WO2020065579A1 - Method for obtaining a physical model of a three-dimensional object from developable surfaces and physical model thus obtained - Google Patents

Method for obtaining a physical model of a three-dimensional object from developable surfaces and physical model thus obtained Download PDF

Info

Publication number
WO2020065579A1
WO2020065579A1 PCT/IB2019/058182 IB2019058182W WO2020065579A1 WO 2020065579 A1 WO2020065579 A1 WO 2020065579A1 IB 2019058182 W IB2019058182 W IB 2019058182W WO 2020065579 A1 WO2020065579 A1 WO 2020065579A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
image
model
physical model
volume
Prior art date
Application number
PCT/IB2019/058182
Other languages
Spanish (es)
French (fr)
Inventor
Marco PALUSZNY KLUCZYNSKY
Cindy Yurany GONZÁLEZ SÁNCHEZ
Dany Esteban RÍOS RODAS
Original Assignee
Universidad Nacional De Colombia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Nacional De Colombia filed Critical Universidad Nacional De Colombia
Publication of WO2020065579A1 publication Critical patent/WO2020065579A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/147Processes of additive manufacturing using only solid materials using sheet material, e.g. laminated object manufacturing [LOM] or laminating sheet material precut to local cross sections of the 3D object
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/08Volume rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics

Definitions

  • the present invention relates to physical models of three-dimensional objects and to methods of obtaining and manufacturing such models.
  • One of the most common inspection techniques is three-dimensional digital modeling, which consists of obtaining data on the object of interest in order to reconstruct a digital model of the object that contains all the information obtained.
  • this process is subject to the use of specialized software where, from a three-dimensional digital model of the object, its characteristics can be visualized, arbitrarily choosing the depth at which the study is to be carried out.
  • this type of software is usually very expensive and the user must receive specific training in order to use it, which means that this type of analysis is restricted to a very limited population.
  • the present invention relates to physical (tangible) models representing internal and external characteristics of three-dimensional objects, and to methods for obtaining such models.
  • the models (40) are built from volumes (5) which correspond to planar and curvilinear cross sections of the real object (1) and that fit together, thus completing the total volume of the object (1). Since it corresponds to a cross section of the real object (1), each volume (5) is bounded by two surfaces (31), of which at least one has an image attached (4) that represents the geometry of that section of the object (1). In this way, the model (40) represents, as layers, internal and external structural characteristics of the object (1).
  • the physical model (40) we start with a three-dimensional digital model (2) of the object (1).
  • the digital model (2) is sectioned into developable surfaces (3) and images (4) of the structure of the object (1) corresponding to each of the surfaces (3) are obtained; next, each image (4) is printed on a flat two-dimensional surface.
  • a volume (5) bounded by surfaces (31) is produced which correspond to the physical representation of the respective surfaces (3).
  • the different images (4) already printed on flat two-dimensional surfaces, adhere to their corresponding surfaces (31) of the volumes (5) in such a way that in each volume (5) there is a physical representation of the different layers that constitute the real object (1).
  • the object (1) can be composed of a main object (11) and its environment (12), in which case the main object (11) would occupy only a portion of the total volume of the object (1), and the remaining volume would be made up of the environment (12) surrounding the main object (11).
  • the object (1) will be taken as the set between the main object (11) and the environment that surrounds it (12).
  • the present invention is characterized in that the surfaces (3) into which the digital model (2) of the object (1) is divided are developable surfaces, that is, surfaces that can be flattened without any distortion.
  • This feature is what allows images (4) to be printed on flat two-dimensional surfaces using, for example, conventional printing media, which are very economical and fast. In this way, high quality and fidelity images can be obtained at a very low cost.
  • the model (40) and the method (42) of the present invention by replacing the specialized software for the inspection of three-dimensional objects, facilitates the study of the internal and external characteristics of any three-dimensional object, which has application in industrial, medical and pedagogical fields, among others, since it allows interaction with each of the layers that make up the complete object (1), showing, with an arbitrary level of detail, which depends solely on the information available on the object ( 1), the morphology and geometry of each section of the object (1).
  • the object (1) to be analyzed is the jawbone of a human being together with the associated dental pieces.
  • the invention disclosed herein facilitates the dental analysis of a patient, allowing the dentist to make a more accurate diagnosis and improving the patient's understanding of his condition.
  • the model (40) revealed here becomes a useful teaching tool for training new dentists.
  • the present invention gives access to any type of user without any training to a successful model (40) of the object (1) to be analyzed, a model that has as many layers as desired, and at a very low cost.
  • the model (40) and the method (42) disclosed herein are characterized in that they make it easier for a user to study the structural characteristics of the object (1), especially the characteristics of its internal structure.
  • the Figure shows the model (40) of the object (1) according to the invention, which is made up of different assembled volumes (5) to which their respective images (4) have been attached.
  • Figure lb shows an overview of the different volumes (5) according to the invention with the attached images (4) which are assembled to form the model (40) of the object (1).
  • Figure 2a shows a developable surface (3) in three-dimensional space.
  • Figure 2b shows the developable surface (3) of Figure 2a in a flat two-dimensional space according to the invention.
  • Figure 3 shows a flow diagram of the method (42) according to the invention.
  • Figure 4a shows the image (4) associated with a developable surface (3) of a section of the digital model (2).
  • Figure 4b shows the image (4) associated with the developable surface (3) of Figure 4a after being flattened according to the invention.
  • the present invention relates to physical models of three-dimensional objects with which the study of the internal and external structure of an object is facilitated, as well as the methods for obtaining said models.
  • the model (40) according to the present invention is made up of small volumes (5) that represent different layers of the real object (1). Each of these volumes (5) has an image (4) attached to at least one of its surfaces, where said image (4) shows the morphology and geometry of the object (1) in the respective layer.
  • the method (42) consists in dividing a digital model (2) of the object (1) into curvilinear surfaces (3) and obtaining an image (4) of the object corresponding to each of said surfaces (3). Finally, the images (4) are printed and adhered to the volumes
  • Model (40) according to the present invention is shown in Figure la.
  • This model is made up of a series of volumes (5) each of which has an image (4) attached to at least one of its surfaces (31). Volumes (5) are assembled to form the complete model (40) in layers.
  • Figure lb shows the volumes (5) unassembled, showing that the model (40) can be used to carry out a study by layers of the object (1).
  • surfaces (3) will be understood to be developable surfaces in the strict sense of the mathematical definition of "developable surface", that is, a surface with curvature Gaussian null.
  • a developable surface is a surface that can be flattened (or developed in a plane) without any distortion, maintaining invariant shapes and areas.
  • Developable surfaces can be build from different techniques, including tensor product techniques, triangle patches and NURBS.
  • Figures 2a and 2b allow us to understand the concept of “developable surface”.
  • Figure 2a shows a developable surface (3) in a three-dimensional space. Being developable, this surface can be flattened and taken into a two-dimensional space without distorting the lines that constitute it. In this way, the flat surface shown in Figure 2b is obtained which is a faithful representation of the original surface.
  • the method (42) for obtaining a physical model (40) of a three-dimensional object (1) comprises the following steps: obtaining a three-dimensional digital model (2) of the object (1 ); section the model (2) into curvilinear surfaces (3); obtaining a two-dimensional image (4) of the structure of the object (1) corresponding to each of the surfaces (3); print each image (4) on a flat two-dimensional surface; for each surface (3), manufacture a volume (5) limited by at least one surface (31) that corresponds to the physical representation of the respective surface (3); and adhering each printed image (4) on the flat two-dimensional surface to its corresponding surface (31).
  • the method is characterized in that the surfaces (3) are developable surfaces, because each image (4) represents the geometry and morphology of the sections of the object (1) corresponding to their respective surfaces (3), and because each volume (5 ) has a thickness that is less than the largest dimension of each surface (3).
  • Figure 3 shows a flow diagram of the method (42) according to the present invention.
  • the digital model (2) can be obtained in different ways which are beyond the scope of the present invention, as long as they allow obtaining a sufficiently detailed three-dimensional digital model for the particular application of interest. Any method that allows obtaining information about the geometry and morphology of the object (1) in three dimensions can be used to obtain the digital model (2).
  • the three-dimensional digital model (2) is obtained by a technique that is selected from the group that comprises: tomography, 3D magnetic resonance, 3D laser scanning, 3D structured light scanning, 3D stereophotogrammetry, 3D morphometry, computer aided design, triangulation methods, micro CT techniques, focused ion beam, proton emission methods, electro sonography and ultrasound.
  • the digital model (2) is obtained, it is proceeded to section it into curvilinear surfaces (3) which are chosen in such a way that they correspond to developable surfaces and that the distance between two contiguous surfaces (3) is, at at most, the spatial resolution you want to have for the depth of the object. In this way, the number of sections or layers into which the digital model (2) is divided is arbitrarily chosen according to the resolution desired.
  • the images (4) associated with each surface (3) contain information about the geometry and morphology of the object (1) along that surface (3).
  • the geometry and morphology of the sections of the object (1) corresponding to their respective surfaces (3) are graphically represented by a chromatic scale.
  • Another embodiment of the invention reveals that the color scale is a monochrome or gray scale.
  • the present invention allows the assignment of colors to different components of the surfaces (3), where the colors allow to differentiate the geometry and morphology of each image (4).
  • the images (4) are subsequently printed on flat two-dimensional surfaces.
  • printing is performed by conventional printing methods such as laser printing or inkjet printing.
  • the surfaces (3) are curved, as they are developable surfaces They can be printed on a flat surface without generating any distortion of the image. It is for this reason that the present invention allows detailed models to be obtained at a low price: because the surfaces (3) that correspond to the cross sections of the object (1) can be conveniently chosen, and at the same time, techniques of fast and economical printing.
  • Figures 4a and 4b show an image (4) during different stages of method (42).
  • Figure 4a shows the image (4) associated with a developable surface (3) obtained after sectioning the digital model (2).
  • Figure 4b shows the same image (4) after being flattened, that is, the image (4) that will be printed on the flat two-dimensional surface.
  • the image (4) can be flattened without any distortion, so that the flattened image (Figure 4b) is a faithful representation of the original image ( Figure 4a).
  • the method (42) revealed by the present invention comprises the manufacture of at least one volume (5) with which part or all of the physical model (40) will be constructed.
  • Each volume (5) is limited by at least one surface (31) which has a direct correspondence with one of the selected surfaces (3) of the digital model (2). Consequently, the shape of that surface (31) that limits the volume (5) coincides with the shape of one of the surfaces (3).
  • the volume (5) is limited by two surfaces (31) each associated with a curvilinear surface (3). According to an even more preferred embodiment, the volume (5) corresponds to the section of the object (1) contained between two contiguous curvilinear surfaces (3).
  • each volume (5) has a thickness that is less than the largest dimension of each curvilinear surface (3). According to a preferred embodiment, the thickness of each volume (5) is between 0.1 mm and 10 cm. According to an even more preferred embodiment, the thickness of each volume (5) is equal to distance between the surfaces (3) corresponding to the surfaces (31) that limit the volume (5).
  • each volume (5) can be manufactured using different techniques which are beyond the scope of the present invention, as long as they allow obtaining a sufficiently detailed object for the particular application of interest. According to a preferred embodiment of the invention, each volume (5) is manufactured by means of 3D printing techniques.
  • each image (4) is adhered to the surface (31) of the volume (5) that corresponds to the curvilinear surface (3) from which the image (4) was obtained.
  • each volume (5) there is a physical representation of the different layers that make up the real object (1), and information corresponding to the geometry and morphology of the object (1) is displayed on at least one of its surfaces. in that layer.
  • the volumes (5) are assembled following the geometric order of the surfaces (3) associated with them, in such a way that the superposition of all the volumes (5) reproduces a physical model (40) of the object (1).
  • This superposition, or assembly, of volumes (5) allows the direct interaction of a user with the physical model (40) of the object (1), model (40) that shows the internal and external information of the object (1).
  • FIGS la and lb show the product obtained after executing method (42) for the case in which object (1) is a person's maxilla, together with the associated dental pieces, and the environment of the same. Consequently, each volume (5) represents a section of the person's jaw together with the associated dental pieces and their environment. By assembling all the volumes (5) a physical, complete and layered model of the real object (1) is obtained.
  • Another aspect of the present invention describes the model (40) of the three-dimensional object (1) which comprises: one or more volumes (5), each limited by at least one surface (31); and one or more two-dimensional images (4) of the structure of the object (1), each corresponding to a surface (3) and printed on a flat two-dimensional surface.
  • each surface (3) is a developable surface obtained from sectioning on curvilinear surfaces a three-dimensional digital model (2) of the object (1); each surface (31) corresponds to the physical representation of a surface (3); each image (4) represents the geometry and morphology of the sections of the object (1) corresponding to their respective surfaces (3); each picture
  • each volume (5) has a thickness that is less than the largest dimension of each surface (3).
  • Model (40) according to the present invention is shown in Figure la. This model is made up of a series of volumes (5) each of which has an image (4) attached to at least one of its surfaces (31). Volumes
  • Figure lb shows the volumes (5) unassembled, showing that the model (40) can be used to carry out a study by layers of the object (1).
  • Each volume (5) of which the model (40) constitutes is limited by at least one surface (31) which has a direct correspondence with one of the selected surfaces (3) of the digital model (2). Consequently, the shape of that surface (31) that limits the volume (5) coincides with the shape of one of the surfaces
  • the volume (5) is limited by two surfaces (31) each associated with one surface (3). According to an even more preferred embodiment, the volume (5) corresponds to the section of the object (1) contained between two adjacent surfaces (3).
  • each volume (5) has a thickness that is less than the largest dimension of each surface (3). According to a preferred embodiment, the thickness of each volume (5) is between 0.1 mm and 10 cm. According to an even more preferred embodiment, the thickness of each volume (5) is equal to the distance between the surfaces (3) corresponding to the surfaces (31) that limit the volume (5).
  • the thickness of the different volumes (5) does not have to be the same, another embodiment of the invention reveals that the thickness of each volume (5) is the same. According to preferred embodiments of the invention, the thickness of the volume (5) is not constant along the surface (31), that is, it can vary throughout the volume
  • each volume (5) can be manufactured using different techniques which are outside the scope of the present invention, as long as they allow obtaining a sufficiently detailed object for the particular application of interest. According to a preferred embodiment of the invention, each volume (5) is manufactured by means of 3D printing techniques.
  • Each of the images (4) that are part of the model (40) contains information about the structure of the object (1) along the surface (3) corresponding to one of the surfaces (31) that limit volume (5). In this way, a set of images is obtained that show the geometry and morphology of the object (1) of each of the layers or sections into which the digital model (2) is divided.
  • the images (4) associated with each surface (3) contain information about the geometry and morphology of the object (1) along that surface (3).
  • each image (4) is equivalent to the image that would be obtained if a cut of the object (1) was made along the surface (3) and the resulting surface was flattened.
  • the geometry and morphology of the sections of the object (1) corresponding to their respective surfaces (3) are graphically represented by a scale chromatic.
  • the color scale is a monochrome scale or gray scale.
  • each image (4) is adhered to the surface (31) of the volume (5) that corresponds to the curvilinear surface (3) from which the image (4) was obtained.
  • each volume (5) is a physical representation of the different layers that make up the real object (1), and contains on at least one of its surfaces information corresponding to the geometry and morphology of the object (1) in that layer. .
  • the images (4) In order to adhere the images (4) to the surfaces (31), the images (4) must be printed on flat two-dimensional surfaces. According to an embodiment of the present invention, printing is performed by conventional printing methods such as laser printing or inkjet printing. Although the surfaces (3) are curved, since they are developable surfaces they can be printed on a flat surface without generating any distortion of the image. It is for this reason that the present invention allows detailed models to be obtained at a low price: because the surfaces (3) that correspond to the cross sections of the object (1) can be conveniently chosen, and at the same time, techniques of fast and economical printing.
  • Figure 4a shows the image (4) associated with a developable surface (3) obtained after sectioning the digital model (2).
  • Figure 4b shows the same image (4) after being flattened, that is, the image (4) that will be printed on the flat two-dimensional surface. Being associated with a developable surface (3), the image (4) can be flattened without any distortion, so that the flattened image (Figure 4b) is a faithful representation of the original image ( Figure 4a).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Graphics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Computer Hardware Design (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Geometry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Image Processing (AREA)
  • Processing Or Creating Images (AREA)
  • Instructional Devices (AREA)

Abstract

The present invention relates to a method for obtaining a physical model of a three-dimensional object from a digital model of the object. The method disclosed herein consists in sectioning the digital model into developable surfaces, and in obtaining images of the object that correspond to each of the surfaces. Subsequently, each image is printed on a two-dimensional surface and adhered to a volume associated with same, so that internal and external sections of the original object are reproduced. The invention also describes the physical model obtained using the disclosed method, which comprises the printed images corresponding to each developable surface and the volumes associated with same that form the physical model. The method of the invention allows access to detailed images of the inside and outside of any object, without needing to acquire and use specialised software. The physical model facilitates interaction with the internal structure of the object, having clinical, didactic and educational advantages.

Description

MÉTODO PARA LA OBTENCIÓN DE UN MODELO FÍSICO DE UN OBJETO TRIDIMENSIONAL A PARTIR DE SUPERFICIES DESARROLLADLES Y MODELO FÍSICO ASÍ OBTENIDO  METHOD FOR OBTAINING A PHYSICAL MODEL OF A THREE-DIMENSIONAL OBJECT FROM DEVELOPABLE SURFACES AND PHYSICAL MODEL SO OBTAINED
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
1. Campo de la Invención 1. Field of the Invention
[003] La presente invención se relaciona con modelos físicos de objetos tridimensionales y con métodos para obtener y fabricar dichos modelos.  [003] The present invention relates to physical models of three-dimensional objects and to methods of obtaining and manufacturing such models.
2. Descripción del arte previo 2. Description of the prior art
[004] La inspección de las características estructurales de un objeto es un proceso de gran importancia en diversos campos industriales y académicos como ingeniería, medicina, arquitectura, artes y pedagogía, pues permite el análisis robusto, extemo e intemo, del objeto de interés. La adquisición de información de la estructura y características del objeto, así como la facilidad de estudiar y analizar esta información de manera sencilla, es necesaria para realizar un examen apropiado del mismo.  [004] The inspection of the structural characteristics of an object is a process of great importance in various industrial and academic fields such as engineering, medicine, architecture, arts and pedagogy, since it allows for robust, external and internal analysis of the object of interest. The acquisition of information on the structure and characteristics of the object, as well as the ease of studying and analyzing this information in a simple way, is necessary to carry out an appropriate examination of it.
[005] Una de las técnicas de inspección más comunes es el modelamiento digital tridimensional, que consiste en obtener datos del objeto de interés con el fin de reconstmir un modelo digital del mismo el cual contiene toda la información obtenida. Comúnmente, este proceso está sujeto al uso de software especializado en donde, a partir de un modelo digital tridimensional del objeto, se pueden visualizar sus características, escogiendo de manera arbitraria la profundidad a la que se desea realizar el estudio. No obstante, este tipo de software suele ser muy costoso y el usuario debe recibir un entrenamiento específico para poderlo utilizar, lo que repercute en que este tipo de análisis está restringido a una población muy limitada. [005] One of the most common inspection techniques is three-dimensional digital modeling, which consists of obtaining data on the object of interest in order to reconstruct a digital model of the object that contains all the information obtained. Commonly, this process is subject to the use of specialized software where, from a three-dimensional digital model of the object, its characteristics can be visualized, arbitrarily choosing the depth at which the study is to be carried out. However, this type of software is usually very expensive and the user must receive specific training in order to use it, which means that this type of analysis is restricted to a very limited population.
[006] Por otro lado, los mecanismos comerciales de modelamiento tridimensional están usualmente ligados a un único medio de obtención de datos digitales o a las restricciones impuestas por el fabricante de los equipos, limitando así el alcance del análisis y coartando al usuario a un espectro reducido de alternativas de estudio. [006] On the other hand, commercial three-dimensional modeling mechanisms are usually linked to a single means of obtaining digital data or to restrictions imposed by the equipment manufacturer, thus limiting the scope of the analysis and limiting the user to a reduced spectrum of study alternatives.
[007] Así pues, existe en la técnica la necesidad de una metodología que permita visualizar la estructura extema e intema de un objeto arbitrario a partir de información digital de su volumen, siendo dicha metodología económica, de fácil acceso y uso, e independiente del mecanismo de adquisición de datos digitales. [007] Thus, there is a need in the art for a methodology that allows visualizing the external and internal structure of an arbitrary object based on digital information of its volume, being said economic methodology, easy to access and use, and independent of the digital data acquisition mechanism.
BREVE DESCRIPCIÓN DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
[008] La presente invención se relaciona con modelos físicos (tangibles) que representan características internas y externas de objetos tridimensionales, y con métodos para obtener dichos modelos. Los modelos (40) se construyen a partir de volúmenes (5) los cuales corresponden a secciones transversales planares y curvilíneas del objeto real (1) y que se encajan los unos a los otros completando así el volumen total del objeto (1). Dado que corresponde a una sección transversal del objeto real (1), cada volumen (5) está acotado por dos superficies (31), de las cuales al menos una tiene adherida una imagen (4) que representa la geometría de esa sección del objeto (1). De esta manera, el modelo (40) representa, a manera de capas, características estructurales internas y externas del objeto (1). [008] The present invention relates to physical (tangible) models representing internal and external characteristics of three-dimensional objects, and to methods for obtaining such models. The models (40) are built from volumes (5) which correspond to planar and curvilinear cross sections of the real object (1) and that fit together, thus completing the total volume of the object (1). Since it corresponds to a cross section of the real object (1), each volume (5) is bounded by two surfaces (31), of which at least one has an image attached (4) that represents the geometry of that section of the object (1). In this way, the model (40) represents, as layers, internal and external structural characteristics of the object (1).
[009] Para obtener el modelo físico (40), se parte de un modelo digital tridimensional (2) del objeto (1). El modelo digital (2) se secciona en superficies desarrollables (3) y se obtienen imágenes (4) de la estructura del objeto (1) correspondientes a cada una de las superficies (3); seguidamente, cada imagen (4) se imprime sobre una superficie bidimensional plana. Por otro lado, por cada una de las superficies (3) se fabrica un volumen (5) acotado por superficies (31) las cuales corresponden a la representación física de las respectivas superficies (3). Posteriormente, las distintas imágenes (4), ya impresas sobre superficies bidimensionales planas, se adhieren a sus correspondientes superficies (31) de los volúmenes (5) de tal manera que en cada volumen (5) se tiene una representación física de las distintas capas que constituyen el objeto real (1). [0010] Dentro del concepto inventivo de esta invención se considera que el objeto (1) puede estar compuesto por un objeto principal (11) y su entorno (12), caso en el cual el objeto principal (11) ocuparía sólo una porción del volumen total del objeto (1), y el volumen restante estaría compuesto por el entorno (12) que rodea el objeto principal (11). A lo largo de este documento se entenderá que, en caso de que también se desee estudiar el entorno (12) que rodea el objeto principal (11), el objeto (1) se tomará como el conjunto entre el objeto principal (11) y el entorno que lo rodea (12). [009] To obtain the physical model (40), we start with a three-dimensional digital model (2) of the object (1). The digital model (2) is sectioned into developable surfaces (3) and images (4) of the structure of the object (1) corresponding to each of the surfaces (3) are obtained; next, each image (4) is printed on a flat two-dimensional surface. On the other hand, for each one of the surfaces (3) a volume (5) bounded by surfaces (31) is produced which correspond to the physical representation of the respective surfaces (3). Subsequently, the different images (4), already printed on flat two-dimensional surfaces, adhere to their corresponding surfaces (31) of the volumes (5) in such a way that in each volume (5) there is a physical representation of the different layers that constitute the real object (1). [0010] Within the inventive concept of this invention, it is considered that the object (1) can be composed of a main object (11) and its environment (12), in which case the main object (11) would occupy only a portion of the total volume of the object (1), and the remaining volume would be made up of the environment (12) surrounding the main object (11). Throughout this document it will be understood that, in case you also want to study the environment (12) that surrounds the main object (11), the object (1) will be taken as the set between the main object (11) and the environment that surrounds it (12).
[0011] La presente invención se caracteriza porque las superficies (3) en las que se divide el modelo digital (2) del objeto (1) son superficies desarrollables, es decir, superficies que pueden ser aplanadas sin distorsión alguna. Esta característica es lo que permite que las imágenes (4) sean impresas sobre superficies bidimensionales planas empleando, por ejemplo, medios convencionales de impresión, los cuales son muy económicos y rápidos. De esta manera, se pueden obtener imágenes de alta calidad y fidelidad a un muy bajo costo. [0011] The present invention is characterized in that the surfaces (3) into which the digital model (2) of the object (1) is divided are developable surfaces, that is, surfaces that can be flattened without any distortion. This feature is what allows images (4) to be printed on flat two-dimensional surfaces using, for example, conventional printing media, which are very economical and fast. In this way, high quality and fidelity images can be obtained at a very low cost.
[0012] Particularmente, el modelo (40) y el método (42) de la presente invención, al reemplazar el software especializado para la inspección de objetos tridimensionales, facilita el estudio de las características internas y externas de cualquier objeto tridimensional, lo cual tiene aplicación en campos industriales, médicos y pedagógicos, entre otros, pues permite interactuar con cada una de las capas que constituyen el objeto completo (1), mostrando, con un nivel de detalle arbitrario, el cual depende únicamente de la información disponible del objeto (1), la morfología y geometría de cada sección del objeto (1). [0012] Particularly, the model (40) and the method (42) of the present invention, by replacing the specialized software for the inspection of three-dimensional objects, facilitates the study of the internal and external characteristics of any three-dimensional object, which has application in industrial, medical and pedagogical fields, among others, since it allows interaction with each of the layers that make up the complete object (1), showing, with an arbitrary level of detail, which depends solely on the information available on the object ( 1), the morphology and geometry of each section of the object (1).
[0013] De acuerdo con un aspecto de la presente invención, el objeto (1) que se desea analizar es el maxilar de un ser humano junto con las piezas dentales que se le asocian. De esta manera, la invención aquí revelada facilita el análisis odontológico de un paciente, permitiendo al odontólogo un diagnóstico más acertado y mejorando el entendimiento del paciente acerca de su condición. Más aún, el modelo (40) aquí revelado se convierte en una herramienta de enseñanza útil para la formación de nuevos odontólogos. [0014] A diferencia de los métodos comúnmente empleados, la presente invención da acceso a cualquier tipo de usuario sin entrenamiento alguno a un modelo (40) acertado del objeto (1) que se desea analizar, modelo que tiene tantas capas como se desee, y a un costo muy reducido. [0013] According to an aspect of the present invention, the object (1) to be analyzed is the jawbone of a human being together with the associated dental pieces. In this way, the invention disclosed herein facilitates the dental analysis of a patient, allowing the dentist to make a more accurate diagnosis and improving the patient's understanding of his condition. Furthermore, the model (40) revealed here becomes a useful teaching tool for training new dentists. [0014] Unlike the commonly used methods, the present invention gives access to any type of user without any training to a successful model (40) of the object (1) to be analyzed, a model that has as many layers as desired, and at a very low cost.
[0015] El modelo (40) y el método (42) aquí revelados se caracterizan porque facilitan a un usuario el estudio de las características estructurales del objeto (1), especialmente las características de su estructura interna. [0015] The model (40) and the method (42) disclosed herein are characterized in that they make it easier for a user to study the structural characteristics of the object (1), especially the characteristics of its internal structure.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
[0016] La Figura la muestra el modelo (40) del objeto (1) de acuerdo con la invención, el cual está conformado por distintos volúmenes (5) ensamblados a los cuales se les han adherido sus respectivas imágenes (4) [0016] The Figure shows the model (40) of the object (1) according to the invention, which is made up of different assembled volumes (5) to which their respective images (4) have been attached.
[0017] La Figura lb muestra una vista general de los distintos volúmenes (5) de acuerdo con la invención con las imágenes (4) adheridas los cuales se ensamblan para formar el modelo (40) del objeto (1). [0017] Figure lb shows an overview of the different volumes (5) according to the invention with the attached images (4) which are assembled to form the model (40) of the object (1).
[0018] La Figura 2a muestra una superficie desarrollable (3) en un espacio tridimensional. [0018] Figure 2a shows a developable surface (3) in three-dimensional space.
[0019] La Figura 2b muestra la superficie desarrollable (3) de la Figura 2a en un espacio bidimensional plano de acuerdo con la invención. [0019] Figure 2b shows the developable surface (3) of Figure 2a in a flat two-dimensional space according to the invention.
[0020] La Figura 3 muestra un diagrama de flujo del método (42) de acuerdo con la invención. [0020] Figure 3 shows a flow diagram of the method (42) according to the invention.
[0021] La Figura 4a muestra la imagen (4) asociada a una superficie desarrollable (3) de una sección del modelo digital (2). [0022] La Figura 4b muestra la imagen (4) asociada a la superficie desarrollable (3) de la Figura 4a luego de ser aplanada de acuerdo con la invención. [0021] Figure 4a shows the image (4) associated with a developable surface (3) of a section of the digital model (2). [0022] Figure 4b shows the image (4) associated with the developable surface (3) of Figure 4a after being flattened according to the invention.
DESCRIPCIÓN DETALLADA DE LAS REALIZACIONES PREFERIDAS DETAILED DESCRIPTION OF PREFERRED REALIZATIONS
[0023] La presente invención se relaciona con modelos físicos de objetos tridimensionales con los que se facilita el estudio de la estructura interna y extema de un objeto, así como con los métodos para obtener dichos modelos. El modelo (40) de acuerdo con la presente invención está constituido por pequeños volúmenes (5) que representan distintas capas del objeto real (1). Cada uno de estos volúmenes (5) tiene adherida una imagen (4) en al menos una de sus superficies, en donde dicha imagen (4) muestra la morfología y geometría del objeto (1) en la respectiva capa. Por otro lado, el método (42) consiste en dividir un modelo digital (2) del objeto (1) en superficies curvilíneas (3) y obtener una imagen (4) del objeto correspondiente a cada una de dichas superficies (3). Finalmente, las imágenes (4) se imprimen y adhieren a los volúmenes[0023] The present invention relates to physical models of three-dimensional objects with which the study of the internal and external structure of an object is facilitated, as well as the methods for obtaining said models. The model (40) according to the present invention is made up of small volumes (5) that represent different layers of the real object (1). Each of these volumes (5) has an image (4) attached to at least one of its surfaces, where said image (4) shows the morphology and geometry of the object (1) in the respective layer. On the other hand, the method (42) consists in dividing a digital model (2) of the object (1) into curvilinear surfaces (3) and obtaining an image (4) of the object corresponding to each of said surfaces (3). Finally, the images (4) are printed and adhered to the volumes
(5). (5).
[0024] El modelo (40) de acuerdo con la presente invención se muestra en la Figura la. Este modelo está constituido por una serie de volúmenes (5) cada uno de los cuales tiene adherida una imagen (4) en al menos una de sus superficies (31). Los volúmenes (5) se ensamblan para formar el modelo completo (40) por capas. [0024] Model (40) according to the present invention is shown in Figure la. This model is made up of a series of volumes (5) each of which has an image (4) attached to at least one of its surfaces (31). Volumes (5) are assembled to form the complete model (40) in layers.
[0025] La Figura lb muestra los volúmenes (5) sin ensamblar, evidenciando que el modelo (40) puede ser empleado para realizar un estudio por capas del objeto (1). [0025] Figure lb shows the volumes (5) unassembled, showing that the model (40) can be used to carry out a study by layers of the object (1).
[0026] A lo largo de este documento, y a menos que se indique lo contrario, se entenderá que las superficies (3) son superficies desarrollables en el estricto sentido de la definición matemática de "superficie desarrollable" , es decir, una superficie con curvatura Gaussiana nula. En otras palabras, una superficie desarrollable es una superficie que puede ser aplanada (o desenvuelta en un plano) sin distorsión alguna, manteniendo invariantes formas y áreas. Las superficies desarrollables se pueden construir a partir de diferentes técnicas, incluyendo técnicas de producto tensorial, parches triangulares y NURBS. [0026] Throughout this document, and unless otherwise indicated, surfaces (3) will be understood to be developable surfaces in the strict sense of the mathematical definition of "developable surface", that is, a surface with curvature Gaussian null. In other words, a developable surface is a surface that can be flattened (or developed in a plane) without any distortion, maintaining invariant shapes and areas. Developable surfaces can be build from different techniques, including tensor product techniques, triangle patches and NURBS.
[0027] Las Figuras 2a y 2b permiten entender el concepto de “superficie desarrollable” . En la Figura 2a se muestra una superficie desarrollable (3) en un espacio tridimensional. Al ser desarrollable, esta superficie puede ser aplanada y llevada a un espacio bidimensional sin distorsionar las líneas que la constituyen. De esta manera, se obtiene la superficie plana mostrada en la Figura 2b la cual es una fiel representación de la superficie original. [0027] Figures 2a and 2b allow us to understand the concept of “developable surface”. Figure 2a shows a developable surface (3) in a three-dimensional space. Being developable, this surface can be flattened and taken into a two-dimensional space without distorting the lines that constitute it. In this way, the flat surface shown in Figure 2b is obtained which is a faithful representation of the original surface.
[0028] De acuerdo con un aspecto de la presente invención, el método (42) para obtener un modelo físico (40) de un objeto tridimensional (1) comprende las siguientes etapas: obtener un modelo digital tridimensional (2) del objeto (1); seccionar el modelo (2) en superficies curvilíneas (3); obtener una imagen bidimensional (4) de la estructura del objeto (1) correspondiente a cada una de las superficies (3); imprimir cada imagen (4) sobre una superficie bidimensional plana; por cada superficie (3), fabricar un volumen (5) limitado por al menos una superficie (31) que corresponde a la representación física de la respectiva superficie (3); y adherir cada imagen (4) impresa sobre la superficie bidimensional plana a su correspondiente superficie (31). Además, el método se caracteriza porque las superficies (3) son superficies desarrollables, porque cada imagen (4) representa la geometría y morfología de las secciones del objeto (1) correspondientes a sus respectivas superficies (3), y porque cada volumen (5) tiene un grosor que es menor a la dimensión más grande de cada superficie (3). La Figura 3 muestra un diagrama de flujo del método (42) de acuerdo con la presente invención. [0028] According to an aspect of the present invention, the method (42) for obtaining a physical model (40) of a three-dimensional object (1) comprises the following steps: obtaining a three-dimensional digital model (2) of the object (1 ); section the model (2) into curvilinear surfaces (3); obtaining a two-dimensional image (4) of the structure of the object (1) corresponding to each of the surfaces (3); print each image (4) on a flat two-dimensional surface; for each surface (3), manufacture a volume (5) limited by at least one surface (31) that corresponds to the physical representation of the respective surface (3); and adhering each printed image (4) on the flat two-dimensional surface to its corresponding surface (31). Furthermore, the method is characterized in that the surfaces (3) are developable surfaces, because each image (4) represents the geometry and morphology of the sections of the object (1) corresponding to their respective surfaces (3), and because each volume (5 ) has a thickness that is less than the largest dimension of each surface (3). Figure 3 shows a flow diagram of the method (42) according to the present invention.
[0029] El modelo digital (2) puede ser obtenido de distintas maneras las cuales son ajenas al alcance de la presente invención, en tanto permitan obtener un modelo digital tridimensional suficientemente detallado para la aplicación particular de interés. Cualquier método que permita la obtención de información acerca de la geometría y morfología del objeto (1) en tres dimensiones puede ser empleado para obtener el modelo digital (2). Según modalidades preferidas de la invención, el modelo digital tridimensional (2) se obtiene mediante una técnica que se selecciona de grupo que comprende: tomografía, resonancia magnética 3D, escaneo 3D láser, escaneo 3D de luz estructurada, estereofotogrametría 3D, morfometría 3D, diseño asistido por computador, métodos por triangulación, técnicas de micro CT, haz de iones enfocado, métodos por emisión de protones, electro sonografía y ultrasonido. [0029] The digital model (2) can be obtained in different ways which are beyond the scope of the present invention, as long as they allow obtaining a sufficiently detailed three-dimensional digital model for the particular application of interest. Any method that allows obtaining information about the geometry and morphology of the object (1) in three dimensions can be used to obtain the digital model (2). According to preferred embodiments of the invention, the three-dimensional digital model (2) is obtained by a technique that is selected from the group that comprises: tomography, 3D magnetic resonance, 3D laser scanning, 3D structured light scanning, 3D stereophotogrammetry, 3D morphometry, computer aided design, triangulation methods, micro CT techniques, focused ion beam, proton emission methods, electro sonography and ultrasound.
[0030] Una vez se obtiene el modelo digital (2), se procede a seccionarlo en superficies curvilíneas (3) las cuales son escogidas de tal manera que correspondan a superficies desarrollables y que la distancia entre dos superficies (3) contiguas sea, a lo sumo, la resolución espacial que se desea tener para la profundidad del objeto. De esta manera, se escoge de manera arbitraria el número de secciones o capas en las que se divide el modelo digital (2) de acuerdo con la resolución que se desee. [0030] Once the digital model (2) is obtained, it is proceeded to section it into curvilinear surfaces (3) which are chosen in such a way that they correspond to developable surfaces and that the distance between two contiguous surfaces (3) is, at at most, the spatial resolution you want to have for the depth of the object. In this way, the number of sections or layers into which the digital model (2) is divided is arbitrarily chosen according to the resolution desired.
[0031] Posterior al seccionamiento del modelo digital (2) con base en las superficies (3), se obtiene una imagen tridimensional (4) de la estructura del objeto (1) a lo largo de cada una de estas superficies (3). De esta manera, se obtiene un conjunto de imágenes que muestran la geometría y morfología del objeto (1) de cada una de las capas o secciones en las que se divide el modelo digital (2). [0031] After sectioning the digital model (2) based on the surfaces (3), a three-dimensional image (4) of the structure of the object (1) is obtained along each of these surfaces (3). In this way, a set of images is obtained that show the geometry and morphology of the object (1) of each of the layers or sections into which the digital model (2) is divided.
[0032] De acuerdo con la presente invención, las imágenes (4) asociadas a cada superficie (3) contienen información acerca de la geometría y morfología del objeto (1) a lo largo de esa superficie (3). De acuerdo con una realización preferida de la invención, la geometría y morfología de las secciones del objeto (1) correspondientes a sus respectivas superficies (3) están representadas gráficamente mediante una escala cromática. Otra realización de la invención revela que la escala cromática es una escala monocromática o escala de grises. Adicionalmente, la presente invención permite la asignación de colores a diferentes componentes de las superficies (3), en donde los colores permiten diferenciar la geometría y morfología de cada imagen (4). [0032] According to the present invention, the images (4) associated with each surface (3) contain information about the geometry and morphology of the object (1) along that surface (3). According to a preferred embodiment of the invention, the geometry and morphology of the sections of the object (1) corresponding to their respective surfaces (3) are graphically represented by a chromatic scale. Another embodiment of the invention reveals that the color scale is a monochrome or gray scale. Additionally, the present invention allows the assignment of colors to different components of the surfaces (3), where the colors allow to differentiate the geometry and morphology of each image (4).
[0033] Las imágenes (4) son posteriormente impresas sobre superficies bidimensionales planas. Según una realización de la presente invención, la impresión es realizada mediante métodos de impresión convencionales como impresión láser o impresión por inyección de tinta. Si bien las superficies (3) son curvas, al ser superficies desarrollables pueden ser impresas sobre una superficie plana sin generar distorsión alguna de la imagen. Es por esta razón que la presente invención permite obtener modelos detallados a un bajo precio: porque se pueden escoger de manera conveniente las superficies (3) que corresponden a los cortes transversales del objeto (1), y al mismo tiempo se pueden usar técnicas de impresión rápidas y económicas. [0033] The images (4) are subsequently printed on flat two-dimensional surfaces. According to an embodiment of the present invention, printing is performed by conventional printing methods such as laser printing or inkjet printing. Although the surfaces (3) are curved, as they are developable surfaces They can be printed on a flat surface without generating any distortion of the image. It is for this reason that the present invention allows detailed models to be obtained at a low price: because the surfaces (3) that correspond to the cross sections of the object (1) can be conveniently chosen, and at the same time, techniques of fast and economical printing.
[0034] Las Figuras 4a y 4b muestran una imagen (4) durante distintas etapas del método (42). En la Figura 4a se muestra la imagen (4) asociada a una superficie desarrollable (3) obtenida luego de seccionar el modelo digital (2). Por otro lado, la Figura 4b muestra la misma imagen (4) luego de ser aplanada, es decir, la imagen (4) que será impresa sobre la superficie bidimensional plana. Al estar asociada a una superficie desarrollable (3), la imagen (4) puede ser aplanada sin distorsión alguna, de manera que la imagen aplanada (Figura 4b) es una fiel representación de la imagen original (Figura 4a). [0034] Figures 4a and 4b show an image (4) during different stages of method (42). Figure 4a shows the image (4) associated with a developable surface (3) obtained after sectioning the digital model (2). On the other hand, Figure 4b shows the same image (4) after being flattened, that is, the image (4) that will be printed on the flat two-dimensional surface. Being associated with a developable surface (3), the image (4) can be flattened without any distortion, so that the flattened image (Figure 4b) is a faithful representation of the original image (Figure 4a).
[0035] Adicionalmente, el método (42) que revela la presente invención comprende la fabricación de al menos un volumen (5) con el cual se construirá parte o la totalidad el modelo físico (40). Cada volumen (5) está limitado por al menos una superficie (31) la cual tiene una correspondencia directa con una de las superficies (3) seleccionadas del modelo digital (2). Consecuentemente, la forma de esa superficie (31) que limita el volumen (5) coincide con la forma de una de las superficies (3). [0035] Additionally, the method (42) revealed by the present invention comprises the manufacture of at least one volume (5) with which part or all of the physical model (40) will be constructed. Each volume (5) is limited by at least one surface (31) which has a direct correspondence with one of the selected surfaces (3) of the digital model (2). Consequently, the shape of that surface (31) that limits the volume (5) coincides with the shape of one of the surfaces (3).
[0036] De acuerdo con una modalidad de la invención, el volumen (5) está limitado por dos superficies (31) cada una asociada a una superficie curvilínea (3). De acuerdo con una modalidad aún más preferida, el volumen (5) corresponde a la sección del objeto (1) contenida entre dos superficies curvilíneas (3) contiguas. [0036] According to an embodiment of the invention, the volume (5) is limited by two surfaces (31) each associated with a curvilinear surface (3). According to an even more preferred embodiment, the volume (5) corresponds to the section of the object (1) contained between two contiguous curvilinear surfaces (3).
[0037] Según revela la presente invención, cada volumen (5) tiene un grosor que es menor a la dimensión más grande de cada superficie curvilínea (3). De acuerdo con una realización preferida, el grosor de cada volumen (5) está entre 0.1 mm y 10 cm. De acuerdo con una realización aún más preferida, el grosor de cada volumen (5) es igual a distancia entre las superficies (3) correspondientes a las superficies (31) que limitan el volumen (5). [0037] As disclosed by the present invention, each volume (5) has a thickness that is less than the largest dimension of each curvilinear surface (3). According to a preferred embodiment, the thickness of each volume (5) is between 0.1 mm and 10 cm. According to an even more preferred embodiment, the thickness of each volume (5) is equal to distance between the surfaces (3) corresponding to the surfaces (31) that limit the volume (5).
[0038] Cada volumen (5) puede ser fabricado usando distintas técnicas las cuales son ajenas al alcance de la presente invención, en tanto permitan obtener un objeto suficientemente detallado para la aplicación particular de interés. Según una modalidad preferida de la invención, cada volumen (5) se fabrica mediante técnicas de impresión 3D. [0038] Each volume (5) can be manufactured using different techniques which are beyond the scope of the present invention, as long as they allow obtaining a sufficiently detailed object for the particular application of interest. According to a preferred embodiment of the invention, each volume (5) is manufactured by means of 3D printing techniques.
[0039] Por último, una vez se han impreso las imágenes (4) y se han fabricado los volúmenes (5), se adhiere cada imagen (4) a la superficie (31) del volumen (5) que corresponda a la superficie curvilínea (3) de la cual se obtuvo la imagen (4). De esta manera, en cada volumen (5) se tiene una representación física de las distintas capas que constituyen el objeto real (1), y se muestra sobre al menos una de sus superficies información correspondiente a la geometría y morfología del objeto (1) en esa capa. [0039] Finally, once the images (4) have been printed and the volumes (5) have been manufactured, each image (4) is adhered to the surface (31) of the volume (5) that corresponds to the curvilinear surface (3) from which the image (4) was obtained. In this way, in each volume (5) there is a physical representation of the different layers that make up the real object (1), and information corresponding to the geometry and morphology of the object (1) is displayed on at least one of its surfaces. in that layer.
[0040] Según una realización de la presente invención, luego de que se tiene una serie de volúmenes (5) a los que se les han adherido imágenes (4) según se describió anteriormente, los volúmenes (5) se ensamblan siguiendo el orden geométrico de las superficies (3) asociadas a ellas, de tal manera que la superposición de todos los volúmenes (5) reproduzca un modelo físico (40) del objeto (1). Esta superposición, o ensamblaje, de volúmenes (5) permite la interacción directa de un usuario con el modelo físico (40) del objeto (1), modelo (40) que muestra la información intema y externa del objeto (1). [0040] According to an embodiment of the present invention, after having a series of volumes (5) to which images (4) have been adhered as described above, the volumes (5) are assembled following the geometric order of the surfaces (3) associated with them, in such a way that the superposition of all the volumes (5) reproduces a physical model (40) of the object (1). This superposition, or assembly, of volumes (5) allows the direct interaction of a user with the physical model (40) of the object (1), model (40) that shows the internal and external information of the object (1).
[0041] Las Figuras la ylb muestran el producto obtenido luego de ejecutar el método (42) para el caso en que el objeto (1) es el maxilar de una persona, junto con las piezas dentales que se le asocian, y el entorno del mismo. Consecuentemente, cada volumen (5) representa una sección del maxilar de la persona junto con las piezas dentales que se le asocian y su entorno. Al ensamblar todos los volúmenes (5) se obtiene un modelo físico, completo y por capas del objeto real (1). [0042] Otro aspecto de la presente invención describe el modelo (40) del objeto tridimensional (1) el cual comprende: uno o más volúmenes (5), cada uno limitado por al menos una superficie (31); y una o más imágenes bidimensionales (4) de la estructura del objeto (1), cada una correspondiente a una superficie (3) e impresa sobre una superficie bidimensional plana. Además, cada superficie (3) es una superficie desarrollable obtenida a partir de seccionar en superficies curvilíneas un modelo digital tridimensional (2) del objeto (1); cada superficie (31) corresponde a la representación física de una superficie (3); cada imagen (4) representa la geometría y morfología de las secciones del objeto (1) correspondientes a sus respectivas superficies (3); cada imagen[0041] Figures la and lb show the product obtained after executing method (42) for the case in which object (1) is a person's maxilla, together with the associated dental pieces, and the environment of the same. Consequently, each volume (5) represents a section of the person's jaw together with the associated dental pieces and their environment. By assembling all the volumes (5) a physical, complete and layered model of the real object (1) is obtained. [0042] Another aspect of the present invention describes the model (40) of the three-dimensional object (1) which comprises: one or more volumes (5), each limited by at least one surface (31); and one or more two-dimensional images (4) of the structure of the object (1), each corresponding to a surface (3) and printed on a flat two-dimensional surface. Furthermore, each surface (3) is a developable surface obtained from sectioning on curvilinear surfaces a three-dimensional digital model (2) of the object (1); each surface (31) corresponds to the physical representation of a surface (3); each image (4) represents the geometry and morphology of the sections of the object (1) corresponding to their respective surfaces (3); each picture
(4) impresa sobre la superficie bidimensional plana está adherida a la correspondiente superficie (31); y cada volumen (5) tiene un grosor que es menor a la dimensión más grande de cada superficie (3). (4) printed on the flat two-dimensional surface is adhered to the corresponding surface (31); and each volume (5) has a thickness that is less than the largest dimension of each surface (3).
[0043] El modelo (40) de acuerdo con la presente invención se muestra en la Figura la. Este modelo está constituido por una serie de volúmenes (5) cada uno de los cuales tiene adherida una imagen (4) en al menos una de sus superficies (31). Los volúmenes[0043] Model (40) according to the present invention is shown in Figure la. This model is made up of a series of volumes (5) each of which has an image (4) attached to at least one of its surfaces (31). Volumes
(5) se ensamblan para formar el modelo completo (40) por capas. (5) are assembled to form the complete model (40) in layers.
[0044] La Figura lb muestra los volúmenes (5) sin ensamblar, evidenciando que el modelo (40) puede ser empleado para realizar un estudio por capas del objeto (1). [0044] Figure lb shows the volumes (5) unassembled, showing that the model (40) can be used to carry out a study by layers of the object (1).
[0045] Cada volumen (5) de los que constituye el modelo (40) está limitado por al menos una superficie (31) la cual tiene una correspondencia directa con una de las superficies (3) seleccionadas del modelo digital (2). Consecuentemente, la forma de esa superficie (31) que limita el volumen (5) coincide con la forma de una de las superficies[0045] Each volume (5) of which the model (40) constitutes is limited by at least one surface (31) which has a direct correspondence with one of the selected surfaces (3) of the digital model (2). Consequently, the shape of that surface (31) that limits the volume (5) coincides with the shape of one of the surfaces
(3). (3).
[0046] De acuerdo con una modalidad preferida de la invención, el volumen (5) está limitado por dos superficies (31) cada una asociada a una superficie (3). De acuerdo con una modalidad aún más preferida, el volumen (5) corresponde a la sección del objeto (1) contenida entre dos superficies (3) contiguas. [0047] De acuerdo con la presente invención, cada volumen (5) tiene un grosor que es menor a la dimensión más grande de cada superficie (3). De acuerdo con una realización preferida, el grosor de cada volumen (5) está entre 0.1 mm y 10 cm. De acuerdo con una realización aún más preferida, el grosor de cada volumen (5) es igual a distancia entre las superficies (3) correspondientes a las superficies (31) que limitan el volumen (5). Si bien el grosor de los distintos volúmenes (5) no tiene que ser el mismo, otra realización de la invención revela que el grosor de cada volumen (5) es el mismo. Según realizaciones preferidas de la invención, el grosor del volumen (5) no es constante a lo largo de la superficie (31), es decir, puede variar a lo largo del volumen[0046] According to a preferred embodiment of the invention, the volume (5) is limited by two surfaces (31) each associated with one surface (3). According to an even more preferred embodiment, the volume (5) corresponds to the section of the object (1) contained between two adjacent surfaces (3). [0047] According to the present invention, each volume (5) has a thickness that is less than the largest dimension of each surface (3). According to a preferred embodiment, the thickness of each volume (5) is between 0.1 mm and 10 cm. According to an even more preferred embodiment, the thickness of each volume (5) is equal to the distance between the surfaces (3) corresponding to the surfaces (31) that limit the volume (5). Although the thickness of the different volumes (5) does not have to be the same, another embodiment of the invention reveals that the thickness of each volume (5) is the same. According to preferred embodiments of the invention, the thickness of the volume (5) is not constant along the surface (31), that is, it can vary throughout the volume
(5). (5).
[0048] Cada volumen (5) puede ser fabricado usando distintas técnicas las cuales son ajenas al alcance de la presente invención, en tanto permitan obtener un objeto suficientemente detallado para la aplicación particular de interés. Según una modalidad preferida de la invención, cada volumen (5) se fabrica mediante técnicas de impresión 3D. [0048] Each volume (5) can be manufactured using different techniques which are outside the scope of the present invention, as long as they allow obtaining a sufficiently detailed object for the particular application of interest. According to a preferred embodiment of the invention, each volume (5) is manufactured by means of 3D printing techniques.
[0049] Cada una de las imágenes (4) que hacen parte del modelo (40) contiene información acerca de la estructura del objeto (1) a lo largo de la superficie (3) correspondiente a una de las superficies (31) que limitan el volumen (5). De esta manera, se obtiene un conjunto de imágenes que muestran la geometría y morfología del objeto (1) de cada una de las capas o secciones en las que se divide el modelo digital (2). [0049] Each of the images (4) that are part of the model (40) contains information about the structure of the object (1) along the surface (3) corresponding to one of the surfaces (31) that limit volume (5). In this way, a set of images is obtained that show the geometry and morphology of the object (1) of each of the layers or sections into which the digital model (2) is divided.
[0050] Según la presente invención, las imágenes (4) asociadas a cada superficie (3) contienen información acerca de la geometría y morfología del objeto (1) a lo largo de esa superficie (3). De esta forma, cada imagen (4) es equivalente a la imagen que se obtendría si se hiciera un corte del objeto (1) a lo largo de la superficie (3) y se aplanara la superficie resultante. De acuerdo con una realización preferida de la invención, la geometría y morfología de las secciones del objeto (1) correspondientes a sus respectivas superficies (3) está representada gráficamente mediante una escala cromática. De acuerdo con otra realización de la invención, la escala cromática es una escala monocromática o escala de grises. [0050] According to the present invention, the images (4) associated with each surface (3) contain information about the geometry and morphology of the object (1) along that surface (3). In this way, each image (4) is equivalent to the image that would be obtained if a cut of the object (1) was made along the surface (3) and the resulting surface was flattened. According to a preferred embodiment of the invention, the geometry and morphology of the sections of the object (1) corresponding to their respective surfaces (3) are graphically represented by a scale chromatic. According to another embodiment of the invention, the color scale is a monochrome scale or gray scale.
[0051] De acuerdo con la presente invención, cada imagen (4) se encuentra adherida a la superficie (31) del volumen (5) que corresponda a la superficie curvilínea (3) de la cual se obtuvo la imagen (4). De esta manera, cada volumen (5) es una representación física de las distintas capas que constituyen el objeto real (1), y contiene sobre al menos una de sus superficies información correspondiente a la geometría y morfología del objeto (1) en esa capa. [0051] According to the present invention, each image (4) is adhered to the surface (31) of the volume (5) that corresponds to the curvilinear surface (3) from which the image (4) was obtained. In this way, each volume (5) is a physical representation of the different layers that make up the real object (1), and contains on at least one of its surfaces information corresponding to the geometry and morphology of the object (1) in that layer. .
[0052] Para poder adherir las imágenes (4) a las superficies (31), las imágenes (4) deben estar impresas sobre superficies bidimensionales planas. Según una realización de la presente invención, la impresión es realizada mediante métodos de impresión convencionales como impresión láser o impresión por inyección de tinta. Si bien las superficies (3) son curvas, al ser superficies desarrollables pueden ser impresas sobre una superficie plana sin generar distorsión alguna de la imagen. Es por esta razón que la presente invención permite obtener modelos detallados a un bajo precio: porque se pueden escoger de manera conveniente las superficies (3) que corresponden a los cortes transversales del objeto (1), y al mismo tiempo se pueden usar técnicas de impresión rápidas y económicas. [0052] In order to adhere the images (4) to the surfaces (31), the images (4) must be printed on flat two-dimensional surfaces. According to an embodiment of the present invention, printing is performed by conventional printing methods such as laser printing or inkjet printing. Although the surfaces (3) are curved, since they are developable surfaces they can be printed on a flat surface without generating any distortion of the image. It is for this reason that the present invention allows detailed models to be obtained at a low price: because the surfaces (3) that correspond to the cross sections of the object (1) can be conveniently chosen, and at the same time, techniques of fast and economical printing.
[0053] En la Figura 4a se muestra la imagen (4) asociada a una superficie desarrollable (3) obtenida luego de seccionar el modelo digital (2). Por otro lado, la Figura 4b muestra la misma imagen (4) luego de ser aplanada, es decir, la imagen (4) que será impresa sobre la superficie bidimensional plana. Al estar asociada a una superficie desarrollable (3), la imagen (4) puede ser aplanada sin distorsión alguna, de manera que la imagen aplanada (Figura 4b) es una fiel representación de la imagen original (Figura 4a). [0053] Figure 4a shows the image (4) associated with a developable surface (3) obtained after sectioning the digital model (2). On the other hand, Figure 4b shows the same image (4) after being flattened, that is, the image (4) that will be printed on the flat two-dimensional surface. Being associated with a developable surface (3), the image (4) can be flattened without any distortion, so that the flattened image (Figure 4b) is a faithful representation of the original image (Figure 4a).

Claims

CAPÍTULO REIVINDICATORIO CLAIMING CHAPTER
1. Un método (42) para obtener un modelo físico (40) de un objeto tridimensional (1) que comprende: 1. A method (42) to obtain a physical model (40) of a three-dimensional object (1) comprising:
obtener un modelo digital tridimensional (2) del objeto (1);  obtain a three-dimensional digital model (2) of the object (1);
seccionar el modelo (2) en superficies curvilíneas (3);  section the model (2) into curvilinear surfaces (3);
obtener una imagen bidimensional (4) de la estructura del objeto (1) correspondiente a cada una de las superficies (3);  obtaining a two-dimensional image (4) of the structure of the object (1) corresponding to each of the surfaces (3);
imprimir cada imagen (4) sobre una superficie bidimensional plana;  print each image (4) on a flat two-dimensional surface;
por cada superficie (3), fabricar un volumen (5) limitado por al menos una superficie (31) que corresponde a la representación física de la respectiva superficie (3); y  for each surface (3), manufacture a volume (5) limited by at least one surface (31) that corresponds to the physical representation of the respective surface (3); Y
adherir cada imagen (4) impresa sobre la superficie bidimensional plana a su correspondiente superficie (31);  adhering each printed image (4) on the flat two-dimensional surface to its corresponding surface (31);
en donde:  where:
las superficies (3) son superficies desarrollables;  the surfaces (3) are developable surfaces;
cada imagen (4) representa la geometría y morfología de las secciones del objeto (1) correspondientes a sus respectivas superficies (3);  each image (4) represents the geometry and morphology of the sections of the object (1) corresponding to their respective surfaces (3);
cada volumen (5) tiene un grosor que es menor a la dimensión más grande de cada superficie (3).  each volume (5) has a thickness that is less than the largest dimension of each surface (3).
2. El método (42) de acuerdo con la Reivindicación 1 que además comprende superponer los volúmenes (5) correspondientes a cada superficie (3) luego de adherir a ellos las imágenes (4). 2. The method (42) according to Claim 1 which further comprises superimposing the volumes (5) corresponding to each surface (3) after adhering to them the images (4).
3. El método (42) de acuerdo con cualquiera de las reivindicaciones anteriores en donde la geometría y morfología de las secciones del objeto (1) correspondientes a sus respectivas superficies (3) está representada gráficamente mediante una escala cromática. 3. The method (42) according to any of the preceding claims wherein the geometry and morphology of the sections of the object (1) corresponding to their respective surfaces (3) are graphically represented by a chromatic scale.
4. El método (42) de acuerdo con cualquiera de las reivindicaciones anteriores en donde la fabricación de los volúmenes (5) se hace mediante impresión 3D. 4. The method (42) according to any of the preceding claims wherein the manufacturing of the volumes (5) is done by 3D printing.
5. El método (42) de acuerdo con cualquiera de las reivindicaciones anteriores en donde el modelo digital tridimensional (2) se obtiene mediante una técnica que se selecciona de grupo que comprende: tomografía, resonancia magnética 3D, escaneo 3D láser, escaneo 3D de luz estructurada, estereofotogrametría 3D, morfometría 3D, diseño asistido por computador y métodos por triangulación. 5. The method (42) according to any of the preceding claims wherein the three-dimensional digital model (2) is obtained by a technique that is selected from the group comprising: tomography, 3D magnetic resonance, 3D laser scanning, 3D scanning of structured light, 3D stereophotogrammetry, 3D morphometry, computer aided design and triangulation methods.
6. El método (42) de acuerdo con cualquiera de las reivindicaciones anteriores en donde el objeto tridimensional (1) es el maxilar y las piezas dentales que se le asocian. 6. The method (42) according to any of the preceding claims, wherein the three-dimensional object (1) is the maxilla and the associated dental pieces.
7. Un modelo físico (40) de un objeto tridimensional (1) que comprende: 7. A physical model (40) of a three-dimensional object (1) comprising:
uno o más volúmenes (5), cada uno limitado por al menos una superficie (31) una o más imágenes bidimensionales (4) de la estructura del objeto (1), cada una correspondiente a una superficie (3) e impresa sobre una superficie bidimensional plana; en donde:  one or more volumes (5), each limited by at least one surface (31) one or more two-dimensional images (4) of the structure of the object (1), each corresponding to a surface (3) and printed on a surface two-dimensional flat; where:
cada superficie (3) es una superficie desarrollable obtenida a partir de dividir en superficies curvilíneas un modelo digital tridimensional (2) del objeto (1);  each surface (3) is a developable surface obtained from dividing into curvilinear surfaces a three-dimensional digital model (2) of the object (1);
cada superficie (31) corresponde a la representación física de una superficie (3); cada imagen (4) representa la geometría y morfología de las secciones del objeto (1) correspondientes a sus respectivas superficies (3);  each surface (31) corresponds to the physical representation of a surface (3); each image (4) represents the geometry and morphology of the sections of the object (1) corresponding to their respective surfaces (3);
cada imagen (4) impresa sobre la superficie bidimensional plana está adherida a la correspondiente superficie (31);  each image (4) printed on the flat two-dimensional surface is adhered to the corresponding surface (31);
cada volumen (5) tiene un grosor que es menor a la dimensión más grande de cada superficie (3).  each volume (5) has a thickness that is less than the largest dimension of each surface (3).
8. El modelo físico (40) de acuerdo con la Reivindicación 7 en donde la geometría y morfología de las secciones del objeto (1) correspondientes a sus respectivas superficies (3) está representada gráficamente mediante una escala cromática. 8. The physical model (40) according to Claim 7 wherein the geometry and morphology of the sections of the object (1) corresponding to their respective surfaces (3) are graphically represented by a chromatic scale.
9. El modelo físico (40) de acuerdo con cualquiera de las Reivindicaciones 7 y 8 en donde la fabricación de los volúmenes (5) se hace mediante impresión 3D. 9. The physical model (40) according to any of Claims 7 and 8 wherein the manufacturing of the volumes (5) is done by 3D printing.
10. Uso de un modelo físico (40) de un objeto tridimensional (1) de acuerdo con cualquiera de las reivindicaciones 7 a 9, para la obtención de una prótesis dental tridimensional para ser usada en un paciente. 10. Use of a physical model (40) of a three-dimensional object (1) according to any of claims 7 to 9, to obtain a three-dimensional dental prosthesis to be used in a patient.
PCT/IB2019/058182 2018-09-28 2019-09-26 Method for obtaining a physical model of a three-dimensional object from developable surfaces and physical model thus obtained WO2020065579A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2018/0010425A CO2018010425A1 (en) 2018-09-28 2018-09-28 Method for obtaining a physical model of a three-dimensional object from a developable surface and a physical model thus obtained
CONC2018/0010425 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020065579A1 true WO2020065579A1 (en) 2020-04-02

Family

ID=69949629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/058182 WO2020065579A1 (en) 2018-09-28 2019-09-26 Method for obtaining a physical model of a three-dimensional object from developable surfaces and physical model thus obtained

Country Status (2)

Country Link
CO (1) CO2018010425A1 (en)
WO (1) WO2020065579A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663883A (en) * 1995-08-21 1997-09-02 University Of Utah Research Foundation Rapid prototyping method
US20110222081A1 (en) * 2010-03-15 2011-09-15 Chen Yi Printing Three-Dimensional Objects Using Hybrid Format Data
US20130138234A1 (en) * 2011-11-29 2013-05-30 Xerox Corporation Media-based system for forming three-dimensional objects
US20160240003A1 (en) * 2013-05-24 2016-08-18 Looking Glass Hk Ltd. Method for manufacturing a physical volumetric representation of a virtual three-dimensional object

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663883A (en) * 1995-08-21 1997-09-02 University Of Utah Research Foundation Rapid prototyping method
US20110222081A1 (en) * 2010-03-15 2011-09-15 Chen Yi Printing Three-Dimensional Objects Using Hybrid Format Data
US20130138234A1 (en) * 2011-11-29 2013-05-30 Xerox Corporation Media-based system for forming three-dimensional objects
US20160240003A1 (en) * 2013-05-24 2016-08-18 Looking Glass Hk Ltd. Method for manufacturing a physical volumetric representation of a virtual three-dimensional object

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RÍOS, D.: "Metodos de desarrollabilidad de superficies y su aplicación en imágenes medicas", TESIS, 2017, XP055698463, Retrieved from the Internet <URL:https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0156976> [retrieved on 20191202] *

Also Published As

Publication number Publication date
CO2018010425A1 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
KR102426979B1 (en) Registration method and electronic equipment for visual navigation of dental implant surgery
Pflesser et al. Volume cutting for virtual petrous bone surgery
US20180168730A1 (en) System and method for medical procedure planning
JP5567502B2 (en) Medical training method and apparatus
EP2538398B1 (en) System and method for transesophageal echocardiography simulations
Cantín et al. Generation of 3D tooth models based on three-dimensional scanning to study the morphology of permanent teeth
US20100179428A1 (en) Virtual interactive system for ultrasound training
KR20110058903A (en) Simulation of medical imaging
ES2845936T3 (en) Model generation for dental simulation
ES2318761T3 (en) PROCEDURE AND DEVICE FOR THREE-DIMENSIONAL NAVIGATION IN LAYER IMAGES.
JPH0632042B2 (en) Device and method for displaying three-dimensional surface structure
White et al. The suitability of 3D data: 3D digitisation of human remains
Lapeer et al. 3D shape recovery of a newborn skull using thin-plate splines
Attardi et al. 3D facial reconstruction and visualization of ancient Egyptian mummies using spiral CT data soft tissue reconstruction and texture application
WO2020065579A1 (en) Method for obtaining a physical model of a three-dimensional object from developable surfaces and physical model thus obtained
CN102609981B (en) Method for constructing three-dimensional brain model
Skrzat et al. A concise survey on 3D modeling in the science of anatomy
Boutin et al. Face to face with the past: Reconstructing a teenage boy from early Dilmun
KR101558246B1 (en) 3-Dimensional Mesh Generation Method for Simulating Implantable
Collinsworth et al. Using 3D Printed Models in Radiologic Science Education.
Riga et al. 3D methods for the anthropological cultural heritage
Saxena et al. Facial reconstruction: An art and science of making a face alive out of skeletal remains.-An overview
Gelati et al. Morphometry and laser scanner imaging: A revolution in Anatomy
Slack Using µCT scans to create 3D skull puzzles as open-access pedagogical tools for anatomy and comparative osteology classes.
Abdelmunim et al. A 3D human teeth database construction based on a point-based shape registration

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864647

Country of ref document: EP

Kind code of ref document: A1