WO2020066037A1 - Speaker system capable of increasing driving power without changing heat loss in low-frequency sound range and having improved reproduction characteristic - Google Patents

Speaker system capable of increasing driving power without changing heat loss in low-frequency sound range and having improved reproduction characteristic Download PDF

Info

Publication number
WO2020066037A1
WO2020066037A1 PCT/JP2018/037441 JP2018037441W WO2020066037A1 WO 2020066037 A1 WO2020066037 A1 WO 2020066037A1 JP 2018037441 W JP2018037441 W JP 2018037441W WO 2020066037 A1 WO2020066037 A1 WO 2020066037A1
Authority
WO
WIPO (PCT)
Prior art keywords
voice coil
vibration
band
resonance
speaker
Prior art date
Application number
PCT/JP2018/037441
Other languages
French (fr)
Japanese (ja)
Inventor
角元 純一
Original Assignee
角元 純一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 角元 純一 filed Critical 角元 純一
Publication of WO2020066037A1 publication Critical patent/WO2020066037A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means

Definitions

  • a bass reproduction method for small and lightweight speakers that makes use of the passive radiator effect.
  • the vibration energy is transmitted to the structure of the installation destination, and a wider radiant area of the structure of the installation destination is used to produce stronger bass reproduction.
  • Vibration type speaker is a small and lightweight speaker unit, which is one of the powerful ways to extend the bass reproduction range.However, since it is a method of improving bass reproduction efficiency using strong resonance characteristics, it is possible to obtain a wide reproduction band. difficult. It is necessary to correct this weak point by signal processing, but if the weak point is corrected too much, an abnormal sound will be reproduced, and precise correction is required so as not to exceed the limit of linearity.
  • Patent application 2015-221089 The invention relates to the structure of a vibration type speaker described in the claims.
  • Japanese Patent Application No. 2010-251188 Loudspeaker device Japanese Patent Application No.
  • the graph of FIG. 1 is a characteristic diagram of the impedance. Double Edge means a vibrating speaker. The small peak near 55 Hz is due to the second resonance, and the large peak near 260 Hz is due to the first resonance.
  • the graph of FIG. 2 is a characteristic diagram of the vibration amplitude of the cone of the test sample of FIG. Double Edge The small peak near 55 Hz and the small valley near 75 Hz are due to the second resonance.
  • Exercise 2 There is a method of using a passive radiator to fill the resonance frequency fpr in the middle of Bom.However, as a characteristic of the passive radiator, in the band lower than fpr, the vibration of the cone and the passive radiator is in opposite phase or opposite phase based on the sound pressure. There is a close relationship that the fundamental wave of the reproduced signal is canceled out, so that harmonic distortion and cross-modulation distortion remain. Therefore, in a speaker system using a passive radiator, it is general to make low-frequency cutoff for suppressing reproduction of this band at the stage of signal processing.
  • FIG. 5 shows a distortion characteristic diagram of the test sample.
  • Doubl Edge + OuterPR is the characteristic when the outer PR is combined with the vibration type speaker system
  • Doubl Edge + InnerPR is the characteristic when the inner PR of the present invention is combined with the vibration type speaker system.
  • the graph of FIG. 5A shows the speaker system of the sample under test. When the input voltage is 50% of the nominal rating, the Doubl Edge + OuterPR side is 73.5Hz.
  • FIG. 7 is a spectrum characteristic diagram of a reproduced sound at 78.0 Hz on the Double Edge + InnerPR side. The reason that the two frequencies are different by a half octave is to make it easy to see the difference between the two characteristics. 73.5Hz is the lowest open string vibration frequency of the contrabass.
  • FIG. 5B is a table of numerical values picked up from the graph. Each numerical value is the dB converted value of the ratio of the second to seventh harmonics when the fundamental wave is 0 dB.
  • Doubl Edge + OuterPR if the distortion of the third harmonic and the fourth harmonic is combined, the distortion rate will be 53% of the fundamental wave.
  • the main cause of this distortion is that the fundamental wave is distorted and the phases of the radiation sound of the outer PR and the radiation sound of the cone are opposite, so that the fundamental wave is canceled.
  • Means 1 Cover the radiating surface of the passive radiator to the outside of the cabinet with a closed box. This is the inner PR.
  • the resonance frequency fipr of the inner PR is determined by design so that the steep peak shape of the impedance characteristic at fo in the middle of Bom is broken and smooth.
  • Effect 2 As a result of Effect 1, In the outer PR, this band had to be cut off in the low range, In the inner PR, it is possible to design an acoustic signal processing capable of applying low-frequency emphasis. Therefore, in this band, it is possible to design the bass reproduction characteristics to be significantly improved, and as a result, it is possible to extend the reproduction band to a lower frequency band.
  • the average value of the absolute value of the impedance can be 1.4 to 3 times the resistance value of the voice coil in the Bom band with a gentle mountain shape. If the heat loss of the voice coil is constant, the drive voltage in this band can be increased from 1.4 times to 3 times. Or The DC resistance of the voice coil can be increased from (1/2) to (1/9) times. A design having a degree of freedom within a range in which one or both of them can be proportionately made possible. As a result, the driving power of the voice coil is increased from 1.4 times to 3 times, and most of the driving power that can be increased in the band Bio is energy of acoustic radiation, and the conversion efficiency in this band can be greatly improved.
  • the impedance characteristic diagram since the DC resistance of the voice coil is also synthesized, the impedance corresponding to the actual acoustic radiation is deeper than the impedance valley read from the graph. Therefore, the conversion efficiency to acoustic energy in the valley is extremely small, and generally differs from the characteristics felt from the graph. Even if an attempt is made to fill this valley with equalizing, the dynamic range is insufficient, and driving at the rated power cannot be achieved at all. For these reasons, it can be verified by experiments that if the impedance characteristic is several dB larger than the DC resistance of the voice coil, the reproduction characteristic in this band can be remarkably improved.
  • FIG. 1 is an impedance characteristic diagram of a test sample for explaining a conventional problem.
  • the horizontal axis is frequency, and the vertical axis is impedance.
  • 10ohm is a pure resistance of 10 ohms
  • Double + Edge is the impedance characteristic of one sample of the vibration type speaker system
  • Double Edge + Outer PR is the impedance characteristic of the sample of the vibration type speaker system with the outer PR added. The description of this characteristic diagram is as described in Problem 1.
  • FIG. 2 is a vibration amplitude characteristic diagram of a sample cone having the impedance characteristic of FIG.
  • the horizontal axis is frequency and the vertical axis is vibration amplitude.
  • Double Edge and Double Edge + Outer PR are the vibration amplitude characteristics of the sample of the vibration type speaker system and the vibration amplitude characteristics of the sample with the outer PR added to the vibration type speaker system, respectively. The description of this characteristic diagram is as described in Problem 3.
  • FIG. 3 is an impedance characteristic diagram of an inner-PR sample when the sample of FIG. 1 is improved according to the present invention.
  • the horizontal axis is frequency, and the vertical axis is impedance.
  • Double Edge + innerPR PR-Back Cabity XXcm ⁇ 3 XXcm ⁇ 3.
  • Differences in impedance characteristics are shown for three types of closed boxes, 5cm ⁇ , 11cm ⁇ 3 and 18cm ⁇ 3.
  • the volume of the closed box is 5 cm ⁇ 3
  • the fipr is high, and although it approaches fo, it moves away from fm, so the impedance characteristics in the band Bom greatly fluctuate.
  • the volume of the closed box is 11cm ⁇ 3, the fluctuation of the impedance characteristics in the band Bom is small.
  • the impedance characteristic of the band Bio greatly changes due to the mutual interference between the first resonance, the second resonance, and the third resonance.
  • the characteristic to be used is determined by design. In order for the band Bio to have a gentle mountain shape, it is necessary to finely adjust the volume of the closed box of the inner PR and the mass of the weight due to the interaction of a plurality of resonance characteristics.
  • FIG. 4 is a vibration characteristic diagram of the cone of the test sample of the inner PR having the impedance characteristics of FIG.
  • the horizontal axis is frequency and the vertical axis is vibration amplitude.
  • the small peak around 70Hz is due to the vibrating speaker system.
  • the vibration of the cone is about 4 Hz below the rising line of 20 dB per decard from around 200 Hz to the low frequency up to around 70 Hz.
  • it shows that there is no constriction in the band Bio as compared with the case where the outer PR of FIG. 2 is used.
  • the reproduced signals of both the cone and inner-PR in the Bio band are not canceled out, the characteristics unique to the speaker system of this EUT were compensated by an equalizer of at most 4 dB over 70 Hz.
  • FIG. 5 is a comparison diagram of the distortion characteristics when the applied voltage to the speaker system is the same for both the outer PR and the inner PR.
  • the horizontal axis is frequency, and the vertical axis is sound pressure level.
  • the distortion characteristics of the outer PR are as described in Problem 2.
  • Double-Edge + Inner-PR is a distortion characteristic when inner PR is used. The frequency is changed only by a semitone to make it easier to compare with the distortion characteristics when using the outer PR.
  • the reproduced sound pressure at the fundamental frequency in the case of the inner PR is 10 dB higher than that of the outer PR.
  • FIG. 5B shows the ratio of the harmonic to the fundamental wave in dB. 1st to 7th indicate the order of harmonics, respectively. The proportion of harmonics was reduced by 11 dB or more, 7 dB, 8 dB, 18 dB or more, 17 dB, and 17 dB at each frequency, indicating that significant improvement was achieved.
  • FIG. 6 is a comparative configuration diagram of the speaker system of the related art and the present invention.
  • 6A is a configuration diagram in the case of the outer PR
  • FIG. 6B is a configuration diagram in the case where the inner PR is on the back of the cabinet
  • FIG. 6C is a diagram in which the inner PR is in the space inside the cabinet.
  • FIG. 6D shows a configuration diagram in a case where a plurality of inner PRs and a plurality of side walls of the cabinet are provided.
  • Cabinet is a cabinet
  • SP is a speaker unit
  • 2nd Edge is an elastic film to give the degree of freedom necessary to vibrate the speaker unit in the vibration axis direction
  • Outer PR is outer PR
  • Inner PR is inner PR.
  • FIG. 7 is a photograph of the test sample.
  • This test sample is a working sample for comparing and explaining the explanation of the support of the present invention with the conventional product on data.
  • two test pieces are installed on the left and right sides of the dashboard near the windshield of a medium-sized passenger car, for a total of two pieces.
  • An acoustic performance replacing four door speakers can be obtained. Since the speaker system is small, it is possible to install the speaker system in front of the driver's seat, and it is possible to secure sufficient sound quality and volume for the full-band acoustic radiation from the front even in the rear seat.
  • it is an experimental result as a result, there is also obtained an effect that the rate of raising the volume with respect to traveling noise during high-speed traveling can be reduced as compared with the door speaker.
  • the speaker system is Outer diameter 72mm Height 65mm Total weight 211g
  • the speaker unit is Nominal diameter 2.25 inch Nominal impedance 8ohm Nominal allowable power 10W 120g
  • Cabinet is 144cm ⁇ 3 in volume, including speaker unit structure
  • FIG. 7A is a photograph of the sound emitting surface side of the test sample.
  • 2nd Edge is an elastic film to give the degree of freedom necessary to vibrate the speaker unit in the vibration axis direction.
  • the elastic membrane uniformly stretches a circular 0.3 mm latex sheet by 7%, glues the outer frame with tension applied, and glues the frame on which the speaker unit is placed inside the latex sheet, and attaches it to the frame.
  • the speaker unit is bonded. There is no need to use latex for performance. In the case of a test sample, it is necessary to significantly shorten the period until reaching the optimum state. Therefore, in order to find the optimal elasticity and movable range, a cut-and-try process with a minimum waiting time is required.
  • Latex is not a material suitable for mass production of car audio used in harsh environments.
  • Cone is the speaker unit cone
  • Edge is the speaker unit edge
  • Frame is the speaker unit frame
  • Cabinet is the cabinet
  • IPR Cover is the back cover that adjusts the volume of the inner PR
  • Adjust is the sliding direction of the back cover that adjusts the volume of the inner PR
  • IPR Case is the side cabinet of the inner PR
  • IPR Weight is the weight of the inner PR
  • IPR Edge is the inner PR.
  • the elastic film, IPR Plate is a base on which the weight of the inner PR is evenly placed on the elastic film
  • IPR Frame is a frame of the inner PR elastic film. In the case of the test sample, the elastic film of the inner PR is the same as the 2nd Edge.
  • the fo is a factor mainly due to the characteristic of the speaker unit, the volume of the cabinet, and the nature of the air.
  • the effect of the small volume of the cabinet has a great effect.
  • the fo of the test sample used for the demonstration of this project is at 260Hz. This value can be said to be fatal in the case of car audio where bass reproduction is a necessary condition.
  • the first reason is that In the frequency band slightly higher than fpr, the radiated sound of both the passive radiator and the cone are in or near in phase in the steady state, but in the transient state of the attack, both are in or near out of phase, Gives great discomfort to the sound quality. This sound quality is far from universal standards.
  • the second reason is that In the frequency band lower than around fpr, both the phase of the radiated sound from the passive radiator and the phase of the radiated sound from the cone are constantly reversed or close to reversed phase. Due to the prominent wave components. Therefore, low-frequency cutoff from around fpr must act as low-frequency cutoff. As a result, the outer PR does not have a reproduction characteristic that satisfies a universal level of market needs in a wide bass range.
  • FIG. 7B is a photograph of the back side of the test sample.
  • the back is the back cover of the inner PR, which has a structure in which the internal volume can be slid and adjusted, and the optimal volume is selected in combination with the weight.
  • FIG. 7C is a photograph of the inside of the inner PR of the test sample.
  • a circular 0.3mm latex sheet is evenly stretched by 7%, the outer frame is adhered under tension, and a base for placing a weight on the inside of the latex sheet is adhered. Multiple weights of 1.5mm thickness are bonded. While checking the impedance characteristics, select the optimal mass according to the number of weights.
  • FIG. 7D is a photograph of the inside of the inner PR of the test sample. This is a state where the frame of the side wall of the inner PR is attached.
  • Figure 5 1st ,,, 7th From fundamental wave to 7th harmonic Double Edge + Outer PR (1st-xxdB) DB converted value of the ratio of harmonic to fundamental wave of the combination of vibrating speaker and outer PR Double Edge + Inner PR (1st-xxdB) DB converted value of the ratio of the harmonic to the fundamental wave of the combination of vibrating speaker and inner PR
  • FIG. Cbinet cabinet SP is a speaker unit 2nd Edge elastic membrane, Outer PR Outer PR Inner PR Inner PR
  • FIG. Elastic membrane to attach 2nd Edge speaker unit to cabinet Cone cone Edge Edge of the cone of the speaker unit Frame Frame of speaker unit Cabinet cabinet IPR Cover Inner PR back cover Adjust Move the back cover to adjust the inner PR inner volume IPR Case Inner PR side case IPR Weight Inner PR weight IPR Edge Inner PR elastic membrane A platform on which the weight of the IPR Plate inner PR is placed IPR Frame Inner PR elastic membrane frame

Abstract

[Problem] With respect to a small full-range speaker system, it is difficult, in a vibration-type speaker which vibrates a speaker unit, to achieve good reproduction in an intermediate band between two bands of a super low-frequency sound reproduction band obtained by vibrating the speaker unit and a low-frequency sound reproduction band obtained by vibration of a cone of the speaker unit. [Solution] In the intermediate frequency band between the super low-frequency sound reproduction band obtained by vibration of the speaker unit and the low-frequency sound reproduction band obtained by vibration of the cone of the speaker unit, a low-frequency sound resonator is provided in a cabinet of the speaker system to bring the low-frequency sound reproduction band obtained by vibration of the cone of the speaker unit in the direction of a resonance frequency of the resonator, whereby it becomes possible to enhance reproduction performance in the intermediate frequency band between the low-frequency sound reproduction band obtained by vibration of the speaker unit and the low-frequency sound reproduction band obtained by vibration of the cone of the speaker unit, reduce an interval therebetween, and increase driving power of a voice coil without increasing heat loss of the voice coil in the low-frequency sound reproduction band.

Description

低音域で熱損失を変えず駆動電力を大きくでき、かつ再生特性を改善するスピーカーシステムA speaker system that can increase the driving power without changing the heat loss in the low frequency range and improve the reproduction characteristics
パッシブラジエータの効果を利用する小形軽量スピーカーの低音再生方法。
スピーカーユニットとキャビネットを弾性体で結合し、スピーカーユニットを振動させることで、その振動エネルギーを取り付け先の構造体に伝達し、取り付け先の構造体の広い放射面積を利用し、より強い低音再生を得る方法
パッシブラジエータとコーンの振動位相関係
A bass reproduction method for small and lightweight speakers that makes use of the passive radiator effect.
By connecting the speaker unit and cabinet with an elastic body and vibrating the speaker unit, the vibration energy is transmitted to the structure of the installation destination, and a wider radiant area of the structure of the installation destination is used to produce stronger bass reproduction. Vibration phase relationship between passive radiator and cone
機械振動解析と設計 Mechanical vibration analysis and design
実願 2015-3298
振動型スピーカーとその低音再生特性を補正する方法に関する。
振動型スピーカーは小形軽量のスピーカーユニットで低音再生範囲を広げるために強力な方法の一つであるが、強い共振特性を利用した低音再生効率の改善方法であることから広い再生帯域を得ることが難しい。信号処理によってこの弱点を補正する必要があるが、弱点に対し補正が過ぎると異常音を再生することになり、リニアリティの限界を超えないよう精密な補正を必要とする。
特願 2015-221089
請求項に記述の振動型スピーカーの構造に関する。
特願2010-251188 スピーカー装置
特願2011-514324 スピーカー装置
特開2010-097146 吸音構造群及び音響室
特開2010-097145 吸音構造群及び音響室
特開2010-031582 吸音構造群及び音響室
特開2007-336337 スピーカーシステムおよびスピーカーエンクロージャ
以上に記述されるスピーカーシステムの設計方法は低音再生性能の改善に関する。
Actual application 2015-3298
The present invention relates to a vibrating speaker and a method of correcting bass reproduction characteristics thereof.
Vibration type speaker is a small and lightweight speaker unit, which is one of the powerful ways to extend the bass reproduction range.However, since it is a method of improving bass reproduction efficiency using strong resonance characteristics, it is possible to obtain a wide reproduction band. difficult. It is necessary to correct this weak point by signal processing, but if the weak point is corrected too much, an abnormal sound will be reproduced, and precise correction is required so as not to exceed the limit of linearity.
Patent application 2015-221089
The invention relates to the structure of a vibration type speaker described in the claims.
Japanese Patent Application No. 2010-251188 Loudspeaker device Japanese Patent Application No. 2011-514324 Loudspeaker device JP2010-097146 Sound absorbing structure group and acoustic room JP2010-097145 Sound absorbing structure group and acoustic room JP2010-031582 Sound absorbing structure group and acoustic room 2007 The speaker system and speaker enclosure design method described above relates to improving bass reproduction performance.
請求項で定義した用語と記号は明細書においても同様とする。 The terms and symbols defined in the claims are the same in the description.
課題1。
振動型スピーカーの機械振動の共振周波数 fm と、主にスピーカーユニットとキャビネットから決まる共振周波数 f0 との間のインピーダンス特性の谷間 Bom が広いことにより期待する低音再生特性を得ることが難しい。
このことは、図1の供試品の特性図が示す。
図1のグラフはインピーダンスの特性図である。Double Edge は振動型スピーカーを意味するものとする。55Hz 付近の小山は第2共振によるもので、260Hz 付近の大きな山が 第1共振によるものである。
図2のグラフは図1の供試品のコーンの振動振幅の特性図である。Double Edge の
55Hz 付近の小さい山と 75Hz 付近の小さい谷が第2共振によるものである。
Exercise 1.
Due to the wide valley Bom of the impedance characteristic between the resonance frequency fm of the mechanical vibration of the vibration type speaker and the resonance frequency f0 mainly determined by the speaker unit and the cabinet, it is difficult to obtain the expected bass reproduction characteristic.
This is shown in the characteristic diagram of the test sample in FIG.
The graph of FIG. 1 is a characteristic diagram of the impedance. Double Edge means a vibrating speaker. The small peak near 55 Hz is due to the second resonance, and the large peak near 260 Hz is due to the first resonance.
The graph of FIG. 2 is a characteristic diagram of the vibration amplitude of the cone of the test sample of FIG. Double Edge
The small peak near 55 Hz and the small valley near 75 Hz are due to the second resonance.
課題2。
パッシブラジエーターを利用して 共振周波数 fpr を Bom の中間に埋める方法があるが、パッシブラジエーターの特性として、fpr より低い帯域では コーンとパッシブラジエーターの振動が 音圧を基準にして 逆相または逆相に近い関係にあり、再生信号の基本波が相殺されることで、高調波歪みと混変調歪みが残る、という性質がある。
従って、パッシブラジエーターを使ったスピーカーシステムでは信号処理の段階で、この帯域の再生を抑制する低域遮断を儲けるのが一般的である。
図5に供試品の歪みの特性図を示す。
Doubl Edge + OuterPR は振動型スピーカーシステムにアウターPRを組み合わせた場合の特性であり、Doubl Edge + InnerPR は振動型スピーカーシステムに本案のインナーPRを組み合わせた場合の特性である。
図5(a)のグラフは供試品のスピーカーシステムの、
入力電圧が公称定格の 50% における Doubl Edge + OuterPR側が 73.5Hz と
Double Edge + InnerPR側が 78.0Hz の再生音のスペクトル特性図である。双方の周波数が半オクターブ異なるのは双方の特性の違いを見やすくするためである。
73.5Hz はコントラバスの最も低い開放弦の振動周波数である。73.5Hz*2=157Hz から始まって高い周波数帯に現れる山は高調波歪み成分である。
図5(b)はグラフから拾った数値の表である。それぞれの数値は基本波を 0dB とした場合の 第2次 から 第7次 までの高調波の比率の dB 換算値である。
Doubl Edge + OuterPR の場合、第3高調波と第4高調波の歪みを合成すると
基本波に対し 53% の歪み率となる。
この歪みの主な原因は基本波に歪みがあって、アウターPRの放射音とコーンの放射音の位相が逆となっていることから、基本波が相殺されることによる。
Exercise 2.
There is a method of using a passive radiator to fill the resonance frequency fpr in the middle of Bom.However, as a characteristic of the passive radiator, in the band lower than fpr, the vibration of the cone and the passive radiator is in opposite phase or opposite phase based on the sound pressure. There is a close relationship that the fundamental wave of the reproduced signal is canceled out, so that harmonic distortion and cross-modulation distortion remain.
Therefore, in a speaker system using a passive radiator, it is general to make low-frequency cutoff for suppressing reproduction of this band at the stage of signal processing.
FIG. 5 shows a distortion characteristic diagram of the test sample.
Doubl Edge + OuterPR is the characteristic when the outer PR is combined with the vibration type speaker system, and Doubl Edge + InnerPR is the characteristic when the inner PR of the present invention is combined with the vibration type speaker system.
The graph of FIG. 5A shows the speaker system of the sample under test.
When the input voltage is 50% of the nominal rating, the Doubl Edge + OuterPR side is 73.5Hz.
FIG. 7 is a spectrum characteristic diagram of a reproduced sound at 78.0 Hz on the Double Edge + InnerPR side. The reason that the two frequencies are different by a half octave is to make it easy to see the difference between the two characteristics.
73.5Hz is the lowest open string vibration frequency of the contrabass. The peak starting at 73.5Hz * 2 = 157Hz and appearing in the high frequency band is a harmonic distortion component.
FIG. 5B is a table of numerical values picked up from the graph. Each numerical value is the dB converted value of the ratio of the second to seventh harmonics when the fundamental wave is 0 dB.
In the case of Doubl Edge + OuterPR, if the distortion of the third harmonic and the fourth harmonic is combined, the distortion rate will be 53% of the fundamental wave.
The main cause of this distortion is that the fundamental wave is distorted and the phases of the radiation sound of the outer PR and the radiation sound of the cone are opposite, so that the fundamental wave is canceled.
課題3.
パッシブラジエーターで インピーダンス谷間 Bom を埋める場合、課題2の理由によって、
fpr より低い周波数域が再生帯として使えないことから、fpr を f0 に近づけると、
再生に適さない領域が広くなって、もともと 良好で広い低音再生帯域を得たい という目的に反することとなる。
Issue 3.
When filling the impedance valley Bom with a passive radiator,
Since the frequency range lower than fpr cannot be used as the reproduction band, if fpr is close to f0,
The area that is not suitable for reproduction is widened, which defeats the purpose of obtaining a good and wide bass reproduction band.
課題4.
fpr と fo の間隔が広い場合、この周波数帯には インピーダンスの深い谷間ができて、均一な低音再生特性を得ることが難しくなる。同時に、この帯域でのボイスコイルの駆動電力に対するボイスコイルの熱損失の割合が大きくなり、電気エネルギーから音響エネルギーへの変換効率が低下する原因となる。
このことは、図1の供試品の Doble Edge + OuterPR 特性図が示す。
図2のグラフは図1の供試品のコーンの振動振幅の特性図である。
Double Edge + Outer-PR の 160Hz 付近の深い谷が第1共振とアウターPRの位相関係によるものである。
fpr と fo の間は、105Hz付近と260Hz付近にある二つの急峻で高い山と、160Hz付近にある一つの深い谷の特性となる。この谷間では、駆動電力に対するボイスコイルの熱損失の割合が高い。
Double Edge の 55Hz 付近の谷は第2共振によるものである。
Issue 4.
If the interval between fpr and fo is wide, there will be a deep valley in this frequency band, making it difficult to obtain uniform bass reproduction characteristics. At the same time, the ratio of the heat loss of the voice coil to the driving power of the voice coil in this band increases, which causes the conversion efficiency of electric energy to acoustic energy to decrease.
This is shown in the Doble Edge + OuterPR characteristic diagram of the test sample in Fig. 1.
The graph of FIG. 2 is a characteristic diagram of the vibration amplitude of the cone of the test sample of FIG.
The deep valley near 160Hz of Double Edge + Outer-PR is due to the phase relationship between the first resonance and the outer PR.
Between fpr and fo there are two steep and high peaks around 105Hz and 260Hz and one deep valley around 160Hz. In this valley, the ratio of the heat loss of the voice coil to the driving power is high.
The double edge valley around 55Hz is due to the second resonance.
手段1。
パッシブラジエーターのキャビネットの外への放射面を密閉箱で覆う。
これをインナーPRとする。
Means 1.
Cover the radiating surface of the passive radiator to the outside of the cabinet with a closed box.
This is the inner PR.
手段2。
インナーPRの共振周波数 fipr を Bom の中間の fo におけるインピーダンス特性の急峻な山形状が崩れてなだらかになるよう設計的に決定する。
Means 2.
The resonance frequency fipr of the inner PR is determined by design so that the steep peak shape of the impedance characteristic at fo in the middle of Bom is broken and smooth.
効果1。
インナーPR の共振周波数 fipr より低い周波数帯域で、パッシブラジエーターの振動がキャビネットの外へ向けて音響エネルギーを放射しなくなり、この帯域でのコーンが放射する音響エネルギーを相殺しなくなる。
その結果、歪みがより小さい低音再生特性を得ることができる設計が可能となる。
Effect 1.
In a frequency band lower than the resonance frequency fipr of the inner PR, the vibration of the passive radiator does not radiate acoustic energy toward the outside of the cabinet, and does not cancel the acoustic energy radiated by the cone in this band.
As a result, it is possible to design such that bass reproduction characteristics with less distortion can be obtained.
効果2。
効果1の結果として、
アウターPRではこの帯域を低域遮断しなくてはならなかったが、
インナーPRでは、低域強調を作用することができる音響信号処理設計が可能となる。
従って、この帯域で、低音再生特性を大幅に改善できる設計が可能となり、結果、より低域へと再生帯域を広げることが可能となる。
Effect 2.
As a result of Effect 1,
In the outer PR, this band had to be cut off in the low range,
In the inner PR, it is possible to design an acoustic signal processing capable of applying low-frequency emphasis.
Therefore, in this band, it is possible to design the bass reproduction characteristics to be significantly improved, and as a result, it is possible to extend the reproduction band to a lower frequency band.
効果3。
fipr と fo の相互作用により fo が fipr に引き寄せられる性質から、
fo と fipr と fm がなだらかな山形状のインピーダンス特性となるよう設計が可能となる。
従って、Bom の帯域で、低音再生特性を大幅に改善できる設計が可能となる。
Effect 3.
From the property that fo is attracted to fipr by the interaction between fipr and fo,
It is possible to design so that fo, fipr, and fm have a gentle mountain-shaped impedance characteristic.
Therefore, it is possible to design a bass that can significantly improve bass reproduction characteristics in the band.
効果4。
なだらかな山形状を持つ Bom の帯域でインピーダンスの絶対値の平均値をボイスコイルの抵抗値の 1.4倍 から 3倍 に設計することも可能となることから、
ボイスコイルの熱損失が一定の条件ではこの帯域での駆動電圧を 1.4倍 から 3倍 とすることが可能となる。
かまたは、
ボイスコイルの直流抵抗を (1/2)倍 から (1/9)倍 とすることが可能となる、
かまたは
双方を案分する範囲で自由度を持つ設計が可能となる。
その結果、ボイスコイルの駆動電力が 1.4倍 から 3倍 となり、帯域 Bio で、増やすことができる駆動電力の大部分は音響放射のエネルギーとなり、この帯域の変換効率を大幅に改善できる。
インピーダンスの特性図はボイスコイルの直流抵抗も合成されていることから、事実上の音響放射に対応するインピーダンスはグラフから読み取れるインピーダンス谷間よりも深くなっている。従って、この谷間での音響エネルギーへの変換効率は極めて小さく、グラフから感じる特性とは異なるのが一般的である。この谷間をイコライジングで埋めようとしてもダイナミックレンジが不足し、定格電力での駆動は到底できない。
このような理由もあって、インピーダンス特性がボイスコイルの直流抵抗に比べ数dBでも大きくなれば、この帯域の再生特性が著しく改善できることが実験で検証できる。
Effect 4.
Since it is possible to design the average value of the absolute value of the impedance to be 1.4 to 3 times the resistance value of the voice coil in the Bom band with a gentle mountain shape,
If the heat loss of the voice coil is constant, the drive voltage in this band can be increased from 1.4 times to 3 times.
Or
The DC resistance of the voice coil can be increased from (1/2) to (1/9) times.
A design having a degree of freedom within a range in which one or both of them can be proportionately made possible.
As a result, the driving power of the voice coil is increased from 1.4 times to 3 times, and most of the driving power that can be increased in the band Bio is energy of acoustic radiation, and the conversion efficiency in this band can be greatly improved.
In the impedance characteristic diagram, since the DC resistance of the voice coil is also synthesized, the impedance corresponding to the actual acoustic radiation is deeper than the impedance valley read from the graph. Therefore, the conversion efficiency to acoustic energy in the valley is extremely small, and generally differs from the characteristics felt from the graph. Even if an attempt is made to fill this valley with equalizing, the dynamic range is insufficient, and driving at the rated power cannot be achieved at all.
For these reasons, it can be verified by experiments that if the impedance characteristic is several dB larger than the DC resistance of the voice coil, the reproduction characteristic in this band can be remarkably improved.
従来の課題の説明のための一供試品のインピーダンス特性図Figure of impedance characteristics of one sample for explanation of conventional problems 図1のインピーダンス特性を持つ供試品のコーンの振動振幅特性図Vibration amplitude characteristic diagram of the cone of the test sample with the impedance characteristics of Fig. 1 図1の供試品に本案の改善を加えた場合の、インピーダンス特性図Impedance characteristic diagram when improvement of the present invention is added to the test sample of FIG. 図3のインピーダンス特性を持つ供試品のコーンの振動振幅特性図Fig. 3 Vibration amplitude characteristics of the sample cone with impedance characteristics shown in Fig. 3 アウターPRとインナーPRの歪み特性の比較図Comparison diagram of distortion characteristics of outer PR and inner PR 従来と本案のスピーカーシステムの比較構成図Comparison configuration diagram of the conventional and the present speaker system 供試品の説明図Explanatory drawing of test sample
小型車用小形軽量スピーカーシステム
携帯端末用超小型スピーカーシステム
卓上用小形スピーカーシステム
Small and lightweight speaker system for small cars Ultra-small speaker system for portable terminals Small speaker system for desktop
低音再生効率が高く、低音再生設計が容易な小型スピーカーシステム Small speaker system with high bass reproduction efficiency and easy bass reproduction design
図1は、従来の課題の説明のための供試品のインピーダンス特性図である。
横軸は周波数、縦軸はインピーダンスである。
10ohm は 10オーム の純抵抗、Double + Edge は振動型スピーカーシステムの一供試品のインピーダンス特性、Double Edge + Outer PR は振動型スピーカーシステムにアウターPR を付加した供試品のインピーダンス特性である。この特性図の説明は課題1に記述のとおりである。
FIG. 1 is an impedance characteristic diagram of a test sample for explaining a conventional problem.
The horizontal axis is frequency, and the vertical axis is impedance.
10ohm is a pure resistance of 10 ohms, Double + Edge is the impedance characteristic of one sample of the vibration type speaker system, and Double Edge + Outer PR is the impedance characteristic of the sample of the vibration type speaker system with the outer PR added. The description of this characteristic diagram is as described in Problem 1.
図2は、図1のインピーダンス特性を持つ一供試品のコーンの振動振幅特性図である。
横軸は周波数、縦軸は振動振幅である。
Double Edge と Double Edge + Outer PR は、それぞれ振動型スピーカーシステムの供試品の振動振幅特性 と 振動型スピーカーシステムにアウターPR を付加した供試品の振動振幅特性である。この特性図の説明は課題3に記述のとおりである。
 
FIG. 2 is a vibration amplitude characteristic diagram of a sample cone having the impedance characteristic of FIG.
The horizontal axis is frequency and the vertical axis is vibration amplitude.
Double Edge and Double Edge + Outer PR are the vibration amplitude characteristics of the sample of the vibration type speaker system and the vibration amplitude characteristics of the sample with the outer PR added to the vibration type speaker system, respectively. The description of this characteristic diagram is as described in Problem 3.
図3は、図1の供試品に本案の改善を加えた場合の、インナ-PRの供試品のインピーダンス特性図である。横軸は周波数、縦軸はインピーダンスである。
Double Edge + innnerPR PR-Back Cabity=XXcm^3 はインナーPRの密閉箱の容積が
XXcm^3 であることを示す。
密閉箱の 5cm^ と 11cm^3 と 18cm^3 の3種類についてインピーダンス特性の違いを示す。
密閉箱の容積が 5cm^3 の場合は fipr が高いので、fo には近づくものの、fm から離れるため、帯域 Bom におけるインピーダンス特性の変動は大きい。
密閉箱の容積が 11cm^3 の場合は 帯域 Bom におけるインピーダンス特性の変動は小さい。
密閉箱の容積が 18cm^3 の場合は 帯域 Bom におけるインピーダンス特性の変動は大きい。このように、第1共振、第2共振、第3共振の相互干渉によって帯域 Bio のインピーダンス特性は大きく変化する。どの特性にするかは設設計的に決定する。
帯域 Bio をなだらかな山形状にするには、複数の共振特性の相互作用があることから、インナーPRの密閉箱の容積や重りの質量の細かい調節が必要である。
FIG. 3 is an impedance characteristic diagram of an inner-PR sample when the sample of FIG. 1 is improved according to the present invention. The horizontal axis is frequency, and the vertical axis is impedance.
Double Edge + innerPR PR-Back Cabity = XXcm ^ 3
XXcm ^ 3.
Differences in impedance characteristics are shown for three types of closed boxes, 5cm ^, 11cm ^ 3 and 18cm ^ 3.
When the volume of the closed box is 5 cm ^ 3, the fipr is high, and although it approaches fo, it moves away from fm, so the impedance characteristics in the band Bom greatly fluctuate.
When the volume of the closed box is 11cm ^ 3, the fluctuation of the impedance characteristics in the band Bom is small.
When the volume of the closed box is 18 cm ^ 3, the fluctuation of the impedance characteristics in the band Bom is large. As described above, the impedance characteristic of the band Bio greatly changes due to the mutual interference between the first resonance, the second resonance, and the third resonance. The characteristic to be used is determined by design.
In order for the band Bio to have a gentle mountain shape, it is necessary to finely adjust the volume of the closed box of the inner PR and the mass of the weight due to the interaction of a plurality of resonance characteristics.
図4は、図3のインピーダンス特性を持つインナーPRの供試品のコーンの振動特性図である。横軸は周波数、縦軸は振動振幅である。
70Hz 付近の小さい山は振動型スピーカーシステムであることによる。コーンの振動は 200Hz 付近から低域へ向かって、70Hz 付近まで デカード当たり 20dB の上昇直線から高々 4dB 不足している程度である。そして、帯域 Bio において、図2のアウターPRを使った場合に比べ、くびれがないことを示している。しかも、Bio の帯域でのコーンとインナー-PRの双方の再生信号が相殺されることはないので、この供試品のスピーカーシステム固有の特性の補正としては、70Hz 以上の範囲で イコライザによる 高々 4dB 程度 で済むことを示している。しかも 70Hz 付近から低い周波数の範囲では、振動型スピーカーシステムが発生する強力な機械振動により構造物が振動し、超低音を発生する。従って、 fo 以下の範囲で充分な低音再生特性を得ることができる。
FIG. 4 is a vibration characteristic diagram of the cone of the test sample of the inner PR having the impedance characteristics of FIG. The horizontal axis is frequency and the vertical axis is vibration amplitude.
The small peak around 70Hz is due to the vibrating speaker system. The vibration of the cone is about 4 Hz below the rising line of 20 dB per decard from around 200 Hz to the low frequency up to around 70 Hz. In addition, it shows that there is no constriction in the band Bio as compared with the case where the outer PR of FIG. 2 is used. In addition, since the reproduced signals of both the cone and inner-PR in the Bio band are not canceled out, the characteristics unique to the speaker system of this EUT were compensated by an equalizer of at most 4 dB over 70 Hz. It shows that it is enough. In addition, in the low frequency range from around 70 Hz, the structure vibrates due to the strong mechanical vibration generated by the vibrating speaker system, generating an ultra-low sound. Therefore, sufficient bass reproduction characteristics can be obtained in the range of fo or less.
図5は、アウターPRとインナーPRの双方の、スピーカーシステムへの印加電圧が等しい場合の歪み特性の比較図である。
横軸は周波数、縦軸は音圧レベルである。
アウターPR の歪み特性は課題2に説明のとおりである。
Double-Edge + Innner-PR はインナーPRを使った場合の歪み特性である。
アウターPR を使った場合の歪み特性と比較しやすいように半音だけ周波数を変えている。図5(a)から読み取れるように、インナーPRの場合の基本周波数の再生音圧はアウターPRより 10dB 大きくなっている。図5(b)は基本波に対する高調波の割合を dB 単位で示す。1st から 7th までは それぞれ高調波の次数を示す。高調波の割合が それぞれの周波数において、11dB以上、7dB、8dB、18dB以上、17dB、17dB 小さくなっていて、大幅な改善ができていることを示す。
FIG. 5 is a comparison diagram of the distortion characteristics when the applied voltage to the speaker system is the same for both the outer PR and the inner PR.
The horizontal axis is frequency, and the vertical axis is sound pressure level.
The distortion characteristics of the outer PR are as described in Problem 2.
Double-Edge + Inner-PR is a distortion characteristic when inner PR is used.
The frequency is changed only by a semitone to make it easier to compare with the distortion characteristics when using the outer PR. As can be seen from FIG. 5A, the reproduced sound pressure at the fundamental frequency in the case of the inner PR is 10 dB higher than that of the outer PR. FIG. 5B shows the ratio of the harmonic to the fundamental wave in dB. 1st to 7th indicate the order of harmonics, respectively. The proportion of harmonics was reduced by 11 dB or more, 7 dB, 8 dB, 18 dB or more, 17 dB, and 17 dB at each frequency, indicating that significant improvement was achieved.
図6は、従来と本案のスピーカーシステムの比較構成図である。
図6(a)はアウターPRの場合の構成図、図6(b)はインナーPRが、キャビネットの背面にある場合の構成図、図6(c)はインナーPRが、キャビネットの内部の空間にある場合の構成図、図6(d)はインナーPR、キャビネットの側面に複数個を儲けた場合の構成図を示す。
Cabinet はキャビネット、SP はスピーカーユニット、2nd Edge はスピーカーユニットを振動軸方向に振動させるに必要な自由度を持たせるための弾性膜、
Outer PR はアウターPR、Inner PR はインナーPR である。
FIG. 6 is a comparative configuration diagram of the speaker system of the related art and the present invention.
6A is a configuration diagram in the case of the outer PR, FIG. 6B is a configuration diagram in the case where the inner PR is on the back of the cabinet, and FIG. 6C is a diagram in which the inner PR is in the space inside the cabinet. FIG. 6D shows a configuration diagram in a case where a plurality of inner PRs and a plurality of side walls of the cabinet are provided.
Cabinet is a cabinet, SP is a speaker unit, 2nd Edge is an elastic film to give the degree of freedom necessary to vibrate the speaker unit in the vibration axis direction,
Outer PR is outer PR, and Inner PR is inner PR.
図7は供試品の写真である。この供試品は、従来品と本案の裏付けの説明をデータ上で比較説明するためのワーキングサンプルである。
この供試品は、インナーPR構造の場合、中型の乗用車のフロントガラス付近のダッシュボードの左右にそれぞれ1個、合計2個を取りつけることで、カーオーディオとしての実用的な範囲で、現状品の4個のドアスピーカーに代わる音響性能を得ることができる。
スピーカーシステムが小形であることから、運転席前方にスピーカーシステムの設置が可能となり、前方からの全帯域音響放射は、後方座席に対しても充分な音質と音量を確保できる。しかも、実験結果ではあるが、結果として、ドアスピーカーに比べて高速走行時の走行騒音に対し音量を上げる率が小さくて済む、という効果も得られる。
FIG. 7 is a photograph of the test sample. This test sample is a working sample for comparing and explaining the explanation of the support of the present invention with the conventional product on data.
In the case of the inner PR structure, two test pieces are installed on the left and right sides of the dashboard near the windshield of a medium-sized passenger car, for a total of two pieces. An acoustic performance replacing four door speakers can be obtained.
Since the speaker system is small, it is possible to install the speaker system in front of the driver's seat, and it is possible to secure sufficient sound quality and volume for the full-band acoustic radiation from the front even in the rear seat. In addition, although it is an experimental result, as a result, there is also obtained an effect that the rate of raising the volume with respect to traveling noise during high-speed traveling can be reduced as compared with the door speaker.
スピーカーシステムは、
外直径                                72mm
高さ                                   65mm
全質量                                211g
The speaker system is
Outer diameter 72mm
Height 65mm
Total weight 211g
スピーカーユニットは、
 公称口径                         2.25インチ
 公称インピーダンス       8ohm
 公称許容電力                  10W
 質量                                120g
The speaker unit is
Nominal diameter 2.25 inch Nominal impedance 8ohm
Nominal allowable power 10W
120g
スピーカーユニットとフレームを連結する弾性膜は、
 素材                                ふうせん用ラテックス
 厚み                                0.3mm
 テンション                     7% 全方向引き延ばし
 幅                                   3mm
The elastic membrane that connects the speaker unit and the frame
Material Latex for balloon Thickness 0.3mm
7% tension in all directions, width 3 mm
インナーPRは、
 放射窓面積                     34cm^2
 重り                                5g*8個=40g、 10g 単位で調節可能
 内容積                            5cm^3,11cm^3,18cm^3、 スライド調節可能
 弾性膜の素材                  ふうせん用ラテックス
  その厚み                     0.3mm
  そのテンション           7% 全方向引き延ばし
  その幅                         3mm
Inner PR is
Radiation window area 34cm ^ 2
Weight 5g * 8 pieces = 40g, adjustable in 10g increments Internal volume 5cm ^ 3, 11cm ^ 3, 18cm ^ 3, slide adjustable Elastic membrane material Foil latex Thickness 0.3mm
Its tension is 7% and it is stretched in all directions. Its width is 3mm.
キャビネットは
内容積                                144cm^3、 スピーカーユニットの構造物を含む
Cabinet is 144cm ^ 3 in volume, including speaker unit structure
図7(a)は供試品の音響放射面側の写真である。
2nd Edge はスピーカーユニットを振動軸方向に振動させるに必要な自由度を持たせるための弾性膜である。弾性膜は、円形の 0.3mm のラテックスシートを一様に 7% 引き延ばし、引っ張り張力を掛けた状態で外側のフレームを接着し、ラテックスシートの内側に スピーカーユニットを乗せる枠を接着し、その枠にスピーカーユニットを接着したものである。性能上、ラテックスを使用する必然性はない。
供試品の場合、最適状態に至るまでの期間を大幅に短縮する必要がある。そのため、最適な弾性と可動範囲を探るために、最小限の待ち時間でのカットアンドトライの行程を必要とする。スピーカーユニットを除いた全ての部品を机上の手作りで試作することで1サイクルの修正作業と性能確認時間を最小限とし、結果を出すまでの全行程を短縮することで複雑な組み合わせと相互関係からなる系の最適解にたどりつかなければならない。
最適な弾性係数と可動範囲の最適解へ至る筋道への手法と手順を掌握する、その追い込みのために、入手しやすく、手早く加工しやすいラテックスを使っている。ラテックスは厳しい環境で使われるカーオーディオの量産化に適した材質ではない。
Cone はスピーカーユニットのコーン、Edge はスピーカーユニットのエッジ、Frame はスピーカーユニットのフレーム、Cabinet はキャビネット、
IPR Cover はインナーPRの容積を調節する裏蓋、Adjust はインナーPRの容積を調節する裏蓋のスライド方向、IPR Case はインナーPRの側面キャビネット、IPR Weight はインナーPRの重り、IPR Edge はインナーPRの弾性膜、IPR Plate はインナーPRの重りを弾性膜上に均等に乗せる台、IPR Frame はインナーPRの弾性膜のフレーム、である。
供試品の場合、インナーPRの弾性膜は 2nd Edge と同じである。
FIG. 7A is a photograph of the sound emitting surface side of the test sample.
2nd Edge is an elastic film to give the degree of freedom necessary to vibrate the speaker unit in the vibration axis direction. The elastic membrane uniformly stretches a circular 0.3 mm latex sheet by 7%, glues the outer frame with tension applied, and glues the frame on which the speaker unit is placed inside the latex sheet, and attaches it to the frame. The speaker unit is bonded. There is no need to use latex for performance.
In the case of a test sample, it is necessary to significantly shorten the period until reaching the optimum state. Therefore, in order to find the optimal elasticity and movable range, a cut-and-try process with a minimum waiting time is required. All parts except speaker units are prototyped by hand on the desk, minimizing one cycle of correction work and performance confirmation time, and shortening the entire process until the result is obtained. We need to find the optimal solution for some system.
It uses latex, which is easily available and quick to process, in order to keep track of the methods and procedures for the optimal elastic modulus and the optimal solution of the movable range. Latex is not a material suitable for mass production of car audio used in harsh environments.
Cone is the speaker unit cone, Edge is the speaker unit edge, Frame is the speaker unit frame, Cabinet is the cabinet,
IPR Cover is the back cover that adjusts the volume of the inner PR, Adjust is the sliding direction of the back cover that adjusts the volume of the inner PR, IPR Case is the side cabinet of the inner PR, IPR Weight is the weight of the inner PR, and IPR Edge is the inner PR. The elastic film, IPR Plate, is a base on which the weight of the inner PR is evenly placed on the elastic film, and IPR Frame is a frame of the inner PR elastic film.
In the case of the test sample, the elastic film of the inner PR is the same as the 2nd Edge.
fo はスピーカーユニット固有の性質とキャビネットの容積と空気の性質を主な要因とするファクターであるが、小型のスピーカーではキャビネットが小容積であることの影響が大きく作用する。fo を、できれば 150Hz 付近に設計したいところであるが、高域の性能との協調への配慮も必要なことから、この程度のサイズのスピーカーシステムでは 200Hz 以上になることが通常である。
本案の実証に使った供試品の fo は、260Hz にある。この値は、低音再生が必修条件であるカーオーディオの場合、致命的とも言える。
The fo is a factor mainly due to the characteristic of the speaker unit, the volume of the cabinet, and the nature of the air. However, in a small speaker, the effect of the small volume of the cabinet has a great effect. We would like to design the fo around 150Hz if possible, but it is necessary to consider the coordination with the high frequency performance. Therefore, it is normal for the speaker system of this size to be 200Hz or more.
The fo of the test sample used for the demonstration of this project is at 260Hz. This value can be said to be fatal in the case of car audio where bass reproduction is a necessary condition.
しかしながら、スピーカーシステムの小型軽量化は近年の乗用車にとっては一つの課題である。この程度の大きさと重量であって、全帯域再生ができれば、その価値は充分である。260Hz の fo を持つスピーカーシステムを超低音再生まで再生できるようどのようにして工夫するかはスピーカーシステムの設計現場では大きな課題でもある。
一方、振動型スピーカーは、
スピーカーユニットを自身の振動で振動させ、その振動をキャビネットを介して大きな構造物に伝えることで、その構造物の音響放射効果を利用して超低音の帯域を再生するものである。小形で超低音を容易に再生できることから、この種類のスピーカーシステムは市場に少なくない。
しかし、超低音と中低音の中間の帯域の良好な再生が難しく、日常生活の中で多様なユーザー層に広く普及しているカーオーディオのような場合、音の品質には汎用性を要求されることから、振動型のスピーカーでは、音質に関する普遍的な水準を満足することができない。
However, reducing the size and weight of the speaker system is one of the issues for passenger cars in recent years. With such a size and weight, if the entire band can be reproduced, its value is sufficient. How to devise a speaker system with an fo of 260Hz so that it can reproduce up to ultra-low sound is also a major issue at the speaker system design site.
On the other hand, vibration type speakers
By vibrating the speaker unit with its own vibration and transmitting the vibration to a large structure through a cabinet, the ultra-low frequency band is reproduced using the acoustic radiation effect of the structure. This type of loudspeaker system is not rare on the market because of its small size and easy reproduction of ultra-bass.
However, it is difficult to achieve good reproduction of the band between the ultra-low and mid-low frequencies, and in the case of car audio that is widely spread to various user groups in daily life, versatility is required for sound quality. Therefore, the vibration type speaker cannot satisfy the universal standard regarding sound quality.
そこで、パッシブラジエーターを使って fo と fm の中間帯域をカバーする、という手法を容易に思いつくが、実用化されていない理由がある。
パッシブラジエーターは簡単に低音感を再生できるので、小形スピーカーでは必然の手法である。近年の市場における低音再生できる小形スピーカーのほとんどにパッシブラジエーターが使われている。
しかし、パッシブラジエーターに関しても、低音感は再生できるものの fpr 以下の低い周波数帯域では歪みが大きく、特にベースドラムの再生音ではアタックの部分で原音とは大きく異なる違和感のある音質となる。これには二つの理由がある。
第1の理由は、
fpr より少し高い周波数帯域では パッシブラジエーターとコーンの双方の放射音は定常状態では同相または同相に近い状態にあるが、アタックの過渡状態では双方が逆相かまたは逆相に近い状態にあって、音質に大きな違和感を及ぼす。この音質は普遍的水準にはほど遠いものである。
第2の理由は、
fpr 付近より低い周波数帯域で、パッシブラジエーターとコーンからの放射音の双方の位相が定常的に逆相または逆相に近い状態であることから、肝心の基本波が相殺され、歪み成分である高調波成分が際立つことによる。そのため、 fpr 付近から低い周波数帯は低域遮断を作用させなければならない。
結局のところ、アウターPRでは、広い低音域で普遍性のある水準の市場ニーズを満足する再生特性が得られない、という結果となる。
Therefore, it is easy to come up with a method to cover the intermediate band between fo and fm using a passive radiator, but there is a reason that it has not been put to practical use.
Passive radiators can easily reproduce the low-pitched sound, which is an inevitable method for small speakers. Passive radiators are used in almost all small speakers capable of reproducing low-frequency sounds in the market in recent years.
However, even with a passive radiator, the bass feeling can be reproduced, but the distortion is large in a low frequency band lower than fpr, and the reproduced sound of a bass drum has an uncomfortable sound quality that is significantly different from the original sound in an attack part. There are two reasons for this.
The first reason is that
In the frequency band slightly higher than fpr, the radiated sound of both the passive radiator and the cone are in or near in phase in the steady state, but in the transient state of the attack, both are in or near out of phase, Gives great discomfort to the sound quality. This sound quality is far from universal standards.
The second reason is that
In the frequency band lower than around fpr, both the phase of the radiated sound from the passive radiator and the phase of the radiated sound from the cone are constantly reversed or close to reversed phase. Due to the prominent wave components. Therefore, low-frequency cutoff from around fpr must act as low-frequency cutoff.
As a result, the outer PR does not have a reproduction characteristic that satisfies a universal level of market needs in a wide bass range.
図7(b)は供試品の背面側の写真である。背面はインナーPRの裏蓋であって、内容積をスライド調節できる構造となっていて、重りとの組み合わせで最適容積を選択する。 FIG. 7B is a photograph of the back side of the test sample. The back is the back cover of the inner PR, which has a structure in which the internal volume can be slid and adjusted, and the optimal volume is selected in combination with the weight.
図7(c)は供試品のインナーPRの内部の写真である。円形の 0.3mm のラテックスシートを一様に 7% 引き延ばし、引っ張り張力を掛けた状態で外側のフレームを接着し、ラテックスシートの内側に 重りを乗せる台を接着し、その台に直径 20mm、
厚み 1.5mm の複数の重りが接着されている。インピーダンス特性を確認しながら、重りの数によって最適質量を選択する。
図7(d)は供試品のインナーPRの内部の写真である。インナーPRの側壁の枠を取り付けた状態である。
FIG. 7C is a photograph of the inside of the inner PR of the test sample. A circular 0.3mm latex sheet is evenly stretched by 7%, the outer frame is adhered under tension, and a base for placing a weight on the inside of the latex sheet is adhered.
Multiple weights of 1.5mm thickness are bonded. While checking the impedance characteristics, select the optimal mass according to the number of weights.
FIG. 7D is a photograph of the inside of the inner PR of the test sample. This is a state where the frame of the side wall of the inner PR is attached.
いずれの図においても同記号は同機能である。
fo           第1共振
              スピーカーユニットとキャビネットが持つ音響的性質に依存の共振特性
fm          第2共振
              スピーカーユニットと背面の空気室の容積と を主なファクターとするところの
              機械振動の共振特性
fpr         アウターPRの共振周波数
Bom       fo と fm の間のインピーダンス特性の谷間
fipr        インナーPRの共振周波数
Bio         fipr と fo の間の帯域
Bim        fipr と fm の間の帯域
K           Bim のインピーダンスの代表値の、ボイスコイルの直流抵抗に対する倍率
The same symbol has the same function in each figure.
fo 1st resonance
Resonance characteristics depending on acoustic properties of speaker units and cabinets
fm 2nd resonance
The main factors are the speaker unit and the volume of the air chamber on the back.
Resonance characteristics of mechanical vibration
fpr Outer PR resonance frequency
The valley of the impedance characteristic between Bom fo and fm
fipr Inner PR resonance frequency
Band between Bio fipr and fo
Band between Bim fipr and fm
Multiplier of the representative value of K Bim impedance to DC resistance of voice coil
図1、図2
Impedance                                      インピーダンス
Displacement                                  振動振幅
10ohm                                             純抵抗
Double Edge                                    スピーカーユニットとキャビネットを連結する弾性膜
Double Edge + Outer PR                振動型スピーカーとアウターPRの組み合わせ
1 and 2
Impedance impedance
Displacement vibration amplitude
10ohm pure resistance
Elastic membrane connecting the Double Edge speaker unit and cabinet
Double Edge + Outer PR Combination of vibration type speaker and outer PR
図3、図4
Doubl Edge + Inner PR                   振動型スピーカーとインナーPRの組み合わせ
PR Back Capacity=XX^3               XX がインナーPRの密閉箱の容積
3 and 4
Doubl Edge + Inner PR Combination of vibration type speaker and inner PR
PR Back Capacity = XX ^ 3 XX is the volume of the inner PR sealed box
図5
1st,,,7th                                           基本波から第7次の高調波まで
Double Edge + Outer PR(1st-xxdB)
                                          振動型スピーカーとアウターPRの組み合わせの基本波に
                                          対する高調波の比の dB 換算値
Double Edge + Inner PR(1st-xxdB)
                                          振動型スピーカーとインナーPRの組み合わせの基本波に
                                          対する高調波の比の dB 換算値
Figure 5
1st ,,, 7th From fundamental wave to 7th harmonic
Double Edge + Outer PR (1st-xxdB)
DB converted value of the ratio of harmonic to fundamental wave of the combination of vibrating speaker and outer PR
Double Edge + Inner PR (1st-xxdB)
DB converted value of the ratio of the harmonic to the fundamental wave of the combination of vibrating speaker and inner PR
図6
Cbinet                 キャビネット
SP                        はスピーカーユニット
2nd Edge             弾性膜、
Outer PR             アウターPR
Inner PR             インナーPR
FIG.
Cbinet cabinet
SP is a speaker unit
2nd Edge elastic membrane,
Outer PR Outer PR
Inner PR Inner PR
図7
2nd Edge             スピーカーユニットをキャビネットに取りつける弾性膜
Cone                    コーン
Edge                    スピーカーユニトのコーンのエッジ
Frame                  スピーカーユニトのフレーム
Cabinet               キャビネット
IPR Cover           インナーPRの裏蓋
Adjust                 裏蓋を移動させインナーPRの内容積の調整方向
IPR Case             インナーPRの側面ケース
IPR Weight         インナーPRの重り
IPR Edge             インナーPRの弾性膜
IPR Plate             インナーPRの重りを乗せる台
IPR Frame          インナーPRの弾性膜のフレーム
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG.
Elastic membrane to attach 2nd Edge speaker unit to cabinet
Cone cone
Edge Edge of the cone of the speaker unit
Frame Frame of speaker unit
Cabinet cabinet
IPR Cover Inner PR back cover
Adjust Move the back cover to adjust the inner PR inner volume
IPR Case Inner PR side case
IPR Weight Inner PR weight
IPR Edge Inner PR elastic membrane
A platform on which the weight of the IPR Plate inner PR is placed
IPR Frame Inner PR elastic membrane frame























Claims (2)

  1. 電気信号を音響信号に変換するユニットをスピーカーユニットとし、
    スピーカーユニットとキャビネットを一体化させたものをスピーカーシステムとし、
    スピーカーユニットのボイスコイルの振動方向を振動軸とし、
    スピーカーユニットが振動方向に可動範囲を持つスピーカーを振動型スピーカーとし、
    共振体とはスピーカーユニットのボイスコイル振動に起因して、キャビネット内の空気を介してのエネルギーの授受によって共振するところの、空気振動の共振体と機械振動の共振体のいずれかまたは双方とし、

    スピーカーシステムの電気的インピーダンス特性をインピーダンスまたはインピーダンス特性とし、
    主としてスピーカーユニットとキャビネットが持つ音響的性質に依存して決まる fo と呼ばれる共振特性を第1共振とし、
    第1共振の共振周波数を fo とし、

    スピーカーユニットの質量と、
    スピーカーユニットを支える弾性体のスティフネスと、
    スピーカーユニットの背面の空気室の容積と を主なファクターとするところの機械振動の共振特性を第2共振とし、
    第2共振の共振周波数を fm とし、

    スピーカーキャビネットの壁面に儲けたパッシブラジエータをアウターPRとし、
    アウターPRはキャビネットの外側に音響放射面を持つものとし、
    アウターPRの共振周波数を fpr とし、

    第1共振による fo と、小型スピーカーシステムの低音再生にとって有効な手段であるところの第2共振による fm と
    を持つ振動型スピーカーシステムにおいて、
    全帯域再生を課せられた振動型スピーカーシステムでは、
    一般的に、高域再生特性の犠牲なくして fo を低くすることが容易ではなく、
    一般的に、総合的な再生特性を犠牲にするほどにスピーカーユニットの質量を小さくすることなく fm を fo に近づけることが容易ではなく、
    これらの条件によるところの fo と fm の間に発生するインピーダンス特性の谷間を インピーダンス谷間とし、その帯域を Bom とし、

    Bom の範囲内に 共振周波数 fpr が存在するところのアウターPRを儲けることは、
    インピーダンス谷間 Bom をある程度埋めることができる公知の手法の一つであるが、聴覚では低音感を得られるものの、fpr と fo の間の谷間の特性は埋まらず、
    fpr から fm へ向けての低音の領域では、アウターPRの振動とコーンの振動の位相が、再生音圧に照らして逆相となることによって、双方の再生音圧基本周波数が相殺され、高調波歪み率と混変調歪み率が大きくなる性質を低音相殺作用とし、

    良好な低音特性の再生に必要な、Bom の幅を狭める設計と、
    インピーダンス谷間 Bom を高いインピーダンス特性で埋めることで得られるところの、総合的な再生特性の改善方法に関する課題の解決を本案の本質とし、

    アウターPRのキャビネットの外側への音響放射の窓口をPR放射窓とし、
    PR放射窓を密閉箱で塞ぐことによって作られるところの、密閉箱とキャビネット内部の空間に面する窓を持つPR放射窓によって形成されるところの固有の共振特性を持つ共振体を インナーPRとし、
    インナーPRが持つ共振特性を第3共振とし、
    インナーPRの振動板をインナーPR振動板とし、
    インナーPRを有することを第1とし、

    インナーPRによる共振特性によるところの共振周波数を fipr とし、
    fipr は Bom の範囲内にあるべく、
    インナーPRを構成する密閉箱の容積と、
    インナーPR振動板の放射面積と質量と、
    を選択設計するものとし、

    fipr と fo の間の帯域を Bio とし、
    fipr と fm の間の帯域を Bim とし、

    第1の結果によるところの、
    帯域 Bim において、インナーPR振動板がキャビネットの外側に音響放射をしないことから、アウターPRの場合に発生する低音相殺作用を無くす作用を利用することを第2とし、
    第3共振 fipr の付近での、インナーPR振動板の振動とコーンの振動との位相が同相または同相に近い性質が、fipr 付近のインピーダンス特性をなだらかな山形状とする作用を利用することを第3とし、
    なだらかな山形状とする、とは、急峻な山形状の頂点を低くし裾野を広げた形状または裾野が重なる二つの山からなる形の特性とし、

    第1の結果によるところの、
    二つの共振特性が相互干渉の状態にある系では双方の共振特性が影響し合う現象によるところの、fo と fipr が互いに引き寄せ合う性質により fo の急峻な山形状のインピーダンス特性をなだらかな山形状に変える作用を利用することを第4とし、

    第1の結果によるところの、
    二つの共振特性が相互干渉の状態にある系では双方の共振特性が影響し合う現象によるところの、fo と fipr が互いに引き寄せ合う性質により、起伏の大きいインピーダンス特性を持つ帯域 Bio のインピーダンス谷間を埋める作用を利用することを第5とし、

    帯域 Bio のインピーダンスの絶対値の 相加平均値または自乗平均値または何らかの基準に基づく代表値 を 帯域 Bio のインピーダンスの代表値とし、
    第1の結果に起因して、
    第2と第3と第4と第5との結果によるところの、
    帯域 Bim のインピーダンスの代表値の、ボイスコイルの直流抵抗に対する倍率を K とし、
    帯域 Bio において、
    インピーダンスがボイスコイルの直流抵抗と同じと見なした場合のボイスコイルの熱損失を基準として、ボイスコイルの熱損失が等しい条件下において、
    ボイスコイルの直流抵抗を 1倍 とし、
    ボイスコイル電圧を K倍 大きくし、
    ボイスコイル電流を 1倍 とすることで、ボイスコイルの熱損失を変えることなく
    帯域 Bio の、ボイスコイルの駆動電力を K倍 とすることができる、
    かまたは、
    ボイスコイルの直流抵抗を (1/K^2)倍 とし、
    インピーダンスを (1/K^2)*K=1/K倍 とし、
    ボイスコイルの電圧を 1倍 とし、ボイスコイルの電流が K倍 となることで、
    ボイスコイルの熱損失を変えることなく
    帯域 Bio の、ボイスコイルの駆動電力を K倍 とすることができる、
    のいずれをも選択可能であって、
    さらに、帯域 Bio において、
    ボイスコイルの熱損失を一定として、駆動電力を K倍 とする条件において、
    ボイスコイルの直流抵抗とボイスコイルの駆動電力の値を設計的に選択決定できることを第6とし、

    スピーカーユニットのボイスコイルの振動軸方向にスピーカーユニットの振動を可能とする振動型スピーカーシステムと、
    振動型スピーカーシステムのキャビネット外への音響放射面を持たず、キャビネット内に音響放射面を持つ共振体と、
    いずれも公知の手段を組み合わせた構造を持つことを特徴とするところの、
    第1と、
    第1の結果によるところの第2と第3と第4と第5と、
    第2から第5までの結果によるところの第6と、
    によって、
    振動スピーカーの機械振動によるところの、fipr より低い超低音帯域を遮断することなく再生範囲として利用が可能となるところの、かつ、
    fo 付近より低い低音帯域の歪み率を小さくし音量を大幅に改善できるところの、かつ、
    低音帯域において、ボイスコイルの熱損失を大きくすることなく、ボイスコイルの駆動電力を大きくすることができるところの、スピーカーシステム。
    A unit that converts an electric signal to an acoustic signal is called a speaker unit,
    A speaker system that integrates a speaker unit and a cabinet is called a speaker system.
    The vibration direction of the voice coil of the speaker unit is the vibration axis,
    A speaker whose speaker unit has a movable range in the vibration direction is a vibration type speaker,
    The resonator is one or both of a resonator of air vibration and a resonator of mechanical vibration, which resonates by transfer of energy through air in the cabinet due to voice coil vibration of the speaker unit,
    ;
    The electrical impedance characteristic of the speaker system is defined as impedance or impedance characteristic,
    The resonance characteristic called fo, which is mainly determined by the acoustic properties of the speaker unit and the cabinet, is defined as the first resonance.
    Let fo be the resonance frequency of the first resonance,
    ;
    The mass of the speaker unit,
    The elastic stiffness that supports the speaker unit,
    The resonance characteristic of the mechanical vibration, which is mainly determined by the volume of the air chamber on the back of the speaker unit and
    Let the resonance frequency of the second resonance be fm,
    ;
    The passive radiator made on the wall of the speaker cabinet is used as the outer PR,
    The outer PR shall have an acoustic emission surface outside the cabinet,
    Let the resonance frequency of the outer PR be fpr,
    ;
    In a vibrating speaker system having fo due to the first resonance and fm due to the second resonance, which is an effective means for bass reproduction of a small speaker system,
    In a vibration type speaker system that is imposed with full band reproduction,
    In general, it is not easy to lower fo without sacrificing high frequency reproduction characteristics,
    Generally, it is not easy to bring fm close to fo without reducing the mass of the speaker unit so as to sacrifice the overall playback characteristics.
    The valley of the impedance characteristic generated between fo and fm under these conditions is defined as the impedance valley, and the band is defined as Bom.
    ;
    Producing the outer PR where the resonance frequency fpr exists within the range of Bom is
    It is one of the well-known methods that can fill the impedance valley Bom to some extent.However, although a low pitch can be obtained by hearing, the characteristics of the valley between fpr and fo are not filled,
    In the low-frequency range from fpr to fm, the phases of the outer PR vibration and the cone vibration become opposite in phase with respect to the reproduced sound pressure. The characteristic that the distortion rate and the intermodulation distortion rate increase becomes the bass cancellation effect,
    ;
    Designed to reduce the width of the Bom necessary for reproducing good bass characteristics,
    The essence of the present invention is to solve the problem of how to improve the overall reproduction characteristics, which can be obtained by filling the impedance valley Bom with high impedance characteristics.
    ;
    The window for sound radiation to the outside of the outer PR cabinet is a PR radiation window,
    An inner PR is a resonator that has a unique resonance characteristic formed by a PR radiation window having a window facing the space inside the closed box and cabinet, which is made by closing the PR radiation window with a closed box,
    The resonance characteristic of the inner PR is the third resonance,
    The inner PR diaphragm is used as the inner PR diaphragm,
    Having the inner PR as the first,
    ;
    The resonance frequency due to the resonance characteristics of the inner PR is fipr,
    fipr should be within Bom
    The volume of the closed box that constitutes the inner PR,
    Radiation area and mass of inner PR diaphragm,
    Shall be selected and designed.
    ;
    Bio is the band between fipr and fo,
    Bim is the band between fipr and fm,
    ;
    According to the first result,
    In band Bim, since the inner PR diaphragm does not radiate sound to the outside of the cabinet, the second is to use the function of eliminating the bass cancellation effect that occurs in the case of the outer PR,
    The fact that the phase of the vibration of the inner PR diaphragm and the vibration of the cone in or near the same phase near the third resonance fipr is used to make the impedance characteristic near the fipr a gentle mountain shape is used. 3, and
    With the shape of a gentle mountain, the shape of the shape where the peak of the steep mountain shape is lowered and the skirt is widened or the shape of two mountains where the skirt overlaps,
    ;
    According to the first result,
    In a system where the two resonance characteristics are in a state of mutual interference, due to the phenomenon that both resonance characteristics influence each other, the impedance characteristic of the steep peak shape of fo is changed to a gentle peak shape by the property that fo and fipr attract each other. The fourth is to use the action of changing,
    ;
    According to the first result,
    In a system where the two resonance characteristics are in the state of mutual interference, the fo and fipr attract each other due to the phenomenon that both resonance characteristics influence each other, and fill the impedance valley of the band Bio with large undulating impedance characteristics. The fifth is to use the action.
    ;
    The arithmetic mean or root mean square value of the absolute value of the impedance of band Bio or a representative value based on some criterion is used as the representative value of the impedance of band Bio,
    Due to the first result,
    According to the second, third, fourth and fifth results,
    Let K be the magnification of the representative value of the impedance of the band Bim with respect to the DC resistance of the voice coil.
    In band Bio
    Under the condition that the heat loss of the voice coil is equal to the heat loss of the voice coil when the impedance is considered to be the same as the DC resistance of the voice coil,
    Increase the DC resistance of the voice coil by one,
    Increase the voice coil voltage by K times,
    By doubling the voice coil current, the driving power of the voice coil in the band Bio can be increased by a factor of K without changing the heat loss of the voice coil.
    Or
    The DC resistance of the voice coil is (1 / K ^ 2) times,
    Let the impedance be (1 / K ^ 2) * K = 1 / K times,
    By increasing the voltage of the voice coil by 1 and the current of the voice coil by K times,
    The driving power of the voice coil in the band Bio can be increased K times without changing the heat loss of the voice coil.
    Can be selected,
    Furthermore, in band Bio,
    Under the condition that the heat loss of the voice coil is constant and the driving power is K times,
    Sixth, the DC resistance of the voice coil and the drive power of the voice coil can be selected and determined by design,
    ;
    A vibration type speaker system that enables the vibration of the speaker unit in the vibration axis direction of the voice coil of the speaker unit,
    A resonator that does not have a sound radiating surface outside the cabinet of the vibration type speaker system, but has a sound radiating surface inside the cabinet,
    Both of which have a structure combining known means,
    First,
    The second, third, fourth and fifth according to the first result;
    The sixth according to the second to fifth results,
    By
    Where it can be used as a reproduction range without interrupting the super bass band lower than fipr due to the mechanical vibration of the vibrating speaker, and
    where the distortion rate in the low frequency band lower than near fo can be reduced and the volume can be significantly improved, and
    A speaker system in which the driving power of the voice coil can be increased without increasing the heat loss of the voice coil in the low frequency band.
  2. fo と fm の中間に共振周波数を持つところの振動板と振動板の背面に密閉空間を有する共振体を、キャビネット内共振体とし、
    スピーカーユニットのボイスコイルの振動軸方向にスピーカーユニットの振動を可能とする振動型スピーカーシステムと、
    スピーカーシステムのキャビネットの空気室の中に、請求項1に記述のインナーPRの代わりに、キャビネット内共振体を有するところの、
    第1と、
    第1の結果によるところの第2と第3と第4と第5と、
    第2から第5までの結果によるところの第6と、
    によって、
    振動スピーカーの機械振動によるところの、fipr より低い超低音帯域を遮断することなく再生範囲として利用が可能となるところの、かつ、
    fo 付近より低い低音帯域の歪み率を小さくし音量を大幅に改善できるところの、かつ、
    低音帯域において、ボイスコイルの熱損失を大きくすることなく、ボイスコイルの駆動電力を大きくすることができるところの、スピーカーシステム。
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
    A resonator having a resonance frequency between fo and fm and a resonator having a closed space on the back of the diaphragm are defined as resonators in the cabinet,
    A vibration type speaker system that enables the vibration of the speaker unit in the vibration axis direction of the voice coil of the speaker unit,
    Having an in-cabinet resonator instead of the inner PR described in claim 1 in the air chamber of the speaker system cabinet,
    First,
    The second, third, fourth and fifth according to the first result;
    The sixth according to the second to fifth results,
    By
    Where it can be used as a reproduction range without interrupting the super bass band lower than fipr due to the mechanical vibration of the vibrating speaker, and
    where the distortion rate in the low frequency band lower than near fo can be reduced and the volume can be significantly improved, and
    A speaker system in which the driving power of the voice coil can be increased without increasing the heat loss of the voice coil in the low frequency band.






















PCT/JP2018/037441 2018-09-25 2018-10-05 Speaker system capable of increasing driving power without changing heat loss in low-frequency sound range and having improved reproduction characteristic WO2020066037A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-178738 2018-09-25
JP2018178738A JP6597986B1 (en) 2018-09-25 2018-09-25 A speaker system that can increase drive power without changing heat loss in the low frequency range and improve playback characteristics

Publications (1)

Publication Number Publication Date
WO2020066037A1 true WO2020066037A1 (en) 2020-04-02

Family

ID=68383215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037441 WO2020066037A1 (en) 2018-09-25 2018-10-05 Speaker system capable of increasing driving power without changing heat loss in low-frequency sound range and having improved reproduction characteristic

Country Status (2)

Country Link
JP (1) JP6597986B1 (en)
WO (1) WO2020066037A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110913291B (en) * 2019-12-03 2020-12-11 安康超美特科技股份有限公司 Intelligent regulation audio amplifier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341057A (en) * 2004-05-25 2005-12-08 Pioneer Electronic Corp Speaker
JP2012039586A (en) * 2010-08-03 2012-02-23 Junichi Kakumoto Speaker system and acoustic reproduction apparatus
JP2015130581A (en) * 2014-01-07 2015-07-16 角元 純一 sound reproduction system
US20170070810A1 (en) * 2015-09-08 2017-03-09 Apple Inc. Electronic device including acoustically isolated passive radiator within a baffle space and related methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341057A (en) * 2004-05-25 2005-12-08 Pioneer Electronic Corp Speaker
JP2012039586A (en) * 2010-08-03 2012-02-23 Junichi Kakumoto Speaker system and acoustic reproduction apparatus
JP2015130581A (en) * 2014-01-07 2015-07-16 角元 純一 sound reproduction system
US20170070810A1 (en) * 2015-09-08 2017-03-09 Apple Inc. Electronic device including acoustically isolated passive radiator within a baffle space and related methods

Also Published As

Publication number Publication date
JP6597986B1 (en) 2019-10-30
JP2020053749A (en) 2020-04-02

Similar Documents

Publication Publication Date Title
US10090819B2 (en) Signal processor for loudspeaker systems for enhanced perception of lower frequency output
JP4064160B2 (en) Speaker device
JP3266401B2 (en) Composite speaker device and driving method thereof
CN1953618B (en) Speaker driving apparatus
WO1999026450A1 (en) Speaker system
US10341763B2 (en) Passive radiator assembly
WO2020066037A1 (en) Speaker system capable of increasing driving power without changing heat loss in low-frequency sound range and having improved reproduction characteristic
CN109982176A (en) A kind of heat dissipation sound equipment
CN201307917Y (en) Television sound box
GB2463529A (en) Sub Bass Compression Loudspeaker System
JP2007060367A (en) Acoustic system
CN202135298U (en) Bass enhanced sound box
CN202085297U (en) Loudspeaker adopting metal membrane
US8073168B2 (en) Compact open baffle speaker system
JP2016171556A (en) Acoustic device
JP2005294887A (en) Parts for acoustic system and acoustic system
JP3155512B2 (en) Small speaker system
CN102630066B (en) Eight-order band-pass speaker box and television
JP3906728B2 (en) Speaker
JP3086270B2 (en) Speaker box
CN218958968U (en) Home theater type liquid crystal television with sound channel surrounding effect
CN214851788U (en) Flat sound with high-frequency compensation
CN110830891B (en) High-power frequency-division-self full-frequency loudspeaker
KR960002020B1 (en) Full range speaker
JP2016171537A (en) Acoustic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934862

Country of ref document: EP

Kind code of ref document: A1