WO2020065799A1 - Electric vehicle control method and electric vehicle drive system - Google Patents

Electric vehicle control method and electric vehicle drive system Download PDF

Info

Publication number
WO2020065799A1
WO2020065799A1 PCT/JP2018/035811 JP2018035811W WO2020065799A1 WO 2020065799 A1 WO2020065799 A1 WO 2020065799A1 JP 2018035811 W JP2018035811 W JP 2018035811W WO 2020065799 A1 WO2020065799 A1 WO 2020065799A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
clutch
mode
electric vehicle
switching
Prior art date
Application number
PCT/JP2018/035811
Other languages
French (fr)
Japanese (ja)
Inventor
古閑 雅人
隆行 加賀谷
中島 祐樹
田中 克典
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2018/035811 priority Critical patent/WO2020065799A1/en
Publication of WO2020065799A1 publication Critical patent/WO2020065799A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a control method and a drive system for an electric vehicle configured to be able to run by switching between a series hybrid mode and an engine direct connection mode.
  • JP 2004-123060A as such a drive system, is provided with a clutch capable of connecting and disconnecting the internal combustion engine and the drive wheels, and configured to be able to transmit the power of the internal combustion engine to the drive wheels without using a traveling motor.
  • a clutch capable of connecting and disconnecting the internal combustion engine and the drive wheels, and configured to be able to transmit the power of the internal combustion engine to the drive wheels without using a traveling motor.
  • An object of the present invention is to provide a control method for an electric vehicle and a drive system for an electric vehicle in consideration of the above problems.
  • an internal combustion engine includes: an internal combustion engine; a power generation motor disposed so as to be able to generate power by receiving the power of the internal combustion engine; and a traveling motor disposed so as to be driven by the electric power generated by the power generation motor.
  • the driving wheels are connected via a first clutch so as to be able to be connected and disconnected, while the traveling motor and the driving wheels are connected so as to be able to be connected and disconnected via a second clutch different from the first clutch.
  • a series hybrid mode in which the power of a traveling motor is transmitted to driving wheels as a driving source to travel, and a traveling mode in which at least one of an internal combustion engine and a generator is used as a driving source and the power of the driving source is transmitted to driving wheels.
  • a control method for an electric vehicle configured to be able to switch between an engine direct connection mode and an engine direct connection mode.
  • both the first clutch and the second clutch are engaged, and while both the first and second clutches are engaged, the internal combustion engine is switched on.
  • the ratio of each of the torque and the torque of the traveling motor to the total drive torque of the vehicle is changed toward the ratio after the mode switching, and when the ratio approaches or reaches the ratio after the mode switching, the first and the second are performed.
  • the clutch on the release side of the two clutches is released.
  • a drive system for an electric vehicle is provided.
  • FIG. 1 is a schematic diagram showing an overall configuration of a drive system for an electric vehicle according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing an operation in a series hybrid mode of the drive system according to the embodiment.
  • FIG. 3 is an explanatory diagram showing an operation of the drive system according to the embodiment in an engine direct connection mode.
  • FIG. 4 is an explanatory diagram showing a driving mode according to the driving area of the drive system according to the embodiment.
  • FIG. 5 is a flowchart showing an overall flow of the mode switching control according to the embodiment.
  • FIG. 6 is a flowchart showing the contents of a process in a torque change phase of the mode switching control according to the embodiment.
  • FIG. 1 is a schematic diagram showing an overall configuration of a drive system for an electric vehicle according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing an operation in a series hybrid mode of the drive system according to the embodiment.
  • FIG. 3 is an explanatory diagram showing an operation of the
  • FIG. 7 is an explanatory diagram showing an example of an operation by mode switching control according to one embodiment of the present invention when switching from the series hybrid mode to the engine direct connection mode.
  • FIG. 8 is an explanatory diagram showing an operation according to a comparative example when switching from the series hybrid mode to the engine direct connection mode.
  • FIG. 9 is an explanatory diagram showing an example of an operation by mode switching control according to one embodiment of the present invention when switching from the engine direct connection mode to the series hybrid mode.
  • FIG. 10 is a flowchart showing the content of the processing in the torque change phase of the mode switching control according to another embodiment of the present invention.
  • FIG. 11 is an explanatory diagram showing an example of an operation by mode switching control according to another embodiment of the present invention when switching from the series hybrid mode to the engine direct connection mode.
  • FIG. 12 is an explanatory diagram illustrating an operation according to another comparative example when switching from the series hybrid mode to the engine direct connection mode.
  • FIG. 13 is an explanatory diagram showing an example of an operation by mode switching control according to another embodiment of the present invention when switching from the engine direct connection mode to the series hybrid mode.
  • FIG. 14 is an explanatory diagram showing an example of an operation by mode switching control according to still another embodiment of the present invention when switching from the series hybrid mode to the engine direct connection mode.
  • FIG. 1 shows an overall configuration of a drive system S for an electric vehicle according to an embodiment of the present invention.
  • the drive system (hereinafter, simply referred to as “drive system”) S is mounted on an electric vehicle and constitutes a propulsion device of the vehicle.
  • the drive system S includes an internal combustion engine 1, an electric motor for power generation (hereinafter, referred to as “generation motor”) 2, and an electric motor for traveling (hereinafter, referred to as “travel motor”) 3.
  • An internal combustion engine (hereinafter simply referred to as “engine”) 1 has an output shaft or crankshaft 11 connected to a rotating shaft 21 of a generator motor 2 via a gear train Ga composed of a plurality of gears.
  • the torque of the engine 1 is transmitted to the generator motor 2 through the gear train Ga at a predetermined gear ratio, and the generator motor 2 is operated.
  • the connection between the engine 1 and the generator motor 2 via the gear train Ga is permanent, that is, cannot be cut off.
  • the generator motor 2 is electrically connected to the traveling motor 3 and connected to the battery 4, and supplies power generated by receiving power from the engine 1 to the traveling motor 3 or the battery 4. .
  • the supply of electric power from the generator motor 2 to the traveling motor 3 and the supply of electric power from the generator motor 2 to the battery 4 can be executed in accordance with the operating state of the vehicle, the state of charge of the battery 4, and the like.
  • FIG. 1 schematically shows the electrical connection between the generator motor 2, the traveling motor 3, and the battery 4 by a two-dot chain line.
  • the traveling motor 3 is electrically connected to the battery 4, and the rotating shaft 31 is connected to a ring gear of the differential 5 via a gear train Gb including a plurality of gears.
  • the torque of the traveling motor 3 is transmitted to the differential 5 at a predetermined gear ratio through the gear train Gb, and is further distributed to the left and right drive shafts 6 via the differential 5 to rotate the drive wheels 7 to rotate the vehicle.
  • the traveling motor 3 is configured by a motor generator that can operate not only as a generator but also as a motor, and in addition to propulsion of the vehicle, power is supplied from the driving wheels 7 via a gear train Gb. It is also possible to receive and generate electricity.
  • the electric power generated by the traveling motor 3 can be supplied to the battery 4 and used for charging the battery 4.
  • the output shaft 11 of the engine 1 is connected to the ring gear of the differential 5 via a gear train Gc including a plurality of gears.
  • the torque of the engine 1 is transmitted to the differential 5 at a predetermined gear ratio through the gear train Gc, and is distributed to the left and right drive shafts 6 via the differential 5, so that the drive wheels 7 are rotated and the vehicle is propelled. Is done.
  • clutches c1 and c2 are interposed in each of the gear train Gc and the gear train Gb, and the connection between the engine 1 and the drive wheels 7 via the gear train Gc and the connection between the traveling motor 3 and the drive wheels 7 are established.
  • the connection via the gear train Gb can be disconnected by the clutches c1 and c2, respectively.
  • Each of the clutches c1 and c2 may be an engagement type clutch, and a dog clutch can be exemplified as one applicable to the clutches c1 and c2.
  • a dock clutch is adopted as each of the clutches c1 and c2.
  • the clutch c1 provided in the gear train Gc on the engine 1 side constitutes the “first clutch” according to the present embodiment
  • the clutch c2 provided in the gear train Gb on the traveling motor 3 side corresponds to the "first clutch” according to the present embodiment. 2 clutches.
  • the controller 101 is constituted by a microcomputer including a central processing unit (CPU), various storage units such as ROM and RAM, and an input / output interface as an electronic control unit.
  • CPU central processing unit
  • storage units such as ROM and RAM
  • input / output interface as an electronic control unit.
  • a signal indicating the amount of operation of the accelerator pedal (hereinafter, referred to as “accelerator opening”) APO by the driver, a signal indicating the traveling speed of the vehicle (hereinafter, referred to as “vehicle speed”) VSP, and the rotation speed Neng of the engine 1 are shown.
  • a signal indicating the rotation speed Nmg1 of the generator motor 2 and a signal indicating the rotation speed Nmg2 of the traveling motor 3 are input to the controller 101.
  • the accelerator opening sensor 201 for detecting the accelerator opening APO, the vehicle speed sensor 202 for detecting the vehicle speed VSP, and the rotation speed Neng of the engine 1 are referred to as the number of rotations per unit time (hereinafter referred to as “engine rotation speed”). )),
  • a motor speed sensor 205 is provided.
  • the controller 101 performs a predetermined calculation based on the input various signals to control the operations of the engine 1, the generator motor 2 and the traveling motor 3, and also controls the states of the clutches c1 and c2.
  • the traveling motor 3 is used as a drive source of the vehicle.
  • the engine direct connection mode basically, the engine 1 is used as a drive source of the vehicle.
  • FIGS. 2 and 3 show the operation according to the traveling mode of the drive system S.
  • FIG. 2 shows the operation in the series hybrid mode
  • FIG. 3 shows the operation in the engine direct connection mode.
  • 2 and 3 show the path through which the power is transmitted by a thick dotted line with an arrow, and the arrow indicates the direction in which the power is transmitted.
  • the clutch c1 is released, the clutch c2 is engaged, and the torque of the engine 1 can be transmitted to the generator motor 2 through the gear train Ga. Can be transmitted to the differential 5 and the drive wheels 7 through the gear train Gb.
  • the clutch c1 is engaged and the clutch c2 is released, so that the torque of the engine 1 can be transmitted to the differential 5 and the drive wheels 7 through the gear train Gc.
  • the clutch c2 on the power transmission path connecting the traveling motor 3 and the driving wheel 7 is in a disconnected state, the transmission of power between the traveling motor 3 and the driving wheel 7 is blocked, and the driving wheel The traveling motor 3 is prevented from being rotated together with the rotation of the motor 7.
  • the power generation motor 2 is configured by a motor generator, the torque of the power generation motor 2 as well as the engine 1 can be transmitted to the drive wheels 7 through the gear trains Ga and Gc.
  • Switching between the series hybrid mode and the engine direct connection mode is performed by switching the engagement and disengagement states of the clutches c1 and c2 based on a signal from the controller 101.
  • FIG. 4 shows a traveling mode according to the driving area of the vehicle.
  • the direct engine mode is selected in the high-speed range, and the series hybrid mode is selected in other areas.
  • the engine direct connection mode is selected in a region B where the load is relatively low, and the series hybrid mode is selected in the other region A.
  • the controller 101 determines the driving regions A and B to which the driving state of the vehicle belongs based on the vehicle speed VSP and the accelerator opening APO, and switches the driving mode according to the determination result.
  • mode switching control The control relating to the switching of the traveling mode (hereinafter referred to as “mode switching control”) will be described below. After describing the overall flow with reference to a flowchart, a more specific description will be made with reference to a time chart.
  • FIG. 5 shows the overall flow of the mode switching control
  • FIG. 6 shows the contents of the processing in the torque switching phase in the mode switching control.
  • the controller 101 is programmed to execute the mode switching control at a predetermined cycle.
  • the driving state of the vehicle is read. Specifically, an accelerator opening APO, a vehicle speed VSP, an engine speed Neng, a power generation motor speed Nmg1 and a traveling motor speed Nmg2 are read as the operation states related to the mode switching control.
  • S102 it is determined whether or not the mode is switched. Specifically, the operating state of the vehicle determined by accelerator opening APO and vehicle speed VSP has shifted from area A in the series hybrid mode to area B in the direct engine mode in the operating area shown in FIG. 4, or vice versa. It is determined whether or not the state has shifted from the area B to the area A. If a transition of the operating state occurs between the operating regions A and B and the mode is being switched, the process proceeds to S103. If the mode is not switched, the control by this routine is ended.
  • control for matching the rotational speeds of the drive element and the driven element of the clutch on the engagement side (hereinafter referred to as “rotational synchronization control”) is started.
  • the clutch on the engagement side refers to a clutch that is engaged after mode switching (in other words, is in a released state before mode switching).
  • the rotation synchronization control in this case, a torque is generated by the generator motor 2 to increase the generator motor rotation speed Nmg1.
  • the rotation synchronization control can also be executed by generating torque with the engine 1 instead of the power generation motor 2 or together with the power generation motor 2.
  • S104 it is determined whether the rotation synchronization has been completed. This determination is made, for example, based on whether or not the difference in rotation speed between the driving element and the driven element of the clutch on the engagement side has decreased to a predetermined value, and the rotation synchronization has been completed when the difference has decreased to the predetermined value. Is determined.
  • the process proceeds to S105, and when not completed, the determination of S104 is repeated until the rotation synchronization is completed.
  • the determination as to whether or not the rotation synchronization has been completed is not limited to this, and may be made based on whether or not the state in which the difference between the rotation speeds is equal to or less than a predetermined value has continued for a predetermined time.
  • a command to engage the clutch is output to the clutch on the engagement side.
  • the clutches c1 and c2 convert the operation of an actuator (for example, a servo-type electric motor) into movement of a driving element or a driven element via a link mechanism including a cam and a lever, the clutch c1, c2
  • an actuator for example, a servo-type electric motor
  • the clutch c1, c2 On the other hand, a command to operate in the direction to engage the clutch is output.
  • S106 it is determined whether the engagement of the clutch has been completed. This determination can be made, for example, based on whether or not the actuators of the clutches c1 and c2 (specifically, the movable parts thereof) have reached a target position at the time of engagement.
  • the process proceeds to S201 of the flowchart shown in FIG. 6 to execute the process in the torque transfer phase, and when not completed, the determination of S106 is repeated until the completion.
  • a command to release the clutch on the release side is output.
  • a command to operate the clutches c1 and c2 in a direction to release the clutch is output.
  • the release-side clutch means a clutch that is released after the mode switching (in other words, is in a state of being engaged before the mode switching).
  • the mode switching in other words, is in a state of being engaged before the mode switching.
  • the clutch c2 provided in the gear train Gb.
  • control for changing the torque between the driving source before the mode switching and the driving source after the mode switching is started between these driving sources.
  • this will be described at the time of switching from the series hybrid mode to the engine direct connection mode.
  • the torque of the traveling motor 3 which is the driving source before the mode switching is reduced, and the mode is changed accordingly.
  • This is embodied as control for increasing the torque of the engine 1, which is the drive source after switching.
  • S203 it is determined whether the release of the clutch has been completed. This determination can be made, for example, based on whether or not the actuators (specifically, the movable parts thereof) of the clutches c1 and c2 have reached a target position at the time of disengagement.
  • the process returns to the flowchart of FIG. 5, and when the release is not completed, the determination in S203 is repeated until the release is completed.
  • FIG. 7 and 9 show the operation of the drive unit S by the mode switching control according to the present embodiment.
  • FIG. 7 shows the operation at the time of switching from the series hybrid mode to the engine direct connection mode
  • FIG. Operations at the time of switching to the series hybrid mode are shown respectively.
  • FIG. 8 shows an operation according to a comparative example when switching from the series hybrid mode to the engine direct mode.
  • 7 to 9 show, among the rotation speed N and the torque Trq, those of the engine 1 by a solid line, those of the generator motor 2 by a dotted line, those of the traveling motor 3 by a two-dot chain line, and the output of the drive system S. That is, the rotation speed and torque of the drive shaft 6 are indicated by a particularly thick solid line.
  • the state in which the clutch c2 as the disengagement side clutch is engaged is maintained, and in the torque change phase Pswt, the state in which both the clutches c1 and c2 are engaged is formed. Is done.
  • a command to release the clutch c2 is output at the same time as the transition to the torque change phase Pswt (time t31).
  • the torque Trqeng of the engine 1 is increased while the torque Trqmg2 of the traveling motor 3 is decreased while the torque applied to the drive shaft 6, that is, the total drive torque Trqttl of the vehicle is kept constant.
  • the command to release the clutch c1 is output in the same manner as described above. Then, it is determined that the torque switching has been completed when the torque Trqmg2 of the traveling motor 3 matches the total drive torque Trqttl or the torque Trqeng of the engine 1 has decreased to 0 (time t43), and the clutch c1 After the release, the mode switching control ends (time 53).
  • FIG. 8 shows the operation when the engagement of the clutch c1 and the release of the clutch c2 are started simultaneously at the time of switching from the series hybrid mode to the direct engine connection mode as a comparative example.
  • the torque is changed in a state where both the clutches c1 and c2 are engaged, and the clutch on the release side is disengaged.
  • the drive system S is prevented from entering a neutral state throughout the switching period.
  • a clutch c1 is interposed on a power transmission path connecting the engine 1 and the drive wheels 7 so that the connection between the engine 1 and the drive wheels 7 can be cut off.
  • a clutch c2 is interposed on the power transmission path to be connected, so that the connection between the traveling motor 3 and the driving wheels 7 can be cut off.
  • the process shifts to the torque change phase after the engagement side clutch is engaged, and the torque is changed while both clutches c1 and c2 are engaged, so that when the mode is switched, It is possible to prevent the drive system S from entering the neutral state, and to perform the switching more appropriately.
  • the clutches c1 and c2 are both engaged when the torque is changed, the reduction of the torque on the disengagement side and the increase of the torque on the engagement side are performed by keeping the total drive torque Trqttl constant. It is possible to perform while maintaining, and it is possible to suppress deterioration of drivability, and to maintain drivability before and after mode switching.
  • the torque of the drive source before the mode switching decreases to zero before the mode switching.
  • a command to release the clutch is output to the disengagement side clutch. This makes it possible to release the clutch immediately after the torque reaches 0 on the release side, and to suppress the deterioration in efficiency due to the co-rotation.
  • FIG. 10 is a flowchart showing the content of the processing in the torque change phase of the mode switching control according to another embodiment of the present invention.
  • the configuration of the drive system S according to the present embodiment may be the same as that shown in FIG. 1, and the overall flow of the mode switching control may be the same as that shown in FIG.
  • a command to release the clutch on the release side is output.
  • a command to operate the clutch actuator in a direction to release the clutch is output.
  • steps S302 to S304 control for changing the torque between the engagement side and the release side is executed.
  • the torque transmitted to the drive wheels 7 via the release-side clutch is reduced to 0 over a predetermined time (hereinafter, referred to as “target change time”)
  • target change time a predetermined time
  • the reduced torque is embodied as a control that compensates for the increased torque by increasing the torque transmitted to the drive wheels 7 via the clutch on the engagement side.
  • a command torque Tcmd_mg2 for the traveling motor 3 is calculated.
  • the traveling motor command torque Tcmd_mg2 is set to the smaller one of the replacement calculated torque Tcal_mg2 calculated by the following equation (1.1) and the post-switch target torque Ttrg_mg2.
  • the post-switch target torque Ttrg_mg2 can be set based on the operating state of the vehicle, such as the accelerator opening APO and the vehicle speed VSP.
  • Tcal_mg2 (Ttrg_mg2-Tcal_mg2 n-1 ) / (tswt-t) + Tcal_mg2 n-1 (1.1)
  • Tcal_mg2 n-1 is the previous value of the calculated torque at the time of transfer
  • tswt is the target transfer time
  • t is the elapsed time since the start of the transfer. is there.
  • the command torque Tcmd_eng for the engine 1 is calculated.
  • the engine command torque Tcmd_eng is set to the smaller one of the replacement calculated torque Tcal_eng calculated by the following equation (1.2) and the post-switch target torque Ttrg_eng.
  • the post-switch target torque Ttrg_eng can be set based on the driving state of the vehicle.
  • Tcal_eng (Ttrg_eng ⁇ Tcal_eng n ⁇ 1 ) / (tswt ⁇ t) + Tcal_eng n ⁇ 1 (1.2)
  • Tcal_eng n-1 is the previous value of the calculated torque at the time of replacement.
  • a command torque Tcmd_mg1 for the generator motor 2 is calculated.
  • the generation motor command torque Tcmd_mg1 is set to the smaller one of the replacement calculated torque Tcal_mg1 calculated by the following equation (1.3) and the post-switch target torque Ttrg_mg1.
  • the post-switch target torque Ttrg_mg1 can be set based on the driving state of the vehicle.
  • Tcal_mg1 Ttrg_ttl ⁇ ⁇ (Tcmd_mg2 ⁇ Rmg2 + Tcmd_eng ⁇ Reng) / Reng ⁇ ⁇ Rmg1 (1.3)
  • Ttrg_ttl is a target value of the total drive torque according to the driving state of the vehicle
  • Rmg1 is the gear ratio of the gear train Ga
  • Rmg2 is the gear ratio of the gear train Gb.
  • Reng is the gear ratio of the gear train Gc.
  • the above equation (1.3) means that the shortage of the total torque of the traveling motor command torque Tcmd_mg2 and the engine command torque Tcmd_eng with respect to the total drive torque target value Ttrg_ttl is set to the generation motor command torque Tcmd_mg1. I do.
  • the calculated torque at the time of replacement can be calculated by the following equations (2.1) to (2.3).
  • Tcal_mg1 (Ttrg_mg1-Tcal_mg1 n-1 ) / (tswt-t) + Tcal_mg1 n-1 (2.1)
  • Tcal_eng (Ttrg_eng ⁇ Tcal_eng n ⁇ 1 ) / (tswt ⁇ t) + Tcal_eng n ⁇ 1 (2.2)
  • Tcal_mg2 ⁇ Tcmd_ttl- (Tcmd_mg1 / Rmg1 + Tcmd_eng) ⁇ Reng ⁇ / Rmg2 ⁇ (2.3)
  • S305 it is determined whether or not the release of the clutch has been completed. When the release of the clutch is completed, the process returns to the basic routine shown in FIG. 5. When the release is not completed, the processes of S302 to 305 are repeated until the release is completed, and the switching of the torque is continued.
  • the command torque for each of the engine 1, the generator motor 2, and the traveling motor 3 is set to the post-switch target torque. That is, regardless of whether or not the change of the torque is completed, when the release of the clutch is completed, the command torque is set to the respective post-switch target torque immediately after the release of the clutch.
  • FIG. 11 and 13 show the operation of the drive unit S by the mode switching control according to the present embodiment.
  • FIG. 11 shows the operation at the time of switching from the series hybrid mode to the direct engine mode
  • FIG. Operations at the time of switching to the series hybrid mode are shown respectively.
  • FIG. 12 shows an operation according to a comparative example when switching from the series hybrid mode to the engine direct connection mode.
  • the rotation synchronization control for the clutch c1 which is the engagement side clutch, is started (rotation synchronization phase Psyn).
  • the generator motor rotation speed Nmg1 and the engine rotation speed Neng are increased by reducing the torque Trqmg1 for the regeneration by the generation motor 2, and the generation motor rotation speed Nmg1 is made closer to the output rotation speed Nout.
  • Tcmd_mg1 and Tcmd_mg2 are calculated.
  • the traveling motor command torque Tcmd_mg2 is reduced, and the reduced torque is supplemented by the power generation motor command torque Tcmd_mg1, so that the total drive torque does not become excessive or insufficient with respect to the target value Ttrg_ttl, and the torque is replaced.
  • the target value Ttrg_ttl of the total drive torque increases accordingly (time t54), but the total drive torque becomes insufficient with respect to the target value Ttrg_ttl after the increase.
  • the minute is eliminated by increasing the generator motor command torque Tcmd_mg1 by a torque corresponding to the shortage. Then, it is determined that the torque transfer has been completed when the target transfer time tswt has elapsed or the traveling motor command torque Tcmd_mg2 has decreased to 0 (time t64), and the mode switching is performed after the release of the clutch c2. The control ends (time 74).
  • Tcmd_mg1 and Tcmd_mg2 are calculated. Specifically, the engine command torque Tcmd_eng is reduced, and the travel motor command torque Tcmd_mg2 is increased by the amount corresponding to the decrease.
  • the traveling motor is reduced by the shortage of the total drive torque with respect to the target value Ttrg_ttl after the increase.
  • the command torque Tcmd_mg2 is increased. Then, when the engine command torque Tcmd_eng has decreased to 0, it is determined that the change of torque has been completed (time t66), and the mode switching control is terminated after releasing the clutch c1 (time 76).
  • FIG. 12 shows, as a comparative example, a case where switching from the series hybrid mode to the engine direct connection mode is performed, and when the accelerator opening APO increases in the torque switching phase Pswt, the torque is switched during the target switching time tswt. Are completed (steps t55 to t65) when the gradient of the change in the command torque Trqmg1 to the traveling motor 3 is increased in order to complete.
  • the total value Trqttl of the command torques Trqeng, Trqmg1, and Trqmg2 does not follow the target value Ttrg_ttl of the total drive torque, as shown by a dashed line in comparison with the target value Ttrg_ttl of the total drive torque, and the total drive torque Tttl. Therefore, there is a concern that a quick response to depression of the accelerator pedal cannot be obtained, and that drivability is deteriorated.
  • the target value Ttrg_ttl by increasing the torque transmitted to the drive wheels 7 through the engagement-side clutch, it is possible to suppress the occurrence of the shortage, and to ensure the follow-up of torque control. In addition, deterioration of drivability can be suppressed.
  • the torque corresponding to the shortage is generated by the electric motor (the power generation motor 2 when switching from the series hybrid mode to the engine direct-coupled motor), so that the response of the actual torque to the change in the command torque is ensured.
  • the electric motor the power generation motor 2 when switching from the series hybrid mode to the engine direct-coupled motor
  • FIG. 14 shows an example of the operation when the clutch is released before the torque change is completed (time t67), when switching from the series hybrid mode to the engine direct connection mode.
  • the command torques Tcmd_eng, Tcmd_mg1, and Tcmd_mg2 for the engine 1, the power generation motor 2, and the traveling motor 3 are set to the post-switching target torques Ttrg_eng, Ttrg_mg1, and Ttrg_mg2 immediately after the clutch is released. That is, in response to accidental or sudden release of the clutch c2, which is the clutch on the disengagement side, the torque transmitted to the drive wheels 7 through the clutch c1, which is the clutch on the engagement side, is increased to match the target value after switching. It is.

Abstract

This electric vehicle drive system includes an internal combustion engine, an electricity generation motor disposed so as to be capable of generating electricity by receiving motive power from the internal combustion engine, and a travel motor disposed so as to be capable of being driven by the electricity generated by the electricity generation motor. The electric vehicle drive system is configured such that the internal combustion engine and a driving wheel are disconnectably connected by means of a first clutch and the travel motor and the driving wheel are disconnectably connected by means of a second clutch different from the first clutch, thereby allowing switching between a series hybrid mode in which the vehicle is caused to travel by transmitting the motive power from the travel motor serving as a driving source to the driving wheel, and an engine direct-connection mode in which the vehicle is caused to travel by making at least one from among the internal combustion engine and a generator serve as a driving source and transmitting the motive power from the driving source to the driving wheel. The electric vehicle drive system engages both the first and second clutches when switching between the series hybrid mode and engine direct-connection mode, and changes, while both the first and second clutches are engaged, the proportion of internal combustion engine torque and the proportion of travel motor torque in the total vehicle driving torque to the proportion after the mode switching. When the proportion approximates to or reaches the proportion after the mode switching, the electric vehicle drive system disengages a disengagement-side clutch from among the first and second clutches.

Description

電動車両の制御方法および電動車両の駆動システムELECTRIC VEHICLE CONTROL METHOD AND ELECTRIC VEHICLE DRIVE SYSTEM
 本発明は、シリーズハイブリッドモードとエンジン直結モードとを切り換えて走行可能に構成された電動車両の制御方法および駆動システムに関する。 The present invention relates to a control method and a drive system for an electric vehicle configured to be able to run by switching between a series hybrid mode and an engine direct connection mode.
 内燃エンジンの動力により発電機を駆動し、この発電機が生じさせた電力により走行用の電気モータ(以下「走行モータ」という)を作動させるように構成されたシリーズハイブリッド型の駆動システムが知られている。JP2004-123060Aには、そのような駆動システムとして、内燃エンジンと駆動輪とを断接可能にクラッチを設け、内燃エンジンの動力を駆動輪に対して走行モータを介さずに伝達可能に構成されたものが開示されている(図7)。 There is known a series hybrid drive system configured to drive a generator by the power of an internal combustion engine and to operate an electric motor for traveling (hereinafter referred to as “traveling motor”) by electric power generated by the generator. ing. JP 2004-123060A, as such a drive system, is provided with a clutch capable of connecting and disconnecting the internal combustion engine and the drive wheels, and configured to be able to transmit the power of the internal combustion engine to the drive wheels without using a traveling motor. One is disclosed (FIG. 7).
 JP2004-123060Aに開示された駆動システムによると、内燃エンジンを駆動輪に直結させるエンジン直結モードにより走行する場合に、単に内燃エンジンと駆動輪とをクラッチを介して接続しただけでは、走行モータと駆動輪との接続が遮断されず、走行モータが駆動輪に連れ回されることになる。これにより、走行モータのフリクションが車両を推進するうえでの負荷となり、システム全体での効率を悪化させ、単位電力量当たりの走行可能距離である電費を低下させる、という問題がある。 According to the drive system disclosed in JP2004-123060A, when traveling in the engine direct connection mode in which the internal combustion engine is directly connected to the drive wheels, simply by connecting the internal combustion engine and the drive wheels via the clutch, the drive motor and the drive are driven. The connection with the wheels is not interrupted, and the traveling motor is rotated by the drive wheels. As a result, there is a problem in that the friction of the traveling motor becomes a load in propulsion of the vehicle, thereby deteriorating the efficiency of the entire system and reducing the power consumption, which is the travelable distance per unit amount of power.
 本発明は、以上の問題を考慮した電動車両の制御方法および電動車両の駆動システムを提供することを目的とする。 An object of the present invention is to provide a control method for an electric vehicle and a drive system for an electric vehicle in consideration of the above problems.
 一態様では、内燃エンジンと、内燃エンジンの動力を受けて発電可能に配設された発電モータと、発電モータが生じさせた電力により駆動可能に配設された走行モータと、を備え、内燃エンジンと駆動輪とを、第1クラッチを介して断接可能に接続する一方、走行モータと駆動輪とを、第1クラッチとは異なる第2クラッチを介して断接可能に接続し、走行モータを駆動源として、走行モータの動力を駆動輪に伝達させて走行するシリーズハイブリッドモードと、内燃エンジンおよび発電機のうち、少なくとも一方を駆動源として、当該駆動源の動力を駆動輪に伝達させて走行するエンジン直結モードと、を切換可能に構成された電動車両の制御方法が提供される。本態様では、シリーズハイブリッドモードとエンジン直結モードとを切り換えるモード切換時に、第1クラッチおよび第2クラッチの双方を締結させ、第1および第2クラッチの双方が締結している間に、内燃エンジンのトルクと走行モータのトルクとのそれぞれが車両の総駆動トルクに占める割合を、モード切換後の割合に向けて変化させ、モード切換後の割合に近接するか、到達したときに、第1および第2クラッチのうち、解放側のクラッチを解放させる。 In one aspect, an internal combustion engine includes: an internal combustion engine; a power generation motor disposed so as to be able to generate power by receiving the power of the internal combustion engine; and a traveling motor disposed so as to be driven by the electric power generated by the power generation motor. And the driving wheels are connected via a first clutch so as to be able to be connected and disconnected, while the traveling motor and the driving wheels are connected so as to be able to be connected and disconnected via a second clutch different from the first clutch. A series hybrid mode in which the power of a traveling motor is transmitted to driving wheels as a driving source to travel, and a traveling mode in which at least one of an internal combustion engine and a generator is used as a driving source and the power of the driving source is transmitted to driving wheels. And a control method for an electric vehicle configured to be able to switch between an engine direct connection mode and an engine direct connection mode. In this aspect, at the time of mode switching for switching between the series hybrid mode and the engine direct connection mode, both the first clutch and the second clutch are engaged, and while both the first and second clutches are engaged, the internal combustion engine is switched on. The ratio of each of the torque and the torque of the traveling motor to the total drive torque of the vehicle is changed toward the ratio after the mode switching, and when the ratio approaches or reaches the ratio after the mode switching, the first and the second are performed. The clutch on the release side of the two clutches is released.
 他の態様では、電動車両の駆動システムが提供される。 In another aspect, a drive system for an electric vehicle is provided.
図1は、本発明の一実施形態に係る電動車両の駆動システムの全体的な構成を示す概略図である。FIG. 1 is a schematic diagram showing an overall configuration of a drive system for an electric vehicle according to an embodiment of the present invention. 図2は、同上実施形態に係る駆動システムの、シリーズハイブリッドモードによる動作を示す説明図である。FIG. 2 is an explanatory diagram showing an operation in a series hybrid mode of the drive system according to the embodiment. 図3は、同上実施形態に係る駆動システムの、エンジン直結モードによる動作を示す説明図である。FIG. 3 is an explanatory diagram showing an operation of the drive system according to the embodiment in an engine direct connection mode. 図4は、同上実施形態に係る駆動システムの、運転領域に応じた走行モードを示す説明図である。FIG. 4 is an explanatory diagram showing a driving mode according to the driving area of the drive system according to the embodiment. 図5は、同上実施形態に係るモード切換制御の全体的な流れを示すフローチャートである。FIG. 5 is a flowchart showing an overall flow of the mode switching control according to the embodiment. 図6は、同上実施形態に係るモード切換制御の、トルク架替フェーズにおける処理の内容を示すフローチャートである。FIG. 6 is a flowchart showing the contents of a process in a torque change phase of the mode switching control according to the embodiment. 図7は、シリーズハイブリッドモードからエンジン直結モードへの切換時における、本発明の一実施形態に係るモード切換制御による動作の一例を示す説明図である。FIG. 7 is an explanatory diagram showing an example of an operation by mode switching control according to one embodiment of the present invention when switching from the series hybrid mode to the engine direct connection mode. 図8は、シリーズハイブリッドモードからエンジン直結モードへの切換時における、比較例による動作を示す説明図である。FIG. 8 is an explanatory diagram showing an operation according to a comparative example when switching from the series hybrid mode to the engine direct connection mode. 図9は、エンジン直結モードからシリーズハイブリッドモードへの切換時における、本発明の一実施形態に係るモード切換制御による動作の一例を示す説明図である。FIG. 9 is an explanatory diagram showing an example of an operation by mode switching control according to one embodiment of the present invention when switching from the engine direct connection mode to the series hybrid mode. 図10は、本発明の他の実施形態に係るモード切換制御の、トルク架替フェーズにおける処理の内容を示すフローチャートである。FIG. 10 is a flowchart showing the content of the processing in the torque change phase of the mode switching control according to another embodiment of the present invention. 図11は、シリーズハイブリッドモードからエンジン直結モードへの切換時における、本発明の他の実施形態に係るモード切換制御による動作の一例を示す説明図である。FIG. 11 is an explanatory diagram showing an example of an operation by mode switching control according to another embodiment of the present invention when switching from the series hybrid mode to the engine direct connection mode. 図12は、シリーズハイブリッドモードからエンジン直結モードへの切換時における、別の比較例による動作を示す説明図である。FIG. 12 is an explanatory diagram illustrating an operation according to another comparative example when switching from the series hybrid mode to the engine direct connection mode. 図13は、エンジン直結モードからシリーズハイブリッドモードへの切換時における、本発明の他の実施形態に係るモード切換制御による動作の一例を示す説明図である。FIG. 13 is an explanatory diagram showing an example of an operation by mode switching control according to another embodiment of the present invention when switching from the engine direct connection mode to the series hybrid mode. 図14は、シリーズハイブリッドモードからエンジン直結モードへの切換時における、本発明の更に別の実施形態に係るモード切換制御による動作の一例を示す説明図である。FIG. 14 is an explanatory diagram showing an example of an operation by mode switching control according to still another embodiment of the present invention when switching from the series hybrid mode to the engine direct connection mode.
 以下、図面を参照して、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態に係る電動車両の駆動システムSの全体的な構成を示している。 FIG. 1 shows an overall configuration of a drive system S for an electric vehicle according to an embodiment of the present invention.
 本実施形態に係る駆動システム(以下、単に「駆動システム」という)Sは、電動車両に搭載されて、当該車両の推進装置を構成する。駆動システムSは、内燃エンジン1と、発電用の電気モータ(以下「発電モータ」という)2と、走行用の電気モータ(以下「走行モータ」という)3と、を備える。 The drive system (hereinafter, simply referred to as “drive system”) S according to the present embodiment is mounted on an electric vehicle and constitutes a propulsion device of the vehicle. The drive system S includes an internal combustion engine 1, an electric motor for power generation (hereinafter, referred to as “generation motor”) 2, and an electric motor for traveling (hereinafter, referred to as “travel motor”) 3.
 内燃エンジン(以下、単に「エンジン」という)1は、その出力軸ないしクランク軸11が、複数のギアからなるギア列Gaを介して発電モータ2の回転軸21に接続されている。エンジン1のトルクがこのギア列Gaを通じて所定のギア比で発電モータ2に伝達され、発電モータ2を作動させる。本実施形態において、エンジン1と発電モータ2とのギア列Gaを介する接続は、永続的なもの、つまり、遮断不能である。 An internal combustion engine (hereinafter simply referred to as “engine”) 1 has an output shaft or crankshaft 11 connected to a rotating shaft 21 of a generator motor 2 via a gear train Ga composed of a plurality of gears. The torque of the engine 1 is transmitted to the generator motor 2 through the gear train Ga at a predetermined gear ratio, and the generator motor 2 is operated. In the present embodiment, the connection between the engine 1 and the generator motor 2 via the gear train Ga is permanent, that is, cannot be cut off.
 発電モータ2は、走行モータ3に対して電気的に接続されるとともに、バッテリ4に接続されており、エンジン1から動力の供給を受けて生じさせた電力を走行モータ3またはバッテリ4に供給する。発電モータ2から走行モータ3への電力の供給と、発電モータ2からバッテリ4への電力の供給とは、車両の運転状態およびバッテリ4の充電状態等に応じて実行することが可能である。図1は、発電モータ2、走行モータ3およびバッテリ4の間の電気的な接続を、二点鎖線により模式的に示す。 The generator motor 2 is electrically connected to the traveling motor 3 and connected to the battery 4, and supplies power generated by receiving power from the engine 1 to the traveling motor 3 or the battery 4. . The supply of electric power from the generator motor 2 to the traveling motor 3 and the supply of electric power from the generator motor 2 to the battery 4 can be executed in accordance with the operating state of the vehicle, the state of charge of the battery 4, and the like. FIG. 1 schematically shows the electrical connection between the generator motor 2, the traveling motor 3, and the battery 4 by a two-dot chain line.
 走行モータ3は、バッテリ4に対して電気的に接続されるとともに、その回転軸31が、複数のギアからなるギア列Gbを介してディファレンシャル5のリングギアに接続されている。走行モータ3のトルクがこのギア列Gbを通じて所定のギア比でディファレンシャル5に伝達され、さらに、ディファレンシャル5を介して左右の駆動軸6、6に分配されて、駆動輪7を回転させ、車両を推進させる。本実施形態において、走行モータ3は、発電機としてだけでなく、発動機としても動作可能なモータジェネレータにより構成され、車両の推進させるほか、駆動輪7からギア列Gbを介して動力の供給を受け、発電することも可能である。走行モータ3が生じさせた電力をバッテリ4に供給し、バッテリ4の充電に充てることが可能である。 The traveling motor 3 is electrically connected to the battery 4, and the rotating shaft 31 is connected to a ring gear of the differential 5 via a gear train Gb including a plurality of gears. The torque of the traveling motor 3 is transmitted to the differential 5 at a predetermined gear ratio through the gear train Gb, and is further distributed to the left and right drive shafts 6 via the differential 5 to rotate the drive wheels 7 to rotate the vehicle. Promote. In the present embodiment, the traveling motor 3 is configured by a motor generator that can operate not only as a generator but also as a motor, and in addition to propulsion of the vehicle, power is supplied from the driving wheels 7 via a gear train Gb. It is also possible to receive and generate electricity. The electric power generated by the traveling motor 3 can be supplied to the battery 4 and used for charging the battery 4.
 さらに、本実施形態において、エンジン1は、出力軸11が、複数のギアからなるギア列Gcを介してディファレンシャル5のリングギアに接続されている。エンジン1のトルクがこのギア列Gcを通じて所定のギア比でディファレンシャル5に伝達され、ディファレンシャル5を介して左右の駆動軸6、6に分配されることで、駆動輪7が回転され、車両が推進される。 Further, in the present embodiment, the output shaft 11 of the engine 1 is connected to the ring gear of the differential 5 via a gear train Gc including a plurality of gears. The torque of the engine 1 is transmitted to the differential 5 at a predetermined gear ratio through the gear train Gc, and is distributed to the left and right drive shafts 6 via the differential 5, so that the drive wheels 7 are rotated and the vehicle is propelled. Is done.
 本実施形態では、ギア列Gcとギア列Gbとのそれぞれにクラッチc1、c2が介装され、エンジン1と駆動輪7とのギア列Gcを介する接続と、走行モータ3と駆動輪7とのギア列Gbを介する接続とが、クラッチc1、c2により夫々遮断可能に構成されている。クラッチc1、c2は、いずれも噛合式のクラッチであってよく、クラッチc1、c2に適用可能なものとして、ドッグクラッチを例示することができる。本実施形態では、クラッチc1、c2として、いずれもドッククラッチを採用する。エンジン1側のギア列Gcに設けられるクラッチc1は、本実施形態に係る「第1クラッチ」を構成し、走行モータ3側のギア列Gbに設けられるクラッチc2は、本実施形態に係る「第2クラッチ」を構成する。 In the present embodiment, clutches c1 and c2 are interposed in each of the gear train Gc and the gear train Gb, and the connection between the engine 1 and the drive wheels 7 via the gear train Gc and the connection between the traveling motor 3 and the drive wheels 7 are established. The connection via the gear train Gb can be disconnected by the clutches c1 and c2, respectively. Each of the clutches c1 and c2 may be an engagement type clutch, and a dog clutch can be exemplified as one applicable to the clutches c1 and c2. In the present embodiment, a dock clutch is adopted as each of the clutches c1 and c2. The clutch c1 provided in the gear train Gc on the engine 1 side constitutes the "first clutch" according to the present embodiment, and the clutch c2 provided in the gear train Gb on the traveling motor 3 side corresponds to the "first clutch" according to the present embodiment. 2 clutches.
 エンジン1、発電モータ2、走行モータ3の動作およびクラッチc1、c2の状態は、コントローラ101により電子的に制御される。これに限定されるものではないが、コントローラ101は、電子制御ユニットとして、中央演算ユニット(CPU)、ROMおよびRAM等の各種記憶ユニット、入出力インターフェース等を備えるマイクロコンピュータにより構成される。 The operation of the engine 1, the generator motor 2, the traveling motor 3 and the states of the clutches c1, c2 are electronically controlled by the controller 101. Although not limited to this, the controller 101 is constituted by a microcomputer including a central processing unit (CPU), various storage units such as ROM and RAM, and an input / output interface as an electronic control unit.
 コントローラ101へは、車両の運転状態を示す各種パラメータの情報が入力される。本実施形態では、運転者によるアクセルペダルの操作量(以下「アクセル開度」という)APOを示す信号、車両の走行速度(以下「車速」という)VSPを示す信号、エンジン1の回転速度Nengを示す信号、発電モータ2の回転速度Nmg1を示す信号、走行モータ3の回転速度Nmg2を示す信号が、コントローラ101に入力される。そして、各種パラメータの検出のため、アクセル開度APOを検出するアクセル開度センサ201、車速VSPを検出する車速センサ202、エンジン1の回転速度Nengを単位時間当たりの回転数(以下「エンジン回転数」という)として検出するエンジン回転数センサ203、発電モータ2の回転速度Nmg1を発電モータ回転数として検出する発電モータ回転数センサ204、走行モータ3の回転速度Nmg2を走行モータ回転数として検出する走行モータ回転数センサ205が設けられる。 (4) Information of various parameters indicating the driving state of the vehicle is input to the controller 101. In the present embodiment, a signal indicating the amount of operation of the accelerator pedal (hereinafter, referred to as “accelerator opening”) APO by the driver, a signal indicating the traveling speed of the vehicle (hereinafter, referred to as “vehicle speed”) VSP, and the rotation speed Neng of the engine 1 are shown. A signal indicating the rotation speed Nmg1 of the generator motor 2 and a signal indicating the rotation speed Nmg2 of the traveling motor 3 are input to the controller 101. In order to detect various parameters, the accelerator opening sensor 201 for detecting the accelerator opening APO, the vehicle speed sensor 202 for detecting the vehicle speed VSP, and the rotation speed Neng of the engine 1 are referred to as the number of rotations per unit time (hereinafter referred to as “engine rotation speed”). )), A generator motor speed sensor 204 that detects the rotational speed Nmg1 of the generator motor 2 as the generator motor speed, and a travel that detects the rotational speed Nmg2 of the travel motor 3 as the travel motor speed. A motor speed sensor 205 is provided.
 コントローラ101は、入力した各種信号に基づき、所定の演算を実行して、エンジン1、発電モータ2および走行モータ3の動作を制御するほか、クラッチc1、c2の状態を制御する。 The controller 101 performs a predetermined calculation based on the input various signals to control the operations of the engine 1, the generator motor 2 and the traveling motor 3, and also controls the states of the clutches c1 and c2.
 本実施形態では、実際の走行に際し、シリーズハイブリッドモードとエンジン直結モードとで走行モードを切り換えることが可能である。シリーズハイブリッドモードでは、走行モータ3が車両の駆動源とされ、エンジン直結モードでは、基本的には、エンジン1が車両の駆動源とされる。 In the present embodiment, it is possible to switch the running mode between the series hybrid mode and the engine direct mode in actual running. In the series hybrid mode, the traveling motor 3 is used as a drive source of the vehicle. In the engine direct connection mode, basically, the engine 1 is used as a drive source of the vehicle.
 図2および3は、駆動システムSの走行モードに応じた動作を示し、図2は、シリーズハイブリッドモードによる場合の動作を、図3は、エンジン直結モードによる場合の動作を、夫々示している。図2および3は、動力が伝達される経路を、矢印付きの太い点線により示しており、矢印は、動力が伝達される方向を示している。 FIGS. 2 and 3 show the operation according to the traveling mode of the drive system S. FIG. 2 shows the operation in the series hybrid mode, and FIG. 3 shows the operation in the engine direct connection mode. 2 and 3 show the path through which the power is transmitted by a thick dotted line with an arrow, and the arrow indicates the direction in which the power is transmitted.
 シリーズハイブリッドモードでは、図2に示すように、クラッチc1を解放させる一方、クラッチc2を締結させ、エンジン1のトルクを、ギア列Gaを通じて発電モータ2に伝達可能とするとともに、走行モータ3のトルクを、ギア列Gbを通じてディファレンシャル5および駆動輪7に伝達可能とする。 In the series hybrid mode, as shown in FIG. 2, the clutch c1 is released, the clutch c2 is engaged, and the torque of the engine 1 can be transmitted to the generator motor 2 through the gear train Ga. Can be transmitted to the differential 5 and the drive wheels 7 through the gear train Gb.
 他方で、エンジン直結モードでは、図3に示すように、クラッチc1を締結させる一方、クラッチc2を解放させ、エンジン1のトルクを、ギア列Gcを通じてディファレンシャル5および駆動輪7に伝達可能とする。ここで、走行モータ3と駆動輪7とをつなぐ動力伝達経路上のクラッチc2が遮断された状態にあることで、走行モータ3と駆動輪7との間における動力の伝達が遮断され、駆動輪7の回転に伴って走行モータ3が連れ回されるのが回避される。エンジン直結モードでは、発電モータ2がモータジェネレータにより構成される場合に、エンジン1だけでなく、発電モータ2のトルクを、ギア列Ga、Gcを通じて駆動輪7に伝達させることも可能である。 On the other hand, in the engine direct connection mode, as shown in FIG. 3, the clutch c1 is engaged and the clutch c2 is released, so that the torque of the engine 1 can be transmitted to the differential 5 and the drive wheels 7 through the gear train Gc. Here, since the clutch c2 on the power transmission path connecting the traveling motor 3 and the driving wheel 7 is in a disconnected state, the transmission of power between the traveling motor 3 and the driving wheel 7 is blocked, and the driving wheel The traveling motor 3 is prevented from being rotated together with the rotation of the motor 7. In the engine direct connection mode, when the power generation motor 2 is configured by a motor generator, the torque of the power generation motor 2 as well as the engine 1 can be transmitted to the drive wheels 7 through the gear trains Ga and Gc.
 シリーズハイブリッドモードとエンジン直結モードとの切換えは、コントローラ101からの信号に基づき、クラッチc1、c2の締結および解放の状態を切り換えることにより実行される。 Switching between the series hybrid mode and the engine direct connection mode is performed by switching the engagement and disengagement states of the clutches c1 and c2 based on a signal from the controller 101.
 図4は、車両の運転領域に応じた走行モードを示している。 FIG. 4 shows a traveling mode according to the driving area of the vehicle.
 大まかには、高速域でエンジン直結モードが選択され、それ以外の領域でシリーズハイブリッドモードが選択される。本実施形態では、高速域のうち、特に負荷が比較的低い領域Bでエンジン直結モードが、それ以外の領域Aでシリーズハイブリッドモードが、夫々選択される。コントローラ101は、車速VSPおよびアクセル開度APOをもとに、車両の運転状態が属する運転領域A、Bを判定し、その判定結果に応じて走行モードを切り換える。 Roughly, the direct engine mode is selected in the high-speed range, and the series hybrid mode is selected in other areas. In the present embodiment, in the high-speed region, the engine direct connection mode is selected in a region B where the load is relatively low, and the series hybrid mode is selected in the other region A. The controller 101 determines the driving regions A and B to which the driving state of the vehicle belongs based on the vehicle speed VSP and the accelerator opening APO, and switches the driving mode according to the determination result.
 走行モードの切換えに係る制御(以下「モード切換制御」という)について、以下に説明する。フローチャートを参照してその全体的な流れを説明した後、タイムチャートを参照してより具体的に説明する。 制 御 The control relating to the switching of the traveling mode (hereinafter referred to as “mode switching control”) will be described below. After describing the overall flow with reference to a flowchart, a more specific description will be made with reference to a time chart.
 図5は、モード切換制御の全体的な流れを示し、図6は、モード切換制御のうち、トルク架替フェーズにおける処理の内容を示している。本実施形態において、コントローラ101は、モード切換制御を所定の周期で実行するようにプログラムされている。 FIG. 5 shows the overall flow of the mode switching control, and FIG. 6 shows the contents of the processing in the torque switching phase in the mode switching control. In the present embodiment, the controller 101 is programmed to execute the mode switching control at a predetermined cycle.
 図5に示すフローチャートにおいて、S101では、車両の運転状態を読み込む。具体的には、モード切換制御に係る運転状態として、アクセル開度APO、車速VSP、エンジン回転数Neng、発電モータ回転数Nmg1および走行モータ回転数Nmg2を読み込む。 In the flowchart shown in FIG. 5, in S101, the driving state of the vehicle is read. Specifically, an accelerator opening APO, a vehicle speed VSP, an engine speed Neng, a power generation motor speed Nmg1 and a traveling motor speed Nmg2 are read as the operation states related to the mode switching control.
 S102では、モード切換時にあるか否かを判定する。具体的には、アクセル開度APOおよび車速VSPにより定められる車両の運転状態が、図4に示す運転領域のうち、シリーズハイブリッドモードによる領域Aからエンジン直結モードによる領域Bへ移行したかまたはその反対に領域Bから領域Aへ移行したか否かを判定する。運転領域A、Bの間で運転状態の移行が生じ、モード切換時にある場合は、S103へ進み、モード切換時にない場合は、今回のルーチンによる制御を終了する。 In S102, it is determined whether or not the mode is switched. Specifically, the operating state of the vehicle determined by accelerator opening APO and vehicle speed VSP has shifted from area A in the series hybrid mode to area B in the direct engine mode in the operating area shown in FIG. 4, or vice versa. It is determined whether or not the state has shifted from the area B to the area A. If a transition of the operating state occurs between the operating regions A and B and the mode is being switched, the process proceeds to S103. If the mode is not switched, the control by this routine is ended.
 S103では、締結側のクラッチに対し、その駆動要素と従動要素との回転速度を一致させる制御(以下「回転同期制御」という)を開始する。ここで、締結側のクラッチとは、モード切換後に締結される(換言すれば、モード切換前に解放された状態にある)クラッチをいい、例えば、シリーズハイブリッドモードからエンジン直結モードへの切換えの場合に、ギア列Gcに設けられるクラッチc1が該当する。そして、この場合の回転同期制御として、発電モータ2によりトルクを生じさせ、発電モータ回転数Nmg1を上昇させる。回転同期制御は、発電モータ2に代えるかまたは発電モータ2とともに、エンジン1によりトルクを生じさせることによっても実行可能である。 In S103, control for matching the rotational speeds of the drive element and the driven element of the clutch on the engagement side (hereinafter referred to as “rotational synchronization control”) is started. Here, the clutch on the engagement side refers to a clutch that is engaged after mode switching (in other words, is in a released state before mode switching). For example, in the case of switching from the series hybrid mode to the engine direct connection mode Corresponds to the clutch c1 provided in the gear train Gc. Then, as the rotation synchronization control in this case, a torque is generated by the generator motor 2 to increase the generator motor rotation speed Nmg1. The rotation synchronization control can also be executed by generating torque with the engine 1 instead of the power generation motor 2 or together with the power generation motor 2.
 S104では、回転同期が完了したか否かを判定する。この判定は、例えば、締結側のクラッチの駆動要素と従動要素との回転速度の差が所定の値にまで減少したか否かにより行い、所定の値にまで減少したこともって回転同期が完了したものと判定する。回転同期が完了した場合は、S105へ進み、完了していない場合は、完了するまでS104の判定を繰り返す。回転同期が完了したか否かの判定は、これに限らず、回転速度の差が所定の値以下である状態が所定の時間に亘って継続したか否かにより行うことも可能である。 In S104, it is determined whether the rotation synchronization has been completed. This determination is made, for example, based on whether or not the difference in rotation speed between the driving element and the driven element of the clutch on the engagement side has decreased to a predetermined value, and the rotation synchronization has been completed when the difference has decreased to the predetermined value. Is determined. When the rotation synchronization is completed, the process proceeds to S105, and when not completed, the determination of S104 is repeated until the rotation synchronization is completed. The determination as to whether or not the rotation synchronization has been completed is not limited to this, and may be made based on whether or not the state in which the difference between the rotation speeds is equal to or less than a predetermined value has continued for a predetermined time.
 S105では、締結側のクラッチに対し、これを締結させる指令を出力する。クラッチc1、c2が、アクチュエータ(例えば、サーボ型の電気モータ)の動作を、カムおよびレバー等からなるリンク機構を介して駆動要素または従動要素の移動に変換するものである場合に、このアクチュエータに対し、クラッチを締結させる方向に動作させる指令を出力する。 In S105, a command to engage the clutch is output to the clutch on the engagement side. When the clutches c1 and c2 convert the operation of an actuator (for example, a servo-type electric motor) into movement of a driving element or a driven element via a link mechanism including a cam and a lever, the clutch c1, c2 On the other hand, a command to operate in the direction to engage the clutch is output.
 S106では、クラッチの締結が完了したか否かを判定する。この判定は、例えば、クラッチc1、c2のアクチュエータ(具体的には、その可動部)が、締結時の目標とする位置に到達したか否かにより行うことが可能である。クラッチの締結が完了した場合は、トルク架替フェーズにおける処理を実行するため、図6に示すフローチャートのS201に進み、完了していない場合は、完了するまでS106の判定を繰り返す。 In S106, it is determined whether the engagement of the clutch has been completed. This determination can be made, for example, based on whether or not the actuators of the clutches c1 and c2 (specifically, the movable parts thereof) have reached a target position at the time of engagement. When the engagement of the clutch is completed, the process proceeds to S201 of the flowchart shown in FIG. 6 to execute the process in the torque transfer phase, and when not completed, the determination of S106 is repeated until the completion.
 S107では、走行モードの切換えが完了したと判定し、その後、今回のルーチンによる処理を終了する。 In S107, it is determined that the switching of the traveling mode has been completed, and thereafter, the processing of this routine is ended.
 図6のフローチャートに移り、S201では、解放側のクラッチを解放させる指令を出力する。例えば、クラッチc1、c2のアクチュエータに対し、クラッチを解放させる方向に動作させる指令を出力する。ここで、解放側のクラッチとは、モード切換後に解放される(換言すれば、モード切換前に締結された状態にある)クラッチをいい、例えば、シリーズハイブリッドモードからエンジン直結モードへの切換えの場合に、ギア列Gbに設けられるクラッチc2が該当する。 移 Moving to the flowchart of FIG. 6, in S201, a command to release the clutch on the release side is output. For example, a command to operate the clutches c1 and c2 in a direction to release the clutch is output. Here, the release-side clutch means a clutch that is released after the mode switching (in other words, is in a state of being engaged before the mode switching). For example, in the case of switching from the series hybrid mode to the engine direct connection mode Corresponds to the clutch c2 provided in the gear train Gb.
 S202では、モード切換前の駆動源とモード切換後の駆動源とに対し、これらの駆動源の間でトルクを架け替える制御を開始する。説明の便宜上、これをシリーズハイブリッドモードからエンジン直結モードへの切換時について説明すると、トルクの架替えは、モード切換前の駆動源である走行モータ3のトルクを減少させるとともに、これに応じてモード切換後の駆動源であるエンジン1のトルクを増大させる制御として具現される。 In S202, control for changing the torque between the driving source before the mode switching and the driving source after the mode switching is started between these driving sources. For convenience of explanation, this will be described at the time of switching from the series hybrid mode to the engine direct connection mode. To change the torque, the torque of the traveling motor 3 which is the driving source before the mode switching is reduced, and the mode is changed accordingly. This is embodied as control for increasing the torque of the engine 1, which is the drive source after switching.
 S203では、クラッチの解放が完了したか否かを判定する。この判定は、例えば、クラッチc1、c2のアクチュエータ(具体的には、その可動部)が、解放時の目標とする位置に到達したか否かにより行うことが可能である。クラッチの解放が完了した場合は、図5のフローチャートに戻り、完了していない場合は、完了するまでS203の判定を繰り返す。 In S203, it is determined whether the release of the clutch has been completed. This determination can be made, for example, based on whether or not the actuators (specifically, the movable parts thereof) of the clutches c1 and c2 have reached a target position at the time of disengagement. When the release of the clutch is completed, the process returns to the flowchart of FIG. 5, and when the release is not completed, the determination in S203 is repeated until the release is completed.
 タイムチャートによる説明に移る。図7および9は、本実施形態に係るモード切換制御による駆動ユニットSの動作を示し、図7は、シリーズハイブリッドモードからエンジン直結モードへの切換時における動作を、図9は、エンジン直結モードからシリーズハイブリッドモードへの切換時における動作を、夫々示している。図8は、シリーズハイブリッドモードからエンジン直結モードへの切換時における、比較例による動作を示している。図7~9は、回転速度NおよびトルクTrqのうち、エンジン1のものを実線により、発電モータ2のものを点線により、走行モータ3のものを二点鎖線により示すとともに、駆動システムSの出力、つまり、駆動軸6の回転速度およびトルクを、特に太い実線により示している。 移 Move to the explanation based on the time chart. 7 and 9 show the operation of the drive unit S by the mode switching control according to the present embodiment. FIG. 7 shows the operation at the time of switching from the series hybrid mode to the engine direct connection mode, and FIG. Operations at the time of switching to the series hybrid mode are shown respectively. FIG. 8 shows an operation according to a comparative example when switching from the series hybrid mode to the engine direct mode. 7 to 9 show, among the rotation speed N and the torque Trq, those of the engine 1 by a solid line, those of the generator motor 2 by a dotted line, those of the traveling motor 3 by a two-dot chain line, and the output of the drive system S. That is, the rotation speed and torque of the drive shaft 6 are indicated by a particularly thick solid line.
 シリーズハイブリッドモードからエンジン直結モードへの切換時(図7)では、モード切換時にあるとの判定後(時刻t11)、締結側のクラッチであるクラッチc1に対する回転同期制御を開始する(回転同期フェーズPsyn)。具体的には、発電モータ2によりトルクTrqmg1を生じさせて、発電モータ回転数Nmg1およびモード切換後の駆動源であるエンジン1の回転速度(エンジン回転数)Nengを上昇させ、発電モータ回転数Nmg1を駆動軸6の回転速度相当の出力回転数Noutに近付ける。出力回転数Noutと発電モータ回転数Nmg1との差ΔN(=Nout-Nmg1)が所定の値にまで減少するかまたは回転速度の差ΔNが所定の値以下である状態が所定の時間に亘って継続した場合は(時刻t21)、回転同期が完了したとして、クラッチ締結フェーズPegmに移行し、クラッチc1を締結させる。クラッチc1の締結が完了すると(時刻t31)、トルク架替フェーズPswtに移行する。ここで、回転同期フェーズPsynからクラッチ締結フェーズPegmにかけて解放側のクラッチであるクラッチc2を締結させた状態が維持され、トルク架替フェーズPswtでは、クラッチc1、c2の双方を締結させた状態が形成される。そして、本実施形態では、トルク架替フェーズPswtへの移行と同時に(時刻t31)、クラッチc2を解放させる指令を出力する。トルク架替フェーズPswtでは、駆動軸6にかかるトルク、つまり、車両の総駆動トルクTrqttlを一定に保ちながら、エンジン1のトルクTrqengを上昇させる一方、走行モータ3のトルクTrqmg2を減少させる。そして、エンジン1のトルクTrqengが総駆動トルクTrqttlに一致するか、走行モータ3のトルクTrqmg2が0にまで減少したことをもってトルクの架替えが完了したものと判定し(時刻t41)、クラッチc2の解放を待ってモード切換制御を終了する(時刻51)。 At the time of switching from the series hybrid mode to the engine direct connection mode (FIG. 7), after determining that the mode is being switched (time t11), the rotation synchronization control for the clutch c1, which is the engagement side clutch, is started (rotation synchronization phase Psyn). ). Specifically, a torque Trqmg1 is generated by the power generation motor 2 to increase the rotation speed Nmg1 of the power generation motor and the rotation speed (engine speed) Neng of the engine 1 which is the driving source after the mode switching, and the rotation speed Nmg1 of the power generation motor Nmg1. Closer to the output rotation speed Nout corresponding to the rotation speed of the drive shaft 6. The state in which the difference ΔN (= Nout−Nmg1) between the output rotation speed Nout and the power generation motor rotation speed Nmg1 decreases to a predetermined value or the rotation speed difference ΔN is equal to or less than a predetermined value for a predetermined period of time. If continued (time t21), it is determined that the rotation synchronization has been completed, and the process shifts to the clutch engagement phase Pegm to engage the clutch c1. When the engagement of the clutch c1 is completed (time t31), the process proceeds to the torque replacement phase Pswt. Here, from the rotation synchronization phase Psyn to the clutch engagement phase Pegm, the state in which the clutch c2 as the disengagement side clutch is engaged is maintained, and in the torque change phase Pswt, the state in which both the clutches c1 and c2 are engaged is formed. Is done. In the present embodiment, a command to release the clutch c2 is output at the same time as the transition to the torque change phase Pswt (time t31). In the torque replacement phase Pswt, the torque Trqeng of the engine 1 is increased while the torque Trqmg2 of the traveling motor 3 is decreased while the torque applied to the drive shaft 6, that is, the total drive torque Trqttl of the vehicle is kept constant. Then, it is determined that the torque switching has been completed when the torque Trqeng of the engine 1 matches the total drive torque Trqttl or the torque Trqmg2 of the traveling motor 3 has decreased to 0 (time t41), and the clutch c2 After release, the mode switching control ends (time 51).
 エンジン直結モードからシリーズハイブリッドモードへの切換時(図9)についても同様である。モード切換時にあるとの判定後(時刻t13)、締結側のクラッチであるクラッチc2に対する回転同期制御を開始し、走行モータ3によりトルクTrqmg2を生じさせて、走行モータ回転数Nmg2を上昇させ、これを出力回転数Noutに近付ける。出力回転数Noutと走行モータ回転数Nmg2との差ΔN(=Nout-Nmg2)が所定の値にまで減少するかまたは回転速度の差ΔNが所定の値以下である状態が所定の時間に亘って継続した場合は(時刻t23)、回転同期が完了したとして、クラッチ締結フェーズPegmに移行し、クラッチc2を締結させる。クラッチc2の締結が完了すると(時刻t33)、トルク架替フェーズPswtに移行し、車両の総駆動トルクTrqttlを一定に保ちながら、走行モータ3のトルクTrqmg2を上昇させ、エンジン1のトルクTrqengを減少させる。先に述べたエンジン直結モードへの移行時と同様に、回転同期フェーズPsynからクラッチ締結フェーズPegmにかけて解放側のクラッチであるクラッチc1を締結させた状態が維持され、トルク架替フェーズPswtでは、クラッチc1、c2の双方を締結させた状態が形成される。トルク架替フェーズPswtへの移行と同時に(時刻t33)、クラッチc1を解放させる指令を出力するのも、先に述べたのと同様である。そして、走行モータ3のトルクTrqmg2が総駆動トルクTrqttlに一致するか、エンジン1のトルクTrqengが0にまで減少したことをもってトルクの架替えが完了したものと判定し(時刻t43)、クラッチc1の解放を待ってモード切換制御を終了する(時刻53)。 同 様 The same applies when switching from the direct engine mode to the series hybrid mode (FIG. 9). After it is determined that the mode is being switched (time t13), the rotation synchronization control for the clutch c2, which is the engagement side clutch, is started, and the traveling motor 3 generates the torque Trqmg2 to increase the traveling motor rotation speed Nmg2. Near the output rotation speed Nout. The state in which the difference ΔN (= Nout−Nmg2) between the output rotation speed Nout and the traveling motor rotation speed Nmg2 decreases to a predetermined value or the rotation speed difference ΔN is equal to or less than a predetermined value for a predetermined period of time. If continued (time t23), it is determined that the rotation synchronization has been completed, and the process shifts to the clutch engagement phase Pegm to engage the clutch c2. When the engagement of the clutch c2 is completed (time t33), the process proceeds to the torque replacement phase Pswt, and the torque Trqmg2 of the traveling motor 3 is increased while the total driving torque Trqttl of the vehicle is kept constant, and the torque Trqeng of the engine 1 is reduced. Let it. In the same manner as in the transition to the direct engine connection mode described above, the state in which the clutch c1 as the disengagement side clutch is engaged is maintained from the rotation synchronization phase Psyn to the clutch engagement phase Pegm. A state where both c1 and c2 are fastened is formed. At the same time as the shift to the torque transfer phase Pswt (time t33), the command to release the clutch c1 is output in the same manner as described above. Then, it is determined that the torque switching has been completed when the torque Trqmg2 of the traveling motor 3 matches the total drive torque Trqttl or the torque Trqeng of the engine 1 has decreased to 0 (time t43), and the clutch c1 After the release, the mode switching control ends (time 53).
 図8は、比較例として、シリーズハイブリッドモードからエンジン直結モードへの切換時を例に、クラッチc1の締結とクラッチc2の解放とを同時に開始した場合の動作を示している。 FIG. 8 shows the operation when the engagement of the clutch c1 and the release of the clutch c2 are started simultaneously at the time of switching from the series hybrid mode to the direct engine connection mode as a comparative example.
 モード切換時にあるとの判定後(時刻t12)、クラッチc1を対象とした回転同期と、クラッチc2の解放を目的としたモータトルクTrqmg2の減少と、を同時に開始する。ここで、発電モータ回転数Nmg1を出力回転数Noutに充分に近付けるには相応の時間を要することから、クラッチc2が先に解放され(時刻t22)、これに続いて回転同期が達成され(時刻t32)、クラッチc1が締結されることになる(時刻t42)。 (4) After the determination that the mode switching is being performed (time t12), the rotation synchronization for the clutch c1 and the decrease in the motor torque Trqmg2 for the purpose of releasing the clutch c2 are simultaneously started. Here, since it takes a certain time to sufficiently bring the generator motor speed Nmg1 close to the output speed Nout, the clutch c2 is released first (time t22), and subsequently the rotation synchronization is achieved (time t22). At t32), the clutch c1 is engaged (time t42).
 そうすると、比較例では、クラッチc2が解放された時刻t22から、クラッチc1の締結が完了する時刻t42までの期間PRDnに、クラッチc1、c2のいずれもが解放され、駆動輪7に対する動力の伝達がない状態、つまり、いわゆるニュートラル状態が形成されるため、運転性が損なわれる。このことは、エンジン直結モードからシリーズハイブリッドモードへの切換えにおいても同様に妥当する問題である。 Then, in the comparative example, in a period PRDn from the time t22 when the clutch c2 is released to the time t42 when the engagement of the clutch c1 is completed, both the clutches c1 and c2 are released, and the transmission of power to the drive wheels 7 is stopped. Since no state, that is, a so-called neutral state is formed, drivability is impaired. This is a problem that is similarly valid when switching from the engine direct connection mode to the series hybrid mode.
 これに対し、本実施形態では、締結側のクラッチを締結させた後、クラッチc1、c2がいずれも締結している状態でトルクの架替えを行い、解放側のクラッチを解放させることで、モード切換期間全体を通じて駆動システムSがニュートラル状態となるのが回避される。 On the other hand, in the present embodiment, after the clutch on the engagement side is engaged, the torque is changed in a state where both the clutches c1 and c2 are engaged, and the clutch on the release side is disengaged. The drive system S is prevented from entering a neutral state throughout the switching period.
 (作用効果の説明)
 本実施形態に係る電動車両の駆動システムSは、以上のように構成され、本実施形態により得られる効果について、以下に説明する。
(Explanation of effects)
The drive system S for an electric vehicle according to the present embodiment is configured as described above, and effects obtained by the present embodiment will be described below.
 第1に、エンジン1と駆動輪7とをつなぐ動力伝達経路上にクラッチc1を介装し、エンジン1と駆動輪7との接続を遮断可能とするとともに、走行モータ3と駆動輪7とをつなぐ動力伝達経路上にクラッチc2を介装し、走行モータ3と駆動輪7との接続も遮断可能とした。これにより、シリーズハイブリッドモードによる走行中は、クラッチc1を解放させて、エンジン1および発電モータ2が連れ回されるのを回避し、エンジン直結モードによる走行中は、クラッチc2を解放させて、走行モータ3が連れ回されるのを回避することができる。よって、電費の低下を抑えた効率的な駆動システムSの構築が可能となる。 First, a clutch c1 is interposed on a power transmission path connecting the engine 1 and the drive wheels 7 so that the connection between the engine 1 and the drive wheels 7 can be cut off. A clutch c2 is interposed on the power transmission path to be connected, so that the connection between the traveling motor 3 and the driving wheels 7 can be cut off. Thus, during traveling in the series hybrid mode, the clutch c1 is released to prevent the engine 1 and the generator motor 2 from being driven together, and during traveling in the direct engine mode, the clutch c2 is released to travel. It is possible to avoid the motor 3 from being rotated. Thus, it is possible to construct an efficient drive system S that suppresses a decrease in electric cost.
 そして、モード切換時に、締結側のクラッチを締結させた後にトルク架替フェーズに移行し、クラッチc1、c2がいずれも締結している状態でトルクの架替えを行うことで、モードの切換えに際し、駆動システムSがニュートラル状態となるのを回避して、より適切に切換えを実行することが可能となる。ここで、トルクの架替えに際してクラッチc1、c2がいずれも締結している状態にあることで、解放側でのトルクの低減と締結側でのトルクの増大とを、総駆動トルクTrqttlを一定に保ちながら行うことが可能となり、運転性の悪化を抑制し、モードの切換前後を通じて運転性を維持することができる。 Then, at the time of mode switching, the process shifts to the torque change phase after the engagement side clutch is engaged, and the torque is changed while both clutches c1 and c2 are engaged, so that when the mode is switched, It is possible to prevent the drive system S from entering the neutral state, and to perform the switching more appropriately. Here, since the clutches c1 and c2 are both engaged when the torque is changed, the reduction of the torque on the disengagement side and the increase of the torque on the engagement side are performed by keeping the total drive torque Trqttl constant. It is possible to perform while maintaining, and it is possible to suppress deterioration of drivability, and to maintain drivability before and after mode switching.
 第2に、クラッチの締結後、モード切換前の駆動源のトルク(例えば、シリーズハイブリッドモードからエンジン直結モードへのモード切換時では、走行モータ3のトルクTrqmg2)が0にまで減少する前、本実施形態では、走行モータ3のトルクを減少させ始めるのと同時に、解放側のクラッチに対し、これを解放させる指令を出力した。これにより、解放側でトルクが0に達した後、速やかにクラッチを解放させ、連れ回りによる効率の悪化を抑制することが可能となる。 Second, after the clutch is engaged, the torque of the drive source before the mode switching (for example, at the time of mode switching from the series hybrid mode to the engine direct mode, before the torque Trqmg2 of the traveling motor 3) decreases to zero before the mode switching. In the embodiment, at the same time that the torque of the traveling motor 3 starts to be decreased, a command to release the clutch is output to the disengagement side clutch. This makes it possible to release the clutch immediately after the torque reaches 0 on the release side, and to suppress the deterioration in efficiency due to the co-rotation.
 第3に、クラッチc1、c2に噛合式のクラッチ、特にドッグクラッチを採用したことで、コストを抑えながら、重量の低減により、より効率的なシステムの構築が可能となる。 Third, the adoption of a meshing clutch, particularly a dog clutch, for the clutches c1 and c2 makes it possible to construct a more efficient system by reducing weight while reducing costs.
 (他の実施形態の説明)
 本発明の他の実施形態について、以下に説明する。
(Description of Another Embodiment)
Another embodiment of the present invention will be described below.
 図10は、本発明の他の実施形態に係るモード切換制御の、トルク架替フェーズにおける処理の内容を示すフローチャートである。 FIG. 10 is a flowchart showing the content of the processing in the torque change phase of the mode switching control according to another embodiment of the present invention.
 本実施形態に係る駆動システムSの構成は、図1に示すのと同様であってよく、モード切換制御の全体的な流れは、図5に示すのと同様であってよい。 The configuration of the drive system S according to the present embodiment may be the same as that shown in FIG. 1, and the overall flow of the mode switching control may be the same as that shown in FIG.
 図10に示すフローチャートにおいて、S301では、解放側のクラッチを解放させる指令を出力する。例えば、クラッチのアクチュエータに対し、クラッチを解放させる方向に動作させる指令を出力する。 In the flowchart shown in FIG. 10, in S301, a command to release the clutch on the release side is output. For example, a command to operate the clutch actuator in a direction to release the clutch is output.
 S302~304では、締結側と解放側との間でトルクの架替えを行う制御を実行する。本実施形態に係るトルクの架替えは、解放側のクラッチを介して駆動輪7に伝達されるトルクを所定の時間(以下「目標架替時間」という)をかけて0にまで低減させるとともに、低減分のトルクを、締結側のクラッチを介して駆動輪7に伝達されるトルクを増大させることにより補う制御として具現される。説明の便宜上、シリーズハイブリッドモードからエンジン直結モードへの切換時について説明する。 In steps S302 to S304, control for changing the torque between the engagement side and the release side is executed. In the change of the torque according to the present embodiment, the torque transmitted to the drive wheels 7 via the release-side clutch is reduced to 0 over a predetermined time (hereinafter, referred to as “target change time”), The reduced torque is embodied as a control that compensates for the increased torque by increasing the torque transmitted to the drive wheels 7 via the clutch on the engagement side. For convenience of explanation, the case of switching from the series hybrid mode to the engine direct connection mode will be described.
 S302では、走行モータ3に対する指令トルクTcmd_mg2を算出する。走行モータ指令トルクTcmd_mg2は、次式(1.1)により算出される架替時計算トルクTcal_mg2と、切換後目標トルクTtrg_mg2と、のうち、小さい方の値に設定する。切換後目標トルクTtrg_mg2は、アクセル開度APOおよび車速VSP等、車両の運転状態をもとに設定することが可能である。 In S302, a command torque Tcmd_mg2 for the traveling motor 3 is calculated. The traveling motor command torque Tcmd_mg2 is set to the smaller one of the replacement calculated torque Tcal_mg2 calculated by the following equation (1.1) and the post-switch target torque Ttrg_mg2. The post-switch target torque Ttrg_mg2 can be set based on the operating state of the vehicle, such as the accelerator opening APO and the vehicle speed VSP.
 Tcal_mg2=(Ttrg_mg2-Tcal_mg2n-1)/(tswt-t)+Tcal_mg2n-1 …(1.1)
 上式(1.1)中、Tcal_mg2n-1は、架替時計算トルクの前回値であり、tswtは、目標架替時間であり、tは、架替えを開始してからの経過時間である。
Tcal_mg2 = (Ttrg_mg2-Tcal_mg2 n-1 ) / (tswt-t) + Tcal_mg2 n-1 (1.1)
In the above equation (1.1), Tcal_mg2 n-1 is the previous value of the calculated torque at the time of transfer, tswt is the target transfer time, and t is the elapsed time since the start of the transfer. is there.
 S303では、エンジン1に対する指令トルクTcmd_engを算出する。エンジン指令トルクTcmd_engは、次式(1.2)により算出される架替時計算トルクTcal_engと、切換後目標トルクTtrg_engと、のうち、小さい方の値に設定する。切換後目標トルクTtrg_engは、車両の運転状態をもとに設定することが可能である。 In S303, the command torque Tcmd_eng for the engine 1 is calculated. The engine command torque Tcmd_eng is set to the smaller one of the replacement calculated torque Tcal_eng calculated by the following equation (1.2) and the post-switch target torque Ttrg_eng. The post-switch target torque Ttrg_eng can be set based on the driving state of the vehicle.
 Tcal_eng=(Ttrg_eng-Tcal_engn-1)/(tswt-t)+Tcal_engn-1 …(1.2)
 上式(1.2)中、Tcal_engn-1は、架替時計算トルクの前回値である。
Tcal_eng = (Ttrg_eng−Tcal_eng n−1 ) / (tswt−t) + Tcal_eng n−1 (1.2)
In the above equation (1.2), Tcal_eng n-1 is the previous value of the calculated torque at the time of replacement.
 S304では、発電モータ2に対する指令トルクTcmd_mg1を算出する。発電モータ指令トルクTcmd_mg1は、次式(1.3)により算出される架替時計算トルクTcal_mg1と、切換後目標トルクTtrg_mg1と、のうち、小さい方の値に設定する。切換後目標トルクTtrg_mg1は、車両の運転状態をもとに設定することが可能である。 In S304, a command torque Tcmd_mg1 for the generator motor 2 is calculated. The generation motor command torque Tcmd_mg1 is set to the smaller one of the replacement calculated torque Tcal_mg1 calculated by the following equation (1.3) and the post-switch target torque Ttrg_mg1. The post-switch target torque Ttrg_mg1 can be set based on the driving state of the vehicle.
 Tcal_mg1=Ttrg_ttl-{(Tcmd_mg2×Rmg2+Tcmd_eng×Reng)/Reng}×Rmg1 …(1.3)
 上式(1.3)中、Ttrg_ttlは、車両の運転状態に応じた総駆動トルクの目標値であり、Rmg1は、ギア列Gaのギア比であり、Rmg2は、ギア列Gbのギア比であり、Rengは、ギア列Gcのギア比である。
Tcal_mg1 = Ttrg_ttl − {(Tcmd_mg2 × Rmg2 + Tcmd_eng × Reng) / Reng} × Rmg1 (1.3)
In the above equation (1.3), Ttrg_ttl is a target value of the total drive torque according to the driving state of the vehicle, Rmg1 is the gear ratio of the gear train Ga, and Rmg2 is the gear ratio of the gear train Gb. Yes, Reng is the gear ratio of the gear train Gc.
 つまり、上式(1.3)は、走行モータ指令トルクTcmd_mg2とエンジン指令トルクTcmd_engとの合計トルクの、総駆動トルクの目標値Ttrg_ttlに対する不足分を、発電モータ指令トルクTcmd_mg1に設定することを意味する。 That is, the above equation (1.3) means that the shortage of the total torque of the traveling motor command torque Tcmd_mg2 and the engine command torque Tcmd_eng with respect to the total drive torque target value Ttrg_ttl is set to the generation motor command torque Tcmd_mg1. I do.
 他方で、エンジン直結モードからシリーズハイブリッドモードへの切換時では、発電モータ指令トルクTcmd_mg1とエンジン指令トルクTcmd_engとの合計トルクの、総駆動トルクの指令値Tcmd_ttlに対する不足分を、走行モータ指令トルクTcmd_mg2に設定することになる。その場合の架替時計算トルクは、次式(2.1)~(2.3)により夫々算出することが可能である。 On the other hand, at the time of switching from the engine direct connection mode to the series hybrid mode, the shortage of the total torque of the generation motor command torque Tcmd_mg1 and the engine command torque Tcmd_eng with respect to the command value Tcmd_ttl of the total drive torque is converted to the traveling motor command torque Tcmd_mg2. Will be set. In this case, the calculated torque at the time of replacement can be calculated by the following equations (2.1) to (2.3).
 Tcal_mg1=(Ttrg_mg1-Tcal_mg1n-1)/(tswt-t)+Tcal_mg1n-1 …(2.1)
 Tcal_eng=(Ttrg_eng-Tcal_engn-1)/(tswt-t)+Tcal_engn-1 …(2.2)
 Tcal_mg2={Tcmd_ttl-(Tcmd_mg1/Rmg1+Tcmd_eng)×Reng}/Rmg2} …(2.3)
 S305では、クラッチの解放が完了したか否かを判定する。クラッチの解放が完了した場合は、図5に示す基本ルーチンに戻り、完了していない場合は、完了するまでS302~305の処理を繰り返し、トルクの架替えを継続する。
Tcal_mg1 = (Ttrg_mg1-Tcal_mg1 n-1 ) / (tswt-t) + Tcal_mg1 n-1 (2.1)
Tcal_eng = (Ttrg_eng−Tcal_eng n−1 ) / (tswt−t) + Tcal_eng n−1 (2.2)
Tcal_mg2 = {Tcmd_ttl- (Tcmd_mg1 / Rmg1 + Tcmd_eng) × Reng} / Rmg2} (2.3)
In S305, it is determined whether or not the release of the clutch has been completed. When the release of the clutch is completed, the process returns to the basic routine shown in FIG. 5. When the release is not completed, the processes of S302 to 305 are repeated until the release is completed, and the switching of the torque is continued.
 S306では、エンジン1、発電モータ2および走行モータ3のそれぞれに対する指令トルクを、切換後目標トルクに設定する。つまり、トルクの架替えが完了したか否かに拘らず、クラッチの解放が完了した場合は、指令トルクを、クラッチの解放後、直ちにそれぞれの切換後目標トルクに設定するのである。 In S306, the command torque for each of the engine 1, the generator motor 2, and the traveling motor 3 is set to the post-switch target torque. That is, regardless of whether or not the change of the torque is completed, when the release of the clutch is completed, the command torque is set to the respective post-switch target torque immediately after the release of the clutch.
 図11および13は、本実施形態に係るモード切換制御による駆動ユニットSの動作を示し、図11は、シリーズハイブリッドモードからエンジン直結モードへの切換時における動作を、図13は、エンジン直結モードからシリーズハイブリッドモードへの切換時における動作を、夫々示している。図12は、シリーズハイブリッドモードからエンジン直結モードへの切換時における、比較例による動作を示している。 11 and 13 show the operation of the drive unit S by the mode switching control according to the present embodiment. FIG. 11 shows the operation at the time of switching from the series hybrid mode to the direct engine mode, and FIG. Operations at the time of switching to the series hybrid mode are shown respectively. FIG. 12 shows an operation according to a comparative example when switching from the series hybrid mode to the engine direct connection mode.
 シリーズハイブリッドモードからエンジン直結モードへの切換時(図11)では、モード切換時にあるとの判定後(時刻t14)、締結側のクラッチであるクラッチc1に対する回転同期制御を開始する(回転同期フェーズPsyn)。本実施形態では、発電モータ2による回生分のトルクTrqmg1を減少させることにより、発電モータ回転数Nmg1およびエンジン回転数Nengを上昇させ、発電モータ回転数Nmg1を出力回転数Noutに近付ける。出力回転数Noutと発電モータ回転数Nmg1との差ΔN(=Nout-Nmg1)が所定の値にまで減少するか(時刻t24)または回転速度の差ΔNが所定の値以下である状態が所定の時間に亘って継続した場合に(時刻t34)、回転同期が完了したとして、クラッチ締結フェーズPegmに移行し、クラッチc1を締結させる。クラッチc1の締結が完了した後(時刻t44)のトルク架替フェーズPswtでは、上式(1.1)~(1.3)により、エンジン1、発電モータ2および走行モータ3に対する指令トルクTcmd_eng、Tcmd_mg1、Tcmd_mg2を算出する。本実施形態では、走行モータ指令トルクTcmd_mg2を減少させるとともに、減少分のトルクを発電モータ指令トルクTcmd_mg1により補うことで、総駆動トルクの目標値Ttrg_ttlに対する過不足を生じさせずに、トルクの架替えを達成することが可能である。ここで、トルク架替フェーズPswtの途中でアクセルペダルが踏み込まれると、これに応じて総駆動トルクの目標値Ttrg_ttlが増大するが(時刻t54)、増大後の目標値Ttrg_ttlに対する総駆動トルクの不足分は、発電モータ指令トルクTcmd_mg1を、この不足分に応じたトルクだけ増大させることで解消する。そして、目標架替時間tswtが経過するか、走行モータ指令トルクTcmd_mg2が0にまで減少したことをもってトルクの架替えが完了したものと判定し(時刻t64)、クラッチc2の解放を待ってモード切換制御を終了する(時刻74)。 At the time of switching from the series hybrid mode to the direct engine connection mode (FIG. 11), after determining that the mode is being switched (time t14), the rotation synchronization control for the clutch c1, which is the engagement side clutch, is started (rotation synchronization phase Psyn). ). In the present embodiment, the generator motor rotation speed Nmg1 and the engine rotation speed Neng are increased by reducing the torque Trqmg1 for the regeneration by the generation motor 2, and the generation motor rotation speed Nmg1 is made closer to the output rotation speed Nout. Whether the difference ΔN (= Nout−Nmg1) between the output rotation speed Nout and the generation motor rotation speed Nmg1 decreases to a predetermined value (time t24), or the state where the rotation speed difference ΔN is equal to or smaller than a predetermined value If the operation has continued over time (time t34), it is determined that the rotation synchronization has been completed, and the process shifts to the clutch engagement phase Pegm to engage the clutch c1. In the torque change phase Pswt after the engagement of the clutch c1 is completed (time t44), the command torque Tcmd_eng for the engine 1, the power generation motor 2 and the traveling motor 3 is calculated by the above equations (1.1) to (1.3). Tcmd_mg1 and Tcmd_mg2 are calculated. In the present embodiment, the traveling motor command torque Tcmd_mg2 is reduced, and the reduced torque is supplemented by the power generation motor command torque Tcmd_mg1, so that the total drive torque does not become excessive or insufficient with respect to the target value Ttrg_ttl, and the torque is replaced. It is possible to achieve Here, if the accelerator pedal is depressed during the torque replacement phase Pswt, the target value Ttrg_ttl of the total drive torque increases accordingly (time t54), but the total drive torque becomes insufficient with respect to the target value Ttrg_ttl after the increase. The minute is eliminated by increasing the generator motor command torque Tcmd_mg1 by a torque corresponding to the shortage. Then, it is determined that the torque transfer has been completed when the target transfer time tswt has elapsed or the traveling motor command torque Tcmd_mg2 has decreased to 0 (time t64), and the mode switching is performed after the release of the clutch c2. The control ends (time 74).
 エンジン直結モードからシリーズハイブリッドモードへの切換時(図13)についても同様である。モード切換時にあるとの判定後(時刻t16)、締結側のクラッチであるクラッチc2に対する回転同期制御を開始し、走行モータ3によりトルクTrqmg2を生じさせて、走行モータ回転数Nmg2を上昇させ、これを出力回転数Noutに近付ける。出力回転数Noutと走行モータ回転数Nmg2との差ΔN(=Nout-Nmg2)が所定の値にまで減少するか(時刻t26)または回転速度の差ΔNが所定の値以下である状態が所定の時間に亘って継続した場合に(時刻t36)、回転同期が完了したとして、クラッチ締結フェーズPegmに移行し、クラッチc2を締結させる。クラッチc2の締結を完了した後(時刻t46)のトルク架替フェーズPswtでは、上式(2.1)~(2.3)により、エンジン1、発電モータ2および走行モータ3に対する指令トルクTcmd_eng、Tcmd_mg1、Tcmd_mg2を算出する。具体的には、エンジン指令トルクTcmd_engを減少させるとともに、減少に応じた分だけ走行モータ指令トルクTcmd_mg2を増大させる。ここで、トルク架替フェーズPswtの途中でアクセルペダルが踏み込まれ、総駆動トルクの目標値Ttrg_ttlが増大した場合は(時刻t56)、増大後の目標値Ttrg_ttlに対する総駆動トルクの不足分だけ走行モータ指令トルクTcmd_mg2を増大させる。そして、エンジン指令トルクTcmd_engが0にまで減少したことをもってトルクの架替えが完了したものと判定し(時刻t66)、クラッチc1の解放を待ってモード切換制御を終了する(時刻76)。 同 様 The same applies when switching from the engine direct mode to the series hybrid mode (FIG. 13). After it is determined that the mode is being switched (time t16), rotation synchronization control for the clutch c2, which is the clutch on the engagement side, is started, the traveling motor 3 generates a torque Trqmg2, and the traveling motor rotation speed Nmg2 is increased. Near the output rotation speed Nout. Whether the difference ΔN (= Nout−Nmg2) between the output rotation speed Nout and the traveling motor rotation speed Nmg2 decreases to a predetermined value (time t26) or the state where the rotation speed difference ΔN is equal to or less than a predetermined value If the operation continues over time (time t36), it is determined that the rotation synchronization has been completed, and the process shifts to the clutch engagement phase Pegm to engage the clutch c2. In the torque change phase Pswt after the engagement of the clutch c2 is completed (time t46), the command torque Tcmd_eng for the engine 1, the power generation motor 2 and the traveling motor 3 is calculated by the above equations (2.1) to (2.3). Tcmd_mg1 and Tcmd_mg2 are calculated. Specifically, the engine command torque Tcmd_eng is reduced, and the travel motor command torque Tcmd_mg2 is increased by the amount corresponding to the decrease. Here, when the accelerator pedal is depressed during the torque change phase Pswt, and the target value Ttrg_ttl of the total drive torque increases (time t56), the traveling motor is reduced by the shortage of the total drive torque with respect to the target value Ttrg_ttl after the increase. The command torque Tcmd_mg2 is increased. Then, when the engine command torque Tcmd_eng has decreased to 0, it is determined that the change of torque has been completed (time t66), and the mode switching control is terminated after releasing the clutch c1 (time 76).
 図12は、比較例として、シリーズハイブリッドモードからエンジン直結モードへの切換時を例に、トルク架替フェーズPswtにおけるアクセル開度APOの増大に対し、目標架替時間tswtのうちにトルクの架替えを完了すべく、走行モータ3に対する指令トルクTrqmg1の変化の傾きを増大させた場合(時刻t55~t65)の動作を示している。 FIG. 12 shows, as a comparative example, a case where switching from the series hybrid mode to the engine direct connection mode is performed, and when the accelerator opening APO increases in the torque switching phase Pswt, the torque is switched during the target switching time tswt. Are completed (steps t55 to t65) when the gradient of the change in the command torque Trqmg1 to the traveling motor 3 is increased in order to complete.
 比較例では、総駆動トルクの目標値Ttrg_ttlと対比させて一点鎖線により示すように、指令トルクTrqeng、Trqmg1、Trqmg2の合計値Trqttlが総駆動トルクの目標値Ttrg_ttlに追従せず、総駆動トルクTttlに不足が生じることから、アクセルペダルの踏込みに対する速やかな応答が得られず、運転性が悪化する懸念がある。 In the comparative example, the total value Trqttl of the command torques Trqeng, Trqmg1, and Trqmg2 does not follow the target value Ttrg_ttl of the total drive torque, as shown by a dashed line in comparison with the target value Ttrg_ttl of the total drive torque, and the total drive torque Tttl. Therefore, there is a concern that a quick response to depression of the accelerator pedal cannot be obtained, and that drivability is deteriorated.
 これに対し、本実施形態によれば、トルク架替フェーズPswtにおけるアクセル開度APOの増大に対し、エンジン指令トルクTcmd_eng、発電モータ指令トルクTcmd_mg1および走行モータ指令トルクTcmd_mg2の合計値の、総駆動トルクの目標値Ttrg_ttlに対する不足分を、締結側のクラッチを通じて駆動輪7に伝達されるトルクを増大させることにより補うことで、不足分の発生を抑制することが可能となり、トルク制御の追従性を確保し、運転性の悪化を抑制することができる。 On the other hand, according to the present embodiment, the total drive torque of the total value of the engine command torque Tcmd_eng, the generation motor command torque Tcmd_mg1, and the traveling motor command torque Tcmd_mg2 with respect to the increase in the accelerator opening APO in the torque replacement phase Pswt. Of the target value Ttrg_ttl by increasing the torque transmitted to the drive wheels 7 through the engagement-side clutch, it is possible to suppress the occurrence of the shortage, and to ensure the follow-up of torque control. In addition, deterioration of drivability can be suppressed.
 ここで、締結側のクラッチを通じて駆動輪7に伝達されるトルクを増大させることで、指令トルクを変化させる駆動源を1つとして、過渡的なばらつきが複数の駆動源に生じることによる制御性の悪化を回避することが可能となる。 Here, by increasing the torque transmitted to the drive wheels 7 through the clutch on the engagement side, one drive source that changes the command torque is used, and the controllability due to transient variations occurring in a plurality of drive sources is increased. Deterioration can be avoided.
 さらに、不足分に相当するトルクを、電気モータ(シリーズハイブリッドモードからエンジン直結モータへの切換時では、発電モータ2)により生じさせることで、指令トルクの変化に対する実際のトルクの応答性を確保し、不足分のトルクをエンジン1により生じさせる場合と比べ、より高い制御性を実現することが可能となる。 Further, the torque corresponding to the shortage is generated by the electric motor (the power generation motor 2 when switching from the series hybrid mode to the engine direct-coupled motor), so that the response of the actual torque to the change in the command torque is ensured. Thus, higher controllability can be realized as compared with the case where the insufficient torque is generated by the engine 1.
 図14は、トルクの架替えが完了する前(時刻t67)にクラッチが解放された場合の動作を、シリーズハイブリッドモードからエンジン直結モードへの切換時を例に示している。 FIG. 14 shows an example of the operation when the clutch is released before the torque change is completed (time t67), when switching from the series hybrid mode to the engine direct connection mode.
 この場合は、エンジン1、発電モータ2および走行モータ3に対する指令トルクTcmd_eng、Tcmd_mg1、Tcmd_mg2を、クラッチの解放後、直ちにそれぞれの切換後目標トルクTtrg_eng、Ttrg_mg1、Ttrg_mg2に設定する。つまり、解放側のクラッチであるクラッチc2の偶発的または突発的な解放に対し、締結側のクラッチであるクラッチc1を通じて駆動輪7に伝達されるトルクを増大させ、切換後の目標値に一致させるのである。 In this case, the command torques Tcmd_eng, Tcmd_mg1, and Tcmd_mg2 for the engine 1, the power generation motor 2, and the traveling motor 3 are set to the post-switching target torques Ttrg_eng, Ttrg_mg1, and Ttrg_mg2 immediately after the clutch is released. That is, in response to accidental or sudden release of the clutch c2, which is the clutch on the disengagement side, the torque transmitted to the drive wheels 7 through the clutch c1, which is the clutch on the engagement side, is increased to match the target value after switching. It is.
 これにより、解放側のクラッチが、これを通じて伝達されるトルクが未だ残っている状態で解放されることによる総駆動トルクTrqttlの落ち込みを抑制し、クラッチの解放前後で、総駆動トルクTrqttlを可及的に一定に維持することが可能となり、トルクの不足による運転性の悪化を抑制することができる。 This suppresses a drop in the total drive torque Trqttl due to the release-side clutch being released in a state where the torque transmitted through the clutch still remains, and increases the total drive torque Trqttl before and after the clutch is released. Thus, it is possible to suppress the deterioration of drivability due to insufficient torque.
 以上、本発明の実施形態について説明したが、上記実施形態は、本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を、上記実施形態の具体的構成に限定する趣旨ではない。上記実施形態に対し、請求の範囲に記載した事項の範囲内で様々な変更および修正が可能である。 As described above, the embodiment of the present invention has been described. However, the above embodiment is only a part of the application example of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. It is not the purpose. Various changes and modifications can be made to the above embodiment within the scope of the matters described in the claims.

Claims (8)

  1.  内燃エンジンと、
     前記内燃エンジンの動力を受けて発電可能に配設された発電モータと、
     前記発電モータが生じさせた電力により駆動可能に配設された走行モータと、
    を備え、
     前記内燃エンジンと駆動輪とを、第1クラッチを介して断接可能に接続する一方、前記走行モータと前記駆動輪とを、前記第1クラッチとは異なる第2クラッチを介して断接可能に接続し、前記走行モータを駆動源として、前記走行モータの動力を前記駆動輪に伝達させて走行するシリーズハイブリッドモードと、前記内燃エンジンおよび前記発電モータのうち、少なくとも一方を駆動源として、当該駆動源の動力を前記駆動輪に伝達させて走行するエンジン直結モードと、を切換可能に構成された電動車両の制御方法であって、
     前記シリーズハイブリッドモードと前記エンジン直結モードとを切り換えるモード切換時に、
      前記第1クラッチおよび前記第2クラッチの双方を締結させ、
      前記第1および第2クラッチの双方が締結している間に、前記内燃エンジンのトルクと前記走行モータのトルクとのそれぞれが車両の総駆動トルクに占める割合を、モード切換後の割合に向けて変化させ、
      前記モード切換後の割合に近接または到達したときに、前記第1および第2クラッチのうち、解放側のクラッチを解放させる、
    電動車両の制御方法。
    An internal combustion engine,
    A power generation motor arranged to be capable of generating power by receiving the power of the internal combustion engine,
    A traveling motor disposed so as to be driven by the electric power generated by the power generation motor,
    With
    The internal combustion engine and the drive wheels are connected and disconnected via a first clutch, while the traveling motor and the drive wheels are connected and disconnected via a second clutch different from the first clutch. A series hybrid mode in which the traveling motor is used as a driving source and the power of the traveling motor is transmitted to the driving wheels to travel, and at least one of the internal combustion engine and the power generation motor is used as a driving source and the driving is performed. A control method of an electric vehicle configured to be able to switch between an engine direct connection mode in which the power of a source is transmitted to the drive wheels and the vehicle runs.
    At the time of mode switching for switching between the series hybrid mode and the engine direct connection mode,
    Engaging both the first clutch and the second clutch,
    While both the first and second clutches are engaged, the ratio of the torque of the internal combustion engine and the torque of the traveling motor to the total driving torque of the vehicle is increased toward the ratio after the mode switching. Change
    Releasing or releasing the clutch on the release side of the first and second clutches when the ratio approaches or reaches the ratio after the mode switching;
    An electric vehicle control method.
  2.  請求項1に記載の電動車両の制御方法であって、
     前記車両の運転状態に応じた前記総駆動トルクを設定し、
     前記内燃エンジンのトルクと前記走行モータのトルクとのそれぞれが前記総駆動トルクに占める割合を変化させる、前記モード切換時のトルク架替フェーズにおいて、前記第1クラッチを介して前記駆動輪に伝達されるトルクの指令値と、前記第2クラッチを介して前記駆動輪に伝達されるトルクの指令値と、を加算した総指令トルクを、前記総駆動トルクに一致させる、
    電動車両の制御方法。
    It is a control method of the electric vehicle of Claim 1, Comprising:
    Setting the total drive torque according to the driving state of the vehicle,
    The torque of the internal combustion engine and the torque of the traveling motor are transmitted to the drive wheels via the first clutch in the torque switching phase at the time of mode switching, which changes the ratio of the total drive torque to the drive torque. A total command torque obtained by adding a command value of the torque to the drive wheel via the second clutch to a command value of the torque transmitted to the drive wheels,
    An electric vehicle control method.
  3.  請求項2に記載の電動車両の制御方法であって、
     前記トルク架替フェーズにおいて、前記総駆動トルクの変化に対し、前記第1および第2クラッチのうち、締結側のクラッチを介して前記駆動輪に伝達されるトルクの指令値を増大させて、前記総指令トルクを前記増大後の総駆動トルクに一致させる、
    電動車両の制御方法。
    It is a control method of the electric vehicle of Claim 2, Comprising:
    In the torque change phase, the command value of the torque transmitted to the drive wheels via the engagement-side clutch among the first and second clutches is increased with respect to the change in the total drive torque, Matching the total command torque with the total drive torque after the increase,
    An electric vehicle control method.
  4.  請求項3に記載の電動車両の制御方法であって、
     前記シリーズハイブリッドモードから前記エンジン直結モードへの切換時には、前記総駆動トルクの増大分に相当するトルクを、前記発電モータにより生じさせ、前記エンジン直結モードからシリーズハイブリッドモードへの切換時には、前記総駆動トルクの増大分に相当するトルクを、前記走行モータにより生じさせる、
    電動車両の制御方法。
    It is a control method of the electric vehicle of Claim 3, Comprising:
    When switching from the series hybrid mode to the engine direct mode, a torque corresponding to the increase in the total drive torque is generated by the power generation motor, and when switching from the engine direct mode to the series hybrid mode, the total drive torque is increased. Causing the traveling motor to generate a torque corresponding to the increased torque,
    An electric vehicle control method.
  5.  請求項1~4のいずれか一項に記載の電動車両の制御方法であって、
     前記第1および第2クラッチは、いずれもドッグクラッチである、
    電動車両の制御方法。
    The control method for an electric vehicle according to any one of claims 1 to 4, wherein
    The first and second clutches are both dog clutches.
    An electric vehicle control method.
  6.  請求項5に記載の電動車両の制御方法であって、
     前記解放側のクラッチに対して駆動要素と従動要素とを互いに押し付ける方向に働く締結力を、前記モード切換前の駆動源のトルクが0に達する前に減少させる、
    電動車両の制御方法。
    It is a control method of the electric vehicle of Claim 5, Comprising:
    Reducing the fastening force acting in the direction of pressing the driving element and the driven element against the disengagement side clutch before the torque of the driving source before the mode switching reaches 0,
    An electric vehicle control method.
  7.  請求項5または6に記載の電動車両の制御方法であって、
     前記解放側のクラッチが、前記内燃エンジンおよび前記走行モータのトルクの割合が前記モード切換後の割合に達する前に解放されたときは、解放後、直ちに前記トルクの割合を前記モード切換後の割合に一致させる、
    電動車両の制御方法。
    It is a control method of the electric vehicle of Claim 5 or 6, Comprising:
    When the clutch on the release side is released before the ratio of the torque of the internal combustion engine and the traveling motor reaches the ratio after the mode switching, immediately after the release, the ratio of the torque is changed to the ratio after the mode switching. To match,
    An electric vehicle control method.
  8.  内燃エンジンと、
     前記内燃エンジンの動力を受けて発電可能に配設された発電モータと、
     前記発電モータが生じさせた電力により駆動可能に配設された走行モータと、
     前記内燃エンジンと駆動輪とをつなぐ第1動力伝達経路に介装された第1クラッチと、
     前記走行モータと前記駆動輪とをつなぐ、前記第1動力伝達経路とは異なる第2動力伝達経路に介装された第2クラッチと、
     コントローラと、
    を備え、
     前記コントローラは、
     前記走行モータが前記第2動力伝達経路を通じて前記駆動輪に伝達させる動力により走行するシリーズハイブリッドモードと、前記内燃エンジンおよび前記発電モータのうち、少なくとも一方を駆動源として、当該駆動源が前記第1動力伝達経路を通じて前記駆動輪に伝達させる動力により走行するエンジン直結モードと、の双方において、車両の運転状態に応じた総駆動トルクを設定し、
     前記シリーズハイブリッドモードと前記エンジン直結モードとを切り換えるモード切換時に、
      前記第1クラッチおよび前記第2クラッチの双方を締結させ、
      前記第1および第2クラッチの双方が締結している間に、前記内燃エンジンのトルクと前記走行モータのトルクとのそれぞれが前記車両の総駆動トルクに占める割合を、モード切換後の割合に向けて変化させ、
      前記モード切換後の割合に近接または到達したときに、前記第1および第2クラッチのうち、解放側のクラッチを解放させる、
    電動車両の駆動システム。
    An internal combustion engine,
    A power generation motor arranged to be capable of generating power by receiving the power of the internal combustion engine,
    A traveling motor disposed so as to be driven by the electric power generated by the power generation motor,
    A first clutch interposed in a first power transmission path connecting the internal combustion engine and driving wheels;
    A second clutch interposed in a second power transmission path different from the first power transmission path, connecting the traveling motor and the drive wheels;
    A controller,
    With
    The controller is
    A series hybrid mode in which the travel motor travels with power transmitted to the drive wheels through the second power transmission path; and at least one of the internal combustion engine and the power generation motor as a drive source, and In both the engine direct drive mode and running with power transmitted to the drive wheels through a power transmission path, set the total drive torque according to the driving state of the vehicle,
    At the time of mode switching for switching between the series hybrid mode and the engine direct connection mode,
    Engaging both the first clutch and the second clutch,
    While both of the first and second clutches are engaged, the ratio of the torque of the internal combustion engine and the torque of the traveling motor to the total drive torque of the vehicle is increased toward the ratio after the mode switching. Change
    Releasing or releasing the clutch on the release side of the first and second clutches when the ratio approaches or reaches the ratio after the mode switching;
    Drive system for electric vehicles.
PCT/JP2018/035811 2018-09-26 2018-09-26 Electric vehicle control method and electric vehicle drive system WO2020065799A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035811 WO2020065799A1 (en) 2018-09-26 2018-09-26 Electric vehicle control method and electric vehicle drive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035811 WO2020065799A1 (en) 2018-09-26 2018-09-26 Electric vehicle control method and electric vehicle drive system

Publications (1)

Publication Number Publication Date
WO2020065799A1 true WO2020065799A1 (en) 2020-04-02

Family

ID=69950038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035811 WO2020065799A1 (en) 2018-09-26 2018-09-26 Electric vehicle control method and electric vehicle drive system

Country Status (1)

Country Link
WO (1) WO2020065799A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113386730A (en) * 2021-07-19 2021-09-14 中国第一汽车股份有限公司 Control method for switching series-parallel connection driving modes of hybrid electric vehicle
JP2022115746A (en) * 2021-01-28 2022-08-09 本田技研工業株式会社 Vehicle control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259746A (en) * 1997-03-07 1998-09-29 Mannesmann Sachs Ag Driving device for power car
JP2002027611A (en) * 2001-04-26 2002-01-25 Toyota Motor Corp Drive controller for hybrid vehicle
JP2016210359A (en) * 2015-05-12 2016-12-15 トヨタ自動車株式会社 Four-wheel-drive vehicular control apparatus
WO2017217066A1 (en) * 2016-06-13 2017-12-21 三菱自動車工業株式会社 Transaxle device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259746A (en) * 1997-03-07 1998-09-29 Mannesmann Sachs Ag Driving device for power car
JP2002027611A (en) * 2001-04-26 2002-01-25 Toyota Motor Corp Drive controller for hybrid vehicle
JP2016210359A (en) * 2015-05-12 2016-12-15 トヨタ自動車株式会社 Four-wheel-drive vehicular control apparatus
WO2017217066A1 (en) * 2016-06-13 2017-12-21 三菱自動車工業株式会社 Transaxle device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022115746A (en) * 2021-01-28 2022-08-09 本田技研工業株式会社 Vehicle control device
JP7280902B2 (en) 2021-01-28 2023-05-24 本田技研工業株式会社 vehicle controller
CN113386730A (en) * 2021-07-19 2021-09-14 中国第一汽车股份有限公司 Control method for switching series-parallel connection driving modes of hybrid electric vehicle
CN113386730B (en) * 2021-07-19 2023-01-06 中国第一汽车股份有限公司 Control method for switching series-parallel connection driving modes of hybrid electric vehicle

Similar Documents

Publication Publication Date Title
US7617896B2 (en) Control device for an electric vehicle
US6640917B2 (en) Power transmission mechanism
JP5429400B2 (en) Hybrid drive device for vehicle
US10583732B2 (en) Transmission device for hybrid vehicle
US10315507B2 (en) Hybrid vehicle
JP7298179B2 (en) Electric vehicle control method and electric vehicle drive system
WO2013125693A1 (en) Control device
JP6327238B2 (en) Drive control apparatus for hybrid vehicle
JP7010384B2 (en) Motor vehicle control method and motor vehicle drive system
JP6414025B2 (en) Hybrid vehicle driving force control device
WO2020065799A1 (en) Electric vehicle control method and electric vehicle drive system
EP3756923B1 (en) Control system for hybrid vehicle
JP2008174118A (en) Power train for hybrid vehicle
US11453384B2 (en) Vehicle control system
JP7010392B2 (en) Vehicle control device
JP3868976B2 (en) Automobile and its transmission, and control device for automobile
CN113753022A (en) Control device for joining mechanism
CN111252062A (en) Hybrid vehicle control system
JP3552708B2 (en) Power transmission device for hybrid vehicle
JP6725697B2 (en) Electric drive device and vehicle control device
JP2016159645A (en) Hybrid vehicle
JP2023005782A (en) Transmission control device for electric vehicle
JP2023023805A (en) Hybrid vehicle
JP2021079947A (en) Power transmission device and vehicle including the same
JP2022156339A (en) Drive device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP