的とする。 The present invention has been made in view of the above problems, and has as its object to provide a display device that suppresses a decrease in luminance.
 本発明の一態様による表示装置は、複数の画素を有する画像表示パネルと、前記画像表示パネルの背面側に設けられる光源部と、前記画像表示パネルと前記光源部との間に設けられ、前記光源部側の下配向膜、マトリクス状に配置された複数の第1電極、前記下配向膜と対向して前記下配向膜よりも前記画像表示パネル側に設けられる上配向膜、第2電極、及び液晶層を有し、前記第1電極と前記第2電極との間に印加された電圧により、前記光源部から照射された光を、前記液晶層内で、透過率を変更しつつ前記画像表示パネルの背面側に透過可能に構成される調光パネルと、前記調光パネルと前記光源部との間に設けられる下偏光板と、を有し、前記下偏光板の透過軸は、前記下配向膜の初期配向方向と平行でなく、かつ、直交しない方向に沿っている。 A display device according to one embodiment of the present invention includes an image display panel having a plurality of pixels, a light source unit provided on a back side of the image display panel, and a light source unit provided between the image display panel and the light source unit. A lower alignment film on the light source unit side, a plurality of first electrodes arranged in a matrix, an upper alignment film provided on the image display panel side of the lower alignment film and opposed to the lower alignment film, a second electrode, And a liquid crystal layer, the light emitted from the light source unit is applied to the image by changing a transmittance in the liquid crystal layer by a voltage applied between the first electrode and the second electrode. A light control panel configured to be able to transmit on the back side of the display panel, and a lower polarizing plate provided between the light control panel and the light source unit, and the transmission axis of the lower polarizing plate is Not parallel and not perpendicular to the initial alignment direction of the lower alignment film It is along the direction.
図1は、第1実施形態に係る表示装置の主要構成例を示す図である。FIG. 1 is a diagram illustrating a main configuration example of a display device according to the first embodiment. 図2は、信号処理部の機能構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a functional configuration example of the signal processing unit. 図3は、第1実施形態に係る表示装置の積層構成を示す図である。FIG. 3 is a diagram illustrating a stacked configuration of the display device according to the first embodiment. 図4は、画像表示パネルの画素配列の一例を示す図である。FIG. 4 is a diagram illustrating an example of a pixel array of the image display panel. 図5は、画像表示パネルの概略断面構造の一例を示す断面図である。FIG. 5 is a cross-sectional view illustrating an example of a schematic cross-sectional structure of the image display panel. 図6は、表示領域と表示分割領域との関係の一例を示す図である。FIG. 6 is a diagram illustrating an example of a relationship between a display area and a display divided area. 図7は、光源部の主要構成の一例を示す図である。FIG. 7 is a diagram illustrating an example of a main configuration of the light source unit. 図8は、調光部の主要構成の一例を示す図である。FIG. 8 is a diagram illustrating an example of a main configuration of the light control unit. 図9は、調光パネルの概略断面構造の一例を示す断面図である。FIG. 9 is a cross-sectional view illustrating an example of a schematic cross-sectional structure of the light control panel. 図10は、信号処理部の処理の流れの一例を示すフローチャートである。FIG. 10 is a flowchart illustrating an example of the flow of processing of the signal processing unit. 図11は、第1実施形態に係る透過軸方向と初期配向方向とを説明する模式図である。FIG. 11 is a schematic diagram illustrating a transmission axis direction and an initial alignment direction according to the first embodiment. 図12は、第1実施形態における透過軸方向及び初期配向方向の関係を示す図である。FIG. 12 is a diagram illustrating the relationship between the transmission axis direction and the initial alignment direction in the first embodiment. 図13は、第1実施形態に係る表示装置の輝度の一例を示すグラフである。FIG. 13 is a graph illustrating an example of the luminance of the display device according to the first embodiment. 図14は、第1実施形態に係る表示装置のコントラストの一例を示すグラフである。FIG. 14 is a graph illustrating an example of the contrast of the display device according to the first embodiment. 図15は、第1変形例に係る透過軸方向と初期配向方向とを説明する模式図である。FIG. 15 is a schematic diagram illustrating a transmission axis direction and an initial alignment direction according to a first modification. 図16は、第1変形例における透過軸方向及び初期配向方向の関係を示す図である。FIG. 16 is a diagram showing the relationship between the transmission axis direction and the initial alignment direction in the first modification. 図17は、第1変形例に係る表示装置の輝度の一例を示すグラフである。FIG. 17 is a graph illustrating an example of the luminance of the display device according to the first modification. 図18は、第1変形例に係る表示装置のコントラストの一例を示すグラフである。FIG. 18 is a graph illustrating an example of the contrast of the display device according to the first modification. 図19は、第2実施形態に係る透過軸方向と初期配向方向とを説明する模式図である。FIG. 19 is a schematic diagram illustrating a transmission axis direction and an initial alignment direction according to the second embodiment. 図20は、第2実施形態における透過軸方向及び初期配向方向の関係を示す図である。FIG. 20 is a diagram illustrating the relationship between the transmission axis direction and the initial alignment direction in the second embodiment. 図21は、第2実施形態に係る表示装置の輝度の一例を示すグラフである。FIG. 21 is a graph illustrating an example of the luminance of the display device according to the second embodiment. 図22は、第2実施形態に係る表示装置のコントラストの一例を示すグラフである。FIG. 22 is a graph illustrating an example of the contrast of the display device according to the second embodiment. 図23は、第2変形例に係る透過軸方向と初期配向方向とを説明する模式図である。FIG. 23 is a schematic diagram illustrating a transmission axis direction and an initial alignment direction according to a second modification. 図24は、第2変形例における透過軸方向及び初期配向方向の関係を示す図である。FIG. 24 is a diagram illustrating the relationship between the transmission axis direction and the initial alignment direction in the second modification. 図25は、第2変形例に係る表示装置の輝度の一例を示すグラフである。FIG. 25 is a graph illustrating an example of the luminance of the display device according to the second modification. 図26は、第2変形例に係る表示装置のコントラストの一例を示すグラフである。FIG. 26 is a graph illustrating an example of the contrast of the display device according to the second modification. 図27は、第3実施形態に係る透過軸方向と初期配向方向とを説明する模式図である。FIG. 27 is a schematic diagram illustrating a transmission axis direction and an initial alignment direction according to the third embodiment. 図28は、第3実施形態における透過軸方向及び初期配向方向の関係を示す図である。FIG. 28 is a diagram illustrating the relationship between the transmission axis direction and the initial alignment direction in the third embodiment. 図29は、第3実施形態に係る表示装置の輝度の一例を示すグラフである。FIG. 29 is a graph illustrating an example of the luminance of the display device according to the third embodiment. 図30は、第3実施形態に係る表示装置のコントラストの一例を示すグラフである。FIG. 30 is a graph illustrating an example of the contrast of the display device according to the third embodiment. 図31は、第3変形例に係る透過軸方向と初期配向方向とを説明する模式図である。FIG. 31 is a schematic diagram illustrating a transmission axis direction and an initial alignment direction according to a third modification. 図32は、第3変形例における透過軸方向及び初期配向方向の関係を示す図である。FIG. 32 is a diagram showing the relationship between the transmission axis direction and the initial alignment direction in the third modification. 図33は、第3変形例に係る表示装置の輝度の一例を示すグラフである。FIG. 33 is a graph illustrating an example of the luminance of the display device according to the third modification. 図34は、第3変形例に係る表示装置のコントラストの一例を示すグラフである。FIG. 34 is a graph illustrating an example of the contrast of the display device according to the third modification.
 以下に、本発明の各実施形態について、図面を参照しつつ説明する。なお、開示はあくまで一例にすぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。 各 Embodiments of the present invention will be described below with reference to the drawings. It should be noted that the disclosure is merely an example, and those skilled in the art can easily conceive of appropriate changes while maintaining the gist of the invention, which are naturally included in the scope of the present invention. In addition, in order to make the description clearer, the width, thickness, shape, and the like of each part may be schematically illustrated as compared with actual embodiments, but this is merely an example, and the interpretation of the present invention is not limited thereto. It is not limited. In the specification and the drawings, components similar to those described in regard to a drawing thereinabove are marked with like reference numerals, and a detailed description is omitted as appropriate.
(第1実施形態)
(表示装置の主要構成)
 図1は、第1実施形態に係る表示装置の主要構成例を示す図である。図1に示すように、第1実施形態の表示装置1は、信号処理部10、表示部20、光源部50及び調光部70を備える。信号処理部10は、外部の制御装置2から入力される入力信号IPに基づいた各種の出力を行う。入力信号IPは、表示装置1に画像を表示出力させるためのデータとして機能する信号であり、例えばRGB画像信号である。信号処理部10は、入力信号IPに基づいて生成された出力画像信号OPを表示部20に出力する。また、信号処理部10は、入力信号IPに基づいて生成されたローカルディミング信号DIを調光部70に出力する。また、信号処理部10は、入力信号IPが入力されると、光源部50を動作させる光源駆動信号BLを光源部50に出力する。
(1st Embodiment)
(Main configuration of display device)
FIG. 1 is a diagram illustrating a main configuration example of a display device according to the first embodiment. As shown in FIG. 1, the display device 1 according to the first embodiment includes a signal processing unit 10, a display unit 20, a light source unit 50, and a light control unit 70. The signal processing unit 10 performs various outputs based on an input signal IP input from the external control device 2. The input signal IP is a signal that functions as data for causing the display device 1 to display and output an image, and is, for example, an RGB image signal. The signal processing unit 10 outputs the output image signal OP generated based on the input signal IP to the display unit 20. Further, the signal processing unit 10 outputs the local dimming signal DI generated based on the input signal IP to the dimming unit 70. Further, when the input signal IP is input, the signal processing unit 10 outputs a light source drive signal BL for operating the light source unit 50 to the light source unit 50.
 図2は、信号処理部の機能構成例を示すブロック図である。信号処理部10は、例えばFPGA(Field-Programmable Gate Array)のような集積回路である。信号処理部10は、例えば、画像解析部11、調光制御部12、調光バッファ13、補正部14、画像バッファ15、同期部16及び光源制御部17を有する。信号処理部10は、入力信号IPに基づいて、集積回路に実装されたこれらの機能に応じた各種の処理を行う。 FIG. 2 is a block diagram showing a functional configuration example of the signal processing unit. The signal processing unit 10 is an integrated circuit such as an FPGA (Field-Programmable Gate Array). The signal processing unit 10 includes, for example, an image analysis unit 11, a light control unit 12, a light control buffer 13, a correction unit 14, an image buffer 15, a synchronization unit 16, and a light source control unit 17. The signal processing unit 10 performs various processes corresponding to these functions mounted on the integrated circuit based on the input signal IP.
 表示部20は、画像表示パネル30及び画像表示パネル駆動部40を有する。画像表示パネル30は、複数の画素48を有するパネルであり、さらに言えば、複数の画素48が設けられた表示領域OAを有する。複数の画素48は、例えばマトリクス状に配置されている。第1実施形態の画像表示パネル30は、液晶画像表示パネルである。第1信号出力部としての画像表示パネル駆動部40は、信号出力回路41及び走査回路42を有する。信号出力回路41は、出力画像信号OPに応じて複数の画素48を駆動する。走査回路42は、マトリクス状に配置された複数の画素48を所定行(例えば、1行)単位で走査する駆動信号を出力する。画素48は、駆動信号が出力されたタイミングで出力画像信号OPに応じた階調値の出力が行われるよう駆動される。 The display unit 20 includes the image display panel 30 and the image display panel driving unit 40. The image display panel 30 is a panel having a plurality of pixels 48, and more specifically, has a display area OA in which the plurality of pixels 48 are provided. The plurality of pixels 48 are arranged, for example, in a matrix. The image display panel 30 of the first embodiment is a liquid crystal image display panel. The image display panel driving section 40 as a first signal output section has a signal output circuit 41 and a scanning circuit 42. The signal output circuit 41 drives a plurality of pixels 48 according to the output image signal OP. The scanning circuit 42 outputs a drive signal for scanning a plurality of pixels 48 arranged in a matrix in units of a predetermined row (for example, one row). The pixel 48 is driven such that a grayscale value corresponding to the output image signal OP is output at the timing when the drive signal is output.
 光源部50は、画像表示パネル30の表示領域OAに向けて光を照射する光源装置である。調光部70は、光源部50から照射されて表示領域OAを経て出力される光量を調節する。調光部70は、調光パネル80及び回路部90を有する。調光パネル80は、表示領域OAを平面視した場合に、すなわち後述のZ方向から表示装置を見た場合に、表示領域OAに重畳する位置に配置されて光の透過率を変更可能に設けられた調光領域DAを有する。回路部90は、調光領域DAによる光の透過率を制御する。 The light source unit 50 is a light source device that emits light toward the display area OA of the image display panel 30. The light control unit 70 controls the amount of light emitted from the light source unit 50 and output through the display area OA. The light control unit 70 includes a light control panel 80 and a circuit unit 90. The light control panel 80 is disposed at a position overlapping the display area OA when the display area OA is viewed in a plan view, that is, when the display device is viewed from a Z direction described later, and is provided so as to change the light transmittance. The light control area DA is provided. The circuit unit 90 controls the light transmittance of the light control area DA.
 図3は、第1実施形態に係る表示装置の積層構成を示す図である。図3に示すように、第1実施形態に係る表示装置1は、光源部50、調光パネル80、及び画像表示パネル30が、重畳方向であるZ方向に沿って、この順で重畳、すなわち積層されている。具体的には、光源部50の前面側(上側)の表面であり光が出射される側の表面である照射面50s側に、調光パネル80が積層されている。また、調光パネル80を挟んで光源部50の反対側に、画像表示パネル30が積層されている。言い換えれば、光源部50は、画像表示パネル30の前面30tと反対側の表面である背面30s側に設けられ、調光パネル80は、Z方向において光源部50と画像表示パネル30との間に設けられている。光源部50の照射面50sからZ方向に向けて出射された光は、調光パネル80の調光領域DAに入射する。調光パネル80は、調光領域DAに入射した光を、画像表示パネル30の背面30s側に、光の透過率、すなわち光量を変更可能に透過する。調光パネル80から透過された光は、画像表示パネル30の背面30sに入射して画像表示パネル30内を透過し、背面30sと反対側の前面30tから出射される。これにより、画像表示パネル30は、前面30t側に画像を表示出力する。このように、光源部50は、画像表示パネル30の表示領域OAを背面から照明するバックライトとして機能する。以下、Z方向に直交する2方向をX方向及びY方向とする。X方向とY方向とは直交する。複数の画素48は、X方向とY方向とに沿ってマトリクス状に並ぶ。なお、Z方向において、光源部50に対して上偏光板58の位置を上側(前面側)、上偏光板58に対して光源部50の位置を下側(背面側)とする。 FIG. 3 is a diagram showing a layered configuration of the display device according to the first embodiment. As shown in FIG. 3, in the display device 1 according to the first embodiment, the light source unit 50, the light control panel 80, and the image display panel 30 are superimposed in this order along the Z direction that is the superimposition direction, that is, It is laminated. Specifically, the light control panel 80 is stacked on the irradiation surface 50 s, which is the front surface (upper surface) of the light source unit 50 and the surface on which light is emitted. The image display panel 30 is stacked on the opposite side of the light source unit 50 with the light control panel 80 interposed therebetween. In other words, the light source unit 50 is provided on the back surface 30 s side opposite to the front surface 30 t of the image display panel 30, and the light control panel 80 is located between the light source unit 50 and the image display panel 30 in the Z direction. Is provided. The light emitted from the irradiation surface 50 s of the light source unit 50 in the Z direction enters the light control area DA of the light control panel 80. The light control panel 80 transmits the light incident on the light control area DA to the rear surface 30s side of the image display panel 30 so that the light transmittance, that is, the light amount can be changed. The light transmitted from the light control panel 80 enters the back surface 30s of the image display panel 30, passes through the inside of the image display panel 30, and is emitted from the front surface 30t opposite to the back surface 30s. Thus, the image display panel 30 displays and outputs an image on the front surface 30t side. As described above, the light source unit 50 functions as a backlight that illuminates the display area OA of the image display panel 30 from the back. Hereinafter, two directions orthogonal to the Z direction are defined as an X direction and a Y direction. The X direction and the Y direction are orthogonal. The plurality of pixels 48 are arranged in a matrix along the X direction and the Y direction. In the Z direction, the position of the upper polarizing plate 58 with respect to the light source unit 50 is defined as an upper side (front side), and the position of the light source unit 50 with respect to the upper polarizing plate 58 is defined as a lower side (rear side).
 画像表示パネル30は、アレイ基板30aと、アレイ基板30aに対して前面30t側(上側)に位置してアレイ基板30aとZ方向で対向する対向基板30bと、を有する。後述するように、アレイ基板30aと対向基板30bとの間には、液晶層LC1が配置されている(図5参照)。また、調光パネル80は、第1基板80aと、第1基板80aに対して画像表示パネル30側に位置して第1基板80aと対向する第2基板80bと、を有する。後述するように、第1基板80aと第2基板80bとの間には、液晶層LC2が配置されている(図9参照)。 The image display panel 30 has an array substrate 30a and a counter substrate 30b located on the front surface 30t side (upper side) of the array substrate 30a and facing the array substrate 30a in the Z direction. As will be described later, a liquid crystal layer LC1 is disposed between the array substrate 30a and the counter substrate 30b (see FIG. 5). The light control panel 80 includes a first substrate 80a, and a second substrate 80b located on the image display panel 30 side with respect to the first substrate 80a and facing the first substrate 80a. As described later, a liquid crystal layer LC2 is arranged between the first substrate 80a and the second substrate 80b (see FIG. 9).
 さらに詳しくは、図3に示すように、第1実施形態に係る表示装置1は、光源部50、下偏光板52、調光パネル80、中偏光板54、接着層56、画像表示パネル30、上偏光板58が、Z方向に向かってこの順で積層(重畳)されている。すなわち、下偏光板52は、光源部50と調光パネル80との間に設けられ、中偏光板54は、調光パネル80と画像表示パネル30との間に設けられ、上偏光板58は、画像表示パネル30の前面30t側、すなわち画像表示パネル30の上側に設けられる。下偏光板52、中偏光板54、及び上偏光板58は、入射された光のうち、予め定められた方向に振動する成分の光を透過し、その方向以外に振動する成分の光を遮断する偏光板である。 More specifically, as shown in FIG. 3, the display device 1 according to the first embodiment includes a light source unit 50, a lower polarizing plate 52, a dimming panel 80, a middle polarizing plate 54, an adhesive layer 56, an image display panel 30, The upper polarizing plate 58 is laminated (superposed) in this order in the Z direction. That is, the lower polarizing plate 52 is provided between the light source unit 50 and the light control panel 80, the middle polarizing plate 54 is provided between the light control panel 80 and the image display panel 30, and the upper polarizing plate 58 is provided. , Is provided on the front surface 30 t side of the image display panel 30, that is, above the image display panel 30. The lower polarizer 52, the middle polarizer 54, and the upper polarizer 58 transmit light of a component that oscillates in a predetermined direction of incident light and block light of a component that oscillates in a direction other than that direction. It is a polarizing plate.
 接着層56は、調光パネル80と画像表示パネル30との間に設けられ、調光パネル80と画像表示パネル30とを接着する。接着層56は、光を透過可能な透明部材で構成されており、本実施形態では、光学弾性樹脂、すなわちSVR(Super View Resin)である。接着層56は、第1実施形態では、中偏光板54と画像表示パネル30との間に設けられているが、調光パネル80と画像表示パネル30との間に設けられていればよく、例えば、調光パネル80と中偏光板54との間に設けられていてもよい。また、調光パネル80と画像表示パネル30との間、より具体的には、中偏光板54と画像表示パネル30との間に、光を拡散する拡散板を設けてもよい。拡散板を設けることで、モアレを低減することができる。 The adhesive layer 56 is provided between the light control panel 80 and the image display panel 30, and bonds the light control panel 80 and the image display panel 30. The adhesive layer 56 is formed of a transparent member that can transmit light, and in the present embodiment, is an optical elastic resin, that is, SVR (Super View Resin). The adhesive layer 56 is provided between the middle polarizing plate 54 and the image display panel 30 in the first embodiment, but may be provided between the light control panel 80 and the image display panel 30. For example, it may be provided between the light control panel 80 and the middle polarizer 54. Further, a diffusion plate for diffusing light may be provided between the light control panel 80 and the image display panel 30, more specifically, between the middle polarizer 54 and the image display panel 30. By providing the diffusion plate, moire can be reduced.
 (画像表示パネル)
 次に、画像表示パネル30の構成について説明する。図4は、画像表示パネルの画素配列の一例を示す図である。図4に例示するように、画素48は、例えば、第1副画素49Rと、第2副画素49Gと、第3副画素49Bと、第4副画素49Wとを有する。第1副画素49Rは、第1原色(例えば、赤色)を表示する。第2副画素49Gは、第2原色(例えば、緑色)を表示する。第3副画素49Bは、第3原色(例えば、青色)を表示する。第4副画素49Wは、第4の色(具体的には白色)を表示する。このように、画像表示パネル30に行列状に配列された画素48は、第1の色を表示する第1副画素49R、第2の色を表示する第2副画素49G、第3の色を表示する第3副画素49B及び第4の色を表示する第4副画素49Wを含む。第1の色、第2の色、第3の色及び第4の色は、第1原色、第2原色、第3原色及び白色に限られず、補色など色が異なっていればよい。また、画素48は、第4副画素49Wを有さず、第1副画素49R、第2副画素49G、第3副画素49Bの3つの副画素のみを有してもよい。第4の色を表示する第4副画素49Wは、同じ光源点灯量で照射された場合、第1の色を表示する第1副画素49R、第2の色を表示する第2副画素49G、第3の色を表示する第3副画素49Bよりも明るいことが好ましい。以下の説明において、第1副画素49Rと、第2副画素49Gと、第3副画素49Bと、第4副画素49Wとをそれぞれ区別する必要がない場合、副画素49という。
(Image display panel)
Next, the configuration of the image display panel 30 will be described. FIG. 4 is a diagram illustrating an example of a pixel array of the image display panel. As illustrated in FIG. 4, the pixel 48 has, for example, a first sub-pixel 49R, a second sub-pixel 49G, a third sub-pixel 49B, and a fourth sub-pixel 49W. The first sub-pixel 49R displays a first primary color (for example, red). The second sub-pixel 49G displays a second primary color (for example, green). The third sub-pixel 49B displays a third primary color (for example, blue). The fourth sub-pixel 49W displays a fourth color (specifically, white). As described above, the pixels 48 arranged in a matrix on the image display panel 30 include the first sub-pixel 49R for displaying the first color, the second sub-pixel 49G for displaying the second color, and the third color. It includes a third sub-pixel 49B for displaying and a fourth sub-pixel 49W for displaying a fourth color. The first color, the second color, the third color, and the fourth color are not limited to the first primary color, the second primary color, the third primary color, and white, but may be different colors such as complementary colors. Further, the pixel 48 may not include the fourth sub-pixel 49W, but may include only three sub-pixels of the first sub-pixel 49R, the second sub-pixel 49G, and the third sub-pixel 49B. When the fourth sub-pixel 49W displaying the fourth color is irradiated with the same light source lighting amount, the first sub-pixel 49R displaying the first color, the second sub-pixel 49G displaying the second color, It is preferable that the third sub-pixel 49B that displays the third color be brighter. In the following description, when it is not necessary to distinguish the first sub-pixel 49R, the second sub-pixel 49G, the third sub-pixel 49B, and the fourth sub-pixel 49W, they are referred to as sub-pixels 49.
 表示装置1は、より具体的には、透過型のカラー液晶表示装置である。図4に例示するように、画像表示パネル30は、カラー液晶表示パネルであり、第1副画素49Rと画像観察者との間に第1原色を通過させる第1カラーフィルタが配置され、第2副画素49Gと画像観察者との間に第2原色を通過させる第2カラーフィルタが配置され、第3副画素49Bと画像観察者との間に第3原色を通過させる第3カラーフィルタが配置されている。また、画像表示パネル30は、第4副画素49Wと画像観察者との間にカラーフィルタが配置されていない。この場合には、第4副画素49Wに大きな段差が生じることとなる。このため、第4副画素49Wには、カラーフィルタの代わりに透明な樹脂層が備えられていてもよい。これにより、第4副画素49Wに大きな段差が生じることを抑制することができる。 The display device 1 is more specifically a transmission type color liquid crystal display device. As illustrated in FIG. 4, the image display panel 30 is a color liquid crystal display panel, in which a first color filter that allows the first primary color to pass is disposed between the first sub-pixel 49R and the image observer, and a second color filter is provided. A second color filter that passes the second primary color is disposed between the sub-pixel 49G and the image observer, and a third color filter that transmits the third primary color is disposed between the third sub-pixel 49B and the image observer. Have been. In the image display panel 30, no color filter is arranged between the fourth sub-pixel 49W and the image observer. In this case, a large step occurs in the fourth sub-pixel 49W. Therefore, the fourth sub-pixel 49W may be provided with a transparent resin layer instead of the color filter. Thereby, it is possible to suppress the occurrence of a large step in the fourth sub-pixel 49W.
 信号出力回路41は、信号線DTLによって画像表示パネル30と電気的に接続されている。画像表示パネル駆動部40は、走査回路42によって、画像表示パネル30における副画素49を選択し、副画素49の動作(光透過率)を制御するためのスイッチング素子(例えば、薄膜トランジスタ(TFT:Thin Film Transistor))のオン(ON)及びオフ(OFF)を制御する。走査回路42は、走査線SCLによって画像表示パネル30と電気的に接続されている。実施形態1では、走査線SCLがX方向に沿い、信号線DTLがY方向に沿っているが、これは走査線SCL及び信号線DTLの延設方向の一例であってこれに限られるものでなく、適宜変更可能である。 The signal output circuit 41 is electrically connected to the image display panel 30 by a signal line DTL. The image display panel driving unit 40 selects a sub-pixel 49 in the image display panel 30 by the scanning circuit 42 and controls a switching element (for example, a thin film transistor (TFT)) for controlling the operation (light transmittance) of the sub-pixel 49. Film (Transistor)) is turned on (ON) and off (OFF). The scanning circuit 42 is electrically connected to the image display panel 30 by a scanning line SCL. In the first embodiment, the scanning line SCL extends along the X direction and the signal line DTL extends along the Y direction. However, this is an example of the extending direction of the scanning line SCL and the signal line DTL, and is not limited thereto. However, it can be changed as appropriate.
 図5は、画像表示パネルの概略断面構造の一例を示す断面図である。図5に示すように、画像表示パネル30は、アレイ基板30aと対向基板30bとが、Z方向に沿ってこの順で積層されており、アレイ基板30aと対向基板30bとの間に、複数の液晶素子LCが含まれる液晶層LC1が設けられている。アレイ基板30aは、基板21と、絶縁膜22a、22b、22c、22d、スイッチング素子24、対向電極26、画素電極28、及び下配向膜29を有する。対向基板30bは、基板31と、上配向膜32とを有している。スイッチング素子24は、チャネル24a、ソース24b、ゲート24c、及びドレイン24dを有する。以下、画像表示パネル30の積層構造について説明する。 FIG. 5 is a sectional view showing an example of a schematic sectional structure of the image display panel. As shown in FIG. 5, in the image display panel 30, the array substrate 30a and the counter substrate 30b are stacked in this order along the Z direction, and a plurality of the substrates are arranged between the array substrate 30a and the counter substrate 30b. A liquid crystal layer LC1 including the liquid crystal element LC is provided. The array substrate 30a has a substrate 21, insulating films 22a, 22b, 22c, 22d, a switching element 24, a counter electrode 26, a pixel electrode 28, and a lower alignment film 29. The counter substrate 30b has a substrate 31 and an upper alignment film 32. The switching element 24 has a channel 24a, a source 24b, a gate 24c, and a drain 24d. Hereinafter, the laminated structure of the image display panel 30 will be described.
 アレイ基板30aは、基板21、絶縁膜22a、絶縁膜22b、絶縁膜22c、対向電極26、絶縁膜22d、画素電極28、下配向膜29が、Z方向に向けてこの順で積層(重畳)されている。基板21は、ガラス基板やフィルム基板などの基板である。基板21上には、スイッチング素子24のチャネル24a(アイランド)が設けられている。絶縁膜22aは、基板21上であって、チャネル24a上に接して設けられる。また、絶縁膜22a上であって、チャネル24aと重畳する位置には、スイッチング素子24のゲート24cが設けられている。絶縁膜22bは、絶縁膜22a上であって、ゲート24c上に接して設けられる。また、絶縁膜22b上であって、チャネル24aと重畳する位置には、スイッチング素子24のソース24b及びドレイン24dが設けられている。ソース24b及びドレイン24dは、一部が、絶縁膜22b、22aを貫通して、チャネル24aに接続されている。絶縁膜22cは、絶縁膜22b上であって、ソース24b及びドレイン24d上に接して設けられる。なお、ゲート24cは、チャネル24aに対して基板と反対側に配置されており、所謂トップゲートの構成を例に挙げたが、これに限られない。例えば、ゲート24cは絶縁膜を介して、チャネル24aと基板との間に配置されているボトムゲートの構成を取ってもよい。対向電極26は、画素電極28に対向して配置される電極であって、本実施形態においては、画像表示パネル30の表示領域OA内において、1つ設けられる共通電極である。なお、対向電極26は、表示領域OA内でX方向又はY方向に延在するブロック状の複数の電極で構成されてもよい。絶縁膜22dは、対向電極26上に設けられる。副画素49を構成する画素電極28は、絶縁膜22d上に設けられ、表示領域OA内において、マトリクス状に複数設けられる。それぞれの画素電極28は、Y方向に向けて延在する溝状の開口が複数設けられた形状となっており、言い換えれば、Y方向に向けて延在する櫛歯を構成する複数の帯状電極を有する構成となっている。なお、絶縁膜22a、22b、22c、22dは、例えば、シリコン窒化膜(SiNx)などの絶縁性部材で構成されている。また、対向電極26及び画素電極28は、例えば、酸化インジウムスズ(Indium Tin Oxide:ITO)などで構成される透明電極である。また、本実施形態では、画素電極28と基板21との間に対向電極26が配置されるが、これに限らない。例えば、対向電極26と基板21との間に画素電極28が配置されてもよいし、対向電極26と画素電極28とは同層に配置されてもよい。 In the array substrate 30a, a substrate 21, an insulating film 22a, an insulating film 22b, an insulating film 22c, a counter electrode 26, an insulating film 22d, a pixel electrode 28, and a lower alignment film 29 are stacked (superimposed) in this order in the Z direction. Have been. The substrate 21 is a substrate such as a glass substrate or a film substrate. On the substrate 21, a channel 24a (island) of the switching element 24 is provided. The insulating film 22a is provided on the substrate 21 and in contact with the channel 24a. The gate 24c of the switching element 24 is provided on the insulating film 22a at a position overlapping with the channel 24a. The insulating film 22b is provided on the insulating film 22a and in contact with the gate 24c. The source 24b and the drain 24d of the switching element 24 are provided on the insulating film 22b at positions overlapping the channel 24a. Part of the source 24b and the drain 24d penetrate the insulating films 22b and 22a and are connected to the channel 24a. The insulating film 22c is provided on the insulating film 22b and in contact with the source 24b and the drain 24d. Note that the gate 24c is disposed on the side opposite to the substrate with respect to the channel 24a, and the configuration of a so-called top gate has been described as an example, but the present invention is not limited to this. For example, the gate 24c may have a configuration of a bottom gate disposed between the channel 24a and the substrate via an insulating film. The counter electrode 26 is an electrode arranged to face the pixel electrode 28, and in the present embodiment, is a common electrode provided in the display area OA of the image display panel 30. The counter electrode 26 may be configured by a plurality of block-shaped electrodes extending in the X direction or the Y direction in the display area OA. The insulating film 22d is provided on the counter electrode 26. The pixel electrodes 28 that constitute the sub-pixels 49 are provided on the insulating film 22d, and a plurality of pixel electrodes 28 are provided in a matrix in the display area OA. Each pixel electrode 28 has a shape provided with a plurality of groove-shaped openings extending in the Y direction. In other words, a plurality of band-shaped electrodes forming comb teeth extending in the Y direction. Is provided. The insulating films 22a, 22b, 22c, and 22d are made of, for example, an insulating member such as a silicon nitride film (SiNx). The counter electrode 26 and the pixel electrode 28 are transparent electrodes made of, for example, indium tin oxide (ITO). Further, in the present embodiment, the opposing electrode 26 is disposed between the pixel electrode 28 and the substrate 21, but is not limited to this. For example, the pixel electrode 28 may be disposed between the counter electrode 26 and the substrate 21, or the counter electrode 26 and the pixel electrode 28 may be disposed in the same layer.
 下配向膜29は、アレイ基板30aの最も前面側に設けられ、言い換えれば、画素電極28及び絶縁膜22d上に設けられる。すなわち、下配向膜29は、アレイ基板30aの液晶層LC1側の表面となる。対向電極26と画素電極28との間に電界(電圧)が印加されていない状態において、液晶層LC1内の液晶素子LCは、下配向膜29に付与された初期配向方向に応じて配向する。すなわち、初期配向方向とは、対向電極26と画素電極28との間に電界(電圧)が印加されていない状態において、下配向膜29が液晶素子LCを配向させる方向である。例えば、下配向膜29は、液晶層LC1側の表面にラビングが施されることで、液晶層LC1側の表面に、一方向、すなわちラビング方向に沿った複数の溝が形成される。下配向膜29の近傍の液晶素子LCは、このラビング方向に沿って配向するため、ラビング方向が、初期配向方向であるといえる。下配向膜29は、例えばポリイミド(Polyimide:PI)系の配向膜材料にラビング処理を施したものであってよい。ただし、下配向膜29は、ラビング以外の処理によって、液晶素子LCを初期配向方向に配向可能に構成されていてもよい。例えば、下配向膜29は、光配向膜であってもよい。なお、下配向膜29は、アレイ基板30aに設けられた配向膜であるため、下配向膜29の初期配向方向が、アレイ基板30a、すなわち、画像表示パネル30の背面側(前面側と反対側)の基板の初期配向方向となる。 The lower alignment film 29 is provided on the front surface side of the array substrate 30a, in other words, provided on the pixel electrode 28 and the insulating film 22d. That is, the lower alignment film 29 becomes the surface of the array substrate 30a on the liquid crystal layer LC1 side. In a state where no electric field (voltage) is applied between the counter electrode 26 and the pixel electrode 28, the liquid crystal element LC in the liquid crystal layer LC1 is aligned according to the initial alignment direction given to the lower alignment film 29. That is, the initial alignment direction is a direction in which the lower alignment film 29 aligns the liquid crystal element LC when no electric field (voltage) is applied between the counter electrode 26 and the pixel electrode 28. For example, by rubbing the lower alignment film 29 on the surface on the liquid crystal layer LC1 side, a plurality of grooves are formed on the surface on the liquid crystal layer LC1 side in one direction, that is, along the rubbing direction. Since the liquid crystal element LC near the lower alignment film 29 is aligned along the rubbing direction, the rubbing direction can be said to be the initial alignment direction. The lower alignment film 29 may be, for example, a rubbed film of a polyimide (PI) -based alignment film material. However, the lower alignment film 29 may be configured to be able to align the liquid crystal element LC in the initial alignment direction by a process other than rubbing. For example, the lower alignment film 29 may be a photo alignment film. Since the lower alignment film 29 is an alignment film provided on the array substrate 30a, the initial alignment direction of the lower alignment film 29 is the same as that of the array substrate 30a, that is, the back side (the side opposite to the front side) of the image display panel 30. ) Is the initial orientation direction of the substrate.
 対向基板30bは、上配向膜32、基板31が、Z方向に向けてこの方向で積層(重畳)されている。上配向膜32は、対向基板30bの液晶層LC1側の表面となる。対向電極26と画素電極28との間に電圧が印加されていない状態において、液晶層LC1内の液晶素子LCは、上配向膜32に付与された初期配向方向に配向応じて配向する。上配向膜32の初期配向方向は、下配向膜29の初期配向方向と平行であり、さらに具体的には、下配向膜29の初期配向方向と同一方向であることが好ましいが、初期配向方向については後述する。上配向膜32は、下配向膜29と同様に、ラビング処理によって液晶素子LCを初期配向方向に配向可能であってもよいし、光配向等の他の処理によって液晶素子LCを初期配向方向に配向可能であってもよい。なお、上配向膜32は、下配向膜29と対向して、下配向膜29よりも画像表示パネル30の前面30t側(上側)に設けられる配向膜といえる。また、上配向膜32は、対向基板30b側に設けられた配向膜であるため、上配向膜32の初期配向方向が、対向基板30b、すなわち、画像表示パネル30の上側(前面側)の基板の初期配向方向となる。また、基板31は、例えばガラス基板やフィルム基板等の基板であり、対向基板30bの最も上側の表面を形成する。 (4) In the counter substrate 30b, the upper alignment film 32 and the substrate 31 are stacked (superposed) in the Z direction in this direction. The upper alignment film 32 is the surface of the counter substrate 30b on the liquid crystal layer LC1 side. When no voltage is applied between the counter electrode 26 and the pixel electrode 28, the liquid crystal element LC in the liquid crystal layer LC1 is aligned according to the initial alignment direction given to the upper alignment film 32. The initial alignment direction of the upper alignment film 32 is parallel to the initial alignment direction of the lower alignment film 29, and more specifically, is preferably the same direction as the initial alignment direction of the lower alignment film 29. Will be described later. Like the lower alignment film 29, the upper alignment film 32 may be capable of aligning the liquid crystal element LC in the initial alignment direction by a rubbing process, or may be capable of aligning the liquid crystal element LC in the initial alignment direction by another process such as optical alignment. Orientation may be possible. The upper alignment film 32 faces the lower alignment film 29 and can be said to be an alignment film provided on the front surface 30t side (upper side) of the image display panel 30 with respect to the lower alignment film 29. Further, since the upper alignment film 32 is an alignment film provided on the counter substrate 30 b side, the initial alignment direction of the upper alignment film 32 is the counter substrate 30 b, that is, the upper (front) side of the image display panel 30. Is the initial alignment direction. The substrate 31 is a substrate such as a glass substrate or a film substrate, and forms the uppermost surface of the counter substrate 30b.
 液晶素子LCは、印加される電界(電圧)に応じて、配向方向が変化する。液晶層LC1は、電界の状態に応じて液晶層LC1内部を通過する光を変調するものである。液晶素子LCの方向が、画素電極28と対向電極26との間で印加される電界(ここでは横電界)によって変化し、液晶層LC1を通過する光の透過量が変化する。言い換えれば、液晶素子LCは、画素電極28と対向電極26との間に電界が印加されていない状態では、下配向膜29及び上配向膜32に規定された初期配向方向に基づき配向している。そして、液晶素子LCは、画素電極28と対向電極26との間に電界が印加されることで、印加された電界の強さに応じた配向方向を向く。なお、複数の副画素49はそれぞれ、画素電極28を有する。複数の副画素49の動作(光透過率)を個別に制御するための複数のスイッチング素子24は、画素電極28とそれぞれ電気的に接続されている。 (4) The alignment direction of the liquid crystal element LC changes according to the applied electric field (voltage). The liquid crystal layer LC1 modulates light passing through the inside of the liquid crystal layer LC1 according to the state of the electric field. The direction of the liquid crystal element LC changes due to an electric field (here, a horizontal electric field) applied between the pixel electrode 28 and the counter electrode 26, and the amount of light transmitted through the liquid crystal layer LC1 changes. In other words, the liquid crystal element LC is aligned based on the initial alignment direction defined in the lower alignment film 29 and the upper alignment film 32 when no electric field is applied between the pixel electrode 28 and the counter electrode 26. . Then, when an electric field is applied between the pixel electrode 28 and the counter electrode 26, the liquid crystal element LC is oriented in an alignment direction according to the strength of the applied electric field. Note that each of the plurality of sub-pixels 49 has the pixel electrode 28. The plurality of switching elements 24 for individually controlling the operations (light transmittance) of the plurality of sub-pixels 49 are electrically connected to the pixel electrodes 28, respectively.
 このように、本実施形態に係る画像表示パネル30は、横電界型の液晶表示パネルであり、さらに言えば、FFS(Fringe Field Switching)型の液晶表示パネルである。ただし、画像表示パネル30は、FFS型に限られず、任意の型の液晶表示パネルであってよい。例えば、画像表示パネル30は、横電界型のIPS(In Plane Switching)型の液晶表示パネルであってもよいし、縦電界型の液晶表示パネルであってもよい。例えば、画像表示パネル30は、縦電界型のVA(Vertical Alignment)型の液晶表示パネルであってもよいし、縦電界型のTN(Twisted Nematic)型の液晶表示パネルであってもよい。なお、縦電界型の液晶表示パネルの場合は、対向電極26が対向基板30bに配置される。 As described above, the image display panel 30 according to the present embodiment is a horizontal electric field type liquid crystal display panel, and more specifically, an FFS (Fringe Field Switching) type liquid crystal display panel. However, the image display panel 30 is not limited to the FFS type, and may be any type of liquid crystal display panel. For example, the image display panel 30 may be a horizontal electric field type IPS (In Plane Switching) type liquid crystal display panel or a vertical electric field type liquid crystal display panel. For example, the image display panel 30 may be a vertical electric field type VA (Vertical Alignment) liquid crystal display panel or a vertical electric field type TN (Twisted Nematic) liquid crystal display panel. In the case of a vertical electric field type liquid crystal display panel, the counter electrode 26 is disposed on the counter substrate 30b.
 図6は、表示領域と表示分割領域との関係の一例を示す図である。画像表示パネル30の表示領域OAは、複数の表示分割領域PAを有する。複数の表示分割領域PAの全てを合わせた領域が表示領域OAである。図6に示す表示領域OAは、X方向に沿って設定されたx1,x2,…,x9の座標とY方向に沿って設定されたy1,y2,y3,y4の座標の組み合わせに対応した計36の座標の各々に対応する位置に個別に設けられた表示分割領域PAを有する。なお、表示領域OAに含まれる表示分割領域PAの数は36に限らず、2つ以上の表示分割領域PAが含まれればよい。また、表示領域OAは、XY方向方向の両方に沿って分割された表示分割領域PAを有するが、これに限らず、X方向及びY方向のいずれか一方に沿ってのみ分割された表示分割領域PAを有してもよい。表示領域OAが有する表示分割領域PAの数及び配置は、後述する調光パネル80が有する第1電極81の数及び配置に対応している。表示分割領域PAの各々には、1以上の画素48が配置されている。 FIG. 6 is a diagram showing an example of the relationship between the display area and the display divided area. The display area OA of the image display panel 30 has a plurality of display divided areas PA. The display area OA is an area obtained by combining all of the plurality of display divided areas PA. The display area OA shown in FIG. 6 is a total corresponding to a combination of the coordinates x1, x2,..., X9 set along the X direction and the coordinates y1, y2, y3, y4 set along the Y direction. It has a display divided area PA individually provided at a position corresponding to each of the 36 coordinates. Note that the number of display divided areas PA included in the display area OA is not limited to 36, and it is sufficient that two or more display divided areas PA are included. In addition, the display area OA has the display divided area PA divided along both the XY directions, but is not limited thereto, and the display divided area divided only along one of the X direction and the Y direction. It may have PA. The number and arrangement of the display divided areas PA included in the display area OA correspond to the number and arrangement of the first electrodes 81 included in the light control panel 80 described later. One or more pixels 48 are arranged in each of the display divided areas PA.
 (光源部)
 次に、光源部50の構成について説明する。図7は、光源部の主要構成の一例を示す図である。光源部50は、表示領域OAを平面視した場合に表示領域OAの側方に位置するサイドライトを有する。図7に示す例では、X-Y平面視で表示領域OAに対応する位置に設けられた導光板LAに対して、Y方向の両端側でX方向に沿って並ぶ複数の光源51が設けられている。なお、光源51は、導光板LAに対してY方向の一方端側のみに配置されてもよい。光源51は、例えば白色光を発する発光ダイオード(LED:Light Emitting Diode)であるが、これに限られるものでなく、適宜変更可能である。光源51からの光は、導光板LAに導かれて表示領域OA全体を背面30s側から照明する。図7では、Y方向の一端側及び他端側の各々でX方向に沿って一列に並ぶ光源51の数が9であり、計18の光源51が配置されているが、これは光源51の数及び配置の一例であってこれに限られるものでなく、適宜変更可能である。例えば、光源部50は、平面視した場合に表示領域OAの直下に設けられたLED等の光源を有する所謂直下型バックライトであってもよい。
(Light source)
Next, the configuration of the light source unit 50 will be described. FIG. 7 is a diagram illustrating an example of a main configuration of the light source unit. The light source unit 50 has a side light positioned on the side of the display area OA when the display area OA is viewed in a plan view. In the example shown in FIG. 7, a plurality of light sources 51 are arranged along the X direction at both ends in the Y direction with respect to the light guide plate LA provided at a position corresponding to the display area OA in the XY plan view. ing. Note that the light source 51 may be arranged only on one end side in the Y direction with respect to the light guide plate LA. The light source 51 is, for example, a light emitting diode (LED: Light Emitting Diode) that emits white light, but is not limited to this and can be changed as appropriate. Light from the light source 51 is guided to the light guide plate LA to illuminate the entire display area OA from the back surface 30s side. In FIG. 7, the number of the light sources 51 arranged in a line along the X direction at each of one end side and the other end side in the Y direction is 9, and a total of 18 light sources 51 are arranged. It is an example of the number and the arrangement, and is not limited to this, and can be appropriately changed. For example, the light source unit 50 may be a so-called direct backlight having a light source such as an LED provided immediately below the display area OA when viewed in a plan view.
 図7では、導光板LAと表示領域OAとの対応関係を示す目的で、複数の表示分割領域PAの各々の座標に対応する複数の光源領域GAを模式的に示している。光源51が点灯する場合、導光板LAによって光が誘導されることで、複数の光源領域GAの各々は、略同一の光量を各々の位置に対応する表示分割領域PAの背面側から照射する。すなわち、第1実施形態の光源部50は、複数の表示分割領域PAの各々で必要とされる光量に対応した光量の制御を行わず、所定の出力で発光する。複数の表示分割領域PAの各々で必要とされる光量に対応した光量の制御に関する機能は、調光部70が有する。 FIG. 7 schematically shows a plurality of light source areas GA corresponding to the coordinates of each of the plurality of display divided areas PA in order to show the correspondence between the light guide plate LA and the display area OA. When the light source 51 is turned on, light is guided by the light guide plate LA, so that each of the plurality of light source areas GA emits substantially the same amount of light from the back side of the display division area PA corresponding to each position. That is, the light source unit 50 of the first embodiment emits light with a predetermined output without controlling the light amount corresponding to the light amount required in each of the plurality of display divided areas PA. The light control unit 70 has a function related to control of the light amount corresponding to the light amount required in each of the plurality of display divided areas PA.
 (調光部)
 次に、調光部について説明する。図8は、調光部の主要構成の一例を示す図である。図8に示すように、調光パネル80は、調光領域DAに設けられた複数の第1電極81を有する。第1電極81は、X方向及びY方向にマトリクス状に配置されている。図8に示す調光パネル80は、X方向に沿って設定されたx1,x2,…,x9の座標とY方向に沿って設定されたy1,y2,y3,y4の座標の組み合わせに対応した計36の座標の各々に対応する位置に個別に設けられた第1電極81を有する。複数の第1電極81の各々は、配線86を介して回路部90と接続されている。第2信号出力部としての回路部90は、ローカルディミング信号DIに応じて第1電極81の電位を個別に制御することで、第1電極81が個別に設けられた複数の領域LDの各々における光の透過率を個別に制御する。このように、調光領域DAは、個別に光の透過率を制御可能な複数の領域LDに分割される。ここで、上述した表示分割領域PAの数及び配置は、第1電極81の数及び配置に対応していることから、複数の表示分割領域PAの各々の位置は、複数の領域LDの各々の位置に対応していることになる。なお、表示分割領域PAと同様に、調光領域DAに含まれる領域LDの数は36に限らず、2つ以上の領域LDが含まれればよい。また、調光領域DAは、X方向及びY方向の両方に沿って配置された領域LDを有するが、これに限らず、X方向及びY方向のいずれか一方に沿ってのみ配置された領域LDを有してもよい。調光領域DAは、平面視で表示領域OA全体をカバーするように設けられ、導光板LAに導かれて表示領域OA全体を背面側から照明する光の透過率を複数の領域LDの各々で個別に制御可能に設けられている。
(Light control section)
Next, the dimming unit will be described. FIG. 8 is a diagram illustrating an example of a main configuration of the light control unit. As shown in FIG. 8, the light control panel 80 has a plurality of first electrodes 81 provided in the light control area DA. The first electrodes 81 are arranged in a matrix in the X direction and the Y direction. The light control panel 80 shown in FIG. 8 corresponds to a combination of the coordinates of x1, x2,..., X9 set along the X direction and the coordinates of y1, y2, y3, y4 set along the Y direction. The first electrode 81 is provided individually at a position corresponding to each of the coordinates of the total 36. Each of the plurality of first electrodes 81 is connected to the circuit section 90 via the wiring 86. The circuit unit 90 as the second signal output unit individually controls the potential of the first electrode 81 in accordance with the local dimming signal DI, and thereby controls each of the plurality of regions LD where the first electrode 81 is individually provided. Light transmittance is individually controlled. As described above, the light control area DA is divided into a plurality of areas LD in which the transmittance of light can be individually controlled. Here, since the number and the arrangement of the display division areas PA correspond to the number and the arrangement of the first electrodes 81, the positions of the plurality of display division areas PA correspond to the respective positions of the plurality of areas LD. It corresponds to the position. Note that, similarly to the display division area PA, the number of the areas LD included in the light control area DA is not limited to 36, and it is sufficient that at least two areas LD are included. Further, the dimming area DA includes the area LD arranged along both the X direction and the Y direction, but is not limited thereto, and the area LD arranged only along one of the X direction and the Y direction. May be provided. The light control area DA is provided so as to cover the entire display area OA in a plan view, and the transmittance of light that is guided by the light guide plate LA and illuminates the entire display area OA from the back side is adjusted in each of the plurality of areas LD. They are individually controllable.
 図9は、第1実施形態に係る調光パネルの概略断面構造の一例を示す断面図である。図9に示すように、調光パネル80は、TN型の液晶パネルであり、第1基板80aと第2基板80bとを有する。第1基板80aは、第1電極81、基板84、絶縁膜85a、85b、85c、スイッチング素子88、及び下配向膜89を有する。第2基板80bは、基板72、第2電極82、及び上配向膜74を有している。スイッチング素子88は、チャネル88a、ソース88b、ゲート88c、及びドレイン88dを有する。以下、調光パネル80の積層構造について説明する。 FIG. 9 is a cross-sectional view illustrating an example of a schematic cross-sectional structure of the light control panel according to the first embodiment. As shown in FIG. 9, the light control panel 80 is a TN type liquid crystal panel, and has a first substrate 80a and a second substrate 80b. The first substrate 80a has a first electrode 81, a substrate 84, insulating films 85a, 85b, 85c, switching elements 88, and a lower alignment film 89. The second substrate 80b has a substrate 72, a second electrode 82, and an upper alignment film 74. The switching element 88 has a channel 88a, a source 88b, a gate 88c, and a drain 88d. Hereinafter, the laminated structure of the light control panel 80 will be described.
 第1基板80aは、基板84、絶縁膜85a、絶縁膜85b、絶縁膜85c、第1電極81、及び下配向膜89が、Z方向に向けてこの順で積層(重畳)されている。基板84は、ガラス基板又はフィルム基板などの基板である。基板84上には、チャネル88a(アイランド)が設けられている。絶縁膜85aは、基板84上であって、チャネル88a上に接して設けられる。また、絶縁膜85a上であって、チャネル88aと重畳する位置には、ゲート88cが設けられている。絶縁膜85bは、絶縁膜85a上であって、ゲート88c上に接して設けられる。また、絶縁膜85b上であって、チャネル88aと重畳する位置には、ソース88b及びドレイン88dが設けられている。ソース88b及びドレイン88dは、一部が、絶縁膜85b、85aを貫通して、チャネル88aに接続されている。絶縁膜85cは、絶縁膜85b上であって、ソース88b及びドレイン88d上に接して設けられる。なお、ゲート24cは、チャネル24aに対して基板と反対側に配置されており、所謂トップゲートの構成を例に挙げたが、これに限られない。例えば、ゲート24cは絶縁膜を介して、チャネル24aと基板との間に配置されているボトムゲートの構成を取ってもよい。第1電極81は、絶縁膜85c上に設けられ、領域LD毎に設けられている。第1電極81は、ドレイン88dに接続されている。なお、第1電極81は、例えば矩形状となっている。なお、絶縁膜85a、85b、85cは、例えば、シリコン窒化膜(SiNx)などの絶縁性部材で構成されている。また、第1電極81及び第2電極82は、例えば、酸化インジウムスズ(Indium Tin Oxide:ITO)などで構成される透明電極である。 The first substrate 80a has a substrate 84, an insulating film 85a, an insulating film 85b, an insulating film 85c, a first electrode 81, and a lower alignment film 89 stacked (superposed) in this order in the Z direction. The substrate 84 is a substrate such as a glass substrate or a film substrate. On the substrate 84, a channel 88a (island) is provided. The insulating film 85a is provided on the substrate 84 and in contact with the channel 88a. A gate 88c is provided on the insulating film 85a at a position overlapping with the channel 88a. The insulating film 85b is provided on the insulating film 85a and in contact with the gate 88c. A source 88b and a drain 88d are provided on the insulating film 85b at positions overlapping the channel 88a. Part of the source 88b and the drain 88d penetrate the insulating films 85b and 85a and are connected to the channel 88a. The insulating film 85c is provided on the insulating film 85b and in contact with the source 88b and the drain 88d. Note that the gate 24c is disposed on the side opposite to the substrate with respect to the channel 24a, and the configuration of a so-called top gate has been described as an example, but the present invention is not limited to this. For example, the gate 24c may have a configuration of a bottom gate disposed between the channel 24a and the substrate via an insulating film. The first electrode 81 is provided on the insulating film 85c, and is provided for each region LD. The first electrode 81 is connected to the drain 88d. The first electrode 81 has, for example, a rectangular shape. The insulating films 85a, 85b, 85c are made of, for example, an insulating member such as a silicon nitride film (SiNx). Further, the first electrode 81 and the second electrode 82 are, for example, transparent electrodes made of indium tin oxide (ITO) or the like.
 下配向膜89は、第1基板80aの最も上側に設けられ、言い換えれば、第1電極81及び絶縁膜85c上に設けられる。すなわち、下配向膜89は、第1基板80aの液晶層LC2側の表面となる。第2電極82と第1電極81との間に電界(電圧)が印加されていない状態において、液晶層LC2内の液晶素子LCは、下配向膜89に付与された初期配向方向に応じて配向する。例えば、下配向膜89は、液晶層LC2側の表面にラビングが施されることで、液晶層LC2側の表面に、一方向、すなわちラビング方向に沿った複数の溝が形成される。下配向膜89の近傍の液晶素子LCは、このラビング方向に沿って配向するため、ラビング方向が、初期配向方向であるといえる。下配向膜89は、例えばポリイミド(Polyimide:PI)系の配向膜材料にラビング処理を施したものであってよい。ただし、下配向膜89は、光配向等のラビング以外の処理によって、液晶素子LCを初期配向方向に配向可能に構成されていてもよい。例えば、下配向膜89は、光配向膜であってもよい。なお、下配向膜89は、第1基板80a側に設けられた配向膜であるため、下配向膜89の初期配向方向が、第2基板80b、すなわち、調光パネル80の下側(上側と反対側)の基板の初期配向方向となる。 The lower alignment film 89 is provided on the uppermost side of the first substrate 80a, in other words, provided on the first electrode 81 and the insulating film 85c. That is, the lower alignment film 89 becomes the surface of the first substrate 80a on the liquid crystal layer LC2 side. When no electric field (voltage) is applied between the second electrode 82 and the first electrode 81, the liquid crystal element LC in the liquid crystal layer LC2 is aligned according to the initial alignment direction given to the lower alignment film 89. I do. For example, by rubbing the lower alignment film 89 on the surface on the liquid crystal layer LC2 side, a plurality of grooves are formed on the surface on the liquid crystal layer LC2 side in one direction, that is, along the rubbing direction. Since the liquid crystal element LC near the lower alignment film 89 is aligned along the rubbing direction, the rubbing direction can be said to be the initial alignment direction. The lower alignment film 89 may be, for example, a rubbed film of a polyimide (PI) -based alignment film material. However, the lower alignment film 89 may be configured to be able to align the liquid crystal element LC in the initial alignment direction by a process other than rubbing such as optical alignment. For example, the lower alignment film 89 may be a photo alignment film. Since the lower alignment film 89 is an alignment film provided on the first substrate 80a side, the initial alignment direction of the lower alignment film 89 is lower than the second substrate 80b, that is, the lower side (upper side and lower side) of the light control panel 80. This is the initial orientation direction of the substrate on the opposite side).
 第2基板80bは、上配向膜74、第2電極82、及び基板72が、Z方向に向けてこの方向で積層(重畳)されている。上配向膜74は、第2基板80bの液晶層LC2側の表面となる。第2電極82と第1電極81との間に電圧が印加されていない状態において、液晶層LC2内の液晶素子LCは、上配向膜74に付与された初期配向方向に応じて配向する。上配向膜74の初期配向方向は、下配向膜89の初期配向方向と直交することが好ましいが、初期配向方向についての詳細は後述する。上配向膜74は、下配向膜89と同様に、ラビング処理によって液晶素子LCを初期配向方向に配向可能であってもよいし、光配向等の他の処理によって液晶素子LCを初期配向方向に配向可能であってもよい。なお、上配向膜74は、下配向膜89と対向して、下配向膜89よりも画像表示パネル30側(上側)に設けられる配向膜といえる。また、上配向膜74は、第2基板80b側に設けられた配向膜であるため、上配向膜74の初期配向方向が、第2基板80b、すなわち、調光パネル80の上側(前面側)の基板の初期配向方向となる。 The second substrate 80b has the upper alignment film 74, the second electrode 82, and the substrate 72 stacked (superposed) in the Z direction in this direction. The upper alignment film 74 is the surface of the second substrate 80b on the liquid crystal layer LC2 side. When no voltage is applied between the second electrode 82 and the first electrode 81, the liquid crystal element LC in the liquid crystal layer LC2 is aligned according to the initial alignment direction given to the upper alignment film 74. The initial alignment direction of the upper alignment film 74 is preferably orthogonal to the initial alignment direction of the lower alignment film 89, but the details of the initial alignment direction will be described later. Like the lower alignment film 89, the upper alignment film 74 may be capable of aligning the liquid crystal element LC in the initial alignment direction by a rubbing process, or may be capable of aligning the liquid crystal element LC in the initial alignment direction by another process such as optical alignment. Orientation may be possible. The upper alignment film 74 is an alignment film that is provided on the image display panel 30 side (upper side) of the lower alignment film 89 so as to face the lower alignment film 89. Further, since the upper alignment film 74 is an alignment film provided on the second substrate 80b side, the initial alignment direction of the upper alignment film 74 is on the second substrate 80b, that is, on the upper side (front side) of the light control panel 80. Is the initial orientation direction of the substrate.
 第2電極82は、第1電極81に対向して配置される電極であって、本実施形態においては、調光パネル80の調光領域DA内において、1つ設けられる共通電極である。なお、第2電極82は、調光領域DA内でX方向又はY方向に延在するブロック状の複数の電極で構成されてもよい。基板72aは、例えばガラス基板やフィルム基板等の基板であり、第2基板80bの最も上側の表面を形成する。 The second electrode 82 is an electrode disposed to face the first electrode 81, and is a common electrode provided in the light control area DA of the light control panel 80 in the present embodiment. Note that the second electrode 82 may be configured with a plurality of block-shaped electrodes extending in the X direction or the Y direction in the light control area DA. The substrate 72a is a substrate such as a glass substrate or a film substrate, and forms the uppermost surface of the second substrate 80b.
 このように積層される調光パネル80は、第1電極81と第2電極82との間に印加された電圧により、光源部50から照射された光を、液晶層LC2内で、透過率を変更しつつ画像表示パネル30の背面30s側に透過する。液晶素子LCは、印加される電界(電圧)に応じて、配向方向が変化する。液晶層LC2は、電界の状態に応じて液晶層LC2内部を通過する光を変調するものである。液晶素子LCの方向が、第2電極82と第1電極81との間で印加される電界(ここでは横電界)によって変化し、液晶層LC2を通過する光の透過量が変化する。言い換えれば、液晶素子LCは、第2電極82と第1電極81との間に電界が印加されていない状態では、下配向膜89及び上配向膜74に規定された初期配向方向に基づき配向している。そして、液晶素子LCは、第2電極82と第1電極81との間に電界が印加されることで、印加された電界の強さに応じた配向方向を向く。 The light control panel 80 stacked in this manner transmits light irradiated from the light source unit 50 by the voltage applied between the first electrode 81 and the second electrode 82 within the liquid crystal layer LC2 so as to reduce the transmittance. The light is transmitted to the rear surface 30 s of the image display panel 30 while being changed. The alignment direction of the liquid crystal element LC changes according to an applied electric field (voltage). The liquid crystal layer LC2 modulates light passing through the inside of the liquid crystal layer LC2 according to the state of the electric field. The direction of the liquid crystal element LC changes due to an electric field (here, a horizontal electric field) applied between the second electrode 82 and the first electrode 81, and the amount of light transmitted through the liquid crystal layer LC2 changes. In other words, when no electric field is applied between the second electrode 82 and the first electrode 81, the liquid crystal element LC is aligned based on the initial alignment direction defined in the lower alignment film 89 and the upper alignment film 74. ing. Then, when an electric field is applied between the second electrode 82 and the first electrode 81, the liquid crystal element LC is oriented in an alignment direction according to the strength of the applied electric field.
 また、ソース88bには、回路部90が提供する所定の出力電位が与えられる。ドレイン88dは、配線86を介して第1電極81と電気的に接続されている。スイッチング素子88は、ゲート88cに対する信号の有無に応じて、ドレイン電流を第1電極81に流すか否かを切り替える。 {Circle around (4)} A predetermined output potential provided by the circuit section 90 is applied to the source 88b. The drain 88d is electrically connected to the first electrode 81 via the wiring 86. The switching element 88 switches whether or not the drain current flows through the first electrode 81 according to the presence or absence of a signal to the gate 88c.
 このように、本実施形態に係る調光パネル80は、縦電界型の液晶パネルであり、さらに言えば、TN型の液晶パネルである。 As described above, the light control panel 80 according to the present embodiment is a vertical electric field type liquid crystal panel, and more specifically, a TN type liquid crystal panel.
 次に、複数の領域LDの各々の透過率の決定方法について、図2を参照して説明する。画像解析部11は、表示分割領域PAに含まれる複数の画素48のうち最高階調で駆動される画素48の階調値を特定する解析処理を行う。画像解析部11は、複数の表示分割領域PAの各々に対して個別に解析処理を行う。調光制御部12は、複数の表示分割領域PAの各々において最高階調で駆動される画素48の階調値に対応する光量が複数の表示分割領域PAの各々に照射されるよう、複数の領域LDの各々の透過率を決定する。 Next, a method of determining the transmittance of each of the plurality of regions LD will be described with reference to FIG. The image analysis unit 11 performs an analysis process for specifying the gradation value of the pixel 48 driven at the highest gradation among the plurality of pixels 48 included in the display divided area PA. The image analysis unit 11 individually performs an analysis process on each of the plurality of display divided areas PA. The dimming control unit 12 controls the plurality of display divided areas PA such that the light amount corresponding to the gradation value of the pixel 48 driven at the highest gradation in each of the plurality of display divided areas PA is applied to each of the plurality of display divided areas PA. The transmittance of each of the regions LD is determined.
 例えば、入力信号IPを構成するR,G,Bの各々の信号が8ビット信号である場合、最高階調値は(R,G,B)=(255,255,255)であり、最低階調値は(R,G,B)=(0,0,0)である。実施形態1では、表示分割領域PAの全ての画素48の階調値が(R,G,B)=(0,0,0)である場合、この表示分割領域PAに必要な光量は最小の光量(0)となり、この表示分割領域PAに対応する位置の領域LDの透過率は最低の透過率(0)となる。また、画素48の階調値が(R,G,B)=(0,0,0)を超える画素48が1つ以上あり、かつ、最高階調で駆動される画素48の階調値が(R,G,B)=(63,63,63)以下である場合、この表示分割領域PAに必要な光量は2番目に小さい光量(63)となり、この表示分割領域PAに対応する位置の領域LDの透過率は2番目に低い透過率(0.25)となる。また、画素48の階調値が(R,G,B)=(64,0,0)、(R,G,B)=(0,64,0)又は(R,G,B)=(0,0,64)を超える画素48が1つ以上あり、かつ、最高階調で駆動される画素48の階調値が(R,G,B)=(127,127,127)以下である場合、この表示分割領域PAに必要な光量は2番目に大きい光量(127)となり、この表示分割領域PAに対応する位置の領域LDの透過率は2番目に高い透過率(0.5)となる。また、画素48の階調値が(R,G,B)=(128,0,0)、(R,G,B)=(0,128,0)又は(R,G,B)=(0,0,128)を超える画素48が1つ以上ある場合、この表示分割領域PAに必要な光量は最大の光量(255)となり、この表示分割領域PAに対応する位置の領域LDの透過率は最高の透過率(1)となる。このような表示分割領域PAに必要な光量と領域LDの透過率との関係はあくまで一例であってこれに限られるものでなく、具体的な階調値と光量と透過率との関係は適宜変更可能である。 For example, when each of the R, G, and B signals constituting the input signal IP is an 8-bit signal, the highest gradation value is (R, G, B) = (255, 255, 255), and the lowest gradation value is The key value is (R, G, B) = (0, 0, 0). In the first embodiment, when the gradation values of all the pixels 48 in the display divided area PA are (R, G, B) = (0, 0, 0), the light amount required for the display divided area PA is the minimum. The light amount becomes (0), and the transmittance of the area LD at the position corresponding to the display divided area PA becomes the lowest transmittance (0). Further, there is at least one pixel 48 in which the tone value of the pixel 48 exceeds (R, G, B) = (0, 0, 0), and the tone value of the pixel 48 driven at the highest tone is When (R, G, B) = (63, 63, 63) or less, the light amount required for the display divided area PA is the second smallest light amount (63), and the light amount required for the position corresponding to the display divided area PA is The transmittance of the region LD is the second lowest transmittance (0.25). Further, when the gradation value of the pixel 48 is (R, G, B) = (64, 0, 0), (R, G, B) = (0, 64, 0) or (R, G, B) = ( There is one or more pixels 48 exceeding (0, 0, 64), and the gradation value of the pixel 48 driven at the highest gradation is (R, G, B) = (127, 127, 127) or less. In this case, the amount of light required for the display divided area PA is the second largest light quantity (127), and the transmittance of the area LD corresponding to the display divided area PA is the second highest transmittance (0.5). Become. Further, when the gradation value of the pixel 48 is (R, G, B) = (128, 0, 0), (R, G, B) = (0, 128, 0) or (R, G, B) = ( When there is one or more pixels 48 exceeding (0, 0, 128), the amount of light required for the display divided area PA is the maximum light quantity (255), and the transmittance of the area LD at a position corresponding to the display divided area PA Has the highest transmittance (1). The relationship between the light quantity required for the display divided area PA and the transmittance of the area LD is merely an example and is not limited to this. The specific relationship between the gradation value, the light quantity, and the transmittance is appropriately determined. Can be changed.
 画像解析部11は、解析処理の結果を示す情報を調光制御部12及び補正部14に出力する。調光制御部12は、解析処理の結果が示す複数の表示分割領域PAの各々に必要な光量に対応した複数の領域LDの各々の透過率を示す情報を第1信号DATAに反映してローカルディミング信号DIを生成し、調光バッファ13及び補正部14に出力する。 The image analysis unit 11 outputs information indicating the result of the analysis process to the light control unit 12 and the correction unit 14. The dimming control unit 12 reflects, on the first signal DATA, information indicating the transmittance of each of the plurality of areas LD corresponding to the amount of light required for each of the plurality of display divided areas PA indicated by the analysis processing result. The dimming signal DI is generated and output to the dimming buffer 13 and the correction unit 14.
 次に、複数の領域LDの透過率に応じて行われる出力画像信号OPに関する処理について、図2を参照して説明する。補正部14は、複数の領域LDの各々の透過率に応じて、複数の表示分割領域PAの各々が有する複数の画素48の各々の階調値を補正する補正処理を行う。補正処理は、最低の透過率を0とし、最高の透過率を1として、透過率の逆数を階調値に乗じる処理である。 Next, a process regarding the output image signal OP performed according to the transmittance of the plurality of regions LD will be described with reference to FIG. The correction unit 14 performs a correction process of correcting the tone value of each of the plurality of pixels 48 included in each of the plurality of display divided areas PA according to the transmittance of each of the plurality of areas LD. The correction process is a process in which the lowest transmittance is set to 0 and the highest transmittance is set to 1, and the reciprocal of the transmittance is multiplied by the gradation value.
 例えば、最高階調で駆動される画素48の階調値が(R,G,B)=(127,127,127)である場合、この表示分割領域PAに対応する位置の領域LDの透過率は2番目に高い透過率になるように制御され、この表示分割領域PAに照射される光量は2番目に大きい光量(127)になる。ここで、(R,G,B)=(127,127,127)の階調値は、この表示分割領域PAに照射される光量が最大の光量(255)であることを前提とした光量である。このため、補正を行わずに(R,G,B)=(127,127,127)の階調値をそのまま出力画像信号OPに反映した場合、この表示分割領域PAに照射される光量が最大の光量よりも小さい光量(2番目に大きい光量(127))では、(R,G,B)=(127,127,127)の階調値に対応した表示出力を行うことができない。そこで、実施形態1では、このような場合、この表示分割領域PAに照射される光量(2番目に大きい光量(127))に合わせて(R,G,B)=(127,127,127)の階調値を補正することで、最大の光量(255)である場合における(R,G,B)=(127,127,127)の階調値に対応した出力と同様の出力を行うことができるようにする。具体的には、2番目に大きい光量(127)が照射される場合における領域LDの透過率は、2番目に高い透過率(0.5)である。この透過率の逆数は、2である。補正部14は、(R,G,B)=(127,127,127)の階調値に透過率の逆数(2)を乗じた値でこの階調値を更新する。この場合、補正後の階調値は、(R,G,B)=(254,254,254)である。階調値が他の値を取る場合、透過率が他の値を取る場合であっても、補正部14は同様の仕組みで補正処理を行って画素48の階調値を更新する。 For example, when the gradation value of the pixel 48 driven at the highest gradation is (R, G, B) = (127, 127, 127), the transmittance of the region LD at the position corresponding to the display divided region PA Is controlled so as to have the second highest transmittance, and the light amount applied to the display divided area PA becomes the second largest light amount (127). Here, the gradation value of (R, G, B) = (127, 127, 127) is a light amount on the assumption that the light amount applied to the display divided area PA is the maximum light amount (255). is there. For this reason, when the gradation value of (R, G, B) = (127, 127, 127) is directly reflected on the output image signal OP without performing the correction, the amount of light irradiated on the display divided area PA is the maximum. When the light amount is smaller than the light amount (second light amount (127)), the display output corresponding to the gradation value of (R, G, B) = (127, 127, 127) cannot be performed. Therefore, in such a case, in the first embodiment, (R, G, B) = (127, 127, 127) according to the light amount (the second largest light amount (127)) irradiated to the display divided area PA. By correcting the gradation value of, the same output as the output corresponding to the gradation value of (R, G, B) = (127, 127, 127) in the case of the maximum light amount (255) is performed. To be able to Specifically, the transmittance of the region LD when the second largest amount of light (127) is emitted is the second highest transmittance (0.5). The reciprocal of this transmittance is 2. The correction unit 14 updates this gradation value with a value obtained by multiplying the gradation value of (R, G, B) = (127, 127, 127) by the reciprocal (2) of the transmittance. In this case, the corrected gradation value is (R, G, B) = (254, 254, 254). When the gradation value takes another value, and even when the transmittance takes another value, the correction section 14 performs a correction process by the same mechanism to update the gradation value of the pixel 48.
 補正部14は、複数の領域LDの各々の透過率に応じて複数の表示分割領域PAの各々が有する画素48の階調値を更新する。なお、補正部14は、透過率が最大の透過率(1)である領域LDに対応する表示分割領域PAについては、補正処理を省略するようにしてもよい。このように、補正部14は、透過率に応じて、画像表示パネル30に出力される信号を補正し、出力画像信号に反映する。 The correction unit 14 updates the gradation value of the pixel 48 included in each of the plurality of display divided areas PA according to the transmittance of each of the plurality of areas LD. Note that the correction unit 14 may omit the correction process for the display divided area PA corresponding to the area LD having the maximum transmittance (1). Thus, the correction unit 14 corrects the signal output to the image display panel 30 according to the transmittance, and reflects the signal on the output image signal.
 また、実施形態1では、画素48が第4副画素49Wを有しているので、補正部14は、第4副画素49Wに割り当て可能な階調値を第4副画素49Wに割り当てる変換処理を行い、出力画像信号OPに反映する。例えば、補正部14は、補正処理後の(R,G,B)=(254,254,254)の階調値を、(R,G,B,W)=(0,0,0,254)とする。補正部14は、補正処理及び変換処理を行って出力画像信号OPを生成し、画像バッファ15に出力する。 In the first embodiment, since the pixel 48 has the fourth sub-pixel 49W, the correction unit 14 performs a conversion process of allocating a tone value assignable to the fourth sub-pixel 49W to the fourth sub-pixel 49W. And reflects it on the output image signal OP. For example, the correction unit 14 converts the gradation value of (R, G, B) = (254, 254, 254) after the correction processing into (R, G, B, W) = (0, 0, 0, 254). ). The correction unit 14 performs a correction process and a conversion process to generate an output image signal OP, and outputs the output image signal OP to the image buffer 15.
 画像バッファ15及び調光バッファ13は、例えばRAM(Random Access Memory)等で構成された記憶領域として機能する構成である。同期部16は、画像バッファ15に記憶される出力画像信号OPの元になった入力信号IPの画像フレームと、調光バッファ13に記憶されるローカルディミング信号DIの元になった入力信号IPの画像フレームとを一致させて同一タイミングで画像バッファ15、調光バッファ13から出力させる。これによって、表示領域OAに表示されるフレーム画像と当該フレーム画像の表示出力時に画像表示パネル30に照射される光量とを整合させることができる。 The image buffer 15 and the dimming buffer 13 are configured to function as a storage area configured by, for example, a RAM (Random Access Memory). The synchronizer 16 is configured to output the image frame of the input signal IP that is the source of the output image signal OP stored in the image buffer 15 and the input signal IP that is the source of the local dimming signal DI stored in the dimming buffer 13. The image buffer 15 and the dimming buffer 13 are output at the same timing by matching the image frame. This makes it possible to match the frame image displayed in the display area OA with the amount of light applied to the image display panel 30 when the frame image is displayed and output.
 光源制御部17は、入力信号IPの入力に応じてローカルディミング信号DIの出力が行われる期間中に光源部50を動作させるよう、光源駆動信号BLを光源部50に出力する。光源部50は、光源駆動信号BLに応じて複数の光源51を点灯させる。 (4) The light source control unit 17 outputs the light source driving signal BL to the light source unit 50 so as to operate the light source unit 50 during a period in which the local dimming signal DI is output in response to the input of the input signal IP. The light source unit 50 turns on the plurality of light sources 51 according to the light source drive signal BL.
 図10は、信号処理部の処理の流れの一例を示すフローチャートである。画像解析部11は、解析処理を行い、複数の表示分割領域PA毎で最大階調となる画素48を特定する(ステップS1)。調光制御部12は、ステップS1で特定された表示分割領域PA毎の最大階調に応じて、調光領域DAが有する複数の領域LDの各々を表示分割領域PA毎の最大階調に対応した透過率とする(ステップS2)。具体的には、調光制御部12は、例えば複数の領域LDの各々を表示分割領域PA毎の最大階調に対応した透過率とするためのローカルディミング信号DIを生成し、調光バッファ13及び補正部14に出力する。補正部14は、調光制御部12から出力された複数の領域LDの各々の透過率が示す調光領域DAの透過率分布を取得する(ステップS3)。補正部14は、複数の領域LDの各々の透過率に応じて各画素48の階調値を補正する(ステップS4)。 FIG. 10 is a flowchart illustrating an example of the flow of processing of the signal processing unit. The image analysis unit 11 performs an analysis process and specifies the pixel 48 having the maximum gradation for each of the plurality of display divided areas PA (Step S1). The dimming control unit 12 maps each of the plurality of areas LD included in the dimming area DA to the maximum gray level of each display division area PA according to the maximum gray level of each display division area PA specified in step S1. (Step S2). Specifically, the dimming control unit 12 generates, for example, a local dimming signal DI for setting each of the plurality of areas LD to have a transmittance corresponding to the maximum gradation for each display division area PA, and And the correction unit 14. The correction unit 14 acquires the transmittance distribution of the light control area DA indicated by the transmittance of each of the plurality of areas LD output from the light control controller 12 (step S3). The correction unit 14 corrects the gradation value of each pixel 48 according to the transmittance of each of the plurality of regions LD (Step S4).
 (透過軸方向と初期配向方向)
 表示装置1は、以上説明した構成となっており、画像表示パネル30に調光パネル80が重畳されている。このように調光パネル80を設けて、領域LD毎の透過率を制御することで、画像表示パネル30に照射される光の光量を調整して、コントラストを向上させることが可能である。ただし、画像表示パネル30に調光パネル80を重畳した場合、光源部50からの光は、調光パネル80と画像表示パネル30との両方を透過することとなるため、表示する画像の輝度が低下するおそれがある。それに対し、本実施形態に係る表示装置1は、下偏光板52の透過軸方向や調光パネル80の初期配向方向などを工夫することで、輝度の低下を抑制している。以下、透過軸方向と初期配向方向とについて説明する。
(Transmission axis direction and initial orientation direction)
The display device 1 has the configuration described above, and the light control panel 80 is superimposed on the image display panel 30. By providing the dimming panel 80 and controlling the transmittance of each region LD in this manner, it is possible to adjust the amount of light applied to the image display panel 30 and improve the contrast. However, when the light control panel 80 is superimposed on the image display panel 30, the light from the light source unit 50 passes through both the light control panel 80 and the image display panel 30. It may decrease. On the other hand, the display device 1 according to the present embodiment suppresses a decrease in luminance by devising the transmission axis direction of the lower polarizing plate 52, the initial alignment direction of the light control panel 80, and the like. Hereinafter, the transmission axis direction and the initial alignment direction will be described.
 図11は、第1実施形態に係る透過軸方向と初期配向方向とを説明する模式図である。図11は、Z方向に沿って並ぶ下偏光板52、調光パネル80、中偏光板54、画像表示パネル30、及び上偏光板58のそれぞれについての、透過軸方向又は初期配向方向を示している。ここで、透過軸方向とは、偏光板の透過軸が沿っている方向である。透過軸とは、偏光板が透過可能な光の振動する角度(偏光角度)であり、偏光軸であるともいえる。例えば、偏光板の透過軸方向がX方向である場合、その偏光板は、入射した光のうち、X方向に振動する光を透過し、X方向以外の方向に振動する光を透過しない。初期配向方向は、上述のように、液晶パネルに電圧(電界)が印加されていない状態において、液晶素子LCが配向するように設定された方向である。 FIG. 11 is a schematic diagram illustrating the transmission axis direction and the initial alignment direction according to the first embodiment. FIG. 11 shows the transmission axis direction or the initial alignment direction of each of the lower polarizing plate 52, the light control panel 80, the middle polarizing plate 54, the image display panel 30, and the upper polarizing plate 58 arranged along the Z direction. I have. Here, the transmission axis direction is a direction along the transmission axis of the polarizing plate. The transmission axis is an angle at which light that can be transmitted by the polarizing plate vibrates (polarization angle), and can be said to be a polarization axis. For example, when the transmission axis direction of the polarizing plate is the X direction, the polarizing plate transmits light that vibrates in the X direction and does not transmit light that vibrates in a direction other than the X direction among the incident light. As described above, the initial alignment direction is a direction set so that the liquid crystal element LC is aligned when no voltage (electric field) is applied to the liquid crystal panel.
 以下、下偏光板52の透過軸方向を、透過軸方向D1とする。そして、調光パネル80の第1基板80aの初期配向方向、すなわち下配向膜89の初期配向方向を、初期配向方向D2とし、調光パネル80の第2基板80bの初期配向方向、すなわち上配向膜74の初期配向方向を、初期配向方向D3とする。また、中偏光板54の透過軸方向を、透過軸方向D4とする。そして、画像表示パネル30のアレイ基板30aの初期配向方向、すなわち下配向膜29の初期配向方向を、初期配向方向D5とし、画像表示パネル30の対向基板30bの初期配向方向、すなわち上配向膜32の初期配向方向を、初期配向方向D6とする。また、上偏光板58の透過軸方向を、透過軸方向D7とする。さらに、予め定めた所定方向に沿った基準軸を、基準軸AX1とし、基準軸AX1に直交する軸を、基準直交軸AX2とする。ここで、基準軸AX1は、X-Y平面に沿った軸であれば、任意の方向に沿った軸であってもよいが、本実施形態では、X方向に沿った軸となる。すなわち、基準軸AX1は、例えば矩形の画像表示パネル30又は調光パネル80の外辺のうちの一辺に沿った方向であるともいえる。基準直交軸AX2は、X-Y平面に沿った軸であり、かつ基準軸AX1に直交する軸である。従って、本実施形態において、基準直交軸AX2は、Y方向に沿った軸である。 Hereinafter, the transmission axis direction of the lower polarizing plate 52 is referred to as a transmission axis direction D1. The initial alignment direction of the first substrate 80a of the light control panel 80, that is, the initial alignment direction of the lower alignment film 89 is defined as the initial alignment direction D2, and the initial alignment direction of the second substrate 80b of the light control panel 80, that is, the upper alignment direction. The initial alignment direction of the film 74 is defined as an initial alignment direction D3. The transmission axis direction of the middle polarizing plate 54 is defined as a transmission axis direction D4. The initial alignment direction of the array substrate 30a of the image display panel 30, that is, the initial alignment direction of the lower alignment film 29 is defined as an initial alignment direction D5, and the initial alignment direction of the counter substrate 30b of the image display panel 30, that is, the upper alignment film 32 Is referred to as an initial alignment direction D6. The transmission axis direction of the upper polarizing plate 58 is defined as a transmission axis direction D7. Further, a reference axis along a predetermined direction is set as a reference axis AX1, and an axis orthogonal to the reference axis AX1 is set as a reference orthogonal axis AX2. Here, the reference axis AX1 may be an axis along any direction as long as it is an axis along the XY plane. In the present embodiment, the reference axis AX1 is an axis along the X direction. That is, it can be said that the reference axis AX1 is a direction along one of the outer sides of the rectangular image display panel 30 or the light control panel 80, for example. The reference orthogonal axis AX2 is an axis along the XY plane, and is an axis orthogonal to the reference axis AX1. Therefore, in the present embodiment, the reference orthogonal axis AX2 is an axis along the Y direction.
 それぞれの透過軸方向と初期配向方向とを説明する前に、調光パネル80の液晶素子LCの捻じれ方向について説明する。液晶層LC2内の液晶素子LCは、下配向膜89の初期配向方向D2と上配向膜74の初期配向方向D3とにより、第1電極81と第2電極82とに電圧が印加されない状態における配向方向(初期配向方向)が設定されている。具体的には、液晶層LC2内の液晶素子LCは、上側(下偏光板52から画像表示パネル30に向かう側)に向かうに従って、Z方向を中心軸として徐々に捻じれるように配向している。さらに言えば、液晶層LC2内の複数の液晶素子LCのうち、下配向膜89の近傍に位置する液晶素子LCは、下配向膜89の初期配向方向D2に沿って配向する。そして、液晶層LC2内の複数の液晶素子LCは、上配向膜74側、すなわちZ方向に向かうに従って、下配向膜89の初期配向方向D2から、上配向膜74の初期配向方向D3に徐々に配向方向が変化し、上配向膜74の近傍に位置する液晶素子LCは、上配向膜74の初期配向方向D3に沿って配向する。すなわち、液晶層LC2内の複数の液晶素子LCは、上配向膜74のものほど、初期配向方向D3に配列し、下配向膜89のものほど、初期配向方向D2に配列するように、Z方向を中心軸として捻じれて配列している。この捻じれる方向を、液晶素子LCの捻じれ方向という。第1実施形態においては、調光パネル80の液晶素子LCの捻じれ方向が、X-Y平面における時計回り方向T1となるように、下配向膜89の初期配向方向D2と上配向膜74の初期配向方向D3とが設定されている。図11に示すように、例えば、下配向膜89の初期配向方向D2がX方向側に向かうように設定され、上配向膜74の初期配向方向D3がY方向側に向かうように設定されることで、調光パネル80の液晶素子LCの捻じれ方向が、X-Y平面における時計回り方向T1となる。なお、時計回り方向T1とは、X-Y平面に直交する軸を中心軸として時計回りの方向である。 Before describing the transmission axis direction and the initial alignment direction, the twist direction of the liquid crystal element LC of the light control panel 80 will be described. The liquid crystal element LC in the liquid crystal layer LC2 is aligned in a state where no voltage is applied to the first electrode 81 and the second electrode 82 due to the initial alignment direction D2 of the lower alignment film 89 and the initial alignment direction D3 of the upper alignment film 74. The direction (initial alignment direction) is set. Specifically, the liquid crystal element LC in the liquid crystal layer LC2 is oriented so as to be gradually twisted about the Z direction as the center axis as going upward (toward the image display panel 30 from the lower polarizing plate 52). . Furthermore, among the plurality of liquid crystal elements LC in the liquid crystal layer LC2, the liquid crystal element LC located near the lower alignment film 89 is aligned along the initial alignment direction D2 of the lower alignment film 89. The plurality of liquid crystal elements LC in the liquid crystal layer LC2 gradually move from the initial alignment direction D2 of the lower alignment film 89 to the initial alignment direction D3 of the upper alignment film 74 toward the upper alignment film 74, that is, in the Z direction. The alignment direction changes, and the liquid crystal element LC located near the upper alignment film 74 is aligned along the initial alignment direction D3 of the upper alignment film 74. That is, the plurality of liquid crystal elements LC in the liquid crystal layer LC2 are arranged in the initial alignment direction D3 as the upper alignment film 74 is arranged, and in the Z direction as the lower alignment film 89 is arranged in the initial alignment direction D2. Are arranged around the center axis. This direction in which the liquid crystal element LC is twisted is referred to as the twisting direction. In the first embodiment, the initial alignment direction D2 of the lower alignment film 89 and the upper alignment film 74 are adjusted so that the twist direction of the liquid crystal element LC of the light control panel 80 is the clockwise direction T1 on the XY plane. The initial alignment direction D3 is set. As shown in FIG. 11, for example, the initial alignment direction D2 of the lower alignment film 89 is set so as to be directed to the X direction side, and the initial alignment direction D3 of the upper alignment film 74 is set so as to be directed to the Y direction side. Thus, the twist direction of the liquid crystal element LC of the light control panel 80 is the clockwise direction T1 on the XY plane. Note that the clockwise direction T1 is a clockwise direction with an axis orthogonal to the XY plane as a center axis.
 図11に示すように、下偏光板52は、X-Y平面において(Z方向から見て)、透過軸方向D1が、基準軸AX1に対し、調光パネル80の液晶素子LCの捻じれ方向と同じ方向に傾くように、透過軸が設定される。上述のように、第1実施形態においては、調光パネル80の液晶素子LCの捻じれ方向が、時計回り方向T1となる。従って、第1実施形態においては、下偏光板52の透過軸方向D1は、基準軸AX1に対し、時計回り方向T1に傾いている。さらに言えば、本実施形態においては、中偏光板54は、透過軸方向D4が、基準直交軸AX2に対して傾いておらず、基準直交軸AX2に沿う(平行である)ように設定されている。従って、下偏光板52の透過軸方向D1は、中偏光板54の透過軸方向D4に直交する軸に対し、液晶素子LCの捻じれ方向と同じ方向(ここでは、時計回り方向T1)に傾いているともいえる。なお、下偏光板52の透過軸方向D1は、基準軸AX1に対して傾いているが、基準軸AX1に沿った方向のベクトル成分と基準直交軸AX2に沿った方向のベクトル成分とに分解した場合、基準軸AX1に沿った方向のベクトル成分が、基準直交軸AX2に沿った方向のベクトル成分よりも高くなっている。すなわち、透過軸方向D1は、基準軸AX1に対する傾き角度が、45度より小さい。ただし、傾く角度の好適な数値範囲については、後述する。 As shown in FIG. 11, in the lower polarizing plate 52, in the XY plane (when viewed from the Z direction), the transmission axis direction D1 is the twist direction of the liquid crystal element LC of the light control panel 80 with respect to the reference axis AX1. The transmission axis is set so as to incline in the same direction as. As described above, in the first embodiment, the twisting direction of the liquid crystal element LC of the light control panel 80 is the clockwise direction T1. Therefore, in the first embodiment, the transmission axis direction D1 of the lower polarizing plate 52 is inclined in the clockwise direction T1 with respect to the reference axis AX1. Furthermore, in the present embodiment, the medium polarizing plate 54 is set such that the transmission axis direction D4 is not inclined with respect to the reference orthogonal axis AX2 but is along (parallel to) the reference orthogonal axis AX2. I have. Therefore, the transmission axis direction D1 of the lower polarizing plate 52 is inclined in the same direction as the twist direction of the liquid crystal element LC (here, clockwise direction T1) with respect to an axis orthogonal to the transmission axis direction D4 of the middle polarizing plate 54. It can be said that. The transmission axis direction D1 of the lower polarizing plate 52 is inclined with respect to the reference axis AX1, but is decomposed into a vector component in a direction along the reference axis AX1 and a vector component in a direction along the reference orthogonal axis AX2. In this case, the vector component in the direction along the reference axis AX1 is higher than the vector component in the direction along the reference orthogonal axis AX2. That is, in the transmission axis direction D1, the inclination angle with respect to the reference axis AX1 is smaller than 45 degrees. However, a preferable numerical range of the tilt angle will be described later.
 また、調光パネル80の第1基板80aの下配向膜89は、X-Y平面において(Z方向から見て)、初期配向方向D2が、基準軸AX1に対し、調光パネル80の液晶素子LCの捻じれ方向と反対方向に、言い換えれば、下偏光板52の透過軸方向D1が基準軸AX1に対して傾く方向と反対方向に、傾いている。従って、第1実施形態においては、下配向膜89の初期配向方向D2は、基準軸AX1に対し、X-Y平面における反時計回り方向T2に傾いている。なお、反時計回り方向T2とは、X-Y平面に直交する軸を中心軸として反時計回りの方向であり、時計回り方向T1と反対方向である。なお、下配向膜89の初期配向方向D2は、基準軸AX1に対して傾いているが、基準軸AX1に沿った方向のベクトル成分と基準直交軸AX2に沿った方向のベクトル成分とに分解した場合、基準軸AX1に沿った方向のベクトル成分が、基準直交軸AX2に沿った方向のベクトル成分よりも高くなっている。すなわち、初期配向方向D2は、基準軸AX1に対する傾き角度が、45度より小さい。ただし、傾く角度の好適な数値範囲については、後述する。 The lower alignment film 89 of the first substrate 80a of the light control panel 80 has an initial alignment direction D2 in the XY plane (as viewed from the Z direction) whose liquid crystal element of the light control panel 80 is positioned with respect to the reference axis AX1. The lower polarizing plate 52 is inclined in a direction opposite to the twisting direction of the LC, in other words, in a direction opposite to the direction in which the transmission axis direction D1 of the lower polarizing plate 52 is inclined with respect to the reference axis AX1. Therefore, in the first embodiment, the initial alignment direction D2 of the lower alignment film 89 is inclined in the counterclockwise direction T2 on the XY plane with respect to the reference axis AX1. The counterclockwise direction T2 is a counterclockwise direction about an axis orthogonal to the XY plane as a center axis, and is a direction opposite to the clockwise direction T1. The initial alignment direction D2 of the lower alignment film 89 is inclined with respect to the reference axis AX1, but is decomposed into a vector component in a direction along the reference axis AX1 and a vector component in a direction along the reference orthogonal axis AX2. In this case, the vector component in the direction along the reference axis AX1 is higher than the vector component in the direction along the reference orthogonal axis AX2. That is, the inclination angle of the initial alignment direction D2 with respect to the reference axis AX1 is smaller than 45 degrees. However, a preferable numerical range of the tilt angle will be described later.
 このように、下偏光板52の透過軸方向D1が基準軸AX1に対し時計回り方向T1に傾いており、下配向膜89の初期配向方向D2が基準軸AX1に対し反時計回り方向T2に傾いているため、下偏光板52の透過軸方向D1は、調光パネル80の透過軸方向、すなわち下配向膜89の初期配向方向D2と、平行でなく、かつ直交しない、といえる。さらに言えば、下偏光板52の透過軸方向D1は、調光パネル80の透過軸方向、すなわち下配向膜89の初期配向方向D2と、平行でなく、かつ直交しなければよく、例えば、基準軸AX1に対し平行又は直交であってもよい。同様に、下配向膜89の初期配向方向D2は、下偏光板52の透過軸方向D1に対し平行でなく、かつ直交していなければよく、例えば、基準軸AX1に対し平行又は直交であってもよい。ただし、第1実施形態に示したように、下偏光板52の透過軸方向D1は、基準軸AX1に対し、液晶素子LCの捻じれ方向と同じ方向(ここでは時計回り方向T1)に傾いていることが好ましく、下配向膜89の初期配向方向D2は、基準軸AX1に対し、下偏光板52の透過軸方向D1の傾く方向と反対方向(ここでは反時計回り方向T2)に傾いていることが好ましい。 Thus, the transmission axis direction D1 of the lower polarizing plate 52 is inclined in the clockwise direction T1 with respect to the reference axis AX1, and the initial alignment direction D2 of the lower alignment film 89 is inclined in the counterclockwise direction T2 with respect to the reference axis AX1. Therefore, it can be said that the transmission axis direction D1 of the lower polarizing plate 52 is not parallel and not orthogonal to the transmission axis direction of the light control panel 80, that is, the initial alignment direction D2 of the lower alignment film 89. In addition, the transmission axis direction D1 of the lower polarizing plate 52 is not required to be parallel and perpendicular to the transmission axis direction of the light control panel 80, that is, the initial alignment direction D2 of the lower alignment film 89. It may be parallel or perpendicular to the axis AX1. Similarly, the initial alignment direction D2 of the lower alignment film 89 is not required to be parallel and not orthogonal to the transmission axis direction D1 of the lower polarizing plate 52. For example, the initial alignment direction D2 is parallel or orthogonal to the reference axis AX1. Is also good. However, as shown in the first embodiment, the transmission axis direction D1 of the lower polarizing plate 52 is inclined with respect to the reference axis AX1 in the same direction as the twisting direction of the liquid crystal element LC (here, clockwise direction T1). Preferably, the initial alignment direction D2 of the lower alignment film 89 is inclined with respect to the reference axis AX1 in a direction opposite to the direction of inclination of the transmission axis direction D1 of the lower polarizing plate 52 (here, a counterclockwise direction T2). Is preferred.
 また、調光パネル80の第2基板80bの上配向膜74は、X-Y平面において(Z方向から見て)、初期配向方向D3が、基準直交軸AX2に対し、調光パネル80の液晶素子LCの捻じれ方向に、言い換えれば、下偏光板52の透過軸方向D1が基準軸AX1に対して傾く方向と同じ方向に、傾いている。従って、第1実施形態においては、上配向膜74の初期配向方向D3は、基準直交軸AX2に対し、時計回り方向T1に傾いている。なお、上配向膜74の初期配向方向D3は、基準直交軸AX2に対して傾いているが、基準軸AX1に沿った方向のベクトル成分と基準直交軸AX2に沿った方向のベクトル成分とに分解した場合、基準直交軸AX2に沿った方向のベクトル成分が、基準軸AX1に沿った方向のベクトル成分よりも高くなっている。すなわち、初期配向方向D2は、基準直交軸AX2に対する傾き角度が、45度より小さい。ただし、傾く角度の好適な数値範囲については、後述する。ただし、下偏光板52の透過軸方向D1は、必ずしも基準直交軸AX2に対して傾いていなくてもよく、例えば基準直交軸AX2に沿っていてもよい。 Further, the upper alignment film 74 of the second substrate 80b of the light control panel 80 has a structure in which the initial alignment direction D3 is equal to the reference orthogonal axis AX2 in the XY plane (when viewed from the Z direction). The element LC is tilted in the twisting direction, in other words, in the same direction as the direction in which the transmission axis direction D1 of the lower polarizing plate 52 is tilted with respect to the reference axis AX1. Therefore, in the first embodiment, the initial alignment direction D3 of the upper alignment film 74 is inclined in the clockwise direction T1 with respect to the reference orthogonal axis AX2. Although the initial alignment direction D3 of the upper alignment film 74 is inclined with respect to the reference orthogonal axis AX2, it is decomposed into a vector component in a direction along the reference axis AX1 and a vector component in a direction along the reference orthogonal axis AX2. In this case, the vector component in the direction along the reference orthogonal axis AX2 is higher than the vector component in the direction along the reference axis AX1. That is, the inclination angle of the initial alignment direction D2 with respect to the reference orthogonal axis AX2 is smaller than 45 degrees. However, a preferable numerical range of the tilt angle will be described later. However, the transmission axis direction D1 of the lower polarizing plate 52 does not necessarily need to be inclined with respect to the reference orthogonal axis AX2, and may be along the reference orthogonal axis AX2, for example.
 上述のように、中偏光板54は、X-Y平面において(Z方向から見て)、透過軸方向D4が、基準直交軸AX2に対して傾いておらず、基準直交軸AX2に沿う(平行である)ように設定されている。 As described above, in the middle polarizing plate 54, in the XY plane (as viewed from the Z direction), the transmission axis direction D4 is not inclined with respect to the reference orthogonal axis AX2, and is along the reference orthogonal axis AX2 (parallel to the reference orthogonal axis AX2). Is set).
 画像表示パネル30のアレイ基板30aの下配向膜29は、X-Y平面において(Z方向から見て)、初期配向方向D5が、基準直交軸AX2に対して傾いておらず、基準直交軸AX2に沿う(平行である)ように設定されている。すなわち、下配向膜29の初期配向方向D5は、中偏光板54の透過軸方向D4に沿っている。 In the lower alignment film 29 of the array substrate 30a of the image display panel 30, the initial alignment direction D5 is not inclined with respect to the reference orthogonal axis AX2 in the XY plane (as viewed from the Z direction), and (Parallel). That is, the initial alignment direction D5 of the lower alignment film 29 is along the transmission axis direction D4 of the middle polarizing plate 54.
 また、画像表示パネル30の対向基板30bの上配向膜32は、X-Y平面において(Z方向から見て)、初期配向方向D6が、下配向膜29の初期配向方向D5に沿っている(平行である)。すなわち、上配向膜32の初期配向方向D6は、基準直交軸AX2に沿っており、さらに言えば、中偏光板54の透過軸方向D4に沿っている。 In the upper alignment film 32 of the counter substrate 30b of the image display panel 30, the initial alignment direction D6 is along the initial alignment direction D5 of the lower alignment film 29 in the XY plane (as viewed from the Z direction). Parallel). That is, the initial alignment direction D6 of the upper alignment film 32 is along the reference orthogonal axis AX2, and more specifically, is along the transmission axis direction D4 of the middle polarizer 54.
 また、上偏光板58は、X-Y平面において(Z方向から見て)、透過軸方向D7が、基準軸AX1に対して傾いておらず、基準軸AX1に沿う(平行である)ように設定されている。すなわち、上偏光板58の透過軸方向D7は、中偏光板54の透過軸方向D4と、下配向膜29の初期配向方向D5と、上配向膜32の初期配向方向D6とに直交している。 In addition, the upper polarizing plate 58 is configured such that the transmission axis direction D7 is not inclined with respect to the reference axis AX1 and is along (referenced to) the reference axis AX1 in the XY plane (as viewed from the Z direction). Is set. That is, the transmission axis direction D7 of the upper polarizing plate 58 is orthogonal to the transmission axis direction D4 of the middle polarizing plate 54, the initial alignment direction D5 of the lower alignment film 29, and the initial alignment direction D6 of the upper alignment film 32. .
 次に、透過軸方向及び初期配向方向の角度について説明する。以下に説明する透過軸方向及び初期配向方向の角度は、X-Y平面における角度、すなわちZ方向から見た角度を指す。下偏光板52の透過軸方向D1が基準軸AX1に対して傾く角度の大きさは、例えば0度以上5度以下であることが好ましい。また、下配向膜89の初期配向方向D2が基準軸AX1に対し傾く角度の大きさも、例えば0度以上5度以下であることが好ましい。また、上配向膜74の初期配向方向D3が基準直交軸AX2に対して傾く角度の大きさも、例えば0度以上5度以下であることが好ましい。さらに言えば、下偏光板52の透過軸方向D1が基準軸AX1に対して傾く角度の大きさと、下配向膜89の初期配向方向D2が基準軸AX1に対し傾く角度の大きさと、上配向膜74の初期配向方向D3が基準直交軸AX2に対して傾く角度の大きさとは、等しいことが好ましいが、互いに異なってもよい。 Next, the angles of the transmission axis direction and the initial alignment direction will be described. The angles of the transmission axis direction and the initial alignment direction described below indicate angles in the XY plane, that is, angles as viewed from the Z direction. The angle of inclination of the transmission axis direction D1 of the lower polarizing plate 52 with respect to the reference axis AX1 is preferably, for example, not less than 0 degrees and not more than 5 degrees. Further, the magnitude of the angle at which the initial alignment direction D2 of the lower alignment film 89 is inclined with respect to the reference axis AX1 is preferably, for example, 0 degrees or more and 5 degrees or less. Further, the magnitude of the angle at which the initial alignment direction D3 of the upper alignment film 74 is inclined with respect to the reference orthogonal axis AX2 is preferably, for example, not less than 0 degrees and not more than 5 degrees. More specifically, the angle of the transmission axis direction D1 of the lower polarizing plate 52 with respect to the reference axis AX1, the angle of the initial alignment direction D2 of the lower alignment film 89 with respect to the reference axis AX1, and the upper alignment film It is preferable that the initial orientation direction D3 of 74 is equal to the angle of inclination with respect to the reference orthogonal axis AX2, but they may be different from each other.
 図12は、第1実施形態における透過軸方向及び初期配向方向の関係を示す図である。図12の角度θは、下偏光板52の透過軸方向D1と下配向膜89の初期配向方向D2とのなす角度である。すなわち、下配向膜89の初期配向方向D2は、下偏光板52の透過軸方向D1に対して、反時計回り方向T2、すなわち調光パネル80の液晶素子LCの捻じれ方向と反対方向に、角度θだけ傾いている。角度θは、0度より大きく10度以下であることが好ましい。また、図12の角度θは、下偏光板52の透過軸方向D1と上配向膜74の初期配向方向D3とのなす角度である。角度θは、85度以上95度以下であることが好ましい。角度θが90度である場合も含むため、下偏光板52の透過軸方向D1と上配向膜74の初期配向方向D3とは、直交していてもよい。また、図12の角度θは、下偏光板52の透過軸方向D1と中偏光板54の透過軸方向D4とのなす角度である。角度θは、90度以上95度以下であることが好ましい。角度θが90度である場合も含むため、下偏光板52の透過軸方向D1と中偏光板54の透過軸方向D4とは、直交していてもよい。なお、第1実施形態においては、中偏光板54の透過軸方向D4は、基準直交軸AX2に沿っているため、角度θは、下偏光板52の透過軸方向D1と基準直交軸AX2とのなす角度であるともいえる。 FIG. 12 is a diagram illustrating the relationship between the transmission axis direction and the initial alignment direction in the first embodiment. Angle theta 1 of Figure 12 is the angle between the initial orientation direction D2 of the transmission axis direction D1 and the lower alignment film 89 of the lower polarizing plate 52. That is, the initial alignment direction D2 of the lower alignment film 89 is counterclockwise T2 with respect to the transmission axis direction D1 of the lower polarizer 52, that is, in the direction opposite to the twisting direction of the liquid crystal element LC of the light control panel 80. It is inclined by an angle θ 1. Angle theta 1 is preferably less than 10 degrees than 0 degrees. The angle theta 2 in FIG. 12, an angle formed between the initial orientation direction D3 of the transmission axis direction D1 and the upper alignment film 74 of the lower polarizing plate 52. Angle theta 2 is preferably less 95 degrees 85 degrees. Since the angle theta 2 including the case is 90 degrees, the initial alignment direction D3 of the transmission axis direction D1 and the upper alignment film 74 of the lower polarizing plate 52 may be perpendicular. The angle theta 3 in FIG. 12 is an angle formed between the transmission axis direction D4 of the transmission axis direction D1 and intermediate polarizing plate 54 of the lower polarizing plate 52. Angle theta 3 is preferably not more than 95 degrees 90 degrees. Since the angle theta 3 including the case is 90 degrees, the transmission axis direction D4 of the transmission axis direction D1 and intermediate polarizing plate 54 of the lower polarizer 52 may be perpendicular. In the first embodiment, the transmission axis direction D4 of the intermediate polarizing plate 54, because it is along the reference orthogonal axis AX2, the angle theta 3 includes a transmission axis direction D1 and the reference quadrature axis AX2 of the lower polarizer 52 It can be said that it is the angle made.
 また、図12の角度θは、下配向膜89の初期配向方向D2と上配向膜74の初期配向方向D3とのなす角度である。角度θは、80度以上90度以下であることが好ましい。角度θが90度である場合も含むため、下配向膜89の初期配向方向D2と上配向膜74の初期配向方向D3とは、直交していてもよい。図12の角度θは、下配向膜89の初期配向方向D2と中偏光板54の透過軸方向D4とのなす角度である。角度θは、85度以上95度以下であることが好ましい。角度θが90度である場合も含むため、下配向膜89の初期配向方向D2と中偏光板54の透過軸方向D4とは、直交していてもよい。なお、第1実施形態においては、中偏光板54の透過軸方向D4は、基準直交軸AX2に沿っているため、角度θは、下配向膜89の初期配向方向D2と基準直交軸AX2とのなす角度であるともいえる。 The angle theta 4 in FIG. 12, an angle formed between the initial orientation direction D3 of the initial alignment direction D2 and the upper alignment film 74 of the lower alignment film 89. Angle theta 4 is preferably 80 degrees or less than 90 degrees. Since the angle theta 2 including the case is 90 degrees, the initial alignment direction D3 of the initial alignment direction D2 and the upper alignment film 74 of the lower alignment film 89 may be orthogonal. Angle theta 5 in FIG. 12 is an angle formed between the transmission axis direction D4 of the initial alignment direction D2 with intermediate polarizing plate 54 of the lower alignment layer 89. Angle theta 5 is preferably less 95 degrees 85 degrees. Since the angle theta 5 including the case is 90 degrees, the transmission axis direction D4 of the intermediate polarizing plate 54 and the initial alignment direction D2 of the lower alignment layer 89 may be orthogonal. In the first embodiment, since the transmission axis direction D4 of the middle polarizing plate 54 is along the reference orthogonal axis AX2, the angle θ 5 is equal to the initial alignment direction D2 of the lower alignment film 89 and the reference orthogonal axis AX2. It can be said that it is the angle made.
 また、図12の角度θは、上配向膜74の初期配向方向D3と中偏光板54の透過軸方向D4とのなす角度である。角度θは、0度以上5度以下であることが好ましい。角度θが0度である場合も含むため、上配向膜74の初期配向方向D3と中偏光板54の透過軸方向D4とは、平行であってもよい。第1実施形態においては、中偏光板54の透過軸方向D4は、基準直交軸AX2に沿っているため、角度θは、上配向膜74の初期配向方向D3と基準直交軸AX2とのなす角度であるともいえる。 The angle θ 6 in FIG. 12 is an angle between the initial alignment direction D3 of the upper alignment film 74 and the transmission axis direction D4 of the middle polarizing plate 54. The angle θ 6 is preferably equal to or greater than 0 degrees and equal to or less than 5 degrees. Since the case where the angle θ 6 is 0 degrees is included, the initial alignment direction D3 of the upper alignment film 74 and the transmission axis direction D4 of the middle polarizing plate 54 may be parallel. In the first embodiment, the transmission axis direction D4 of the intermediate polarizing plate 54, because it is along the reference orthogonal axis AX2, the angle theta 5 is formed between the initial alignment direction D3 and the reference quadrature axis AX2 of the upper alignment film 74 It can be said that it is an angle.
 図13は、第1実施形態に係る表示装置の輝度の一例を示すグラフである。図13の横軸は、視野角であり、縦軸は、画像の輝度である。視野角とは、表示装置の画面に対する視点の角度を指す。すなわち、視野角が0度の場合、視点が表示装置の画面の正面であり、視野角が0度から大きくなったり小さくなったりするほど、視点が表示装置の画面の正面からずれていく。図13の線分L1Z1は、第1比較例に係る表示装置の視野角ごとの輝度を示している。第1比較例に係る表示装置は、第1実施形態の図3に示す積層構造であるが、透過軸と初期配向方向とが、互いに平行又は直交したものである。すなわち、第1比較例に係る表示装置は、下偏光板の透過軸方向と、調光パネルの下配向膜の初期配向方向とが直交し、調光パネルの下配向膜の初期配向方向と、調光パネルの上配向膜の初期配向方向とが直交し、調光パネルの上配向膜の初期配向方向と、中偏光板の透過軸方向とが平行であり、中偏光板の透過軸方向と、画像表示パネルの下配向膜及び上配向膜の初期配向方向とが平行であり、画像表示パネルの下配向膜及び上配向膜の初期配向方向と、上偏光板の透過軸方向とが直交する。さらに、第1比較例の調光パネルの液晶素子の捻じれ方向は、第1実施形態と同じ時計回り方向T1である。また、図13の線分L1は、第1実施形態に係る表示装置1の視野角ごとの輝度を示している。 FIG. 13 is a graph illustrating an example of the luminance of the display device according to the first embodiment. The horizontal axis in FIG. 13 is the viewing angle, and the vertical axis is the luminance of the image. The viewing angle refers to the angle of the viewpoint with respect to the screen of the display device. That is, when the viewing angle is 0 degrees, the viewpoint is in front of the screen of the display device, and as the viewing angle increases or decreases from 0 degrees, the viewpoint shifts from the front of the screen of the display device. A line segment L1Z1 in FIG. 13 indicates the luminance at each viewing angle of the display device according to the first comparative example. The display device according to the first comparative example has the layered structure shown in FIG. 3 of the first embodiment, but the transmission axis and the initial alignment direction are parallel or orthogonal to each other. That is, in the display device according to the first comparative example, the transmission axis direction of the lower polarizing plate is perpendicular to the initial alignment direction of the lower alignment film of the light control panel, and the initial alignment direction of the lower alignment film of the light control panel is: The initial alignment direction of the upper alignment film of the light control panel is orthogonal to the initial alignment direction of the upper alignment film of the light control panel, and the transmission axis direction of the middle polarizer is parallel to the transmission axis direction of the middle polarizer. The initial alignment direction of the lower alignment film and the upper alignment film of the image display panel is parallel, and the initial alignment direction of the lower alignment film and the upper alignment film of the image display panel is orthogonal to the transmission axis direction of the upper polarizing plate. . Further, the twist direction of the liquid crystal element of the light control panel of the first comparative example is the same clockwise direction T1 as in the first embodiment. Further, a line segment L1 in FIG. 13 indicates the luminance for each viewing angle of the display device 1 according to the first embodiment.
 図13の線分L1に示すように、第1実施形態に係る表示装置1の輝度は、線分L1Z1に示す第1比較例の表示装置の輝度より高くなっている。すなわち、透過軸と初期配向方向とを傾けることで、輝度が高くなる。より詳しくは、第1実施形態に係る表示装置1は、少なくとも、下偏光板52の透過軸方向D1と調光パネル80の下配向膜89の初期配向方向D2とを、平行でなく、直交しないように設定している。従って、下偏光板52を透過した光が、調光パネル80の下配向膜89によって完全に遮光されることが抑制される。そのため、第1実施形態に係る表示装置1によると、調光パネル80を透過する光の量を増加させ、輝度の低下を抑制することができる。 As shown by the line segment L1 in FIG. 13, the luminance of the display device 1 according to the first embodiment is higher than the luminance of the display device of the first comparative example indicated by the line segment L1Z1. That is, the brightness is increased by inclining the transmission axis and the initial alignment direction. More specifically, in the display device 1 according to the first embodiment, at least the transmission axis direction D1 of the lower polarizing plate 52 and the initial alignment direction D2 of the lower alignment film 89 of the light control panel 80 are not parallel and are not orthogonal. Is set as follows. Therefore, the light transmitted through the lower polarizing plate 52 is prevented from being completely blocked by the lower alignment film 89 of the light control panel 80. Therefore, according to the display device 1 according to the first embodiment, the amount of light transmitted through the light control panel 80 can be increased, and a decrease in luminance can be suppressed.
 図14は、第1実施形態に係る表示装置のコントラストの一例を示すグラフである。図14の横軸は、視野角であり、縦軸は、画像のコントラストである。図14の線分L2Z1は、第1比較例に係る表示装置の視野角ごとのコントラストであり、線分L2は、第1実施形態に係る表示装置1の視野角ごとのコントラストである。図13及び図14に示すように、第1実施形態に係る表示装置1は、透過軸と初期配向方向とを傾けることで、コントラストを保ったまま、輝度を高くすることができる。 FIG. 14 is a graph showing an example of the contrast of the display device according to the first embodiment. The horizontal axis in FIG. 14 is the viewing angle, and the vertical axis is the image contrast. A line segment L2Z1 in FIG. 14 is a contrast for each viewing angle of the display device according to the first comparative example, and a line segment L2 is a contrast for each viewing angle of the display device 1 according to the first embodiment. As shown in FIGS. 13 and 14, the display device 1 according to the first embodiment can increase the luminance while maintaining the contrast by tilting the transmission axis and the initial alignment direction.
 以上説明したように、第1実施形態に係る表示装置1は、複数の画素48を有する画像表示パネル30と、光源部50と、調光パネル80と、下偏光板52とを有する。光源部50は、画像表示パネル30の背面30s側に設けられる。調光パネル80は、画像表示パネル30と光源部50との間に設けられ、光源部50側の下配向膜89と、マトリクス状に配置された複数の第1電極81と、下配向膜89と対向して下配向膜89よりも画像表示パネル30側に設けられる上配向膜74と、第2電極82と、液晶層LC2とを有する。そして、調光パネル80は、第1電極81と第2電極82との間に印加された電圧により、光源部50から照射された光を、液晶層LC2内で、透過率を変更しつつ画像表示パネル30の背面30s側に透過可能に構成される。下偏光板52は、調光パネル80と光源部50との間に設けられる。下偏光板52の透過軸方向D1は、下配向膜89の初期配向方向D2と平行でなく、かつ、直交しない方向に沿っている。この表示装置1は、画像表示パネル30に重畳して調光パネル80を設けることで視野角特性を向上させつつ、下偏光板52の透過軸方向D1と調光パネル80の初期配向方向とを平行でなくかつ直交させないことで、調光パネル80を透過する光の量を増加させ、輝度の低下を抑制することができる。 As described above, the display device 1 according to the first embodiment includes the image display panel 30 having the plurality of pixels 48, the light source unit 50, the light control panel 80, and the lower polarizing plate 52. The light source unit 50 is provided on the back surface 30 s side of the image display panel 30. The light control panel 80 is provided between the image display panel 30 and the light source unit 50, and includes a lower alignment film 89 on the light source unit 50 side, a plurality of first electrodes 81 arranged in a matrix, and a lower alignment film 89. , An upper alignment film 74 provided on the image display panel 30 side of the lower alignment film 89 and the second electrode 82, and a liquid crystal layer LC2. Then, the light control panel 80 changes the transmittance of the light emitted from the light source unit 50 in the liquid crystal layer LC2 while changing the transmittance of the light, based on the voltage applied between the first electrode 81 and the second electrode 82. The display panel 30 is configured to be able to transmit light to the back surface 30 s side. The lower polarizing plate 52 is provided between the light control panel 80 and the light source unit 50. The transmission axis direction D1 of the lower polarizing plate 52 is not parallel to the initial alignment direction D2 of the lower alignment film 89, and is along a direction that is not orthogonal. This display device 1 improves the viewing angle characteristics by providing the light control panel 80 so as to be superimposed on the image display panel 30, and adjusts the transmission axis direction D1 of the lower polarizing plate 52 and the initial alignment direction of the light control panel 80. By not being parallel and not orthogonal, the amount of light transmitted through the light control panel 80 can be increased, and a decrease in luminance can be suppressed.
 また、下偏光板52の透過軸方向D1は、所定の方向に沿った基準軸AX1に対して、時計回り及び反時計回りのうちの一方側(第1実施形態では時計回り方向T1側)に傾いており、下配向膜89の初期配向方向D2は、基準軸に対して、時計回り及び反時計回りのうちの他方側(第1実施形態では反時計回り方向T2側)に傾いている。この表示装置1は、このように、下偏光板52の透過軸方向D1と下配向膜89の初期配向方向D2とを反対方向に傾けることで、輝度の低下を好適に抑制することができる。 The transmission axis direction D1 of the lower polarizing plate 52 is one of clockwise and counterclockwise with respect to the reference axis AX1 along the predetermined direction (the clockwise direction T1 in the first embodiment). The initial orientation direction D2 of the lower orientation film 89 is inclined to the other of the clockwise direction and the counterclockwise direction (the counterclockwise direction T2 side in the first embodiment) with respect to the reference axis. In this display device 1, by inclining the transmission axis direction D <b> 1 of the lower polarizing plate 52 and the initial alignment direction D <b> 2 of the lower alignment film 89 in the opposite directions, it is possible to appropriately suppress a decrease in luminance.
 また、上配向膜74の初期配向方向D3は、基準軸AX1に直交する基準直交軸AX2に対して、時計回り及び反時計回りのうちの一方側(第1実施形態では時計回り方向T1側)に傾いている。表示装置1は、このように、上配向膜74の初期配向方向D3を下偏光板52の透過軸方向D1と同方向に傾けることで、輝度の低下を好適に抑制することができる。 The initial alignment direction D3 of the upper alignment film 74 is one of clockwise and counterclockwise with respect to a reference orthogonal axis AX2 orthogonal to the reference axis AX1 (the clockwise direction T1 in the first embodiment). Leaning on. In this way, the display device 1 can appropriately suppress the decrease in luminance by tilting the initial alignment direction D3 of the upper alignment film 74 in the same direction as the transmission axis direction D1 of the lower polarizing plate 52.
 また、下配向膜89の初期配向方向D2と上配向膜74の初期配向方向D3とは、液晶層LC2内の液晶素子LCが、第1電極81と第2電極82とに電圧が印加されない状態で、下偏光板52側から画像表示パネル30側に向かうに従って(上側に向かうに従って)、時計回り及び反時計回りのうちの一方側(第1実施形態では時計回り方向T1側)に捻じれるよう設定されている。表示装置1は、このように、液晶素子LCの捻じれ方向と同じ方向に下偏光板52の透過軸方向D1を傾け、液晶素子LCの捻じれ方向と反対方向に下配向膜89の初期配向方向D2を傾けることで、輝度の低下を好適に抑制することができる。 The initial alignment direction D2 of the lower alignment film 89 and the initial alignment direction D3 of the upper alignment film 74 are determined by the state in which no voltage is applied to the first electrode 81 and the second electrode 82 of the liquid crystal element LC in the liquid crystal layer LC2. Then, as it goes from the lower polarizing plate 52 side to the image display panel 30 side (as it goes upward), it is twisted in one of clockwise and counterclockwise directions (clockwise direction T1 side in the first embodiment). Is set. As described above, the display device 1 tilts the transmission axis direction D1 of the lower polarizing plate 52 in the same direction as the twisting direction of the liquid crystal element LC, and initializes the lower alignment film 89 in the direction opposite to the twisting direction of the liquid crystal element LC. By inclining the direction D2, a decrease in luminance can be suitably suppressed.
 また、表示装置1は、調光パネル80と画像表示パネル30との間に設けられる中偏光板54と、画像表示パネル30の背面30sの反対側の前面30t側に設けられる上偏光板58と、を有する。この表示装置1は、下偏光板52、調光パネル80、中偏光板54、画像表示パネル30、上偏光板58がこの順で並ぶことで、視野角特性を向上しつつ、輝度の低下を抑制することができる。 The display device 1 includes a middle polarizing plate 54 provided between the light control panel 80 and the image display panel 30, and an upper polarizing plate 58 provided on the front surface 30 t opposite to the back surface 30 s of the image display panel 30. And In this display device 1, the lower polarizing plate 52, the light control panel 80, the middle polarizing plate 54, the image display panel 30, and the upper polarizing plate 58 are arranged in this order, so that the viewing angle characteristics are improved and the luminance is reduced. Can be suppressed.
 また、中偏光板54の透過軸方向D4は、基準軸AX1に直交する基準直交軸AX2に沿っている。表示装置1は、このように中偏光板54の透過軸方向D4を設定することで、色バランスなどの画質を好適に保つことができる。 The transmission axis direction D4 of the middle polarizing plate 54 is along the reference orthogonal axis AX2 orthogonal to the reference axis AX1. By setting the transmission axis direction D4 of the middle polarizing plate 54 in this manner, the display device 1 can appropriately maintain image quality such as color balance.
 また、画像表示パネル30の初期配向方向D5、D6は、基準直交軸AX2に沿っており、上偏光板58の透過軸方向D7は、基準軸AX1に沿っている。表示装置1は、このように画像表示パネル30の初期配向方向D5、D6と上偏光板58の透過軸方向D7とを設定することで、色バランスなどの画質を好適に保つことができる。 (4) The initial alignment directions D5 and D6 of the image display panel 30 are along the reference orthogonal axis AX2, and the transmission axis direction D7 of the upper polarizing plate 58 is along the reference axis AX1. By setting the initial alignment directions D5 and D6 of the image display panel 30 and the transmission axis direction D7 of the upper polarizing plate 58 in this manner, the image quality such as color balance can be appropriately maintained.
 (第1変形例)
 次に、第1実施形態の変形例である第1変形例について説明する。第1変形例に係る表示装置1Aは、液晶素子LCの捻じれ方向が、第1実施形態と異なる。第1変形例において、第1実施形態と構成が共通する箇所は、説明を省略する。
(First Modification)
Next, a first modified example which is a modified example of the first embodiment will be described. The display device 1A according to the first modified example is different from the first embodiment in the twist direction of the liquid crystal element LC. In the first modified example, description of portions having the same configuration as the first embodiment will be omitted.
 図15は、第1変形例に係る透過軸方向と初期配向方向とを説明する模式図である。図15に示すように、第1変形例においては、調光パネル80の液晶素子LCの捻じれ方向が、X-Y平面における反時計回り方向T2となるように、下配向膜89の初期配向方向D2と上配向膜74の初期配向方向D3とが設定されている。すなわち、第1変形例における液晶素子LCの捻じれ方向は、第1実施形態と反対方向である。図15に示すように、例えば、下配向膜89の初期配向方向D2AがX方向側に向かうように設定され、上配向膜74の初期配向方向D3AがY方向と反対方向側に向かうように設定されることで、調光パネル80の液晶素子LCの捻じれ方向が、X-Y平面における反時計回り方向T2となる。言い換えると、下配向膜89の初期配向方向D2Aは、第1実施形態1の下配向膜89の初期配向方向D2と同様の方向に向かう様に設定され、上配向膜74の初期配向方向D3Aは、第1実施形態1の上配向膜74の初期配向方向D3と反対の方向に向かうように設定される。 FIG. 15 is a schematic diagram illustrating a transmission axis direction and an initial alignment direction according to a first modification. As shown in FIG. 15, in the first modification, the initial alignment of the lower alignment film 89 is performed so that the twisting direction of the liquid crystal element LC of the light control panel 80 is the counterclockwise direction T2 on the XY plane. The direction D2 and the initial alignment direction D3 of the upper alignment film 74 are set. That is, the twisting direction of the liquid crystal element LC in the first modification is opposite to that in the first embodiment. As shown in FIG. 15, for example, the initial alignment direction D2A of the lower alignment film 89 is set so as to face the X direction, and the initial alignment direction D3A of the upper alignment film 74 is set so as to face the direction opposite to the Y direction. Accordingly, the twisting direction of the liquid crystal element LC of the light control panel 80 becomes the counterclockwise direction T2 on the XY plane. In other words, the initial alignment direction D2A of the lower alignment film 89 is set to be in the same direction as the initial alignment direction D2 of the lower alignment film 89 of the first embodiment, and the initial alignment direction D3A of the upper alignment film 74 is The first alignment direction is set to be opposite to the initial alignment direction D3 of the upper alignment film 74 of the first embodiment.
 図15に示すように、第1変形例における下偏光板52の透過軸方向D1Aは、X-Y平面において(Z方向から見て)、基準軸AX1に対し、調光パネル80の液晶素子LCの捻じれ方向と同じ方向、すなわち反時計回り方向T2に傾いている。言い換えれば、下偏光板52の透過軸方向D1Aは、第1変形例の中偏光板54の透過軸方向D4Aに直交する軸に対し、液晶素子LCの捻じれ方向と同じ方向(ここでは、反時計回り方向T2)に傾いているともいえる。なお、下偏光板52の透過軸方向D1Aは、第1実施形態の透過軸方向D1と同様に、基準軸AX1に沿った方向のベクトル成分が、基準直交軸AX2に沿った方向のベクトル成分よりも高くなっている。 As shown in FIG. 15, the transmission axis direction D1A of the lower polarizing plate 52 in the first modified example is, with respect to the reference axis AX1, in the XY plane (as viewed from the Z direction), the liquid crystal element LC of the light control panel 80. Are tilted in the same direction as the torsional direction, that is, in the counterclockwise direction T2. In other words, the transmission axis direction D1A of the lower polarizing plate 52 is the same as the twist direction of the liquid crystal element LC (here, the anti-twist direction) with respect to the axis orthogonal to the transmission axis direction D4A of the middle polarizing plate 54 of the first modification. It can also be said that it is inclined in the clockwise direction T2). The transmission axis direction D1A of the lower polarizing plate 52 is similar to the transmission axis direction D1 of the first embodiment in that the vector component in the direction along the reference axis AX1 is smaller than the vector component in the direction along the reference orthogonal axis AX2. Is also higher.
 また、第1変形例に係る調光パネル80の下配向膜89の初期配向方向D2Aは、X-Y平面において(Z方向から見て)、基準軸AX1に対し、調光パネル80の液晶素子LCの捻じれ方向と反対方向(下偏光板52の透過軸方向D1の傾きと反対方向)に、すなわち時計回り方向T1に傾いている。なお、下配向膜89の初期配向方向D2Aも、第1実施形態の初期配向方向D2と同様に、基準軸AX1に沿った方向のベクトル成分が、基準直交軸AX2に沿った方向のベクトル成分よりも高くなっている。 In addition, the initial alignment direction D2A of the lower alignment film 89 of the light control panel 80 according to the first modified example is different from the reference axis AX1 in the XY plane (as viewed from the Z direction). It is inclined in the direction opposite to the twisting direction of the LC (the direction opposite to the inclination of the transmission axis direction D1 of the lower polarizing plate 52), that is, in the clockwise direction T1. Note that, also in the initial alignment direction D2A of the lower alignment film 89, similarly to the initial alignment direction D2 of the first embodiment, the vector component in the direction along the reference axis AX1 is smaller than the vector component in the direction along the reference orthogonal axis AX2. Is also higher.
 また、第1変形例に係る調光パネル80の上配向膜74の初期配向方向D3Aは、X-Y平面において(Z方向から見て)、基準直交軸AX2に対し、調光パネル80の液晶素子LCの捻じれ方向と同じ方向(下偏光板52の透過軸方向D1の傾きと同じ方向)に、すなわち反時計回り方向T2に傾いている。なお、上配向膜74の初期配向方向D3Aは、第1実施形態の初期配向方向D3と同様に、基準直交軸AX2に沿った方向のベクトル成分が、基準軸AX1に沿った方向のベクトル成分よりも高くなっている。 Further, the initial alignment direction D3A of the upper alignment film 74 of the light control panel 80 according to the first modified example is different from the reference orthogonal axis AX2 in the XY plane (as viewed from the Z direction). The element LC is inclined in the same direction as the twisting direction (the same direction as the inclination of the transmission axis direction D1 of the lower polarizing plate 52), that is, in the counterclockwise direction T2. The initial alignment direction D3A of the upper alignment film 74 is similar to the initial alignment direction D3 of the first embodiment in that the vector component in the direction along the reference orthogonal axis AX2 is smaller than the vector component in the direction along the reference axis AX1. Is also higher.
 第1変形例に係る中偏光板54の透過軸方向D4Aは、第1実施形態に係る中偏光板54の透過軸方向D4と同方向である。また、第1変形例に係る画像表示パネル30の下配向膜29の初期配向方向D5A及び上配向膜32の初期配向方向D6Aとは、それぞれ、第1実施形態に係る初期配向方向D5及び初期配向方向D6と、同方向である。また、第1変形例に係る上偏光板58の透過軸方向D7Aは、第1実施形態に係る上偏光板58の透過軸方向D7と同方向である。 透過 The transmission axis direction D4A of the middle polarizing plate 54 according to the first modification is the same as the transmission axis direction D4 of the middle polarizing plate 54 according to the first embodiment. The initial alignment direction D5A of the lower alignment film 29 and the initial alignment direction D6A of the upper alignment film 32 according to the first modification are the initial alignment direction D5 and the initial alignment direction according to the first embodiment, respectively. It is the same direction as the direction D6. The transmission axis direction D7A of the upper polarizing plate 58 according to the first modification is the same as the transmission axis direction D7 of the upper polarizing plate 58 according to the first embodiment.
 図16は、第1変形例における透過軸方向及び初期配向方向の関係を示す図である。図16の角度θ1Aは、下偏光板52の透過軸方向D1Aと下配向膜89の初期配向方向D2Aとのなす角度である。すなわち、下配向膜89の初期配向方向D2Aは、下偏光板52の透過軸方向D1Aに対して、時計回り方向T1、すなわち調光パネル80の液晶素子LCの捻じれ方向と反対方向に、角度θ1Aだけ傾いている。角度θ1Aは、0度より大きく10度以下であることが好ましい。また、角度θ2Aは、下偏光板52の透過軸方向D1Aと上配向膜74の初期配向方向D3Aとのなす角度である。角度θ2Aは、85度以上95度以下であることが好ましい。また、角度θ3Aは、下偏光板52の透過軸方向D1Aと中偏光板54の透過軸方向D4Aとのなす角度である。角度θ3Aは、90度以上95度以下であることが好ましい。 FIG. 16 is a diagram showing the relationship between the transmission axis direction and the initial alignment direction in the first modification. The angle θ 1A in FIG. 16 is an angle between the transmission axis direction D1A of the lower polarizing plate 52 and the initial alignment direction D2A of the lower alignment film 89. That is, the initial alignment direction D2A of the lower alignment film 89 is angled with respect to the transmission axis direction D1A of the lower polarizing plate 52 in the clockwise direction T1, that is, in the direction opposite to the twisting direction of the liquid crystal element LC of the light control panel 80. It is inclined by θ 1A . The angle θ 1A is preferably greater than 0 degrees and 10 degrees or less. The angle θ 2A is the angle between the transmission axis direction D1A of the lower polarizing plate 52 and the initial alignment direction D3A of the upper alignment film 74. It is preferable that the angle θ 2A is not less than 85 degrees and not more than 95 degrees. The angle θ 3A is an angle between the transmission axis direction D1A of the lower polarizing plate 52 and the transmission axis direction D4A of the middle polarizing plate 54. It is preferable that the angle θ 3A is not less than 90 degrees and not more than 95 degrees.
 また、図16の角度θ4Aは、下配向膜89の初期配向方向D2Aと上配向膜74の初期配向方向D3Aとのなす角度である。角度θ4Aは、80度以上90度以下であることが好ましい。角度θ5Aは、下配向膜89の初期配向方向D2Aと中偏光板54の透過軸方向D4Aとのなす角度である。角度θ5Aは、85度以上95度以下であることが好ましい。角度θ6Aは、上配向膜74の初期配向方向D3Aと中偏光板54の透過軸方向D4Aとのなす角度である。角度θ6Aは、0度以上5度以下であることが好ましい。 The angle θ 4A in FIG. 16 is the angle between the initial alignment direction D2A of the lower alignment film 89 and the initial alignment direction D3A of the upper alignment film 74. The angle θ 4A is preferably 80 degrees or more and 90 degrees or less. The angle θ 5A is an angle formed between the initial alignment direction D2A of the lower alignment film 89 and the transmission axis direction D4A of the middle polarizing plate 54. It is preferable that the angle θ5A is not less than 85 degrees and not more than 95 degrees. The angle θ 6A is an angle formed between the initial alignment direction D3A of the upper alignment film 74 and the transmission axis direction D4A of the middle polarizing plate 54. The angle θ 6A is preferably equal to or greater than 0 degree and equal to or less than 5 degrees.
 以上説明したように、第1変形例においては、調光パネル80の液晶素子LCの捻じれ方向が第1実施形態と逆になることで、下偏光板52の透過軸方向D1Aの傾く方向と、下配向膜89の初期配向方向D2Aの傾く方向と、上配向膜74の初期配向方向D3Aの傾く方向とについても、第1実施形態と逆になる。第1変形例に係る表示装置1Aは、第1実施形態に係る表示装置1と同様に、下偏光板52の透過軸方向D1Aと調光パネル80の下配向膜89の初期配向方向D2Aとを平行でなくかつ直交させないことで、輝度の低下を抑制することができる。 As described above, in the first modified example, the twisting direction of the liquid crystal element LC of the light control panel 80 is opposite to that of the first embodiment, so that the direction of the transmission axis direction D1A of the lower polarizing plate 52 is inclined. The direction in which the initial alignment direction D2A of the lower alignment film 89 tilts and the direction in which the initial alignment direction D3A of the upper alignment film 74 tilts are also opposite to those in the first embodiment. The display device 1A according to the first modified example has the transmission axis direction D1A of the lower polarizing plate 52 and the initial alignment direction D2A of the lower alignment film 89 of the light control panel 80, like the display device 1 according to the first embodiment. By not being parallel and not orthogonal, it is possible to suppress a decrease in luminance.
 図17は、第1変形例に係る表示装置の輝度の一例を示すグラフである。図17の線分L1Z2は、第2比較例に係る表示装置の視野角ごとの輝度を示している。第2比較例に係る表示装置は、調光パネルの液晶素子の捻じれ方向が、第1比較例と反対方向の反時計回り方向T2であるが、それ以外の構成は、第1比較例と同じである。図17の線分L1Aは、第1変形例に係る表示装置1Aの視野角ごとの輝度を示している。図17に示すように、第1変形例に係る表示装置1Aの輝度は、第2比較例の表示装置の輝度より高くなっている。 FIG. 17 is a graph illustrating an example of the luminance of the display device according to the first modification. A line segment L1Z2 in FIG. 17 indicates the luminance at each viewing angle of the display device according to the second comparative example. In the display device according to the second comparative example, the twisting direction of the liquid crystal element of the light control panel is the counterclockwise direction T2 opposite to the first comparative example, but the other configurations are the same as those of the first comparative example. Is the same. A line segment L1A in FIG. 17 indicates the luminance for each viewing angle of the display device 1A according to the first modification. As shown in FIG. 17, the brightness of the display device 1A according to the first modified example is higher than the brightness of the display device of the second comparative example.
 図18は、第1変形例に係る表示装置のコントラストの一例を示すグラフである。図18の線分L2Z2は、第2比較例に係る表示装置の視野角ごとのコントラストであり、線分L2Aは、第1変形例に係る表示装置1Aの視野角ごとのコントラストである。図18に示すように、第1変形例に係る表示装置1Aは、透過軸と初期配向方向とを傾けることで、コントラストを保ったまま、輝度を高くすることができる。 FIG. 18 is a graph showing an example of the contrast of the display device according to the first modification. The line segment L2Z2 in FIG. 18 is the contrast for each viewing angle of the display device according to the second comparative example, and the line segment L2A is the contrast for each viewing angle of the display device 1A according to the first modification. As shown in FIG. 18, the display device 1A according to the first modification can increase the luminance while maintaining the contrast by tilting the transmission axis and the initial alignment direction.
 (第2実施形態)
 次に、第2実施形態について説明する。第2実施形態に係る表示装置1Bは、中偏光板54の透過軸方向、画像表示パネル30の初期配向方向、及び上偏光板58の初期配向方向についても傾けている点で、第1実施形態とは異なる。第2実施形態において第1実施形態と構成が共通する箇所は、説明を省略する。
(2nd Embodiment)
Next, a second embodiment will be described. The display device 1B according to the second embodiment is also inclined in the transmission axis direction of the middle polarizer 54, the initial alignment direction of the image display panel 30, and the initial alignment direction of the upper polarizer 58, in the first embodiment. And different. In the second embodiment, description of portions having the same configuration as the first embodiment will be omitted.
 図19は、第2実施形態に係る透過軸方向と初期配向方向とを説明する模式図である。図19に示すように、第2実施形態においては、調光パネル80の液晶素子LCの捻じれ方向が、X-Y平面における時計回り方向T1となるように、下配向膜89の初期配向方向D2と上配向膜74の初期配向方向D3とが設定されている。すなわち、第2実施形態における液晶素子LCの捻じれ方向は、第1実施形態と同じ方向である。 FIG. 19 is a schematic diagram illustrating the transmission axis direction and the initial alignment direction according to the second embodiment. As shown in FIG. 19, in the second embodiment, the initial alignment direction of the lower alignment film 89 is set such that the twist direction of the liquid crystal element LC of the light control panel 80 is the clockwise direction T1 on the XY plane. D2 and the initial alignment direction D3 of the upper alignment film 74 are set. That is, the twist direction of the liquid crystal element LC in the second embodiment is the same as that in the first embodiment.
 第2実施形態における下偏光板52の透過軸方向D1Bは、第1実施形態における透過軸方向D1と同方向である。第2実施形態に係る調光パネル80の下配向膜89の初期配向方向D2Bは、第1実施形態における初期配向方向D2と同方向である。第2実施形態に係る調光パネル80の上配向膜74の初期配向方向D3Bは、第1実施形態における初期配向方向D3と同方向である。 透過 The transmission axis direction D1B of the lower polarizing plate 52 in the second embodiment is the same as the transmission axis direction D1 in the first embodiment. The initial alignment direction D2B of the lower alignment film 89 of the light control panel 80 according to the second embodiment is the same as the initial alignment direction D2 in the first embodiment. The initial alignment direction D3B of the upper alignment film 74 of the light control panel 80 according to the second embodiment is the same as the initial alignment direction D3 in the first embodiment.
 一方、第2実施形態における中偏光板54は、X-Y平面において(Z方向から見て)、透過軸方向D4Bが、基準直交軸AX2に対し、調光パネル80の液晶素子LCの捻じれ方向と反対方向に、言い換えれば、下偏光板52の透過軸方向D1Bが基準軸AX1に対して傾く方向と反対方向に、傾いている。従って、第2実施形態においては、中偏光板54の透過軸方向D4Bは、基準直交軸AX2に対し、反時計回り方向T2に傾いている。なお、中偏光板54の透過軸方向D4Bは、基準直交軸AX2に対して傾いているが、基準直交軸AX2に沿った方向のベクトル成分が、基準軸AX1に沿った方向のベクトル成分よりも高くなっている。すなわち、透過軸方向D4Bは、基準直交軸AX2に対する傾き角度が、45度より小さい。ただし、傾く角度の好適な数値範囲については、後述する。 On the other hand, in the middle polarizing plate 54 in the second embodiment, in the XY plane (as viewed from the Z direction), the transmission axis direction D4B has a twist of the liquid crystal element LC of the light control panel 80 with respect to the reference orthogonal axis AX2. The transmission axis direction D1B of the lower polarizing plate 52 is inclined in the opposite direction to the reference axis AX1. Therefore, in the second embodiment, the transmission axis direction D4B of the middle polarizer 54 is inclined in the counterclockwise direction T2 with respect to the reference orthogonal axis AX2. Although the transmission axis direction D4B of the middle polarizing plate 54 is inclined with respect to the reference orthogonal axis AX2, the vector component in the direction along the reference orthogonal axis AX2 is larger than the vector component in the direction along the reference axis AX1. Is getting higher. That is, in the transmission axis direction D4B, the inclination angle with respect to the reference orthogonal axis AX2 is smaller than 45 degrees. However, a preferable numerical range of the tilt angle will be described later.
 また、第2実施形態における画像表示パネル30の下配向膜29は、X-Y平面において(Z方向から見て)、初期配向方向D5Bが、基準直交軸AX2に対して、調光パネル80の液晶素子LCの捻じれ方向と反対方向に、言い換えれば、下偏光板52の透過軸方向D1Bが基準軸AX1に対して傾く方向と反対方向に、傾いている。従って、第2実施形態においては、下配向膜29の初期配向方向D5Bは、基準直交軸AX2に対し、反時計回り方向T2に傾いている。なお、下配向膜29の初期配向方向D5Bは、基準直交軸AX2に対して傾いているが、基準直交軸AX2に沿った方向のベクトル成分が、基準軸AX1に沿った方向のベクトル成分よりも高くなっている。すなわち、透過軸方向D4Bは、基準直交軸AX2に対する傾き角度が、45度より小さい。また、第2実施形態における画像表示パネル30の上配向膜32は、初期配向方向D6Bが、下配向膜29の初期配向方向D5Bに沿っている。 Further, the lower alignment film 29 of the image display panel 30 in the second embodiment has an initial alignment direction D5B in the XY plane (as viewed from the Z direction) of the light control panel 80 with respect to the reference orthogonal axis AX2. The transmission axis direction D1B of the lower polarizing plate 52 is inclined in a direction opposite to the direction in which the liquid crystal element LC is twisted, in other words, in a direction opposite to the direction in which the transmission axis direction D1B of the lower polarizing plate 52 is inclined with respect to the reference axis AX1. Therefore, in the second embodiment, the initial alignment direction D5B of the lower alignment film 29 is inclined in the counterclockwise direction T2 with respect to the reference orthogonal axis AX2. Although the initial alignment direction D5B of the lower alignment film 29 is inclined with respect to the reference orthogonal axis AX2, the vector component in the direction along the reference orthogonal axis AX2 is larger than the vector component in the direction along the reference axis AX1. Is getting higher. That is, in the transmission axis direction D4B, the inclination angle with respect to the reference orthogonal axis AX2 is smaller than 45 degrees. In the upper alignment film 32 of the image display panel 30 in the second embodiment, the initial alignment direction D6B is along the initial alignment direction D5B of the lower alignment film 29.
 また、第2実施形態における上偏光板58は、X-Y平面において(Z方向から見て)、透過軸方向D7Bが、基準軸AX1に対して、調光パネル80の液晶素子LCの捻じれ方向と同じ方向に、言い換えれば、下偏光板52の透過軸方向D1Bが基準軸AX1に対して傾く方向と同じ方向に、傾いている。従って、第2実施形態においては、上偏光板58の透過軸方向D7Bは、基準軸AX1に対し、時計回り方向T1に傾いている。なお、上偏光板58の透過軸方向D7Bは、基準軸AX1に対して傾いているが、基準軸AX1に沿った方向のベクトル成分が、基準直交軸AX2に沿った方向のベクトル成分よりも高くなっている。すなわち、透過軸方向D4Bは、基準軸AX1に対する傾き角度が、45度より小さい。 Further, in the upper polarizing plate 58 in the second embodiment, in the XY plane (as viewed from the Z direction), the transmission axis direction D7B has a twist of the liquid crystal element LC of the light control panel 80 with respect to the reference axis AX1. The transmission axis direction D1B of the lower polarizer 52 is inclined in the same direction as the reference axis AX1. Therefore, in the second embodiment, the transmission axis direction D7B of the upper polarizing plate 58 is inclined in the clockwise direction T1 with respect to the reference axis AX1. Although the transmission axis direction D7B of the upper polarizing plate 58 is inclined with respect to the reference axis AX1, the vector component in the direction along the reference axis AX1 is higher than the vector component in the direction along the reference orthogonal axis AX2. Has become. That is, in the transmission axis direction D4B, the inclination angle with respect to the reference axis AX1 is smaller than 45 degrees.
 次に、透過軸方向及び初期配向方向の角度について説明する。中偏光板54の透過軸方向D4Bが基準直交軸AX2に対して傾く角度の大きさは、例えば0度以上5度以下であることが好ましい。また、画像表示パネル30の初期配向方向D5B、D6Bが基準直交軸AX2に対し傾く角度の大きさも、例えば0度以上5度以下であることが好ましい。また、上偏光板58の透過軸方向D7Bが基準軸AX1に対して傾く角度の大きさも、例えば0度以上5度以下であることが好ましい。さらに言えば、中偏光板54の透過軸方向D4Bが基準直交軸AX2に対して傾く角度の大きさと、画像表示パネル30の初期配向方向D5B、D6Bが基準直交軸AX2に対し傾く角度の大きさと、上偏光板58の透過軸方向D7Bが基準軸AX1に対して傾く角度の大きさとは、等しいことが好ましいが、互いに異なってもよい。さらに、さらに言えば、透過軸方向D1B、D4B、D7B、初期配向方向D2B、D3B、D5B、D6Bは、傾く角度が互いに等しいことが好ましいが、互いに異なってもよい。 Next, the angles of the transmission axis direction and the initial alignment direction will be described. It is preferable that the magnitude of the angle at which the transmission axis direction D4B of the middle polarizing plate 54 is inclined with respect to the reference orthogonal axis AX2 is, for example, 0 degrees or more and 5 degrees or less. Further, the magnitude of the angle at which the initial alignment directions D5B and D6B of the image display panel 30 are inclined with respect to the reference orthogonal axis AX2 is preferably, for example, 0 degrees or more and 5 degrees or less. Further, it is preferable that the magnitude of the angle at which the transmission axis direction D7B of the upper polarizing plate 58 is inclined with respect to the reference axis AX1 is, for example, 0 degrees or more and 5 degrees or less. More specifically, the magnitude of the angle at which the transmission axis direction D4B of the middle polarizing plate 54 is inclined with respect to the reference orthogonal axis AX2, and the magnitude of the angle at which the initial orientation directions D5B and D6B of the image display panel 30 are inclined with respect to the reference orthogonal axis AX2. The angle of inclination of the transmission axis direction D7B of the upper polarizing plate 58 with respect to the reference axis AX1 is preferably equal, but may be different from each other. Furthermore, in addition, although the transmission axis directions D1B, D4B, and D7B and the initial alignment directions D2B, D3B, D5B, and D6B are preferably equal in inclination angle, they may be different from each other.
 図20は、第2実施形態における透過軸方向及び初期配向方向の関係を示す図である。図20の角度θ1Bは、下偏光板52の透過軸方向D1Bと下配向膜89の初期配向方向D2Bとのなす角度である。すなわち、下配向膜89の初期配向方向D2Bは、下偏光板52の透過軸方向D1Bに対して、反時計回り方向T2、すなわち調光パネル80の液晶素子LCの捻じれ方向と反対方向に、角度θ1Bだけ傾いている。角度θ1Bは、0度より大きく10度以下であることが好ましい。また、角度θ2Bは、下偏光板52の透過軸方向D1Bと上配向膜74の初期配向方向D3Bとのなす角度である。角度θ2Bは、85度以上95度以下であることが好ましい。また、角度θ3Bは、下偏光板52の透過軸方向D1Bと中偏光板54の透過軸方向D4Bとのなす角度である。角度θ3Bは、90度以上100度以下であることが好ましい。また、角度θ7Bは、下偏光板52の透過軸方向D1Bと画像表示パネル30の初期配向方向D5B、D6Bとのなす角度である。角度θ7Bは、90度以上100度以下であることが好ましい。また、角度θ8Bは、下偏光板52の透過軸方向D1Bと上偏光板58の透過軸方向D7Bとのなす角度である。角度θ8Bは、0度以上5度以下であることが好ましい。 FIG. 20 is a diagram illustrating the relationship between the transmission axis direction and the initial alignment direction in the second embodiment. The angle θ 1B in FIG. 20 is an angle between the transmission axis direction D1B of the lower polarizing plate 52 and the initial alignment direction D2B of the lower alignment film 89. That is, the initial alignment direction D2B of the lower alignment film 89 is in a counterclockwise direction T2 with respect to the transmission axis direction D1B of the lower polarizing plate 52, that is, in a direction opposite to the twisting direction of the liquid crystal element LC of the light control panel 80. It is inclined by the angle θ 1B . The angle θ 1B is preferably greater than 0 degrees and equal to or less than 10 degrees. The angle θ 2B is an angle between the transmission axis direction D1B of the lower polarizing plate 52 and the initial alignment direction D3B of the upper alignment film 74. It is preferable that the angle θ 2B is not less than 85 degrees and not more than 95 degrees. The angle θ 3B is an angle formed between the transmission axis direction D1B of the lower polarizing plate 52 and the transmission axis direction D4B of the middle polarizing plate 54. The angle θ 3B is preferably 90 degrees or more and 100 degrees or less. The angle θ 7B is an angle between the transmission axis direction D1B of the lower polarizing plate 52 and the initial alignment directions D5B and D6B of the image display panel 30. The angle θ 7B is preferably 90 degrees or more and 100 degrees or less. The angle θ 8B is an angle between the transmission axis direction D1B of the lower polarizing plate 52 and the transmission axis direction D7B of the upper polarizing plate 58. The angle θ 8B is preferably equal to or greater than 0 degrees and equal to or less than 5 degrees.
 また、図20の角度θ4Aは、下配向膜89の初期配向方向D2Bと上配向膜74の初期配向方向D3Bとのなす角度である。角度θ4Bは、80度以上90度以下であることが好ましい。角度θ5Bは、下配向膜89の初期配向方向D2Bと中偏光板54の透過軸方向D4Bとのなす角度である。角度θ5Bは、85度以上100度以下であることが好ましい。角度θ9Bは、下配向膜89の初期配向方向D2Bと画像表示パネル30の初期配向方向D5B、D6Bとのなす角度である。角度θ9Bは、85度以上100度以下であることが好ましい。角度θ10Bは、下配向膜89の初期配向方向D2Bと上偏光板58の透過軸方向D7Bとのなす角度である。角度θ10Bは、0度以上10度以下であることが好ましい。 The angle θ 4A in FIG. 20 is the angle between the initial alignment direction D2B of the lower alignment film 89 and the initial alignment direction D3B of the upper alignment film 74. Angle θ 4B is preferably 80 degrees or more and 90 degrees or less. The angle θ 5B is an angle formed between the initial alignment direction D2B of the lower alignment film 89 and the transmission axis direction D4B of the middle polarizing plate 54. The angle θ5B is preferably 85 degrees or more and 100 degrees or less. The angle θ 9B is an angle between the initial alignment direction D2B of the lower alignment film 89 and the initial alignment directions D5B and D6B of the image display panel 30. It is preferable that the angle θ 9B is not less than 85 degrees and not more than 100 degrees. The angle θ 10B is an angle between the initial alignment direction D2B of the lower alignment film 89 and the transmission axis direction D7B of the upper polarizing plate 58. The angle θ 10B is preferably equal to or greater than 0 degree and equal to or less than 10 degrees.
 また、図20の角度θ6Bは、上配向膜74の初期配向方向D3Bと中偏光板54の透過軸方向D4Bとのなす角度である。角度θ6Bは、0度以上10度以下であることが好ましい。角度θ11Bは、上配向膜74の初期配向方向D3Bと画像表示パネル30の初期配向方向D5B、D6Bとのなす角度である。角度θ11Bは、0度以上10度以下であることが好ましい。角度θ12Bは、上配向膜74の初期配向方向D3Bと上偏光板58の透過軸方向D7Bとのなす角度である。角度θ12Bは、85度以上95度以下であることが好ましい。 The angle θ 6B in FIG. 20 is an angle between the initial alignment direction D3B of the upper alignment film 74 and the transmission axis direction D4B of the middle polarizer 54. Angle θ 6B is preferably equal to or greater than 0 degrees and equal to or less than 10 degrees. The angle θ 11B is an angle between the initial alignment direction D3B of the upper alignment film 74 and the initial alignment directions D5B and D6B of the image display panel 30. The angle θ 11B is preferably equal to or greater than 0 degrees and equal to or less than 10 degrees. The angle θ 12B is an angle formed between the initial alignment direction D3B of the upper alignment film 74 and the transmission axis direction D7B of the upper polarizing plate 58. It is preferable that the angle θ 12B is not less than 85 degrees and not more than 95 degrees.
 また、図20の角度θ13Bは、中偏光板54の透過軸方向D4Bと画像表示パネル30の初期配向方向D5B、D6Bとのなす角度である。角度θ13Bは、0度以上5度以下であることが好ましい。角度θ14Bは、中偏光板54の透過軸方向D4Bと上偏光板58の透過軸方向D7Bとのなす角度である。角度θ14Bは、90度以上100度以下であることが好ましい。 The angle θ 13B in FIG. 20 is the angle between the transmission axis direction D4B of the middle polarizer 54 and the initial alignment directions D5B and D6B of the image display panel 30. The angle θ 13B is preferably equal to or greater than 0 degree and equal to or less than 5 degrees. The angle θ 14B is an angle formed between the transmission axis direction D4B of the middle polarizing plate 54 and the transmission axis direction D7B of the upper polarizing plate 58. The angle θ 14B is preferably 90 degrees or more and 100 degrees or less.
 また、図20の角度θ15Bは、画像表示パネル30の初期配向方向D5B、D6Bと上偏光板58の透過軸方向D7Bとのなす角度である。角度θ15Bは、90度以上100度以下であることが好ましい。 The angle θ 15B in FIG. 20 is an angle formed between the initial alignment directions D5B and D6B of the image display panel 30 and the transmission axis direction D7B of the upper polarizing plate 58. The angle θ 15B is preferably equal to or greater than 90 degrees and equal to or less than 100 degrees.
 以上説明したように、第2実施形態に係る表示装置1Bは、第1実施形態と同様に、下偏光板52の透過軸方向D1Bと調光パネル80の下配向膜89の初期配向方向D2Bとを平行でなくかつ直交させないことで、輝度の低下を抑制することができる。 As described above, the display device 1B according to the second embodiment includes the transmission axis direction D1B of the lower polarizing plate 52 and the initial alignment direction D2B of the lower alignment film 89 of the light control panel 80, as in the first embodiment. Are not parallel and not orthogonal to each other, it is possible to suppress a decrease in luminance.
 さらに言えば、第2実施形態において、中偏光板54の透過軸方向D4Bは、基準直交軸AX2に対して、時計回り及び反時計回りのうちの他方側(ここでは反時計回り方向T2)に傾いている。表示装置1Bは、このように、中偏光板54の透過軸方向D4Bを下偏光板52の透過軸方向D1と反対方向に傾けることで、輝度の低下を好適に抑制することができる。 Furthermore, in the second embodiment, the transmission axis direction D4B of the middle polarizing plate 54 is on the other side (here, counterclockwise direction T2) of the clockwise direction and the counterclockwise direction with respect to the reference orthogonal axis AX2. Leaning. In this manner, the display device 1B can appropriately suppress the decrease in luminance by tilting the transmission axis direction D4B of the middle polarizing plate 54 in the direction opposite to the transmission axis direction D1 of the lower polarizing plate 52.
 また、画像表示パネル30の初期配向方向D5B、D6Bは、基準直交軸AX2に対して、時計回り及び反時計回りのうちの他方側(ここでは反時計回り方向T2)に傾いており、上偏光板58の透過軸方向D7Bは、基準軸AX1に対して、時計回り及び反時計回りのうちの一方側(ここでは時計回り方向T1)に傾いている。表示装置1Bは、このように、画像表示パネル30の初期配向方向D5B、D6Bと上偏光板58の透過軸方向D7Bとを傾けることで、輝度の低下を好適に抑制することができる。 The initial orientation directions D5B and D6B of the image display panel 30 are inclined to the other side (here, the counterclockwise direction T2) of the clockwise direction and the counterclockwise direction with respect to the reference orthogonal axis AX2. The transmission axis direction D7B of the plate 58 is inclined with respect to the reference axis AX1 in one of clockwise and counterclockwise directions (here, clockwise direction T1). As described above, the display device 1B can appropriately suppress the decrease in luminance by tilting the initial alignment directions D5B and D6B of the image display panel 30 and the transmission axis direction D7B of the upper polarizing plate 58.
 図21は、第2実施形態に係る表示装置の輝度の一例を示すグラフである。図21の線分L1Z1は、第1比較例に係る表示装置の視野角ごとの輝度を示している。線分L1Bは、第2実施形態に係る表示装置1Bの視野角ごとの輝度を示している。図21に示すように、第2実施形態に係る表示装置1Bの輝度は、第1比較例の表示装置の輝度より高くなっている。 FIG. 21 is a graph illustrating an example of the luminance of the display device according to the second embodiment. A line segment L1Z1 in FIG. 21 indicates the luminance at each viewing angle of the display device according to the first comparative example. The line segment L1B indicates the luminance for each viewing angle of the display device 1B according to the second embodiment. As shown in FIG. 21, the brightness of the display device 1B according to the second embodiment is higher than the brightness of the display device of the first comparative example.
 図22は、第2実施形態に係る表示装置のコントラストの一例を示すグラフである。図22の線分L2Z1は、第1比較例に係る表示装置の視野角ごとのコントラストであり、線分L2Bは、第2実施形態に係る表示装置1Bの視野角ごとのコントラストである。図22に示すように、第2実施形態に係る表示装置1Bは、透過軸と初期配向方向とを傾けることで、コントラストを保ったまま、輝度を高くすることができる。 FIG. 22 is a graph showing an example of the contrast of the display device according to the second embodiment. A line segment L2Z1 in FIG. 22 is a contrast for each viewing angle of the display device according to the first comparative example, and a line segment L2B is a contrast for each viewing angle of the display device 1B according to the second embodiment. As shown in FIG. 22, the display device 1B according to the second embodiment can increase the luminance while maintaining the contrast by tilting the transmission axis and the initial alignment direction.
 (第2変形例)
 次に、第2実施形態の変形例である第2変形例について説明する。第2変形例に係る表示装置1Cは、液晶素子LCの捻じれ方向が、第2実施形態と異なる。第2変形例において、第2実施形態と構成が共通する箇所は、説明を省略する。
(Second Modification)
Next, a second modification which is a modification of the second embodiment will be described. The display device 1C according to the second modification is different from the second embodiment in the twist direction of the liquid crystal element LC. In the second modified example, description of portions having the same configuration as the second embodiment will be omitted.
 図23は、第2変形例に係る透過軸方向と初期配向方向とを説明する模式図である。図23に示すように、第2変形例においては、調光パネル80の液晶素子LCの捻じれ方向が、X-Y平面における反時計回り方向T2となるように、下配向膜89の初期配向方向D2Cと上配向膜74の初期配向方向D3Cとが設定されている。 FIG. 23 is a schematic diagram illustrating the transmission axis direction and the initial alignment direction according to the second modification. As shown in FIG. 23, in the second modification, the initial alignment of the lower alignment film 89 is performed so that the twisting direction of the liquid crystal element LC of the light control panel 80 is the counterclockwise direction T2 on the XY plane. The direction D2C and the initial alignment direction D3C of the upper alignment film 74 are set.
 図23に示すように、第2変形例における下偏光板52の透過軸方向D1Cは、第1変形例における透過軸方向D1A(図15参照)と同方向である。第2変形例に係る調光パネル80の下配向膜89の初期配向方向D2Cは、第1変形例における初期配向方向D2A(図15参照)と同方向である。第2変形例に係る調光パネル80の上配向膜74の初期配向方向D3Cは、第1変形例における初期配向方向D3A(図15参照)と同方向である。すなわち、第2変形例においては、調光パネル80の液晶素子LCの捻じれ方向が第2実施形態と逆になることで、下偏光板52の透過軸方向D1Cの傾く方向と、下配向膜89の初期配向方向D2Cの傾く方向と、上配向膜74の初期配向方向D3Cの傾く方向とについても、第2実施形態と逆になる。 As shown in FIG. 23, the transmission axis direction D1C of the lower polarizing plate 52 in the second modification is the same as the transmission axis direction D1A (see FIG. 15) in the first modification. The initial alignment direction D2C of the lower alignment film 89 of the light control panel 80 according to the second modification is the same as the initial alignment direction D2A (see FIG. 15) in the first modification. The initial alignment direction D3C of the upper alignment film 74 of the light control panel 80 according to the second modification is the same as the initial alignment direction D3A (see FIG. 15) in the first modification. That is, in the second modification, the twisting direction of the liquid crystal element LC of the light control panel 80 is opposite to that of the second embodiment, so that the tilt direction of the transmission axis direction D1C of the lower polarizing plate 52 and the lower alignment film The direction of inclination of the initial alignment direction D2C of 89 and the direction of inclination of the initial alignment direction D3C of the upper alignment film 74 are also opposite to those in the second embodiment.
 また、第2変形例における中偏光板54の透過軸方向D4Cは、X-Y平面において(Z方向から見て)、基準直交軸AX2に対し、調光パネル80の液晶素子LCの捻じれ方向と同じ方向に、言い換えれば、下偏光板52の透過軸方向D1Cが基準軸AX1に対して傾く方向と同じ方向に、傾いている。従って、第2変形例においては、中偏光板54の透過軸方向D4Cは、基準直交軸AX2に対し、反時計回り方向T2に傾いている。すなわち、中偏光板54の透過軸方向D4Cは、第2実施形態と同じ反時計回り方向T2に傾いているが、調光パネル80の液晶素子LCの捻じれ方向や下偏光板52の透過軸方向D1Cの傾く方向に対する相対的な傾き方向は、第2実施形態と逆となっている。なお、中偏光板54の透過軸方向D4Cは、基準直交軸AX2に沿った方向のベクトル成分が、基準軸AX1に沿った方向のベクトル成分よりも高くなっている。 Further, the transmission axis direction D4C of the middle polarizing plate 54 in the second modification is the twist direction of the liquid crystal element LC of the light control panel 80 with respect to the reference orthogonal axis AX2 on the XY plane (as viewed from the Z direction). In other words, in other words, in the same direction as the direction in which the transmission axis direction D1C of the lower polarizing plate 52 is inclined with respect to the reference axis AX1. Therefore, in the second modification, the transmission axis direction D4C of the middle polarizing plate 54 is inclined in the counterclockwise direction T2 with respect to the reference orthogonal axis AX2. That is, the transmission axis direction D4C of the middle polarizing plate 54 is inclined in the counterclockwise direction T2 as in the second embodiment, but the twisting direction of the liquid crystal element LC of the light control panel 80 and the transmission axis direction of the lower polarizing plate 52 are different. The direction of inclination of the direction D1C relative to the direction of inclination is opposite to that of the second embodiment. In the transmission axis direction D4C of the middle polarizing plate 54, the vector component in the direction along the reference orthogonal axis AX2 is higher than the vector component in the direction along the reference axis AX1.
 また、第2変形例における画像表示パネル30の下配向膜29の初期配向方向D5Cは、X-Y平面において(Z方向から見て)、基準直交軸AX2に対して、調光パネル80の液晶素子LCの捻じれ方向と同じ方向に、言い換えれば、下偏光板52の透過軸方向D1Cが基準軸AX1に対して傾く方向と同じ方向に、傾いている。従って、第2変形例においては、下配向膜29の初期配向方向D5Cは、基準直交軸AX2に対し、反時計回り方向T2に傾いている。すなわち、下配向膜29の初期配向方向D5Cは、第2実施形態と同じ反時計回り方向T2に傾いているが、調光パネル80の液晶素子LCの捻じれ方向や下偏光板52の透過軸方向D1Cの傾く方向に対する相対的な傾き方向は、第2実施形態と逆となっている。なお、下配向膜29の初期配向方向D5Cは、基準直交軸AX2に沿った方向のベクトル成分が、基準軸AX1に沿った方向のベクトル成分よりも高くなっている。また、第2変形例における画像表示パネル30の上配向膜32の初期配向方向D6Cは、下配向膜29の初期配向方向D5Cに沿っている。 Further, the initial alignment direction D5C of the lower alignment film 29 of the image display panel 30 in the second modified example is such that the liquid crystal of the light control panel 80 is aligned with respect to the reference orthogonal axis AX2 on the XY plane (as viewed from the Z direction). The element LC is tilted in the same direction as the twisting direction, in other words, in the same direction as the direction in which the transmission axis direction D1C of the lower polarizing plate 52 is tilted with respect to the reference axis AX1. Therefore, in the second modification, the initial alignment direction D5C of the lower alignment film 29 is inclined in the counterclockwise direction T2 with respect to the reference orthogonal axis AX2. That is, although the initial alignment direction D5C of the lower alignment film 29 is inclined in the counterclockwise direction T2 as in the second embodiment, the twisting direction of the liquid crystal element LC of the light control panel 80 and the transmission axis of the lower polarizing plate 52 are different. The direction of inclination of the direction D1C relative to the direction of inclination is opposite to that of the second embodiment. In the initial alignment direction D5C of the lower alignment film 29, the vector component in the direction along the reference orthogonal axis AX2 is higher than the vector component in the direction along the reference axis AX1. In addition, the initial alignment direction D6C of the upper alignment film 32 of the image display panel 30 in the second modification is along the initial alignment direction D5C of the lower alignment film 29.
 また、第2変形例における上偏光板58の透過軸方向D7Cは、X-Y平面において(Z方向から見て)、基準軸AX1に対して、調光パネル80の液晶素子LCの捻じれ方向と反対方向に、言い換えれば、下偏光板52の透過軸方向D1Cが基準軸AX1に対して傾く方向と反対方向に、傾いている。従って、第2変形例においては、上偏光板58の透過軸方向D7Cは、基準軸AX1に対し、時計回り方向T1に傾いている。すなわち、上偏光板58の透過軸方向D7Cは、第2実施形態と同じ時計回り方向T1に傾いているが、調光パネル80の液晶素子LCの捻じれ方向や下偏光板52の透過軸方向D1Cの傾く方向に対する相対的な傾き方向は、第2実施形態と逆となっている。なお、上偏光板58の透過軸方向D7Cは、基準軸AX1に沿った方向のベクトル成分が、基準直交軸AX2に沿った方向のベクトル成分よりも高くなっている。 Further, the transmission axis direction D7C of the upper polarizing plate 58 in the second modified example is the twist direction of the liquid crystal element LC of the light control panel 80 with respect to the reference axis AX1 on the XY plane (as viewed from the Z direction). In other words, in other words, in the direction opposite to the direction in which the transmission axis direction D1C of the lower polarizing plate 52 is inclined with respect to the reference axis AX1. Therefore, in the second modification, the transmission axis direction D7C of the upper polarizing plate 58 is inclined in the clockwise direction T1 with respect to the reference axis AX1. That is, the transmission axis direction D7C of the upper polarizing plate 58 is inclined in the clockwise direction T1 as in the second embodiment, but the twist direction of the liquid crystal element LC of the light control panel 80 and the transmission axis direction of the lower polarizing plate 52. The inclination direction relative to the inclination direction of D1C is opposite to that of the second embodiment. In the transmission axis direction D7C of the upper polarizing plate 58, the vector component in the direction along the reference axis AX1 is higher than the vector component in the direction along the reference orthogonal axis AX2.
 次に、透過軸方向及び初期配向方向の角度について説明する。中偏光板54の透過軸方向D4Cが基準直交軸AX2に対して傾く角度の大きさと、画像表示パネル30の初期配向方向D5C、D6Cが基準直交軸AX2に対し傾く角度の大きさと、上偏光板58の透過軸方向D7Cが基準軸AX1に対して傾く角度の大きさとは、第2実施形態と同様である。 Next, the angles of the transmission axis direction and the initial alignment direction will be described. The magnitude of the angle at which the transmission axis direction D4C of the middle polarizing plate 54 is inclined with respect to the reference orthogonal axis AX2, the magnitude of the angle at which the initial alignment directions D5C and D6C of the image display panel 30 are inclined with respect to the reference orthogonal axis AX2, and The magnitude of the angle at which the transmission axis direction D7C of 58 is inclined with respect to the reference axis AX1 is the same as in the second embodiment.
 図24は、第2変形例における透過軸方向及び初期配向方向の関係を示す図である。図24の角度θ1Cは、下偏光板52の透過軸方向D1Cと下配向膜89の初期配向方向D2Cとのなす角度である。すなわち、下配向膜89の初期配向方向D2Cは、下偏光板52の透過軸方向D1Cに対して、時計回り方向T1、すなわち調光パネル80の液晶素子LCの捻じれ方向と反対方向に、角度θ1Cだけ傾いている。角度θ1Cは、0度より大きく10度以下であることが好ましい。また、角度θ2Cは、下偏光板52の透過軸方向D1Cと上配向膜74の初期配向方向D3Cとのなす角度である。角度θ2Cは、85度以上95度以下であることが好ましい。また、角度θ3Cは、下偏光板52の透過軸方向D1Cと中偏光板54の透過軸方向D4Cとのなす角度である。角度θ3Cは、85度以上95度以下であることが好ましい。また、角度θ7Cは、下偏光板52の透過軸方向D1Cと画像表示パネル30の初期配向方向D5C、D6Cとのなす角度である。角度θ7Cは、85度以上95度以下であることが好ましい。また、角度θ8Cは、下偏光板52の透過軸方向D1Cと上偏光板58の透過軸方向D7Cとのなす角度である。角度θ7Cは、0度以上10度以下であることが好ましい。 FIG. 24 is a diagram illustrating the relationship between the transmission axis direction and the initial alignment direction in the second modification. Angle theta 1C of FIG. 24, an angle formed between the initial orientation direction D2C the transmission axis direction D1C and the lower alignment film 89 of the lower polarizing plate 52. That is, the initial alignment direction D2C of the lower alignment film 89 is angled with respect to the transmission axis direction D1C of the lower polarizing plate 52 in the clockwise direction T1, that is, in the direction opposite to the twisting direction of the liquid crystal element LC of the light control panel 80. It is inclined by θ 1C . The angle θ 1C is preferably greater than 0 degree and equal to or less than 10 degrees. The angle θ 2C is an angle between the transmission axis direction D1C of the lower polarizing plate 52 and the initial alignment direction D3C of the upper alignment film 74. It is preferable that the angle θ 2C is not less than 85 degrees and not more than 95 degrees. The angle θ 3C is an angle formed between the transmission axis direction D1C of the lower polarizing plate 52 and the transmission axis direction D4C of the middle polarizing plate 54. The angle θ 3C is preferably 85 degrees or more and 95 degrees or less. The angle θ 7C is an angle between the transmission axis direction D1C of the lower polarizing plate 52 and the initial alignment directions D5C and D6C of the image display panel 30. Angle θ 7C is preferably not less than 85 degrees and not more than 95 degrees. The angle θ 8C is the angle between the transmission axis direction D1C of the lower polarizing plate 52 and the transmission axis direction D7C of the upper polarizing plate 58. The angle θ 7C is preferably equal to or greater than 0 degree and equal to or less than 10 degrees.
 また、図24の角度θ4Cは、下配向膜89の初期配向方向D2Cと上配向膜74の初期配向方向D3Cとのなす角度である。角度θ4Cは、90度以上100度以下であることが好ましい。角度θ5Cは、下配向膜89の初期配向方向D2Cと中偏光板54の透過軸方向D4Cとのなす角度である。角度θ5Cは、90度以上100度以下であることが好ましい。角度θ9Cは、下配向膜89の初期配向方向D2Cと画像表示パネル30の初期配向方向D5C、D6Cとのなす角度である。角度θ9Cは、90度以上100度以下であることが好ましい。角度θ10Cは、下配向膜89の初期配向方向D2Cと上偏光板58の透過軸方向D7Cとのなす角度である。角度θ10Cは、0度以上5度以下であることが好ましい。 The angle θ 4C in FIG. 24 is the angle between the initial alignment direction D2C of the lower alignment film 89 and the initial alignment direction D3C of the upper alignment film 74. The angle θ 4C is preferably 90 degrees or more and 100 degrees or less. The angle θ 5C is an angle formed between the initial alignment direction D2C of the lower alignment film 89 and the transmission axis direction D4C of the middle polarizing plate 54. Angle θ 5C is preferably 90 degrees or more and 100 degrees or less. The angle θ 9C is an angle between the initial alignment direction D2C of the lower alignment film 89 and the initial alignment directions D5C and D6C of the image display panel 30. The angle θ 9C is preferably 90 degrees or more and 100 degrees or less. The angle θ 10C is an angle between the initial alignment direction D2C of the lower alignment film 89 and the transmission axis direction D7C of the upper polarizing plate 58. The angle θ 10C is preferably equal to or greater than 0 degree and equal to or less than 5 degrees.
 また、図24の角度θ6Cは、上配向膜74の初期配向方向D3Cと中偏光板54の透過軸方向D4Cとのなす角度である。角度θ6Cは、0度以上5度以下であることが好ましい。角度θ11Cは、上配向膜74の初期配向方向D3Cと画像表示パネル30の初期配向方向D5C、D6Cとのなす角度である。角度θ11Cは、0度以上5度以下であることが好ましい。角度θ12Cは、上配向膜74の初期配向方向D3Cと上偏光板58の透過軸方向D7Cとのなす角度である。角度θ12Cは、90度以上100度以下であることが好ましい。 The angle θ 6C in FIG. 24 is the angle between the initial alignment direction D3C of the upper alignment film 74 and the transmission axis direction D4C of the middle polarizer 54. The angle θ 6C is preferably equal to or greater than 0 degrees and equal to or less than 5 degrees. The angle θ 11C is an angle between the initial alignment direction D3C of the upper alignment film 74 and the initial alignment directions D5C and D6C of the image display panel 30. The angle θ 11C is preferably equal to or greater than 0 degree and equal to or less than 5 degrees. The angle θ 12C is an angle between the initial alignment direction D3C of the upper alignment film 74 and the transmission axis direction D7C of the upper polarizing plate 58. The angle θ 12C is preferably 90 degrees or more and 100 degrees or less.
 また、図24の角度θ13Cは、中偏光板54の透過軸方向D4Cと画像表示パネル30の初期配向方向D5C、D6Cとのなす角度である。角度θ13Cは、0度以上5度以下であることが好ましい。角度θ14Cは、中偏光板54の透過軸方向D4Cと上偏光板58の透過軸方向D7Cとのなす角度である。角度θ14Cは、90度以上100度以下であることが好ましい。 The angle θ 13C in FIG. 24 is an angle between the transmission axis direction D4C of the middle polarizing plate 54 and the initial alignment directions D5C and D6C of the image display panel 30. The angle θ 13C is preferably equal to or greater than 0 degree and equal to or less than 5 degrees. The angle θ 14C is an angle between the transmission axis direction D4C of the middle polarizing plate 54 and the transmission axis direction D7C of the upper polarizing plate 58. The angle θ 14C is preferably 90 degrees or more and 100 degrees or less.
 また、図24の角度θ15Cは、画像表示パネル30の初期配向方向D5C、D6Cと上偏光板58の透過軸方向D7Cとのなす角度である。角度θ15Cは、90度以上100度以下であることが好ましい。 The angle theta 15C of FIG. 24 is an angle formed between the transmission axis direction D7C initial alignment direction D5C, D6C the upper polarizing plate 58 of the image display panel 30. The angle θ 15C is preferably 90 degrees or more and 100 degrees or less.
 第2変形例に係る表示装置1Cは、第2実施形態に係る表示装置1Bと同様に、下偏光板52の透過軸方向D1Cと調光パネル80の下配向膜89の初期配向方向D2Cとを平行でなくかつ直交させないことで、輝度の低下を抑制することができる。 The display device 1C according to the second modification is similar to the display device 1B according to the second embodiment in that the transmission axis direction D1C of the lower polarizing plate 52 and the initial alignment direction D2C of the lower alignment film 89 of the light control panel 80 are different. By not being parallel and not orthogonal, it is possible to suppress a decrease in luminance.
 図25は、第2変形例に係る表示装置の輝度の一例を示すグラフである。図25の線分L1Z2は、第2比較例に係る表示装置の視野角ごとの輝度を示している。線分L1Cは、第2変形例に係る表示装置1Cの視野角ごとの輝度を示している。図25に示すように、第2変形例に係る表示装置1Cの輝度は、第2比較例の表示装置の輝度より高くなっている。 FIG. 25 is a graph showing an example of the luminance of the display device according to the second modification. A line segment L1Z2 in FIG. 25 indicates the luminance for each viewing angle of the display device according to the second comparative example. The line segment L1C indicates the luminance for each viewing angle of the display device 1C according to the second modification. As shown in FIG. 25, the luminance of the display device 1C according to the second modification is higher than the luminance of the display device of the second comparative example.
 図26は、第2変形例に係る表示装置のコントラストの一例を示すグラフである。図26の線分L2Z2は、第2比較例に係る表示装置の視野角ごとのコントラストであり、線分L2Cは、第2変形例に係る表示装置1Cの視野角ごとのコントラストである。図26に示すように、第2変形例に係る表示装置1Cは、透過軸と初期配向方向とを傾けることで、コントラストを保ったまま、輝度を高くすることができる。 FIG. 26 is a graph showing an example of the contrast of the display device according to the second modification. The line segment L2Z2 in FIG. 26 is the contrast for each viewing angle of the display device according to the second comparative example, and the line segment L2C is the contrast for each viewing angle of the display device 1C according to the second modification. As shown in FIG. 26, the display device 1C according to the second modification can increase the luminance while maintaining the contrast by tilting the transmission axis and the initial alignment direction.
 (第3実施形態)
 次に、第3実施形態について説明する。第3実施形態に係る表示装置1Cは、中偏光板54の透過軸方向、画像表示パネル30の初期配向方向、及び上偏光板58の初期配向方向の傾く方向が、第2実施形態とは異なる。第3実施形態において第2実施形態と構成が共通する箇所は、説明を省略する。
(Third embodiment)
Next, a third embodiment will be described. The display device 1C according to the third embodiment differs from the second embodiment in the transmission axis direction of the middle polarizer 54, the initial orientation direction of the image display panel 30, and the initial orientation direction of the upper polarizer 58. . In the third embodiment, description of portions having the same configuration as the second embodiment will be omitted.
 図27は、第3実施形態に係る透過軸方向と初期配向方向とを説明する模式図である。図27に示すように、第3実施形態においては、調光パネル80の液晶素子LCの捻じれ方向が、X-Y平面における時計回り方向T1となるように、下配向膜89の初期配向方向D2と上配向膜74の初期配向方向D3とが設定されている。すなわち、第3実施形態における液晶素子LCの捻じれ方向は、第2実施形態と同じ方向である。 FIG. 27 is a schematic diagram illustrating a transmission axis direction and an initial alignment direction according to the third embodiment. As shown in FIG. 27, in the third embodiment, the initial alignment direction of the lower alignment film 89 is set such that the twisting direction of the liquid crystal element LC of the light control panel 80 is the clockwise direction T1 on the XY plane. D2 and the initial alignment direction D3 of the upper alignment film 74 are set. That is, the twist direction of the liquid crystal element LC in the third embodiment is the same as that in the second embodiment.
 第3実施形態における下偏光板52の透過軸方向D1Dは、第2実施形態における透過軸方向D1Bと同方向である。第3実施形態に係る調光パネル80の下配向膜89の初期配向方向D2Dは、第2実施形態における初期配向方向D2Bと同方向である。第3実施形態に係る調光パネル80の上配向膜74の初期配向方向D3Dは、第2実施形態における初期配向方向D3Bと同方向である。 透過 The transmission axis direction D1D of the lower polarizing plate 52 in the third embodiment is the same as the transmission axis direction D1B in the second embodiment. The initial alignment direction D2D of the lower alignment film 89 of the light control panel 80 according to the third embodiment is the same as the initial alignment direction D2B in the second embodiment. The initial alignment direction D3D of the upper alignment film 74 of the light control panel 80 according to the third embodiment is the same as the initial alignment direction D3B in the second embodiment.
 一方、第3実施形態における中偏光板54は、X-Y平面において(Z方向から見て)、透過軸方向D4Dが、基準直交軸AX2に対し、調光パネル80の液晶素子LCの捻じれ方向と同じ方向に、言い換えれば、下偏光板52の透過軸方向D1Dが基準軸AX1に対して傾く方向と同じ方向に、傾いている。従って、第3実施形態においては、中偏光板54の透過軸方向D4Dは、基準直交軸AX2に対し、時計回り方向T1に傾いている。なお、中偏光板54の透過軸方向D4Dは、基準直交軸AX2に沿った方向のベクトル成分が、基準軸AX1に沿った方向のベクトル成分よりも高くなっている。すなわち、透過軸方向D4Dは、基準直交軸AX2に対する傾き角度が、45度より小さい。 On the other hand, in the middle polarizing plate 54 in the third embodiment, the transmission axis direction D4D of the liquid crystal element LC of the light control panel 80 is twisted with respect to the reference orthogonal axis AX2 on the XY plane (as viewed from the Z direction). The transmission axis direction D1D of the lower polarizer 52 is inclined in the same direction as the reference axis AX1. Therefore, in the third embodiment, the transmission axis direction D4D of the middle polarizing plate 54 is inclined in the clockwise direction T1 with respect to the reference orthogonal axis AX2. In the transmission axis direction D4D of the middle polarizing plate 54, the vector component in the direction along the reference orthogonal axis AX2 is higher than the vector component in the direction along the reference axis AX1. That is, in the transmission axis direction D4D, the inclination angle with respect to the reference orthogonal axis AX2 is smaller than 45 degrees.
 また、第3実施形態における画像表示パネル30の下配向膜29は、X-Y平面において(Z方向から見て)、初期配向方向D5Dが、基準直交軸AX2に対して、調光パネル80の液晶素子LCの捻じれ方向と同じ方向に、言い換えれば、下偏光板52の透過軸方向D1Dが基準軸AX1に対して傾く方向と同じ方向に、傾いている。従って、第3実施形態においては、下配向膜29の初期配向方向D5Dは、基準直交軸AX2に対し、時計回り方向T1に傾いている。なお、下配向膜29の初期配向方向D5Dは、基準直交軸AX2に沿った方向のベクトル成分が、基準軸AX1に沿った方向のベクトル成分よりも高くなっている。すなわち、透過軸方向D4Bは、基準直交軸AX2に対する傾き角度が、45度より小さい。また、第3実施形態における画像表示パネル30の上配向膜32は、初期配向方向D6Dが、下配向膜29の初期配向方向D5Dに沿っている。 In the third embodiment, the lower alignment film 29 of the image display panel 30 has an initial alignment direction D5D of the light control panel 80 with respect to the reference orthogonal axis AX2 in the XY plane (as viewed from the Z direction). The liquid crystal element LC is tilted in the same direction as the twisting direction, in other words, in the same direction as the transmission axis direction D1D of the lower polarizing plate 52 is tilted with respect to the reference axis AX1. Therefore, in the third embodiment, the initial alignment direction D5D of the lower alignment film 29 is inclined in the clockwise direction T1 with respect to the reference orthogonal axis AX2. In the initial alignment direction D5D of the lower alignment film 29, the vector component in the direction along the reference orthogonal axis AX2 is higher than the vector component in the direction along the reference axis AX1. That is, in the transmission axis direction D4B, the inclination angle with respect to the reference orthogonal axis AX2 is smaller than 45 degrees. In the upper alignment film 32 of the image display panel 30 in the third embodiment, the initial alignment direction D6D is along the initial alignment direction D5D of the lower alignment film 29.
 また、第3実施形態における上偏光板58は、X-Y平面において(Z方向から見て)、透過軸方向D7Dが、基準軸AX1に対して、調光パネル80の液晶素子LCの捻じれ方向と反対方向に、言い換えれば、下偏光板52の透過軸方向D1Dが基準軸AX1に対して傾く方向と反対方向に、傾いている。従って、第3実施形態においては、上偏光板58の透過軸方向D7Dは、基準軸AX1に対し、反時計回り方向T2に傾いている。なお、上偏光板58の透過軸方向D7Dは、基準軸AX1に沿った方向のベクトル成分が、基準直交軸AX2に沿った方向のベクトル成分よりも高くなっている。すなわち、透過軸方向D4Bは、基準軸AX1に対する傾き角度が、45度より小さい。 In the third embodiment, the upper polarizing plate 58 is configured such that, in the XY plane (as viewed from the Z direction), the transmission axis direction D7D is twisted with respect to the reference axis AX1 of the liquid crystal element LC of the light control panel 80. In other words, the transmission axis direction D1D of the lower polarizing plate 52 is inclined in the opposite direction to the reference axis AX1. Therefore, in the third embodiment, the transmission axis direction D7D of the upper polarizing plate 58 is inclined in the counterclockwise direction T2 with respect to the reference axis AX1. In the transmission axis direction D7D of the upper polarizing plate 58, the vector component in the direction along the reference axis AX1 is higher than the vector component in the direction along the reference orthogonal axis AX2. That is, in the transmission axis direction D4B, the inclination angle with respect to the reference axis AX1 is smaller than 45 degrees.
 次に、透過軸方向及び初期配向方向の角度について説明する。中偏光板54の透過軸方向D4Dが基準直交軸AX2に対して傾く角度の大きさと、画像表示パネル30の初期配向方向D5D、D6Dが基準直交軸AX2に対し傾く角度の大きさと、上偏光板58の透過軸方向D7Dが基準軸AX1に対して傾く角度の大きさとは、第2実施形態と同様である。 Next, the angles of the transmission axis direction and the initial alignment direction will be described. The magnitude of the angle at which the transmission axis direction D4D of the middle polarizing plate 54 is inclined with respect to the reference orthogonal axis AX2, the magnitude of the angle at which the initial orientation directions D5D and D6D of the image display panel 30 are inclined with respect to the reference orthogonal axis AX2, and The magnitude of the angle at which the transmission axis direction D7D of 58 is inclined with respect to the reference axis AX1 is the same as in the second embodiment.
 図28は、第3実施形態における透過軸方向及び初期配向方向の関係を示す図である。図28の角度θ1Dは、下偏光板52の透過軸方向D1Dと下配向膜89の初期配向方向D2Dとのなす角度である。すなわち、下配向膜89の初期配向方向D2Dは、下偏光板52の透過軸方向D1Dに対して、反時計回り方向T2、すなわち調光パネル80の液晶素子LCの捻じれ方向と反対方向に、角度θ1Dだけ傾いている。角度θ1Dは、0度より大きく10度以下であることが好ましい。また、角度θ2Dは、下偏光板52の透過軸方向D1Dと上配向膜74の初期配向方向D3Dとのなす角度である。角度θ2Dは、85度以上95度以下であることが好ましい。また、角度θ3Dは、下偏光板52の透過軸方向D1Dと中偏光板54の透過軸方向D4Dとのなす角度である。角度θ3Dは、85度以上95度以下であることが好ましい。また、角度θ7Dは、下偏光板52の透過軸方向D1Dと画像表示パネル30の初期配向方向D5D、D6Dとのなす角度である。角度θ7Dは、85度以上95度以下であることが好ましい。また、角度θ8Dは、下偏光板52の透過軸方向D1Dと上偏光板58の透過軸方向D7Dとのなす角度である。角度θ8Dは、0度以上10度以下であることが好ましい。 FIG. 28 is a diagram illustrating the relationship between the transmission axis direction and the initial alignment direction in the third embodiment. The angle θ 1D in FIG. 28 is an angle between the transmission axis direction D1D of the lower polarizing plate 52 and the initial alignment direction D2D of the lower alignment film 89. That is, the initial alignment direction D2D of the lower alignment film 89 is counterclockwise T2 with respect to the transmission axis direction D1D of the lower polarizer 52, that is, in the direction opposite to the twisting direction of the liquid crystal element LC of the light control panel 80, It is inclined by the angle θ 1D . The angle θ 1D is preferably greater than 0 degrees and 10 degrees or less. The angle θ 2D is the angle between the transmission axis direction D1D of the lower polarizing plate 52 and the initial alignment direction D3D of the upper alignment film 74. It is preferable that the angle θ 2D is not less than 85 degrees and not more than 95 degrees. The angle θ 3D is an angle between the transmission axis direction D1D of the lower polarizing plate 52 and the transmission axis direction D4D of the middle polarizing plate 54. It is preferable that the angle θ 3D is not less than 85 degrees and not more than 95 degrees. The angle θ 7D is an angle between the transmission axis direction D1D of the lower polarizing plate 52 and the initial alignment directions D5D and D6D of the image display panel 30. It is preferable that the angle θ 7D is not less than 85 degrees and not more than 95 degrees. The angle θ 8D is the angle between the transmission axis direction D1D of the lower polarizing plate 52 and the transmission axis direction D7D of the upper polarizing plate 58. The angle θ 8D is preferably equal to or greater than 0 degrees and equal to or less than 10 degrees.
 また、図28の角度θ4Dは、下配向膜89の初期配向方向D2Dと上配向膜74の初期配向方向D3Dとのなす角度である。角度θ4Dは、80度以上90度以下であることが好ましい。角度θ5Dは、下配向膜89の初期配向方向D2Dと中偏光板54の透過軸方向D4Dとのなす角度である。角度θ5Dは、80度以上90度以下であることが好ましい。角度θ9Dは、下配向膜89の初期配向方向D2Dと画像表示パネル30の初期配向方向D5D、D6Dとのなす角度である。角度θ9Dは、80度以上90度以下であることが好ましい。角度θ10Dは、下配向膜89の初期配向方向D2Dと上偏光板58の透過軸方向D7Dとのなす角度である。角度θ10Dは、0度以上5度以下であることが好ましい。 The angle θ 4D in FIG. 28 is an angle formed between the initial alignment direction D2D of the lower alignment film 89 and the initial alignment direction D3D of the upper alignment film 74. The angle θ 4D is preferably 80 degrees or more and 90 degrees or less. The angle θ 5D is an angle formed between the initial alignment direction D2D of the lower alignment film 89 and the transmission axis direction D4D of the middle polarizing plate 54. It is preferable that the angle θ5D is not less than 80 degrees and not more than 90 degrees. The angle θ 9D is an angle between the initial alignment direction D2D of the lower alignment film 89 and the initial alignment directions D5D and D6D of the image display panel 30. It is preferable that the angle θ 9D is not less than 80 degrees and not more than 90 degrees. The angle θ 10D is an angle between the initial alignment direction D2D of the lower alignment film 89 and the transmission axis direction D7D of the upper polarizing plate 58. The angle θ 10D is preferably equal to or greater than 0 degree and equal to or less than 5 degrees.
 また、図28の角度θ6Dは、上配向膜74の初期配向方向D3Dと中偏光板54の透過軸方向D4Dとのなす角度である。角度θ6Dは、0度以上5度以下であることが好ましい。角度θ11Dは、上配向膜74の初期配向方向D3Dと画像表示パネル30の初期配向方向D5D、D6Dとのなす角度である。角度θ11Dは、0度以上5度以下であることが好ましい。角度θ12Dは、上配向膜74の初期配向方向D3Dと上偏光板58の透過軸方向D7Dとのなす角度である。角度θ12Dは、80度以上90度以下であることが好ましい。 The angle θ 6D in FIG. 28 is the angle between the initial alignment direction D3D of the upper alignment film 74 and the transmission axis direction D4D of the middle polarizer 54. The angle θ 6D is preferably equal to or greater than 0 degree and equal to or less than 5 degrees. The angle θ 11D is an angle between the initial alignment direction D3D of the upper alignment film 74 and the initial alignment directions D5D and D6D of the image display panel 30. It is preferable that the angle θ 11D is not less than 0 degrees and not more than 5 degrees. The angle θ 12D is an angle formed between the initial alignment direction D3D of the upper alignment film 74 and the transmission axis direction D7D of the upper polarizing plate 58. The angle θ 12D is preferably 80 degrees or more and 90 degrees or less.
 また、図28の角度θ13Dは、中偏光板54の透過軸方向D4Dと画像表示パネル30の初期配向方向D5D、D6Dとのなす角度である。角度θ13Dは、0度以上5度以下であることが好ましい。角度θ14Dは、中偏光板54の透過軸方向D4Dと上偏光板58の透過軸方向D7Dとのなす角度である。角度θ14Dは、80度以上90度以下であることが好ましい。 The angle θ 13D in FIG. 28 is an angle between the transmission axis direction D4D of the middle polarizing plate 54 and the initial alignment directions D5D and D6D of the image display panel 30. It is preferable that the angle θ 13D is not less than 0 degrees and not more than 5 degrees. The angle θ 14D is an angle between the transmission axis direction D4D of the middle polarizing plate 54 and the transmission axis direction D7D of the upper polarizing plate 58. The angle θ 14D is preferably 80 degrees or more and 90 degrees or less.
 また、図28の角度θ15Dは、画像表示パネル30の初期配向方向D5D、D6Dと上偏光板58の透過軸方向D7Dとのなす角度である。角度θ15Dは、80度以上90度以下であることが好ましい。 The angle θ 15D in FIG. 28 is an angle formed between the initial alignment directions D5D and D6D of the image display panel 30 and the transmission axis direction D7D of the upper polarizing plate 58. The angle θ 15D is preferably 80 degrees or more and 90 degrees or less.
 以上説明したように、第3実施形態に係る表示装置1Dは、第2実施形態と同様に、下偏光板52の透過軸方向D1Dと調光パネル80の下配向膜89の初期配向方向D2Dとを平行でなくかつ直交させないことで、輝度の低下を抑制することができる。 As described above, the display device 1D according to the third embodiment includes the transmission axis direction D1D of the lower polarizing plate 52 and the initial alignment direction D2D of the lower alignment film 89 of the light control panel 80, as in the second embodiment. Are not parallel and not orthogonal to each other, it is possible to suppress a decrease in luminance.
 さらに言えば、第3実施形態において、中偏光板54の透過軸方向D4Dは、基準直交軸AX2に対して、時計回り及び反時計回りのうちの一方側(ここでは時計回り方向T1)に傾いている。表示装置1Dは、このように、中偏光板54の透過軸方向D4Bを下偏光板52の透過軸方向D1と同じ方向に傾けることで、輝度の低下を好適に抑制することができる。 Furthermore, in the third embodiment, the transmission axis direction D4D of the middle polarizer 54 is inclined in one of clockwise and counterclockwise directions (here, clockwise direction T1) with respect to the reference orthogonal axis AX2. ing. In this way, the display device 1D can appropriately suppress the decrease in luminance by tilting the transmission axis direction D4B of the middle polarizing plate 54 in the same direction as the transmission axis direction D1 of the lower polarizing plate 52.
 また、画像表示パネル30の初期配向方向D5D、D6Dは、基準直交軸AX2に対して、時計回り及び反時計回りのうちの一方側(ここでは時計回り方向T1)に傾いており、上偏光板58の透過軸方向D7Dは、基準軸AX1に対して、時計回り及び反時計回りのうちの他方側(ここでは反時計回り方向T2)に傾いている。表示装置1Dは、このように、画像表示パネル30の初期配向方向D5D、D6Dと上偏光板58の透過軸方向D7Dとを傾けることで、輝度の低下を好適に抑制することができる。 The initial alignment directions D5D and D6D of the image display panel 30 are inclined in one of clockwise and counterclockwise directions (here, clockwise direction T1) with respect to the reference orthogonal axis AX2. The transmission axis direction D7D of 58 is inclined to the other side (here, counterclockwise direction T2) of the clockwise direction and the counterclockwise direction with respect to the reference axis AX1. As described above, the display device 1D can appropriately suppress the decrease in luminance by tilting the initial alignment directions D5D and D6D of the image display panel 30 and the transmission axis direction D7D of the upper polarizing plate 58.
 図29は、第3実施形態に係る表示装置の輝度の一例を示すグラフである。図29の線分L1Z1は、第1比較例に係る表示装置の視野角ごとの輝度を示している。線分L1Dは、第3実施形態に係る表示装置1Dの視野角ごとの輝度を示している。図29に示すように、第3実施形態に係る表示装置1Dの輝度は、第1比較例の表示装置の輝度より高くなっている。 FIG. 29 is a graph showing an example of the luminance of the display device according to the third embodiment. A line segment L1Z1 in FIG. 29 indicates the luminance at each viewing angle of the display device according to the first comparative example. The line segment L1D indicates the luminance for each viewing angle of the display device 1D according to the third embodiment. As shown in FIG. 29, the brightness of the display device 1D according to the third embodiment is higher than the brightness of the display device of the first comparative example.
 図30は、第3実施形態に係る表示装置のコントラストの一例を示すグラフである。図30の線分L2Z1は、第1比較例に係る表示装置の視野角ごとのコントラストであり、線分L2Dは、第3実施形態に係る表示装置1Cの視野角ごとのコントラストである。図29及び図30に示すように、第3実施形態に係る表示装置1Cは、透過軸と初期配向方向とを傾けることで、コントラストを保ったまま、輝度を高くすることができる。 FIG. 30 is a graph showing an example of the contrast of the display device according to the third embodiment. A line segment L2Z1 in FIG. 30 is a contrast for each viewing angle of the display device according to the first comparative example, and a line segment L2D is a contrast for each viewing angle of the display device 1C according to the third embodiment. As shown in FIGS. 29 and 30, the display device 1C according to the third embodiment can increase the luminance while maintaining the contrast by tilting the transmission axis and the initial alignment direction.
 (第3変形例)
 次に、第3実施形態の変形例である第3変形例について説明する。第3変形例に係る表示装置1Eは、液晶素子LCの捻じれ方向が、第3実施形態と異なる。第3変形例において、第3実施形態と構成が共通する箇所は、説明を省略する。
(Third Modification)
Next, a third modification which is a modification of the third embodiment will be described. The display device 1E according to the third modification differs from the third embodiment in the twist direction of the liquid crystal element LC. In the third modified example, description of portions having the same configuration as the third embodiment will be omitted.
 図31は、第3変形例に係る透過軸方向と初期配向方向とを説明する模式図である。図31に示すように、第3変形例においては、調光パネル80の液晶素子LCの捻じれ方向が、X-Y平面における反時計回り方向T2となるように、下配向膜89の初期配向方向D2Eと上配向膜74の初期配向方向D3Eとが設定されている。 FIG. 31 is a schematic diagram illustrating a transmission axis direction and an initial alignment direction according to a third modification. As shown in FIG. 31, in the third modification, the initial alignment of the lower alignment film 89 is performed so that the twisting direction of the liquid crystal element LC of the light control panel 80 is the counterclockwise direction T2 on the XY plane. The direction D2E and the initial alignment direction D3E of the upper alignment film 74 are set.
 図31に示すように、第3変形例における下偏光板52の透過軸方向D1Eは、第2変形例における透過軸方向D1C(図23参照)と同方向である。第3変形例に係る調光パネル80の下配向膜89の初期配向方向D2Eは、第2変形例における初期配向方向D2C(図23参照)と同方向である。第3変形例に係る調光パネル80の上配向膜74の初期配向方向D3Eは、第2変形例における初期配向方向D3C(図23参照)と同方向である。すなわち、第3変形例においては、調光パネル80の液晶素子LCの捻じれ方向が第3実施形態と逆になることで、下偏光板52の透過軸方向D1Eの傾く方向と、下配向膜89の初期配向方向D2Eの傾く方向と、上配向膜74の初期配向方向D3Eの傾く方向とについても、第3実施形態と逆になる。 As shown in FIG. 31, the transmission axis direction D1E of the lower polarizing plate 52 in the third modification is the same as the transmission axis direction D1C (see FIG. 23) in the second modification. The initial alignment direction D2E of the lower alignment film 89 of the light control panel 80 according to the third modification is the same as the initial alignment direction D2C (see FIG. 23) in the second modification. The initial alignment direction D3E of the upper alignment film 74 of the light control panel 80 according to the third modification is the same as the initial alignment direction D3C (see FIG. 23) in the second modification. That is, in the third modified example, the twisting direction of the liquid crystal element LC of the light control panel 80 is opposite to that of the third embodiment, so that the tilt direction of the transmission axis direction D1E of the lower polarizing plate 52 and the lower alignment film The inclination direction of the initial alignment direction D2E of 89 and the inclination direction of the initial alignment direction D3E of the upper alignment film 74 are also opposite to those in the third embodiment.
 また、第3変形例における中偏光板54の透過軸方向D4Eは、X-Y平面において(Z方向から見て)、基準直交軸AX2に対し、調光パネル80の液晶素子LCの捻じれ方向と反対方向に、言い換えれば、下偏光板52の透過軸方向D1Eが基準軸AX1に対して傾く方向と反対方向に、傾いている。従って、第3変形例においては、中偏光板54の透過軸方向D4Eは、基準直交軸AX2に対し、時計回り方向T1に傾いている。すなわち、中偏光板54の透過軸方向D4Eは、第3実施形態と同じ時計回り方向T1に傾いているが、調光パネル80の液晶素子LCの捻じれ方向や下偏光板52の透過軸方向D1Eの傾く方向に対する相対的な傾き方向は、第3実施形態と逆となっている。なお、中偏光板54の透過軸方向D4Eは、基準直交軸AX2に沿った方向のベクトル成分が、基準軸AX1に沿った方向のベクトル成分よりも高くなっている。 Further, the transmission axis direction D4E of the middle polarizing plate 54 in the third modification is a twist direction of the liquid crystal element LC of the light control panel 80 with respect to the reference orthogonal axis AX2 on the XY plane (as viewed from the Z direction). , In other words, in the direction opposite to the direction in which the transmission axis direction D1E of the lower polarizing plate 52 is inclined with respect to the reference axis AX1. Therefore, in the third modified example, the transmission axis direction D4E of the middle polarizing plate 54 is inclined in the clockwise direction T1 with respect to the reference orthogonal axis AX2. That is, the transmission axis direction D4E of the middle polarizer 54 is inclined in the clockwise direction T1 as in the third embodiment, but the twist direction of the liquid crystal element LC of the light control panel 80 and the transmission axis direction of the lower polarizer 52. The direction of inclination relative to the direction of inclination of D1E is opposite to that of the third embodiment. In the transmission axis direction D4E of the middle polarizing plate 54, the vector component in the direction along the reference orthogonal axis AX2 is higher than the vector component in the direction along the reference axis AX1.
 また、第3変形例における画像表示パネル30の下配向膜29の初期配向方向D5Eは、X-Y平面において(Z方向から見て)、基準直交軸AX2に対して、調光パネル80の液晶素子LCの捻じれ方向と反対方向に、言い換えれば、下偏光板52の透過軸方向D1Eが基準軸AX1に対して傾く方向と反対方向に、傾いている。従って、第3変形例においては、下配向膜29の初期配向方向D5Eは、基準直交軸AX2に対し、時計回り方向T1に傾いている。すなわち、下配向膜29の初期配向方向D5Eは、第3実施形態と同じ時計回り方向T1に傾いているが、調光パネル80の液晶素子LCの捻じれ方向や下偏光板52の透過軸方向D1Eの傾く方向に対する相対的な傾き方向は、第3実施形態と逆となっている。なお、下配向膜29の初期配向方向D5Eは、基準直交軸AX2に沿った方向のベクトル成分が、基準軸AX1に沿った方向のベクトル成分よりも高くなっている。また、第3変形例における画像表示パネル30の上配向膜32の初期配向方向D6Eは、下配向膜29の初期配向方向D5Eに沿っている。 In the third modification, the initial alignment direction D5E of the lower alignment film 29 of the image display panel 30 is equal to the liquid crystal of the light control panel 80 with respect to the reference orthogonal axis AX2 on the XY plane (as viewed from the Z direction). The element LC is tilted in a direction opposite to the twisting direction, in other words, in a direction opposite to the direction in which the transmission axis direction D1E of the lower polarizing plate 52 is tilted with respect to the reference axis AX1. Therefore, in the third modification, the initial alignment direction D5E of the lower alignment film 29 is inclined in the clockwise direction T1 with respect to the reference orthogonal axis AX2. That is, the initial alignment direction D5E of the lower alignment film 29 is inclined in the clockwise direction T1 as in the third embodiment, but the twisting direction of the liquid crystal element LC of the light control panel 80 and the transmission axis direction of the lower polarizing plate 52. The direction of inclination relative to the direction of inclination of D1E is opposite to that of the third embodiment. In the initial alignment direction D5E of the lower alignment film 29, the vector component in the direction along the reference orthogonal axis AX2 is higher than the vector component in the direction along the reference axis AX1. Further, the initial alignment direction D6E of the upper alignment film 32 of the image display panel 30 in the third modification is along the initial alignment direction D5E of the lower alignment film 29.
 また、第3実施形態における上偏光板58の透過軸方向D7Eは、X-Y平面において(Z方向から見て)、基準軸AX1に対して、調光パネル80の液晶素子LCの捻じれ方向と同じ方向に、言い換えれば、下偏光板52の透過軸方向D1Cが基準軸AX1に対して傾く方向と同じ方向に、傾いている。従って、第3変形例においては、上偏光板58の透過軸方向D7Eは、基準軸AX1に対し、反時計回り方向T2に傾いている。すなわち、上偏光板58の透過軸方向D7Eは、第3実施形態と同じ反時計回り方向T2に傾いているが、調光パネル80の液晶素子LCの捻じれ方向や下偏光板52の透過軸方向D1Eの傾く方向に対する相対的な傾き方向は、第3実施形態と逆となっている。なお、上偏光板58の透過軸方向D7Eは、基準軸AX1に沿った方向のベクトル成分が、基準直交軸AX2に沿った方向のベクトル成分よりも高くなっている。 Further, the transmission axis direction D7E of the upper polarizing plate 58 in the third embodiment is the twist direction of the liquid crystal element LC of the light control panel 80 with respect to the reference axis AX1 on the XY plane (as viewed from the Z direction). In other words, in other words, in the same direction as the direction in which the transmission axis direction D1C of the lower polarizing plate 52 is inclined with respect to the reference axis AX1. Therefore, in the third modification, the transmission axis direction D7E of the upper polarizing plate 58 is inclined in the counterclockwise direction T2 with respect to the reference axis AX1. In other words, the transmission axis direction D7E of the upper polarizing plate 58 is inclined in the counterclockwise direction T2 as in the third embodiment, but the twisting direction of the liquid crystal element LC of the light control panel 80 and the transmission axis direction of the lower polarizing plate 52. The direction of inclination of the direction D1E relative to the direction of inclination is opposite to that of the third embodiment. In the transmission axis direction D7E of the upper polarizing plate 58, the vector component in the direction along the reference axis AX1 is higher than the vector component in the direction along the reference orthogonal axis AX2.
 次に、透過軸方向及び初期配向方向の角度について説明する。中偏光板54の透過軸方向D4Eが基準直交軸AX2に対して傾く角度の大きさと、画像表示パネル30の初期配向方向D5E、D6Eが基準直交軸AX2に対し傾く角度の大きさと、上偏光板58の透過軸方向D7Eが基準軸AX1に対して傾く角度の大きさとは、第3実施形態と同じである。 Next, the angles of the transmission axis direction and the initial alignment direction will be described. The angle at which the transmission axis direction D4E of the middle polarizing plate 54 is inclined with respect to the reference orthogonal axis AX2, the angle at which the initial alignment directions D5E and D6E of the image display panel 30 are inclined with respect to the reference orthogonal axis AX2, The magnitude of the angle at which the transmission axis direction D7E of 58 inclines with respect to the reference axis AX1 is the same as in the third embodiment.
 図32は、第3変形例における透過軸方向及び初期配向方向の関係を示す図である。図24の角度θ1Eは、下偏光板52の透過軸方向D1Eと下配向膜89の初期配向方向D2Eとのなす角度である。すなわち、下配向膜89の初期配向方向D2Eは、下偏光板52の透過軸方向D1Eに対して、時計回り方向T1、すなわち調光パネル80の液晶素子LCの捻じれ方向と反対方向に、角度θ1Eだけ傾いている。角度θ1Eは、0度より大きく10度以下であることが好ましい。また、角度θ2Eは、下偏光板52の透過軸方向D1Eと上配向膜74の初期配向方向D3Eとのなす角度である。角度θ2Eは、85度以上95度以下であることが好ましい。また、角度θ3Eは、下偏光板52の透過軸方向D1Eと中偏光板54の透過軸方向D4Eとのなす角度である。角度θ3Eは、80度以上90度以下であることが好ましい。また、角度θ7Eは、下偏光板52の透過軸方向D1Eと画像表示パネル30の初期配向方向D5E、D6Eとのなす角度である。角度θ7Eは、80度以上90度以下であることが好ましい。また、角度θ8Eは、下偏光板52の透過軸方向D1Eと上偏光板58の透過軸方向D7Eとのなす角度である。角度θ8Eは、0度以上5度以下であることが好ましい。 FIG. 32 is a diagram showing the relationship between the transmission axis direction and the initial alignment direction in the third modification. The angle θ 1E in FIG. 24 is the angle between the transmission axis direction D1E of the lower polarizing plate 52 and the initial alignment direction D2E of the lower alignment film 89. That is, the initial alignment direction D2E of the lower alignment film 89 is angled with respect to the transmission axis direction D1E of the lower polarizing plate 52 in the clockwise direction T1, that is, in the direction opposite to the twisting direction of the liquid crystal element LC of the light control panel 80. It is inclined by θ 1E . It is preferable that the angle θ 1E is larger than 0 degree and equal to or smaller than 10 degrees. The angle θ 2E is an angle between the transmission axis direction D1E of the lower polarizing plate 52 and the initial alignment direction D3E of the upper alignment film 74. It is preferable that the angle θ 2E is not less than 85 degrees and not more than 95 degrees. The angle θ 3E is an angle between the transmission axis direction D1E of the lower polarizing plate 52 and the transmission axis direction D4E of the middle polarizing plate 54. The angle θ 3E is preferably 80 degrees or more and 90 degrees or less. The angle θ 7E is an angle between the transmission axis direction D1E of the lower polarizing plate 52 and the initial alignment directions D5E and D6E of the image display panel 30. Angle θ 7E is preferably 80 degrees or more and 90 degrees or less. The angle θ 8E is an angle between the transmission axis direction D1E of the lower polarizing plate 52 and the transmission axis direction D7E of the upper polarizing plate 58. The angle θ 8E is preferably equal to or greater than 0 degrees and equal to or less than 5 degrees.
 また、図32の角度θ4Eは、下配向膜89の初期配向方向D2Eと上配向膜74の初期配向方向D3Eとのなす角度である。角度θ4Eは、90度以上100度以下であることが好ましい。角度θ5Eは、下配向膜89の初期配向方向D2Eと中偏光板54の透過軸方向D4Eとのなす角度である。角度θ5Eは、85度以上95度以下であることが好ましい。角度θ9Eは、下配向膜89の初期配向方向D2Eと画像表示パネル30の初期配向方向D5E、D6Eとのなす角度である。角度θ9Eは、85度以上95度以下であることが好ましい。角度θ10Eは、下配向膜89の初期配向方向D2Eと上偏光板58の透過軸方向D7Eとのなす角度である。角度θ10Eは、0度以上10度以下であることが好ましい。 The angle θ 4E in FIG. 32 is an angle formed between the initial alignment direction D2E of the lower alignment film 89 and the initial alignment direction D3E of the upper alignment film 74. The angle θ 4E is preferably 90 degrees or more and 100 degrees or less. The angle θ 5E is an angle formed between the initial alignment direction D2E of the lower alignment film 89 and the transmission axis direction D4E of the middle polarizing plate 54. Angle θ 5E is preferably not less than 85 degrees and not more than 95 degrees. The angle θ 9E is an angle between the initial alignment direction D2E of the lower alignment film 89 and the initial alignment directions D5E and D6E of the image display panel 30. It is preferable that the angle θ 9E is not less than 85 degrees and not more than 95 degrees. The angle θ 10E is an angle between the initial alignment direction D2E of the lower alignment film 89 and the transmission axis direction D7E of the upper polarizing plate 58. The angle θ 10E is preferably equal to or greater than 0 degree and equal to or less than 10 degrees.
 また、図32の角度θ6Eは、上配向膜74の初期配向方向D3Eと中偏光板54の透過軸方向D4Eとのなす角度である。角度θ6Eは、0度以上10度以下であることが好ましい。角度θ11Eは、上配向膜74の初期配向方向D3Eと画像表示パネル30の初期配向方向D5E、D6Eとのなす角度である。角度θ11Eは、0度以上10度以下であることが好ましい。角度θ12Eは、上配向膜74の初期配向方向D3Eと上偏光板58の透過軸方向D7Eとのなす角度である。角度θ12Eは、85度以上95度以下であることが好ましい。 The angle θ 6E in FIG. 32 is an angle between the initial alignment direction D3E of the upper alignment film 74 and the transmission axis direction D4E of the middle polarizer 54. The angle θ 6E is preferably equal to or greater than 0 degrees and equal to or less than 10 degrees. The angle θ 11E is an angle between the initial alignment direction D3E of the upper alignment film 74 and the initial alignment directions D5E and D6E of the image display panel 30. It is preferable that the angle θ11E is not less than 0 degree and not more than 10 degrees. The angle θ 12E is an angle formed between the initial alignment direction D3E of the upper alignment film 74 and the transmission axis direction D7E of the upper polarizing plate 58. The angle θ 12E is preferably equal to or greater than 85 degrees and equal to or less than 95 degrees.
 また、図32の角度θ13Eは、中偏光板54の透過軸方向D4Eと画像表示パネル30の初期配向方向D5E、D6Eとのなす角度である。角度θ13Eは、0度以上5度以下であることが好ましい。角度θ14Eは、中偏光板54の透過軸方向D4Eと上偏光板58の透過軸方向D7Eとのなす角度である。角度θ14Eは、80度以上90度以下であることが好ましい。 The angle θ 13E in FIG. 32 is an angle between the transmission axis direction D4E of the middle polarizing plate 54 and the initial alignment directions D5E and D6E of the image display panel 30. The angle θ 13E is preferably equal to or more than 0 degree and equal to or less than 5 degrees. The angle θ 14E is an angle formed between the transmission axis direction D4E of the middle polarizing plate 54 and the transmission axis direction D7E of the upper polarizing plate 58. The angle θ 14E is preferably 80 degrees or more and 90 degrees or less.
 また、図32の角度θ15Eは、画像表示パネル30の初期配向方向D5E、D6Eと上偏光板58の透過軸方向D7Eとのなす角度である。角度θ15Eは、80度以上90度以下であることが好ましい。 The angle theta 15E of FIG. 32 is an angle formed between the transmission axis direction D7E initial alignment direction D5E, D6E the upper polarizing plate 58 of the image display panel 30. The angle θ 15E is preferably 80 degrees or more and 90 degrees or less.
 第3変形例に係る表示装置1Eは、第3実施形態に係る表示装置1Dと同様に、下偏光板52の透過軸方向D1Eと調光パネル80の下配向膜89の初期配向方向D2Eとを平行でなくかつ直交させないことで、輝度の低下を抑制することができる。 The display device 1E according to the third modification is similar to the display device 1D according to the third embodiment in that the transmission axis direction D1E of the lower polarizing plate 52 and the initial alignment direction D2E of the lower alignment film 89 of the light control panel 80 are different. By not being parallel and not orthogonal, it is possible to suppress a decrease in luminance.
 図33は、第3変形例に係る表示装置の輝度の一例を示すグラフである。図33の線分L1Z2は、第2比較例に係る表示装置の視野角ごとの輝度を示している。線分L1Eは、第3変形例に係る表示装置1Eの視野角ごとの輝度を示している。図33に示すように、第3変形例に係る表示装置1Eの輝度は、第2比較例の表示装置の輝度より高くなっている。 FIG. 33 is a graph showing an example of the luminance of the display device according to the third modification. A line segment L1Z2 in FIG. 33 indicates the luminance at each viewing angle of the display device according to the second comparative example. The line segment L1E indicates the luminance for each viewing angle of the display device 1E according to the third modification. As shown in FIG. 33, the luminance of the display device 1E according to the third modification is higher than the luminance of the display device of the second comparative example.
 図34は、第3変形例に係る表示装置のコントラストの一例を示すグラフである。図34の線分L2Z2は、第2比較例に係る表示装置の視野角ごとのコントラストであり、線分L2Eは、第3変形例に係る表示装置1Eの視野角ごとのコントラストである。図33及び図34に示すように、第3変形例に係る表示装置1Eは、透過軸と初期配向方向とを傾けることで、コントラストを保ったまま、輝度を高くすることができる。 FIG. 34 is a graph illustrating an example of the contrast of the display device according to the third modification. The line segment L2Z2 in FIG. 34 is the contrast for each viewing angle of the display device according to the second comparative example, and the line segment L2E is the contrast for each viewing angle of the display device 1E according to the third modification. As shown in FIGS. 33 and 34, the display device 1E according to the third modification can increase the luminance while maintaining the contrast by tilting the transmission axis and the initial alignment direction.
 また、本実施形態において述べた態様によりもたらされる他の作用効果について本明細書記載から明らかなもの、又は当業者において適宜想到し得るものについては、当然に本発明によりもたらされるものと解される。 In addition, it is understood that other operational effects brought about by the aspects described in the present embodiment are clear from the description of the present specification, or those that can be appropriately conceived by those skilled in the art are naturally brought about by the present invention. .
1 表示装置
10 信号処理部
20 表示部
29、89 下配向膜
30 画像表示パネル
32、74 上配向膜
50 光源部
52 下偏光板
54 中偏光板
56 接着層
58 上偏光板
70 調光部
80 調光パネル
81 第1電極
82 第2電極
D1、D4、D7 透過軸方向
D2、D3、D5、D6 初期配向方向
LC1、LC2 液晶層
Reference Signs List 1 display device 10 signal processing unit 20 display unit 29, 89 lower alignment film 30 image display panel 32, 74 upper alignment film 50 light source unit 52 lower polarizing plate 54 middle polarizing plate 56 adhesive layer 58 upper polarizing plate 70 light control unit 80 light control Light panel 81 First electrode 82 Second electrode D1, D4, D7 Transmission axis direction D2, D3, D5, D6 Initial alignment direction LC1, LC2 Liquid crystal layer

Claims (11)

  1.  複数の画素を有する画像表示パネルと、
     前記画像表示パネルの背面側に設けられる光源部と、
     前記画像表示パネルと前記光源部との間に設けられ、前記光源部側の下配向膜、マトリクス状に配置された複数の第1電極、前記下配向膜と対向して前記下配向膜よりも前記画像表示パネル側に設けられる上配向膜、第2電極、及び液晶層を有し、前記第1電極と前記第2電極との間に印加された電圧により、前記光源部から照射された光を、前記液晶層内で、透過率を変更しつつ前記画像表示パネルの背面側に透過可能に構成される調光パネルと、
     前記調光パネルと前記光源部との間に設けられる下偏光板と、を有し、
     前記下偏光板の透過軸は、前記下配向膜の初期配向方向と平行でなく、かつ、直交しない方向に沿っている、
     表示装置。
    An image display panel having a plurality of pixels,
    A light source unit provided on the back side of the image display panel,
    The lower alignment film provided between the image display panel and the light source unit, the lower alignment film on the light source unit side, the plurality of first electrodes arranged in a matrix, and the lower alignment film are opposed to the lower alignment film. An upper alignment film, a second electrode, and a liquid crystal layer provided on the image display panel side; and light emitted from the light source unit by a voltage applied between the first electrode and the second electrode. In the liquid crystal layer, a light control panel configured to be able to transmit to the back side of the image display panel while changing transmittance,
    A lower polarizing plate provided between the dimming panel and the light source unit,
    The transmission axis of the lower polarizing plate is not parallel to the initial alignment direction of the lower alignment film, and is along a direction that is not orthogonal.
    Display device.
  2.  前記下偏光板の透過軸は、所定の方向に沿った基準軸に対して、時計回り及び反時計回りのうちの一方側に傾いており、前記下配向膜の初期配向方向は、前記基準軸に対して、時計回り及び反時計回りのうちの他方側に傾いている、請求項1に記載の表示装置。 The transmission axis of the lower polarizing plate is inclined to one of clockwise and counterclockwise with respect to a reference axis along a predetermined direction, and the initial alignment direction of the lower alignment film is the reference axis. The display device according to claim 1, wherein the display device is inclined to the other side of clockwise and counterclockwise with respect to.
  3.  前記上配向膜の初期配向方向は、前記基準軸に直交する基準直交軸に対して、時計回り及び反時計回りのうちの前記一方側に傾いている、請求項2に記載の表示装置。 The display device according to claim 2, wherein the initial alignment direction of the upper alignment film is inclined toward the one of clockwise and counterclockwise with respect to a reference orthogonal axis orthogonal to the reference axis.
  4.  前記下配向膜の初期配向方向と前記上配向膜の初期配向方向とは、前記液晶層内の液晶素子が、前記第1電極と前記第2電極とに電圧が印加されない状態で、前記下偏光板側から前記画像表示パネル側に向かうに従って、時計回り及び反時計回りのうちの前記一方側に捻じれるよう設定されている、請求項2又は請求項3に記載の表示装置。 The initial alignment direction of the lower alignment film and the initial alignment direction of the upper alignment film are different from each other when the liquid crystal element in the liquid crystal layer does not apply a voltage to the first electrode and the second electrode. 4. The display device according to claim 2, wherein the display device is configured to be twisted in one of the clockwise direction and the counterclockwise direction from the plate side toward the image display panel side. 5.
  5.  前記調光パネルと前記画像表示パネルとの間に設けられる中偏光板と、
     前記画像表示パネルの前記背面の反対側の前面側に設けられる上偏光板と、
     をさらに有する、請求項2から請求項4のいずれか1項に記載の表示装置。
    A middle polarizing plate provided between the light control panel and the image display panel,
    An upper polarizing plate provided on the front side opposite to the back side of the image display panel;
    The display device according to any one of claims 2 to 4, further comprising:
  6.  前記中偏光板の透過軸は、前記基準軸に直交する基準直交軸に沿っている、請求項5に記載の表示装置。 The display device according to claim 5, wherein the transmission axis of the middle polarizer is along a reference orthogonal axis orthogonal to the reference axis.
  7.  前記画像表示パネルの初期配向方向は、前記基準軸に直交する基準直交軸に沿っており、前記上偏光板の透過軸は、前記基準軸に沿っている、請求項5に記載の表示装置。 6. The display device according to claim 5, wherein an initial orientation direction of the image display panel is along a reference orthogonal axis orthogonal to the reference axis, and a transmission axis of the upper polarizing plate is along the reference axis.
  8.  前記中偏光板の透過軸は、前記基準軸に直交する基準直交軸に対して、時計回り及び反時計回りのうちの前記他方側に傾いている、請求項5に記載の表示装置。 6. The display device according to claim 5, wherein the transmission axis of the middle polarizer is inclined to the other side of clockwise and counterclockwise with respect to a reference orthogonal axis orthogonal to the reference axis. 7.
  9.  前記画像表示パネルの初期配向方向は、前記基準軸に直交する基準直交軸に対して、時計回り及び反時計回りのうちの前記他方側に傾いており、前記上偏光板の透過軸は、前記基準軸に対して、時計回り及び反時計回りのうちの前記一方側に傾いている、請求項5に記載の表示装置。 The initial orientation direction of the image display panel is inclined to the other side of clockwise and counterclockwise with respect to a reference orthogonal axis orthogonal to the reference axis, and the transmission axis of the upper polarizing plate is The display device according to claim 5, wherein the display device is inclined to the one of the clockwise direction and the counterclockwise direction with respect to a reference axis.
  10.  前記中偏光板の透過軸は、前記基準軸に直交する基準直交軸に対して、時計回り及び反時計回りのうちの前記一方側に傾いている、請求項5に記載の表示装置。 6. The display device according to claim 5, wherein the transmission axis of the middle polarizer is inclined to the one of clockwise and counterclockwise with respect to a reference orthogonal axis orthogonal to the reference axis. 7.
  11.  前記画像表示パネルの初期配向方向は、前記基準軸に直交する基準直交軸に対して、時計回り及び反時計回りのうちの前記一方側に傾いており、前記上偏光板の透過軸は、前記基準軸に対して、時計回り及び反時計回りのうちの前記他方側に傾いている、請求項5に記載の表示装置。 The initial orientation direction of the image display panel is inclined to the one side of clockwise and counterclockwise with respect to a reference orthogonal axis orthogonal to the reference axis, and the transmission axis of the upper polarizing plate is The display device according to claim 5, wherein the display device is inclined to the other side of the clockwise direction and the counterclockwise direction with respect to a reference axis.
PCT/JP2019/030352 2018-09-28 2019-08-01 Display device WO2020066293A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018184541A JP2020052363A (en) 2018-09-28 2018-09-28 Display device
JP2018-184541 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020066293A1 true WO2020066293A1 (en) 2020-04-02

Family

ID=69950408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030352 WO2020066293A1 (en) 2018-09-28 2019-08-01 Display device

Country Status (2)

Country Link
JP (1) JP2020052363A (en)
WO (1) WO2020066293A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159729A (en) * 1984-01-30 1985-08-21 Seiko Epson Corp Liquid crystal display device
JP2520682Y2 (en) * 1988-03-11 1996-12-18 カシオ計算機株式会社 Liquid crystal display element
US20170343839A1 (en) * 2016-05-31 2017-11-30 Lg Display Co., Ltd. Light valve panel and liquid crystal display using the same
JP2018128641A (en) * 2017-02-10 2018-08-16 株式会社ジャパンディスプレイ Display device and dimming device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159729A (en) * 1984-01-30 1985-08-21 Seiko Epson Corp Liquid crystal display device
JP2520682Y2 (en) * 1988-03-11 1996-12-18 カシオ計算機株式会社 Liquid crystal display element
US20170343839A1 (en) * 2016-05-31 2017-11-30 Lg Display Co., Ltd. Light valve panel and liquid crystal display using the same
JP2018128641A (en) * 2017-02-10 2018-08-16 株式会社ジャパンディスプレイ Display device and dimming device

Also Published As

Publication number Publication date
JP2020052363A (en) 2020-04-02

Similar Documents

Publication Publication Date Title
US6819386B2 (en) Apparatus having a flat display
JP4480365B2 (en) Liquid crystal display
JP4839672B2 (en) Display device
US8330905B2 (en) Liquid crystal display device
EP2247165A1 (en) Lighting device, and display device having the same
WO2019192346A1 (en) Display device and drive method therefor
JP2019039982A (en) Display device
JP5266573B2 (en) Liquid crystal display
WO2006070559A1 (en) Display panel driving device, display panel, display device provided with such display panel, and display panel driving method
JP2014529751A (en) Method for processing image data to be displayed on display device having multi-primary color image display panel
JP2018049089A (en) Display device
JP2018194592A (en) Display device
CN115440172A (en) Display device
JP2018081145A (en) Display and lighting device
US10665184B2 (en) Liquid crystal display device reducing color shift
WO2020066293A1 (en) Display device
CN114822440B (en) Liquid crystal display device having a light shielding layer
JP2016110098A (en) Display device and method for driving display device
JP2019028418A (en) Display device
JP7222835B2 (en) Display device
JP2022178999A (en) Display device
JP2008164931A (en) Liquid crystal display device and display control method
US11935497B2 (en) Display device
US11636816B2 (en) Display device
US11961487B2 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867219

Country of ref document: EP

Kind code of ref document: A1