WO2020062638A1 - 电机 - Google Patents

电机 Download PDF

Info

Publication number
WO2020062638A1
WO2020062638A1 PCT/CN2018/122678 CN2018122678W WO2020062638A1 WO 2020062638 A1 WO2020062638 A1 WO 2020062638A1 CN 2018122678 W CN2018122678 W CN 2018122678W WO 2020062638 A1 WO2020062638 A1 WO 2020062638A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
circuit element
motor
electrically connected
circuit
Prior art date
Application number
PCT/CN2018/122678
Other languages
English (en)
French (fr)
Inventor
许培林
刘毅
方亮
赵建兴
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Publication of WO2020062638A1 publication Critical patent/WO2020062638A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/22Optical devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields

Definitions

  • the present application relates to the technical field of motors, and in particular, to a motor.
  • an object of the present application is to propose a motor with a simple structure and a small volume.
  • the motor according to the embodiment of the present application includes: a motor case, the motor case having a first through passage, the motor case provided with a first connecting member; a rotor assembly, the rotor assembly passing through the first In a through passage, and the rotor assembly is rotatably connected with the motor casing, the rotor assembly is provided with a second connector, and the second connector is electrically connected with the first connector;
  • a first circuit element electrically connected to a power source the first circuit element being provided in the motor housing, the first circuit element being electrically connected to the first connecting member; a first circuit element adapted to control the rotation of the rotor assembly;
  • Two circuit elements, the second circuit element is provided on the rotor assembly, and the second circuit element is electrically connected to the second connection member.
  • the second circuit element can control the rotation of the rotor assembly.
  • the rotor assembly only needs to be provided with a second connection member for supplying power to the second circuit element, so that This can avoid the problem of providing multiple connectors on the rotor assembly, thereby simplifying the structure of the rotor assembly and reducing the volume of the rotor assembly, thereby reducing the production cost of the motor and simplifying the processing process of the motor.
  • the second circuit element can rotate with the rotor assembly, so that the second circuit element can be dissipated by the airflow, and the use performance of the motor can be improved.
  • the rotor assembly includes: a first rotor, the first rotor is penetrated in the first through passage, and the first rotor is rotatably connected to the motor casing, so that The first rotor has a second through passage; the second rotor is penetrated in the second through passage, and the second rotor is rotatably connected to the first rotor, and the second rotor And the second rotor is provided with the second circuit element and the second connecting member at the same time, and the second circuit element and the The first rotor is electrically connected.
  • an outer peripheral wall of the first rotor is provided with the second connection member and the second circuit element; an inner peripheral wall of the motor case is provided with the first connection member.
  • the first rotor includes a plurality of sets of windings
  • the second circuit element includes: an inverter circuit, the inverter circuit is electrically connected to the second connector, and the inverter The circuit is adapted to be electrically connected to a plurality of sets of the windings to drive the rotor assembly to rotate.
  • the second circuit element further includes: a control element, the control element is electrically connected to the inverter circuit to control the electrical connection between the inverter circuit and a plurality of sets of the windings On and off.
  • control element includes a position signal detection circuit
  • the position signal detection circuit is disposed on the first rotor
  • the position signal detection circuit is electrically connected to the inverter circuit for A relative position of the first rotor and the second rotor is detected.
  • the position signal detection circuit is a Hall device or a photoelectric encoder.
  • the first rotor is connected to the motor housing through a first bearing assembly; the second rotor is connected to the first rotor through a second bearing assembly.
  • the first bearing assembly includes two sets, wherein one set of the first bearing assembly is provided at an axial end of the motor housing, and another set of the first bearing assembly is provided At the other axial end of the motor casing.
  • the first connecting member includes: a first carbon brush, the first carbon brush being electrically connected to the first circuit element; a second carbon brush, the second carbon brush and The first carbon brush is spaced apart, the second carbon brush is electrically connected to the first circuit element, and the second connecting member includes a first slip ring, the first slip ring and the first carbon brush.
  • the first slip ring is sleeved on the rotor assembly; the second slip ring is spaced from the first slip ring along the axis direction of the rotor assembly, and the second A slip ring is electrically connected to the second carbon brush, the second slip ring is sleeved on the rotor assembly, the first slip ring is opposite to the first carbon brush, and the second slip ring is connected to the second carbon brush.
  • the second carbon brush is opposite.
  • FIG. 1 is a structural cross-sectional view of a motor according to an embodiment of the present application.
  • Motor housing 10 first through channel 100,
  • Rotor assembly 20 first rotor 210, second through passage 211, second rotor 220,
  • a motor 1 includes a motor case 10, a rotor assembly 20, a first circuit element 30, and a second circuit element 40.
  • the motor case 10 has a first through passage 100, and the rotor assembly 20 is inserted through the first through passage 100, and the rotor assembly 20 is rotatably connected to the motor case 10.
  • the rotor assembly 20 is sleeved inside the motor casing 10, the rotor assembly 20 is connected to the motor casing 10, and the rotor assembly 20 is rotatable (eg, rotated) relative to the motor casing 10.
  • connection needs to be understood in a broad sense, and can be either a direct connection or an indirect connection.
  • the motor case 10 is provided with a first connection member 110, the first circuit element 30 is provided in the motor case 10, and the first circuit element 30 is electrically connected to the first connection member 110.
  • the first circuit element 30 is adapted to be electrically connected to a power source.
  • the rotor assembly 20 is provided with a second connection member 230, the second circuit element 40 is provided in the rotor assembly 20, and the second circuit element 40 is electrically connected to the second connection member 230.
  • the second circuit element 40 is adapted to control the rotation of the rotor assembly 20.
  • the second connection member 230 is electrically connected to the first connection member 110.
  • the first circuit element 30 may be a rectifier circuit.
  • the power source may be an AC grid.
  • the first circuit element 30 can convert AC power into direct power and transfer DC power to the first connector 110.
  • the first connector 110 further passes to the second connector 230, and the second connector 230 provides DC power to the second circuit.
  • the element 40 and the second circuit element 40 can start to work, and the second circuit element 40 can control the rotation of the rotor assembly 20.
  • the second circuit element 40 can control the rotation of the rotor assembly 20, and the rotor assembly 20 only needs to be provided with a first power supply for the second circuit element 40.
  • the two connecting members 230 are sufficient, so that the problem of providing multiple connecting members on the rotor assembly 20 can be avoided, and the structure of the rotor assembly 20 and the volume of the rotor assembly 20 can be simplified, thereby reducing the production cost and simplifying the motor 1. Processing technology of the motor 1.
  • the second circuit element 40 can be rotated with the rotor assembly 20, so that the second circuit element 40 can be radiated by the airflow, and the use performance of the motor 1 can be improved.
  • the rotor assembly 20 may include a first rotor 210 and a second rotor 220.
  • the first rotor 210 is disposed in the first through-passage 100, and the first rotor 210 and the The casing 10 is rotatably connected.
  • the first rotor 210 has a second through passage 211, the second rotor 220 is penetrated in the second through passage 211, and the second rotor 220 is rotatably connected to the first rotor 210.
  • the rotation direction of the second rotor 220 is opposite to the rotation direction of the first rotor 210.
  • One of the first rotor 210 and the second rotor 220 is provided with a second circuit element 40 and a second connection member 230 at the same time.
  • the second circuit element 40 is electrically connected to the first rotor 210 or the second rotor 220 provided with the second circuit element 40.
  • the rotor assembly 20 may include a first rotor 210 and a second rotor 220.
  • the first rotor 210 is disposed in the first through passage 100, and the first rotor 210 and the motor case 10 Rotatable connection.
  • the first rotor 210 has a second through passage 211, the second rotor 220 is penetrated in the second through passage 211, and the second rotor 220 is rotatably connected to the first rotor 210.
  • the rotation direction of the second rotor 220 is opposite to the rotation direction of the first rotor 210.
  • the first rotor 210 is provided with a second circuit element 40 and a second connection member 230.
  • the second circuit element 40 is electrically connected to the first rotor 210.
  • the rotor assembly 20 may include a first rotor 210 and a second rotor 220.
  • the first rotor 210 is disposed in the first through passage 100, and the first rotor 210 and the motor casing 10 rotatably connected.
  • the first rotor 210 has a second through passage 211, the second rotor 220 is penetrated in the second through passage 211, and the second rotor 220 is rotatably connected to the first rotor 210.
  • the rotation direction of the second rotor 220 is opposite to the rotation direction of the first rotor 210.
  • the second rotor 220 is provided with a second circuit element 40 and a second connection member 230.
  • the second circuit element 40 is electrically connected to the second rotor 220.
  • the conventional motor is composed of a stator and a rotor, and the conventional motor can only supply power to the stator but not power to the rotor.
  • the power source of the traditional motor is connected to the stator.
  • the stator generates a variable magnetic field, which causes the variable magnetic field to drive the rotor to perform external work.
  • the motor 1 according to the embodiment of the present application uses a force and a reaction force between the first rotor 210 and the second rotor 220 to form a natural double-sided coaxial anti-rotation effect.
  • the first rotor 210 is provided with the second circuit element 40 and the second connecting member 230 will be described in detail.
  • the second circuit element 40 is electrically connected to the first rotor 210, the first rotor 210 forms an electromagnetic field, the second rotor 220 rotates under the action of the electromagnetic field, and the first rotor 210 receives a force opposite to the direction equal to the size of the second rotor 220.
  • a rotor 210 can rotate in a direction opposite to the rotation direction of the second rotor 220.
  • the torque of the rotor assembly 20 on the motor case 10 can be reduced, thereby avoiding electricity
  • the problem of overload of the casing 10 can further achieve high-power operation of the motor 1, and can further improve the performance of the motor 1.
  • the outer peripheral wall of the first rotor 210 may be provided with a second connecting member 230 and a second circuit element 40.
  • a first connecting member 110 is provided on an inner peripheral wall of the motor case 10.
  • the first rotor 210 may include multiple sets of windings.
  • the multiple sets of windings correspond to the multiple phases of the rotor assembly 20.
  • the second circuit element 40 includes an inverter circuit, and the inverter circuit is electrically connected to the second connecting member 230.
  • the inverter circuit is adapted to be electrically connected to a plurality of sets of windings to drive the rotor assembly 20 to rotate.
  • the inverter circuit can convert DC power to AC power and regularly transfer the AC power to multiple sets of windings on the first rotor 210, so that an alternating electromagnetic field is formed on the first rotor 210, thereby driving the second rotor 220 to rotate.
  • the two rotors 220 simultaneously act on the reaction forces of the first rotor 210, so that the first rotor 210 also rotates. Therefore, alternating current is provided to the plurality of sets of windings through the inverter circuit, so that the first rotor 210 and the second rotor 220 can rotate.
  • the second circuit element 40 may further include a control element, and the control element is electrically connected to the inverter circuit to control the on-off of the electrical connection between the inverter circuit and the multiple sets of windings.
  • the electrical connection relationship between the inverter circuit and the multiple sets of windings is independent of each other.
  • the inverter circuit can provide controllable AC power to any one of the multiple sets of windings, and the control element can control the power supply of the multiple sets of windings by the inverter circuit. Therefore, the second rotor 220 can be continuously driven and rotated by the electromagnetic force, and the relationship between the acting force and the reaction force causes the first rotor 210 to continue to rotate in the opposite direction.
  • the control element may include a position signal detection circuit.
  • the position signal detection circuit is provided on the first rotor 210.
  • the position signal detection circuit is electrically connected to the inverter circuit for detecting the first rotor 210 and the second rotor 210.
  • the position signal detection circuit can monitor the relative position between the second rotor 220 and the first rotor 210 in real time, and control the power supply of the inverter circuit to multiple sets of windings, so that the second rotor 220 can continue to be driven and rotated by the electromagnetic force. Furthermore, the first rotor 210 can be continuously rotated.
  • the position signal detection circuit may be a Hall device or a photoelectric encoder.
  • the Hall device can realize the position detection through the Hall effect.
  • the photoelectric encoder is a sensor that converts the mechanical geometric displacement on the output shaft into a pulse or a digital quantity through photoelectric conversion.
  • the position signal detection circuit can reflect the rotation of the rotor assembly 20 to further control the power supply of the inverter circuit to multiple sets of windings.
  • the control element may include a microcontroller (MCU), an inverter driving circuit, an auxiliary power source, and the like.
  • a microcontroller (MCU) may estimate a relative position between the second rotor 220 and the first rotor 210 based on a software algorithm.
  • the first rotor 210 may be connected to the motor case 10 through a first bearing assembly 50.
  • the second rotor 220 may be connected to the first rotor 210 through the second bearing assembly 60.
  • the outer bearing of the first bearing assembly 50 is sleeved inside the motor housing 10 and is fixedly connected to the motor housing 10.
  • the inner bearing of the first bearing assembly 50 is sheathed on the first rotor 210 and is fixedly connected to the first rotor 210.
  • the first bearing The inner bearing of the assembly 50 is rotatably connected to the outer bearing of the first bearing assembly 50.
  • the outer bearing of the second bearing assembly 60 is sleeved inside the first rotor 210 and is fixedly connected to the first rotor 210.
  • the inner bearing of the second bearing assembly 60 is sleeved on the second rotor 220 and is fixedly connected to the second rotor 220.
  • the second bearing An inner bearing of the assembly 60 is rotatably connected with an outer bearing of the second bearing assembly 60.
  • the first rotor 210 can be rotatably provided in the motor housing 10 by using the first bearing assembly 50
  • the second rotor 220 can be rotatably provided in the first rotor 210 by using the second bearing assembly 60.
  • the first bearing assembly 50 may include two sets, wherein one set of the first bearing assembly 50 is disposed at an axial end of the motor housing 10 and the other set of the first bearing The assembly 50 is disposed at the other axial end of the motor case 10. Therefore, by supporting the first rotor 210 with the two sets of the first bearing assemblies 50, not only the installation stability of the first rotor 210 can be improved, but also the rotation smoothness of the first rotor 210 can be improved.
  • the first connecting member 110 may include a first carbon brush 111 and a second carbon brush 112.
  • the first carbon brush 111 is electrically connected to the first circuit element 30, the second carbon brush 112 is spaced from the first carbon brush 111, and the second carbon brush 112 is electrically connected to the first circuit element 30.
  • the second connecting member 230 includes a first slip ring 231 and a second slip ring 232.
  • the first slip ring 231 is electrically connected to the first carbon brush 111.
  • the first slip ring 231 can be sleeved on the rotor assembly 20.
  • the second slip ring 232 is spaced apart from the first slip ring 231 in the axial direction of the rotor assembly 20.
  • the second slip ring 232 is electrically connected to the second carbon brush 112.
  • the second slip ring 232 can be sleeved on the rotor assembly 20.
  • the slip ring 231 is opposite to the first carbon brush 111, and the second slip ring 232 is opposite to the second carbon brush 112.
  • the power supply, the first carbon brush 111, the first slip ring 231, the second circuit element 40, the rotor assembly 20, the second slip ring 232, and the second carbon brush 112 can form a complete circuit.
  • the dotted arrow in FIG. 1 is Is the current flow path.
  • a motor 1 includes a motor case 10, a rotor assembly 20, a first connection member 110, a second connection member 230, two first bearing assemblies 50, and two second bearings.
  • the rotor assembly 20 includes a first rotor 210 and a second rotor 220.
  • the motor case 10 has a first through passage 100.
  • the two first bearing assemblies 50 are located in the first through passage 100, and the two first bearing assemblies 50 are arranged at intervals along the axial direction of the motor case 10.
  • An outer bearing of each first bearing assembly 50 is fixedly connected to an inner peripheral wall of the motor case 10.
  • the first rotor 210 is located in the first through-passage 100, and two ends of the first rotor 210 are respectively penetrated through the two first bearing assemblies 50, and the inner bearings of the two first bearing assemblies 50 and the outer peripheral wall of the first rotor 210 Fixed connection.
  • the inner bearing of the first bearing assembly 50 is rotatable relative to the outer bearing of the first bearing assembly 50, and the first rotor 210 is rotatable relative to the motor case 10.
  • the first rotor 210 has a second through passage 211.
  • the two second bearing assemblies 60 are both located in the second through passage 211, and the two second bearing assemblies 60 are arranged at intervals along the axial direction of the first rotor 210.
  • An outer bearing of each second bearing assembly 60 is fixedly connected to an inner peripheral wall of the first rotor 210.
  • the second rotor 220 is located in the second through passage 211, and two ends of the second rotor 220 are respectively penetrated through the two second bearing assemblies 60, and the inner bearings of the two second bearing assemblies 60 are connected to the outer peripheral wall of the second rotor 220. Fixed connection.
  • the inner bearing of the second bearing assembly 60 is rotatable relative to the outer bearing of the second bearing assembly 60, and the second rotor 220 is rotatable relative to the first rotor 210.
  • the first circuit element 30 is a circuit board provided with a rectifier circuit.
  • a circuit board provided with a rectifier circuit may be formed with two or three input AC contacts, output positive contacts, and output negative contacts.
  • the first circuit element 30 is provided on an outer peripheral wall of the motor case 10.
  • the first circuit element 30 is located at one end in the axial direction of the motor case 10.
  • the two or three input AC contacts on the first circuit element 30 may be electrically connected to the AC power grid, respectively.
  • the rectifier circuit can rectify the AC power of the power grid to form DC power.
  • the first connecting member 110 is disposed on an inner peripheral wall of the motor case 10.
  • the first connecting member 110 is disposed near the first circuit element 30.
  • the first connecting member 110 may include a first carbon brush 111 and a second carbon brush 112.
  • the first carbon brush 111 and the second carbon brush 112 are arranged at intervals.
  • the first carbon brush 111 may be electrically connected to the positive contact of the output terminal of the first circuit element 30, and the second carbon brush 112 may be electrically connected to the negative contact of the output terminal of the first circuit element 30.
  • direct current can be conducted to the first connector 110.
  • the second connecting member 230 includes a first slip ring 231 and a second slip ring 232, and the first slip ring 231 and the second slip ring 232 are sleeved on the first rotor 210 and fixed to the first rotor 210. connection.
  • the first slip ring 231 is opposite to the first carbon brush 111, and the first carbon brush 111 may abut the first slip ring 231 to realize the electrical connection between the first carbon brush 111 and the first slip ring 231.
  • the second slip ring 232 is opposite to the second carbon brush 112, and the second carbon brush 112 can be abutted against the second slip ring 232 to realize the electrical connection between the second carbon brush 112 and the second slip ring 232.
  • direct current can be conducted to the second connection member 230.
  • the second circuit element 40 is disposed on the outer peripheral wall of the first rotor 210, the second circuit element 40 is electrically connected to the second connection member 230, and the second connection member 230 can provide DC power to the second circuit element 40.
  • the second circuit element 40 is a circuit board provided with an inverter circuit and a position signal detection circuit.
  • the inverter circuit is electrically connected to a plurality of sets of winding coils on the first rotor 210.
  • the inverter circuit can convert DC power to AC power and regularly transfer the AC power to multiple sets of windings on the first rotor 210, so that the first rotor 210 forms an alternating electromagnetic field.
  • the second rotor 220 can rotate under the force of the electromagnetic field. During the rotation, the second rotor 220 simultaneously gives a reaction force to the first rotor 210, so that the first rotor 210 also rotates.
  • the position signal detection circuit can monitor the relative position between the second rotor 220 and the first rotor 210 in real time, and control the power supply of the inverter circuit to multiple sets of windings, so that the second rotor 220 can be continuously driven by electromagnetic force. Further, the second rotor 220 can be continuously rotated.
  • the rectifier circuit and the inverter circuit are located on the same circuit board, and are respectively connected to the AC power grid and the counter-rotating motor.
  • Each phase of the rotating motor is powered by slip rings.
  • the wires also increase with the need to use a wiring harness or other methods to organize more outgoing wires.
  • the safety distance between slip rings will also increase, which will further increase the axial length of the motor.
  • the motor 1 in the embodiment of the present application redesigns the circuit board in the related technology, and realizes the rectification circuit and the inverter circuit integrated on one circuit board in the related technology through two circuit boards, and the rectification circuit serves as a separate circuit board.
  • the inverter circuit is provided as a separate circuit board in the first rotor 210 and rotates with the first rotor 210.
  • the motor case 10 and the first rotor 210 only need to be electrically connected to transfer the DC power formed by the rectifier circuit to the inverter circuit.
  • the number of slip rings and carbon brushes of the motor 1 can be reduced, making the design and manufacturing of the motor 1 better and more convenient, thereby helping to save the production cost of the motor 1, reduce the overall volume of the motor 1, and meanwhile, the inverter circuit and position
  • the heat generated during the operation of the signal detection circuit can also be better dissipated, so that the heat dissipation circuit of the motor 1 can be reduced or omitted.
  • a circuit board provided with an inverter circuit may be provided with a position signal detection circuit. The position signal detection circuit can accurately measure the relative position signal between the first rotor 210 and the second rotor 220, thereby improving the control accuracy of the motor 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

一种电机(1),包括电机壳(10)、转子组件(20)、与电源电连接的第一电路元件(30)和控制转子组件(20)转动的第二电路元件(40),电机壳(10)设有第一连接件(110),转子组件(20)穿设于电机壳(10)且与电机壳(10)可转动地连接,转子组件(20)设有第二连接件(230),第二连接件(230)与第一连接件(110)电连接,第一电路元件(30)设于电机壳(10),第一电路元件(30)与第一连接件(110)电连接,第二电路元件(40)设于转子组件(20),第二电路元件(40)与第二连接件(230)电连接。

Description

电机
相关申请的交叉引用
本申请要求广东美的白色家电技术创新中心有限公司、美的集团股份有限公司于2018年9月25日提交的、申请名称为“电机”的、中国专利申请号“201811119701.1”的优先权。
技术领域
本申请涉及电机技术领域,尤其是涉及一种电机。
背景技术
在对转电机中,由于两个转子都在旋转,为了将电流引入到其中一个转子的线圈上,相关技术中,通过固定在机壳上的电刷以及固定在转子上的滑环来实现。电机每相供电都需要通过滑环来实现。随着电机相数的增加,滑环及其碳刷的个数也会随之增加,这样会造成整个电机轴向长度增长、电机体积过大的问题。由于有较多相数,电线也随之增加,需要用集线束或者其他方式来整理较多的出线。而且对大功率电机来说,滑环之间的安全距离也会增大,会进一步加大电机轴向长度。
申请内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个目的在于提出一种结构简单、体积小的电机。
根据本申请实施例的电机,包括:电机壳,所述电机壳具有第一贯通通道,所述电机壳设有第一连接件;转子组件,所述转子组件穿设于所述第一贯通通道内,且所述转子组件与所述电机壳可转动地连接,所述转子组件设有第二连接件,所述第二连接件与所述第一连接件电连接;适于与电源电连接的第一电路元件,所述第一电路元件设于所述电机壳,所述第一电路元件与所述第一连接件电连接;适于控制所述转子组件转动的第二电路元件,所述第二电路元件设于所述转子组件,所述第二电路元件与所述第二连接件电连接。
根据本申请实施例的电机,通过在转子组件上设置第二电路元件,第二电路元件可以控制转子组件转动,转子组件上只需设置给第二电路元件供电的第二连接件即可,从而可以避免在转子组件上设置多个连接件的问题,进而可以简化转子组件的结构、减小转子组件的体积,从而可以降低电机的生产成本、简化电机的加工工艺。另外,第二电路元件可以随着转子组件转动,从而可以利用气流对第二电路元件散热,进而可以提高电机的使用 性能。
根据本申请的一些实施例,所述转子组件包括:第一转子,所述第一转子穿设于第一贯通通道内,且所述第一转子与所述电机壳可转动地连接,所述第一转子具有第二贯通通道;第二转子,所述第二转子穿设于第二贯通通道内,且所述第二转子与所述第一转子可转动地连接,所述第二转子的转动方向与所述第一转子的转动方向相反;所述第一转子同时设有所述第二电路元件和第二连接件,所述第二电路元件与设有所述第二电路元件的所述第一转子电连接。
在本申请的一些实施例中,所述第一转子的外周壁设有所述第二连接件和所述第二电路元件;所述电机壳的内周壁设有所述第一连接件。
在本申请的一些实施例中,所述第一转子包括多组绕组;所述第二电路元件包括:逆变电路,所述逆变电路与所述第二连接件电连接,所述逆变电路适于与多组所述绕组电连接,以驱动所述转子组件转动。
在本申请的一些实施例中,所述第二电路元件还包括:控制元件,所述控制元件与所述逆变电路电连接,以控制所述逆变电路与多组所述绕组的电连接的通断。
在本申请的一些实施例中,所述控制元件包括位置信号检测电路,所述位置信号检测电路设于所述第一转子,所述位置信号检测电路与所述逆变电路电连接,用于检测所述第一转子与所述第二转子的相对位置。
在本申请的一些实施例中,所述位置信号检测电路为霍尔器件或光电编码器。
在本申请的一些实施例中,所述第一转子通过第一轴承组件与所述电机壳连接;所述第二转子通过第二轴承组件与所述第一转子连接。
在本申请的一些实施例中,所述第一轴承组件包括两组,其中一组所述第一轴承组件设于所述电机壳的轴向一端,另一组所述第一轴承组件设于所述电机壳的轴向另一端。
根据本申请的一些实施例,所述第一连接件包括:第一碳刷,所述第一碳刷与所述第一电路元件电连接;第二碳刷,所述第二碳刷与所述第一碳刷间隔开,所述第二碳刷与所述第一电路元件电连接;所述第二连接件包括:第一滑环,所述第一滑环与所述第一碳刷电连接,所述第一滑环套设于所述转子组件;第二滑环,所述第二滑环与所述第一滑环沿所述转子组件的轴线方向间隔开,所述第二滑环与所述第二碳刷电连接,所述第二滑环套设于所述转子组件,所述第一滑环与所述第一碳刷相对,所述第二滑环与所述第二碳刷相对。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的电机的结构剖视图。
附图标记:
电机1,
电机壳10,第一贯通通道100,
第一连接件110,第一碳刷111,第二碳刷112,
转子组件20,第一转子210,第二贯通通道211,第二转子220,
第二连接件230,第一滑环231,第二滑环232,
第一电路元件30,
第二电路元件40,
第一轴承组件50,
第二轴承组件60。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
如图1所示,根据本申请实施例的电机1,包括电机壳10、转子组件20、第一电路元件30和第二电路元件40。
具体而言,如图1所示,电机壳10具有第一贯通通道100,转子组件20穿设于第一贯通通道100内,且转子组件20与电机壳10可转动地连接。可以理解的是,转子组件20内套于电机壳10,转子组件20与电机壳10连接,转子组件20相对于电机壳10可转动(如自转)。需要说明的是,对于上述提到的“连接”需作广义上的理解,既可以是直接连接,也可以是间接连接。
如图1所示,电机壳10设有第一连接件110,第一电路元件30设于电机壳10,第一电路元件30与第一连接件110电连接。第一电路元件30适于与电源电连接。转子组件20设有第二连接件230,第二电路元件40设于转子组件20,第二电路元件40与第二连接件230电连接。第二电路元件40适于控制转子组件20转动。第二连接件230与第一连接件110电连接。
例如,第一电路元件30可以为整流电路。电源可以为交流电网。第一电路元件30可以将交流电转化为直接电,并将直流电传递给第一连接件110,第一连接件110进一步传递给第二连接件230,第二连接件230将直流电提供给第二电路元件40,第二电路元件40可以开始工作,第二电路元件40可以控制转子组件20的转动。
相关技术中,为了使得转子组件持续转动,需要对转子组件中的多个相路进行供电。电机的每相供电都需要通过固定在电机壳上的连接件与固定在转子上的连接件电连接来实现。转子上的连接件的个数与电机相数呈正比,随着电机相数的增加,连接件的个数也会随之增加,这样会造成整个电机轴向长度增长、电机体积过大的问题。
根据本申请实施例的电机1,通过在转子组件20上设置第二电路元件40,第二电路元件40可以控制转子组件20转动,转子组件20上只需设置给第二电路元件40供电的第二连接件230即可,从而可以避免在转子组件20上设置多个连接件的问题,进而可以简化转子组件20的结构、减小转子组件20的体积,从而可以降低电机1的生产成本、简化电机1的加工工艺。另外,第二电路元件40可以随着转子组件20转动,从而可以利用气流对第二电路元件40散热,进而可以提高电机1的使用性能。
如图1所示,根据本申请的一些实施例,转子组件20可以包括第一转子210和第二转子220,第一转子210穿设于第一贯通通道100内,且第一转子210与电机壳10可转动地连接。第一转子210具有第二贯通通道211,第二转子220穿设于第二贯通通道211内,且第二转子220与第一转子210可转动地连接。第二转子220的转动方向与第一转子210的转动方向相反。第一转子210和第二转子220中的一个同时设有第二电路元件40和第二连接件230。第二电路元件40与设有第二电路元件40的第一转子210或第二转子220电连接。
例如,在本申请的一些实施例中,转子组件20可以包括第一转子210和第二转子220,第一转子210穿设于第一贯通通道100内,且第一转子210与电机壳10可转动地连接。第一转子210具有第二贯通通道211,第二转子220穿设于第二贯通通道211内,且第二转子220与第一转子210可转动地连接。第二转子220的转动方向与第一转子210的转动方向相反。第一转子210设有第二电路元件40和第二连接件230。第二电路元件40与第一转子210电连接。
又如,在本申请的一些实施例中,转子组件20可以包括第一转子210和第二转子220,第一转子210穿设于第一贯通通道100内,且第一转子210与电机壳10可转动地连接。第一转子210具有第二贯通通道211,第二转子220穿设于第二贯通通道211内,且第二转子220与第一转子210可转动地连接。第二转子220的转动方向与第一转子210的转动方向相反。第二转子220设有第二电路元件40和第二连接件230。第二电路元件40与第二转子220电连接。
需要解释说明的是,传统电机由定子和转子组成,传统电机只能给定子供电而不能给转子供电。传统电机的电源接在定子上,由定子产生变磁场,使变磁场驱动转子旋转对外做功。本申请实施例的电机1利用第一转子210与第二转子220之间的作用力与反作用力,形成天然的双面同轴对旋效果。为了方便理解,以第一转子210设有第二电路元件40和第二连接件230的实施例进行详细说明。第二电路元件40与第一转子210电连接,第一转子210形成电磁场,第二转子220在电磁场的作用下转动,第一转子210受到与第二转子220大小相等方向相反的作用力,第一转子210可以朝着第二转子220的转动方向的反方向转动。
由于第一转子210与第二转子220之间的相互作用力用于驱动第一转子210与第二转子220旋转做功,因此可以减小转子组件20对电机壳10的扭力,从而可以避免电机壳10超载的问题,进而可以实现电机1的大功率运行,可以进一步地提高电机1的使用性能。
如图1所示,在本申请的一些实施例中,第一转子210的外周壁可以设有第二连接件230和第二电路元件40。电机壳10的内周壁设有第一连接件110。由此,可以减小第二连接件230与第一连接件110之间的间距,减小第二连接件230和第二电路元件40之间的间距,从而可以便于实现第一连接件110与第二连接件230的电连接及第二电路元件40与第二连接件230之间的电连接。
在本申请的一些实施例中,第一转子210可以包括多组绕组。多组绕组对应于转子组件20的多路相路。第二电路元件40包括逆变电路,逆变电路与第二连接件230电连接,逆变电路适于与多组绕组电连接,以驱动转子组件20转动。逆变电路可以将直流电转换为交流电,并将交流电有规律地传递给第一转子210上的多组绕组,使得第一转子210上形成交变的电磁场,从而可以驱动第二转子220转动,第二转子220在转动的过程中同时作用于第一转子210反作用力,使得第一转子210也转动起来。由此,通过逆变电路给多组绕组提供交流电,使得第一转子210和第二转子220可以转动。
在本申请的一些实施例中,第二电路元件40还可以包括控制元件,控制元件与逆变电路电连接,以控制逆变电路与多组绕组的电连接的通断。例如,逆变电路与多组绕组的电连接关系是彼此独立的,逆变电路可以为多组绕组中的任意一组绕组提供可控交流电,控制元件可以控制逆变电路对多组绕组的供电情况,从而可以使得第二转子220可以持续受到电磁力的驱动转动,由作用力与反作用力的关系,使得第一转子210也持续向相反方向转动。
在本申请的一些实施例中,控制元件可以包括位置信号检测电路,位置信号检测电路设于第一转子210,位置信号检测电路与逆变电路电连接,用于检测第一转子210与第二转子220的相对位置。位置信号检测电路可以实时监测第二转子220与第一转子210之间的相对 位置,并控制逆变电路对多组绕组的供电,从而可以使得第二转子220可以持续受到电磁力的驱动转动,进而可以使得第一转子210持续转动。
在本申请的一些实施例中,位置信号检测电路可以为霍尔器件或光电编码器。霍尔器件可通过霍尔效应实现位置检测。光电编码器是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。利用位置信号检测电路可以反映转子组件20的转动情况,以进一步地控制逆变电路对多组绕组的供电情况。在本申请的一些示例中,控制元件可以包括微控制器(MCU)、逆变器驱动电路和辅助电源等。微控制器(MCU)可以基于软件算法对第二转子220与第一转子210之间的相对位置进行估计。
如图1所示,在本申请的一些实施例中,第一转子210可以通过第一轴承组件50与电机壳10连接。第二转子220可以通过第二轴承组件60与第一转子210连接。第一轴承组件50的外轴承内套于电机壳10且与电机壳10固定连接,第一轴承组件50的内轴承外套于第一转子210且与第一转子210固定连接,第一轴承组件50的内轴承与第一轴承组件50的外轴承可转动地连接。第二轴承组件60的外轴承内套于第一转子210且与第一转子210固定连接,第二轴承组件60的内轴承外套于第二转子220且与第二转子220固定连接,第二轴承组件60的内轴承与第二轴承组件60的外轴承可转动地连接。
由此,可以利用第一轴承组件50将第一转子210可转动地设于电机壳10内,利用第二轴承组件60将第二转子220可转动地设于第一转子210内,不仅可以便于第一转子210、第二转子220及电机壳10之间的安装,还可以降低第一转子210与电机壳10之间的磨损、第二转子220与第一转子210之间的磨损,进而可以延长电机1的使用寿命。
如图1所示,在本申请的一些实施例中,第一轴承组件50可以包括两组,其中一组第一轴承组件50设于电机壳10的轴向一端,另一组第一轴承组件50设于电机壳10的轴向另一端。由此,通过两组第一轴承组件50支撑第一转子210,不仅可以提高第一转子210的安装稳定性,还可以提高第一转子210的转动平稳性。
如图1所示,根据本申请的一些实施例,第一连接件110可以包括第一碳刷111和第二碳刷112。第一碳刷111与第一电路元件30电连接,第二碳刷112与第一碳刷111间隔开,第二碳刷112与第一电路元件30电连接。第二连接件230包括第一滑环231和第二滑环232,第一滑环231与第一碳刷111电连接,第一滑环231可以套设于转子组件20。第二滑环232与第一滑环231沿转子组件20的轴线方向间隔开,第二滑环232与第二碳刷112电连接,第二滑环232可以套设于转子组件20,第一滑环231与第一碳刷111相对,第二滑环232与第二碳刷112相对。
由此,电源,第一碳刷111、第一滑环231、第二电路元件40、转子组件20、第二滑环232、第二碳刷112可以形成一个完整回路,图1中虚线箭头即为电流流动路径。利用碳刷 与滑环之间的连接,可以在转子组件20转动过程中实现第一连接件110与第二连接件230的电连接关系,连接结构简单且电连接可靠性高。
下面参考图1详细描述根据本申请实施例的电机1。值得理解的是,下述描述仅是示例性说明,而不是对本申请的具体限制。
如图1所示,根据本申请实施例的电机1,包括电机壳10、转子组件20、第一连接件110、第二连接件230、两个第一轴承组件50、两个第二轴承组件60、第一电路元件30和第二电路元件40。
具体而言,如图1所示,转子组件20包括第一转子210和第二转子220。电机壳10具有第一贯通通道100。两个第一轴承组件50均位于第一贯通通道100内,两个第一轴承组件50沿着电机壳10的轴线方向间隔排布。每个第一轴承组件50的外轴承均与电机壳10的内周壁固定连接。第一转子210位于第一贯通通道100内,第一转子210的两端分别穿设于两个第一轴承组件50,两个第一轴承组件50的内轴承均与第一转子210的外周壁固定连接。第一轴承组件50的内轴承相对于第一轴承组件50的外轴承可转动,第一转子210相对于电机壳10可转动。
如图1所示,第一转子210具有第二贯通通道211。两个第二轴承组件60均位于第二贯通通道211内,两个第二轴承组件60沿着第一转子210的轴线方向间隔排布。每个第二轴承组件60的外轴承均与第一转子210的内周壁固定连接。第二转子220位于第二贯通通道211内,第二转子220的两端分别穿设于两个第二轴承组件60,两个第二轴承组件60的内轴承均与第二转子220的外周壁固定连接。第二轴承组件60的内轴承相对于第二轴承组件60的外轴承可转动,第二转子220相对于第一转子210可转动。
第一电路元件30为设有整流电路的电路板。设有整流电路的电路板上可以形成有两个或三个输入端交流触点、输出端正极触点、输出端负极触点。第一电路元件30设于电机壳10的外周壁。第一电路元件30位于电机壳10的轴线方向上的一端。第一电路元件30上的两个或三个输入端交流触点可以分别与交流电网电连接。整流电路可以对电网交流电进行整流以形成直流电。第一连接件110设于电机壳10的内周壁。第一连接件110靠近第一电路元件30设置。第一连接件110可以包括第一碳刷111和第二碳刷112。第一碳刷111和第二碳刷112间隔排布。第一碳刷111可以与第一电路元件30的输出端正极触点电连接,第二碳刷112可以与第一电路元件30的输出端负极触点电连接。由此,可以将直流电导引至第一连接件110。
如图1所示,第二连接件230包括第一滑环231和第二滑环232,第一滑环231和第二滑环232均套设于第一转子210且与第一转子210固定连接。第一滑环231与第一碳刷111相对,第一碳刷111可以与第一滑环231相抵以实现第一碳刷111与第一滑环231的电连 接。第二滑环232与第二碳刷112相对,第二碳刷112可以与第二滑环232相抵以实现第二碳刷112与第二滑环232的电连接。由此,可以将直流电导引至第二连接件230。
如图1所示,第二电路元件40设于第一转子210的外周壁,第二电路元件40与第二连接件230电连接,第二连接件230可以为第二电路元件40提供直流电,以使得第二电路元件40工作。第二电路元件40为设有逆变电路和位置信号检测电路的电路板。逆变电路与第一转子210上的多组绕组线圈电连接。
逆变电路可以将直流电转换为交流电,并将交流电有规律地传递给第一转子210上的多组绕组,使得第一转子210形成交变的电磁场。第二转子220可以在电磁场力的作用下转动,第二转子220在转动的过程中同时给第一转子210有反作用力,使得第一转子210也转动起来。位置信号检测电路可以实时监测第二转子220与第一转子210之间的相对位置,并控制逆变电路对多组绕组的供电情况,从而可以使得第二转子220可以持续受到电磁力的驱动,进而可以使得第二转子220持续转动。
相关技术中,整流电路及逆变电路位于同一电路板上,并分别连接交流电网和对转电机。对转电机的每相供电均通过滑环来实现,随着电机相数的增加,滑环及其碳刷的个数也会随之增加,这样会造成整个电机轴向长度增长,电机体积过大的问题。而且由于有较多相数,电线也随着增加,需要用集线束或者其他方式来整理较多的出线。此外,还会造成电机制造及加工工艺复杂程度上升,从而造成整个电机成本增加。对大功率电机来说,滑环之间的安全距离也会增大,会进一步加大电机轴向长度。电机控制板的逆变电路通电时有大量的热量产生,需要散热片或者风扇来对其降温。
本申请实施例的电机1通过对相关技术中的电路板进行重新设计,将相关技术中集成在一个电路板上的整流电路及逆变电路通过两块电路板实现,整流电路作为单独的电路板设于电机壳10,逆变电路作为单独的电路板设于第一转子210并随着第一转子210转动。电机壳10与第一转子210之间只需实现电连接即可,以将整流电路形成的直流电传递给逆变电路。由此,可以减小电机1的滑环及碳刷数目,使得电机1的设计及制造更佳便利,从而有利于节省电机1的生产成本、缩小电机1的整体体积,同时逆变电路及位置信号检测电路工作过程中产生的热量也能较好的散发出去,从而可以减小或者省略电机1的散热电路。另外,设有逆变电路的电路板可以设有位置信号检测电路。位置信号检测电路能够准确测量第一转子210和第二转子220之间的相对位置信号,从而可以提高电机1的控制精度。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语 的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种电机,其特征在于,包括:
    电机壳,所述电机壳具有第一贯通通道,所述电机壳设有第一连接件;
    转子组件,所述转子组件穿设于所述第一贯通通道内,且所述转子组件与所述电机壳可转动地连接,所述转子组件设有第二连接件,所述第二连接件与所述第一连接件电连接;
    适于与电源电连接的第一电路元件,所述第一电路元件设于所述电机壳,所述第一电路元件与所述第一连接件电连接;
    适于控制所述转子组件转动的第二电路元件,所述第二电路元件设于所述转子组件,所述第二电路元件与所述第二连接件电连接。
  2. 根据权利要求1所述的电机,其特征在于,所述转子组件包括:
    第一转子,所述第一转子穿设于第一贯通通道内,且所述第一转子与所述电机壳可转动地连接,所述第一转子具有第二贯通通道;
    第二转子,所述第二转子穿设于第二贯通通道内,且所述第二转子与所述第一转子可转动地连接,所述第二转子的转动方向与所述第一转子的转动方向相反;
    所述第一转子设有所述第二电路元件和第二连接件,所述第二电路元件与设有所述第二电路元件的所述第一转子电连接。
  3. 根据权利要求2所述的电机,其特征在于,所述第一转子的外周壁设有所述第二连接件和所述第二电路元件;
    所述电机壳的内周壁设有所述第一连接件。
  4. 根据权利要求3所述的电机,其特征在于,所述第一转子包括多组绕组;
    所述第二电路元件包括:
    逆变电路,所述逆变电路与所述第二连接件电连接,所述逆变电路适于与多组所述绕组电连接,以驱动所述转子组件转动。
  5. 根据权利要求4所述的电机,其特征在于,所述第二电路元件还包括:
    控制元件,所述控制元件与所述逆变电路电连接,以控制所述逆变电路与多组所述绕组的电连接的通断。
  6. 根据权利要求5所述的电机,其特征在于,所述控制元件包括位置信号检测电路,所述位置信号检测电路设于所述第一转子,所述位置信号检测电路与所述逆变电路电连接,用于检测所述第一转子与所述第二转子的相对位置。
  7. 根据权利要求6所述的电机,其特征在于,所述位置信号检测电路为霍尔器件或光电编码器。
  8. 根据权利要求2所述的电机,其特征在于,所述第一转子通过第一轴承组件与所述电机壳连接;
    所述第二转子通过第二轴承组件与所述第一转子连接。
  9. 根据权利要求8所述的电机,其特征在于,所述第一轴承组件包括两组,其中一组所述第一轴承组件设于所述电机壳的轴向一端,另一组所述第一轴承组件设于所述电机壳的轴向另一端。
  10. 根据权利要求1-9中任意一项所述的电机,其特征在于,所述第一连接件包括:
    第一碳刷,所述第一碳刷与所述第一电路元件电连接;
    第二碳刷,所述第二碳刷与所述第一碳刷间隔开,所述第二碳刷与所述第一电路元件电连接;
    所述第二连接件包括:
    第一滑环,所述第一滑环与所述第一碳刷电连接,所述第一滑环套设于所述转子组件;
    第二滑环,所述第二滑环与所述第一滑环沿所述转子组件的轴线方向间隔开,所述第二滑环与所述第二碳刷电连接,所述第二滑环套设于所述转子组件,所述第一滑环与所述第一碳刷相对,所述第二滑环与所述第二碳刷相对。
PCT/CN2018/122678 2018-09-25 2018-12-21 电机 WO2020062638A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811119701.1A CN110943587A (zh) 2018-09-25 2018-09-25 电机
CN201811119701.1 2018-09-25

Publications (1)

Publication Number Publication Date
WO2020062638A1 true WO2020062638A1 (zh) 2020-04-02

Family

ID=69905173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122678 WO2020062638A1 (zh) 2018-09-25 2018-12-21 电机

Country Status (2)

Country Link
CN (1) CN110943587A (zh)
WO (1) WO2020062638A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021242117A1 (en) * 2020-05-29 2021-12-02 Alva Industries As Dual propeller counter-rotating aerial propulsion system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078457A (zh) * 2012-12-27 2013-05-01 上海交通大学 无定子的两电刷双转子内圈永磁体同步电机
CN202978637U (zh) * 2012-11-05 2013-06-05 贵州航天林泉电机有限公司 一种双转结构无刷电机
CN204810084U (zh) * 2015-08-24 2015-11-25 苏卫星 全封闭卧式双转子发电设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035211A (zh) * 1988-09-13 1989-08-30 曾剑良 双转子电机
CN1094866A (zh) * 1993-05-08 1994-11-09 苏卫星 两向旋转发电机
CN200952448Y (zh) * 2006-09-30 2007-09-26 席风春 双向旋转双路发电水轮发电装置
CN103475160A (zh) * 2013-09-01 2013-12-25 张睿强 一种同轴对旋电机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202978637U (zh) * 2012-11-05 2013-06-05 贵州航天林泉电机有限公司 一种双转结构无刷电机
CN103078457A (zh) * 2012-12-27 2013-05-01 上海交通大学 无定子的两电刷双转子内圈永磁体同步电机
CN204810084U (zh) * 2015-08-24 2015-11-25 苏卫星 全封闭卧式双转子发电设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021242117A1 (en) * 2020-05-29 2021-12-02 Alva Industries As Dual propeller counter-rotating aerial propulsion system

Also Published As

Publication number Publication date
CN110943587A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
JP5393014B2 (ja) コンバータモータおよびコンバータユニット
TW201018056A (en) Motor structure and fan
TW201334374A (zh) 可發電馬達
Kamalakannan et al. Design and development of DC powered BLDC motor for Mixer-Grinder application
WO2020062638A1 (zh) 电机
KR20200029495A (ko) 전기 기계
US20100295397A1 (en) Electromechanical Machine
JP3207072U (ja) 冷却装置
CN216665986U (zh) 一种节能排风扇
WO2022222826A1 (zh) 电机及食物处理器
CN111049355B (zh) 一种轴向和径向磁通结合的无刷功率回馈型永磁调速装置
CN205945422U (zh) 一种混合式直流电机系统
CN214755769U (zh) 交直流两用电机及其风机
CN216564875U (zh) 一种电动机
CN103490578B (zh) 汽车用轴向磁场永磁发电机
CN220382860U (zh) 一种复往高频运动微型电机
US20220399781A1 (en) Motor module and electric powered tool using the same
CN219535817U (zh) 一种直流无刷电机
CN107332381B (zh) 节能直流变频单相高效电机外绕线组结构
CN108574379A (zh) 无位置传感器控制的直流无刷风扇
WO2022052388A1 (zh) 涵道式双磁路无铁芯潮汐发电机
JP2008118839A (ja) モータ
CN106451853A (zh) 一种低频静音高效直流电机
CN103516160B (zh) 汽车用轴向电励磁无刷发电机
CN112398289A (zh) 一种电机换向器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18935671

Country of ref document: EP

Kind code of ref document: A1