WO2020063028A1 - 3d音效处理方法及相关产品 - Google Patents

3d音效处理方法及相关产品 Download PDF

Info

Publication number
WO2020063028A1
WO2020063028A1 PCT/CN2019/095294 CN2019095294W WO2020063028A1 WO 2020063028 A1 WO2020063028 A1 WO 2020063028A1 CN 2019095294 W CN2019095294 W CN 2019095294W WO 2020063028 A1 WO2020063028 A1 WO 2020063028A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
channel data
data
channel
dimensional coordinate
Prior art date
Application number
PCT/CN2019/095294
Other languages
English (en)
French (fr)
Inventor
严锋贵
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2020063028A1 publication Critical patent/WO2020063028A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups

Definitions

  • the present application relates to the field of virtual reality / augmented reality technology, and in particular, to a 3D sound effect processing method and related products.
  • the embodiments of the present application provide a 3D sound effect processing method and related products, which can synthesize 3D sound effects and improve user experience.
  • an embodiment of the present application provides a 3D sound effect processing method, including:
  • an embodiment of the present application provides a 3D sound effect processing apparatus, where the 3D sound effect processing apparatus includes a first obtaining unit, a first determining unit, a second obtaining unit, a third obtaining unit, and a generating unit, where:
  • the first obtaining unit is configured to obtain target attribute information of a target application
  • the first determining unit is configured to determine a target reverberation effect parameter according to the target attribute information
  • the second acquiring unit is configured to acquire a first three-dimensional coordinate of a sound source in the target application and mono data generated by the sound source;
  • the third acquiring unit is configured to acquire a second three-dimensional coordinate of the target object, and the first three-dimensional coordinate and the second three-dimensional coordinate are based on a same coordinate origin;
  • the generating unit is configured to generate target two-channel data according to the first three-dimensional coordinates, the second three-dimensional coordinates, the target reverberation effect parameter, and the mono data.
  • an embodiment of the present application provides an electronic device including a processor, a memory, a communication interface, and one or more programs.
  • the one or more programs are stored in the memory, and are configured by the above.
  • the processor executes the program, and the program includes instructions for executing steps in the first aspect of the embodiment of the present application.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program for electronic data exchange, and the computer program enables a computer to execute a computer program as described in the first embodiment of the present application.
  • an embodiment of the present application provides a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to execute the implementation of the present application.
  • FIG. 1A is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • 1B is a schematic flowchart of a 3D sound effect processing method disclosed in an embodiment of the present application.
  • FIG. 1C is a schematic diagram illustrating a multi-channel dual-channel data division method disclosed in an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of another 3D sound effect processing method disclosed in an embodiment of the present application.
  • 3 is a schematic flowchart of another 3D sound effect processing method disclosed in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another electronic device disclosed in an embodiment of the present application.
  • 5A is a schematic structural diagram of a 3D sound effect processing device disclosed in an embodiment of the present application.
  • FIG. 5B is another schematic structural diagram of a 3D sound effect processing device disclosed in an embodiment of the present application.
  • an embodiment herein means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are they independent or alternative embodiments that are mutually exclusive with other embodiments. It is explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • the electronic devices involved in the embodiments of the present application may include various handheld devices (such as smart phones), vehicle-mounted devices, virtual reality (VR) / augmented reality (AR) devices with wireless communication functions, Wearable devices, computing devices or other processing devices connected to wireless modems, and various forms of user equipment (UE), mobile stations (MS), terminal devices, R & D / test platforms, Server and so on.
  • handheld devices such as smart phones
  • VR virtual reality
  • AR augmented reality
  • UE user equipment
  • MS mobile stations
  • terminal devices R & D / test platforms
  • Server Server
  • the electronic device may use HRTF (Head Related Transfer Function) filter for audio data (sound emitted by a sound source) to obtain virtual surround sound, which is also called Surround sound, or panoramic sound, realizes a three-dimensional stereo effect.
  • HRTF Head Related Transfer Function
  • the corresponding name of HRTF in the time domain is HRIR (Head, Related, Impulse, Response).
  • BRIR Binaural Room Impulse Response
  • the Binaural Room Impulse Response consists of three parts: direct sound, early reflections, and reverberation.
  • FIG. 1A is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the electronic device includes a control circuit and an input-output circuit, and the input-output circuit is connected to the control circuit.
  • the control circuit may include a storage and processing circuit.
  • the storage circuit in the storage and processing circuit may be a memory, such as a hard disk drive memory, a non-volatile memory (such as a flash memory or other electronic programmable read-only memory used to form a solid-state drive, etc.), a volatile memory (such as a static Or dynamic random access memory, etc.), this embodiment is not limited.
  • the processing circuit in the storage and processing circuit can be used to control the operation of the electronic device.
  • the processing circuit can be implemented based on one or more microprocessors, microcontrollers, digital signal processors, baseband processors, power management units, audio codec chips, application specific integrated circuits, display driver integrated circuits, and the like.
  • the storage and processing circuit can be used to run software in an electronic device, such as playing an incoming call alert ringing application, playing a short message alert ringing application, playing an alarm alert ringing application, playing a media file application, Internet protocol voice (voice Over Internet Protocol (VOIP) telephone calling applications, operating system functions, etc.
  • These software can be used to perform some control operations, such as playing the call alert ring, playing the short message alert ring, playing the alarm alert ring, playing media files, making voice phone calls, and other functions in electronic devices.
  • the examples are not limited.
  • the input-output circuit can be used to enable the electronic device to implement data input and output, that is, to allow the electronic device to receive data from an external device and to allow the electronic device to output data from the electronic device to the external device.
  • the input-output circuit may further include a sensor.
  • the sensor may include an ambient light sensor, an infrared proximity sensor based on light and capacitance, an ultrasonic sensor, and a touch sensor (for example, a light touch sensor and / or a capacitive touch sensor, where the touch sensor may be part of a touch display screen, or Can be used independently as a touch sensor structure), acceleration sensor, gravity sensor, and other sensors.
  • the input-output circuit may further include an audio component, and the audio component may be used to provide audio input and output functions for the electronic device.
  • the audio component may also include a tone generator and other components for generating and detecting sound.
  • the input-output circuit may also include one or more display screens.
  • the display screen may include one or a combination of a liquid crystal display, an organic light emitting diode display, an electronic ink display, a plasma display, and a display using other display technologies.
  • the display screen may include a touch sensor array (ie, the display screen may be a touch display screen).
  • the touch sensor can be a capacitive touch sensor formed by a transparent array of touch sensor electrodes (such as indium tin oxide (ITO) electrodes), or it can be a touch sensor formed using other touch technologies, such as sonic touch, pressure-sensitive touch, resistance Touch, optical touch, etc. are not limited in the embodiments of the present application.
  • the input-output circuit may further include a communication circuit that can be used to provide the electronic device with the ability to communicate with external devices.
  • the communication circuit may include analog and digital input-output interface circuits, and wireless communication circuits based on radio frequency signals and / or optical signals.
  • the wireless communication circuit in the communication circuit may include a radio frequency transceiver circuit, a power amplifier circuit, a low noise amplifier, a switch, a filter, and an antenna.
  • the wireless communication circuit in the communication circuit may include a circuit for supporting near field communication (NFC) by transmitting and receiving a near field coupled electromagnetic signal.
  • the communication circuit may include a near field communication antenna and a near field communication transceiver.
  • the communication circuit may also include a cellular phone transceiver and antenna, a wireless local area network transceiver circuit and antenna, and the like.
  • the input-output circuit may further include other input-output units.
  • the input-output unit may include a button, a joystick, a click wheel, a scroll wheel, a touch pad, a keypad, a keyboard, a camera, a light emitting diode, and other status indicators.
  • the electronic device may further include a battery (not shown), and the battery is used to provide power to the electronic device.
  • FIG. 1B is a schematic flowchart of a 3D sound effect processing method disclosed in an embodiment of the present application. The method is applied to the electronic device described in FIG. 1A.
  • the 3D sound effect processing method includes the following steps 101-103.
  • the embodiments of the present application may be applied to a virtual reality / augmented reality scene, or a 3D recording scene.
  • the target attribute parameter is at least one of the following: installation package name, application type, audio stream type, memory size, application developer, etc., which are not limited here.
  • the installation package name may be APK (Android Package) name.
  • the electronic device can read the target attribute information of the target application when the target application is launched.
  • different attribute information may correspond to different reverberation effect parameters
  • the above reverberation effect parameters may include at least one of the following: input level, low-frequency cut-off point, high-frequency cut-off point, early reflection time, diffusion degree, and low-mix ratio , Reverberation time, high-frequency decay point, crossover point, original dry sound volume, early reflected sound volume, reverb volume, sound field width, output sound field, tail sound, etc., are not limited here.
  • step 102 determining the target reverberation effect parameter according to the target attribute information, may be implemented as follows:
  • a target reverberation effect parameter corresponding to the target attribute information is determined according to a mapping relationship between a preset attribute parameter and a reverberation effect parameter.
  • the electronic device may store a mapping relationship between a preset attribute parameter and a reverberation effect parameter in advance, and further determine a target reverberation effect parameter corresponding to the target attribute information according to the mapping relationship.
  • a mapping relationship between attribute parameters and reverberation effect parameters is provided as follows:
  • Attribute parameter Reverb effect parameters Attribute parameter 1 Reverb effect parameter 1 Attribute parameter 2 Reverb effect parameter 2 ... ... Attribute parameter n Reverberation effect parameter n
  • the sound source may be a sounding body in a virtual scene, and the sounding body may be preset by an application developer.
  • an aircraft in a game scene may be a fixed sound source or a mobile sound source. Sound source. Since each object in the virtual scene can correspond to a three-dimensional coordinate, the first three-dimensional coordinate of the sound source can be obtained, and when the sound source emits sound, the mono data generated by the source can be obtained.
  • the target object may also correspond to a three-dimensional coordinate, that is, a second three-dimensional coordinate.
  • a three-dimensional coordinate that is, a second three-dimensional coordinate.
  • the first three-dimensional coordinate is different from the second three-dimensional coordinate, and the first three-dimensional coordinate and the second three-dimensional coordinate are based on the same coordinate origin.
  • obtaining the second three-dimensional coordinate of the target object in the above step 104 may include the following steps:
  • the target object when the target object is in a game scene, the target object can be regarded as a character in the game.
  • the game scene can correspond to a three-dimensional map. Therefore, the electronic device can obtain the map corresponding to the game scene and place it in the map. Determine the coordinate position corresponding to the target object to obtain the second three-dimensional coordinates.
  • the position of the character can be known in real time.
  • a 3D sound effect can be generated for the specific position of the character, so that the user can Being able to be immersed and feel the game world is more realistic.
  • the mono data can be processed by the HRTF algorithm to obtain the two-channel data, and then the mono data is processed by the reverberation effect parameters.
  • the target two-channel data that is, the two-channel data with a reverb effect
  • the electronic device can play the target two-channel data.
  • the above-mentioned step 105 according to the first three-dimensional coordinate, the second three-dimensional coordinate, the target reverberation effect parameter, and the mono data, to generate the target two-channel data may include the following steps:
  • the original sound data of the sound source is monaural data, and through the algorithm processing (for example, HRTF algorithm), the two-channel data can be obtained. Since the sound is propagated in all directions in the real environment, of course, in During the propagation process, reflection, refraction, interference, diffraction and other phenomena also occur. Therefore, in the embodiment of the present application, only the two-dimensional coordinates passing through the first three-dimensional coordinates and the second three-dimensional coordinates are used to finally obtain the synthetic binaural data. Multi-channel two-channel data, and processing the multi-channel two-channel data to obtain synthetic two-channel data. Further, the electronic device can process the synthetic two-channel data according to the target reverberation effect parameter to obtain the target two-channel data. ⁇ ⁇ Road data.
  • the multi-channel two-channel data is synthesized to obtain synthesized two-channel data, which may include the following steps:
  • first three-dimensional coordinate and the second three-dimensional coordinate as an axis to cross-section, and divide the multi-channel two-channel data to obtain a first two-channel data set and a second two-channel data set
  • Each of the first two-channel data set and the second channel data set includes at least one channel of two-channel data
  • 523 Combine the second two-channel data set to obtain second mono data.
  • 524 Combine the first mono data and the second mono data to obtain the synthesized two-channel data.
  • the first three-dimensional coordinate and the second three-dimensional coordinate can be used as an axis to make a cross section. Because the sound propagation direction is fixed, the propagation trajectory will also have a certain along a certain axis of symmetry. Symmetry. As shown in FIG.
  • the first three-dimensional coordinates and the second three-dimensional coordinates form an axis
  • the axis is used as a cross section to divide the multi-channel two-channel data to obtain a first two-channel data set and a second Two-channel data set
  • the first two-channel data set and the second two-channel data set may also be two-channel data containing the same number of channels
  • the different sets of binaural data are also in a symmetric relationship.
  • the first binaural data set and the second binaural data set both include at least one channel of two-channel data.
  • the electronic device may convert the first two-channel data.
  • the collection is synthesized to obtain the first mono data.
  • the electronic device may include left and right earphones, and the first mono data may be mainly played by the left earphone. Accordingly, the electronic device
  • the second two-channel data set is synthesized to obtain the second mono data.
  • the second mono data can be mainly played by the right earphone.
  • the first mono data and the second mono data are synthesized. To get the synthesized channel data.
  • synthesizing the first two-channel data set to obtain first mono data may include the following steps:
  • the first energy threshold may be set by a user or defaulted by the system.
  • the electronic device may obtain the energy values of each channel of the two-channel data in the first two-channel data set, and then select an energy value greater than the first energy threshold from the plurality of energy values.
  • Obtain a plurality of first target energy values determine the first two-channel data corresponding to the plurality of first target energy values, and synthesize the first two-channel data to obtain first mono data.
  • synthesizing the second two-channel data set to obtain second mono data may include the following steps:
  • S231 Obtain multiple energy values of the energy values of each channel of the two-channel data in the second two-channel data set.
  • the second energy threshold may be set by a user or defaulted by the system.
  • the electronic device can obtain the multiple energy values from the energy value of each channel of the two-channel data in the second two-channel data set, and then select an energy value greater than the second energy threshold from the multiple energy values.
  • a plurality of second target energy values are obtained, second second channel data corresponding to the plurality of second target energy values are determined, and the second two channel data is synthesized to obtain second mono data.
  • step 105 according to the first three-dimensional coordinate, the second three-dimensional coordinate, the target reverberation effect parameter, and the mono data to generate target binaural data, may be implemented as follows:
  • the 3D sound effect is different when the user has different face orientations.
  • the face orientation of the target object is considered, and the electronic device can detect the face orientation of the target object. If it is a game scene, the orientation of the target object relative to the sound source may be detected as the face orientation of the target object.
  • the electronic device is a head-mounted device of the user, for example, head-mounted virtual reality glasses, a virtual reality helmet, a virtual Realistic headband display device and so on.
  • sensors can be used for the detection of the head direction, including, but not limited to, resistive sensors, mechanical sensors, photosensitive sensors, ultrasonic sensors, muscle sensors, and the like, which are not limited herein.
  • the detection of the head direction can be performed at a preset time interval.
  • the preset time interval can be set by the user or defaulted by the system.
  • step 105 the following steps may be further included:
  • B3. Process the target two-channel data according to the target attenuation curve to obtain the target two-channel data after attenuation.
  • Wallpaper can be understood as the background of the environment.
  • the environment can be a real physical environment or a game environment. Different application scenarios can correspond to different wallpapers.
  • the position of the target object can be determined.
  • the target wallpaper corresponding to the location.
  • different environments can correspond to different wallpapers.
  • the environmental sensor can be at least one of the following sensors.
  • Humidity sensor, temperature sensor, ultrasonic sensor, distance sensor, camera, etc. are not limited here
  • the above environmental parameters can be at least one of the following: temperature, humidity, distance, image, etc., are not limited here
  • electronic The mapping relationship between the environmental parameters and the application scenario can be stored in the device in advance, and the application scenario corresponding to the current environmental parameter can be determined according to the mapping relationship.
  • the electronic device can also store the mapping relationship between the application scenario and the wallpaper in advance. According to this The shooting relationship determines the target wallpaper corresponding to the application scenario.
  • the electronic device can also store a preset mapping relationship between the wallpaper and the attenuation curve, and then, based on the mapping relationship, determine the target attenuation curve corresponding to the target wallpaper, and target the target according to the target attenuation curve.
  • the binaural data is processed to obtain the attenuated target binaural data. For example, in different scenes, such as water, artillery shells, classrooms, and KTV rooms, the attenuation is different and the reverberation effect is different. In addition, whether it is Both virtual reality and augmented reality can achieve reverberation effects appropriate to the environment through the above methods.
  • a mapping relationship between an APK name and a reverberation effect parameter may be stored in the electronic device in advance, and then, after obtaining the APK name, the reverberation effect corresponding to the APK name is determined according to the mapping relationship. Parameters, and the mono data is processed according to the reverb effect parameters to obtain the two-channel data of the reverb effect.
  • a mapping relationship between an audio stream type and a reverberation effect parameter may be stored in the electronic device in advance, and further, after obtaining the audio stream type, a reverberation effect parameter corresponding to the audio stream type is determined according to the mapping relationship, and based on The reverberation effect parameter processes the mono data to obtain the binaural data of the reverberation effect.
  • the 3D sound effect processing method described in the embodiment of the present application is applied to an electronic device to obtain target attribute information of a target application, determine a target reverberation effect parameter according to the target attribute information, and obtain a sound source in the target application.
  • a three-dimensional coordinate and the mono data generated by the sound source to obtain the second three-dimensional coordinate of the target object, the first three-dimensional coordinate and the second three-dimensional coordinate are based on the same coordinate origin, according to the first three-dimensional coordinate, the second three-dimensional coordinate, and the target mixture Reverberation effect parameters and mono data are used to generate target binaural data.
  • the corresponding reverberation effect parameters can be determined according to the attribute information of the application, and the mono data are processed according to the reverberation effect parameters to obtain a reverberation
  • the effect's two-channel data realizes a 3D sound effect of reverberation effect, which improves the user experience.
  • FIG. 2 is a schematic flowchart of a 3D sound effect processing method disclosed in an embodiment of the present application. Applied to the electronic device shown in FIG. 1A, the 3D sound effect processing method includes the following steps 201-208.
  • the target attribute information of the target application determine the target reverberation effect parameters according to the target attribute information, obtain the first three-dimensional coordinates of the sound source in the target application, and the mono data generated by the sound source, and obtain the second three-dimensional coordinates of the target object
  • the first three-dimensional coordinates and the second three-dimensional coordinates are based on the same coordinate origin, and the target two-channel data is generated according to the first three-dimensional coordinates, the second three-dimensional coordinates, the target reverberation effect parameters, and the mono data to obtain the current application scene of the target application.
  • the corresponding target wallpaper determines the target attenuation curve corresponding to the target wallpaper according to the preset mapping relationship between the wallpaper and the attenuation curve, and processes the target two-channel data according to the target attenuation curve to obtain the attenuated target two-channel data.
  • the corresponding reverberation effect parameters can be determined according to the attribute information of the application, and the mono data is processed according to the reverberation effect parameters to obtain the two-channel data with the reverberation effect, and the 3D reverberation effect is realized. Sound effects that enhance the user experience.
  • FIG. 3 is a schematic flowchart of a 3D sound effect processing method disclosed in an embodiment of the present application. Applied to the electronic device shown in FIG. 1A, the 3D sound effect processing method includes the following steps 301-307.
  • the 3D sound effect processing method described in the embodiment of the present application obtains target attribute information of a target application, and determines a target mix corresponding to the target attribute information according to a mapping relationship between preset attribute parameters and reverberation effect parameters.
  • Response effect parameters to obtain the first three-dimensional coordinates of the sound source in the target application, and the mono data generated by the sound source, to obtain the second three-dimensional coordinates of the target object, the first three-dimensional coordinates and the second three-dimensional coordinates are based on the same coordinate origin,
  • the mono data is used to generate multi-channel two-channel data between the first three-dimensional coordinates and the second three-dimensional coordinates. Each two-channel data corresponds to a unique propagation direction.
  • the multi-channel two-channel data is synthesized to obtain a synthesized two-channel.
  • Data according to the target reverberation effect parameters to process the synthesized binaural data to obtain the target binaural data.
  • the corresponding reverberation effect parameters can be determined according to the attribute information of the application, and the monophonic sound can be determined based on the reverberation effect parameters.
  • the channel data is processed to obtain two-channel data with a reverb effect, which realizes a 3D sound effect of the reverb effect and improves the user experience.
  • FIG. 4 is a schematic structural diagram of another electronic device disclosed in an embodiment of the present application.
  • the electronic device includes a processor, a memory, a communication interface, and one or more programs.
  • One or more programs are stored in the memory and configured to be executed by the processor, and the program includes instructions for performing the following steps:
  • the electronic device described in the embodiment of the present application obtains the target attribute information of the target application, determines the target reverberation effect parameter according to the target attribute information, obtains the first three-dimensional coordinates of the sound source in the target application, and the sound source.
  • the generated mono data is used to obtain the second three-dimensional coordinates of the target object.
  • the first three-dimensional coordinates and the second three-dimensional coordinates are based on the same coordinate origin, according to the first three-dimensional coordinates, the second three-dimensional coordinates, the target reverberation effect parameters, and the mono.
  • the data generates target binaural data.
  • the corresponding reverberation effect parameters can be determined according to the attribute information of the application, and the mono data is processed according to the reverberation effect parameters to obtain the binaural data with the reverberation effect. Realize 3D sound effect of reverberation effect, improve user experience.
  • the foregoing program includes instructions for performing the following steps:
  • a target reverberation effect parameter corresponding to the target attribute information is determined according to a mapping relationship between a preset attribute parameter and a reverberation effect parameter.
  • the target attribute parameter is at least one of the following: an installation package name, an application type, and an audio stream type.
  • the program includes Instructions to perform the following steps:
  • the foregoing program includes instructions for performing the following steps:
  • the first three-dimensional coordinate and the second three-dimensional coordinate are used as an axis to make a cross section, and the multi-channel two-channel data is divided to obtain a first two-channel data set and a second two-channel data set.
  • the first two-channel data set and the second channel data set each include at least one channel of two-channel data;
  • the foregoing program includes instructions for performing the following steps:
  • the above program also includes instructions for performing the following steps:
  • the electronic device includes a hardware structure and / or a software module corresponding to each function.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians may use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • the embodiments of the present application may divide the functional units of the electronic device according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit. It should be noted that the division of the units in the embodiments of the present application is schematic, and is only a logical function division. There may be another division manner in actual implementation.
  • FIG. 5A is a schematic structural diagram of a 3D sound effect processing device disclosed in an embodiment of the present application, which is applied to the electronic device shown in FIG. 1A.
  • the 3D sound effect processing device 500 includes: a first obtaining unit 501, a first A determining unit 502, a second obtaining unit 503, a third obtaining unit 504, and a generating unit 505, where:
  • the first obtaining unit 501 is configured to obtain target attribute information of a target application
  • the first determining unit 502 is configured to determine a target reverberation effect parameter according to the target attribute information
  • the second obtaining unit 503 is configured to obtain a first three-dimensional coordinate of a sound source in the target application and mono data generated by the sound source;
  • the third obtaining unit 504 is configured to obtain a second three-dimensional coordinate of the target object, where the first three-dimensional coordinate and the second three-dimensional coordinate are based on a same coordinate origin;
  • the generating unit 505 is configured to generate target two-channel data according to the first three-dimensional coordinates, the second three-dimensional coordinates, the target reverberation effect parameter, and the mono data.
  • the 3D sound effect processing device described in the embodiment of the present application is applied to an electronic device to obtain target attribute information of a target application, determine a target reverberation effect parameter according to the target attribute information, and obtain a sound source in the target application.
  • a three-dimensional coordinate and the mono data generated by the sound source to obtain the second three-dimensional coordinate of the target object, the first three-dimensional coordinate and the second three-dimensional coordinate are based on the same coordinate origin, according to the first three-dimensional coordinate, the second three-dimensional coordinate, and the target mixture Reverberation effect parameters and mono data are used to generate target binaural data.
  • the corresponding reverberation effect parameters can be determined according to the attribute information of the application, and the mono data are processed according to the reverberation effect parameters to obtain a reverberation
  • the effect's two-channel data realizes a 3D sound effect of reverberation effect, which improves the user experience.
  • the first determining unit 502 is specifically configured to:
  • a target reverberation effect parameter corresponding to the target attribute information is determined according to a mapping relationship between a preset attribute parameter and a reverberation effect parameter.
  • the target attribute parameter is at least one of the following: an installation package name, an application type, and an audio stream type.
  • the generating The unit is specifically used for:
  • the generating unit is specifically configured to:
  • the first three-dimensional coordinate and the second three-dimensional coordinate are used as an axis to make a cross section, and the multi-channel two-channel data is divided to obtain a first two-channel data set and a second two-channel data set.
  • the first two-channel data set and the second channel data set each include at least one channel of two-channel data;
  • the generating unit is specifically configured to:
  • the third acquiring unit 504 is specifically configured to:
  • the coordinate position corresponding to the target object is determined in the map to obtain the second three-dimensional coordinate.
  • the third obtaining unit 504 is further specifically configured to:
  • the generating unit 505 is specifically configured to:
  • FIG. 5B is another modified device of the 3D sound effect processing device described in FIG. 5A.
  • the device may further include a fourth obtaining unit 506 and a second determining unit. 507 and processing unit 508 are as follows:
  • the fourth obtaining unit 506 is configured to obtain a target wallpaper corresponding to a current application scene of the target application by a fourth obtaining unit;
  • the second determining unit 507 is configured to determine a target attenuation curve corresponding to the target wallpaper according to a preset mapping relationship between the wallpaper and the attenuation curve;
  • the processing unit 508 is configured to process the target two-channel data according to the target attenuation curve to obtain the target two-channel data after attenuation.
  • the first obtaining unit 501, the first determining unit 502, the second obtaining unit 503, the third obtaining unit 504, the generating unit 505, the fourth obtaining unit 506, the second determining unit 507, and the processing unit 508 may be control circuits or processor.
  • An embodiment of the present application further provides a computer storage medium, wherein the computer storage medium stores a computer program for electronic data exchange, and the computer program causes a computer to execute any one of the 3D sound effect processing methods described in the foregoing method embodiments. Some or all steps.
  • An embodiment of the present application further provides a computer program product, the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to perform the operations described in the foregoing method embodiments. Part or all of the steps of any 3D sound processing method.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or may Integration into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software program modules.
  • the integrated unit When the integrated unit is implemented in the form of a software program module and sold or used as an independent product, it may be stored in a computer-readable memory.
  • the technical solution of the present application essentially or part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, which is stored in a memory.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the foregoing memory includes: a U disk, a read-only memory (ROM), a random access memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk, and other media that can store program codes.
  • the program may be stored in a computer-readable memory, and the memory may include a flash disk. , ROM, RAM, disk or disc, etc.

Abstract

本申请实施例公开了一种3D音效处理方法及相关产品,该方法包括:获取目标应用的目标属性信息;依据所述目标属性信息确定目标混响效果参数;获取声源在所述目标应用中的第一三维坐标,以及所述声源产生的单声道数据;获取目标对象的第二三维坐标,所述第一三维坐标与所述第二三维坐标基于同一坐标原点;依据所述第一三维坐标、所述第二三维坐标、所述目标混响效果参数以及所述单声道数据生成目标双声道数据。采用本申请实施例能够依据应用的属性信息,确定相应的混响效果参数,并依据混响效果参数对单声道数据进行处理,得到带混响效果的双声道数据,实现了混响效果的3D音效。

Description

3D音效处理方法及相关产品 技术领域
本申请涉及虚拟现实/增强现实技术领域,具体涉及一种3D音效处理方法及相关产品。
背景技术
随着电子设备(如手机、平板电脑等)的大量普及应用,电子设备能够支持的应用越来越多,功能越来越强大,电子设备向着多样化、个性化的方向发展,成为用户生活中不可缺少的电子用品。
随着技术发展,虚拟现实在电子设备中也得到了迅猛发展,然而,虚拟现实产品中,现有技术中耳机接收的音频数据往往是2D音频数据,因此,无法给用户带来声音的真实感,降低了用户体验。
发明内容
本申请实施例提供了一种3D音效处理方法及相关产品,能够合成3D音效,提升用户体验。
第一方面,本申请实施例提供一种3D音效处理方法,包括:
获取目标应用的目标属性信息;
依据所述目标属性信息确定目标混响效果参数;
获取声源在所述目标应用中的第一三维坐标,以及所述声源产生的单声道数据;
获取目标对象的第二三维坐标,所述第一三维坐标与所述第二三维坐标基于同一坐标原点;
依据所述第一三维坐标、所述第二三维坐标、所述目标混响效果参数以及所述单声道数据生成目标双声道数据。
第二方面,本申请实施例提供了一种3D音效处理装置,所述3D音效处理装置包括:第一获取单元、第一确定单元、第二获取单元、第三获取单元和生成单元,其中,
所述第一获取单元,用于获取目标应用的目标属性信息;
所述第一确定单元,用于依据所述目标属性信息确定目标混响效果参数;
所述第二获取单元,用于获取声源在所述目标应用中的第一三维坐标,以及所述声源产生的单声道数据;
所述第三获取单元,用于获取目标对象的第二三维坐标,所述第一三维坐标与所述第二三维坐标基于同一坐标原点;
所述生成单元,用于依据所述第一三维坐标、所述第二三维坐标、所述目标混响效果参数以及所述单声道数据生成目标双声道数据。
第三方面,本申请实施例提供一种电子设备,包括处理器、存储器、通信接口,以及一个或多个程序,其中,上述一个或多个程序被存储在上述存储器中,并且被配置由上述处理器执行,上述程序包括用于执行本申请实施例第一方面中的步骤的指令。
第四方面,本申请实施例提供了一种计算机可读存储介质,其中,上述计算机可读存 储介质存储用于电子数据交换的计算机程序,其中,上述计算机程序使得计算机执行如本申请实施例第一方面中所描述的部分或全部步骤。
第五方面,本申请实施例提供了一种计算机程序产品,其中,上述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如本申请实施例第一方面中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A是本申请实施例提供的一种电子设备的结构示意图;
图1B是本申请实施例公开的一种3D音效处理方法的流程示意图;
图1C是本申请实施例公开的多路双声道数据划分方式的演示示意图;
图2是本申请实施例公开的另一种3D音效处理方法的流程示意图;
图3是本申请实施例公开的另一种3D音效处理方法的流程示意图;
图4是本申请实施例公开的另一种电子设备的结构示意图;
图5A是本申请实施例公开的一种3D音效处理装置的结构示意图;
图5B是本申请实施例公开的一种3D音效处理装置的另一结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例所涉及到的电子设备可以包括各种具有无线通信功能的手持设备(如智能手机)、车载设备、虚拟现实(virtual reality,VR)/增强现实(augmented reality,AR)设备,可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的 用户设备(user equipment,UE),移动台(mobile station,MS),终端设备(terminal device)、研发/测试平台、服务器等等。为方便描述,上面提到的设备统称为电子设备。
具体实现中,本申请实施例中,电子设备可对音频数据(声源发出的声音)使用HRTF(Head Related Transfer Function,头相关变换函数)滤波器进行滤波,得到虚拟环绕声,也称之为环绕声,或者全景声,实现一种三维立体音效。HRTF在时间域所对应的名称是HRIR(Head Related Impulse Response)。或者将音频数据与双耳房间脉冲响应(Binaural Room Impulse Response,BRIR)做卷积,双耳房间脉冲响应由三个部分组成:直达声,早期反射声和混响。
请参阅图1A,图1A是本申请实施例提供了一种电子设备的结构示意图,电子设备包括控制电路和输入-输出电路,输入输出电路与控制电路连接。
其中,控制电路可以包括存储和处理电路。该存储和处理电路中的存储电路可以是存储器,例如硬盘驱动存储器,非易失性存储器(例如闪存或用于形成固态驱动器的其它电子可编程只读存储器等),易失性存储器(例如静态或动态随机存取存储器等)等,本申请实施例不作限制。存储和处理电路中的处理电路可以用于控制电子设备的运转。该处理电路可以基于一个或多个微处理器,微控制器,数字信号处理器,基带处理器,功率管理单元,音频编解码器芯片,专用集成电路,显示驱动器集成电路等来实现。
存储和处理电路可用于运行电子设备中的软件,例如播放来电提示响铃应用程序、播放短消息提示响铃应用程序、播放闹钟提示响铃应用程序、播放媒体文件应用程序、互联网协议语音(voice over internet protocol,VOIP)电话呼叫应用程序、操作系统功能等。这些软件可以用于执行一些控制操作,例如,播放来电提示响铃、播放短消息提示响铃、播放闹钟提示响铃、播放媒体文件、进行语音电话呼叫以及电子设备中的其它功能等,本申请实施例不作限制。
其中,输入-输出电路可用于使电子设备实现数据的输入和输出,即允许电子设备从外部设备接收数据和允许电子设备将数据从电子设备输出至外部设备。
输入-输出电路可以进一步包括传感器。传感器可以包括环境光传感器,基于光和电容的红外接近传感器,超声波传感器,触摸传感器(例如,基于光触摸传感器和/或电容式触摸传感器,其中,触摸传感器可以是触控显示屏的一部分,也可以作为一个触摸传感器结构独立使用),加速度传感器,重力传感器,和其它传感器等。输入-输出电路还可以进一步包括音频组件,音频组件可以用于为电子设备提供音频输入和输出功能。音频组件还可以包括音调发生器以及其它用于产生和检测声音的组件。
输入-输出电路还可以包括一个或多个显示屏。显示屏可以包括液晶显示屏,有机发光二极管显示屏,电子墨水显示屏,等离子显示屏,使用其它显示技术的显示屏中一种或者几种的组合。显示屏可以包括触摸传感器阵列(即,显示屏可以是触控显示屏)。触摸传感器可以是由透明的触摸传感器电极(例如氧化铟锡(ITO)电极)阵列形成的电容式触摸传感器,或者可以是使用其它触摸技术形成的触摸传感器,例如音波触控,压敏触摸,电阻触摸,光学触摸等,本申请实施例不作限制。
输入-输出电路还可以进一步包括通信电路可以用于为电子设备提供与外部设备通信 的能力。通信电路可以包括模拟和数字输入-输出接口电路,和基于射频信号和/或光信号的无线通信电路。通信电路中的无线通信电路可以包括射频收发器电路、功率放大器电路、低噪声放大器、开关、滤波器和天线。举例来说,通信电路中的无线通信电路可以包括用于通过发射和接收近场耦合电磁信号来支持近场通信(near field communication,NFC)的电路。例如,通信电路可以包括近场通信天线和近场通信收发器。通信电路还可以包括蜂窝电话收发器和天线,无线局域网收发器电路和天线等。
输入-输出电路还可以进一步包括其它输入-输出单元。输入-输出单元可以包括按钮,操纵杆,点击轮,滚动轮,触摸板,小键盘,键盘,照相机,发光二极管和其它状态指示器等。
其中,电子设备还可以进一步包括电池(未图示),电池用于给电子设备提供电能。
下面对本申请实施例进行详细介绍。
请参阅图1B,图1B是本申请实施例公开的一种3D音效处理方法的流程示意图,应用于上述图1A所描述的电子设备,该3D音效处理方法包括如下步骤101-103。
101、获取目标应用的目标属性信息。
其中,本申请实施例可应用于虚拟现实/增强现实场景,或者,3D录音场景。本申请实施例中,目标属性参数为以下至少一种:安装包名称、应用类型、音频流类型、内存大小、应用的开发商等等,在此不做限定,例如,安装包名称可以为APK(Android Package)名称,具体实现中,电子设备可在启动目标应用时,读取目标应用的目标属性信息。
102、依据所述目标属性信息确定目标混响效果参数。
其中,不同的属性信息可对应不同的混响效果参数,上述混响效果参数可以包括以下至少一种:输入电平、低频切点、高频切点、早反射时间、扩散程度、低混比率、残响时间、高频衰点、分频点、原始干声音量、早反射声音量、混响音量、声场宽度、输出声场、尾音等等,在此不作限定。
可选地,上述步骤102,依据所述目标属性信息确定目标混响效果参数,可按照如下方式实施:
按照预设的属性参数与混响效果参数之间的映射关系,确定所述目标属性信息对应的目标混响效果参数。
其中,电子设备中可以预先存储预设的属性参数与混响效果参数之间的映射关系,进而,依据该映射关系确定目标属性信息对应的目标混响效果参数。如下提供一种属性参数与混响效果参数之间的映射关系:
属性参数 混响效果参数
属性参数1 混响效果参数1
属性参数2 混响效果参数2
属性参数n 混响效果参数n
103、获取声源在所述目标应用中的第一三维坐标,以及所述声源产生的单声道数据。
其中,本申请实施例中,声源可以为虚拟场景中一发声体,该发声体可以由应用开发商预先设置,例如,游戏场景中的一个飞机,声源可以为固定声源,或者,移动声源。由于虚拟场景中每一物体均可以对应一个三维坐标,因此,可以获取声源的第一三维坐标,在声源发出声音时,则可以获取生源产生的单声道数据。
104、获取目标对象的第二三维坐标,所述第一三维坐标与所述第二三维坐标基于同一坐标原点。
其中,目标对象也可以对应一个三维坐标,即第二三维坐标,当然,第一三维坐标与第二三维坐标为不同的位置,且第一三维坐标与第二三维坐标基于同一坐标原点。
可选地,在所述目标对象处于游戏场景时,上述步骤104,获取目标对象的第二三维坐标,可包括如下步骤:
41、获取所述游戏场景对应的地图;
42、在所述地图中确定所述目标对象对应的坐标位置,得到所述第二三维坐标。
其中,在目标对象处于游戏场景时,目标对象可视为游戏中一角色,当然,具体实现中,游戏场景可对应一三维地图,因此,电子设备可以获取游戏场景对应的地图,并在地图中确定目标对象对应的坐标位置,得到第二三维坐标,如此,针对不同的游戏,可实时知晓角色位置,在本申请实施例中,针对角色具体位置,能够生成3D音效,让用户在游戏时,能够身临其境,感觉游戏世界更为逼真。
105、依据所述第一三维坐标、所述第二三维坐标、所述目标混响效果参数以及所述单声道数据生成目标双声道数据。
其中,在知晓了第一三维坐标、第二三维坐标之后,可以通过HRTF算法,对单声道数据进行处理,得到双声道数据,然后,再通过混响效果参数对单声道数据进行处理,得到目标双声道数据,即带混响(reverb)效果的双声道数据,电子设备可播放该目标双声道数据。
可选地,上述步骤105,依据所述第一三维坐标、所述第二三维坐标、所述目标混响效果参数以及所述单声道数据生成目标双声道数据,可包括如下步骤:
51、将所述单声道数据生成所述第一三维坐标与所述第二三维坐标之间的多路双声道数据,每路双声道数据对应唯一传播方向;
52、将所述多路双声道数据合成,得到合成双声道数据;
53、根据所述目标混响效果参数对所述合成双声道数据进行处理,得到所述目标双声道数据。
其中,声源的原始声音数据为单声道数据,通过算法处理(例如,HRTF算法),则可以得到双声道数据,由于在现实环境中,声音是沿着各个方向进行传播,当然,在传播过程中,也会出现反射、折射、干涉、衍射等现象,因此,本申请实施例中,用于最终得到合成双声道数据的仅仅为经过第一三维坐标与第二三维坐标之间的多路双声道数据,对该多路双声道数据进行处理,得到合成双声道数据,进一步地,电子设备可根据目标混响效果参数对合成双声道数据进行处理,得到目标双声道数据。
可选地,上述步骤52,将所述多路双声道数据合成,得到合成双声道数据,可包括如下步骤:
521、以所述第一三维坐标与所述第二三维坐标为轴线作横截面,将所述多路双声道数据进行划分,得到第一双声道数据集合和第二双声道数据集合,所述第一双声道数据集合、所述第二声道数据集合均包括至少一路双声道数据;
522、将所述第一双声道数据集合进行合成,得到第一单声道数据;
523、将所述第二双声道数据集合进行合成,得到第二单声道数据;
524、将所述第一单声道数据、所述第二单声道数据进行合成,得到所述合成双声道数据。
其中,在知晓第一三维坐标,第二三维坐标之后,可以第一三维坐标与第二三维坐标为轴线作横截面,由于声音传播方向一定,传播轨迹也会沿着一定的对称轴具备一定的对称性,如图1C所示,第一三维坐标与第二三维坐标形成轴线,以该轴线作横截面,可以将多路双声道数据进行划分,得到第一双声道数据集合和第二双声道数据集合,不考虑外在因素,例如,折射,反射,衍射等情况,则第一双声道数据集合与第二双声道数据集合也可以是包含相同路数的双声道数据,且不同集合的双声道数据也是对称关系,第一双声道数据集合、第二声道数据集合均包括至少一路双声道数据,具体实现中,电子设备可将第一双声道数据集合进行合成,得到第一单声道数据,电子设备可以包括左右耳机,第一单声道数据可以主要由左耳机播放,相应地,电子设备可将第二双声道数据集合进行合成,得到第二单声道数据,第二单声道数据可以主要由右耳机播放,最后,将第一单声道数据、第二单声道数据进行合成,得到合成声道数据。
可选地,上述步骤522,将所述第一双声道数据集合进行合成,得到第一单声道数据,可包括如下步骤:
5221、将所述第一双声道数据集合中每一路双声道数据的能量值,得到多个能量值;
5222、从所述多个能量值中选取大于第一能量阈值的能量值,得到多个第一目标能量值;
5223、确定所述多个第一目标能量值对应的第一双声道数据,将所述第一双声道数据进行合成,得到所述第一单声道数据。
其中,上述第一能量阈值可以由用户自行设置或者系统默认。具体实现中,电子设备可将第一双声道数据集合中每一路双声道数据的能量值,得到多个能量值,进而,从多个能量值中选取大于第一能量阈值的能量值,得到多个第一目标能量值,确定多个第一目标能量值对应的第一双声道数据,将第一双声道数据进行合成,得到第一单声道数据。
可选地,上述步骤523,将所述第二双声道数据集合进行合成,得到第二单声道数据,可包括如下步骤:
5231、将所述第二双声道数据集合中每一路双声道数据的能量值,得到多个能量值;
5232、从所述多个能量值中选取大于第二能量阈值的能量值,得到多个第二目标能量值;
5233、确定所述多个第二目标能量值对应的第二双声道数据,将所述第二双声道数据进行合成,得到所述第二单声道数据。
其中,上述第二能量阈值可以由用户自行设置或者系统默认。具体实现中,电子设备可将第二双声道数据集合中每一路双声道数据的能量值,得到多个能量值,进而,从多个 能量值中选取大于第二能量阈值的能量值,得到多个第二目标能量值,确定多个第二目标能量值对应的第二双声道数据,将第二双声道数据进行合成,得到第二单声道数据。
可选地,在上述步骤101-步骤105之间,还可以包括如下步骤:
A1、获取所述目标对象的面部朝向;
则,上述步骤105,依据所述第一三维坐标、所述第二三维坐标、所述目标混响效果参数以及所述单声道数据生成目标双声道数据,可按照如下方式实施:
依据所述面部朝向、所述第一三维坐标、所述第二三维坐标、所述目标混响效果参数以及所述单声道数据生成目标双声道数据。
其中,具体实现中,用户不同的面部朝向,则听到的3D音效也不一样,鉴于此,本申请实施例中,则考虑目标对象的面部朝向,电子设备可检测目标对象的面部朝向,具体地,若是游戏场景,则可以检测目标对象的相对于声源的朝向作为目标对象的面部朝向,若电子设备为是考虑用户头戴设备,例如,头戴式虚拟现实眼镜、虚拟现实头盔、虚拟现实头带显示设备等。人头方向的检测可以使用多种传感器,包括但不限于电阻式传感器、力学传感器、光敏传感器、超声波传感器、肌肉传感器等,在此不做限定。可以是其中一种传感器,也可以是其中几种传感器的组合,可以是一个传感器还可以是几个传感器的组合。人头方向的检测可以按照每隔预设时间间隔进行检测,预设时间间隔可以由用户自行设置或者系统默认。
可选地,在上述步骤105之后,还可以包括如下步骤:
B1、获取所述目标应用的当前应用场景对应的目标壁纸;
B2、按照预设的壁纸与衰减曲线之间的映射关系,确定所述目标壁纸对应的目标衰减曲线;
B3、依据所述目标衰减曲线对所述目标双声道数据进行处理,得到衰减后的所述目标双声道数据。
其中,壁纸可以理解为环境的背景,此处环境可以为真实物理环境或者游戏环境,不同的应用场景可以对应不同的壁纸,在游戏模式下,可以确定目标对象的位置,进而,依据地图确定该位置对应的目标壁纸,在真实物理场景下,不同的环境可以对应不同的壁纸,则可以通过环境传感器检测当前环境参数,依据当前环境参数确定当前环境,其中,环境传感器可以为以下至少一种传感器、湿度传感器、温度传感器、超声波传感器、距离传感器、摄像头等等,在此不做限定,上述环境参数可以为以下至少一种:温度、湿度、距离、影像等等,在此不做限定,电子设备中可以预先存储环境参数与应用场景之间的映射关系,进而,依据该映射关系确定当前环境参数对应的应用场景,电子设备中还可以预先存储应用场景与壁纸之间的映射关系,进而,依据该映射关系确定应用场景对应的目标壁纸,电子设备中还可以存储预设的壁纸与衰减曲线之间的映射关系,进而,依据该映射关系确定目标壁纸对应的目标衰减曲线,依据目标衰减曲线对目标双声道数据进行处理,得到衰减后的目标双声道数据例如,不同的场景中,例如,水里,炮弹、教室、KTV室,则衰减不一样,混响效果不一样,另外,无论是虚拟现实,还是增强现实,均可以通过上述方式,实现与环境相宜的混响效果。
例如,以安卓系统的电子设备为例,电子设备中可以预先存储APK名称与混响效果参 数之间的映射关系,进而,在获取APK名称,依据该映射关系确定该APK名称对应的混响效果参数,并依据该混响效果参数对单声道数据进行处理,得到混响效果的双声道数据。
又例如,电子设备中可以预先存储音频流类型与混响效果参数之间的映射关系,进而,在获取音频流类型之后,依据该映射关系确定该音频流类型对应的混响效果参数,并依据该混响效果参数对单声道数据进行处理,得到混响效果的双声道数据。
可以看出,本申请实施例中所描述的3D音效处理方法,应用于电子设备,获取目标应用的目标属性信息,依据目标属性信息确定目标混响效果参数,获取声源在目标应用中的第一三维坐标,以及声源产生的单声道数据,获取目标对象的第二三维坐标,第一三维坐标与第二三维坐标基于同一坐标原点,依据第一三维坐标、第二三维坐标、目标混响效果参数以及单声道数据生成目标双声道数据,如此,能够依据应用的属性信息,确定相应的混响效果参数,并依据混响效果参数对单声道数据进行处理,得到带混响效果的双声道数据,实现了混响效果的3D音效,提升了用户体验。
与上述一致地,图2是本申请实施例公开的一种3D音效处理方法的流程示意图。应用于如图1A所示的电子设备,该3D音效处理方法包括如下步骤201-208。
201、获取目标应用的目标属性信息。
202、依据所述目标属性信息确定目标混响效果参数。
203、获取声源在所述目标应用中的第一三维坐标,以及所述声源产生的单声道数据。
204、获取目标对象的第二三维坐标,所述第一三维坐标与所述第二三维坐标基于同一坐标原点。
205、依据所述第一三维坐标、所述第二三维坐标、所述目标混响效果参数以及所述单声道数据生成目标双声道数据。
206、获取所述目标应用的当前应用场景对应的目标壁纸。
207、按照预设的壁纸与衰减曲线之间的映射关系,确定所述目标壁纸对应的目标衰减曲线。
208、依据所述目标衰减曲线对所述目标双声道数据进行处理,得到衰减后的所述目标双声道数据。
其中,上述步骤201-步骤208的具体描述可以参照图1B所描述的3D音效处理方法的相应描述,在此不再赘述。
可以看出,本申请实施例中所描述的3D音效处理方法,
获取目标应用的目标属性信息,依据目标属性信息确定目标混响效果参数,获取声源在目标应用中的第一三维坐标,以及声源产生的单声道数据,获取目标对象的第二三维坐标,第一三维坐标与第二三维坐标基于同一坐标原点,依据第一三维坐标、第二三维坐标、目标混响效果参数以及单声道数据生成目标双声道数据,获取目标应用的当前应用场景对应的目标壁纸,按照预设的壁纸与衰减曲线之间的映射关系,确定目标壁纸对应的目标衰减曲线,依据目标衰减曲线对目标双声道数据进行处理,得到衰减后的目标双声道数据,如此,能够依据应用的属性信息,确定相应的混响效果参数,并依据混响效果参数对单声道数据进行处理,得到带混响效果的双声道数据,实现了混响效果的3D音效,提升了用 户体验。
与上述一致地,图3是本申请实施例公开的一种3D音效处理方法的流程示意图。应用于图1A所示的电子设备,该3D音效处理方法包括如下步骤301-307。
301、获取目标应用的目标属性信息。
302、按照预设的属性参数与混响效果参数之间的映射关系,确定所述目标属性信息对应的目标混响效果参数。
303、获取声源在所述目标应用中的第一三维坐标,以及所述声源产生的单声道数据。
304、获取目标对象的第二三维坐标,所述第一三维坐标与所述第二三维坐标基于同一坐标原点。
305、将所述单声道数据生成所述第一三维坐标与所述第二三维坐标之间的多路双声道数据,每路双声道数据对应唯一传播方向。
306、将所述多路双声道数据合成,得到合成双声道数据。
307、根据所述目标混响效果参数对所述合成双声道数据进行处理,得到所述目标双声道数据。
其中,上述步骤301-步骤307的具体描述可以参照图1B所描述的3D音效处理方法的相应描述,在此不再赘述。
可以看出,本申请实施例中所描述的3D音效处理方法,获取目标应用的目标属性信息,按照预设的属性参数与混响效果参数之间的映射关系,确定目标属性信息对应的目标混响效果参数,获取声源在目标应用中的第一三维坐标,以及声源产生的单声道数据,获取目标对象的第二三维坐标,第一三维坐标与第二三维坐标基于同一坐标原点,将单声道数据生成第一三维坐标与第二三维坐标之间的多路双声道数据,每路双声道数据对应唯一传播方向,将多路双声道数据合成,得到合成双声道数据,根据目标混响效果参数对合成双声道数据进行处理,得到目标双声道数据,如此,能够依据应用的属性信息,确定相应的混响效果参数,并依据混响效果参数对单声道数据进行处理,得到带混响效果的双声道数据,实现了混响效果的3D音效,提升了用户体验。
请参阅图4,图4是本申请实施例公开的另一种电子设备的结构示意图,如图所示,该电子设备包括处理器、存储器、通信接口,以及一个或多个程序,其中,上述一个或多个程序被存储在上述存储器中,并且被配置由上述处理器执行,上述程序包括用于执行以下步骤的指令:
获取目标应用的目标属性信息;
依据所述目标属性信息确定目标混响效果参数;
获取声源在所述目标应用中的第一三维坐标,以及所述声源产生的单声道数据;
获取目标对象的第二三维坐标,所述第一三维坐标与所述第二三维坐标基于同一坐标原点;
依据所述第一三维坐标、所述第二三维坐标、所述目标混响效果参数以及所述单声道数据生成目标双声道数据。
可以看出,本申请实施例中所描述的电子设备,获取目标应用的目标属性信息,依据目标属性信息确定目标混响效果参数,获取声源在目标应用中的第一三维坐标,以及声源产生的单声道数据,获取目标对象的第二三维坐标,第一三维坐标与第二三维坐标基于同一坐标原点,依据第一三维坐标、第二三维坐标、目标混响效果参数以及单声道数据生成目标双声道数据,如此,能够依据应用的属性信息,确定相应的混响效果参数,并依据混响效果参数对单声道数据进行处理,得到带混响效果的双声道数据,实现了混响效果的3D音效,提升了用户体验。
在一个可能的示例中,在所述依据所述目标属性信息确定目标混响效果参数方面,上述程序包括用于执行以下步骤的指令:
按照预设的属性参数与混响效果参数之间的映射关系,确定所述目标属性信息对应的目标混响效果参数。
在一个可能的示例中,所述目标属性参数为以下至少一种:安装包名称、应用类型、音频流类型。
在一个可能的示例中,在所述依据所述第一三维坐标、所述第二三维坐标、所述目标混响效果参数以及所述单声道数据生成目标双声道数据方面,上述程序包括用于执行以下步骤的指令:
将所述单声道数据生成所述第一三维坐标与所述第二三维坐标之间的多路双声道数据,每路双声道数据对应唯一传播方向;
将所述多路双声道数据合成,得到合成双声道数据;
根据所述目标混响效果参数对所述合成双声道数据进行处理,得到所述目标双声道数据。
在一个可能的示例中,在所述将所述多路双声道数据合成,得到合成双声道数据方面,上述程序包括用于执行以下步骤的指令:
以所述第一三维坐标与所述第二三维坐标为轴线作横截面,将所述多路双声道数据进行划分,得到第一双声道数据集合和第二双声道数据集合,所述第一双声道数据集合、所述第二声道数据集合均包括至少一路双声道数据;
将所述第一双声道数据集合进行合成,得到第一单声道数据;
将所述第二双声道数据集合进行合成,得到第二单声道数据;
将所述第一单声道数据、所述第二单声道数据进行合成,得到所述合成双声道数据。
在一个可能的示例中,在所述将所述第一双声道数据集合进行合成,得到第一单声道数据方面,上述程序包括用于执行以下步骤的指令:
将所述第一双声道数据集合中每一路双声道数据的能量值,得到多个能量值;
从所述多个能量值中选取大于第一能量阈值的能量值,得到多个第一目标能量值;
确定所述多个第一目标能量值对应的第一双声道数据,将所述第一双声道数据进行合成,得到所述第一单声道数据。
在一个可能的示例中,上述程序还包括用于执行以下步骤的指令:
获取所述目标应用的当前应用场景对应的目标壁纸;
按照预设的壁纸与衰减曲线之间的映射关系,确定所述目标壁纸对应的目标衰减曲 线;
依据所述目标衰减曲线对所述目标双声道数据进行处理,得到衰减后的所述目标双声道数据。
上述主要从方法侧执行过程的角度对本申请实施例的方案进行了介绍。可以理解的是,电子设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所提供的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对电子设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
请参阅图5A,图5A是本申请实施例公开的一种3D音效处理装置的结构示意图,应用于图1A所示的电子设备,所述3D音效处理装置500包括:第一获取单元501、第一确定单元502、第二获取单元503、第三获取单元504和生成单元505,其中,
所述第一获取单元501,用于获取目标应用的目标属性信息;
所述第一确定单元502,用于依据所述目标属性信息确定目标混响效果参数;
所述第二获取单元503,用于获取声源在所述目标应用中的第一三维坐标,以及所述声源产生的单声道数据;
所述第三获取单元504,用于获取目标对象的第二三维坐标,所述第一三维坐标与所述第二三维坐标基于同一坐标原点;
所述生成单元505,用于依据所述第一三维坐标、所述第二三维坐标、所述目标混响效果参数以及所述单声道数据生成目标双声道数据。
可以看出,本申请实施例中所描述的3D音效处理装置,应用于电子设备,获取目标应用的目标属性信息,依据目标属性信息确定目标混响效果参数,获取声源在目标应用中的第一三维坐标,以及声源产生的单声道数据,获取目标对象的第二三维坐标,第一三维坐标与第二三维坐标基于同一坐标原点,依据第一三维坐标、第二三维坐标、目标混响效果参数以及单声道数据生成目标双声道数据,如此,能够依据应用的属性信息,确定相应的混响效果参数,并依据混响效果参数对单声道数据进行处理,得到带混响效果的双声道数据,实现了混响效果的3D音效,提升了用户体验。
在一个可能的示例中,在所述依据所述目标属性信息确定目标混响效果参数方面,所述第一确定单元502具体用于:
按照预设的属性参数与混响效果参数之间的映射关系,确定所述目标属性信息对应的目标混响效果参数。
在一个可能的示例中,所述目标属性参数为以下至少一种:安装包名称、应用类型、音频流类型。
在一个可能的示例中,在所述依据所述第一三维坐标、所述第二三维坐标、所述目标混响效果参数以及所述单声道数据生成目标双声道数据方面,所述生成单元具体用于:
将所述单声道数据生成所述第一三维坐标与所述第二三维坐标之间的多路双声道数据,每路双声道数据对应唯一传播方向;
将所述多路双声道数据合成,得到合成双声道数据;
根据所述目标混响效果参数对所述合成双声道数据进行处理,得到所述目标双声道数据。
在一个可能的示例中,在所述将所述多路双声道数据合成,得到合成双声道数据方面,所述生成单元具体用于:
以所述第一三维坐标与所述第二三维坐标为轴线作横截面,将所述多路双声道数据进行划分,得到第一双声道数据集合和第二双声道数据集合,所述第一双声道数据集合、所述第二声道数据集合均包括至少一路双声道数据;
将所述第一双声道数据集合进行合成,得到第一单声道数据;
将所述第二双声道数据集合进行合成,得到第二单声道数据;
将所述第一单声道数据、所述第二单声道数据进行合成,得到所述合成双声道数据。
在一个可能的示例中,在所述将所述第一双声道数据集合进行合成,得到第一单声道数据方面,所述生成单元具体用于:
将所述第一双声道数据集合中每一路双声道数据的能量值,得到多个能量值;
从所述多个能量值中选取大于第一能量阈值的能量值,得到多个第一目标能量值;
确定所述多个第一目标能量值对应的第一双声道数据,将所述第一双声道数据进行合成,得到所述第一单声道数据。
在一个可能的示例中,在所述目标对象处于游戏场景时,在所述获取目标对象的第二三维坐标方面,包括所述第三获取单元504具体用于:
获取所述游戏场景对应的地图;
在所述地图中确定所述目标对象对应的坐标位置,得到所述第二三维坐标。
在一个可能的示例中,所述第三获取单元504还具体用于:
获取所述目标对象的面部朝向;
在所述依据所述第一三维坐标、所述第二三维坐标、所述目标混响效果参数以及所述单声道数据生成目标双声道数据方面,所述生成单元505具体用于:
依据所述面部朝向、所述第一三维坐标、所述第二三维坐标、所述目标混响效果参数以及所述单声道数据生成目标双声道数据。
在一个可能的示例中,如图5B,图5B为图5A所描述的3D音效处理装置的又一变型装置,其与图5A相比较,还可以包括:第四获取单元506、第二确定单元507和处理单元508,具体如下:
所述第四获取单元506,用于第四获取单元获取所述目标应用的当前应用场景对应的目标壁纸;
所述第二确定单元507,用于按照预设的壁纸与衰减曲线之间的映射关系,确定所述目标壁纸对应的目标衰减曲线;
所述处理单元508,用于依据所述目标衰减曲线对所述目标双声道数据进行处理,得到衰减后的所述目标双声道数据。
其中,第一获取单元501、第一确定单元502、第二获取单元503、第三获取单元504、生成单元505、第四获取单元506、第二确定单元507和处理单元508可以是控制电路或处理器。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储用于电子数据交换的计算机程序,该计算机程序使得计算机执行如上述方法实施例中记载的任何一种3D音效处理方法的部分或全部步骤。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上述方法实施例中记载的任何一种3D音效处理方法的部分或全部步骤。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。
所述集成的单元如果以软件程序模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步 骤。而前述的存储器包括:U盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、ROM、RAM、磁盘或光盘等。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种3D音效处理方法,其特征在于,所述方法包括:
    获取目标应用的目标属性信息;
    依据所述目标属性信息确定目标混响效果参数;
    获取声源在所述目标应用中的第一三维坐标,以及所述声源产生的单声道数据;
    获取目标对象的第二三维坐标,所述第一三维坐标与所述第二三维坐标基于同一坐标原点;
    依据所述第一三维坐标、所述第二三维坐标、所述目标混响效果参数以及所述单声道数据生成目标双声道数据。
  2. 根据权利要求1所述的方法,其特征在于,所述依据所述目标属性信息确定目标混响效果参数,包括:
    按照预设的属性参数与混响效果参数之间的映射关系,确定所述目标属性信息对应的目标混响效果参数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述目标属性参数为以下至少一种:安装包名称、应用类型、音频流类型。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述依据所述第一三维坐标、所述第二三维坐标、所述目标混响效果参数以及所述单声道数据生成目标双声道数据,包括:
    将所述单声道数据生成所述第一三维坐标与所述第二三维坐标之间的多路双声道数据,每路双声道数据对应唯一传播方向;
    将所述多路双声道数据合成,得到合成双声道数据;
    根据所述目标混响效果参数对所述合成双声道数据进行处理,得到所述目标双声道数据。
  5. 根据权利要求4所述的方法,其特征在于,所述将所述多路双声道数据合成,得到合成双声道数据,包括:
    以所述第一三维坐标与所述第二三维坐标为轴线作横截面,将所述多路双声道数据进行划分,得到第一双声道数据集合和第二双声道数据集合,所述第一双声道数据集合、所述第二声道数据集合均包括至少一路双声道数据;
    将所述第一双声道数据集合进行合成,得到第一单声道数据;
    将所述第二双声道数据集合进行合成,得到第二单声道数据;
    将所述第一单声道数据、所述第二单声道数据进行合成,得到所述合成双声道数据。
  6. 根据权利要求5所述的方法,其特征在于,所述将所述第一双声道数据集合进行合成,得到第一单声道数据,包括:
    将所述第一双声道数据集合中每一路双声道数据的能量值,得到多个能量值;
    从所述多个能量值中选取大于第一能量阈值的能量值,得到多个第一目标能量值;
    确定所述多个第一目标能量值对应的第一双声道数据,将所述第一双声道数据进行合成,得到所述第一单声道数据。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,在所述目标对象处于游戏场景时,所述获取目标对象的第二三维坐标,包括:
    获取所述游戏场景对应的地图;
    在所述地图中确定所述目标对象对应的坐标位置,得到所述第二三维坐标。
  8. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    获取所述目标对象的面部朝向;
    所述依据所述第一三维坐标、所述第二三维坐标、所述目标混响效果参数以及所述单声道数据生成目标双声道数据,包括:
    依据所述面部朝向、所述第一三维坐标、所述第二三维坐标、所述目标混响效果参数以及所述单声道数据生成目标双声道数据。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    获取所述目标应用的当前应用场景对应的目标壁纸;
    按照预设的壁纸与衰减曲线之间的映射关系,确定所述目标壁纸对应的目标衰减曲线;
    依据所述目标衰减曲线对所述目标双声道数据进行处理,得到衰减后的所述目标双声道数据。
  10. 一种3D音效处理装置,其特征在于,所述3D音效处理装置包括:第一获取单元、第一确定单元、第二获取单元、第三获取单元和生成单元,其中,
    所述第一获取单元,用于获取目标应用的目标属性信息;
    所述第一确定单元,用于依据所述目标属性信息确定目标混响效果参数;
    所述第二获取单元,用于获取声源在所述目标应用中的第一三维坐标,以及所述声源产生的单声道数据;
    所述第三获取单元,用于获取目标对象的第二三维坐标,所述第一三维坐标与所述第二三维坐标基于同一坐标原点;
    所述生成单元,用于依据所述第一三维坐标、所述第二三维坐标、所述目标混响效果参数以及所述单声道数据生成目标双声道数据。
  11. 根据权利要求10所述的装置,其特征在于,在所述依据所述目标属性信息确定目标混响效果参数方面,所述第一确定单元具体用于:
    按照预设的属性参数与混响效果参数之间的映射关系,确定所述目标属性信息对应的 目标混响效果参数。
  12. 根据权利要求10或11所述的装置,其特征在于,所述目标属性参数为以下至少一种:安装包名称、应用类型、音频流类型。
  13. 根据权利要求10-12任一项所述的装置,其特征在于,在所述依据所述第一三维坐标、所述第二三维坐标、所述目标混响效果参数以及所述单声道数据生成目标双声道数据方面,所述生成单元具体用于:
    将所述单声道数据生成所述第一三维坐标与所述第二三维坐标之间的多路双声道数据,每路双声道数据对应唯一传播方向;
    将所述多路双声道数据合成,得到合成双声道数据;
    根据所述目标混响效果参数对所述合成双声道数据进行处理,得到所述目标双声道数据。
  14. 根据权利要求13所述的装置,其特征在于,在所述将所述多路双声道数据合成,得到合成双声道数据方面,所述生成单元具体用于:
    以所述第一三维坐标与所述第二三维坐标为轴线作横截面,将所述多路双声道数据进行划分,得到第一双声道数据集合和第二双声道数据集合,所述第一双声道数据集合、所述第二声道数据集合均包括至少一路双声道数据;
    将所述第一双声道数据集合进行合成,得到第一单声道数据;
    将所述第二双声道数据集合进行合成,得到第二单声道数据;
    将所述第一单声道数据、所述第二单声道数据进行合成,得到所述合成双声道数据。
  15. 根据权利要求14所述的装置,其特征在于,在所述将所述第一双声道数据集合进行合成,得到第一单声道数据方面,所述生成单元具体用于:
    将所述第一双声道数据集合中每一路双声道数据的能量值,得到多个能量值;
    从所述多个能量值中选取大于第一能量阈值的能量值,得到多个第一目标能量值;
    确定所述多个第一目标能量值对应的第一双声道数据,将所述第一双声道数据进行合成,得到所述第一单声道数据。
  16. 根据权利要求10-15任一项所述的装置,其特征在于,在所述目标对象处于游戏场景时,在所述获取目标对象的第二三维坐标方面,包括所述第三获取单元具体用于:
    获取所述游戏场景对应的地图;
    在所述地图中确定所述目标对象对应的坐标位置,得到所述第二三维坐标。
  17. 根据权利要求10-16任一项所述的装置,其特征在于,所述装置还包括:
    第二获取单元,用于获取所述目标应用的当前应用场景对应的目标壁纸;
    第二确定单元,用于按照预设的壁纸与衰减曲线之间的映射关系,确定所述目标壁纸 对应的目标衰减曲线;
    处理单元,用于依据所述目标衰减曲线对所述目标双声道数据进行处理,得到衰减后的所述目标双声道数据。
  18. 一种电子设备,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-9任一项所述的方法中的步骤的指令。
  19. 一种计算机可读存储介质,其特征在于,存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-9任一项所述的方法。
  20. 一种计算机程序产品,其特征在于,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如权利要求1-9任一项所述的方法。
PCT/CN2019/095294 2018-09-25 2019-07-09 3d音效处理方法及相关产品 WO2020063028A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811115831.8 2018-09-25
CN201811115831.8A CN108924705B (zh) 2018-09-25 2018-09-25 3d音效处理方法及相关产品

Publications (1)

Publication Number Publication Date
WO2020063028A1 true WO2020063028A1 (zh) 2020-04-02

Family

ID=64408844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095294 WO2020063028A1 (zh) 2018-09-25 2019-07-09 3d音效处理方法及相关产品

Country Status (2)

Country Link
CN (1) CN108924705B (zh)
WO (1) WO2020063028A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108924705B (zh) * 2018-09-25 2021-07-02 Oppo广东移动通信有限公司 3d音效处理方法及相关产品
CN113115175B (zh) * 2018-09-25 2022-05-10 Oppo广东移动通信有限公司 3d音效处理方法及相关产品
CN114630145A (zh) * 2022-03-17 2022-06-14 腾讯音乐娱乐科技(深圳)有限公司 一种多媒体数据合成方法、设备及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015127890A1 (en) * 2014-02-26 2015-09-03 Tencent Technology (Shenzhen) Company Limited Method and apparatus for sound processing in three-dimensional virtual scene
CN105792090A (zh) * 2016-04-27 2016-07-20 华为技术有限公司 一种增加混响的方法与装置
CN105827849A (zh) * 2016-04-28 2016-08-03 维沃移动通信有限公司 一种音效调节方法及移动终端
CN108924705A (zh) * 2018-09-25 2018-11-30 Oppo广东移动通信有限公司 3d音效处理方法及相关产品
CN109121069A (zh) * 2018-09-25 2019-01-01 Oppo广东移动通信有限公司 3d音效处理方法及相关产品
CN109246580A (zh) * 2018-09-25 2019-01-18 Oppo广东移动通信有限公司 3d音效处理方法及相关产品
CN109308179A (zh) * 2018-09-25 2019-02-05 Oppo广东移动通信有限公司 3d音效处理方法及相关产品
CN109327766A (zh) * 2018-09-25 2019-02-12 Oppo广东移动通信有限公司 3d音效处理方法及相关产品
CN109327794A (zh) * 2018-11-01 2019-02-12 Oppo广东移动通信有限公司 3d音效处理方法及相关产品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9037468B2 (en) * 2008-10-27 2015-05-19 Sony Computer Entertainment Inc. Sound localization for user in motion
CN108205409A (zh) * 2016-12-16 2018-06-26 百度在线网络技术(北京)有限公司 用于调整虚拟场景的方法和装置以及设备
CN107281753B (zh) * 2017-06-21 2020-10-23 网易(杭州)网络有限公司 场景音效混响控制方法及装置、存储介质及电子设备
CN107193386B (zh) * 2017-06-29 2020-10-27 联想(北京)有限公司 音频信号处理方法及电子设备
CN107360494A (zh) * 2017-08-03 2017-11-17 北京微视酷科技有限责任公司 一种3d音效处理方法、装置、系统及音响系统
CN108465241B (zh) * 2018-02-12 2021-05-04 网易(杭州)网络有限公司 游戏声音混响的处理方法、装置、存储介质及电子设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015127890A1 (en) * 2014-02-26 2015-09-03 Tencent Technology (Shenzhen) Company Limited Method and apparatus for sound processing in three-dimensional virtual scene
CN105792090A (zh) * 2016-04-27 2016-07-20 华为技术有限公司 一种增加混响的方法与装置
CN105827849A (zh) * 2016-04-28 2016-08-03 维沃移动通信有限公司 一种音效调节方法及移动终端
CN108924705A (zh) * 2018-09-25 2018-11-30 Oppo广东移动通信有限公司 3d音效处理方法及相关产品
CN109121069A (zh) * 2018-09-25 2019-01-01 Oppo广东移动通信有限公司 3d音效处理方法及相关产品
CN109246580A (zh) * 2018-09-25 2019-01-18 Oppo广东移动通信有限公司 3d音效处理方法及相关产品
CN109308179A (zh) * 2018-09-25 2019-02-05 Oppo广东移动通信有限公司 3d音效处理方法及相关产品
CN109327766A (zh) * 2018-09-25 2019-02-12 Oppo广东移动通信有限公司 3d音效处理方法及相关产品
CN109327794A (zh) * 2018-11-01 2019-02-12 Oppo广东移动通信有限公司 3d音效处理方法及相关产品

Also Published As

Publication number Publication date
CN108924705B (zh) 2021-07-02
CN108924705A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
US10993063B2 (en) Method for processing 3D audio effect and related products
CN109254752B (zh) 3d音效处理方法及相关产品
WO2020062922A1 (zh) 音效处理方法及相关产品
WO2020063028A1 (zh) 3d音效处理方法及相关产品
EP3039677B1 (en) Multidimensional virtual learning system and method
US10496360B2 (en) Emoji to select how or where sound will localize to a listener
CN109327795B (zh) 音效处理方法及相关产品
WO2020063037A1 (zh) 3d音效处理方法及相关产品
US10757528B1 (en) Methods and systems for simulating spatially-varying acoustics of an extended reality world
CN110401898B (zh) 输出音频数据的方法、装置、设备和存储介质
CN109104687B (zh) 音效处理方法及相关产品
WO2020063027A1 (zh) 3d音效处理方法及相关产品
WO2020019844A1 (zh) 语音数据处理方法及相关产品
WO2022037261A1 (zh) 音频播放、设备管理方法及装置
CN114693890A (zh) 一种增强现实交互方法及电子设备
CN109327794B (zh) 3d音效处理方法及相关产品
CN108882112B (zh) 音频播放控制方法、装置、存储介质及终端设备
CN109286841B (zh) 电影音效处理方法及相关产品
CN109243413B (zh) 3d音效处理方法及相关产品
CN110428802B (zh) 声音混响方法、装置、计算机设备及计算机存储介质
WO2023197646A1 (zh) 一种音频信号处理方法及电子设备
CN116193196A (zh) 虚拟环绕声渲染方法、装置、设备及存储介质
CN116257789A (zh) 音频处理方法、装置、终端及存储介质
JP2022551241A (ja) メディアデータを再生する方法、装置、システム、デバイス、および記憶媒体
CN117676002A (zh) 音频处理方法及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867943

Country of ref document: EP

Kind code of ref document: A1