WO2020063986A1 - 三维模型生成方法、装置、设备和存储介质 - Google Patents

三维模型生成方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2020063986A1
WO2020063986A1 PCT/CN2019/109202 CN2019109202W WO2020063986A1 WO 2020063986 A1 WO2020063986 A1 WO 2020063986A1 CN 2019109202 W CN2019109202 W CN 2019109202W WO 2020063986 A1 WO2020063986 A1 WO 2020063986A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
interest
image
category
mask
Prior art date
Application number
PCT/CN2019/109202
Other languages
English (en)
French (fr)
Inventor
江腾飞
赵晓波
Original Assignee
先临三维科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先临三维科技股份有限公司 filed Critical 先临三维科技股份有限公司
Priority to EP19864127.6A priority Critical patent/EP3859685A4/en
Priority to US17/280,934 priority patent/US11978157B2/en
Priority to AU2019345828A priority patent/AU2019345828B2/en
Priority to JP2021517414A priority patent/JP2022501737A/ja
Priority to KR1020217012553A priority patent/KR20210068077A/ko
Priority to CA3114650A priority patent/CA3114650C/en
Publication of WO2020063986A1 publication Critical patent/WO2020063986A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/04Texture mapping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/10Constructive solid geometry [CSG] using solid primitives, e.g. cylinders, cubes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/529Depth or shape recovery from texture
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/774Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/64Three-dimensional objects
    • G06V20/653Three-dimensional objects by matching three-dimensional models, e.g. conformal mapping of Riemann surfaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30036Dental; Teeth

Definitions

  • the present application relates to the field of three-dimensional scanning technology, and in particular, to a method, a device, a device, and a storage medium for generating a three-dimensional model.
  • the three-dimensional model is used to represent the three-dimensional structure and shape of a real object. Usually, a depth image of a real object is scanned, and then the depth image is processed by a three-dimensional modeling tool to construct a three-dimensional model of the real object. In the fields of medical treatment, architecture, and video games, 3D models have broad application prospects.
  • a method for generating a three-dimensional model includes: acquiring a scanned texture image and a corresponding depth image; processing the texture image through a pre-trained mask region convolutional neural network to determine the texture image; An area of interest, and category information and mask information of each of the areas of interest; updating the depth image according to the category information and mask information of the area of interest; and according to the updated depth image, Build the corresponding 3D model.
  • the category information of the region of interest includes the category value corresponding to each preset category of the region of interest
  • the mask information of the region of interest includes the region of interest corresponding to each of the preset categories.
  • the step of updating the depth image according to the category information and mask information of the region of interest includes: determining a region category of the region of interest from the category information of the region of interest. ; When the region category is the positive sample category, obtain a mask image corresponding to the region category from the mask region of interest in the mask information of the region of interest, and map the region of interest to the region The mask image of the region category is determined as the mask image of the region of interest; and the depth image is updated according to the mask image of the region of interest.
  • the step of updating the depth image according to the category information and mask information of the region of interest further includes: when the region category is the negative sample category, The depth information corresponding to the region in the depth image is cleared.
  • the step of updating the depth image according to the category information and mask information of the region of interest further comprises: obtaining a remaining image region of the texture image except the region of interest ; Clearing the depth information corresponding to the remaining image area in the depth image.
  • the method before the step of acquiring the scanned texture image and the corresponding depth image, the method further includes: acquiring a collected sample image set, and performing area type labeling on the sample images in the sample image set to obtain An image region of the preset category in the sample image; inputting the sample image into the mask region convolutional neural network to determine a sample region of interest on the sample image and each of the sample of interest Category information and mask information of the region; performing a convolutional neural network on the mask region according to the image region of the preset category in the sample image, and the category information and mask information of the sample region of interest training.
  • the step of determining a sample region of interest on the sample image and category information and mask information of each of the sample region of interest includes: extracting a feature map of the sample image; A candidate region is determined on the feature map, and the sample region of interest is selected from the candidate region; the sample region of interest is performed by a preset region feature aggregation method and a preset fully connected convolutional neural network. Processing to generate category information and mask information of the sample area of interest.
  • a three-dimensional model generating device includes an image acquisition module configured to acquire a scanned texture image and a corresponding depth image, and a texture image processing module configured to convolve a nerve through a pre-trained mask region.
  • the network processes the texture image to determine a region of interest on the texture image, and category information and mask information of each of the region of interest;
  • a depth image update module is configured to The category information and mask information to update the depth image; and
  • a model building module configured to construct a corresponding three-dimensional model based on the updated depth image.
  • a computer device includes a memory and a processor.
  • the memory stores a computer program
  • the processor implements the following steps when the processor executes the computer program:
  • a computer-readable storage medium stores a computer program thereon.
  • the following steps are performed: acquiring a scanned texture image and a corresponding depth image; and convolving through a pre-trained mask region
  • a neural network processes the texture image, determines a region of interest on the texture image, and category information and mask information of each of the region of interest; according to the category information and mask information of the region of interest To update the depth image; and construct a corresponding three-dimensional model according to the updated depth image.
  • the above-mentioned three-dimensional model generating method, device, device and storage medium extract a region of interest from a textured image through a trained mask convolutional Bible network, and correspond to the texture image according to the category information and mask information of each region of interest.
  • the depth image is updated, and a corresponding three-dimensional model is constructed according to the updated depth image, thereby improving the effect of removing noise data in the depth image and improving the accuracy of the three-dimensional model.
  • FIG. 1 is a schematic flowchart of a three-dimensional model generation method according to an embodiment
  • FIG. 2 is a schematic flowchart of a training process of a masked region convolutional neural network in a three-dimensional model generation method according to an embodiment
  • FIG. 3 is a structural block diagram of a three-dimensional model generating apparatus according to an embodiment.
  • FIG. 4 is an internal structure diagram of a computer device in one embodiment.
  • a method for generating a three-dimensional model including the following steps:
  • Step 102 Obtain the scanned texture image and the corresponding depth image.
  • a texture image scanned by a three-dimensional scanning device and a depth image corresponding to the texture image are acquired.
  • the texture image records the texture information of the scan target
  • the depth image records the depth information corresponding to each pixel point on the texture image.
  • step 104 the texture image is processed by a pre-trained mask region convolutional neural network to determine a region of interest on the texture image, and category information and mask information of each region of interest.
  • Masked Area Convolutional Neural Network is an evolution of Area Convolutional Neural Network (R-CNN), which is an image target detection and segmentation algorithm.
  • R-CNN Area Convolutional Neural Network
  • ROI region of interest
  • a masked region convolutional neural network is trained in advance, a texture image is input into the masked region convolutional neural network, and a region of interest on the texture image and category information and mask information corresponding to each region of interest are output. .
  • the category information corresponding to the region of interest includes a category value of the region of interest relative to each preset category, and whether the region of interest belongs to the preset category may be determined based on the category value of the region of interest relative to the preset category.
  • the mask information of the region of interest includes a mask image of the region of interest relative to each preset category, and the mask image of the region of interest relative to each preset category is a binary mask image.
  • the preset categories are divided into a positive sample category and a negative sample category.
  • the region of interest belonging to the positive sample category contains useful data for building a three-dimensional model
  • the region of interest belonging to the negative sample category contains easy-to- The noise data caused by the three-dimensional model is disturbed, so that the accuracy of the three-dimensional model is improved by correspondingly processing the regions of interest that belong to different preset categories.
  • Step 106 Update the depth image according to the category information and mask information of the region of interest.
  • the preset category to which the region of interest belongs can be determined according to the category value of the region of interest relative to each preset category.
  • the preset category to which the region of interest belongs is the region category of the region of interest.
  • the category value of the region of interest corresponding to each preset category is 0 or 1.
  • the category value of the region of interest corresponding to any preset category is 0, the region of interest is not considered to belong to the preset category.
  • the category value of the region of interest corresponding to any one of the preset categories is 1, the region of interest is considered to belong to the preset category, so that the region category of the region of interest is accurately judged.
  • the mask image of the region of interest corresponding to the region category is obtained from the mask information of the region of interest, and the mask image of the region of interest corresponding to the region category is determined as a sense.
  • Mask image of the area of interest Update the depth information corresponding to the region of interest on the depth image according to the region category of the region of interest and the mask image of the region of interest to remove the depth information corresponding to the region of interest that belongs to the negative sample category, including those belonging to the positive sample category. Depth information of the region of interest of the sample category.
  • Step 108 Construct a corresponding three-dimensional model according to the updated depth image.
  • a 3D model is constructed through a preset 3D reconstruction algorithm and an updated depth image to obtain a constructed 3D model.
  • the 3D reconstruction algorithm is not used here. There are specific restrictions.
  • the texture image is processed by the trained mask area convolutional neural network to determine the region of interest on the texture image, as well as the category information and mask information of each region of interest, and determine the interest.
  • the area category and mask image of the region, and the depth image is processed according to the area category and mask image of the region of interest, thereby improving the effect of removing noise data and retaining valid data in the depth image, and improving the accuracy of 3D model reconstruction.
  • the region category of the region of interest when the region category of the region of interest is a positive sample category, perform a mask operation on the mask image of the region of interest and the depth image to obtain an updated depth image, thereby being effective.
  • the depth information corresponding to the positive sample category in the depth image is retained.
  • the masking operation may be a multiplication of a mask value in a mask image and a depth value of a corresponding region of the depth image.
  • the depth information corresponding to the region of interest in the depth image is cleared, thereby effectively removing the negative sample category in the depth image.
  • the depth image region corresponding to the region of interest in the depth image may be determined first, and then the depth value of the depth image region may be removed.
  • the mask value in the mask image of the region of interest can also be set to zero, and then the updated mask image and the depth image are masked.
  • the remaining image areas in the texture image except all the regions of interest are obtained, and the depth information corresponding to the remaining image area in the depth image is cleared, thereby effectively avoiding the corresponding Depth information interferes with the construction of 3D models.
  • the scanned texture image and depth image are a tooth texture image and a tooth depth image, respectively.
  • the positive sample category includes the gum category and the tooth category
  • the negative sample category includes the tongue category and the tongue buccal side category. It is easier to process the tongue and buccal side image data that interfere with the 3D model construction process, and improve the accuracy of the 3D model.
  • the region of interest on the tooth depth image and the category information and mask information corresponding to each region of interest are obtained.
  • the category information corresponding to the area of interest includes the category values of the area of interest relative to the gum category, tooth category, tongue category, and buccal side category
  • the mask information corresponding to the area of interest includes the area of interest relative to gum category, tooth, respectively.
  • the category value of the region of interest relative to the gum category, tooth category, tongue category, and buccal side category determine the region category to which the region of interest belongs, and set the mask image of the region of interest relative to the region category as the region of interest Mask image to determine the category of the region of interest more accurately.
  • the region category to which the region of interest belongs is a gum category
  • a mask image of the region of interest relative to the gum category is set as a mask image of the region of interest.
  • the tongue category and the tongue buccal category belong to the negative sample category
  • the mask image of the region of interest is compared with The depth image is masked.
  • the depth information corresponding to the region of interest in the depth image will be cleared, thereby effectively retaining the positive sample category corresponding to the depth image.
  • Depth information effectively removes the depth information corresponding to the negative sample category in the depth image.
  • a training process of a masked region convolutional neural network in a three-dimensional model generation method including the following steps:
  • Step 202 Acquire the collected sample image set, mark the sample images in the sample image set with an area type, and obtain an image region of a preset category in the sample image.
  • the sample images in the sample image set are texture images that belong to the same object as the scan target.
  • the sample images in the sample image set may be area-labeled to obtain image regions of a preset category in the sample image.
  • the lableme image annotation tool can be used to mark the area of the sample image.
  • the preset categories are divided into a positive sample category and a negative sample category, thereby improving the training effect of the convolutional neural network in the mask region.
  • dental texture images of people of different ages may be collected, for example, the age range of 0-80 years is divided into 8 segments according to one age segment every 10 years, and each age segment Collect texture images with a male to female ratio of 1: 1.
  • the sample image is input into a mask region convolutional neural network to determine a sample region of interest on the sample image, and category information and mask information of each sample region of interest.
  • the sample image is processed by a masked region convolutional neural network to obtain a sample region of interest on the sample image, and category information and mask information of each sample region of interest.
  • Step 206 Train the masked area convolutional neural network according to the image area of the preset category in the sample image, and the category information and mask information of the sample area of interest.
  • the category value of the sample area of interest relative to each preset category can be determined Preset category.
  • the sample region of interest can be compared with the image region of the preset category in the sample image to obtain a mask region convolutional neural network
  • the error of the training process The network parameters of the masked area convolutional neural network are adjusted according to the errors.
  • the network parameters of the masked area convolutional neural network are adjusted so many times to achieve supervised training of the masked area convolutional neural network. .
  • an image processing operation is performed on the sample image, where the image processing operation includes brightness consistency processing and de-averaging processing to improve the mask area convolution Training effect of neural network.
  • a feature map of the sample image is extracted through a deep residual neural network (ResNet neural network) in the masked area convolutional neural network, and the feature is
  • ResNet neural network deep residual neural network
  • Each feature point of the graph sets a candidate region of a preset size, and the candidate region is input to a region candidate network (RPN) in a mask region convolutional neural network.
  • RPN region candidate network
  • Binary classification and border regression are performed to The candidate regions are filtered to obtain the sample region of interest of the sample image.
  • the region of interest is processed by a preset region feature aggregation method to determine the category information of the region of interest, and the fully connected convolutional neural network operation in the mask region convolutional neural network is performed to generate mask information of the region of interest.
  • the region feature aggregation method is the ROI alignment method of the mask region convolutional neural network.
  • steps in the flowchart of FIG. 1-2 are sequentially displayed in accordance with the directions of the arrows, these steps are not necessarily performed in the order indicated by the arrows. Unless explicitly stated in this document, the execution of these steps is not strictly limited, and these steps can be performed in other orders. Moreover, at least a part of the steps in Figure 1-2 may include multiple sub-steps or stages. These sub-steps or stages are not necessarily performed at the same time, but may be performed at different times. These sub-steps or stages The execution order of is not necessarily performed sequentially, but may be performed in turn or alternately with at least a part of another step or a sub-step or stage of another step.
  • a three-dimensional model generating device 300 including: an image acquisition module 302, a texture image processing module 304, a depth image update module 306, and a model construction module 308, where:
  • the image acquisition module 302 is configured to acquire a scanned texture image and a corresponding depth image.
  • a texture image scanned by a three-dimensional scanning device and a depth image corresponding to the texture image are acquired.
  • the texture image records the texture information of the scan target
  • the depth image records the depth information corresponding to each pixel point on the texture image.
  • the texture image processing module 304 is configured to process the texture image through a pre-trained mask region convolutional neural network to determine a region of interest on the texture image, and category information and mask information of each region of interest.
  • Masked Area Convolutional Neural Network is an evolution of Area Convolutional Neural Network (R-CNN), which is an image target detection and segmentation algorithm.
  • R-CNN Area Convolutional Neural Network
  • ROI region of interest
  • a masked region convolutional neural network is trained in advance, a texture image is input into the masked region convolutional neural network, and a region of interest on the texture image and category information and mask information corresponding to each region of interest are output. .
  • the category information corresponding to the region of interest includes a category value of the region of interest relative to each preset category, and whether the region of interest belongs to the preset category may be determined based on the category value of the region of interest relative to the preset category.
  • the mask information of the region of interest includes a mask image of the region of interest relative to each preset category, and the mask image of the region of interest relative to each preset category is a binary mask image.
  • the preset categories are divided into a positive sample category and a negative sample category.
  • the region of interest belonging to the positive sample category contains useful data for building a three-dimensional model
  • the region of interest belonging to the negative sample category contains easy-to- The noise data caused by the three-dimensional model is disturbed, so that the accuracy of the three-dimensional model is improved by correspondingly processing the regions of interest that belong to different preset categories.
  • the depth image update module 306 is configured to update the depth image according to the category information and mask information of the region of interest.
  • the preset category to which the region of interest belongs can be determined according to the category value of the region of interest relative to each preset category.
  • the preset category to which the region of interest belongs is the region category of the region of interest.
  • the category value of the region of interest corresponding to each preset category is 0 or 1.
  • the category value of the region of interest corresponding to any preset category is 0, the region of interest is not considered to belong to the preset category.
  • the category value of the region of interest corresponding to any one of the preset categories is 1, the region of interest is considered to belong to the preset category, so that the region category of the region of interest is accurately judged.
  • the mask image of the region of interest corresponding to the region category is obtained from the mask information of the region of interest, and the mask image of the region of interest corresponding to the region category is determined as a sense.
  • Mask image of the area of interest Update the depth information corresponding to the region of interest on the depth image according to the region category of the region of interest and the mask image of the region of interest to remove the depth information corresponding to the region of interest that belongs to the negative sample category, including those belonging to the positive sample category. Depth information of the region of interest of the sample category.
  • the model construction module 308 is configured to construct a corresponding three-dimensional model according to the updated depth image.
  • a 3D model is constructed through a preset 3D reconstruction algorithm and an updated depth image to obtain a constructed 3D model.
  • the 3D reconstruction algorithm is not used here. There are specific restrictions.
  • the texture image is processed by the trained mask area convolutional neural network to determine the region of interest on the texture image, as well as the category information and mask information of each region of interest, and determine the interest.
  • the area category and mask image of the region, and the depth image is processed according to the area category and mask image of the region of interest, thereby improving the effect of removing noise data and retaining valid data in the depth image, and improving the accuracy of 3D model reconstruction.
  • the region category of the region of interest when the region category of the region of interest is a positive sample category, perform a mask operation on the mask image of the region of interest and the depth image to obtain an updated depth image, thereby being effective.
  • the depth information corresponding to the positive sample category in the depth image is retained.
  • the masking operation may be a multiplication of a mask value in a mask image and a depth value of a corresponding region of the depth image.
  • the depth information corresponding to the region of interest in the depth image is cleared, thereby effectively removing the negative sample category in the depth image.
  • the depth image region corresponding to the region of interest in the depth image may be determined first, and then the depth value of the depth image region may be removed.
  • the mask value in the mask image of the region of interest can also be set to zero, and then the updated mask image and the depth image are masked.
  • the remaining image areas in the texture image except all the regions of interest are obtained, and the depth information corresponding to the remaining image area in the depth image is cleared, thereby effectively avoiding the corresponding Depth information interferes with the construction of 3D models.
  • the scanned texture image and depth image are a tooth texture image and a tooth depth image, respectively.
  • the positive sample category includes the gum category and the tooth category
  • the negative sample category includes the tongue category and the tongue buccal side category. It is easier to process the tongue and buccal side image data that interfere with the 3D model construction process, and improve the accuracy of the 3D model.
  • the region of interest on the tooth depth image and the category information and mask information corresponding to each region of interest are obtained.
  • the category information corresponding to the area of interest includes the category values of the area of interest relative to the gum category, tooth category, tongue category, and buccal side category
  • the mask information corresponding to the area of interest includes the area of interest relative to gum category, tooth, respectively.
  • the category value of the region of interest relative to the gum category, tooth category, tongue category, and buccal side category determine the region category to which the region of interest belongs, and set the mask image of the region of interest relative to the region category as the region of interest Mask image to determine the category of the region of interest more accurately.
  • the region category to which the region of interest belongs is a gum category
  • a mask image of the region of interest relative to the gum category is set as a mask image of the region of interest.
  • the tongue category and the tongue buccal category belong to the negative sample category
  • the mask image of the region of interest is compared with The depth image is masked.
  • the depth information corresponding to the region of interest in the depth image will be cleared, thereby effectively retaining the positive sample category corresponding to the depth image.
  • Depth information effectively removes the depth information corresponding to the negative sample category in the depth image.
  • the collected sample image set is acquired, the sample images in the sample image set are area type labeled, image areas of a preset category in the sample image are obtained, and the sample image is Input the mask area convolutional neural network to determine the sample area of interest on the sample image, as well as the category information and mask information of each sample area of interest, according to the image area of the preset category in the sample image and the sample area of interest
  • the category information and mask information are used to train the masked area convolutional neural network, thereby improving the training effect of the masked area convolutional neural network by supervised training of the masked area convolutional neural network.
  • the sample images in the sample image set are texture images that belong to the same object as the scan target.
  • the sample images in the sample image set may be area-labeled to obtain image regions of a preset category in the sample image.
  • the sample area of interest can be compared with the image area of the preset category in the sample image to obtain the error of the mask area convolutional neural network training process, and adjust according to the error Network parameters of the masked area convolutional neural network.
  • the network parameters of the masked area convolutional neural network are adjusted so many times to achieve supervised training of the masked area convolutional neural network.
  • an image processing operation is performed on the sample image, where the image processing operation includes brightness consistency processing and de-averaging processing to improve the mask area convolution Training effect of neural network.
  • a feature map of the sample image is extracted through a deep residual neural network in the masked area convolutional neural network, and each feature of the feature map is Set candidate regions with preset sizes, input candidate regions to the region candidate network in the mask region convolutional neural network, perform binary classification and border regression to filter the candidate regions and obtain samples of interest in the sample image region.
  • the region of interest is processed by a preset region feature aggregation method to determine the category information of the region of interest, and the fully connected convolutional neural network operation in the mask region convolutional neural network is performed to generate mask information of the region of interest.
  • the regional feature aggregation method is the ROI and Align method of the mask region convolutional neural network.
  • dental texture images of people of different ages may be collected, for example, the age range of 0-80 years is divided into 8 segments according to one age group every 10 years, and each age Segmented texture images were collected with a male to female ratio of 1: 1.
  • Each module in the above-mentioned three-dimensional model generating device may be implemented in whole or in part by software, hardware, and a combination thereof.
  • the above-mentioned modules may be embedded in the hardware form or independent of the processor in the computer device, or may be stored in the memory of the computer device in the form of software, so that the processor calls and performs the operations corresponding to the above modules.
  • a computer device is provided.
  • the computer device may be a server, and its internal structure diagram may be as shown in FIG. 4.
  • the computer device includes a processor, a memory, a network interface, and a database connected through a system bus.
  • the processor of the computer device is configured to provide computing and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system, a computer program, and a database.
  • the internal memory provides an environment for running an operating system and computer programs in a non-volatile storage medium.
  • the database of the computer device is set to store a sample image set set as a training mask area convolutional neural network.
  • the network interface of the computer device is configured to communicate with an external terminal through a network connection.
  • the computer program is executed by a processor to implement a three-dimensional model generation method.
  • FIG. 4 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the computer equipment on which the solution of the present application should be set.
  • the specific computer The device may include more or fewer components than shown in the figure, or some components may be combined, or have different component arrangements.
  • a computer device including a memory and a processor.
  • the memory stores a computer program
  • the processor implements the following steps when the computer program is executed:
  • the texture image is processed through a pre-trained mask region convolutional neural network to determine the region of interest on the texture image, as well as the category information and mask information of each region of interest; according to the category information and mask of the region of interest Code information to update the depth image; according to the updated depth image, a corresponding three-dimensional model is constructed.
  • the following steps are further implemented: determining a region category of the region of interest in the category information of the region of interest; and when the region category is a positive sample category, mask information on the region of interest
  • the mask image of the region category corresponding to the region of interest is acquired in, and the mask image of the region category corresponding to the region of interest is determined as the mask image of the region of interest; the depth image is updated according to the mask image of the region of interest.
  • the processor executes the computer program, the following steps are further implemented: when the region category is a negative sample category, the depth information corresponding to the region of interest in the depth image is cleared.
  • the processor when the processor executes the computer program, the processor further implements the following steps: acquiring the remaining image regions in the texture image except for the region of interest; and removing the depth information corresponding to the remaining image regions in the depth image.
  • the processor when the processor executes the computer program, the processor further implements the following steps: acquiring the collected sample image set, labeling the sample image in the sample image set with an area type, obtaining an image region of a preset category in the sample image, and converting the sample image Input the mask area convolutional neural network to determine the sample area of interest on the sample image, and the category information and mask information of each sample area of interest; according to the image area of the preset category in the sample image, and the sample area of interest Class information and mask information to train the masked area convolutional neural network.
  • the processor when the processor executes the computer program, the processor further implements the following steps: extracting a feature map of the sample image; determining a candidate region on the feature map, and filtering out a sample region of interest in the candidate region;
  • the region of interest sample is processed by a preset region feature aggregation method and a preset fully connected convolutional neural network to generate category information and mask information of the region of interest sample.
  • a computer-readable storage medium on which a computer program is stored.
  • the following steps are implemented: obtaining a scanned texture image and a corresponding depth image;
  • the masked region convolutional neural network processes the texture image to determine the region of interest on the texture image, as well as the category information and mask information of each region of interest; updates based on the category information and mask information of the region of interest Depth image; build a corresponding 3D model based on the updated depth image.
  • the following steps are further implemented: determining the region category of the region of interest in the category information of the region of interest; when the region category is a positive sample category, a mask on the region of interest The mask image of the region category corresponding to the region of interest is obtained from the information, and the mask image of the region category corresponding to the region of interest is determined as the mask image of the region of interest; the depth image is updated according to the mask image of the region of interest.
  • the following steps are further implemented: when the region type is a negative sample type, the depth information corresponding to the region of interest in the depth image is cleared.
  • the following steps are further implemented: acquiring the remaining image regions in the texture image except the region of interest; and clearing the depth information corresponding to the remaining image regions in the depth image.
  • the following steps are further implemented: acquiring the collected sample image set, labeling the sample image in the sample image set with a region type, obtaining an image region of a preset category in the sample image; Image input mask area convolution neural network to determine the sample area of interest on the sample image, as well as the category information and mask information of each sample area of interest; according to the image area of the preset category in the sample image, and the sample of interest
  • the category information and mask information of the region are used to train the masked region convolutional neural network.
  • the following steps are further implemented: extracting a feature map of the sample image; determining candidate regions on the feature map, and filtering out a sample region of interest from the candidate regions; and using a preset region feature
  • the aggregation method and the preset fully-connected convolutional neural network process the sample area of interest to generate category information and mask information of the sample area of interest.
  • Non-volatile memory may include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM) or external cache memory.
  • RAM is available in various forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), dual data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Synchlink DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM).
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM dual data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Synchlink DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM
  • the solution provided by the embodiment of the present invention can be applied to a three-dimensional scanning process.
  • the embodiment of the present invention solves the technical problem of low accuracy of the three-dimensional model, improves the effect of removing noise data in the depth image, and improves the accuracy of the three-dimensional model.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Graphics (AREA)
  • Medical Informatics (AREA)
  • Geometry (AREA)
  • Databases & Information Systems (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Image Analysis (AREA)
  • Image Generation (AREA)
  • Image Processing (AREA)

Abstract

一种三维模型生成方法、装置、设备和存储介质。所述方法包括:获取扫描到的纹理图像和对应的深度图像(102),通过预先训练好的掩码区域卷积神经网络对纹理图像进行处理,确定纹理图像上的感兴趣区域以及每个感兴趣区域的类别信息和掩码信息(104),根据感兴趣区域的类别信息和掩码信息,更新深度图像(106),根据更新后的深度图像构建三维模型(108)。

Description

三维模型生成方法、装置、设备和存储介质
本申请要求于2018年09月30日提交中国专利局、申请号为201811160166.4发明名称“三维模型生成方法、装置、设备和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及三维扫描技术领域,特别是涉及一种三维模型生成方法、装置、设备和存储介质。
背景技术
三维模型用来表示现实物体的三维结构和形状,通常通过扫描现实物体的深度图像,再通过三维建模工具对深度图像进行处理,构建得到现实物体的三维模型。在医疗、建筑、以及电子游戏等领域,三维模型都有着广泛应用前景。
然而,在扫描现实物体的深度图像时,往往会扫描到一些不必要的数据,这些数据容易影响三维模型构建的准确度。例如,在通过口内扫描仪对用户口内进行扫描时,除了扫描到牙齿牙龈的三维数据外,还会扫描到舌头的三维数据,这些三维数据会给牙齿三维模型的构建造成干扰。
发明内容
基于此,有必要针对上述技术问题,提供一种能够提高三维模型准确度的三维模型生成方法、装置、设备和存储介质。
一种三维模型生成方法,所述方法包括:获取扫描到的纹理图像和对应的深度图像;通过预先训练好的掩码区域卷积神经网络对所述纹理图像进行处理,确定所述纹理图像上的感兴趣区域、以及每个所述感兴趣区域的类别信息和掩码信息;根据所述感兴趣区域的类别信息和掩码信息,更新所述深度图像;根据更新后的所述深度图像,构建相应的三维模型。
在其中一个实施例中,所述感兴趣区域的类别信息包括所述感兴趣区域对应各个预设类别的类别值,所述感兴趣区域的掩码信息包括所述感兴趣区域对应各个所述预设类别的掩码图像,所述预设类别包括正样本类别和负样本类别。
在其中一个实施例中,根据所述感兴趣区域的类别信息和掩码信息,更新所述深度图像的步骤,包括:在所述感兴趣区域的类别信息中确定所述感兴趣区域的区域类别;当所述区域类别为所述正样本类别时,在所述感兴趣区域的掩码信息中获取所述感兴趣区域对应所述区域类别的掩码图像,将所述感兴趣区域对应所述区域类别的掩码图像确定为所述感兴趣区域的掩码图像;根据所述感兴趣区域的掩码图像,对所述深度图像进行更新。
在其中一个实施例中,根据所述感兴趣区域的类别信息和掩码信息,更新所述深度图像的步骤,还包括:当所述区域类别为所述负样本类别时,对所述感兴趣区域在所述深度图像中对应的深度信息进行清除。
在其中一个实施例中,根据所述感兴趣区域的类别信息和掩码信息,更新所述深度图像的步骤,还包括:获取所述纹理图像中除所述感兴趣区域之外的剩余图像区域;对所述剩余图像区域在所述深度图像中对应的深度信息进行清除。
在其中一个实施例中,获取扫描到的纹理图像和对应的深度图像的步骤之前,所述方法还包括:获取采集的样本图像集,对所述样本图像集中的样本图像进行区域类型标记,获得所述样本图像中所述预设类别的图像区域;将所述样本图像输入所述掩码区域卷积神经网络,确定所述样本图像上的感兴趣样本区域、以及每个所述感兴趣样本区域的类别信息和掩码信息;根据所述样本图像中所述预设类别的图像区域、以及所述感兴趣样本区域的类别信息和掩码信息,对所述掩码区域卷积神经网络进行训练。
在其中一个实施例中,确定所述样本图像上的感兴趣样本区域、以及每个所述感兴趣样本区域的类别信息和掩码信息的步骤,包括:提取所述样本图像的特征图;在所述特征图上确定候选区域,在所述候选区域中筛选出所述感兴趣样本区域;通过预设的区域特征聚集方式和预设的全连接卷积神经网络对所述感兴趣样本区域进行处理,生成所述感兴趣样本区域的类别信息和掩码信息。
一种三维模型生成装置,所述装置包括:图像获取模块,被设置为获取扫描到的纹理图像和对应的深度图像;纹理图像处理模块,被设置为通过预先训练好的掩码区域卷积神经网络对所述纹理图像进行处理,确定所述纹理图像上的感兴趣区域、以及每个所述感兴趣区域的类别信息和掩码信息;深度图像更新模块,被设置为根据所述感兴趣区域的类别信息和掩码信息,更新所述深度图像;以及模型构建模块,被设置为根据更新后的所述深度图像,构建相应的三维模型。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处 理器执行所述计算机程序时实现以下步骤:
获取扫描到的纹理图像和对应的深度图像;
通过预先训练好的掩码区域卷积神经网络对所述纹理图像进行处理,确定所述纹理图像上的感兴趣区域、以及每个所述感兴趣区域的类别信息和掩码信息;
根据所述感兴趣区域的类别信息和掩码信息,更新所述深度图像;根据更新后的所述深度图像,构建相应的三维模型。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:获取扫描到的纹理图像和对应的深度图像;通过预先训练好的掩码区域卷积神经网络对所述纹理图像进行处理,确定所述纹理图像上的感兴趣区域、以及每个所述感兴趣区域的类别信息和掩码信息;根据所述感兴趣区域的类别信息和掩码信息,更新所述深度图像;根据更新后的所述深度图像,构建相应的三维模型。
上述三维模型生成方法、装置、设备和存储介质,通过训练好的掩码卷积圣经网络对纹理图像进行感兴趣区域提取,依据每个感兴趣区域的类别信息和掩码信息,对纹理图像对应的深度图像进行更新,根据更新后的深度图像构建相应的三维模型,从而提高深度图像中噪声数据去除的效果,提高三维模型的准确度。
附图说明
图1为一个实施例中三维模型生成方法的流程示意图;
图2为一个实施例中三维模型生成方法中掩码区域卷积神经网络训练过程的的流程示意图;
图3为一个实施例中三维模型生成装置的结构框图;以及
图4为一个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在一个实施例中,如图1所示,提供了一种三维模型生成方法,包括以下步骤:
步骤102,获取扫描到的纹理图像和对应的深度图像。
具体地,获取由三维扫描设备扫描到的纹理图像和与纹理图像对应的深度图像。其中,纹理图像上记录着扫描目标的纹理信息,深度图像上记录着纹理图像上每个像素点对应的深度信息。
步骤104,通过预先训练好的掩码区域卷积神经网络对纹理图像进行处理,确定纹理图像上的感兴趣区域、以及每个感兴趣区域的类别信息和掩码信息。
其中,掩码区域卷积神经网络(Mask R-CNN)由区域卷积神经网络(R-CNN)演变而来,是图像目标检测及分割算法。感兴趣区域(Region of interest,ROI)为在纹理图像中需要处理的图像区域,在感兴趣区域中可能存在构建三维模型所需要的数据。
具体地,预先训练好掩码区域卷积神经网络,将纹理图像输入到掩码区域卷积神经网络中,输出纹理图像上的感兴趣区域和每个感兴趣区域对应的类别信息和掩码信息。
其中,感兴趣区域对应的类别信息包括感兴趣区域相对于每个预设类别的类别值,根据感兴趣区域相对于预设类别的类别值可确定感兴趣区域是否属于该预设类别。感兴趣区域的掩码信息包括感兴趣区域相对于每个预设类别的掩码图像,感兴趣区域相对于每个预设类别的掩码图像为二值掩码图像。
在一个实施例中,预设类别分为正样本类别和负样本类别,属于正样本类别的感兴趣区域中包含用于构建三维模型的有用数据,属于负样本类别的感兴趣区域中包含容易对三维模型造成干扰的噪声数据,从而后续通过对属于不同预设类别的感兴趣区域进行相应处理,提高三维模型的准确度。
步骤106,根据感兴趣区域的类别信息和掩码信息,更新深度图像。
具体地,由于感兴趣区域的类别信息中包括感兴趣区域对应每个预设类别的类别值,根据感兴趣区域相对于每个预设类别的类别值可确定感兴趣区域属于的预设类别,感兴趣区域属于的预设类别即感兴趣区域的区域类别。
在一个实施例中,感兴趣区域对应每个预设类别的类别值为0或1,当感兴趣区域对应任一预设类别的类别值为0时,认为感兴趣区域不属于该预设类别,当感兴趣区域对应任一预设类别的类别值为1时,认为感兴趣区域属于该预设类别,从而对感兴趣区域的区域类别进行准确判断。
具体地,在确定感兴趣区域的区域类别后,从感兴趣区域的掩码信息中获取感兴趣区域对应该区域类别的掩码图像,将感兴趣区域对应该区域类别的掩码图像确定为感兴趣区域的掩码图像。根据感兴趣区域的区域类别和感兴趣区域的掩码图像,对感 兴趣区域在深度图像上对应的深度信息进行更新,以去除属于负样本类别的感兴趣区域所对应的深度信息,包括属于正样本类别的感兴趣区域的深度信息。
步骤108,根据更新后的深度图像,构建相应的三维模型。
具体地,在根据各感兴趣区域的区域类别和掩码图像,通过预设的三维重建算法和更新后的深度图像,进行三维模型的构建,获得构建好的三维模型,在此不对三维重建算法进行具体限制。
上述三维模型生成方法中,通过训练好的掩码区域卷积神经网络对纹理图像进行处理,确定纹理图像上的感兴趣区域、以及每个感兴趣区域的类别信息和掩码信息,确定感兴趣区域的区域类别和掩码图像,根据感兴趣区域的区域类别和掩码图像对深度图像进行处理,从而提高对深度图像中噪声数据去除和有效数据保留的效果,提高三维模型重建的准确度。
在一个实施例中,在更新深度图像时,当感兴趣区域的区域类别为正样本类别时,将感兴趣区域的掩码图像与深度图像进行掩码操作,获得更新后的深度图像,从而有效地保留正样本类别在深度图像中对应的深度信息。其中,掩码操作可为将掩码图像中的掩码值与深度图像相应区域的深度值进行相乘。
在一个实施例中,在更新深度图像时,当感兴趣区域的区域类别为负样本类别时,对感兴趣区域在深度图像中对应的深度信息进行清除,从而有效地去除负样本类别在深度图像中对应的深度信息。其中,可通过先确定感兴趣区域在深度图像中对应的深度图像区域,再去除该深度图像区域的深度值。还可先将感兴趣区域的掩码图像中的掩码值设置为零,再将该更新的掩码图像与深度图像进行掩码操作。
在一个实施例中,在更新深度图像时,获取纹理图像中除所有感兴趣区域以外的剩余图像区域,对剩余图像区域在深度图像中对应的深度信息进行清除,从而有效避免剩余图像区域对应的深度信息对三维模型的构建造成干扰。
在一个实施例中,扫描到的纹理图像和深度图像分别为牙齿纹理图像和牙齿深度图像,正样本类别包括牙龈类别和牙齿类别,负样本类别包括舌头类别和舌颊侧类别,从而便于对口腔内比较容易对三维模型构造过程产生干扰的舌头、舌颊侧图像数据进行处理,提高三维模型的准确度。
在一个实施例中,在将牙齿纹理图像输入至掩码区域卷积神经网络时,获取牙齿深度图像上的感兴趣区域和每个感兴趣区域对应的类别信息和掩码信息。感兴趣区域对应的类别信息包括感兴趣区域分别相对于牙龈类别、牙齿类别、舌头类别和舌颊侧类别的类别值,感兴趣区域对应的掩码信息包括感兴趣区域分别相对于牙龈类别、牙 齿类别、舌头类别和舌颊侧类别的掩码图像。根据感兴趣区域分别相对于牙龈类别、牙齿类别、舌头类别和舌颊侧类别的类别值,确定感兴趣区域所属的区域类别,将感兴趣区域相对该区域类别的掩码图像设置为感兴趣区域的掩码图像,从而对感兴趣区域的类别进行较为准确地判断。作为示例地,当感兴趣区域所属的区域类别为牙龈类别时,将感兴趣区域相对于牙龈类别的掩码图像设置为感兴趣区域的掩码图像。
在一个实施例中,由于牙齿类别和牙龈类别属于正样本类别、舌头类别和舌颊侧类别属于负样本类别,当感兴趣区域属于牙齿类别或牙龈类别时,将感兴趣区域的掩码图像与深度图像进行掩码操作,当感兴趣区域属于舌头类别或舌颊侧类别时,将对感兴趣区域在深度图像中对应的深度信息进行清除,从而有效地保留正样本类别在深度图像中对应的深度信息,有效地去除负样本类别在深度图像中对应的深度信息。
在另一个实施例中,如图2所示,提供了一种三维模型生成方法中掩码区域卷积神经网络的训练过程,包括以下步骤:
步骤202,获取采集的样本图像集,对样本图像集中的样本图像进行区域类型标记,获得样本图像中预设类别的图像区域。
具体地,样本图像集的样本图像为与扫描目标属于同类物体的纹理图像。在获得样本图像集后,可对样本图像集中的样本图像进行区域标记,获得样本图像中预设类别的图像区域。其中,可采用lableme图像标注工具对样本图像进行区域标记。
在一个实施例中,预设类别分为正样本类别和负样本类别,从而提高对掩码区域卷积神经网络的训练效果。
在一个实施例中,当扫描目标为牙齿时,可采集不同年龄段的人的牙齿纹理图像,例如按照每10岁一个年龄段将0-80岁的年龄区间分为8段,每个年龄段采集男女比例为1:1的纹理图像。
步骤204,将样本图像输入掩码区域卷积神经网络,确定样本图像上的感兴趣样本区域、以及每个感兴趣样本区域的类别信息和掩码信息。
具体地,由掩码区域卷积神经网络对样本图像进行处理,获得样本图像上的感兴趣样本区域、以及每个感兴趣样本区域的类别信息和掩码信息。
步骤206,根据样本图像中预设类别的图像区域、以及感兴趣样本区域的类别信息和掩码信息,对掩码区域卷积神经网络进行训练。
具体地,由于感兴趣样本区域的类别信息中包括感兴趣样本区域对应每个预设类别的类别值,根据感兴趣样本区域相对于每个预设类别的类别值可确定感兴趣样本区 域属于的预设类别。在确定感兴趣样本区域所属的预设类别(即感兴趣样本的区域类别)后,可将感兴趣样本区域与样本图像中该预设类别的图像区域进行比较,获得掩码区域卷积神经网络训练过程的误差,根据该误差调整掩码区域卷积神经网络的网络参数,如此多次对掩码区域卷积神经网络的网络参数进行调整,实现对掩码区域卷积神经网络的有监督训练。
在一个实施例中,在将样本图像输入掩码区域卷积神经网络之前,对样本图像进行图像处理操作,其中,图像处理操作包括亮度一致性处理和去均值处理,以提高掩码区域卷积神经网络的训练效果。
在一个实施例中,在将样本图像输入掩码区域卷积神经网络时,通过掩码区域卷积神经网络中的深度残差神经网络(ResNet神经网络)提取样本图像的特征图,对该特征图的每一个特征点设定预设大小的候选区域,将候选区域输入到掩码区域卷积神经网络中的区域候选网络(Region Proposal Network,简称RPN),进行二值分类和边框回归,以对候选区域进行筛选,获得样本图像的感兴趣样本区域。再通过预设的区域特征聚集方式对感兴趣区域进行处理,确定感兴趣区域的类别信息,通过掩码区域卷积神经网络中的全连接卷积神经网络操作,生成感兴趣区域的掩码信息。其中,区域特征聚集方式为掩码区域卷积神经网络的ROI Align方式。
应该理解的是,虽然图1-2的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1-2中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图3所示,提供了一种三维模型生成装置300,包括:图像获取模块302、纹理图像处理模块304、深度图像更新模块306和模型构建模块308,其中:
图像获取模块302,被设置为获取扫描到的纹理图像和对应的深度图像。
具体地,获取由三维扫描设备扫描到的纹理图像和与纹理图像对应的深度图像。其中,纹理图像上记录着扫描目标的纹理信息,深度图像上记录着纹理图像上每个像素点对应的深度信息。
纹理图像处理模块304,被设置为通过预先训练好的掩码区域卷积神经网络对纹 理图像进行处理,确定纹理图像上的感兴趣区域、以及每个感兴趣区域的类别信息和掩码信息。
其中,掩码区域卷积神经网络(Mask R-CNN)由区域卷积神经网络(R-CNN)演变而来,是图像目标检测及分割算法。感兴趣区域(Region of interest,ROI)为在纹理图像中需要处理的图像区域,在感兴趣区域中可能存在构建三维模型所需要的数据。
具体地,预先训练好掩码区域卷积神经网络,将纹理图像输入到掩码区域卷积神经网络中,输出纹理图像上的感兴趣区域和每个感兴趣区域对应的类别信息和掩码信息。
其中,感兴趣区域对应的类别信息包括感兴趣区域相对于每个预设类别的类别值,根据感兴趣区域相对于预设类别的类别值可确定感兴趣区域是否属于该预设类别。感兴趣区域的掩码信息包括感兴趣区域相对于每个预设类别的掩码图像,感兴趣区域相对于每个预设类别的掩码图像为二值掩码图像。
在一个实施例中,预设类别分为正样本类别和负样本类别,属于正样本类别的感兴趣区域中包含用于构建三维模型的有用数据,属于负样本类别的感兴趣区域中包含容易对三维模型造成干扰的噪声数据,从而后续通过对属于不同预设类别的感兴趣区域进行相应处理,提高三维模型的准确度。
深度图像更新模块306,被设置为根据感兴趣区域的类别信息和掩码信息,更新深度图像。
具体地,由于感兴趣区域的类别信息中包括感兴趣区域对应每个预设类别的类别值,根据感兴趣区域相对于每个预设类别的类别值可确定感兴趣区域属于的预设类别,感兴趣区域属于的预设类别即感兴趣区域的区域类别。
在一个实施例中,感兴趣区域对应每个预设类别的类别值为0或1,当感兴趣区域对应任一预设类别的类别值为0时,认为感兴趣区域不属于该预设类别,当感兴趣区域对应任一预设类别的类别值为1时,认为感兴趣区域属于该预设类别,从而对感兴趣区域的区域类别进行准确判断。
具体地,在确定感兴趣区域的区域类别后,从感兴趣区域的掩码信息中获取感兴趣区域对应该区域类别的掩码图像,将感兴趣区域对应该区域类别的掩码图像确定为感兴趣区域的掩码图像。根据感兴趣区域的区域类别和感兴趣区域的掩码图像,对感兴趣区域在深度图像上对应的深度信息进行更新,以去除属于负样本类别的感兴趣区域所对应的深度信息,包括属于正样本类别的感兴趣区域的深度信息。
模型构建模块308,被设置为根据更新后的深度图像,构建相应的三维模型。
具体地,在根据各感兴趣区域的区域类别和掩码图像,通过预设的三维重建算法和更新后的深度图像,进行三维模型的构建,获得构建好的三维模型,在此不对三维重建算法进行具体限制。
上述三维模型生成装置中,通过训练好的掩码区域卷积神经网络对纹理图像进行处理,确定纹理图像上的感兴趣区域、以及每个感兴趣区域的类别信息和掩码信息,确定感兴趣区域的区域类别和掩码图像,根据感兴趣区域的区域类别和掩码图像对深度图像进行处理,从而提高对深度图像中噪声数据去除和有效数据保留的效果,提高三维模型重建的准确度。
在一个实施例中,在更新深度图像时,当感兴趣区域的区域类别为正样本类别时,将感兴趣区域的掩码图像与深度图像进行掩码操作,获得更新后的深度图像,从而有效地保留正样本类别在深度图像中对应的深度信息。其中,掩码操作可为将掩码图像中的掩码值与深度图像相应区域的深度值进行相乘。
在一个实施例中,在更新深度图像时,当感兴趣区域的区域类别为负样本类别时,对感兴趣区域在深度图像中对应的深度信息进行清除,从而有效地去除负样本类别在深度图像中对应的深度信息。其中,可通过先确定感兴趣区域在深度图像中对应的深度图像区域,再去除该深度图像区域的深度值。还可先将感兴趣区域的掩码图像中的掩码值设置为零,再将该更新的掩码图像与深度图像进行掩码操作。
在一个实施例中,在更新深度图像时,获取纹理图像中除所有感兴趣区域以外的剩余图像区域,对剩余图像区域在深度图像中对应的深度信息进行清除,从而有效避免剩余图像区域对应的深度信息对三维模型的构建造成干扰。
在一个实施例中,扫描到的纹理图像和深度图像分别为牙齿纹理图像和牙齿深度图像,正样本类别包括牙龈类别和牙齿类别,负样本类别包括舌头类别和舌颊侧类别,从而便于对口腔内比较容易对三维模型构造过程产生干扰的舌头、舌颊侧图像数据进行处理,提高三维模型的准确度。
在一个实施例中,在将牙齿纹理图像输入至掩码区域卷积神经网络时,获取牙齿深度图像上的感兴趣区域和每个感兴趣区域对应的类别信息和掩码信息。感兴趣区域对应的类别信息包括感兴趣区域分别相对于牙龈类别、牙齿类别、舌头类别和舌颊侧类别的类别值,感兴趣区域对应的掩码信息包括感兴趣区域分别相对于牙龈类别、牙齿类别、舌头类别和舌颊侧类别的掩码图像。根据感兴趣区域分别相对于牙龈类别、牙齿类别、舌头类别和舌颊侧类别的类别值,确定感兴趣区域所属的区域类别,将感 兴趣区域相对该区域类别的掩码图像设置为感兴趣区域的掩码图像,从而对感兴趣区域的类别进行较为准确地判断。作为示例地,当感兴趣区域所属的区域类别为牙龈类别时,将感兴趣区域相对于牙龈类别的掩码图像设置为感兴趣区域的掩码图像。
在一个实施例中,由于牙齿类别和牙龈类别属于正样本类别、舌头类别和舌颊侧类别属于负样本类别,当感兴趣区域属于牙齿类别或牙龈类别时,将感兴趣区域的掩码图像与深度图像进行掩码操作,当感兴趣区域属于舌头类别或舌颊侧类别时,将对感兴趣区域在深度图像中对应的深度信息进行清除,从而有效地保留正样本类别在深度图像中对应的深度信息,有效地去除负样本类别在深度图像中对应的深度信息。
在一个实施例中,在训练掩码区域卷积神经网络时,获取采集的样本图像集,对样本图像集中的样本图像进行区域类型标记,获得样本图像中预设类别的图像区域,将样本图像输入掩码区域卷积神经网络,确定样本图像上的感兴趣样本区域、以及每个感兴趣样本区域的类别信息和掩码信息,根据样本图像中预设类别的图像区域、以及感兴趣样本区域的类别信息和掩码信息,对掩码区域卷积神经网络进行训练,从而通过对掩码区域卷积神经网络进行有监督训练,提高掩码区域卷积神经网络的训练效果。
其中,样本图像集的样本图像为与扫描目标属于同类物体的纹理图像。在获得样本图像集后,可对样本图像集中的样本图像进行区域标记,获得样本图像中预设类别的图像区域。在确定感兴趣样本区域所属的预设类别后,可将感兴趣样本区域与样本图像中该预设类别的图像区域进行比较,获得掩码区域卷积神经网络训练过程的误差,根据该误差调整掩码区域卷积神经网络的网络参数,如此多次对掩码区域卷积神经网络的网络参数进行调整,实现对掩码区域卷积神经网络的有监督训练。
在一个实施例中,在将样本图像输入掩码区域卷积神经网络之前,对样本图像进行图像处理操作,其中,图像处理操作包括亮度一致性处理和去均值处理,以提高掩码区域卷积神经网络的训练效果。
在一个实施例中,在将样本图像输入掩码区域卷积神经网络时,通过掩码区域卷积神经网络中的深度残差神经网络提取样本图像的特征图,对该特征图的每一个特征点设定预设大小的候选区域,将候选区域输入到掩码区域卷积神经网络中的区域候选网络,进行二值分类和边框回归,以对候选区域进行筛选,获得样本图像的感兴趣样本区域。再通过预设的区域特征聚集方式对感兴趣区域进行处理,确定感兴趣区域的类别信息,通过掩码区域卷积神经网络中的全连接卷积神经网络操作,生成感兴趣区域的掩码信息。其中,区域特征聚集方式为掩码区域卷积神经网络的ROI Al ign方式。
在一个是实施例中,当扫描目标为牙齿时,可采集不同年龄段的人的牙齿纹理图像,例如按照每10岁一个年龄段将0-80岁的年龄区间分为8段,每个年龄段采集男女比例为1:1的纹理图像。
关于三维模型生成装置的具体限定可以参见上文中对于三维模型生成方法的限定,在此不再赘述。上述三维模型生成装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图4所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器被设置为提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库被设置为存储被设置为训练掩码区域卷积神经网络的样本图像集。该计算机设备的网络接口被设置为与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种三维模型生成方法。
本领域技术人员可以理解,图4中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应被设置为其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
获取扫描到的纹理图像和对应的深度图像;
通过预先训练好的掩码区域卷积神经网络对纹理图像进行处理,确定纹理图像上的感兴趣区域、以及每个感兴趣区域的类别信息和掩码信息;根据感兴趣区域的类别信息和掩码信息,更新深度图像;根据更新后的深度图像,构建相应的三维模型。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:在感兴趣区域的类别信息中确定感兴趣区域的区域类别;当区域类别为正样本类别时,在感兴趣区域的掩码信息中获取感兴趣区域对应区域类别的掩码图像,将感兴趣区域对应区域类别的掩码图像确定为感兴趣区域的掩码图像;根据感兴趣区域的掩码图像,对深度图像进行更新。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:当区域类别为负样本类别时,对感兴趣区域在深度图像中对应的深度信息进行清除。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:获取纹理图像中除感兴趣区域之外的剩余图像区域;对剩余图像区域在深度图像中对应的深度信息进行清除。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:获取采集的样本图像集,对样本图像集中的样本图像进行区域类型标记,获得样本图像中预设类别的图像区域;将样本图像输入掩码区域卷积神经网络,确定样本图像上的感兴趣样本区域、以及每个感兴趣样本区域的类别信息和掩码信息;根据样本图像中预设类别的图像区域、以及感兴趣样本区域的类别信息和掩码信息,对掩码区域卷积神经网络进行训练。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:提取样本图像的特征图;在特征图上确定候选区域,在候选区域中筛选出感兴趣样本区域;
通过预设的区域特征聚集方式和预设的全连接卷积神经网络对感兴趣样本区域进行处理,生成感兴趣样本区域的类别信息和掩码信息。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:获取扫描到的纹理图像和对应的深度图像;通过预先训练好的掩码区域卷积神经网络对纹理图像进行处理,确定纹理图像上的感兴趣区域、以及每个感兴趣区域的类别信息和掩码信息;根据感兴趣区域的类别信息和掩码信息,更新深度图像;根据更新后的深度图像,构建相应的三维模型。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:在感兴趣区域的类别信息中确定感兴趣区域的区域类别;当区域类别为正样本类别时,在感兴趣区域的掩码信息中获取感兴趣区域对应区域类别的掩码图像,将感兴趣区域对应区域类别的掩码图像确定为感兴趣区域的掩码图像;根据感兴趣区域的掩码图像,对深度图像进行更新。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:当区域类别为负样本类别时,对感兴趣区域在深度图像中对应的深度信息进行清除。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:获取纹理图像中除感兴趣区域之外的剩余图像区域;对剩余图像区域在深度图像中对应的深度信息进行清除。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:获取采集的样本 图像集,对样本图像集中的样本图像进行区域类型标记,获得样本图像中预设类别的图像区域;将样本图像输入掩码区域卷积神经网络,确定样本图像上的感兴趣样本区域、以及每个感兴趣样本区域的类别信息和掩码信息;根据样本图像中预设类别的图像区域、以及感兴趣样本区域的类别信息和掩码信息,对掩码区域卷积神经网络进行训练。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:提取样本图像的特征图;在特征图上确定候选区域,在候选区域中筛选出感兴趣样本区域;通过预设的区域特征聚集方式和预设的全连接卷积神经网络对感兴趣样本区域进行处理,生成感兴趣样本区域的类别信息和掩码信息。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
工业实用性
本发明实施例提供的方案,可以应用于三维扫描过程中。通过本发明实施例解决了三维模型的准确度较低的技术问题,提高深度图像中噪声数据去除的效果,提高三维模型的准确度。

Claims (10)

  1. 一种三维模型生成方法,包括:
    获取扫描到的纹理图像和对应的深度图像;
    通过预先训练好的掩码区域卷积神经网络对所述纹理图像进行处理,确定所述纹理图像上的感兴趣区域、以及每个所述感兴趣区域的类别信息和掩码信息;
    根据所述感兴趣区域的类别信息和掩码信息,更新所述深度图像;
    根据更新后的所述深度图像,构建相应的三维模型。
  2. 根据权利要求1所述的方法,其中,所述感兴趣区域的类别信息包括所述感兴趣区域对应各个预设类别的类别值,所述感兴趣区域的掩码信息包括所述感兴趣区域对应各个所述预设类别的掩码图像,所述预设类别包括正样本类别和负样本类别。
  3. 根据权利要求2所述的方法,其中,根据所述感兴趣区域的类别信息和掩码信息,更新所述深度图像的步骤,包括:
    在所述感兴趣区域的类别信息中确定所述感兴趣区域的区域类别;
    当所述区域类别为所述正样本类别时,在所述感兴趣区域的掩码信息中获取所述感兴趣区域对应所述区域类别的掩码图像,将所述感兴趣区域对应所述区域类别的掩码图像确定为所述感兴趣区域的掩码图像;
    根据所述感兴趣区域的掩码图像,对所述深度图像进行更新。
  4. 根据权利要求3所述的方法,其中,根据所述感兴趣区域的类别信息和掩码信息,更新所述深度图像的步骤,还包括:
    当所述区域类别为所述负样本类别时,对所述感兴趣区域在所述深度图像中对应的深度信息进行清除。
  5. 根据权利要求3所述的方法,其中,根据所述感兴趣区域的类别信息和掩码信息,更新所述深度图像的步骤,还包括:
    获取所述纹理图像中除所述感兴趣区域之外的剩余图像区域;
    对所述剩余图像区域在所述深度图像中对应的深度信息进行清除。
  6. 根据权利要求2所述的方法,其中,获取扫描到的纹理图像和对应的深度图像的步骤之前,所述方法还包括:
    获取采集的样本图像集,对所述样本图像集中的样本图像进行区域类型标记,获得所述样本图像中所述预设类别的图像区域;
    将所述样本图像输入所述掩码区域卷积神经网络,确定所述样本图像上的感兴趣样本区域、以及每个所述感兴趣样本区域的类别信息和掩码信息;
    根据所述样本图像中所述预设类别的图像区域、以及所述感兴趣样本区域的类别信息和掩码信息,对所述掩码区域卷积神经网络进行训练。
  7. 根据权利要求6所述的方法,其中,确定所述样本图像上的感兴趣样本区域、以及每个所述感兴趣样本区域的类别信息和掩码信息的步骤,包括:
    提取所述样本图像的特征图;
    在所述特征图上确定候选区域,在所述候选区域中筛选出所述感兴趣样本区域;
    通过预设的区域特征聚集方式和预设的全连接卷积神经网络对所述感兴趣样本区域进行处理,生成所述感兴趣样本区域的类别信息和掩码信息。
  8. 一种三维模型生成装置,包括:
    图像获取模块,被设置为获取扫描到的纹理图像和对应的深度图像;
    纹理图像处理模块,被设置为通过预先训练好的掩码区域卷积神经网络对所述纹理图像进行处理,确定所述纹理图像上的感兴趣区域、以及每个所述感兴趣区域的类别信息和掩码信息;
    深度图像更新模块,被设置为根据所述感兴趣区域的类别信息和掩码信息,更新所述深度图像;以及
    模型构建模块,被设置为根据更新后的所述深度图像,构建相应的三维模型。
  9. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现权利要求1至7中任一项所述方法的步骤。
  10. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的三维模型生成方法的步骤。
PCT/CN2019/109202 2018-09-30 2019-09-29 三维模型生成方法、装置、设备和存储介质 WO2020063986A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19864127.6A EP3859685A4 (en) 2018-09-30 2019-09-29 METHOD AND DEVICE FOR CREATING A THREE-DIMENSIONAL MODEL, DEVICE AND STORAGE MEDIUM
US17/280,934 US11978157B2 (en) 2018-09-30 2019-09-29 Method and apparatus for generating three-dimensional model, device, and storage medium
AU2019345828A AU2019345828B2 (en) 2018-09-30 2019-09-29 Method and apparatus for generating three-dimensional model, device, and storage medium
JP2021517414A JP2022501737A (ja) 2018-09-30 2019-09-29 三次元モデルの生成方法、装置、デバイス、および記憶媒体 本出願は、2018年9月30日に中国特許庁に提出された中国特許出願、出願番号201811160166.4、発明タイトル「三次元モデルの生成方法、装置、デバイス、および記憶媒体」の優先権を主張し、その内容全体が本出願に参照として組み込まれている。
KR1020217012553A KR20210068077A (ko) 2018-09-30 2019-09-29 3d모델 생성 방법, 장치, 기기 및 저장매체
CA3114650A CA3114650C (en) 2018-09-30 2019-09-29 Method and apparatus for generating three-dimensional model, device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811160166.4A CN109410318B (zh) 2018-09-30 2018-09-30 三维模型生成方法、装置、设备和存储介质
CN201811160166.4 2018-09-30

Publications (1)

Publication Number Publication Date
WO2020063986A1 true WO2020063986A1 (zh) 2020-04-02

Family

ID=65466672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109202 WO2020063986A1 (zh) 2018-09-30 2019-09-29 三维模型生成方法、装置、设备和存储介质

Country Status (8)

Country Link
US (1) US11978157B2 (zh)
EP (1) EP3859685A4 (zh)
JP (1) JP2022501737A (zh)
KR (1) KR20210068077A (zh)
CN (1) CN109410318B (zh)
AU (1) AU2019345828B2 (zh)
CA (1) CA3114650C (zh)
WO (1) WO2020063986A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112907726A (zh) * 2021-01-25 2021-06-04 重庆金山医疗器械有限公司 一种图像处理方法、装置、设备及计算机可读存储介质

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109410318B (zh) * 2018-09-30 2020-09-08 先临三维科技股份有限公司 三维模型生成方法、装置、设备和存储介质
US11238586B2 (en) 2019-05-02 2022-02-01 Align Technology, Inc. Excess material removal using machine learning
US20210118132A1 (en) * 2019-10-18 2021-04-22 Retrace Labs Artificial Intelligence System For Orthodontic Measurement, Treatment Planning, And Risk Assessment
CN110251004B (zh) * 2019-07-16 2022-03-11 深圳市杉川机器人有限公司 扫地机器人及其清扫方法和计算机可读存储介质
CN110874851A (zh) * 2019-10-25 2020-03-10 深圳奥比中光科技有限公司 重建人体三维模型的方法、装置、系统和可读存储介质
CN112069907A (zh) * 2020-08-11 2020-12-11 盛视科技股份有限公司 基于实例分割的x光机图像识别方法、装置及系统
CN113723310B (zh) * 2021-08-31 2023-09-05 平安科技(深圳)有限公司 基于神经网络的图像识别方法及相关装置
EP4266257A1 (en) * 2022-04-21 2023-10-25 Dassault Systèmes 3d reconstruction from images
KR102547323B1 (ko) * 2023-03-16 2023-06-22 이채영 3d 스캐닝을 통해 형성된 오브젝트의 세그멘테이션 장치 및 그 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388115A (zh) * 2008-10-24 2009-03-18 北京航空航天大学 一种结合纹理信息的深度图像自动配准方法
CN102945565A (zh) * 2012-10-18 2013-02-27 深圳大学 一种物体的三维真实感重建方法、系统及电子设备
CN107301662A (zh) * 2017-06-30 2017-10-27 深圳大学 深度图像的压缩恢复方法、装置、设备及存储介质
CN107358648A (zh) * 2017-07-17 2017-11-17 中国科学技术大学 基于单张人脸图像的实时全自动高质量三维人脸重建方法
CN108154550A (zh) * 2017-11-29 2018-06-12 深圳奥比中光科技有限公司 基于rgbd相机的人脸实时三维重建方法
WO2018140596A2 (en) * 2017-01-27 2018-08-02 Arterys Inc. Automated segmentation utilizing fully convolutional networks
CN108447082A (zh) * 2018-03-15 2018-08-24 深圳市唯特视科技有限公司 一种基于联合学习关键点检测器的三维目标匹配方法
CN109410318A (zh) * 2018-09-30 2019-03-01 先临三维科技股份有限公司 三维模型生成方法、装置、设备和存储介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040104935A1 (en) * 2001-01-26 2004-06-03 Todd Williamson Virtual reality immersion system
CN101686407A (zh) * 2008-09-28 2010-03-31 新奥特(北京)视频技术有限公司 一种采样点信息的获取方法和装置
US9282321B2 (en) * 2011-02-17 2016-03-08 Legend3D, Inc. 3D model multi-reviewer system
US20140378810A1 (en) * 2013-04-18 2014-12-25 Digimarc Corporation Physiologic data acquisition and analysis
DE102013110445B3 (de) 2013-06-26 2014-12-18 Grammer Ag Fahrzeugsitz und Nutzkraftfahrzeug mit einem Fahrzeugsitz
US11337612B2 (en) 2013-12-03 2022-05-24 Children's National Medical Center Method and system for wound assessment and management
CN106056071B (zh) * 2016-05-30 2019-05-10 北京智芯原动科技有限公司 一种驾驶员打电话行为的检测方法及装置
CN107491459A (zh) * 2016-06-13 2017-12-19 阿里巴巴集团控股有限公司 三维立体图像的检索方法和装置
CN106096561B (zh) * 2016-06-16 2020-02-07 重庆邮电大学 基于图像块深度学习特征的红外行人检测方法
KR101840563B1 (ko) * 2016-07-04 2018-03-20 한양대학교 에리카산학협력단 신경망을 이용한 3차원 얼굴 복원 방법 및 장치
US11529056B2 (en) * 2016-10-18 2022-12-20 Dentlytec G.P.L. Ltd. Crosstalk reduction for intra-oral scanning using patterned light
CN106780512B (zh) * 2016-11-30 2020-01-17 厦门美图之家科技有限公司 分割图像的方法、应用及计算设备
CN106802138B (zh) * 2017-02-24 2019-09-24 先临三维科技股份有限公司 一种三维扫描系统及其扫描方法
CN107644454B (zh) 2017-08-25 2020-02-18 北京奇禹科技有限公司 一种图像处理方法及装置
WO2019061202A1 (en) * 2017-09-28 2019-04-04 Shenzhen United Imaging Healthcare Co., Ltd. SYSTEM AND METHOD FOR PROCESSING COLON IMAGE DATA
CN108269300B (zh) * 2017-10-31 2019-07-09 先临三维科技股份有限公司 牙齿三维数据重建方法、装置和系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388115A (zh) * 2008-10-24 2009-03-18 北京航空航天大学 一种结合纹理信息的深度图像自动配准方法
CN102945565A (zh) * 2012-10-18 2013-02-27 深圳大学 一种物体的三维真实感重建方法、系统及电子设备
WO2018140596A2 (en) * 2017-01-27 2018-08-02 Arterys Inc. Automated segmentation utilizing fully convolutional networks
CN107301662A (zh) * 2017-06-30 2017-10-27 深圳大学 深度图像的压缩恢复方法、装置、设备及存储介质
CN107358648A (zh) * 2017-07-17 2017-11-17 中国科学技术大学 基于单张人脸图像的实时全自动高质量三维人脸重建方法
CN108154550A (zh) * 2017-11-29 2018-06-12 深圳奥比中光科技有限公司 基于rgbd相机的人脸实时三维重建方法
CN108447082A (zh) * 2018-03-15 2018-08-24 深圳市唯特视科技有限公司 一种基于联合学习关键点检测器的三维目标匹配方法
CN109410318A (zh) * 2018-09-30 2019-03-01 先临三维科技股份有限公司 三维模型生成方法、装置、设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HE, KAIMING ET AL.: "Mask R-CNN", 25 December 2017 (2017-12-25), pages 2980 - 2988, XP055756845, ISSN: 2380-7504 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112907726A (zh) * 2021-01-25 2021-06-04 重庆金山医疗器械有限公司 一种图像处理方法、装置、设备及计算机可读存储介质
CN112907726B (zh) * 2021-01-25 2022-09-20 重庆金山医疗技术研究院有限公司 一种图像处理方法、装置、设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN109410318B (zh) 2020-09-08
CA3114650A1 (en) 2020-04-02
US11978157B2 (en) 2024-05-07
CN109410318A (zh) 2019-03-01
JP2022501737A (ja) 2022-01-06
US20210375043A1 (en) 2021-12-02
AU2019345828A1 (en) 2021-05-13
EP3859685A1 (en) 2021-08-04
AU2019345828B2 (en) 2022-10-13
CA3114650C (en) 2023-08-22
EP3859685A4 (en) 2021-12-08
KR20210068077A (ko) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2020063986A1 (zh) 三维模型生成方法、装置、设备和存储介质
US11972572B2 (en) Intraoral scanning system with excess material removal based on machine learning
US20240087097A1 (en) Domain specific image quality assessment
US11995839B2 (en) Automated detection, generation and/or correction of dental features in digital models
US20220218449A1 (en) Dental cad automation using deep learning
DE102019106666A1 (de) Dentale CAD-Automatisierung unter Verwendung von tiefem Lernen
BR112020012292A2 (pt) previsão automatizada de formato de raiz 3d com o uso de métodos de aprendizado profundo
CN108205806B (zh) 一种锥束ct图像三维颅面结构的自动解析方法
CN107909622A (zh) 模型生成方法、医学成像的扫描规划方法及医学成像系统
US20230196570A1 (en) Computer-implemented method and system for predicting orthodontic results based on landmark detection
CN114424246A (zh) 用于配准口内测量的方法、系统和计算机可读存储介质
CN115641323A (zh) 医学图像自动标注的方法及装置
Goutham et al. Automatic localization of landmarks in cephalometric images via modified U-Net
CN110795623B (zh) 一种图像增强训练方法及其系统、计算机可读存储介质
Chen et al. Detection of Various Dental Conditions on Dental Panoramic Radiography Using Faster R-CNN
CN113313722B (zh) 一种牙根图像交互标注方法
CN114708237A (zh) 一种用于头发健康状况的检测算法
CN115439409A (zh) 牙齿类型的识别方法和装置
CN114972026A (zh) 图像处理方法和存储介质
CN116385474B (zh) 基于深度学习的牙齿扫描模型分割方法、装置、电子设备
CN113610956B (zh) 一种口内扫描中特征匹配种植体的方法、装置及相关设备
Kahurke Artificial Intelligence Algorithms and Techniques for Dentistry
CN117197348A (zh) 一种基于cbct融合口扫数据的口腔三维模型建立方法及系统
CN117274601A (zh) 一种三维牙齿图像的处理方法、装置及系统
CN115661172A (zh) 一种牙齿图像分割方法、存储介质和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021517414

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3114650

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217012553

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019864127

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019345828

Country of ref document: AU

Date of ref document: 20190929

Kind code of ref document: A