WO2020063651A1 - 帧结构的配置方法及装置、存储介质 - Google Patents

帧结构的配置方法及装置、存储介质 Download PDF

Info

Publication number
WO2020063651A1
WO2020063651A1 PCT/CN2019/107768 CN2019107768W WO2020063651A1 WO 2020063651 A1 WO2020063651 A1 WO 2020063651A1 CN 2019107768 W CN2019107768 W CN 2019107768W WO 2020063651 A1 WO2020063651 A1 WO 2020063651A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame structure
node
structure parameter
parameter
backhaul
Prior art date
Application number
PCT/CN2019/107768
Other languages
English (en)
French (fr)
Inventor
刘文豪
卢有雄
苗婷
毕峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020217012714A priority Critical patent/KR20210065169A/ko
Priority to JP2021517332A priority patent/JP7444865B2/ja
Priority to EP19865823.9A priority patent/EP3860264A4/en
Priority to US17/281,079 priority patent/US20210345324A1/en
Priority to CA3114643A priority patent/CA3114643A1/en
Publication of WO2020063651A1 publication Critical patent/WO2020063651A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/24Interfaces between hierarchically similar devices between backbone network devices

Definitions

  • the present disclosure relates to the field of communications.
  • NR New Radio
  • IAB Integrated Access Backhaul, Integrated Access Backhaul
  • Embodiments of the present disclosure provide a frame structure configuration method and device, and a storage medium.
  • a frame structure configuration method including: a first node receives a frame structure parameter configured by a second node, wherein the frame structure parameter includes: a period and a type of a frame structure; the The frame structure parameters include: a common frame structure parameter, a first dedicated frame structure parameter, and a second dedicated frame structure parameter; the first node obtains the uplink / downlink frame structure according to the common frame structure parameter and the first dedicated frame structure parameter.
  • the division situation, and the frame structure used for backhaul link uplink transmission and the frame structure used for backhaul link downlink transmission are determined according to the second dedicated frame structure parameter.
  • a method for configuring a frame structure including: a second node configuring a frame structure parameter to a first node, wherein the frame structure parameter includes: a period and a type of a frame structure; the The frame structure parameters include: a common frame structure parameter, a first dedicated frame structure parameter, and a second dedicated frame structure parameter; wherein the common frame structure parameter and the first dedicated frame structure parameter are used to obtain the uplink / downlink division of the frame structure And the second dedicated frame structure parameter is used to determine a frame structure used for backhaul link uplink transmission and a frame structure used for backhaul link downlink transmission.
  • a frame structure configuration apparatus which is applied to a first node side and includes a receiving module and a processing module.
  • the receiving module is configured to receive a frame structure parameter configured by a second node, wherein the frame structure parameter includes: a period and a type of a frame structure; the frame structure parameter includes: a public frame structure parameter, a first dedicated frame structure parameter 2.
  • the second dedicated frame structure parameter is configured to obtain an uplink / downlink division of a frame structure according to the common frame structure parameter and a first dedicated frame structure parameter, and determine a frame for backhaul link uplink transmission according to the second dedicated frame structure parameter. Structure and frame structure for downlink transmission of the backhaul link.
  • a frame structure configuration apparatus which is applied to a second node side and includes a configuration module.
  • the configuration module is configured to configure a frame structure parameter to a first node, wherein the frame structure parameter includes: a period and a type of a frame structure; the frame structure parameter includes: a public frame structure parameter, a first dedicated frame structure parameter, A second dedicated frame structure parameter; wherein the common frame structure parameter and the first dedicated frame structure parameter are used to obtain the uplink / downlink division of the frame structure, and the second dedicated frame structure parameter is used to determine a backhaul chain Frame structure for uplink transmission and frame structure for downlink transmission of backhaul link.
  • a storage medium stores a computer program, wherein the computer program is configured to execute the steps in any one of the foregoing method embodiments when running.
  • a storage medium stores a computer program, wherein the computer program is configured to execute the steps in any one of the foregoing method embodiments when running.
  • FIG. 1 is a schematic diagram of relationships and links between nodes in an IAB network in the related art
  • FIG. 2 is a schematic diagram of IAB nodes that can perform access link and backhaul link multiplexing in the time domain, frequency domain or space domain in the related art;
  • 3 is a schematic diagram of time division transmission of a three-hop network in the related art
  • FIG. 4 is a schematic diagram of a potential time domain resource configured for sending and receiving when a Parent node is an IAB node in the related art
  • FIG. 5 is a flowchart of a frame structure configuration method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a Donor node (donor node) and IAB node maintenance at all levels according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram I of Potential Configuration under the IAB (potential configuration of the terminal under the IAB) according to an embodiment of the present disclosure
  • FIG. 8 is a second schematic diagram of a potential configuration of an IAB node (a potential configuration of an IAB node) according to an embodiment of the present disclosure
  • FIG. 9 is a first schematic diagram of a combination of different frame structure parameters according to an embodiment of the present disclosure.
  • FIG. 10 is a second schematic diagram of a combination of different frame structure parameters according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of notifying a third frame structure parameter in a bit-map format according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of power adjustment according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a configuration device of a frame structure according to an embodiment of the present disclosure.
  • Figure 1 is a schematic diagram of the relationships and links of the nodes in the IAB network in the related technology.
  • IAB-Node is the current node as a reference, and its parent node is Parent Node.
  • the current link between the IAB-Node and its Parent Node is called a backhaul link.
  • backhaul links are divided into backhaul DL (downlink) and backhaul UL (uplink); the current link between the IAB-Node and its Child Node is called access link.
  • access link is divided into access DL. And access UL.
  • the judgment of the link type is implemented based on the relative relationship and role of the nodes. If the Child Node in Figure 1 is an ordinary terminal, then this link is an ordinary access link to it. If the Child Node is an IAB node, then from the perspective of this IAB node, this link is backhaul. link. The link can further be subdivided into backhaul downlink / uplink for child nodes, and access downlink / uplink for ordinary UEs.
  • FIG. 2 is a schematic diagram of IAB nodes in the related technology that can perform access link and backhaul link multiplexing in the time, frequency, or air domain.
  • access and backhaul links can be in the same frequency (in-band) or different Frequency (out-band), effectively supporting out-band relay is very important for some NR deployment scenarios, and it is also important to understand the interference coordination of half-duplex in in-band.
  • the frame structure is configured for the terminal through high-level signaling.
  • the existing frame structure types include DL, UL, and F (Flexible).
  • the frame structure is composed of the next-generation node-B (gNB) Node B) configuration, gNB is directly connected to the core network, and gNB autonomously configures the frame structure for the terminals it serves.
  • gNB next-generation node-B
  • the IAB network must support the following characteristics: 1) Support multi-hop transmission, support more than 2 hops of transmission, and only support two hops-base station-relay-UE in the LTE relay network, the next level of the IAB node in the IAB network It can also be an IAB node; 2) Half-duplex transmission.
  • the IAB network it is not assumed that the IAB node can send and receive at the same time. For example, in the TDD duplex (time division duplex) mode, the IAB node cannot send and receive at the same time. .
  • the configuration status of the frame structure has additional requirements compared to the NR R-15 network.
  • the IAB node When configuring the frame structure of the next-level node, there are states other than UL / DL / F. For example, the IAB node does not receive data from the upper-level node while sending data to the lower-level node, nor can it receive data while sending data to the upper-level node. The two nodes cannot send data at the same time.
  • FIG. 3 is a schematic diagram of time division transmission using a three-hop network as an example in the related art. As shown in FIG. 3, in order to support one transmission and feedback of the UE, 6 timeslot resources are consumed.
  • Figure 4 is a schematic diagram of the potential time domain resources configured by the parent node for the IAB node for transmission and reception in the related art.
  • the parent node configured the potential time domain resources for the IAB node for transmission and reception, but for For IAB nodes, there are uncertain factors in how to configure the next-level nodes. For example, when the Parent node configures the resources of F for IAB nodes, how to use F resources. If the IAB node is arbitrarily configured, it may cause interference between nodes.
  • FIG. 5 is a flowchart of a method for configuring a frame structure according to this embodiment. As shown in FIG. 5, the flow includes the following steps S502 and S504.
  • the first node receives the frame structure parameters configured by the second node, where the frame structure parameters include: the period and type of the frame structure; the frame structure parameters include: a public frame structure parameter, a first dedicated frame structure parameter, a second Dedicated frame structure parameters.
  • the first node obtains the uplink / downlink division of the frame structure according to the common frame structure parameter and the first dedicated frame structure parameter, and determines the frame structure and the use of the uplink transmission for the backhaul link according to the second dedicated frame structure parameter. Frame structure for backhaul downlink transmission.
  • the first node obtains the uplink / downlink division of the frame structure according to the common frame structure parameter and the first dedicated frame structure parameter configured by the second node, and according to the second dedicated frame structure parameter Determine the frame structure used for backhaul link uplink transmission and the frame structure used for backhaul link downlink transmission, thereby solving the problem that the configuration of the frame structure in the related technology will cause interference between nodes, and improve the data in the IAB network Transmission efficiency.
  • the first node is preferably an IAB node
  • the second node is preferably a parent node (the parent node of the first node).
  • the period of the frame structure involved in this embodiment is an integer multiple of the duration of the time slot;
  • the types of the frame structure include: an uplink UL frame structure, a downlink DL frame structure, and a variable flexible frame structure.
  • the type of the frame structure in the second dedicated frame structure parameter involved in this embodiment includes at least one of the following: an uplink backhaul frame structure and a downlink backhaul frame structure.
  • the frame structure parameter further includes a transmission direction (that is, uplink or downlink).
  • a node at a level lower than the first node is a transmission node of the same type as the first node.
  • the transmission direction of the second dedicated frame structure parameter can be used to rewrite the transmission direction of the common frame structure parameter and the first dedicated frame structure parameter.
  • the method steps of this embodiment may further include: the first node determines at least one of the following according to a combination of frame structure parameters: a transmission time unit that is ultimately used for uplink / downlink in one cycle; and is finally used in one cycle Backhaul uplink transmission or backhaul downlink reception transmission time unit; ultimately used by a node (that is, the first node) to schedule the potential time unit of uplink time within a cycle, or ultimately used by this node to schedule a downlink time unit within a cycle Potential location.
  • the first node determines at least one of the following according to a combination of frame structure parameters: a transmission time unit that is ultimately used for uplink / downlink in one cycle; and is finally used in one cycle Backhaul uplink transmission or backhaul downlink reception transmission time unit; ultimately used by a node (that is, the first node) to schedule the potential time unit of uplink time within a cycle, or ultimately used by this node to schedule a downlink time unit within a cycle Potential location.
  • the combination of frame structure parameters includes at least one of: a common frame structure parameter, a first dedicated frame structure parameter, and a second dedicated frame structure parameter; a common frame structure parameter and a second dedicated frame structure parameter; the first dedicated frame structure parameter and the first Two dedicated frame structure parameters.
  • next-level node of the first node is a transmission node of the same type as the first node instead of a user terminal, and the backhaul resources of the first node and the next-level transmission node overlap or partially overlap, the first node
  • the sending and receiving status of a node is the opposite to that of the next-level transmitting node.
  • the opposite of the sending and receiving status refers to: when the first node performs a receiving operation on the backhaul resource, the next-level transmitting node performs a sending operation in an overlapping or partially overlapping area.
  • the specific implementation method may be: if the next-level node of the IAB node is still an IAB node, and the backhaul resources of the IAB node and the next-level IAB node overlap or partially overlap, the transmission direction of the IAB node and the next-level IAB node is opposite That is, when an IAB node performs a receiving operation on a backhaul resource, a next-level IAB node performs a transmitting operation in an overlapping or partially overlapping area.
  • next-level node of the first node is a transmission node of the same type as the first node instead of a user terminal, and the backhaul resources of the first node and the next-level transmission node do not coincide, the first node and the next node
  • the transmitting and receiving states of the first-level transmission nodes are opposite or the same. That is, in a specific implementation, if the next-level node of the IAB node is still an IAB node, and the resources of the IAB node and the next-level IAB node do not coincide, then the transmission of the IAB node and the next-level IAB node is The directions are opposite or the same.
  • next-level node of the first node is a user terminal
  • the frame structure configured by the first node for the next-level transmission node is consistent with its own frame structure, that is, the UL area of this node cannot be the next-level terminal node. If it is configured as DL, the DL area of this node cannot be configured as UL.
  • the second dedicated frame structure parameter is formed by a combination of the common frame structure parameter and the first dedicated frame structure parameter; and / or, the second frame structure parameter is dynamic signaling; wherein, the The dynamic signaling is a frame structure configuration parameter carried by DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the common frame structure parameter involved in this embodiment is a double cycle or a single cycle.
  • the first node configures a frame structure in at least one of the following manners (1) to (4).
  • Method (1) The first node autonomously configures the frame structure of the next-level node according to the common frame structure parameter and / or the first dedicated frame structure parameter and / or the second dedicated frame structure parameter.
  • Method (2) The first node autonomously configures the frame structure of the next-level node according to the first dedicated frame structure parameter and / or the dynamic frame structure parameter, wherein the dynamic frame structure parameter passes the Physical Downlink Control Channel (PDCCH). ) Configuration.
  • PDCH Physical Downlink Control Channel
  • the first node configures a frame structure according to a common frame structure parameter, a first dedicated frame structure parameter, and a dynamic frame structure parameter.
  • the configured frame structure includes: an uplink UL frame structure, a downlink DL frame structure, and a variable frame. Structure, backhaul UL frame structure, backhaul DL frame structure, backhaul multiplexing (backhaul multiplexing) frame structure.
  • Manner (4) The first node autonomously configures the frame structure of the next-level node according to the common frame structure parameter and / or the first dedicated frame structure parameter and / or the dynamic frame structure parameter, wherein the dynamic frame structure parameter is configured through the PDCCH. .
  • the power adjustment involved in this embodiment may further include the following manner 1 and manner 2.
  • the first node reports the expected power adjustment to the node at a level above the first node on the corresponding downlink backhaul transmission resource.
  • the power adjustment includes one of the following: a received power adjustment value corresponding to a bandwidth, a transmit power adjustment value corresponding to a bandwidth, an expected received power corresponding to the bandwidth, and an expected transmit power corresponding to the bandwidth; where the corresponding bandwidth is the bandwidth of a resource block RB .
  • the first node indicates the power adjustment for the downlink backhaul transmission resource for the next-level node.
  • the power adjustment value includes one of the following: the received power adjustment value corresponding to the bandwidth, the transmitted power adjustment value corresponding to the bandwidth, The expected received power corresponding to the bandwidth and the expected transmit power corresponding to the bandwidth; or power adjustment is used to instruct the first node to indicate to the next node whether to adjust according to the required power adjustment value; where the corresponding bandwidth is a resource block RB bandwidth.
  • the method steps of this embodiment may further include steps S506 to S510.
  • Step S506 The first node receives a power adjustment instruction from a node at a higher level, and according to the power adjustment instruction, multiplexes uplink transmission of a node at a next level from the first node on a corresponding resource.
  • Step S508 The first node receives backhaul data sent by a node at a higher level.
  • step S510 the first node schedules the next-level node. Specifically, the first node schedules the uplink backhaul transmission of the next-level node in an area that overlaps or partially overlaps with the backhaul resource of the next-level node.
  • this embodiment also provides a method for configuring a frame structure.
  • the steps of the method include: Step S602, the first node configures a frame structure parameter to the second node, where the frame structure parameter includes: a frame structure
  • the frame structure parameters include: the common frame structure parameter, the first dedicated frame structure parameter, and the second dedicated frame structure parameter; wherein the common frame structure parameter and the first dedicated frame structure parameter are used to obtain the uplink /
  • the downlink division and the second dedicated frame structure parameter are used to determine a frame structure for uplink transmission of the backhaul link and a frame structure for downlink transmission of the backhaul link.
  • the period of the frame structure is an integer multiple of the duration of the time slot;
  • the types of the frame structure include: an uplink UL frame structure, a downlink DL frame structure, and a variable flexible frame structure.
  • the type of the frame structure in the second dedicated frame structure parameter includes at least one of the following: an uplink backhaul frame structure, a downlink backhaul frame structure, and a variable flexible frame structure.
  • the technical solution of the present disclosure that is essentially or contributes to the existing technology can be embodied in the form of a software product that is stored in a storage medium (such as ROM / RAM, magnetic disk, The optical disc) includes several instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to execute the methods described in the embodiments of the present disclosure.
  • a terminal device which may be a mobile phone, a computer, a server, or a network device, etc.
  • Embodiment 1 will be described in detail below in conjunction with Embodiments 2 to 5.
  • FIG. 1 the topology of this embodiment is shown in FIG. 1 and includes a Parent Node, an IAB Node, and a Child Node.
  • the Parent Node is a Parent Node of the IAB Node.
  • the IAB node transmits backhaul link data to the Parent node through a wireless link.
  • the Child Node is a lower-level link of the IAB Node.
  • the IAB Node transmits backhaul data or access link data to the Child Node link through a wireless link. What is an access link? Whether it is a backhaul link or not depends on the type of the Child node. If it is an IAB node, it receives the data sent by the Parent Node and the Child Node at the same time.
  • FIG. 6 is a schematic diagram of a Donor node (donor node) and IAB node network maintenance timing at various levels according to an embodiment of the present disclosure.
  • a common absolute timing moment is maintained in the Donor node and IAB node network at each level. (Within the error range), this unified timing can be achieved through mechanisms such as OTA (Over Air) or GPS (Global Positioning System). If these nodes send data to the Child Node, they will send data with this timing and time as a reference point. This reference point is called the downlink transmission time.
  • OTA Over Air
  • GPS Global Positioning System
  • the parent node configures the public frame structure parameters, the parent node configures the first dedicated frame structure parameters to the IAB node, and the parent node configures the second dedicated frame structure parameters to the IAB node.
  • the common frame structure parameters are the same for the nodes being served.
  • the first dedicated frame structure parameter indicates the extra frame structure, indicating that these locations are used for uplink transmission or downlink reception.
  • the uplink and downlink configuration of its frame structure is basically delimited.
  • For IAB its resources dedicated to backhaul link transmission are configured through the second dedicated frame structure parameter.
  • the IAB node obtains the public frame structure parameters and the first dedicated frame structure parameters configured by the parent node, and the IAB node learns the uplink and downlink division of the frame structure; the IAB node obtains the second dedicated frame structure parameters configured by the parent node, and the IAB node learns these In the line division, which is used for the uplink transmission of the backhaul link and which is used for the downlink reception of the backhaul link, that is, the terminal sends and receives data on the backhaul link, and sends and receives backhual data according to the position indicated by the second dedicated frame structure parameter. In the uplink or downlink position, the IAB node itself can configure the frame structure parameters for the lower-level nodes.
  • the uplink and downlink intervals of the first dedicated frame structure parameter configured for the child node may be extended to the Flexible interval range.
  • the uplink and downlink transmission should follow its own uplink and downlink transmission direction, that is, when the uplink and downlink configuration is performed for the next-level node, a configuration opposite to its own transmission direction cannot occur, such as the current node's UL / F area.
  • the DL / F area of the current node cannot be configured as DL for the next-level node.
  • the configured common frame structure parameters include: the period and type of the configuration (frame structure); where the period is an integer multiple of the time slot duration, the types include UL, DL, and Flexible, and the duration is several OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal frequency division multiplexing) symbol corresponds to an integral multiple of the time or slot duration.
  • the public frame structure parameters are carried by the IAB node of the terminal covered by the broadcast transmission notification, and are preferably carried in the form of SIB (System Information Block).
  • a basic uplink and downlink configuration is agreed to be an uplink and downlink configuration with a period of P_ul_dl_default, and the first nSlot_DL slots at the beginning of an even frame are downlink.
  • the period P_ul_dl_default is preferably an integer multiple of the radio frame
  • the preferred periods are 20ms, 40ms, and 80ms
  • the last nSlot_UL slots in the period P_ul_dl_default are uplink
  • the remaining positions are Flexible, that is, the current node cannot
  • the number of scheduled time slots can be related to a specific numerology (parameter set).
  • the reference numerology of the system is uRef
  • the current numerology is uAct, which is actually used for uplink and downlink transmission.
  • the number of slots is adjusted to nSlot * 2 ⁇ (uAct-uRef).
  • the configured first dedicated frame structure parameters include: the configured period and type (that is, the period and type of the frame structure); where the period is an integer multiple of the time slot duration, the types include UL, DL, and Flexible, and the duration is several An integer multiple of the time or slot duration corresponding to several OFDM symbols.
  • the first dedicated frame structure parameter is transmitted through high-level signaling, and the IAB node configures the respective first dedicated configuration parameter (first dedicated frame structure parameter) for the next-level IAB node or terminal served. In the actual process, the first dedicated configuration parameter may be omitted. At this time, the IAB node and the terminal only understand the division of the uplink and downlink based on the common frame structure parameters. If the common frame structure parameter is also missing, the uplink and downlink division is understood according to the above-mentioned default manner.
  • Configuring the second dedicated frame structure parameter includes: the configured period and type; wherein the period is an integer multiple of the time slot duration, the types include UL, DL, and Flexible, and the duration is the time corresponding to several OFDM symbols or the time slot duration Integer multiples.
  • the second frame structure is configured through dedicated signaling, and is used to configure the IAB to receive and transmit transmissions dedicated to backhaul.
  • the type of the frame structure in the second dedicated frame structure parameter may be limited to downlink backhaul, flexible and uplink backhaul.
  • the transmission direction of the second dedicated frame structure parameter can rewrite the transmission direction of the common and first dedicated frame structure parameters. To determine the final frame structure of the IAB node.
  • the IAB node is determined based on the above frame structure configuration of the parent node:
  • the unit of transmission time that is ultimately used for uplink and downlink in a period such as the duration of several time slots or several OFDM symbols, or the duration of an integer time slot plus several OFDM symbols;
  • a transmission time unit that is ultimately used for backhaul uplink transmission or backhaul downlink reception within a period, such as the duration of several time slots or several OFDM symbols, or the duration of an integer time slot plus several OFDM symbols;
  • FIG. 7 is a schematic diagram of the Potential UE under the IAB according to an embodiment of the present disclosure.
  • the IAB node must still configure a common frame structure parameter for it according to the above process.
  • One or more of the first dedicated frame structure parameters or the default public frame structure Parameter, IAB node also needs to configure the second dedicated frame structure parameter for IAB node2.
  • the IAB node configures DB (downlink backhaul) for IAB node2 in its own downstream area, and the IAB node configures UB (uplink backhaul) for IAB node2 in its own upstream area, as shown in Potential config1 in Figure 7.
  • the UB configured by IAB node for IAB node2 is located in the Downlink area of the IAB node frame structure and the DB is configured in the Uplink area corresponding to the IAB node structure of the frame to enable a node to receive both the previous node and the next node.
  • the data or a node sends data to the next-level node and the next-level node at the same time, as shown in Potential config2 in FIG. 7.
  • the IAB node can also configure a downlink backhaul for the IAB node2.
  • the uplink backhaul is also configured at the same time.
  • the downlink area of the IAB node frame structure enables the same node to receive data sent by the upper node and the lower node at the same time.
  • FIG. 8 is a second schematic diagram of a Potential IAB node according to an embodiment of the present disclosure.
  • the above common frame structure parameters and the first dedicated frame structure parameters used for the frame structure configuration will not show inconsistencies in the transmission direction.
  • the area configured as the downlink in the common frame structure parameters cannot be configured as the first dedicated frame structure parameter.
  • the area configured as the uplink in the common frame structure parameter cannot be configured as the downlink in the first dedicated frame structure parameter.
  • FIG. 1 The topology of this embodiment is shown in Figure 1, which includes Parent Node, IAB Node, and Child Node, Parent Node is the parent node of IAB Node.
  • the IAB node transmits backhaul link data to the Parent node through a wireless link.
  • the Child Node is a lower-level link of the IAB Node.
  • the IAB Node transmits backhaul data or access link data to the Child Node link through a wireless link. What is an access link? Whether it is a backhaul link or not depends on the type of ChildNode. If it is an IAB node, it can receive data sent by both ParentNode and ChildNode.
  • Donor nodes and IAB nodes at all levels maintain a common absolute timing moment (within an error range). This unified timing can be achieved through mechanisms such as OTA or GPS. If these nodes send data to the Child Node, they will send data with this timing and time as a reference point. This reference point is called the downlink transmission time.
  • the parent node configures the common frame structure parameters, the parent node configures the first dedicated frame structure parameters to the IAB node, and the parent node configures the second dedicated frame structure parameters to the IAB node.
  • the common frame structure parameters are the same for the nodes being served.
  • the first dedicated frame structure parameter indicates the extra frame structure, indicating that these locations are used for uplink transmission or downlink reception.
  • the basic uplink and downlink configuration of its frame structure is configured according to the common frame structure parameter and the first dedicated frame structure parameter.
  • the IAB its resources dedicated to backhaul link transmission pass the second dedicated frame structure parameter and the The combination of the common frame structure parameter or the first dedicated frame structure parameter determines its final configuration.
  • the configured common frame structure parameters include: the configured period and type; where the period is an integer multiple of the slot duration, the types include UL, DL, and Flexible, and the duration is the time corresponding to several OFDM symbols or the slot duration Multiples.
  • the public frame structure parameters are carried by the IAB node of the terminal covered by the broadcast transmission notification, and are preferably carried in the form of SIB. Or the common frame structure parameters are divided in an agreed manner. For example, a basic uplink and downlink configuration is agreed to be an uplink and downlink configuration with a period of P_ul_dl_default, and the first nSlot_DL slots at the beginning of an even frame are downlink, in which the period P_ul_dl_default is preferably an integer multiple of the radio frame.
  • the preferred periods are 20ms, 40ms, and 80ms.
  • the last nSlot_UL timeslots in the period P_ul_dl_default are uplinks, and the remaining positions are flexible. That is, the current node cannot make any assumptions about the positions indicated by Flexible. , Determine its transmission direction according to the subsequent further semi-static configuration, or the assumption that these locations are reserved resources, that is, these resources cannot ultimately have any send and receive operations.
  • the number of agreed time slots can be established with a specific numerology.
  • the reference numerology of the system is uRef
  • the current numerology is uAct.
  • the number of time slots actually used for uplink and downlink transmission is adjusted to nSlot * 2 ⁇ (uAct -uRef).
  • the configured first dedicated frame structure parameters include: the configured period and type; wherein the period is an integer multiple of the time slot duration, the type includes UL, DL, and Flexible, and the duration is the time corresponding to several OFDM symbols or the time slot duration An integer multiple of time.
  • the first dedicated frame structure parameter is transmitted through high-level signaling.
  • the IAB node configures the respective first dedicated configuration parameter for the next-level IAB node or terminal it serves. In practice, the first dedicated frame structure parameter can be omitted. At this time, the IAB node And the terminal understands the uplink and downlink division based on the common frame structure parameters only. If the common frame structure parameter is also missing, the uplink and downlink division is understood according to the above-mentioned default manner.
  • the configured second dedicated frame structure parameters include: the configured period and type; where the period is an integer multiple of the time slot duration, the types include UL, DL, and Flexible, and the duration is the time corresponding to several OFDM symbols or the time slot duration An integer multiple of time.
  • the second dedicated frame structure parameter is configured through dedicated signaling, and is used to configure the IAB for sending and receiving transmission dedicated to backhaul.
  • the configuration type of the second dedicated frame structure parameter may be limited to downlink backhaul, flexible, and uplink backhaul.
  • the transmission direction of the second dedicated configuration (the second dedicated frame structure parameter) can overwrite the transmission direction of the common and first dedicated configuration (the common frame structure parameter and the first dedicated frame structure parameter). To determine the final frame structure of the IAB node.
  • the IAB node obtains the public frame structure parameter and the first dedicated frame structure parameter configured by the parent node, and the IAB node learns the uplink and downlink division of the frame structure; the IAB node obtains the second dedicated frame structure parameter configured by the parent node; the IAB node according to the frame structure parameter The combination knows the uplink / downlink transmission area for the access link, the uplink / downlink transmission area for the backhaul link, the uplink / downlink transmission area for backhaul / access link multiplexing, and the flexible area.
  • the combination of frame structure parameters includes at least one of the following: a common frame structure parameter and a first dedicated frame structure parameter; a common frame structure parameter, a first dedicated frame structure parameter and a second dedicated frame structure parameter; a common frame structure parameter and a first Two dedicated frame structure parameters.
  • the IAB node learns which of these uplink and downlink divisions are used for the uplink transmission of the backhaul link, and which are used for the downlink reception of the backhaul link, that is, the IAB node sends and receives data on the backhaul link according to the position indicated by the combined meaning of the frame structure parameters. And receiving backhual data, the IAB node in the access area autonomously schedules its downstream nodes.
  • the frame structure parameter combination here is for the IAB node. For ordinary NR terminals, the frame structure configuration is also understood in the original way.
  • the uplink and downlink intervals of the first frame structure parameter configured for the child node may be extended to the Flexible interval range.
  • a Parent node that is not a Donor node it is a next-level node
  • the uplink and downlink transmission should follow its own uplink and downlink transmission direction, that is, when the uplink and downlink configuration is performed for the next-level node, a configuration opposite to its own transmission direction cannot occur, such as the current node's UL / F area cannot Configure the DL for the next-level node.
  • the DL / F area of the current node cannot be configured as UL.
  • FIG. 9 is a first schematic diagram of a combination of different frame structure parameters according to an embodiment of the present disclosure.
  • this configuration combination Parent node configures a public frame structure parameter and a first dedicated frame structure parameter for the IAB node.
  • the public frame structure The area where the parameter is configured as Flexible is again configured as DL / UL / F /-by the first frame structure, where "-" indicates that no additional configuration is performed for the corresponding area.
  • the IAB node When the overlapped area is configured as Flexible area and configured as DL again through the first dedicated frame structure configuration parameter, the IAB node understands that the repeatedly defined overlapped area is a multiplexed receiving area for backhaul link and access link. That is, this area can receive backhaul links or access links, or receive two links at the same time.
  • the IAB node When the overlapped area is configured as Flexible, and then configured as UL again through the first dedicated frame structure parameter, the IAB node understands that the repeatedly defined overlapped area is a multiplexed receiving area for backhaul link and access link, that is, This area can perform uplink transmission of backhaul or downlink transmission of access, or simultaneous transmission of two links. Due to transmission timing restrictions, uplink transmission of backhaul and downlink transmission of access may not guarantee simultaneous transmission.
  • Simultaneous transmissions must meet timing conditions: uplink transmission of backhaul links and downlink transmission time slots of access links are aligned, or uplink transmission of backhaul links and downlink transmission time slots of access links are not aligned, but the two links differ by one or several Duration of an OFDM symbol.
  • the IAB node When the overlapped area is configured as Flexible area and configured as Flexible /-again through the first dedicated frame structure parameter, the IAB node understands that this area is agnostic to the current node, and the current node cannot assume that this area is used for Transmit or receive.
  • the IAB node When the overlapping area is configured as a DL area and the first dedicated frame structure parameter is not additionally configured, the IAB node understands that this area is dedicated to the downlink receiving area of the IAB's backhaul link.
  • the IAB node When the overlapping area is configured as a UL area and the first dedicated frame structure parameter is not additionally configured, the IAB node understands that this area is dedicated to the uplink transmission area of the IAB's backhaul link.
  • the combination of the above different frame structure parameters can also be applied to a case where multiple transmission directions are included in a time unit.
  • the first The dedicated frame structure parameters indicate uplink and / or downlink and / or flexible in the same time unit or different time units.
  • the areas where the overlap occurs are applied to the corresponding areas by using the above description rules.
  • the time unit is at least one of the following: the duration of a radio frame; an integer multiple of the duration of a radio frame; the duration of a time slot; several times the duration of a time slot; the duration of several symbols, the number of symbols
  • the preferred value is 2,4,6,7; several equal division times of the duration of a radio frame.
  • FIG. 10 is a second schematic diagram of a combination of different frame structure parameters according to an embodiment of the present disclosure. As shown in FIG. 10, compared to the previous scheme, the configuration of the first dedicated frame structure parameter here redefines the DL / UL direction. .
  • the IAB node When the overlapping area is configured as the DL area by the common frame structure parameter or the agreed common frame parameter and is again configured as the DL through the first dedicated frame structure parameter, the IAB node understands that the overlapping area that is repeatedly defined is backhaul link Receiving area, that is, this area can receive backhaul links.
  • the IAB node When the overlapping area is configured as the common frame structure parameter or the agreed common frame parameter is configured as the DL area but the first dedicated frame structure configuration parameter is not indicated again, the IAB node understands that this area is the downlink transmission of the access link, that is, IAB nodes in this area send data to the next-level nodes.
  • the IAB node When the overlapping area is configured as the UL area by the common frame structure parameter or the agreed common frame parameter and is again configured as the UL through the first dedicated frame structure configuration parameter, the IAB node understands that the overlapping area that is repeatedly defined is the backhaul Link sending area, that is, this area can send backhaul data.
  • the IAB node When the overlapping area is configured as the common frame structure parameter or the agreed common frame parameter is configured as the UL area but the first dedicated frame structure configuration parameter is not indicated again, the IAB node understands that this area is an uplink transmission of the access link, that is, IAB nodes in this area receive data from the next-level nodes.
  • the IAB node When the overlapping area is configured as a common frame structure parameter or an agreed common frame parameter is configured as an area of F but the first dedicated frame structure parameter is not indicated again or the first dedicated frame structure parameter is indicated again as F, the IAB node understands this The area is reserved, that is, the IAB node cannot assume that it can send or receive data in this area.
  • the IAB node determines at least one of the following according to the above frame structure configuration of the parent node: (1) the transmission time unit that is ultimately used for uplink and downlink in one cycle; (2) the transmission time unit that is ultimately used for backhaul uplink transmission in one cycle (3) a transmission time unit that is ultimately used for backhaul downlink reception within a cycle; (4) a potential location that is ultimately used by this node to schedule an uplink time unit within a cycle, for example, the first dedicated frame structure parameter is defined as UL, However, the second dedicated frame structure parameter has no additional defined time unit; and the potential location of the downlink time unit scheduled by this node is that the first dedicated frame structure parameter is defined as DL, but the second dedicated frame structure parameter has no additional defined time unit, such as The situation shown in the final (understanding) in Figure 10; (5) the potential position of the time unit that is ultimately used by this node to receive backhaul downlink and or access uplink within a period, for example, the first dedicated frame structure parameter is defined as F, But the second dedicated frame
  • the topology of this embodiment is shown in FIG. 1 and includes a Parent Node, an IAB Node, and a Child Node.
  • the Parent Node is a Parent Node of the IAB Node.
  • the IAB node transmits backhaul link data to the Parent node through a wireless link.
  • the Child Node is a lower-level link of the IAB Node.
  • the IAB Node transmits backhaul data or access link data to the Child Node link through a wireless link. What is an access link? Whether it is a backhaul link or not depends on the type of ChildNode. If it is an IAB node, it can receive data sent by both ParentNode and ChildNode.
  • Donor nodes and IAB nodes at all levels maintain a common absolute timing moment (within the error range). This unified timing can be achieved through mechanisms such as OTA or GPS. If these nodes send data to the Child Node, they will send data with this timing and time as a reference point. This reference point is called the downlink transmission time.
  • the upper-level node configures a time-domain unit for backhaul link transmission and reception.
  • the upper-level node can be a donor node or IAB, and the next-level node is an IAB node.
  • the upper-level node is referred to as father node
  • the next-level node is referred to as IAB node
  • the next-level node of the IAB node is referred to as child node.
  • the IAB node measures the received power of the signal sent by the father node, and the IAB node measures the received signal power of the child node.
  • the signals sent by the father node measured by the IAB node include at least one of the following: SSB, Synchronous Broadcast Block; CSI-RS, pilot for channel measurement; PTRS, RS for phase tracking; PDCCH, physical control channel; PDSCH , Physical shared channel; PDCCH DMRS, DMRS (DeModulation Reference Signal) for demodulation control channel; PBCH DMRS, DMRS for demodulation of physical broadcast channel; PDSCH DMRS, for demodulation of physical shared channel DMRS.
  • the signal sent by the child node measured by the IAB node includes at least one of the following: PUCCH; PUSCH; PUSCH DMRS; PUCCH DMRS.
  • channels or pilots sent by the above father nodes and child nodes are not specifically described in the subsequent description, and they are collectively referred to as signals or channels.
  • the IAB node measures the received power of the signal or channel sent by the father node, and the IAB node measures the received power of the signal or channel sent by the child node.
  • the IAB node calculates the power difference between the two, and this power difference is recorded as power-offset.
  • the IAB node measures the received power of the signal or channel sent by the child node, and the IAB node records this power as received-power-expected.
  • the IAB node measures the signal or channel sent by the father node, measures the path loss, and records it as PL_downlink.
  • the IAB node configuration receives two of the following parameters: the first frame structure parameter; the second frame structure parameter; the third frame structure parameter.
  • the first frame structure parameter can be a public frame structure parameter configured for the parent node through broadcasting (such as SIB), or an agreed public frame structure parameter;
  • the second frame structure parameter is the parent node's proprietary signaling (RRC signaling). Its configured dedicated frame structure parameters;
  • the third frame structure parameter is a dedicated frame structure parameter notified through dedicated signaling such as (RRC signaling), and this signaling is dedicated to notify the time domain resource allocation for backhaul linking.
  • the common frame structure parameters are the same for the nodes served, and the second frame structure parameter indicates the additional frame structure, which is the same as the first frame structure parameter. Together indicate the areas used for uplink transmission or downlink reception operations.
  • the transmission resources used for backhaul link are confirmed by the combination of the third frame structure parameter with the first frame structure parameter and / or the second frame structure parameter.
  • the third frame structure parameter may be notified in the form of a bit-map.
  • FIG. 11 is a schematic diagram of notifying the third frame structure parameter in the form of a bit-map according to an embodiment of the present disclosure.
  • Downlink reception and uplink transmission each correspond to a bit-map
  • the configuration signaling for backhaul downlink reception corresponds to a field bit-map-backhaul-RX.
  • the number of bits in the TDD system is the number of time slots in an uplink and downlink configuration.
  • FDD Frequency, Division, Duplexing, Frequency Division Duplexing
  • RRC Radio Resource Control, Radio Resource Control
  • the time slot corresponding to setting 1 corresponds to backhaul RX
  • the configuration signaling corresponding to uplink backhaul transmission corresponds to a field bit-map-backhaul-TX, where the number of bits is the number of time slots in an uplink and downlink configuration.
  • TDD The system is the number of time slots in an uplink and downlink configuration.
  • the IAB applies the current number of configured time slots as a cycle to subsequent time slots.
  • the IAB node upon receiving backhaul (downlink, backhaul, DB) and UB (uplink backhaul, UB) about the IAB node, the IAB node reports the previously calculated power deviation in a time unit corresponding to the backhaul link. The parent receives a notification from the IAB node for power adjustment.
  • the parent node can adjust the power expectation reported by the IAB node or the parent node ignores the power information reported by the IAB node according to its own scheduling situation, or the parent node reports the IAB node according to the IAB node. Report power adjustment, and the power adjustment scheme is signaled to IAB nodes at the same time.
  • the IAB node will assume that the parent node will adjust the power according to the power expectations reported by the IAB node.
  • the IAB node will not send a confirmation message to the IAB node.
  • the IAB node measures the power on the DB link after sending the desired power.
  • the IAB node measures the power on the DB link and the reported power expectation is consistent, it performs link multiplexing between DB and UA (uplink access).
  • UA is the uplink transmission link corresponding to the next-level terminal type node served by the IAB node, and corresponds to the receiving operation of the IAB node.
  • UB uplink transmitting link corresponding to the next-level IAB type node served by the IAB node, and corresponds to the receiving operation of the IAB node.
  • the power indication method includes: indicating the transmission power value of the DB link according to a certain time unit as the granularity, or indicating the receiving power of the DB link for the IAB node according to the certain time unit as the granularity, or indicating the DB link according to the time unit as the granularity The offset of the transmit power.
  • the certain time unit may be the duration of one or several OFDM symbols and the duration of one or several time slots.
  • the preferred power adjustment is only according to the time unit granularity of one time slot position.
  • the IAB node feedbacks the desired power adjustment value, and the power adjustment value confirmed by the parent node corresponds to the transmit power pattern on the DB time unit, as shown in FIG. 12, which is a schematic diagram of power adjustment according to an embodiment of the present disclosure.
  • the IAB node feedback mechanism includes: IAB node feedback the desired power adjustment value; IAB node feedback the expected received power; IAB node feedback the desired transmit power.
  • the parent node performs corresponding power adjustment according to the offset value fed back by the IAB node.
  • the expected value of the power offset feedback from the IAB node is [p-offset1, p-offset2, p-offset3, ..., p-offsetN] according to a certain time granularity feedback
  • the parent node informs according to the same time granularity as reported IAB node power adjustment value, [p-offset1 ', p-offset2', p-offset3 ', ..., p-offsetN']
  • the parent node informs the IAB node power adjustment value according to another time granularity, or
  • the parent node only sends one bit of information to indicate whether to adjust the power according to the power expected bias reported by the IAB node.
  • the parent will notify the IAB of the power to be adjusted, and notify the corresponding time domain unit of the expected received power or transmit power according to the granularity of a certain time domain unit (as described in Figure 12), or perform positive or negative on the IAB node.
  • the response is to adjust the transmit power to the desired receive power of the IAB in the corresponding time unit according to the request of the IAB.
  • the IAB node measures the received power of the SSB sent by the parent node, measures the path loss of the DB link, and records it as PL_DB.
  • p_DL_ref_tx is a signal or channel for power adjustment including the following: SSB, downlink synchronization signal broadcast block; PBCH DMRS, demodulation reference signal of physical broadcast channel; CSI-RS, channel state measurement signal; PTRS, phase tracking reference signal.
  • This power deviation can be through broadcast or unicast or a signal dedicated to IAB nodes Or the network management background configuration to the IAB node, or to agree on the power deviation between the two.
  • the IAB node obtains the first frame structure parameter configured by the parent node, and the IAB node obtains the uplink and downlink division of the frame structure; the IAB node obtains the second frame structure parameter configured by the parent node, and the IAB node learns the additional upper and lower parameters for the IAB node. Row division.
  • time domain unit division for downlink reception of the backhaul link time domain unit exchange for uplink reception of the backhaul link; and access chain Time domain unit division of the downlink transmission of the channel; time domain unit division for uplink reception of the access link; time domain unit division for downlink data reception of the backhaul link, and time domain unit division for uplink data reception of the access link; cannot be used Time domain unit division for transmission or reception; used for uplink data transmission of the backhaul link, and time domain unit division for downlink transmission of the access link.
  • the uplink and downlink intervals of the second frame structure parameter configured for the child node may be extended to the interval where the first frame structure parameter is configured as Flexible.
  • the uplink and downlink transmission should follow its own uplink-downlink transmission direction, that is, when the uplink-downlink configuration is performed for the next-level node, a configuration opposite to its own transmission direction cannot appear, such as the current
  • the UL / F area of a node cannot be configured as DL for the next-level node, and the DL / F area of the current node cannot be configured as UL.
  • the first frame structure parameters include: the configured period and type, the period is an integer multiple of the time slot duration, the types include UL, DL, and Flexible, and the duration is an integer multiple of the time corresponding to several OFDM symbols or the time slot duration.
  • the first frame structure parameter is: a public frame structure parameter, and the public frame structure parameter is carried by the IAB node of the terminal covered by the broadcast transmission notification, and is preferably carried in the form of SIB. Or the common frame structure parameters are divided in an agreed manner.
  • a basic uplink and downlink configuration is agreed to be an uplink and downlink configuration with a period of P_ul_dl_default, and the first nSlot_DL slots at the beginning of an even frame are downlink, in which the period P_ul_dl_default is preferably an integer multiple of the radio frame.
  • the preferred periods are 20ms, 40ms, and 80ms.
  • the last nSlot_UL timeslots in the period P_ul_dl_default are uplinks, and the remaining positions are flexible, that is, the current node cannot make any assumptions about the position indicated by Flexible , Determine its transmission direction according to the subsequent further semi-static configuration, or the assumption that these locations are reserved resources, that is, these resources cannot ultimately have any send and receive operations.
  • the number of further agreed time slots can be established with a specific numerology.
  • the reference numerology of the system is uRef
  • the current numerology is uAct.
  • the number of time slots actually used for uplink and downlink transmission is adjusted to nSlot * 2 ⁇ (uAct- uRef).
  • the second frame structure parameters include: the configured period and type, the period is an integer multiple of the time slot duration, the types include UL, DL, and Flexible, and the duration is an integer multiple of the time corresponding to several OFDM symbols or the time slot duration.
  • the second frame structure parameter is the first dedicated frame structure parameter.
  • the first dedicated frame structure parameter is transmitted through high-level signaling.
  • the IAB node configures the respective first dedicated configuration parameter for the next-level IAB node or terminal it serves. The actual process is The first dedicated configuration parameter may be omitted in this case.
  • the IAB node and the terminal only understand the division of the uplink and downlink based on the common frame structure configuration parameter (public frame structure parameter). If the common frame structure configuration parameter is also missing, the uplink and downlink divisions are understood according to the above-mentioned default manner.
  • the third frame structure parameters include: the configured period and type, the period is an integer multiple of the slot duration, the types include UL, DL, and Flexible, and the duration is an integer multiple of the time corresponding to several OFDM symbols or the slot duration.
  • the third frame structure parameter is the second dedicated frame structure parameter, which can be configured through dedicated signaling, and is used to configure the IAB to be used for backhaul transmission and reception.
  • the type of the configuration parameter of the third frame structure may be limited to downlink backhaul, flexible, and uplink backhaul. And for the transmission direction of the third frame structure configuration parameter of the IAB node, the transmission direction of the first frame structure configuration parameter or the second frame structure parameter configuration can be overwritten. To determine the final frame structure of the IAB node.
  • the IAB node determines at least one of the following according to the above frame structure configuration of the parent node: (1) finally used for uplink and downlink transmission time units in a cycle; (2) finally used for backhaul uplink transmission or backhaul downlink reception in a cycle (3) a potential time unit that is ultimately used by this node to schedule access uplink transmission within a cycle, which is performed by nodes (including ordinary terminals and IAB nodes) that this node schedules its services to The operation of uplink data transmission. This operation is controlled by the upper-level node. As shown in the topology in Figure 1, the uplink transmission of the child node is scheduled by the IAB node.
  • the time unit of the uplink transmission of the access is a position other than the time unit used for the uplink backhaul transmission in the uplink time unit; and the potential time unit of the node scheduling the downlink transmission of the access is the time unit removed for the backhaul in the downlink time unit Positions outside the time unit for downlink reception, as shown in Potential configuration1 of the UE under the IAB; or, in a period, the potential location of the uplink time unit that is ultimately used by the node for scheduling, such as in the downlink time unit Part or whole of the time unit used for downlink backhaul reception; and the potential location of this node for scheduling the downlink time unit is part or whole of the time unit used for uplink backhaul transmission in the uplink time unit, as shown in Potential configuration2 of UE in Figure 7. The situation shown.
  • the IAB node must still configure one or more of the first frame structure parameter, the second frame structure parameter, and the third frame structure parameter according to the above process. Or the default common frame structure parameter.
  • the first frame structure parameter is a public frame structure parameter
  • the second frame structure parameter is a first dedicated frame structure parameter, preferably transmitted using RRC signaling
  • the third frame structure parameter is a second dedicated frame structure parameter, preferably Use dynamic signaling for configuration.
  • the IAB node configures the DB for IAB node2 in its own downstream area
  • the IAB node configures UB for IAB node2 in its own upstream area, as shown in Potential configuration1 of IAB2 under IAB.
  • the UB configured by IAB node for IAB node2 is located in the Downlink area of the IAB node frame structure, and the DB is configured in the Uplink area corresponding to the IAB node frame structure.
  • a node can receive data sent by the previous node and the next node at the same time, or a node can send data to the next node and the next node at the same time, as shown in Potential config2 of IAB2 under IAB.
  • Potential config2 of IAB2 and IAB are different from Potential config1 of IAB2.
  • Underlying IAB is that confi2 can receive the next-level node and the upper-level node at the same time.
  • config1 sends the subordinates to its own downstream area by selecting the area without backhaul reception and configuring it as the downstream frame structure of the next-level node.
  • the IAB node can also configure a downlink backhaul for the IAB node2.
  • the uplink backhaul is also configured at the same time.
  • the downlink area of the IAB node frame structure enables the same node to receive data sent by the upper node and the lower node at the same time. As shown in Potential, config3, and IAB, node2 shown in Figure 8.
  • the time unit is the duration of several time slots or several OFDM symbols, or the duration of an integer time slot plus several OFDM symbols.
  • the IAB node When the IAB node sends the desired transmit power, the expected power adjustment value, or the expected received power to the parent node, and it is assumed that the parent node adjusts the power according to the IAB node according to the parent node or the parent node notifies its transmit power adjustment value according to a certain time domain granularity Or, the parent node notifies the received power adjustment value for the IAB node according to a certain time granularity according to the expected received power value reported by the IAB node.
  • the IAB node receives frequency division (FDM) or space division (SDM) to receive data sent by upper-level nodes and downlink data and uplink data sent by lower-level nodes to improve spectrum utilization by multiplexing.
  • FDM frequency division
  • SDM space division
  • IAB node is configured to receive the third frame structure parameter.
  • the parameters related to the uplink and downlink configuration are for the TDD system.
  • the uplink and downlink of the FDD system are configured separately.
  • no uplink and downlink configuration is required.
  • Only the third frame structure parameter is required to indicate the time unit dedicated to the IAB node to transmit backhaul.
  • the above-mentioned first frame structure parameter and the second frame structure parameter used for the frame structure configuration will not show inconsistency in the transmission direction.
  • the area configured as the downlink in the common frame structure parameter cannot be configured as the uplink in the second frame structure parameter.
  • the area configured as the uplink in the common frame structure parameter cannot be configured as the downlink in the second frame structure parameter.
  • the configuration of the third frame structure can be configured for transmission directions with different directions. For example, the situation shown in Potential config2 of IAB2 and IAB of FIG. 7 is shown below.
  • the topology of this embodiment is shown in FIG. 1 and includes a Parent Node, an IAB Node, and a Child Node.
  • the Parent Node is a Parent Node of the IAB Node.
  • the IAB node transmits backhaul link data with the Parent node through the wireless link.
  • the Child Node is a lower-level link of the IAB Node.
  • the IAB Node transmits backhaul data or access link data to the Child Node link through the wireless link. What is the access link? Whether it is a backhaul link or not depends on the type of ChildNode. If it is an IAB node, it can receive data sent by both ParentNode and ChildNode.
  • Donor nodes and IAB nodes at all levels maintain a common absolute timing moment (within the error range). This unified timing can be achieved through mechanisms such as OTA or GPS. If these nodes send data to the Child Node, they will send data with this timing and time as a reference point. This reference point is called the downlink transmission time.
  • the IAB node configuration receives two of the following parameters: the first frame structure parameter; the second frame structure parameter; and the third frame structure parameter.
  • the first frame structure parameter may be a public frame structure parameter configured for the parent node through broadcasting (such as SIB), or an agreed public frame structure parameter;
  • the second frame structure parameter is the parent node through proprietary signaling (RRC signaling) )
  • the third frame structure parameter is the second dedicated frame structure parameter dynamically notified by the parent node through dynamic signaling such as DCI2-0.
  • the common frame structure parameters are the same for the nodes served, and the second frame structure parameter indicates the additional frame structure, which is the same as the first frame structure parameter. Together indicate the areas used for uplink transmission or downlink reception operations.
  • the IAB its transmission resources for backhaul and access are confirmed by the combination of the third frame structure parameter with the first frame structure parameter and / or the second frame structure parameter.
  • the IAB node obtains the first frame structure parameter configured by the parent node, the IAB node obtains the uplink and downlink division of the frame structure; the IAB node obtains the second frame structure parameter configured by the parent node, and the IAB node learns the additional uplink and downlink division for the IAB node.
  • time domain unit division for downlink reception of the backhaul link time domain unit exchange for uplink reception of the backhaul link; and access link
  • Time domain unit division for uplink reception; time domain unit division for downlink transmission and reception of the access link; time domain unit division for downlink data reception of the backhaul link, and time domain unit division for uplink data reception of the access link cannot be used Time domain unit division for transmission or reception; uplink data relaxation for backhaul link, and time domain unit division for downlink transmission of access link.
  • the uplink and downlink intervals of the second frame structure parameter configured for the child node may be extended to the interval where the first frame structure parameter is configured as Flexible.
  • the uplink and downlink transmission should follow its own uplink-downlink transmission direction, that is, when the uplink-downlink configuration is performed for the next-level node, a configuration opposite to its own transmission direction cannot appear, such as the current
  • the UL / F area of a node cannot be configured as DL for the next-level node, and the DL / F area of the current node cannot be configured as UL.
  • the first frame structure configuration parameters include: the configured period and type, the period is an integer multiple of the time slot duration, the types include UL, DL, and Flexible, and the duration is an integer multiple of the time corresponding to several OFDM symbols or the time slot duration .
  • the public frame structure configuration parameters are carried by the IAB node of the terminal covered by the broadcast transmission notification, and are preferably carried in the form of SIB. Or the common frame structure parameters are divided in an agreed manner. For example, a basic uplink and downlink configuration is agreed to be an uplink and downlink configuration with a period of P_ul_dl_default, and the first nSlot_DL slots at the beginning of an even frame are downlink, in which the period P_ul_dl_default is preferably an integer multiple of the radio frame.
  • the preferred periods are 20ms, 40ms, and 80ms.
  • the last nSlot_UL timeslots in the period P_ul_dl_default are uplinks, and the remaining positions are flexible. That is, the current node cannot make any assumptions about the positions indicated by Flexible. , Determine its transmission direction according to the subsequent further semi-static configuration, or the assumption that these locations are reserved resources, that is, these resources cannot ultimately have any send and receive operations.
  • the number of further agreed time slots can be established with a specific numerology.
  • the reference numerology of the system is uRef
  • the current numerology is uAct.
  • the number of time slots actually used for uplink and downlink transmission is adjusted to nSlot * 2 ⁇ (uAct- uRef).
  • the first frame structure parameters include: the configured period and type, the period is an integer multiple of the slot duration, the types include UL, DL, and Flexible, and the duration is an integer multiple of the time corresponding to several OFDM symbols or the slot duration.
  • the first dedicated frame structure parameter is transmitted through high-level signaling, and the IAB node configures the respective first dedicated configuration parameter for the next-level IAB node or terminal being served. In practice, the first dedicated configuration parameter may be omitted. At this time, the IAB node and the The terminal understands the uplink and downlink division based on the common frame structure configuration parameters only. If the common frame structure configuration parameter is also missing, the uplink and downlink divisions are understood according to the above-mentioned default manner.
  • the second frame structure configuration parameters include: the configured period and type, the period is an integer multiple of the time slot duration, the type includes UL, DL, and Flexible, and the duration is an integer multiple of the time corresponding to several OFDM symbols or the time slot duration .
  • the second frame structure is configured through dedicated signaling, and is used to configure the IAB to receive and transmit transmissions dedicated to backhaul.
  • the type of the configuration parameter of the third frame structure may be limited to downlink backhaul, flexible, and uplink backhaul.
  • the transmission direction of the configuration parameter of the third frame structure can overwrite the transmission direction of the configuration parameter of the first frame structure or the configuration parameter configuration of the second frame structure. To determine the final frame structure of the IAB node.
  • the IAB node determines at least one of the following according to the above frame structure configuration of the parent node: (1) finally used for uplink and downlink transmission time units in a cycle; (2) finally used for backhaul uplink transmission or backhaul downlink reception in a cycle (3) a potential time unit that is ultimately used by this node to schedule access uplink transmission within a cycle, which is performed by nodes (including ordinary terminals and IAB nodes) that this node schedules its services to The operation of uplink data transmission. This operation is controlled by the upper-level node. As shown in the topology in Figure 1, the uplink transmission of the child node is scheduled by the IAB node.
  • the time unit of the uplink transmission of the access is a position other than the time unit used for the uplink backhaul transmission in the uplink time unit; and the potential time unit of the node scheduling the downlink transmission of the access is the time unit removed for the backhaul in the downlink time unit Positions outside the time unit of the downlink reception are shown in the Potential configuration1 under the IAB in Figure 7; or, the potential position that is ultimately used by the node to schedule the uplink time unit in a period is, for example, in the downlink time unit Part or whole of the time unit used for downlink backhaul reception within the unit; and the potential location of the node for scheduling the downlink time unit is part or whole of the unit of time used for uplink backhaul transmission within the uplink time unit, as shown in Potential configuration2 of UE in Figure 7. IAB shows the situation.
  • the IAB node must still configure one or more of the first frame structure parameter, the second frame structure parameter, and the third frame structure parameter according to the above process. Or the default common frame structure parameter.
  • the first frame structure parameter is a common frame structure parameter
  • the second frame structure parameter is a dedicated frame structure parameter, preferably using RRC signaling
  • the third frame structure parameter is a dedicated frame structure parameter, preferably using dynamic signaling. Configure it.
  • the IAB node configures the DB for IAB node2 in its own downstream area
  • the IAB node configures UB for IAB node2 in its own upstream area, as shown in Potential configuration1 of IAB2 under IAB.
  • the UB configured by IAB node for IAB node2 is located in the Downlink area of the IAB node frame structure, and the DB is configured in the Uplink area corresponding to the IAB node frame structure.
  • a node can receive data sent by the previous node and the next node at the same time, or a node can send data to the next node and the next node at the same time, as shown in Potential config2 of IAB2 under IAB.
  • Potential config2 of IAB2 and IAB are different from Potential config1 of IAB2.
  • Underlying IAB is that confi2 can receive the next-level node and the upper-level node at the same time.
  • config1 sends the subordinates to its own downstream area by selecting the area without backhaul reception and configuring it as the downstream frame structure of the next-level node.
  • the IAB node can also configure a downlink backhaul for the IAB node2.
  • the uplink backhaul is also configured at the same time.
  • the downlink area of the IAB node frame structure enables the same node to receive data sent by the upper node and the lower node at the same time. As shown in Figure 8, Potential config3 and IAB node2 show the situation.
  • the time unit is the duration of several time slots or several OFDM symbols, or the duration of an integer time slot plus several OFDM symbols.
  • the above-mentioned first frame structure parameter and the second frame structure parameter used for the frame structure configuration will not show inconsistency in the transmission direction.
  • the area configured as the downlink in the common frame structure parameter cannot be configured as the uplink in the second frame structure parameter.
  • the area configured as the uplink in the common frame structure parameter cannot be configured as the downlink in the second frame structure parameter.
  • the configuration of the third frame structure can be configured for transmission directions with different directions. As shown in Potential, config2, IAB2, and IAB shown in FIG.
  • a device for configuring a frame structure is also provided in this embodiment, and the device is configured to implement the foregoing embodiments and preferred implementation manners, and the descriptions will not be repeated.
  • the term "module” may implement a combination of software and / or hardware for a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, implementation in hardware, or a combination of software and hardware is also possible and conceived.
  • FIG. 13 is a schematic structural diagram of a frame configuration configuration apparatus according to an embodiment of the present disclosure.
  • the apparatus is applied to a first node side.
  • the apparatus includes a receiving module 1302 and a processing module 1304.
  • the receiving module 1302 is configured to receive the frame structure parameters configured by the second node, where the frame structure parameters include: the period and type of the frame structure; the frame structure parameters include: a public frame structure parameter, a first dedicated frame structure parameter, and a second dedicated frame Structural parameters;
  • the processing module 1304 is coupled to the receiving module 1302 and is configured to obtain the uplink / downlink division of the frame structure according to the common frame structure parameter and / or the first dedicated frame structure parameter, and determine the The frame structure of the uplink transmission of the backhaul link and the frame structure of the downlink transmission of the backhaul link.
  • the period of the frame structure is an integer multiple of the duration of the time slot;
  • the types of the frame structure include: an uplink UL frame structure, a downlink DL frame structure, and a flexible flexible frame structure.
  • the type of the frame structure in the second dedicated frame structure parameter includes at least one of the following: an uplink backhaul frame structure and a downlink backhaul frame structure.
  • the transmission direction of the second dedicated frame structure parameter may be used to rewrite the common frame structure parameter and the first Transmission direction of a dedicated frame structure parameter.
  • the apparatus of this embodiment may further include a determining module.
  • the determining module is configured to determine at least one of the following: a transmission time unit that is ultimately used for uplink / downlink in one cycle; and a transmission time unit that is ultimately used for backhaul uplink transmission or backhaul downlink reception in one cycle. ; Potential position used by the node to schedule the uplink time unit within a cycle, or Potential position used by the node to schedule the downlink time unit within a cycle;
  • the combination of frame structure parameters includes: common frame structure parameters, first A dedicated frame structure parameter and a second dedicated frame structure parameter; a common frame structure parameter and a second dedicated frame structure parameter; a first dedicated frame structure parameter and a second dedicated frame structure parameter.
  • the node at the next level of the first node is a transmission node of the same type as the first node instead of a user terminal
  • the backhaul resources of the first node and the transmission node at the next level overlap or partially overlap
  • the receiving and transmitting states of the first node and the next-level transmitting node are opposite; among them, the receiving and transmitting states are opposite: when the first node performs the receiving operation on the backhaul resource, the next-level transmitting node performs the transmitting operation in the overlapping or partially overlapping area.
  • next-level node of the first node is a transmission node of the same type as the first node instead of a user terminal, and the backhaul resources of the first node and the next-level transmission node do not coincide, the first node and the next-level node
  • the transmitting and receiving states of the transmitting nodes are opposite or the same.
  • the common frame structure parameter is a double cycle or a single cycle.
  • the device configures the frame structure in at least the following ways: autonomously configure the frame structure of the next-level node according to the common frame structure parameter and / or the first dedicated frame structure parameter and / or the second dedicated frame structure parameter; according to the first The dedicated frame structure parameters and / or dynamic frame structure parameters autonomously configure the frame structure of the next-level node, where the dynamic frame structure parameters are configured through the PDCCH; the frames are configured according to the common frame structure parameters, the first dedicated frame structure parameters, and the dynamic frame structure parameters. Structure; autonomously configure the frame structure of the next-level node according to the common frame structure parameter and / or the first dedicated frame structure parameter and / or the dynamic frame structure parameter, wherein the dynamic frame structure parameter is configured through the PDCCH.
  • the configured frame structure includes an uplink UL frame structure, a downlink DL frame structure, a variable frame structure, a backhaul UL frame structure, a backhaul DL frame structure, and a backhaul multiplexing frame structure.
  • the second node includes: a configuration module configured to configure frame structure parameters to the first, wherein the frame structure parameters include: a period and a type of the frame structure; the frame structure parameters include: a public frame structure parameter and a first dedicated frame structure Parameter, the second dedicated frame structure parameter.
  • the common frame structure parameter and the first dedicated frame structure parameter are used to obtain the uplink / downlink division of the frame structure, and the second dedicated frame structure parameter is used to determine the frame structure for backhaul link uplink transmission and the backhaul chain. Frame structure for downlink transmission.
  • the period of the frame structure is an integer multiple of the duration of the time slot;
  • the types of the frame structure include: an uplink UL frame structure, a downlink DL frame structure, and a variable flexible frame structure.
  • the type of the frame structure in the second dedicated frame structure parameter includes at least one of the following: an uplink backhaul frame structure and a downlink backhaul frame structure.
  • modules can be implemented by software or hardware. For the latter, they can be implemented in the following ways, but are not limited to the above: the above modules are located in the same processor; The forms are located in different processors.
  • An embodiment of the present disclosure further provides a storage medium that stores a computer program therein, wherein the computer program is configured to execute the steps in any one of the foregoing method embodiments when running.
  • the foregoing storage medium may be configured to store computer programs S1 and S2 for performing the following steps.
  • the first node receives the frame structure parameters configured by the second node, where the frame structure parameters include: the period and type of the frame structure; the frame structure parameters include: a public frame structure parameter, a first dedicated frame structure parameter, and a second dedicated frame Structural parameters.
  • the first node obtains the uplink / downlink division of the frame structure according to the common frame structure parameter and / or the first dedicated frame structure parameter, and determines the frame structure and the use of the uplink transmission for the backhaul link according to the second dedicated frame structure parameter. Frame structure for backhaul downlink transmission.
  • An embodiment of the present disclosure further provides a storage medium that stores a computer program therein, wherein the computer program is configured to execute the steps in any one of the foregoing method embodiments when running.
  • the foregoing storage medium may be configured to store a computer program S1 for performing the following steps.
  • the second node configures a frame structure parameter to the first node, where the frame structure parameter includes: a period and a type of the frame structure; the frame structure parameter includes: a public frame structure parameter, a first dedicated frame structure parameter, and a second dedicated frame structure parameter.
  • the foregoing storage medium may include, but is not limited to, a U disk, a read-only memory (ROM), a random access memory (Random Access Memory, RAM), A variety of media that can store computer programs, such as mobile hard disks, magnetic disks, or optical disks.
  • ROM read-only memory
  • RAM Random Access Memory
  • modules or steps of the present disclosure may be implemented by a general-purpose computing device, and they may be centralized on a single computing device or distributed on a network composed of multiple computing devices. Above, optionally, they may be implemented with program code executable by a computing device, so that they may be stored in a storage device and executed by the computing device, and in some cases, may be in a different order than here
  • the steps shown or described are performed either by making them into individual integrated circuit modules or by making multiple modules or steps into a single integrated circuit module. As such, the present disclosure is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种帧结构的配置方法及装置、存储介质,其中,帧结构的配置方法包括:第一节点接收第二节点配置的帧结构参数,其中,所述帧结构参数包括:帧结构的周期和类型;所述帧结构参数包括:公共帧结构参数、第一专用帧结构参数、第二专用帧结构参数;所述第一节点根据所述公共帧结构参数和/或第一专用帧结构参数获取帧结构的上行/下行划分情况,以及根据所述第二专用帧结构参数确定用于backhaul链路上行传输的帧结构和用于backhaul链路下行传输的帧结构。

Description

帧结构的配置方法及装置、存储介质 技术领域
本公开涉及通信领域。
背景技术
未来网络部署的一种潜在技术是支持无线回程(Wireless Backhaul)以实现NR(New Radio,新空口)小区(cell)的灵活和稠密部署而不用按比例进行传输网络的部署。相比于LTE(Long Term Evolution,长期演进),NR小区可以期待更大的带宽并进行massive MIMO(massive Multiple Input Multiple Output,大规模多输入输出))或多波束系统的部署。这样NR网络中有机会基于access link(接入链路)的控制和业务信道以集成的方式部署IAB(Integrated Access Backhaul,集成接入回程)以简化稠密网络部署。
在相关技术的IAB网络中,存在帧结构的配置会导致节点之间的干扰、发送及接收数据的操作不能同时进行等问题。
发明内容
本公开实施例提供了一种帧结构的配置方法及装置、存储介质。
根据本公开的一个方面,提供了一种帧结构的配置方法,包括:第一节点接收第二节点配置的帧结构参数,其中,所述帧结构参数包括:帧结构的周期和类型;所述帧结构参数包括:公共帧结构参数、第一专用帧结构参数、第二专用帧结构参数;所述第一节点根据所述公共帧结构参数和第一专用帧结构参数获取帧结构的上行/下行划分情况,以及根据所述第二专用帧结构参数确定用于backhaul链路上行传输的帧结构和用于backhaul链路下行传输的帧结构。
根据本公开的另一个方面,提供了一种帧结构的配置方法,包括:第二节点向第一节点配置帧结构参数,其中,所述帧结构参数包括:帧结构 的周期和类型;所述帧结构参数包括:公共帧结构参数、第一专用帧结构参数、第二专用帧结构参数;其中,所述公共帧结构参数和第一专用帧结构参数用于获取帧结构的上行/下行划分情况,以及所述第二专用帧结构参数用于确定用于backhaul链路上行传输的帧结构和用于backhaul链路下行传输的帧结构。
根据本公开的再一个方面,提供了一种帧结构的配置装置,应用于第一节点侧,包括接收模块和处理模块。所述接收模块构造为接收第二节点配置的帧结构参数,其中,所述帧结构参数包括:帧结构的周期和类型;所述帧结构参数包括:公共帧结构参数、第一专用帧结构参数、第二专用帧结构参数。所述处理模块构造为根据所述公共帧结构参数和第一专用帧结构参数获取帧结构的上行/下行划分情况,以及根据所述第二专用帧结构参数确定用于backhaul链路上行传输的帧结构和用于backhaul链路下行传输的帧结构。
根据本公开的再一个方面,提供了一种帧结构的配置装置,应用于第二节点侧,包括配置模块。所述配置模块构造为向第一节点配置帧结构参数,其中,所述帧结构参数包括:帧结构的周期和类型;所述帧结构参数包括:公共帧结构参数、第一专用帧结构参数、第二专用帧结构参数;其中,所述公共帧结构参数和第一专用帧结构参数用于获取帧结构的上行/下行划分情况,以及所述第二专用帧结构参数用于确定用于backhaul链路上行传输的帧结构和用于backhaul链路下行传输的帧结构。
根据本公开的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本公开的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是相关技术中IAB网络中各节点的关系及链路的示意图;
图2是相关技术中IAB节点可以在时域、频域或空域进行access link和backhaul link复用的示意图;
图3是相关技术中三跳网络的时分传输示意图;
图4是相关技术中Parent node(父节点)为IAB node,配置用于发送和接收的潜在时域资源的示意图;
图5是根据本公开实施例的帧结构的配置方法的流程图;
图6是根据本公开实施例的Donor node(施主节点)和各级IAB node网络维护定时时刻的示意图;
图7是根据本公开实施例的Potential config of UE under IAB(终端在IAB下的潜在配置)示意图一;
图8是根据本公开实施例的Potential config of IAB node(IAB节点的潜在配置)的示意图二;
图9是根据本公开实施例的不同帧结构参数的组合示意图一;
图10是根据本公开实施例的不同帧结构参数的组合示意图二;
图11是根据本公开实施例的采用bit-map(位图)的形式进行通知第三帧结构参数的示意图;
图12是根据本公开实施例的功率调整示意图;
图13是根据本公开实施例的帧结构的配置装置的结构示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明相关技术及本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以 相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
图1是相关技术中IAB网络中各节点的关系及链路示意图,如图1所示,从上至下的三个节点分别称为Parent Node(父节点),IAB-Node(IAB节点)和Child Node(子节点)。IAB-Node是作为参照的当前节点,其上一级节点为Parent Node。当前IAB-Node与其Parent Node之间的链路称之为backhaul link(回程链路)。按传输方向,backhaul link又区分为backhaul DL(下行)和backhaul UL(上行);当前IAB-Node与其Child Node之间的链路称之为access link,按传输方向,access link又区分为access DL和access UL。
链路类型的判断是基于节点的相对关系和角色而实施的。若图1中的Child Node是一个普通终端,则这条链路对其来说就是普通的access链路,如果Child Node是一个IAB节点,则从这个IAB节点来看,这条链路就是backhaul link。链路进一步也可以细分为针对子节点的backhaul downlink/uplink,针对普通UE的access downlink/uplink。
图2是相关技术中IAB节点可以在时域、频域或空域进行access link和backhaul link复用示意图,如图2所示,access和backhaul link可以是相同的频率(in-band)或不同的频率(out-band),有效支持out-band中继对于某些NR部署场景非常重要,同时对理解in-band中半双工的干扰协调非常重要。
在NR R-15系统中通过高层信令为终端配置帧结构,现有的帧结构类型包括DL,UL和F(Flexible,灵活),帧的结构由gNB(Next-generation node-B,下一代节点B)配置,gNB与核心网存在直连,gNB自主地为其服务的终端配置帧结构。
Rel-16阶段,3GPP会议讨论对于access link和backhaul link的有效 复用。
IAB网络要支持以下特征:1)支持多跳的传输,支持2跳以上的传输,在LTE relay网络中只支持两跳--base station-relay-UE,NR IAB网络中IAB节点的下一级还可以是IAB节点;2)半双工传输,IAB网络中不假定IAB节点能进行同时收发,例如TDD双工(时分双工)模式下IAB节点不能同时进行发送和接收操作,但不排除access。
在IAB网络中,帧结构的配置状态较之NR的R-15网络有额外的需求。
在进行下一级节点的帧结构配置时,存在UL/DL/F之外的状态,例如IAB节点不在接收上级节点的数据同时向下级节点发送数据,也不能在向上级节点发送数据的同时接收下级节点的发送数据,两种操作不能同时进行。
图2中的这种方式对于支持多跳链路的IAB网络来说效率低下。图3是相关技术中三跳网络为例的时分传输示意图,如图3所示,为了支持UE的一次传输和反馈耗费了6份时隙资源。
另外分时传输方案在多层中继节点传输过程中如何保证backhaul链路和access链路在每一级节点都能进行有效的资源分配也没有明确。图4是相关技术中Parent node为IAB node配置用于发送和接收的潜在时域资源的示意图,如图4示,Parent node为IAB node配置了用于发送和接收的潜在时域资源,但是对于IAB节点来说如何进行下一级节点的配置存在不确定的因素,例如当Parent node为IAB node配置了F的资源如何使用,如果IAB node任意配置可能导致节点间的干扰。
下面,对针对相关技术中的上述问题而提出的本公开的各实施例进行详细说明。
实施例1
在本实施例中提供了一种帧结构的配置方法,图5是根据该实施例的帧结构的配置方法的流程图,如图5所示,该流程包括如下步骤S502和 S504。
在步骤S502,第一节点接收第二节点配置的帧结构参数,其中,帧结构参数包括:帧结构的周期和类型;帧结构参数包括:公共帧结构参数、第一专用帧结构参数、第二专用帧结构参数。
在步骤S504,第一节点根据公共帧结构参数和第一专用帧结构参数获取帧结构的上行/下行划分情况,以及根据第二专用帧结构参数确定用于backhaul链路上行传输的帧结构和用于backhaul链路下行传输的帧结构。
通过本实施例的上述步骤S502和步骤S504,第一节点根据第二节点配置的公共帧结构参数和第一专用帧结构参数获取帧结构的上行/下行划分情况,以及根据第二专用帧结构参数确定用于backhaul链路上行传输的帧结构和用于backhaul链路下行传输的帧结构,从而解决了相关技术中帧结构的配置会导致节点之间的干扰的问题,提高了IAB网络中的数据传输效率。
在本实施例中第一节点优选为IAB node,第二节点优选为Parent node(该第一节点的Parent node)。
需要说明的是,本实施例中涉及到的帧结构的周期为时隙持续时间的整数倍;帧结构的类型包括:上行UL帧结构、下行DL帧结构、可变Flexible帧结构。而本实施例中涉及到的第二专用帧结构参数中的帧结构的类型包括以下至少之一:上行backhaul帧结构、下行backhaul帧结构。
在本实施例的另一个可选实施方式中,帧结构参数还包括传输方向(即,上行或下行),在第一节点的下一级节点为与所述第一节点同类型的传输节点而非终端(即IAB node的下一级节点为其他IAB node)的情况下,第二专用帧结构参数的传输方向可用于改写公共帧结构参数和第一专用帧结构参数的传输方向。
基于此,本实施例的方法步骤还可以包括:第一节点根据帧结构参数的组合确定以下至少之一:在一个周期内最终用于上/下行的传输时间单元;在一个周期内最终用于backhaul上行传输或backhaul下行接收的传输 时间单元;在一个周期内最终用于本节点(即第一节点)调度上行时间单元的潜在位置,或在一个周期内最终用于本节点调度下行时间单元的潜在位置。
帧结构参数的组合包括至少以下之一:公共帧结构参数、第一专用帧结构参数和第二专用帧结构参数;公共帧结构参数和第二专用帧结构参数;第一专用帧结构参数和第二专用帧结构参数。
需要说明的是,如果第一节点的下一级节点为与第一节点同类型的传输节点而非用户终端,且第一节点与下一级传输节点的backhaul资源重合或部分交叠,则第一节点与下一级传输节点的收发状态相反;其中,收发状态相反是指:在第一节点在backhaul资源执行接收操作时下一级传输节点在重合或部分交叠的区域执行发送操作。
具体实施方式可以是:如果IAB node的下一级节点还是为IAB node,且IAB node与下一级IAB node的backhaul资源重合或部分交叠,则IAB node与下一级IAB node的传输方向相反;即,在IAB node在backhaul资源执行接收操作时下一级的IAB node在重合或部分交叠的区域执行发送操作。
而在第一节点的下一级节点为与第一节点同类型的传输节点而非用户终端,且第一节点与下一级传输节点的backhaul资源不重合的情况下,则第一节点与下一级传输节点的收发状态相反或相同。也就是说,在具体实施方式中可以是:如果IAB node的下一级节点还是为IAB node,且IAB node与下一级IAB node的资源不重合,则IAB node与下一级IAB node的传输方向相反或相同。
而如果第一节点的下一级节点为用户终端,则第一节点为下一级传输节点配置的帧结构与自身的帧结构保持一致性,即本节点的UL区域不能为下一级终端节点配置为DL,同样本节点的DL区域也不能配置为UL。
在本实施例的可选实施方式中,第二专用帧结构参数由公共帧结构参数和第一专用帧结构参数的组合形成;和/或,第二帧结构参数为动态信令; 其中,该动态信令为DCI(Downlink Control Information,下行链路控制信息)所承载的帧结构配置参数。
可选地,本实施例中涉及到的公共帧结构参数为双周期或单周期。
在本实施例的可选实施方式中,第一节点通过以下方式(1)至(4)中的至少之一配置帧结构。
方式(1):第一节点根据公共帧结构参数和/或第一专用帧结构参数和/或第二专用帧结构参数自主配置下一级节点的帧结构。
方式(2):第一节点根据第一专用帧结构参数和/或动态帧结构参数自主配置下一级节点的帧结构,其中,动态帧结构参数通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)配置。
方式(3):第一节点根据公共帧结构参数、第一专用帧结构参数和动态帧结构参数配置帧结构,其中,配置的帧结构包括:上行UL帧结构、下行DL帧结构,可变帧结构、backhaul UL帧结构、backhaul DL帧结构、backhaul multiplexing(回程复用)帧结构。
方式(4):第一节点根据所述公共帧结构参数和/或第一专用帧结构参数和/或动态帧结构参数自主配置下一级节点的帧结构,其中,动态帧结构参数通过PDCCH配置。
在本实施例的另一个可选实施方式中,本实施例中涉及到的功率调整还可以包括以下方式一和方式二。
方式一:第一节点在对应的下行backhaul传输资源上向第一节点的上一级节点上报期望的功率调整。其中,功率调整包括以下之一:对应带宽的接收功率调整值、对应带宽的发射功率调整值、对应带宽的期望接收功率、对应带宽的期待发射功率;其中,对应带宽为一个资源块RB的带宽。
方式二:第一节点为下一级节点指示用于下行backhaul传输资源上的功率调整;其中,功率调整的值包括以下之一:对应带宽的接收功率调整值、对应带宽的发射功率调整值、对应带宽的期望接收功率、对应带宽的期待发射功率;或者功率调整用于指示第一节点向下一级节点指示是否按 照所要求的功率调整值进行调整;其中,对应带宽为一个资源块RB的带宽。
在本实施例的再一个可选实施方式中,本实施例的方法步骤还可以包括步骤S506至S510。
步骤S506,第一节点收到上一级节点的功率调整指示,并根据该功率调整指示在对应的资源上复用第一节点的下一级节点的上行传输。
步骤S508,第一节点接收上一级节点发送的backhaul数据。
步骤S510,第一节点调度下一级节点,具体地说,第一节点在与下一级节点的backhaul资源重合或部分交叠的区域调度该下一级节点的上行backhaul传输。
本实施例的方法步骤是从第一节点(IAB node)侧进行描述的,下面将从第二节点(Parent node)侧进行描述,需要说明的是,两种描述方式是对应的。
在第二节点侧,本实施例也提供了一种帧结构的配置方法,该方法的步骤包括:步骤S602,第一节点向第二节点配置帧结构参数,其中,帧结构参数包括:帧结构的周期和类型;帧结构参数包括:公共帧结构参数、第一专用帧结构参数、第二专用帧结构参数;其中,公共帧结构参数和第一专用帧结构参数用于获取帧结构的上行/下行划分情况,以及第二专用帧结构参数用于确定用于backhaul链路上行传输的帧结构和用于backhaul链路下行传输的帧结构。
可选地,帧结构的周期为时隙持续时间的整数倍;帧结构的类型包括:上行UL帧结构、下行DL帧结构、可变Flexible帧结构。其中,第二专用帧结构参数中的帧结构的类型包括以下至少之一:上行backhaul帧结构、下行backhaul帧结构、可变Flexible帧结构。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理 解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
下面结合实施例2~5对上述实施例1进行详细说明。
实施例2
在本实施例中涉及到的是ACCESS/BACKHAUL时分复用及频分和空分复用。此外,本实施例拓扑如图1所示,包含Parent Node,IAB Node和Child Node,Parent Node是IAB Node的Parent Node。IAB Node通过无线链路与Parent Node传输backhaul链路数据,Child Node是IAB Node的下级链路,IAB Node通过无线链路向Child Node链路传输backhaul数据或access链路数据,究竟是access链路还是backhaul链路取决于Child Node类型,如果是IAB node同时接收Parent Node和Child Node的发送数据。
图6是根据本公开实施例的Donor node(施主节点)和各级IAB node网络维护定时时刻的示意图,如图6所示,Donor node和各级IAB node网络中的维护一个共同的绝对定时时刻(误差范围内),这种统一定时可通过OTA(Over The Air)或GPS(Global Positioning System)等机制实现。若这些节点向Child Node发送数据,则要以这种定时时刻为参照点进行数据发送,这一参照点称为下行发送时刻。
Parent node配置公共帧结构参数,Parent node向IAB node配置第一专用帧结构参数,Parent node向IAB node配置第二专用帧结构参数。公共帧结构参数对所服务的节点都是相同的配置,第一专用帧结构参数指示了额外的帧结构,指示这些位置用于上行传输或下行接收。对一个节点而言其帧结构的上下行配置情况基本划定了,对IAB而言其专用于backhaul链路传输的资源通过第二专用帧结构参数配置。
IAB node获取Parent node配置的公共帧结构参数和第一专用帧结构参数,IAB node获知帧结构的上下行划分情况;IAB节点获取Parent node配置的第二专用帧结构参数,IAB node获知在这些上下行划分中哪些用于backhaul链路的上行传输,哪些用于backhaul链路的下行接收即终端进行backhaul链路的数据收发根据第二专用帧结构参数指示的位置发送和接收backhual数据,在其余的上行或下行的位置IAB节点自身可以为下级节点进行帧结构参数的配置。
可选地,如果Parent node是Donor node,则其为子节点配置的第一专用帧结构参数的上下行区间可以扩展至Flexible区间范围,对于不是Donor node的Parent node来说,其为下一级节点进行帧结构配置时,上下行的传输应当遵照自身的上下行传输方向,即为下一级节点进行上下行配置的时候不能出现与自身传输方向相反的配置,例如当前节点的UL/F区域不能为下一级节点配置为DL,当前节点的DL/F区域不能配置为UL。
配置的公共帧结构参数包括:配置(帧结构)的周期和类型;其中,周期为时隙持续时间的整数倍,类型包括UL,DL和Flexible,持续时间为若干个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号对应的时间或时隙持续时间的整数倍。公共帧结构参数通过广播传输通知覆盖下的终端的IAB node,优先以SIB(System information block,系统信息块)的形式承载。或者公共帧结构参数通过约定的方式进行上下行的划分,例如约定一种最基础的上下行配置为一个周期为P_ul_dl_default的上下行配置,在偶数帧开始的前nSlot_DL个slot(时隙)为downlink,在其中周期P_ul_dl_default优选为无线帧的整数倍,优选的周期为20ms,40ms和80ms,周期P_ul_dl_default内最后nSlot_UL个时隙为uplink,其余位置为Flexible,即此时当前节点不能对Flexible所指示的位置有任何假设,根据后续的进一步的半静态配置确定其传输方向,或者这些位置为保留资源即这些资源最终不能有任何收发操作的假设。
此外,在本实施例中,约定的时隙个数可以与具体的numerology(参数集)建立关系,例如系统的参考numerology为uRef,当前的numerology 为uAct,则实际用于上行和下行传输的时隙数调整为nSlot*2^(uAct-uRef)。
配置的第一专用帧结构参数包括:配置的周期和类型(即,帧结构的周期和类型);其中,周期为时隙持续时间的整数倍,类型包括UL,DL和Flexible,持续时间为若干个OFDM符号对应的时间或时隙持续时间的整数倍。第一专用帧结构参数通过高层信令传输,IAB node为所服务的下一级IAB node或终端配置各自的第一专用配置参数(第一专用帧结构参数)。实际过程中可以省略第一专用配置参数,此时IAB node和终端仅基于公共帧结构参数理解上下行的划分。若也缺失公共帧结构参数则按照上述默认的方式理解上下行的划分情况。
配置第二专用帧结构参数包括:配置的周期和类型;其中,周期为时隙持续时间的整数倍,类型包括UL,DL和Flexible,持续时间为若干个OFDM符号对应的时间或时隙持续时间的整数倍。第二帧结构通过专用信令进行配置,用于为IAB配置专用于backhaul的收发传输。
进一步,第二专用帧结构参数中的帧结构的类型可以限定为downlink backhaul(下行链路回程),Flexible和uplink backhaul(上行链路回程)。且第二专用帧结构参数的传输方向可以改写公共和第一专用帧结构参数的传输方向。以确定IAB node的最终帧结构。
IAB node根据Parent node的以上帧结构配置确定:
(1)在一个周期内最终用于上下行的传输时间单元,例如若干时隙或若干OFDM符号持续时间,或整数时隙加若干OFDM符号的持续时间;
(2)在一个周期内最终用于backhaul上行传输或backhaul下行接收的传输时间单元,例如若干时隙或若干OFDM符号持续时间,或整数时隙加若干OFDM符号的持续时间;
(3)在一个周期内最终用于本节点调度上行时间单元的潜在位置,例如在上行时间单元内除去用于上行backhaul接收的时间单元之外的位置;而本节点调度下行时间单元的潜在位置为上行时间单元内除去用于下行backhaul发送的时间单元之外的位置,如图6中的Potential config1 of UE  under IAB(在IAB下UE的潜在配置1)所示情形;或者,在一个周期内最终用于本节点调度上行时间单元的潜在位置,为例如在下行时间单元内用于下行backhaul接收的时间单元的位置;而本节点调度下行时间单元的潜在位置为上行时间单元内用于上行backhaul发送的时间单元的位置,图7是根据本公开实施例的Potential config of UE under IAB示意图。
若IAB node的下级节点仍是IAB node记为IAB node2,则IAB node仍要按照上述过程为其配置一个公共帧结构参数,第一专用帧结构参数的其中一个或多个或者默认的公共帧结构参数,IAB node还要为IAB node2配置第二专用帧结构参数。IAB node在其自身的下行区域内为IAB node2配置DB(downlink backhaul),IAB node在其自身的上行区域内为IAB node2配置UB(uplink backhaul),如图7的Potential config1所示情形。
进一步,IAB node为IAB node2配置的UB位于IAB node帧结构的Downlink区域内并将DB配置于对应IAB node帧结构的Uplink区域内以实现一个节点同时接收上一级节点和下一级节点发送的数据或一个节点同时向上一级节点和下一级节点发送数据,如图7的Potential config2所示情形。
由于对上一级节点和下一级节点的发送定时存在偏差则两个发射操作不能同时进行,IAB node还可以为IAB node2配置下行backhaul在IAB node帧结构的下行区域同时将上行backhaul也配置在IAB node帧结构的下行区域,实现同一个节点同时接收上一级节点和下一级节点发送的数据。图8是根据本公开实施例的Potential config of IAB node的示意图二。
上述用于帧结构配置的公共帧结构参数和第一专用帧结构参数不会出现传输方向的不一致性,例如在公共帧结构参数中配置为下行的区域在第一专用帧结构参数中不能配置为上行,同样在公共帧结构参数中配置为上行的区域在第一专用帧结构参数中不能配置为下行。
实施例3
在本实施例中不引入新的帧结构信令,利用现有的信令进行上下行公共和专用配置(帧结构配置),本实施例拓扑如图1所示,包含Parent Node,IAB Node和Child Node,Parent Node是IAB Node的Parent Node。IAB Node通过无线链路与Parent Node传输backhaul链路数据,Child Node是IAB Node的下级链路,IAB Node通过无线链路向Child Node链路传输backhaul数据或access链路数据,究竟是access链路还是backhaul链路取决于Child Node类型,如果是IAB节点同时接收Parent Node和Child Node的发送数据。
如图6所示,Donor node和各级IAB node网络中的维护一个共同的绝对定时时刻(误差范围内),这种统一定时可通过OTA或GPS等机制实现。若这些节点向Child Node发送数据,则要以这种定时时刻为参照点进行数据发送,这一参照点称为下行发送时刻。
Parent node配置公共帧结构参数,Parent node向IAB node配置第一专用帧结构参数,Parent node向IAB node第二专用帧结构参数。公共帧结构参数对所服务的节点都是相同的配置,第一专用帧结构参数指示了额外的帧结构,指示这些位置用于上行传输或下行接收。对一个节点而言其帧结构的上下行基本配置情况根据公共帧结构参数和第一专用帧结构参数配置,对IAB而言其专用于backhaul链路传输的资源通过第二专用帧结构参数和所述公共帧结构参数和或第一专用帧结构参数组合确定其最终的配置。
配置的公共帧结构参数包括:配置的周期和类型;其中,周期为时隙持续时间的整数倍,类型包括UL,DL和Flexible,持续时间为若干个OFDM符号对应的时间或时隙持续时间的整数倍。公共帧结构参数通过广播传输通知覆盖下的终端的IAB node,优先以SIB的形式承载。或者公共帧结构参数通过约定的方式进行上下行的划分,例如约定一种最基础的上下行配置为一个周期为P_ul_dl_default的上下行配置,在偶数帧开始的前nSlot_DL个slot为downlink,在其中周期P_ul_dl_default优选为无线帧的整数倍,优选的周期为20ms,40ms和80ms,周期P_ul_dl_default内最后 nSlot_UL个时隙为uplink,其余位置为Flexible,即此时当前节点不能对Flexible所指示的位置有任何假设,根据后续的进一步的半静态配置确定其传输方向,或者这些位置为保留资源即这些资源最终不能有任何收发操作的假设。
此外,约定的时隙个数可以与具体的numerology建立关系,例如系统的参考numerology为uRef,当前的numerology为uAct,则实际用于上行和下行传输的时隙数调整为nSlot*2^(uAct-uRef)。
配置的第一专用帧结构参数包括:配置的周期和类型;其中,周期为时隙持续时间的整数倍,类型包括UL,DL和Flexible,持续时间为若干个OFDM符号对应的时间或时隙持续时间的整数倍。第一专用帧结构参数通过高层信令传输,IAB node为所服务的下一级IAB node或终端配置各自的第一专用配置参数,实际过程中可以省略第一专用帧结构参数,此时IAB node和终端仅基于公共帧结构参数理解上下行的划分。若也缺失公共帧结构参数则按照上述默认的方式理解上下行的划分情况。
配置的第二专用帧结构参数包括:配置的周期和类型;其中,周期为时隙持续时间的整数倍,类型包括UL,DL和Flexible,持续时间为若干个OFDM符号对应的时间或时隙持续时间的整数倍。第二专用帧结构参数通过专用信令进行配置,用于为IAB配置专用于backhaul的收发传输。
进一步,第二专用帧结构参数的配置的类型可以限定为downlink backhaul,Flexible和uplink backhaul。且第二专用配置(第二专用帧结构参数)的传输方向可以改写公共和第一专用配置(公共帧结构参数和第一专用帧结构参数)的传输方向。以确定IAB node的最终帧结构。
IAB node获取Parent node配置的公共帧结构参数和第一专用帧结构参数,IAB node获知帧结构的上下行划分情况;IAB节点获取Parent node配置的第二专用帧结构参数;IAB node根据帧结构参数的组合获知用于access链路的上行/下行传输区域,用于backhaul链路的上行/下行传输区域,用于backhaul/access链路复用的上行/下行传输区域,Flexible区域。
其中,帧结构参数的组合包括至少以下之一:公共帧结构参数和第一专用帧结构参数;公共帧结构参数,第一专用帧结构参数和第二专用帧结构参数;公共帧结构参数和第二专用帧结构参数。
IAB node获知在这些上下行划分中哪些用于backhaul链路的上行传输,哪些用于backhaul链路的下行接收即IAB node进行backhaul链路的数据收发根据帧结构参数的组合含义所指示的位置发送和接收backhual数据,在access区域IAB node自主调度其下行节点。这里的帧结构参数组合针对IAB node,对于普通的NR终端则还按照原有的方式理解帧结构配置。
可选地,如果Parent node是Donor node,则其为子节点配置的第一帧结构参数的上下行区间可以扩展至Flexible区间范围,对于不是Donor node的Parent node来说,其为下一级节点进行帧结构配置时,上下行的传输应当遵照自身的上下行传输方向,即为下一级节点进行上下行配置的时候不能出现与自身传输方向相反的配置,例如当前节点的UL/F区域不能为下一级节点配置为DL,当前节点的DL/F区域不能配置为UL。
图9是根据本公开实施例的不同帧结构参数的组合示意图一,如图9所示,这种配置组合Parent node为IAB node配置了公共帧结构参数和第一专用帧结构参数,公共帧结构参数配置为Flexible的区域被第一帧结构再次配置为DL/UL/F/-,其中“-”表示没有为对应的区域进行额外的配置。
当交叠区域被配置为Flexible的区域通过第一专用帧结构配置参数再次配配置为DL,则IAB node理解这一被重复定义的交叠区域为backhaul link和access link的复用的接收区域,即这一区域可以进行backhaul link的接收或access link的接收,或者同时进行两条link的接收操作。
当交叠区域被配置为Flexible的区域通过第一专用帧结构参数再次配配置为UL,则IAB node理解这一被重复定义的交叠区域为backhaul link和access link的复用的接收区域,即这一区域可以进行backhaul link的上行发射或access link的下行发射,或者同时进行两条link的发射操作,由 于发射定时限制,backhaul link的上行发射和access link的下行发射可能不能保证同时发射,这里的同时发射需满足定时条件:backhaul link的上行发射和access link的下行发射时隙对齐,或者backhaul link的上行发射和access link的下行发射时隙不对齐,但两个链路相差一个或若干个OFDM符号的持续时间。
当交叠区域被配置为Flexible的区域通过第一专用帧结构参数再次配配置为Flexible/-,则IAB node理解这一区域为对当前节点不可知,当前节点不能假设这一区域究竟是用于发射或是用于接收。
当交叠区域被配置为DL的区域且第一专用帧结构参数没有进行额外配置,则IAB node理解这一区域专用于IAB node的backhaul link的下行接收区域。
当交叠区域被配置为UL的区域且第一专用帧结构参数没有进行额外配置,则IAB node理解这一区域专用于IAB node的backhaul link的上行发射区域。
上述不同的帧结构参数的组合还可以应用于一个时间单元内包含多种传输方向的情况,当一个时间单元的不同区域通过约定或公共帧结构参数指示了上行和或下行和或Flexible,第一专用帧结构参数在相同的时间单元或不同的时间单元指示了上行和或下行和或Flexible,这出现交叠的区域分别采用上述的描述规则应用于对应的区域。
其中,时间单元是以下至少之一:一个无线帧的持续时间;一个无线帧持续时间的整数倍;一个时隙的持续时间;一个时隙持续时间的若干倍;若干符号的持续时间,符号个数优选取值为2,4,6,7;一个无线帧持续时间的若干等分时间。
图10是根据本公开实施例的不同帧结构参数的组合示意图二,如图10所示,相对于上一方案,这里的第一专用帧结构参数的配置对DL/UL的方向进行了再次定义。
当交叠区域被公共帧结构参数或约定的公共帧参数配置为DL的区域 并通过第一专用帧结构参数再次配配置为DL,则IAB node理解这一被重复定义的交叠区域为backhaul link接收区域,即这一区域可以进行backhaul link的接收。
当交叠区域被配置为公共帧结构参数或约定的公共帧参数配置为DL的区域但第一专用帧结构配置参数没有再次指示,则IAB node理解这一区域为access link的downlink的传输,即这一区域IAB节点进行向下一级节点的数据发送。
当交叠区域被公共帧结构参数或约定的公共帧参数配置为UL的区域并通过第一专用帧结构配置参数再次配配置为UL,则IAB node理解这一被重复定义的交叠区域为backhaul link发送区域,即这一区域可以进行backhaul link的数据发送。
当交叠区域被配置为公共帧结构参数或约定的公共帧参数配置为UL的区域但第一专用帧结构配置参数没有再次指示,则IAB node理解这一区域为access link的uplink的传输,即这一区域IAB节点从下一级节点接收数据。
当交叠区域被配置为公共帧结构参数或约定的公共帧参数配置为F的区域但第一专用帧结构参数没有再次指示或者第一专用帧结构参数再次指示为F,则IAB node理解这一区域为reserved区域,即IAB节点不能假设可以在这一区域进行发送或接收数据。
IAB node根据Parent node的以上帧结构配置确定以下至少之一:(1)在一个周期内最终用于上下行的传输时间单元;(2)在一个周期内最终用于backhaul上行传输的传输时间单元;(3)在一个周期内最终用于backhaul下行接收的传输时间单元;(4)在一个周期内最终用于本节点调度上行时间单元的潜在位置,例如第一专用帧结构参数定义为UL,但第二专用帧结构参数没有额外定义的时间单元;而本节点调度下行时间单元的潜在位置为第一专用帧结构参数定义为DL,但第二专用帧结构参数没有额外定义的时间单元,如图10中的final understanding(最终理解)所示情形;(5) 在一个周期内最终用于本节点接收backhaul downlink和或access uplink的时间单元潜在位置,例如第一专用帧结构参数定义为F,但第二专用帧结构参数额外定义为DL的时间单元;(6)在一个周期内最终用于本节点发送backhaul uplink和或access downlink的时间单元潜在位置,例如第一专用帧结构参数定义为F,但第二专用帧结构参数额外定义为UL的时间单元。所述时间单元为若干时隙或若干OFDM符号持续时间,或整数时隙加若干OFDM符号的持续时间。
实施例4
本实施例拓扑如图1所示,包含Parent Node,IAB Node和Child Node,Parent Node是IAB Node的Parent Node。IAB Node通过无线链路与Parent Node传输backhaul链路数据,Child Node是IAB Node的下级链路,IAB Node通过无线链路向Child Node链路传输backhaul数据或access链路数据,究竟是access链路还是backhaul链路取决于Child Node类型,如果是IAB节点同时接收Parent Node和Child Node的发送数据。
如图6所示Donor node和各级IAB node网络中的维护一个共同的绝对定时时刻(误差范围内),这种统一定时可通过OTA或GPS等机制实现。若这些节点向Child Node发送数据,则要以这种定时时刻为参照点进行数据发送,这一参照点称为下行发送时刻。
上一级节点为下一级节点配置用于backhaul link发送和接收的时域单元,上一级节点可以是donor node或IAB,下一级节点是IAB node。本实施例中上一级节点记为father node,下一级节点记为IAB node,IAB node的下一级节点记为child node。
IAB node测量father node发送信号的接收功率,IAB node测量child node发送的接收信号功率。
IAB node测量的由father node发送的信号包括以下至少之一:SSB,同步广播块;CSI-RS,用于信道测量的导频;PTRS,用于相位跟踪的RS; PDCCH,物理控制信道;PDSCH,物理共享信道;PDCCH DMRS,用于解调控制信道的DMRS(DeModulation Reference Signal,解调参考信号);PBCH DMRS,用于解调物理广播信道的DMRS;PDSCH DMRS,用于解调物理共享信道的DMRS。其中,IAB node测量的由child node发送的信号包括以下至少之一:PUCCH;PUSCH;PUSCH DMRS;PUCCH DMRS。
上述father node和child node发送的信道或导频在后续描述中没有特别说明,均统一称之为信号或信道。
IAB node测量father node发送的信号或信道的接收功率,IAB node测量child node发送的信号或信道的接收功率。IAB node计算这两者的功率差,这一功率差记为power-offset。
或者,IAB node测量child node发送的信号或信道的接收功率,IAB node将这一功率记为received-power-expected。
进一步,IAB node测量father node发送的信号或信道,测量路损,记为PL_downlink。IAB节点计算father node的期望发射功率为tx-power-expected=received-power-expected+PL_downlink。
对于TDD系统,IAB node配置收到下列参数中的两个:第一帧结构参数;第二帧结构参数;第三帧结构参数。
第一帧结构参数可以是Parent node通过广播(如SIB)为其配置的公共帧结构参数,或者约定的公共帧结构参数;第二帧结构参数为Parent node通过专有信令(RRC signaling)为其配置的专用帧结构参数;第三帧结构参数为通过专用信令如(RRC signaling)通知的专用帧结构参数,这一信令专用于通知用于backhaul link的时域资源划分情况。
若第一帧结构参数是通过Parent node向IAB node配置的,则公共帧结构参数对所服务的节点都是相同的配置,第二帧结构参数指示了额外的帧结构,与第一帧结构参数一同指示用于上行传输或下行接收操作的区域。对IAB而言其用于backhaul link的传输资源通过第三帧结构参数与第一帧结构参数和/或第二帧结构参数组合结果确认最终的传输资源。
第三帧结构参数可采用bit-map(位图)的形式进行通知,如图11所示,图11是根据本公开实施例的采用bit-map的形式进行通知第三帧结构参数的示意图,下行接收和上行发送分别对应一个bit-map,对于backhaul下行接收的配置信令为对应一个字段bit-map-backhaul-RX其中的比特数对于TDD系统为一个上下行配置中的时隙数目,对于FDD(Frequency Division Duplexing,频分双工)系统来说如果没有进行RRC(Radio Resource Control,无线资源控制)信令的更新则IAB以当前的配置时隙数量为周期应用于后续的时隙。置位为1所对应的时隙对应于backhaul RX,上行backhaul发射对应的配置信令对应一个字段bit-map-backhaul-TX,其中的比特数为一个上下行配置中的时隙数目,对于TDD系统为一个上下行配置中的时隙数目,对于FDD系统来说如果没有进行RRC信令的更新则IAB以当前的配置时隙数量为周期应用于后续的时隙。
对于IAB node,在接收到关于IAB节点的backhaul RX(downlink link backhaul,DB)和UB TX(uplink backhaul,UB),IAB node将前述计算的功率偏差在backhaul链路所对应的时间单元进行上报。Parent node接收到IAB node上报的内容进行功率调整的通知。
对于接收到功率上报的上一级节点parent node来说,parent node可以按照IAB node上报的功率期望进行调整或parent node按照自身的调度情况忽略IAB node上报的功率信息,或者parent node按照IAB node的上报进行功率调整,并且功率的调整方案以信令的方式同时IAB node。
功率调整的一种方式,IAB node会假设parent node会按照IAB node所上报的功率期望进行功率调整,IAB node不会向IAB node发送确认消息。IAB node的在发送期望功率之后测量DB链路上的功率,当IAB node测量到DB链路上的功率与其所上报的功率期望一致时则进行DB和UA(uplink access)的链路复用,其中UA是IAB node自身节点所服务的下一级终端类型的节点对应的上行发射链路,对应IAB node的接收操作。或者是DB和UB(uplink backhaul)的链路复用,其中UB是IAB node所服务的下一级IAB类型的节点对应的上行发射链路,对应IAB node的 接收操作。
功率指示的方式包括,按照一定时间单元为粒度指示DB链路的发射功率值,或者按照一定时间单元为粒度指示DB链路针对IAB node的接收功率,或者按照一定时间单元为粒度指示DB链路发射功率的偏移值。
所述一定的时间单元可以是一个或若干OFDM符号的持续时间,一个或若干个时隙的持续时间,优选的功率调整只是按照一个时隙位置时间单元粒度。
IAB node反馈期望的功率调整值,则parent node确认的功率调整值为对应DB时间单元上的发射功率图案,如图12所示,图12是根据本公开实施例的功率调整示意图。
其中,对于功率调整值,IAB node的反馈机制包括:IAB node反馈期望的功率调整值;IAB node反馈期望的接收功率;IAB node反馈期望的发射功率。
对于功率调整值,若IAB node反馈期望的功率调整偏置值,则parent node按照IAB node反馈的偏置值进行相应的功率调整。例如IAB node反馈的功率偏置期望值按照一定的时间颗粒度反馈为[p-offset1,p-offset2,p-offset3,...,p-offsetN],parent node按照与上报相同的时间颗粒度告知IAB node功率调整值,[p-offset1',p-offset2',p-offset3',...,p-offsetN'],或者parent node按照另一种时间颗粒度告知IAB node功率调整值,或者parent node仅发送一个比特的信息指示是否按照IAB node上报的功率期望偏置进行功率调整,例如“1”表示肯定的响应,即IAB node接收到此消息认为后续的DB链路的接收功率电平为期望的功率水平,“0”表示否定的响应,即IAB node不能假设后续的DB链路的接收功率电平是否为期望的功率水平。
对于功率偏置值,IAB node测量DB的接收功率和下一级节点在UB链路上发射数据的接收功率差值,即为p_offset=p_DB-p_UB。或者为IAB node测量DB的接收功率和下一终端节点在UA链路上发射数据的接收功 率差值,即为p-offset=p-DB-p-UA。
对于期望的接收功率,IAB node上报下行链路的路损PL_downlink,parent node调整功率为:tx_pwr=received-power-expected+PL_downlink。
Parent node将要调整的功率通知IAB node,按照一定的时域域单元为粒度(如图12所描述的情形)通知对应的时域单元的期望接收功率或发射功率,或者对IAB node进行positive或negative的响应,即按照IAB node的request在对应的时间单元调整发射功率为IAB node的期望接收功率。
如果IAB node上报的是期望发射功率,IAB node测量parent node发送的SSB的接收功率,测量DB链路的路损,记为PL_DB,IAB node测量下一级节点向其发送数据的接收功率,接收功率记为p_UA或P_UB,P_UA或P_UB与P_DB的功率偏差为p_offset,推算parent node的期望发射功率为p_tx_expected=p_DB+PL_downlink-p_offset。或者parent node向parent node向IAB node通知下行链路的某个信号或信道的发射功率记为p_tx,IAB根据功率偏置推算parent node的期望发射功率p_tx_expected=p_tx-p_offset。或者IAB node所通知的特定信号或信道的功率与DB链路传输控制和业务信道存在功率偏置,这个功率偏置记为p_offset_diff_signal=p_DL_ref_tx-p_DL_ctrl_tx,或p_offset_diff_signal=p_DL_ref_tx-p_DL_data_tx。
其中p_DL_ref_tx为作为功率调整的信号或信道包括以下:SSB,下行同步信号广播块;PBCH DMRS,物理广播信道的解调参考信号;CSI-RS,信道状态测量信号;PTRS,相位跟踪参考信号。
此时期待的发射功率为p_tx_expected=p_tx-p_offset+p_offset_diff_signal,其中p_offset_diff_signal是测量信号或信道与接收信号或信道的功率偏差,这一功率偏差可以是通过广播或单播或专用于IAB节点间的信令或网管后台配置给IAB node,或者约定两者的功率偏差。
对于TDD系统,IAB node获取Parent node配置的第一帧结构参数, IAB node获知帧结构的上下行划分情况;IAB节点获取Parent node配置的第二帧结构参数,IAB node获知针对IAB node额外的上下行划分。
进一步根据第三帧结构参数最终确定以下至少之一或多个的组合:用于backhaul链路下行接收的时域单元划分;用于backhaul链路上行接收的时域单元换分;用于access链路的下行发射时域单元划分;用于access链路的上行接收时域单元划分;用于backhaul链路的下行数据接收,同时又用于access链路上行数据接收的时域单元划分;不能用于发送或接收的时域单元划分;用于backhaul链路的上行数据发送,同时可用于access链路下行发送的时域单元划分。
可选地,如果Parent node是Donor node,则其为子节点配置的第二帧结构参数的上下行区间可以扩展至第一帧结构参数配置为Flexible的区间,对于不是Donor node的Parent node来说,其为下一级节点进行帧结构配置时,上下行的传输应当遵照自身的上下行传输方向,即为下一级节点进行上下行配置的时候不能出现与自身传输方向相反的配置,例如当前节点的UL/F区域不能为下一级节点配置为DL,当前节点的DL/F区域不能配置为UL。
第一帧结构参数包括:配置的周期和类型,周期为时隙持续时间的整数倍,类型包括UL,DL和Flexible,持续时间为若干个OFDM符号对应的时间或时隙持续时间的整数倍。该第一帧结构参数为:公共帧结构参数,该公共帧结构参数通过广播传输通知覆盖下的终端的IAB node,优先以SIB的形式承载。或者公共帧结构参数通过约定的方式进行上下行的划分,例如约定一种最基础的上下行配置为一个周期为P_ul_dl_default的上下行配置,在偶数帧开始的前nSlot_DL个slot为downlink,在其中周期P_ul_dl_default优选为无线帧的整数倍,优选的周期为20ms,40ms和80ms,周期P_ul_dl_default内最后nSlot_UL个时隙为uplink,其余位置为Flexible,即此时当前节点不能对Flexible所指示的位置有任何假设,根据后续的进一步的半静态配置确定其传输方向,或者这些位置为保留资源即这些资源最终不能有任何收发操作的假设。
进一步约定的时隙个数可以与具体的numerology建立关系,例如系统的参考numerology为uRef,当前的numerology为uAct,则实际用于上行和下行传输的时隙数调整为nSlot*2^(uAct-uRef)。
第二帧结构参数包括:配置的周期和类型,周期为时隙持续时间的整数倍,类型包括UL,DL和Flexible,持续时间为若干个OFDM符号对应的时间或时隙持续时间的整数倍。该第二帧结构参数为第一专用帧结构参数,第一专用帧结构参数通过高层信令传输,IAB node为所服务的下一级IAB node或终端配置各自的第一专用配置参数,实际过程中可以省略第一专用配置参数,此时IAB node和终端仅基于公共帧结构配置参数(公共帧结构参数)理解上下行的划分。若也缺失公共帧结构配置参数则按照上述默认的方式理解上下行的划分情况。
第三帧结构参数包括:配置的周期和类型,周期为时隙持续时间的整数倍,类型包括UL,DL和Flexible,持续时间为若干个OFDM符号对应的时间或时隙持续时间的整数倍。第三帧结构参数为第二专用帧结构参数,可以通过专用信令进行配置,用于为IAB配置专用于backhaul的收发传输。
进一步,第三帧结构配置参数的类型可以限定为downlink backhaul,Flexible和uplink backhaul。且对于IAB node第三帧结构配置参数的传输方向可以改写第一帧结构配置参数和或第二帧结构参数配置的传输方向。以确定IAB node的最终帧结构。
IAB node根据Parent node的以上帧结构配置确定以下至少之一:(1)在一个周期内最终用于上下行的传输时间单元;(2)在一个周期内最终用于backhaul上行传输或backhaul下行接收的传输时间单元;(3)在一个周期内最终用于本节点调度access link上行传输的潜在时间单元,所述access link上行传输是本节点调度其服务的节点(包括普通终端和IAB node)进行上行数据传输的操作,这一操作由上一级节点进行调度控制,如图1中的拓扑,Child node的上行传输由IAB node进行调度。所述access link上行传输的时间单元为上行时间单元内除去用于上行backhaul传输的时间 单元之外的位置;而本节点调度access link下行传输的潜在时间单元为下行时间单元内除去用于backhaul link下行接收的时间单元之外的位置,如图7中的Potential config1 of UE under IAB所示情形;或者,在一个周期内最终用于本节点调度上行时间单元的潜在位置,例如在下行时间单元内用于下行backhaul接收的时间单元部分或整体;而本节点调度下行时间单元的潜在位置为上行时间单元内用于上行backhaul发送的时间单元部分或整体,如图7中的Potential config2 of UE under IAB所示情形。
若IAB node的下级节点仍是IAB node记为IAB node2,则IAB node仍要按照上述过程为其配置第一帧结构参数,第二帧结构参数和第三帧结构参数中的其中一个或多个或者默认的公共帧结构参数。第一帧结构参数为公共的帧结构参数,第二帧结构参数为第一专用的帧结构参数,优选地采用RRC信令传输,第三帧结构参数为第二专用的帧结构参数,优选地采用动态信令进行配置。IAB node在其自身的下行区域内为IAB node2配置DB,IAB node在其自身的上行区域内为IAB node2配置UB,如图7的Potential config1 of IAB2 under IAB所示情形。
进一步,IAB node为IAB node2配置的UB位于IAB node帧结构的Downlink区域内,将DB配置于对应IAB node帧结构的Uplink区域内。这样可以实现一个节点同时接收上一级节点和下一级节点发送的数据和或一个节点同时向上一级节点和下一级节点发送数据,如图7的Potential config2 of IAB2 under IAB所示情形,Potential config2 of IAB2 under IAB与Potential config1 of IAB2 under IAB的区别在于confi2对下一级节点的接收和上一级节点的接收可以同时进行,例如采用FDM(频分复用)或SDM(空分复用)的方式,而config1对下级的发送是在其自身的下行区域选择没有进行backhaul接收的区域配置为下一级节点的下行帧结构。
由于对上一级节点和下一级节点的发送定时存在偏差则两个发射操作不能同时进行,IAB node还可以为IAB node2配置下行backhaul在IAB node帧结构的下行区域同时将上行backhaul也配置在IAB node帧结构的下行区域,实现同一个节点同时接收上一级节点和下一级节点发送的数 据。如图8所示的Potential config3 of IAB node2所示情形。
其中,时间单元为若干时隙或若干OFDM符号持续时间,或整数时隙加若干OFDM符号的持续时间。
当IAB node向parent node发送了期望发射功率,期望功率调整值或期望接收功率,且假设parent node根据IAB node按照parent node进行功率调整或者parent node按照一定的时域粒度通知其发射功率的调整值,或者parent node按照IAB node上报的期望接收功率值按照一定的时间粒度通知针对IAB node的接收功率调整值。IAB node频分(FDM)或空分(SDM)地接收上级节点发送和下行数据和下级节点发送的上行数据,通过复用的方式提升频谱利用率。
对于FDD系统,IAB node配置接收第三帧结构参数。上下行配置相关的参数是针对TDD系统,FDD系统上下行采用单独配置的,对于IAB节点不需要进行上下行的配置,仅需要第三帧结构参数单独指示专用于IAB节点传输backhaul的时间单元。
上述用于帧结构配置的第一帧结构参数和第二帧结构参数不会出现传输方向的不一致性,例如在公共帧结构参数中配置为下行的区域在第二帧结构参数中不能配置为上行,同样在公共帧结构参数中配置为上行的区域在第二帧结构参数中不能配置为下行。
对于IAB node其上下行配置将作为下一级节点配置的依据,如果下一级节点是普通终端,则第三帧结构的配置也不能和前两个帧结构配置产生冲突,如果下一级节点IAB node则第三帧结构的配置可以配置为方向不同的传输方向。例如图7的Potential config2 of IAB2 under IAB所示情形。
实施例5
本实施例拓扑如图1所示,包含Parent Node,IAB Node和Child Node,Parent Node是IAB Node的Parent Node。IAB Node通过无线链路与Parent  Node传输backhaul链路数据,Child Node是IAB Node的下级链路,IAB Node通过无线链路向Child Node链路传输backhaul数据或access链路数据,究竟是access链路还是backhaul链路取决于Child Node类型,如果是IAB节点同时接收Parent Node和Child Node的发送数据。
如图6所示Donor node和各级IAB node网络中的维护一个共同的绝对定时时刻(误差范围内),这种统一定时可通过OTA或GPS等机制实现。若这些节点向Child Node发送数据,则要以这种定时时刻为参照点进行数据发送,这一参照点称为下行发送时刻。
其中,IAB node配置收到下列参数中的两个:第一帧结构参数;第二帧结构参数;第三帧结构参数。
其中,第一帧结构参数可以是Parent node通过广播(如SIB)为其配置的公共帧结构参数,或者约定的公共帧结构参数;第二帧结构参数为Parent node通过专有信令(RRC signaling)为其配置的第一专用帧结构参数;第三帧结构参数为Parent node通过动态信令如DCI2-0动态通知的第二专用帧结构参数。
若第一帧结构参数是通过Parent node向IAB node配置的,则公共帧结构参数对所服务的节点都是相同的配置,第二帧结构参数指示了额外的帧结构,与第一帧结构参数一同指示用于上行传输或下行接收操作的区域。对IAB而言其用于backhaul link和用于access link的传输资源通过第三帧结构参数与第一帧结构参数和或第二帧结构参数组合结果确认最终的传输资源。
IAB node获取Parent node配置的第一帧结构参数,IAB node获知帧结构的上下行划分情况;IAB节点获取Parent node配置的第二帧结构参数,IAB node获知针对IAB node额外的上下行划分。
进一步根据三帧结构参数最终确定以下至少之一或多个的组合:用于backhaul链路下行接收的时域单元划分;用于backhaul链路上行接收的时域单元换分;用于access链路的上行接收时域单元划分;用于access链路 的下行发送接收时域单元划分;用于backhaul链路的下行数据接收,同时可用于access链路上行数据接收的时域单元划分;不能用于发送或接收的时域单元划分;用于backhaul链路的上行数据放松,同时可用于access链路下行发送的时域单元划分。
可选地,如果Parent node是Donor node,则其为子节点配置的第二帧结构参数的上下行区间可以扩展至第一帧结构参数配置为Flexible的区间,对于不是Donor node的Parent node来说,其为下一级节点进行帧结构配置时,上下行的传输应当遵照自身的上下行传输方向,即为下一级节点进行上下行配置的时候不能出现与自身传输方向相反的配置,例如当前节点的UL/F区域不能为下一级节点配置为DL,当前节点的DL/F区域不能配置为UL。
第一帧结构配置参数包括:配置的周期和类型,周期为时隙持续时间的整数倍,类型包括UL,DL和Flexible,持续时间为若干个OFDM符号对应的时间或时隙持续时间的整数倍。公共帧结构配置参数通过广播传输通知覆盖下的终端的IAB node,优先以SIB的形式承载。或者公共帧结构参数通过约定的方式进行上下行的划分,例如约定一种最基础的上下行配置为一个周期为P_ul_dl_default的上下行配置,在偶数帧开始的前nSlot_DL个slot为downlink,在其中周期P_ul_dl_default优选为无线帧的整数倍,优选的周期为20ms,40ms和80ms,周期P_ul_dl_default内最后nSlot_UL个时隙为uplink,其余位置为Flexible,即此时当前节点不能对Flexible所指示的位置有任何假设,根据后续的进一步的半静态配置确定其传输方向,或者这些位置为保留资源即这些资源最终不能有任何收发操作的假设。
进一步约定的时隙个数可以与具体的numerology建立关系,例如系统的参考numerology为uRef,当前的numerology为uAct,则实际用于上行和下行传输的时隙数调整为nSlot*2^(uAct-uRef)。
第一帧结构参数包括:配置的周期和类型,周期为时隙持续时间的整数倍,类型包括UL,DL和Flexible,持续时间为若干个OFDM符号对应 的时间或时隙持续时间的整数倍。第一专用帧结构参数通过高层信令传输,IAB node为所服务的下一级IAB node或终端配置各自的第一专用配置参数,实际过程中可以省略第一专用配置参数,此时IAB node和终端仅基于公共帧结构配置参数理解上下行的划分。若也缺失公共帧结构配置参数则按照上述默认的方式理解上下行的划分情况。
第二帧结构配置参数包括:配置的周期和类型,周期为时隙持续时间的整数倍,类型包括UL,DL和Flexible,持续时间为若干个OFDM符号对应的时间或时隙持续时间的整数倍。第二帧结构通过专用信令进行配置,用于为IAB配置专用于backhaul的收发传输。
进一步,第三帧结构配置参数的类型可以限定为downlink backhaul,Flexible和uplink backhaul。且对于IAB node,第三帧结构配置参数的传输方向可以改写第一帧结构配置参数和或第二帧结构参数配置的传输方向。以确定IAB node的最终帧结构。
IAB node根据Parent node的以上帧结构配置确定以下至少之一:(1)在一个周期内最终用于上下行的传输时间单元;(2)在一个周期内最终用于backhaul上行传输或backhaul下行接收的传输时间单元;(3)在一个周期内最终用于本节点调度access link上行传输的潜在时间单元,所述access link上行传输是本节点调度其服务的节点(包括普通终端和IAB node)进行上行数据传输的操作,这一操作由上一级节点进行调度控制,如图1中的拓扑,Child node的上行传输由IAB node进行调度。所述access link上行传输的时间单元为上行时间单元内除去用于上行backhaul传输的时间单元之外的位置;而本节点调度access link下行传输的潜在时间单元为下行时间单元内除去用于backhaul link下行接收的时间单元之外的位置,如图7中的Potential config1 of UE under IAB所示情形;或者,在一个周期内最终用于本节点调度上行时间单元的潜在位置,为例如在下行时间单元内用于下行backhaul接收的时间单元部分或整体;而本节点调度下行时间单元的潜在位置为上行时间单元内用于上行backhaul发送的时间单元部分或整体,如图7中的Potential config2 of UE under IAB所示情形。
若IAB node的下级节点仍是IAB node记为IAB node2,则IAB node仍要按照上述过程为其配置第一帧结构参数,第二帧结构参数和第三帧结构参数中的其中一个或多个或者默认的公共帧结构参数。第一帧结构参数为公共的帧结构参数,第二帧结构参数为专用的帧结构参数,优选地采用RRC信令传输,第三帧结构参数为专用的帧结构参数,优选地采用动态信令进行配置。IAB node在其自身的下行区域内为IAB node2配置DB,IAB node在其自身的上行区域内为IAB node2配置UB,如图7的Potential config1 of IAB2 under IAB所示情形。
进一步,IAB node为IAB node2配置的UB位于IAB node帧结构的Downlink区域内,将DB配置于对应IAB node帧结构的Uplink区域内。这样可以实现一个节点同时接收上一级节点和下一级节点发送的数据和或一个节点同时向上一级节点和下一级节点发送数据,如图7的Potential config2 of IAB2 under IAB所示情形,Potential config2 of IAB2 under IAB与Potential config1 of IAB2 under IAB的区别在于confi2对下一级节点的接收和上一级节点的接收可以同时进行,例如采用FDM(频分复用)或SDM(空分复用)的方式,而config1对下级的发送是在其自身的下行区域选择没有进行backhaul接收的区域配置为下一级节点的下行帧结构。
由于对上一级节点和下一级节点的发送定时存在偏差则两个发射操作不能同时进行,IAB node还可以为IAB node2配置下行backhaul在IAB node帧结构的下行区域同时将上行backhaul也配置在IAB node帧结构的下行区域,实现同一个节点同时接收上一级节点和下一级节点发送的数据。如图8所示,Potential config3 of IAB node2所示情形。
其中,时间单元为若干时隙或若干OFDM符号持续时间,或整数时隙加若干OFDM符号的持续时间。
上述用于帧结构配置的第一帧结构参数和第二帧结构参数不会出现传输方向的不一致性,例如在公共帧结构参数中配置为下行的区域在第二帧结构参数中不能配置为上行,同样在公共帧结构参数中配置为上行的区域在第二帧结构参数中不能配置为下行。
对于IAB node其上下行配置将作为下一级节点配置的依据,如果下一级节点是普通终端,则第三帧结构的配置也不能和前两个帧结构配置产生冲突,如果下一级节点IAB node则第三帧结构的配置可以配置为方向不同的传输方向。如图7所示的Potential config2 of IAB2 under IAB所示情形。
实施例6
在本实施例中还提供了一种帧结构的配置装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图13是根据本公开实施例的帧结构的配置装置的结构示意图,该装置应用于第一节点侧,如图13所示,该装置包括接收模块1302和处理模块1304。接收模块1302构造为接收第二节点配置的帧结构参数,其中,帧结构参数包括:帧结构的周期和类型;帧结构参数包括:公共帧结构参数、第一专用帧结构参数、第二专用帧结构参数;处理模块1304与接收模块1302耦合连接且构造为根据公共帧结构参数和/或第一专用帧结构参数获取帧结构的上行/下行划分情况,以及根据第二专用帧结构参数确定用于backhaul链路上行传输的帧结构和用于backhaul链路下行传输的帧结构。
需要说明的是,帧结构的周期为时隙持续时间的整数倍;帧结构的类型包括:上行UL帧结构、下行DL帧结构、可变Flexible帧结构。其中,第二专用帧结构参数中的帧结构的类型包括以下至少之一:上行backhaul帧结构、下行backhaul帧结构。
可选地,在第一节点的下一级节点为与所述第一节点同类型的传输节点而非终端的情况下,第二专用帧结构参数的传输方向可用于改写公共帧 结构参数和第一专用帧结构参数的传输方向。
本实施例的装置还可以包括确定模块。该确定模块构造为根据帧结构参数的组合确定以下至少之一:在一个周期内最终用于上/下行的传输时间单元;在一个周期内最终用于backhaul上行传输或backhaul下行接收的传输时间单元;在一个周期内最终用于本节点调度上行时间单元的潜在位置,或在一个周期内最终用于本节点调度下行时间单元的潜在位置;帧结构参数的组合包括:公共帧结构参数、第一专用帧结构参数和第二专用帧结构参数;公共帧结构参数和第二专用帧结构参数;第一专用帧结构参数和第二专用帧结构参数。
需要说明的是,在第一节点的下一级节点为与第一节点同类型的传输节点而非用户终端,且第一节点与下一级传输节点的backhaul资源重合或部分交叠的情况下,第一节点与下一级传输节点的收发状态相反;其中,收发状态相反是指:在第一节点在backhaul资源执行接收操作时下一级传输节点在重合或部分交叠的区域执行发送操作。
在第一节点的下一级节点为与第一节点同类型的传输节点而非用户终端,且第一节点与下一级传输节点的backhaul资源不重合的情况下,第一节点与下一级传输节点的收发状态相反或相同。
可选地,公共帧结构参数为双周期或单周期。
可选地,装置通过以下至少的方式配置帧结构:根据公共帧结构参数和/或第一专用帧结构参数和/或第二专用帧结构参数自主配置下一级节点的帧结构;根据第一专用帧结构参数和/或动态帧结构参数自主配置下一级节点的帧结构,其中,动态帧结构参数通过PDCCH配置;根据公共帧结构参数、第一专用帧结构参数和动态帧结构参数配置帧结构;根据所述公共帧结构参数和/或第一专用帧结构参数和/或动态帧结构参数自主配置下一级节点的帧结构,其中,所述动态帧结构参数通过PDCCH配置。
需要说明的是,配置的帧结构包括:上行UL帧结构、下行DL帧结构,可变帧结构、backhaul UL帧结构、backhaul DL帧结构、backhaul  multiplexing帧结构。
需要说明的是,本实施例的上述方式是从第一节点侧进行说明的,而本实施例从第二节点侧进行说明,本实施例还提供了一种帧结构的配置装置,该装置应用于第二节点侧,包括:配置模块,构造为向第一配置帧结构参数,其中,帧结构参数包括:帧结构的周期和类型;帧结构参数包括:公共帧结构参数、第一专用帧结构参数、第二专用帧结构参数。
其中,公共帧结构参数和第一专用帧结构参数用于获取帧结构的上行/下行划分情况,以及第二专用帧结构参数用于确定用于backhaul链路上行传输的帧结构和用于backhaul链路下行传输的帧结构。
其中,帧结构的周期为时隙持续时间的整数倍;帧结构的类型包括:上行UL帧结构、下行DL帧结构、可变Flexible帧结构。以及第二专用帧结构参数中的帧结构的类型包括以下至少之一:上行backhaul帧结构、下行backhaul帧结构。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本公开的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序S1和S2。
S1,第一节点接收第二节点配置的帧结构参数,其中,帧结构参数包括:帧结构的周期和类型;帧结构参数包括:公共帧结构参数、第一专用帧结构参数、第二专用帧结构参数。
S2,第一节点根据公共帧结构参数和/或第一专用帧结构参数获取帧结构的上行/下行划分情况,以及根据第二专用帧结构参数确定用于 backhaul链路上行传输的帧结构和用于backhaul链路下行传输的帧结构。
本公开的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序S1。
S1,第二节点向第一节点配置帧结构参数,其中,帧结构参数包括:帧结构的周期和类型;帧结构参数包括:公共帧结构参数、第一专用帧结构参数、第二专用帧结构参数。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于 本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (26)

  1. 一种帧结构的配置方法,包括:
    第一节点接收第二节点配置的帧结构参数,其中,所述帧结构参数包括:帧结构的周期和类型;所述帧结构参数包括以下至少之一:公共帧结构参数、第一专用帧结构参数、第二专用帧结构参数;
    所述第一节点根据所述公共帧结构参数和/或第一专用帧结构参数获取帧结构的上行/下行划分情况,以及根据所述第二专用帧结构参数确定用于回程backhaul链路上行传输的帧结构和用于backhaul链路下行传输的帧结构。
  2. 根据权利要求1所述的方法,其中,所述帧结构的周期为时隙持续时间的整数倍;所述帧结构的类型包括:上行UL帧结构、下行DL帧结构、可变Flexible帧结构。
  3. 根据权利要求2所述的方法,其中,所述第二专用帧结构参数中的帧结构的类型包括以下至少之一:上行backhaul帧结构、下行backhaul帧结构。
  4. 根据权利要求3所述的方法,其中,所述帧结构参数还包括传输方向,并且其中,在所述第一节点的下一级节点为与所述第一节点同类型的传输节点而非终端的情况下,所述第二专用帧结构参数的传输方向用于改写所述公共帧结构参数和第一专用帧结构参数的传输方向。
  5. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述第一节点根据所述帧结构参数的组合确定以下至少之一:
    在一个周期内最终用于上/下行的传输时间单元;
    在一个周期内最终用于backhaul上行传输或backhaul下行接收的传输时间单元;
    在一个周期内最终用于本节点调度上行时间单元的潜在位置,或在一个周期内最终用于本节点调度下行时间单元的潜在位置;
    其中,所述帧结构参数的组合包括:所述公共帧结构参数、所述第一专用帧结构参数和所述第二专用帧结构参数;所述公共帧结构参数和所述第二专用帧结构参数;所述第一专用帧结构参数和第二专用帧结构参数。
  6. 根据权利要求1所述的方法,其中,
    在所述第一节点的下一级节点为与所述第一节点同类型的传输节点而非用户终端,且所述第一节点与下一级传输节点的backhaul资源重合或部分交叠的情况下,所述第一节点与下一级传输节点的收发状态相反;其中,所述收发状态相反是指:在所述第一节点在backhaul资源执行接收操作时下一级传输节点在重合或部分交叠的区域执行发送操作;
    在所述第一节点的下一级节点为与所述第一节点同类型的传输节点而非用户终端,且所述第一节点与下一级传输节点的backhaul资源不重合的情况下,所述第一节点与下一级传输节点的收发状态相反或相同;
    在所述第一节点的下一级节点为用户终端的情况下,为所述用户终端配置的帧结构与所述第一节点的上行/下行划分情况一致。
  7. 根据权利要求1所述的方法,其中,
    所述第二专用帧结构参数由公共帧结构参数和第一专用帧结构参数的组合形成;和/或,所述第二专用帧结构参数为动态信令;
    其中,所述动态信令为下行链路控制信息DCI所承载的帧结构配置参数。
  8. 根据权利要求1所述的方法,其中,所述第一节点通过以下至少之一的方式配置帧结构:
    所述第一节点根据所述公共帧结构参数和/或所述第一专用帧结构参数和/或所述第二专用帧结构参数自主配置下一级节点的帧结构;
    所述第一节点根据所述第一专用帧结构参数和/或动态帧结构参数自主配置下一级节点的帧结构,其中,所述动态帧结构参数通过物理下行控制信道PDCCH配置;
    所述第一节点根据所述公共帧结构参数、所述第一专用帧结构参数和动态帧结构参数配置帧结构,其中,配置的帧结构包括:上行UL帧结构、下行DL帧结构,可变帧结构、backhaul UL帧结构、backhaul DL帧结构、回程复用backhaul multiplexing帧结构;
    所述第一节点根据所述公共帧结构参数和/或第一专用帧结构参数和/或动态帧结构参数自主配置下一级节点的帧结构,其中,所述动态帧结构参数通过PDCCH配置。
  9. 根据权利要求1所述的方法,其中,
    所述第一节点在对应下行backhaul传输资源上向所述第一节点的上一级节点上报期望的功率调整;
    其中,所述功率调整包括以下之一:对应带宽的接收功率调整值、对应带宽的发射功率调整值、对应带宽的期望接收功率、对应带宽的期待发射功率;其中,所述对应带宽为一个资源块RB的带宽。
  10. 根据权利要求1所述的方法,其中,
    所述第一节点为下一级节点指示用于下行backhaul传输资源上的功率调整;其中,所述功率调整的值包括以下之一:对应带宽的接收功率调整值、对应带宽的发射功率调整值、对应带宽的期望接收功 率、对应带宽的期待发射功率;或者,所述功率调整用于指示所述第一节点向下一级节点指示是否按照所要求的功率调整值进行调整;
    其中,所述对应带宽为一个资源块RB的带宽。
  11. 根据权利要求1所述的方法,还包括,
    所述第一节点收到上一级节点的功率调整指示,根据所述功率调整指示在对应的资源上复用所述第一节点的下一级节点的上行传输;
    所述第一节点接收上一级节点发送的backhaul数据;
    所述第一节点在与下一级节点的backhaul资源重合或部分交叠的区域调度下一级节点的上行backhaul传输。
  12. 一种帧结构的配置方法,包括:
    第二节点向第一节点配置帧结构参数,其中,所述帧结构参数包括:帧结构的周期和类型;所述帧结构参数包括:公共帧结构参数、第一专用帧结构参数、第二专用帧结构参数;
    其中,所述公共帧结构参数和第一专用帧结构参数用于获取帧结构的上行/下行划分情况,以及所述第二专用帧结构参数用于确定用于backhaul链路上行传输的帧结构和用于backhaul链路下行传输的帧结构。
  13. 根据权利要求12所述的方法,其中,所述帧结构的周期为时隙持续时间的整数倍;所述帧结构的类型包括:上行UL帧结构、下行DL帧结构、可变Flexible帧结构。
  14. 根据权利要求13所述的方法,其中,所述第二专用帧结构参数中的帧结构的类型包括以下至少之一:上行backhaul帧结构、下行backhaul帧结构。
  15. 一种帧结构的配置装置,应用于第一节点侧,包括:
    接收模块,构造为接收第二节点配置的帧结构参数,其中,所述帧结构参数包括:帧结构的周期和类型;所述帧结构参数包括:公共帧结构参数、第一专用帧结构参数、第二专用帧结构参数;
    处理模块,构造为根据所述公共帧结构参数和/或第一专用帧结构参数获取帧结构的上行/下行划分情况,以及根据所述第二专用帧结构参数确定用于backhaul链路上行传输的帧结构和用于backhaul链路下行传输的帧结构。
  16. 根据权利要求15所述的装置,其中,所述帧结构的周期为时隙持续时间的整数倍;所述帧结构的类型包括:上行UL帧结构、下行DL帧结构、可变Flexible帧结构。
  17. 根据权利要求16所述的装置,其中,所述第二专用帧结构参数中的帧结构的类型包括以下至少之一:上行backhaul帧结构、下行backhaul帧结构。
  18. 根据权利要求16所述的装置,其中,在所述第一节点的下一级节点为与所述第一节点同类型的传输节点而非终端的情况下,所述第二专用帧结构参数的传输方向用于改写所述公共帧结构参数和第一专用帧结构参数的传输方向。
  19. 根据权利要求15所述的装置,其中,所述装置还包括:
    确定模块,构造为根据所述帧结构参数的组合确定以下至少之一:
    在一个周期内最终用于上/下行的传输时间单元;
    在一个周期内最终用于backhaul上行传输或backhaul下行接收的传输时间单元;
    在一个周期内最终用于本节点调度上行时间单元的潜在位置,或在一个周期内最终用于本节点调度下行时间单元的潜在位置;
    所述帧结构参数的组合包括:所述公共帧结构参数、所述第一专用帧结构参数和所述第二专用帧结构参数;所述公共帧结构参数和所述第二专用帧结构参数;所述第一专用帧结构参数和第二专用帧结构参数。
  20. 根据权利要求15所述的装置,其中,
    在所述第一节点的下一级节点为与所述第一节点同类型的传输节点而非用户终端,且所述第一节点与下一级传输节点的backhaul资源重合或部分交叠的情况下,所述第一节点与下一级传输节点的收发状态相反;其中,所述收发状态相反是指:在所述第一节点在backhaul资源执行接收操作时下一级传输节点在重合或部分交叠的区域执行发送操作;
    在所述第一节点的下一级节点为与所述第一节点同类型的传输节点而非用户终端,且所述第一节点与下一级传输节点的backhaul资源不重合的情况下,所述第一节点与下一级传输节点的收发状态相反或相同。
  21. 根据权利要求15所述的装置,其中,所述装置通过以下至少的方式配置帧结构:
    根据所述公共帧结构参数和/或所述第一专用帧结构参数和/或所述第二专用帧结构参数自主配置下一级节点的帧结构;
    根据所述第一专用帧结构参数和/或动态帧结构参数自主配置下一级节点的帧结构,其中,所述动态帧结构参数通过PDCCH配置;
    根据所述公共帧结构参数、所述第一专用帧结构参数和动态帧结 构参数配置帧结构,其中,配置的帧结构包括:上行UL帧结构、下行DL帧结构,可变帧结构、backhaul UL帧结构、backhaul DL帧结构、backhaul multiplexing帧结构;
    根据所述公共帧结构参数和/或第一专用帧结构参数和/或动态帧结构参数自主配置下一级节点的帧结构,其中,所述动态帧结构参数通过PDCCH配置。
  22. 一种帧结构的配置装置,应用于第二节点侧,所述装置包括:
    配置模块,构造为向第一节点配置帧结构参数,其中,所述帧结构参数包括:帧结构的周期和类型;所述帧结构参数包括:公共帧结构参数、第一专用帧结构参数、第二专用帧结构参数;
    其中,所述公共帧结构参数和第一专用帧结构参数用于获取帧结构的上行/下行划分情况,以及所述第二专用帧结构参数用于确定用于backhaul链路上行传输的帧结构和用于backhaul链路下行传输的帧结构。
  23. 根据权利要求22所述的装置,其中,所述帧结构的周期为时隙持续时间的整数倍;所述帧结构的类型包括:上行UL帧结构、下行DL帧结构、可变Flexible帧结构。
  24. 根据权利要求23所述的装置,其中,所述第二专用帧结构参数中的帧结构的类型包括以下至少之一:上行backhaul帧结构、下行backhaul帧结构。
  25. 一种存储介质,其中,所述存储介质中存储有计算机程序,所述计算机程序被设置为运行时执行所述权利要求1至11任一项中所述的方法。
  26. 一种存储介质,其中,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求12至14任 一项中所述的方法。
PCT/CN2019/107768 2018-09-27 2019-09-25 帧结构的配置方法及装置、存储介质 WO2020063651A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217012714A KR20210065169A (ko) 2018-09-27 2019-09-25 프레임 구조의 구성 방법 및 장치
JP2021517332A JP7444865B2 (ja) 2018-09-27 2019-09-25 フレーム構成の設定方法と装置、記憶媒体
EP19865823.9A EP3860264A4 (en) 2018-09-27 2019-09-25 CONFIGURATION PROCEDURE AND DEVICE FOR A FRAMEWORK STRUCTURE AND STORAGE MEDIUM
US17/281,079 US20210345324A1 (en) 2018-09-27 2019-09-25 Configuration Method and Apparatus for Frame Structure, and Storage Medium
CA3114643A CA3114643A1 (en) 2018-09-27 2019-09-25 Configuration method and apparatus for frame structure, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811133663.5 2018-09-27
CN201811133663.5A CN110958697B (zh) 2018-09-27 2018-09-27 帧结构的配置方法及装置、存储介质

Publications (1)

Publication Number Publication Date
WO2020063651A1 true WO2020063651A1 (zh) 2020-04-02

Family

ID=69951206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107768 WO2020063651A1 (zh) 2018-09-27 2019-09-25 帧结构的配置方法及装置、存储介质

Country Status (7)

Country Link
US (1) US20210345324A1 (zh)
EP (1) EP3860264A4 (zh)
JP (1) JP7444865B2 (zh)
KR (1) KR20210065169A (zh)
CN (1) CN110958697B (zh)
CA (1) CA3114643A1 (zh)
WO (1) WO2020063651A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7027293B2 (ja) * 2018-10-29 2022-03-01 本田技研工業株式会社 通信システム、通信方法、及びプログラム
US11770875B2 (en) * 2019-10-03 2023-09-26 Qualcomm Incorporated Integrated access and backhaul (IAB) timing handling for positioning
US20220132508A1 (en) * 2020-10-23 2022-04-28 At&T Intellectual Property I, L.P. Resource coordination for multiple parent integrated access and backhaul

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018026665A1 (en) * 2016-08-02 2018-02-08 Qualcomm Incorporated Methods and apparatuses for operation of a user equipment in c-drx mode with token bucket based access

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023671B (zh) * 2016-11-04 2022-03-29 中兴通讯股份有限公司 一种数据传输方法、基站、用户设备及系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018026665A1 (en) * 2016-08-02 2018-02-08 Qualcomm Incorporated Methods and apparatuses for operation of a user equipment in c-drx mode with token bucket based access

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CMCC: "Discussion on Backhaul Signaling Exchange for NR Frame Structure", R3-180327, 3GPP TSG-RAN WG3 NR ADHOC 1801, 26 January 2018 (2018-01-26), pages 1 - 3, XP051387543 *
See also references of EP3860264A4 *
ZTE: "Discussion on IAB node resource allocation", R2-1807402, 3GPP TSG-RAN WG2 MEETING #102, 25 May 2018 (2018-05-25), XP051443799 *
ZTE: "Overview of physical layer enhancements for IAB", R1-1806024, 3GPP TSG RAN WG1 MEETING #93, 25 May 2018 (2018-05-25), pages 1 - 9, XP051441242 *

Also Published As

Publication number Publication date
EP3860264A4 (en) 2021-12-22
KR20210065169A (ko) 2021-06-03
EP3860264A1 (en) 2021-08-04
JP2022502936A (ja) 2022-01-11
CN110958697A (zh) 2020-04-03
CN110958697B (zh) 2023-07-18
US20210345324A1 (en) 2021-11-04
JP7444865B2 (ja) 2024-03-06
CA3114643A1 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
JP6863472B2 (ja) ユーザ機器、基地局、ユーザ機器の方法、及び基地局の方法
US11363669B2 (en) Conditional release of soft resources in an integrated access and backhaul network
US20220039038A1 (en) Method and apparatus for transmission timing, base station, and computer readable storage medium
CN104205673B (zh) 异构网络中的自适应ul-dl tdd配置
TWI479908B (zh) 無線通訊系統中細胞間干擾協調技術
TW201911896A (zh) 用於頻寬部分管理的技術和裝置
CN103081541B (zh) 去激活的分量载波上的功率控制
CN105122932A (zh) 用于设备到设备通信的方法和装置
US10182445B2 (en) Methods and devices for controlling resource usage
TWI774796B (zh) 用於針對無線網路的資源管理的技術和裝置
CN105075137A (zh) 通信系统
JP7394871B2 (ja) ダウンリンク半永続スケジューリングのためのマルチtrp送信
WO2020063651A1 (zh) 帧结构的配置方法及装置、存储介质
CN108293258A (zh) 用于混合干扰管理的系统和方法
CN104137435A (zh) 在协作多小区无线通信系统中减小小区间干扰的方法及设备
EP3622630B1 (en) Virtualized massive mimo in multi-operator wireless networks
JP2016518063A (ja) マルチリンク接続のサポートにおいてパワーヘッドルームを報告するための方法および装置
US20220104155A1 (en) Iab downlink timing
WO2020139177A1 (en) Iab power control
CN104335653A (zh) 在多小区无线通信系统中共享无线资源信息的方法及其设备
WO2016137384A1 (en) Tdd based prose optimization
EP3262884B1 (en) Tdd based prose optimization
US20240008067A1 (en) Time gaps for artificial intelligence and machine learning models in wireless communication
US20230396347A1 (en) Delay pre-compensation in wireless communication system
WO2024036606A1 (en) Codebook designs with different oversampling factors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021517332

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3114643

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217012714

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019865823

Country of ref document: EP

Effective date: 20210428