WO2020062124A1 - 一种薄型大视场角近眼显示装置 - Google Patents

一种薄型大视场角近眼显示装置 Download PDF

Info

Publication number
WO2020062124A1
WO2020062124A1 PCT/CN2018/108550 CN2018108550W WO2020062124A1 WO 2020062124 A1 WO2020062124 A1 WO 2020062124A1 CN 2018108550 W CN2018108550 W CN 2018108550W WO 2020062124 A1 WO2020062124 A1 WO 2020062124A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflection
eye
images
light source
Prior art date
Application number
PCT/CN2018/108550
Other languages
English (en)
French (fr)
Inventor
覃政
Original Assignee
北京蚁视科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京蚁视科技有限公司 filed Critical 北京蚁视科技有限公司
Priority to US17/420,526 priority Critical patent/US11852818B2/en
Priority to PCT/CN2018/108550 priority patent/WO2020062124A1/zh
Publication of WO2020062124A1 publication Critical patent/WO2020062124A1/zh
Priority to US17/719,482 priority patent/US11846781B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1066Beam splitting or combining systems for enhancing image performance, like resolution, pixel numbers, dual magnifications or dynamic range, by tiling, slicing or overlapping fields of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/142Coating structures, e.g. thin films multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/148Beam splitting or combining systems operating by reflection only including stacked surfaces having at least one double-pass partially reflecting surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present invention relates to the field of near-eye display devices, and in particular, to a thin, large-field-of-view near-eye display device.
  • a larger-diameter imaging system is generally required, and the focal length of a large-diameter imaging system is generally not too small.
  • the focal length represents the axial direction of the near-eye display device. Thickness, therefore, in the current state of the industry, it is not easy to make a large-field-of-view glass-type display with a slim size.
  • the present invention proposes a new idea, on the basis of maintaining the larger diameter of the imaging system, using a radial reflection unit to convert the thickness of the device into a radial size, and using multiple radial reflection units in the same direction or different directions, A larger field of view is achieved by splicing imaging, while maintaining the overall sheet form of the device, which is more suitable for manufacturing thin, light and portable glasses-type display products.
  • the invention provides a thin-type large-field-of-view near-eye display device that adopts a radial reflection unit and realizes a large field-of-view angle by means of stitching imaging.
  • the technical solution of the present invention is a thin, large-field-of-view near-eye display device including two or more radial reflection units arranged in front of a human eye to generate two or more sub-images, and Larger images are spliced on the retina of the human eye, so that a near-eye display effect with a larger field of view can be achieved with a thinner volume.
  • the radial reflection unit includes a light source, a reflection surface, a transmission-type refractive device and / or a reflection-type optical component,
  • the light emitted by the light source is reflected into an axial light, it is magnified through a transmission-type refractive device or a reflection-type optical component, so that the human eye can see clearly.
  • the radial reflection unit is a multi-reflection radial reflection unit, and the light emitted by the light source is finally reflected into the human eye through two or more reflections in the process of reflection becoming the final emitted light.
  • the multiple reflection radial reflection unit includes a multiple reflection structure
  • the multi-reflection structure includes a plurality of reflective surfaces and / or polarizers and / or even-numbered transmissors, and / or polarized transmissors, and / or polarized change reflectors, and / or polarized change modifiers.
  • the plurality of radial reflection units project respective sub-images from different sides from different directions, and stitch them into a complete image on the retina of the human eye.
  • the two radial reflection units project sub-images from two directions, and stitch them into a complete image on the retina of the human eye.
  • the structural forms of the reflecting surfaces of the three or more radial reflecting units include a pyramid type, a turbine type, and a wave type.
  • the plurality of radial reflection units project respective sub-images from the side from the same direction, and stitch them into a complete image on the retina of the human eye.
  • the multiple radial reflection units project respective sub-images from the same direction from the side
  • each radial reflection unit is provided with an independent light source, or multiple radial reflection units share the same light source, and through the light controller, Form multiple exit windows, and make only one exit window open in each time period, allowing light to be emitted.
  • Multiple radial reflection units in different time periods alternately project different sub-images, and the length of each time period is extremely short. Make the human eye feel multiple sub images at the same time.
  • the light controller includes a transmissive light valve, a reflective light valve, a controllable mirror or a rotating mirror array.
  • the plurality of radial reflection units project light from different directions, and each of the plurality of radial reflection units overlaps each other, and each radial reflection unit projects a separate sub-image, and is spliced on the retina of the human eye Into a complete image.
  • the near-eye display device further includes a compensating refractive component, and a focal length of the compensating refractive component is opposite to a focal length of the near-eye refractive component, and after canceling each other, the human eye can see the external light clearly, thereby achieving augmented reality.
  • Transparent display effect a focal length of the compensating refractive component is opposite to a focal length of the near-eye refractive component
  • the near-eye display device further includes a moving part for adjusting the optical path length of the radial reflection unit, so as to project sub-images with different focal points on the retina of the human eye.
  • two radial reflection units with different optical path lengths project two overlapping sub-images in the same area on the retina of the human eye.
  • One of the sub-images is large, providing a wide edge field of view, and one of the sub-images is small, providing high center clarity. The field of view, thereby providing a near-eye display with wide edges and a clear center.
  • the present invention discloses a thin, large-field-of-view near-eye display device, which uses two or more radial reflection units arranged in front of human eyes, and projects a large area image on the human eye retina, Thus, a near-eye display effect with a larger field angle can be achieved in a thinner volume.
  • FIG. 1 schematically illustrates a structure diagram of a thin, large-field-of-view near-eye display device
  • FIG. 2a to FIG. 2d are schematic structural diagrams of a radial reflection unit in a thin large-field-of-view near-eye display device according to a first embodiment of the present invention.
  • 3a to 3f are schematic structural diagrams of a radial reflection unit in a thin, large-field-of-view near-eye display device according to a second embodiment of the present invention.
  • FIGS. 4 a to 4 f and FIGS. 5 a to 5 g are schematic structural diagrams of a multiple reflection structure of a radial reflection unit according to a third embodiment of the present invention and a thin, large field of view near-eye display device using the multiple reflection structure.
  • FIG. 6 to FIG. 13 a to FIG. 13 c are schematic structural diagrams of a thin, large field of view near-eye display device according to a fourth embodiment of the present invention.
  • FIGS. 14 to 16a to d are schematic structural diagrams of a thin, large field of view near-eye display device according to a fifth embodiment of the present invention.
  • FIGS. 17a to 30e are schematic diagrams showing the structure of a thin large-field-of-view near-eye display device according to a sixth embodiment of the present invention.
  • 31a to 31d are schematic structural diagrams of a thin large-field-of-view near-eye display device according to a seventh embodiment of the present invention.
  • 32a-j-39a-b are schematic diagrams showing the structure of a thin, large-field-of-view near-eye display device according to an eighth embodiment of the present invention.
  • 40a-c-44 are schematic diagrams showing the structure of a thin large-field-of-view near-eye display device according to a ninth embodiment of the present invention.
  • 45a-d-47a-c are schematic diagrams showing the structure of a thin, large-field-of-view near-eye display device according to a tenth embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a thin large-field-of-view near-eye display device according to the present invention.
  • the large-field-of-view near-eye display device includes two or more radial reflection units.
  • the near-field display device includes a radial reflection unit 001 and a 002 radial reflection unit, wherein the radial reflection unit 001 includes a light source 101a, a reflection unit 102a, and the radial reflection unit 002 includes a light source 101b and a reflection unit 102b;
  • the large-field near-eye display device of this embodiment further includes a near-eye refractive component 104.
  • a near-eye refractive component 104 In this embodiment, two radial reflection units are arranged in front of the human eye, and two sub-images 103a and 103b are generated and stitched on the retina of the human eye. Into a larger image, thereby achieving a near-eye display effect with a larger field of view under a thinner volume.
  • the light source includes a display screen, a projector, a beam generator, a laser, a light modulator, a light reflector, a light refractor, a light diffractor, and other devices.
  • FIG. 2a to FIG. 2d are schematic structural diagrams of a radial reflection unit in a thin large-field-of-view near-eye display device according to a first embodiment of the present invention.
  • the light before the light emitted by the light source is reflected into an axial light, the light is amplified by a transmission-type refractive device or a reflection-type optical system, so that the human eye can see clearly.
  • the transmission-type refractive device includes a convex lens, a Fresnel lens, a diffractive lens, a polarization-selective lens, and the like.
  • the reflective optical system includes a spherical mirror, an aspherical mirror, a free-form mirror, and the like.
  • the light emitted by the light source 201a passes through the lens 202a for refractive power magnification, and then passes through the reflector 203a to become axial light entering the human eye.
  • the light emitted from the light source 201b passes through the curved mirror 202b for refractive power amplification, and then passes through the reflection mirror 203b1 and is reflected by the reflection mirror 203b2 into axial light that enters the human eye.
  • the light emitted from the light source 201c is magnified by the lens 202c, and then reflected by the reflection mirror 203c1 and the reflection of the reflection mirror 203c2 into axial light entering the human eye.
  • the light emitted from the light source 201d is diopter-magnified by the curved mirror 202d, and then reflected by the mirror 203d into axial light that enters the human eye.
  • 3a to 3f are schematic structural diagrams of a radial reflection unit in a thin, large-field-of-view near-eye display device according to a second embodiment of the present invention.
  • the light emitted by the light source is reflected into axial light, it is magnified through a transmission-type refractive device or a reflection-type optical system so that the human eye can see it clearly.
  • the transmission-type refractive device includes a convex lens, a Fresnel lens, a diffractive lens, a polarization-selective lens, and the like.
  • the reflective optical system includes a spherical mirror, an aspherical mirror, a free-form mirror, and the like.
  • the light emitted by the light source 301a is reflected by the reflection mirror 302a and enters the transmission-type refractive device 303a, and enters the human eye through the refractive power of the transmission-type refractive device 303a.
  • the light emitted from the light source 301b is reflected by the reflection mirror 302b1 and the reflection of the reflection mirror 302b2 and enters the transmission-type refractive device 303b, and enters the human eye through the refractive power of the transmission-type refractive device 303b.
  • the light emitted from the light source 301c enters the curved mirror 303c through the reflection of the mirror 302c, and enters the human eye through the reflection and refractive power of the curved mirror 303c.
  • the light emitted from the light source 301d passes through the semi-reflection of the reflecting mirror 302d1 and the selective reflection of the reflecting mirror 302d2 into the curved reflecting mirror 303 for reflection and refractive power, and finally passes through the selective transmission of the reflecting mirror 302d2 into the human eye. .
  • the light emitted from the light source 301e passes through the semi-reflection of the mirror 302e1, the transmission of the curved mirror 303e and the selective reflection of the mirror 302e2, and finally passes through the curved mirror 303e for reflection and refractive magnification.
  • the selective transmission of the mirror 302e2 enters the human eye.
  • the light emitted by the light source 301f passes through the semi-reflection of the mirror 302f1, the selective reflection and dioptric amplification of the curved mirror 303f, passes through the transmission of the mirror 302f1 and reflects from the mirror 302f2, and finally passes through the mirror again.
  • the transmission of 302f1 and the selective transmission of curved mirror 303f enter the human eye.
  • the reflecting mirror 302d2, the reflecting mirror 302e2, and the curved reflecting mirror 302f are all selective light transmissors, and the light has finally entered the human eye after three reflections and several transmissions.
  • a special multi-reflection structure is required to realize the selection of light transmittance. For a specific implementation method, see Embodiment 3.
  • FIGS. 4 a to 4 f and FIGS. 5 a to 5 g are schematic structural diagrams of a multiple reflection structure of a radial reflection unit according to a third embodiment of the present invention and a thin, large field of view near-eye display device using the multiple reflection structure.
  • Figures 4a to 4f show some multiple reflection structures that may be adopted by the radial reflection unit; Figures 5a to 5g show some other combinations of multiple reflection structures.
  • the radial reflection unit is a multi-reflection radial reflection unit.
  • the light emitted by the light source is reflected into the final emitted light through two or more reflections and finally enters the human eye.
  • multiple reflection surfaces and / or polarizers and / or even-numbered transmissors are used, and / or polarized transmissors, and / or polarization-changing reflectors, and / or polarization-changing implements are used to implement multiple reflections of light. .
  • the components not labeled are reflectors (or semi-reflectors).
  • the reflectors in this embodiment are mirrors.
  • Figures 4a and 4b are secondary reflection structures
  • Figures 4c and 4d are triple reflection structures
  • Figures 4e and 4f are quadratic reflection structures.
  • an even-order reflector 401c and an even-order reflector 401e are respectively provided, wherein the even-order projector is composed of a quarter-wave plate, a semi-reflective film, a quarter-wave plate, A four-layer composite structure composed of a linear polarizer.
  • the similar structure can also achieve the selective light transmission required in Embodiment 2.
  • a polarizing reflector 402f and a polarization changing reflector 403f are provided.
  • the polarizing reflector 402f is a two-layer composite structure composed of a semi-reflective film and a linear polarizer.
  • the polarization change reflector 403f is a two-layer composite structure composed of a polarization changer and a reflective film.
  • a linearly polarized light of a certain property enters a polarizing reflector for the first time, it cannot be transmitted but can only be reflected; and when the reflected light passes through the reflection of the polarizing change reflector and then enters the polarizing reflector, it can pass. Therefore, the similar structure can also achieve the selective light transmission required in Embodiment 2.
  • the polarization changer may be any device that can change or destroy the original polarization state of light, such as a scattering film, a diffraction film, an anisotropic film, a depolarizing film, a quarter wave plate, a half wave plate, Full wave plate and so on.
  • the reflective structure has undergone a total of two, three, or four reflections in the process of converting radial light into final outgoing light.
  • the propagation distance of the light before it can be extended can be extended to meet the requirements of different optical structures.
  • 5a, 5b, and 5c are a combination of multiple secondary reflection structures.
  • the light propagation distance is considerably extended twice, so that the near-eye display effect is achieved at a thickness of half the focal length.
  • the light emitted by the light source 501a passes through the two secondary reflection structures, enters the near-eye refractive component 502a, and passes through the refractive power of the near-eye refractive component 502a to enter the human eye.
  • the light emitted by the light source 501b passes through the optical path channel formed by the three secondary reflection structures, enters the near-eye refractive component 502b, and passes through the refractive power of the near-eye refractive component 502b to enter the human eye.
  • the light emitted by the light source 501c passes through multiple secondary reflection structures and enters the near-eye refractive component 502c, passes through the near-eye refractive component 502b, and enters the human eye.
  • FIG. 5c uses multiple polarizers. 503, ensuring that the optical paths do not interfere with each other.
  • the light After the light is emitted from 501c, it passes through three polarizers 503 and is processed into a specific polarization state (linear or circular polarization). After that, the light can only pass through the polarizer 503 that is compatible with its own polarization state. And cannot pass through the polarizing plate 503 opposite to its own polarization state, so each of the three rays of light passes through two reflections and the same optical path length, and finally enters 502c.
  • Figure 5d uses two triple reflection structures for combination.
  • the light transmission distance is extended by three times, so that the near-eye display effect is achieved at a thickness of one third of the focal length.
  • the light emitted by the light source 501d passes through two three-time reflection structures, enters the near-eye refractive component 502d, and passes through the refractive power of the near-eye refractive component 502d to enter the human eye.
  • Figures 5e and 5f use two 4-reflection structures for combination. Which uses a polarizer and polarization changer to ensure that the light does not overflow before completing 4 reflections.
  • the light transmission distance is extended by three times, so that the near-eye display effect is achieved at a thickness of one third of the focal length.
  • the light emitted by the light source 501e passes through two four-time reflection structures and enters the near-eye refractive component 502e, and passes through the near-eye refractive component 502e.
  • the property changer 504e ensures that the light does not overflow until the four reflections are completed.
  • the light emitted by the light source 501f passes through two four-time reflection structures and enters the near-eye refractive component 502f, passes through the near-eye refractive component 502f, and enters the human eye.
  • the polarizing plate 503f and the polarization are set in FIG.
  • the property changer 504f ensures that the light does not overflow before completing 4 reflections.
  • Figure 5g uses a combination of three 4-reflection structures.
  • the light transmission distance is extended by three times, so that the near-eye display effect is achieved at a thickness of one third of the focal length.
  • the light emitted by the light source 501g passes through the three-time reflection structure and enters the near-eye refractive component 502g, passes through the near-eye refractive component 502g, and enters the human eye.
  • the polarizing plate 503g and the polarization are set in FIG. 5g.
  • the sex changer 504g to ensure that the light will not overflow before completing 4 reflections.
  • the near-eye refractive components are all transmissive diopters. It can be a single lens, or it can be formed by splicing multiple lenses, or it can be a composite structure composed of multiple lenses, or it can be Composite structure composed of multiple reflective layers and refractive layers.
  • the near-eye refractive component may be a multi-optical axis composite lens composed of a plurality of sub-lenses with different optical axes and / or different focal lengths.
  • One or more sub-lenses correspond to a specific optical path channel, and each optical path The light of the channel enters the human eye after being refracted through a special set of sub-lenses, which can achieve a better stitching display effect; or a small lens (or multiple small lenses) can be set at the exit of each optical path for the first time Refraction, and then a second large refraction by a complete large lens at the rear end.
  • These small lenses and large lenses together form a lens array multi-optical axis near-eye refractive component. Achieve better mosaic display effect.
  • the near-eye refractive component may also be a reflective diopter, which can refract and refract light into the human eye.
  • the near-eye refractive component may be a free-form reflecting mirror, which can refract and reflect light and finally enter the human eye.
  • the surface of the free-form mirror is provided with a polarization changer, so that the light path will not be blocked by the polarizer after it is turned back.
  • a plurality of radial reflection units project respective sub-images from different sides from different sides, and stitch them into a complete image on the retina of the human eye.
  • a light source represents a radial reflection unit, and the specific structure of the radial reflection unit is not specifically embodied in this implementation.
  • FIG. 6 shows the two radial reflection units of this embodiment projecting sub-images from different sides from different directions, and stitching them into a complete image on the retina of the human eye.
  • two radial reflection units project sub-images from two directions, and stitch them into a complete image on the retina of the human eye.
  • a pyramid type, B turbine type, C wave type A pyramid type, B turbine type, C wave type.
  • FIG. 7a1 and FIG. 7a2 show the structure of the prismatic radial reflection unit of this embodiment.
  • FIG. 7a1 and FIG. 7a2 include 6 radial reflection units, and may also include N (N is greater than 2) radial reflection units, such as 3 radial reflection units or 4 radial reflection units, as shown in FIG. 8a. ⁇ Figure 8b.
  • 7b1 and 7b2 show the structure of the turbo-type radial reflection unit of this embodiment.
  • 7b1 and 7b2 include 6 radial reflection units, and may also include N (N greater than 2) radial reflection units, for example, 12 radial reflection units.
  • N N greater than 2 radial reflection units
  • 12 light sources are used, and 6
  • the turbine-shaped reflective surfaces project 12 sub-images.
  • the light sources and sub-images of the same number in the figure correspond to each other and do not interfere with each other.
  • FIG. 7c1 and FIG. 7c2 show the structural form of the wavy radial reflection unit of this embodiment.
  • FIG. 7c1 and FIG. 7c2 include 6 radial reflection units, each 2 radial reflection units are a group, and may also include N (N greater than 2) radial reflection units, for example, including three groups of radial reflection units, Five groups of radial reflection units and seven groups of radial reflection units are shown in Figs. 10a to 10c.
  • Multiple light sources are used to project multiple sub-images through corresponding multiple wave-shaped reflective surfaces.
  • FIG. 11a to FIG. 11b show another embodiment of the wave-like arrangement.
  • the six wave-like reflecting surfaces reflect the surrounding light sources.
  • the light source can be divided into 12 pieces arranged in a hexagon, or it can be in the form of a ring light source as shown in Figure 11b.
  • the light sources and sub-images of the same number in the figure correspond to each other and do not interfere with each other.
  • a plurality of surrounding light sources can be connected in a circle to form a complete ring light source.
  • 7a1, 7a2, 7b1, 7b2, 7c1, and 7c2 have the same optical path length, and they can share the same near-eye refractive component (transmissive near-eye refractive component or reflection) at the end.
  • Type near-eye refractive component so that the human eye can see clearly.
  • the near-eye refractive component when it is a transmissive refractive component, it can be a single lens or a combination of multiple lenses, a composite structure composed of multiple lenses, or a multilayer reflective layer A composite structure composed of a refractive layer; when the near-eye refractive component is a reflective refractive component, it can be a single curved mirror, or it can be spliced from multiple curved mirrors, or it can be a multilayer reflective layer and refraction Composite structure composed of layers.
  • FIG. 12 shows another embodiment in which multiple radial reflection units project different sub-images from different directions from the side, and stitch them into a complete image on the retina of the human eye, using 4 radial reflection units and corresponding 8 Reflection surfaces, projecting 8 sub-images.
  • an elliptically polarizing plate 1302a1 (special, a circularly polarizing plate can be used) is set, and the light is processed into elliptically polarized light (or circularly polarized light), reflected by the correct reflection surface 1303a, and then passed through two
  • the secondary reflecting surface 1305a (can be a flat reflecting surface or a curved reflecting surface) reflects. Because the light has been reflected twice, its polarization state can pass through the elliptical polarizer 1302a2 (special, circular Polarizer). After the light is reflected by the false reflection surface 1304a, since the light has been reflected only once, its polarization state cannot pass through the elliptically polarizing plate 1302a2, so no stray light is generated.
  • a linear polarizer 1302b1 is disposed at the light source 1301b, and the light is processed into linearly polarized light.
  • the light emitted by the light source itself is some kind of linearly polarized light.
  • the projected light in a linearly polarized state enters the correct reflection surface 1303b, and generates transmitted light and reflected light.
  • the polarization of transmitted light is perpendicular to the linear polarizer 1302b2, is blocked, and will not be projected to the wrong reflection surface 1304b, so no stray light will be generated; the reflected light passes through the polarization changer 1306b (can be any changeable or destroyed Devices with the original polarization of light, such as scattering films, diffraction films, anisotropic films, depolarizing films, quarter-wave plates, half-wave plates, full-wave plates, etc.), and then reflected by the secondary reflection surface 1305b , And then pass through the polarization changer 1306b, at this time, the polarization of the light has changed, so it can pass through the linear polarizer 1302b2 and finally enter the human eye;
  • the polarization changer 1306b can be any changeable or destroyed Devices with the original polarization of light, such as scattering films, diffraction films, anisotropic films, depolarizing films, quarter-wave plates, half-wave plates, full-wave plates, etc.
  • a linear polarizer 1302c is provided at the light source 1301c, and the light is processed into linearly polarized light.
  • the light emitted by the light source itself is some kind of linearly polarized light.
  • the projected light under linear polarization enters the correct reflection surface 1303c.
  • the correct reflection surface is a polarization beam splitter.
  • a polarizing beam splitter The characteristic of a polarizing beam splitter is that it completely reflects light in some polarization states and completely transmits light in some polarization states.
  • the linearly polarized projection light only reflects on the surface of the correct reflection surface 1303c, does not transmit, and cannot be directed to the wrong reflection surface 1304c, so no stray light is generated; and the polarization of the reflected light passes through the polarization changer 1306c, Therefore, it can pass through the correct reflection surface 1303c and enter the human eye.
  • each light source can be made to emit light of different polarization states, and then the light rays of different radial reflection units are separately isolated through a polarization selector.
  • the polarization selector includes various polarization filters, such as a linear polarizer, or a polarization beam splitter.
  • a light source represents a radial reflection unit, and the specific structure of the radial reflection unit is not specifically embodied in this implementation.
  • FIG. 14 shows that multiple radial reflection units of this embodiment project each sub-image from the same direction from the side.
  • the radial reflection unit 1401a and the radial reflection unit 1401b are transmitted from the top to the bottom, and the sub-image 1402a and the sub-image 1402b are projected from the side.
  • FIGS. 15a to 15d and FIGS. 16a to 16d are schematic structural diagrams of specific radial reflection units in which multiple sub-images are projected from the same direction from the side by multiple radial reflection units in this embodiment.
  • a wired polarizer 15021 and a linear polarizer 15022 are provided on the light source side, so that the light emitted by the light source 15011 and the light source 15012 have different polarization states. , Such as linearly polarized states perpendicular to each other.
  • a linear polarizer 15023 and a linear polarizer 15024 are provided at the end of the optical path, so that the directions of the linear polarizer 15021 and the linear polarizer 15023 are the same. Therefore, the light emitted by the light source 15011 only exits through the linear polarizer 15023; for the same reason, The light emitted by the light source 15012 is finally emitted only through the linear polarizer 15024. Because the two optical paths have the same length, the same transmission-type refractive element 1504 can be shared, so that the human eye can see the image clearly.
  • FIG. 15b is different from FIG. 15a in that the reflective structure first reflects light outward and then reflects inward.
  • the overall optical path can be made longer, and the distance between the transmissive refractive member and the linear polarizer 15023 and the linear polarizer 15024 can be long, so as to achieve a better optical effect. Because the two optical paths have the same length, the same transflective component can be shared, so that the human eye can see the image clearly.
  • the reflective structure first reflects the light outward and throws it towards the reflective dioptric component.
  • This is a curved reflector that will deflect the direction of light propagation during refraction.
  • a polarization changer 1505c is provided on the surface of the reflective refractive element 1506c to change the existing polarization state of all light rays, so that the light will not be blocked during the reflection and reflection of the reflective refractive element to the human eye. Because the two optical paths have the same length, the same reflective dioptric component can be shared so that the human eye can see the image clearly.
  • Figure 15d uses a special polarizing beam splitter. As shown in the optical path, the polarized light emitted by the light source 15011 can be completely reflected on the surface without transmission, and the polarized light emitted by the light source 15012 is transmitted on the surface without reflection. .
  • a polarization changer 1505d is provided on the surface of the reflective refractive element 1506d to change the existing polarization state of all light rays, so that the light will not be blocked during the reflection and reflection of the reflective refractive element to the human eye. Because the two optical paths have the same length, the same reflective dioptric component can be shared so that the human eye can see the image clearly.
  • Figures 16a to 16d show several other implementations of the arrangement of the light source, reflective surface, and polarizer.
  • the light source 16011 and the light source 16012 are two independent light sources.
  • the rectangle filled with lines represents the polarizer, and the blank rectangle represents The specific structure of the reflective component, that is, the reflective surface, is as follows. It is worth noting that:
  • a linear polarizer is used as the polarization selector.
  • a polarization beam splitter can also be used to isolate the optical path;
  • the same near-eye refractive component (transmissive refractive component or reflective refractive component) can be shared so that the human eye can see the image clearly.
  • only one light source can be used to function as two light sources at the same time.
  • a light source is placed at the position of the light source 16011, and this light source can simultaneously emit two kinds of polarized lights whose polarization directions are perpendicular to each other, and these two kinds of polarized lights form two different images (specific scheme, the polarizer can be covered by the pixel surface , So that two adjacent pixels on the surface of the light source emit different polarized light), after the two images propagate downward, they enter different light paths, and they are finally stitched into a complete image on the human eye; or this light source can be Two kinds of polarized light with polarized directions perpendicular to each other are generated in the time period (specific scheme, a polarizer and a corresponding optical channel can be placed outside the light source, and the light emitted by the light source can be processed into different polarization states at different times, as shown in the similar figure 27a, Figure 27b, or other optical structures that can
  • a similar method can also be adopted, using one light source to play the role of two light sources at the same time.
  • each radial reflection unit has an independent light source, or multiple radial reflection units share the same light source, in order to prevent each radial
  • the light between the reflection units interferes with each other.
  • the light controller such as a transmissive light valve, a reflective light valve, or a controllable mirror, multiple exit windows can be formed, and only one exit window can be opened in each time period. Light is allowed to exit, and multiple radial reflection units in different time periods project different sub-images alternately, and each time period is extremely short, making the human eye feel multiple sub-images at the same time.
  • FIG. 17a to 17e are schematic diagrams of this embodiment. As shown in FIG. 17a, it is an embodiment with multiple independent light sources:
  • the four light sources above including light source 17011, light source 17012, light source 17013, and light source 17014. Only one of the light sources emits light during each time period, and at the same time, only one exit window is opened to allow light to pass through.
  • the four light sources and the corresponding exit window 17021, exit window 17022, exit window 17023, and exit window 17024 have the same optical path length, and can share the same near-eye refractive component (transmissive near-eye refractive component or reflective near-eye refractive power at the end). Components) so that the human eye can see clearly.
  • Figures 17b ⁇ 17e are schematic diagrams for further explaining the implementation. As shown in the figure, Figures 17b ⁇ 17e correspond to 4 times, t1, t2, t3, t4, and the light source is divided into four independent areas. (Light source 17011, light source 17012, light source 17013, light source 17014) can independently control the emitted light. Each lower reflection surface corresponds to an exit window. In this embodiment, the exit windows are transmission light valves.
  • the transmissive light valve can be a liquid crystal light valve, or other device with controllable light transmittance. When receiving different control signals, the transmissive light valve exhibits two effects of transmitting light or cutting off specific light (generally polarized light).
  • the light source 17011 emits light, and the corresponding exit window 17021 is opened to allow light to pass through.
  • the light source 17012 emits light, and the corresponding exit window 17022 is opened to allow light to pass through.
  • the light source 17013 emits light, and the corresponding exit window 17023 is opened to allow light to pass through.
  • the light source 17014 emits light, and the corresponding exit window 17024 is opened to allow light to pass through.
  • the four light sources and the corresponding exit window 17021, exit window 17022, exit window 17023, and exit window 17024 have the same optical path length.
  • the same near-eye refractive component 1703 can be shared at the end, so that the human eye can see clearly.
  • the near-eye refractive component 1703 includes a transmissive near-eye refractive component or a reflective near-eye refractive component.
  • a transmissive refractive component it can be a single lens or a combination of multiple lenses, a composite structure composed of multiple lenses, or a multilayer reflective layer A composite structure composed of a refractive layer;
  • the near-eye refractive component is a reflective refractive component, it can be a single curved mirror, or it can be spliced from multiple curved mirrors, or it can be a multilayer reflective layer and refraction Composite structure composed of layers.
  • Fig. 18a to Fig. 18b, Fig. 19a to Fig. 19b, Fig. 20a, and Fig. 20b are other embodiments in which the four light sources, reflecting surfaces, and exit windows are arranged differently in this embodiment.
  • the blank rectangle not marked in this embodiment represents a reflective surface.
  • FIG. 18a shows the light path of the light emitted by the light source 18011 at time t1.
  • the exit window 18021 corresponding to the light source 18011 is opened at time t1 to allow light to pass through.
  • FIG. 18b shows the light path of the light emitted by the light source 18012 at time t2.
  • the exit window 18022 corresponding to the light source 18012 is opened at time t2 to allow light to pass through.
  • Figures 18a-18b include two independent light sources, which can independently control the emitted light.
  • the light source 18011 and the light source 18012 emit light at different times.
  • the light emitted by the light source 18011 is reflected downward twice, and the light emitted by the light source 18012 is reflected downward once.
  • the lengths of the light paths formed by the two light sources and the corresponding exit windows are the same.
  • FIG. 19a shows the light path of the light emitted by the light source 19011 at time t1.
  • the exit window 19021 corresponding to the light source 19011 is opened at time t1 to allow light to pass through.
  • FIG. 19b shows the light path of the light emitted by the light source 19012 at time t2.
  • the exit window 19022 corresponding to the light source 19012 is opened at time t2 to allow light to pass through.
  • the two light sources and the corresponding exit windows form two light paths with the same length.
  • 20a to 20b are different implementations of two other light sources, reflecting surfaces, and exit windows. As shown in the figure, at two different moments, two light sources and corresponding exit windows form two light paths. By adjusting the positions of the light sources 20011 and 20012, the lengths of the two light paths can be made the same or inconsistent.
  • the plurality of radial reflecting units share the same source
  • FIG. 21 is a schematic diagram of this embodiment. As shown in FIG. 21, it includes a light source 2101, an exit window 21021, an exit window 21022, and an exit window 21023. Multiple radial reflection units project each sub-image from the same direction from the side. And share the same light source. The light source displays different images in different time periods, and at the same time, only one exit window is opened to allow light to pass through.
  • 22 to 24 are schematic structural diagrams of a specific radial reflection unit according to this embodiment.
  • FIG. 22 it includes a light source 2201, a front refractor 2202, an exit window 22031, an exit window 22032, an exit window 22033, and an exit window 22034.
  • the exit windows of this embodiment are all transmissive light valves.
  • the light emitted by the same light source 2201 passes through the pre-refractor 2202 to become near-parallel light (high beam), and then passes through multiple subsequent reflection surfaces, and enters the human eye through different exit windows at different periods of time, and enters the retina. To form an image.
  • FIG. 23 it includes a light source 2301, an exit window 23021, an exit window 23022, an exit window 23023, and an exit window 23024.
  • the exit windows in this embodiment are all transmissive light valves.
  • the same light source 2301 emits four different images at four different times.
  • multiple reflection structures are adopted respectively, and four groups of reflection structures are formed, which respectively reflect light rays 1 to 4 times.
  • the light path formed by the light source 2301 and the four exit windows is the same length and can directly enter the human eye; or the same near-eye refractive component (transmissive near-eye refractive component or reflective near-eye refractive component) is shared at the end, so that the human eye can See clearly.
  • FIG. 23 shows a case where four radial reflection units are combined, and one of the reflection structures may be reduced to become a triple combination; or two of the reflection structures may be reduced to become a double combination. The principle is similar and will not be repeated here.
  • this drawing is also a case where four radial reflection units are combined.
  • the total optical path length of multiple radial reflection units is the same.
  • the specific form of the partial reflection surface in the structure is different. .
  • FIG. 26 is a schematic diagram showing different structures of the exit window of this embodiment.
  • the exit window in this embodiment further includes a light controller such as a reflective light valve or a controllable reflector, so as to form a plurality of exit windows.
  • a light controller such as a reflective light valve or a controllable reflector
  • the exit window is a reflective light valve, including 4 reflective light valves, reflective light valve 25011a, reflective light valve 25012a, reflective light valve 25013a, reflective light valve 25014a, and near-eye refractive component 2502a
  • the reflective light valve can be a combination of a liquid crystal light valve and a mirror, or other devices with controllable light transmittance and reflectance. When receiving different control signals, the reflective light valve exhibits reflective and non-reflective effects on specific light.
  • the exit window is a controllable mirror, including 4 controllable mirrors, controllable mirror 25011b, controllable mirror 25012b, controllable mirror 25013b, controllable mirror 25014b, and near-eye refractive component 2502b.
  • the controllable mirror can be a mechanical rotation type, a shutter type, a micro-electromechanical type device, or other devices with controllable reflectance and direction.
  • the controllable mirror When receiving different control signals, the controllable mirror exhibits two kinds of effects: effective reflection and ineffective reflection (or non-reflection) for a specific light.
  • the exit window is a rotating mirror array, and a plurality of independent optical paths are formed by using the rotating mirror array.
  • FIG. 26 includes a light source 2601, a rotating mirror array 001, and a rotating mirror array 002.
  • the rotating mirror array is composed of a plurality of tiny rotating mirrors 2602 with controllable rotation angles. Each rotating mirror 2602 can be quickly switched in two or more angle states according to a control signal individually to control the direction of light reflection.
  • the rotating mirror can be mechanical, such as a mechanical rotating shaft and a power device; it can also be a micro-electromechanical micro-electromechanical rotating mirror, which can be rotated under the control of electromagnetic force;
  • the light source 2601 emits light toward the rotating mirror array 001. At a certain moment, only one rotating mirror is in the working state, and the light is reflected downward to the corresponding rotating mirror in the rotating mirror array 002, and finally reflects the light.
  • each independent time period (t1, t2, or t3), only one optical path is in the working state, thereby achieving the isolation of multiple optical paths and ensuring that the length of each optical path is consistent.
  • the same near-eye refractive component (transmissive near-eye refractive component or reflective near-eye refractive component) can be shared at the end so that the human eye can see clearly.
  • the light source 2701a emits two different images at different times.
  • the reflective light valve 27022a does not work, and the light is reflected by the reflective light valve 27021a to form a polarized light.
  • This polarized light is only Can pass through the linear polarizer 27033a, but cannot pass through the linear polarizer 27034a.
  • the reflective light valve 27021a does not work, and the light is reflected by the reflective light valve 27022a to form a kind of polarized light.
  • This polarized light can only be It passes through the linear polarizer 27034a, but cannot pass through the linear polarizer 27033a.
  • the two optical paths at different times are the same length.
  • the light source 2701b emits two different images at different times.
  • the transmissive light valve 27022b does not work, and the light passes through the transmissive light valve 27021b to form a polarized light.
  • This polarized light It can only pass through the linear polarizer 27033b, but cannot pass through the linear polarizer 27032b.
  • the transmissive light valve 27021b does not work, and the light passes through the transmissive light valve 27022b to form a polarized light.
  • This polarized light It can only pass through the linear polarizer 27032b, but cannot pass through the linear polarizer 27033b.
  • the two optical paths at different times are the same length.
  • Each sub-image is emitted from a corresponding exit window.
  • exit windows 2802 are opened as shown in the figure; at another moment, the other four exit windows (shaded portions) are opened.
  • 8 independent light sources 2801 Surrounded by 8 independent light sources 2801, or a ring light source.
  • the eight radial reflection units can be wave or turbine type.
  • the optical paths of each radial reflection unit have the same length, and the same near-eye refractive component 2803 is shared at the end, so that the human eye can see clearly.
  • the dotted line represents the light source mirror image 2804.
  • this embodiment can be implemented: a hybrid isolation method.
  • Figure 29 shows a quadruple radial reflection unit structure.
  • the light source end uses a reflective light valve 29033, a reflective light valve 29032 as an optical path switcher, and a transmissive light valve 29041 is used at the end, and the transmissive light valve 29022 is used as an optical circuit breaker.
  • the light source 2901 displays different images, and is divided into upper and lower parts to emit light with different polarization states. At this time, a reflective light valve and a corresponding transmissive light valve are in working state. .
  • each optical path is the same, and the same near-eye refractive component is shared at the end, so that the human eye can see clearly.
  • Figure 30 shows the structure of a six-layer radial reflection unit.
  • the light source 3001 uses a reflective light valve 30021, a reflective light valve 30022, and a reflective light valve 30023 as the light path switcher, and a transmissive light valve 30031, a transmissive light valve 30032, and a transmissive light valve 30033 are used as the optical circuit breaker at the end. .
  • each optical path is the same, and the same near-eye refractive component is shared at the end, so that the human eye can see clearly.
  • multiple radial reflection units project light from different directions. In each direction, multiple radial reflection units overlap each other. Each radial reflection unit projects a separate sub-image and is spliced on the retina of the human eye. Full image.
  • 31a to 31d are schematic structural diagrams of this embodiment.
  • each radial reflection unit has an independent light source; including eight light sources 31011 to 31018, and eight sub-images 31021 to 31028 are projected.
  • Fig. 31b two directions are projected in the upper and lower directions, and two directions are projected in each direction.
  • Two radial reflection units in each direction share the same light source; including two light sources 31011 to 31012, and four sub-images 31021 to 31024 are projected.
  • FIG. 31c three directions are projected, and two directions are projected in each direction.
  • Two radial reflection units in each direction share the same light source; including three light sources 31011 to 31013, and 6 sub-images 31021 to 31026 are projected.
  • Figure 31d is similar to Figure 31c, but the sub-image stitching is different.
  • the near-eye display device of the present invention can realize a transparent display effect of augmented reality.
  • Specific implementation methods include:
  • Part of the optical structure in the near-eye display device can allow external light to pass through, and keep the entire device's focal distance to the external light at infinity, so that the human eye can see the external environment clearly, so as to achieve an augmented reality transmission display effect.
  • the near-eye display device contains a transmissive refractive component inside, which can allow external light to pass through, but will refract externally incident light at a certain focal length, and add a compensating refractive component (such as Spherical lens, aspherical lens, Fresnel lens, etc.), whose focal length is opposite to that of the transmissive refractive component, and after canceling each other, it allows the human eye to see the external light clearly, thereby achieving a transmissive display effect of augmented reality.
  • a transmissive refractive component such as Spherical lens, aspherical lens, Fresnel lens, etc.
  • the near-eye display device in this solution allows external light to pass directly without refraction.
  • two independent light sources are used to form two independent radial reflection units through their respective reflection channels, and two sub-images are generated and stitched into a complete image on the retina of the human eye.
  • the entire device allows external light to pass directly without refraction.
  • 32a to 32j which include a light source 32011, a light source 32012, a plurality of linear polarizers 3202, a near-eye refractive component 3203, a reflective refractive component 3204, a polarization changer 3205, and several reflective surfaces (not labeled). Because of the arrangement of the linear polarizer 3202, the polarization changer 3205, and several reflective surfaces as shown in the figure, the light path can only exit through the only correct path. The principle is the same as the aforementioned polarization isolation method, and will not be described in detail.
  • Figures 33a-33b use two independent light sources to project images from two directions, and two sub-images are projected from each direction. A total of four sub-images were generated and stitched into a complete image on the retina of the human eye.
  • the whole device allows external light to pass directly without refraction.
  • FIG. 33a it includes a light source 33011, a light source 33012, a plurality of linear polarizers 3302, a reflective refractive member 3303, and a polarization changer 3304.
  • the light emitted by a single light source is projected toward the center in two different polarization states, selected by the corresponding linear polarizer, enters the correct channel, and is processed by the reflective refractive component into high light, which enters the human eye and can be seen clearly.
  • Fig. 33b adds a plano-concave lens 3305 and a plano-convex lens 3306 on the basis of Fig. 33a.
  • the reflective refractive surface and plano-convex lens 3306 on the reflective refractive component 3303 jointly achieve a shorter refractive focal length.
  • a polarization changer 3304 is added to both the schemes of FIGS. 33a and 33b.
  • Figures 34a to 34d are some improvements made to prevent light from entering the wrong reflection channel.
  • Figures 34a to 34c it includes several polarizers 3401 and reflective diopters 3402. Additional polarizers are added to certain positions in Figures 34a to 34c. In addition to isolating the internal display light from the optical path, it also helps prevent the outside world. The light enters the human eye through the reflection of multiple reflective surfaces, forming a ghost image.
  • a horizontally placed boundary polarizer 3403 is added at the bottom of the figure to prevent the light from continuing to travel downward. Therefore, other optical structures can be continuously added below the boundary polarizer 3403 without contacting the light emitted above.
  • a polarization beam splitter is used to isolate the optical path.
  • the light emitted by the light source 3501 is processed by the linear polarizer 35021 and the linear polarizer 35022, and becomes two kinds of linearly polarized lights whose polarization directions are perpendicular to each other.
  • the light emitted by the linear polarizer 35021 will only reflect when it encounters the polarizing beam splitter 35051, and will not be transmitted; the light emitted by the linear polarizer 35022 will only transmit when it encounters the polarizing beam splitter 35051. Reflection will occur, and when it encounters the polarizing beam splitter 35052, only reflection will occur and no transmission will occur.
  • the polarization beam splitter 35051 and the polarization beam splitter 35052 After all the light is reflected by the polarization beam splitter 35051 and the polarization beam splitter 35052, it is directed to the polarization changer 3504, and after being reflected by the reflective refractive member 3503, it passes through the polarization changer 3504, and the polarization of the light has changed since then. Therefore, it can pass through the polarization beam splitter 35051 and the polarization beam splitter 35052 smoothly, and finally enter the human eye.
  • the external light is reflected by the polarizing beam splitter 35052, it hits the polarizing beam splitter 35051 upwards and is directly transmitted therethrough without reflection, so it does not enter the human eye to form a ghost.
  • a total of four sub-images are generated by using two light sources positioned horizontally above and below. It includes a light source 36011, a light source 36012, a plurality of polarizers 3602, a reflective refractive member 3603, a polarization changer 3604, and a boundary polarizer 3605.
  • some polarizers are added to the device structure to isolate the four optical paths, and at the same time prevent external light reflections from entering the human eye multiple times to form ghosts.
  • the use of a border polarizer 3605 can prevent the emission of Light interferes.
  • a polarization changer 3604 is added to the outermost side of the device, so that polarized light in the external environment (such as specular reflection light, computer, mobile phone, television display light, etc.) can be completely seen by the human eye through the entire device.
  • polarized light in the external environment such as specular reflection light, computer, mobile phone, television display light, etc.
  • FIG. 37 shows an embodiment of four sub-image stitching.
  • a polarization selective transmission diopter 3701 is used at the end.
  • the characteristics of the polarization-selective transmission diopter are that it can filter the passing light, and only refract the internal display light (in one polarization state), but not the external light (in another polarization state). Refraction allows the human eye to see both the internal display light and the external ambient light at the same time.
  • the near-eye display device contains a transmissive refractive element inside, which can allow external light to pass through, but will refract the incoming light at a certain focal length, and add a compensating refractive element (such as a spherical lens) on the outside of the entire device. , Aspheric lens, Fresnel lens, etc.), its focal length is opposite to that of the transmissive refractive component, and after canceling each other, it can allow the human eye to see the external light clearly, so as to achieve the transmission display effect of augmented reality.
  • a transmissive refractive element such as a spherical lens
  • FIG. 38 is a structural diagram of a specific near-eye display device according to this embodiment. As shown in FIG. 38, it includes a light source 38011, a light source 38012, a polarizing plate 3802 (including 8 polarizing plates), a compensation refractive element 3803, and a transmission type Light component 3804.
  • the internal transmission type refractive component 3804 is a positive focal length lens
  • the external compensation refractive component 3803 is a negative focal length lens. After the external light passes through the entire optical system, The equivalent focal length is zero, so that the human eye can see the external light clearly.
  • It includes a light source 3901, a transmissive refractive element 3903, a compensation refractive element 3902, and an exit window 3904 (several).
  • 39a to 39b show a device for projecting and splicing 24 sub-images. Each sub-image is emitted from a corresponding exit window to form a radial reflection unit.
  • exit windows 3904 Only four exit windows 3904 arranged in a cross shape are opened at each time period. There are a total of six time periods, so that the 24 sub-images are all projected onto the retina of the human eye in turn.
  • the 24 radial reflection units can be wave or turbine type.
  • Each radial reflection unit has the same optical path length, and shares the same near-eye refractive component 3903 at the end (a transmissive near-eye refractive component in this example), so that the human eye can see clearly.
  • the compensation diopter 3902 is used outside, so that the human eye can see the external light clearly.
  • multiple radial reflection units with different focal lengths or optical path lengths project multiple overlapping sub-images in the same area on the retina of the human eye.
  • These sub-images have different focal points. With different states of human lens lens focusing, these Only one of the sub-images can be clearly imaged on the retina, and the rest are blurred.
  • These overlapping sub-images can be projected at the same time, or they can be projected at different times and switched quickly in turn, or According to the needs of the application, only one of the sub-images is projected at a time.
  • FIG. 40a to FIG. 40c show two sub-images with different focal points projected on the same region of the human eye retina in this embodiment.
  • Figure 40a includes light source 40011, light source 40012, near-eye refractive component 4002, and several reflective surfaces (not labeled).
  • Figure 40a uses two independent light sources (light source 40011, light source 40012), which emit light at the same time. After reflection, different optical path lengths are formed. After passing through the near-eye refractive component 4002, they finally enter the human eye, and two sub-images with different focal points are formed on the human eye retina.
  • Figure 40b includes light source 40011, light source 40012, polarizer 4003 (several), near-eye refractive component 4002, and several reflective surfaces (not labeled). Compared with Figure 40a, Figure 40b has different positions of light source 40011 and light source 40012, and several polarizers are added. A larger field of view is achieved using polarization isolation.
  • Figure 40c includes a light source 4001, a reflective light valve 40041, a reflective light valve 40042, a near-eye refractive component 4002, and several reflective surfaces (not labeled).
  • the light emitted by the light source 4001 in Figure 40c passes through the reflective light valve 40042 or reflects at different times.
  • the reflection of the type light valve 40041 forms two light paths of different lengths, so that two sub-images with different focal points are projected at different times. Two sub-images cannot be displayed at the same time, but they can be quickly switched in turn; or one of the sub-images is selected for display according to application requirements.
  • FIG. 41 shows three sub-images with three different focal points projected in the same area of the human retina, including three light sources 41011 to 41013, a near-eye refractive component 4102, and several reflective surfaces (not labeled).
  • Figure 41 uses three independent light sources. After three reflections, the three rays of light form different light path lengths, and finally enter the human eye. Three sub-images with different focal points are formed in the same area of the human eye retina.
  • Figure 42 shows four sub-images with different focal points projected in the same area of the human eye retina, including light source 4201, reflective light valves 42021 to 42024, near-eye refractive component 4203, and several reflective surfaces (not labeled)
  • Figure 42 uses one light source, and switches four reflective light valves to form four rays with different optical path lengths, and finally enters the human eye through the near-eye refractive component, forming four sub-images with different focal points in the same area of the human eye retina.
  • the four sub-images cannot be displayed at the same time, but can be quickly switched in turn; or one of the sub-images is selected for display according to the application requirements.
  • FIG. 43 shows sub-images with different focal points projected on the retina of the human eye by adding moving parts in this embodiment, including a light source 4301, a linear motion device 4302, a near-eye refractive member 4303, and a reflective surface (not labeled).
  • a linear motion device 4302 is added to move the light source up and down, thereby adjusting the length of the overall optical path, and adjusting the focus of the sub-image projected onto the retina of the human eye.
  • FIG. 44 shows sub-images with different focal points projected on the retina of the human eye by adding moving parts in this embodiment, including a light source 4401, a polarizer 4402 (several), a near-eye refractive member 4404, and a reflective surface (not labeled).
  • a linear motion mirror 4403 is added to move forward and backward, thereby adjusting the length of the overall optical path, and adjusting the focus of the sub-image projected onto the retina of the human eye.
  • two radial reflection units with different optical path lengths project two overlapping sub-images in the same area on the retina of the human eye.
  • One sub-image is large, providing a wide edge field of view, and one sub-image is small, providing a center height. Clear field of view, thereby providing near-eye display with wide edges and clear center.
  • 45a to 45d show specific structural diagrams of this embodiment, including a light source 45011, a light source 45012, a sub-image 45021, a sub-image 45022, a polarizer 4503 (several), a reflective diopter 45041, and a reflective diopter 45042.
  • the embodiment proposes a solution of nesting of large and small images.
  • the light emitted by the light source 45011 and the light source 45012 have different polarization states, and are selected by different reflection channel polarization states, and come into contact with the reflective refractive elements 45041 and reflective refractive elements 45042 having different focal lengths and pass through the reflection.
  • the focal lengths of the two optical paths are different, the size of the image on the retina of the human eye is different.
  • a smaller sub-image 45022 and a larger sub-image 45021 are respectively formed.
  • the sub-image 45021 and the sub-image 45022 can coincide in the connection area, so that the user cannot perceive the boundary between the center picture and the edge picture. Because the sub-image 45022 has a smaller visual range, it has higher definition, which is in line with the characteristics of higher visual resolution at the center of the human eye.
  • the effect of nesting of large and small images can also be achieved by setting different polarizers.
  • the reflective refractive component 45041 is embedded in the center of the reflective refractive component 45042, and the corresponding polarizer is set so that the light emitted by the light source 45011 will only pass through the reflection of the reflective refractive component 45041, and The light emitted by the light source 45012 will only be reflected by the reflective diopter 45042, thereby isolating the light path, and also achieving the effect of nesting images of large and small sizes.
  • a combination of a polarizing plate and a polarizing beam splitter can also be used to achieve optical path isolation. I won't go into details here.
  • the device if the device allows external light to pass through, but does not perform refractive processing on the external light, a transmissive display effect of augmented reality can be achieved.
  • the light source 45011 and the light source 45012 may be disposed on the right side of the figure, and the light is emitted to the left and downward after being reflected.
  • This embodiment proposes another solution for nesting images of large and small sizes.
  • the light emitted by the light source 46011 is reflected downward, and then reflected outward by the semi-reflector 4602, and then reflected by the reflective refractive component 4603, and becomes a virtual image with a light emitting position close to the light source 46012.
  • the light emitted by the light source 46012 is collectively refracted by the transflective member 4604, and becomes a light that can be clearly seen by the human eye. Since the light emitted by the light source 46011 has undergone negative and positive refractive powers twice, the sub-image projected on the retina of the human eye is smaller and has higher definition.
  • the focal position of the central sub-image near the retina of the human eye can be adjusted to achieve the display effect of different focal planes.
  • adding two lenses of a negative focal length lens 4606 and a concave lens 4607 in the optical path can increase the negative focal power of the light emitted by the light source 46011.
  • a plano-convex lens 4605 is added, so that the light from the light source 46012 or the light transmitted by the outside can pass through the plano-convex lens 4605 and the flat-concave lens 4607 without being refracted.
  • the focal position of the central sub-image near the retina of the human eye can be adjusted to achieve the display effect of different focal planes.
  • the light emitted by the light source 46011 passes through the semi-reflector 4602 after being reflected downward, and is reflected by the refractive element 4603, and then is reflected by the semi-reflector 4602. Therefore, together with the light emitted by the light source 46012, it can be refracted by the transflective member 4604 together and become a light that can be clearly seen by the human eye.
  • the light source 46012 is a translucent display, external light can be allowed to pass through. Then, a transmissive display effect of augmented reality can be achieved. The specific scheme is not repeated here.
  • This embodiment proposes another solution for nesting images of large and small sizes.
  • 47a to 47c show specific structural diagrams of this embodiment, including a light source 47011, a light source 47012, a polarizer 4702 (several), a transmissive refractive member 4703, a transmissive refractive member 4704, and a transmissive refractive member 4705. , Mirror 4706.
  • a transmissive refractive member 4703 is embedded in the center of the transmissive refractive member 4704.
  • the light emitted by the light source 47011 is polarized, and after reflecting downward, it is reflected outward. Due to polarization selectivity, the light can only enter the human eye through the transmissive refractive member 4703, but cannot pass through the transmissive refractive member 4704 After the light emitted by the light source 47012 is polarized, it can only enter the human eye through the transmissive refractive member 4704, but cannot pass through the transmissive refractive member 4703.
  • the focal lengths of the two transmissive refractive components are also different, resulting in different sizes of the two sub-images, one smaller in the center and clearer, and one larger occupying the periphery and more blurred.
  • a transmissive refractive member 4705 (either a positive focal length or a negative focal length) is added to further adjust the projection optical path of the central sub-image.
  • the focal position of the central sub-image near the retina of the human eye can be adjusted to achieve the display effect of different focal planes.
  • a reflector 4706 is added to further increase the length of the projection optical path of the central sub-image, so that a smaller and clearer image can be obtained.
  • the focal position of the central sub-image near the retina of the human eye can be adjusted to achieve the display effect of different focal planes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)

Abstract

本发明公开了一种薄型大视场角近眼显示装置,采用两个或多个径向反射单元排列于人眼前,在人眼视网膜上投射拼接成较大面积的图像,从而在较薄的体积下实现较大视场角的近眼显示效果。

Description

一种薄型大视场角近眼显示装置 技术领域
本发明涉及近眼显示装置领域,具体的涉及一种薄型大视场角近眼显示装置。
背景技术
在近眼显示系统中,若要形成大视场角显示效果,一般来说需要较大口径的成像系统,而大口径成像系统的焦距一般都不会太小,焦距代表着近眼显示装置的轴向厚度,因此,行业现状下,不易于制作体积纤薄的大视场角眼镜式显示器。
本发明提出一种新思路,在保持成像系统较大口径的基础上,采用径向反射单元,将装置的厚度转化为径向尺寸,并采用同方向或不同方向的多个径向反射单元,通过拼接成像的方式实现较大的视场角,同时维持装置的整体薄片形态,更加适合于制造轻薄便携的眼镜式显示器产品。
发明内容
本发明提供一种采用径向反射单元,通过拼接成像的方式实现较大视场角的薄型大视场角近眼显示装置。
本发明的技术方案:一种薄型大视场角近眼显示装置,包括两个或多个径向反射单元,所述径向反射单元排列于人眼前,产生出两个或多个子图像,并在人眼视网膜上拼接成较大的图像,从而在较薄的体积下实现较大视场角的近眼显示效果。
优选的,所述径向反射单元包括光源,反射面,透射式屈光器和/或反射式光学部件,
所述光源发出的光线,在反射成为轴向光线之前,先经过透射式屈光器或反射式光学部件进行屈光放大,从而使人眼能够看清。
优选的,所述径向反射单元为多次反射径向反射单元,光源发出的光线,在反射成为最终出射光线的过程中,经过两次或两次以上的反射,最终射入人眼。
优选的,所述多次反射径向反射单元包括多次反射结构,
所述多次反射结构包括多个反射面和/或偏振片和/或偶次透射器,和/或偏振透射器,和/或偏振性改变反射器,和/或偏振性改变器。
优选的,所述多个径向反射单元从不同方向由侧面投射出各个子图像,在人眼视网膜上拼接成完整的图像。
优选的,两个径向反射单元从上下两个方向投射出子图像,在人眼视网膜上拼接成完整的图像。
优选的,三个或三个以上径向反射单元的反射面的结构形态包括棱椎式,涡轮式,波浪式。
优选的,所述多个径向反射单元从同一方向由侧面投射出各个子图像,在人眼视网膜上拼接成完整的图像。
优选的,所述多个径向反射单元从同一方向由侧面投射出各个子图像,每个径向反射单元设置独立的光源,或者多个径向反射单元共用同一个光源,通过光线控制器,形成多个出射窗口,且使得每一时间段内仅有一个出射窗口打开,允许光线射出,不同时间段中多个径向反射单元交替投射不同的子图像,且每个时间段长度极短,使得人眼同时感觉到多个子图像。
优选的,所述光线控制器包括透射式光阀、反射式光阀、可控反射镜或转镜阵列。
优选的,所述多个径向反射单元从不同方向投射光线,每个方向上有多个径向反射单元相互重叠,每个径向反射单元投射出单独的子图像,在人眼视网膜上拼接成完整的图像。
优选的,所述近眼显示装置还包括补偿屈光部件,所述补偿屈光部件的焦距与近眼式屈光部件的焦距相反,相互抵消后即可允许人眼看清外部光线,从而实现增强现实的透过式显示效果。
优选的,所述近眼显示装置还包括运动部件,用以调节径向反射单元的光路长度,从而在人眼视网膜上投射出不同焦点的子图像。
优选的,两个光路长度不同的径向反射单元在人眼视网膜上同一区 域投射出重叠的两个子图像,一个子图像较大,提供宽广的边缘视野,一个子图像较小,提供中心高清晰视野,由此提供边缘宽广而中心清晰的近眼显示效果。
本发明的有益效果:本发明公开了一种薄型大视场角近眼显示装置,采用两个或多个径向反射单元排列于人眼前,在人眼视网膜上投射拼接成较大面积的图像,从而在较薄的体积下实现较大视场角的近眼显示效果。
应当理解,前述大体的描述和后续详尽的描述均为示例性说明和解释,并不应当用作对本发明所要求保护内容的限制。
附图说明
参考随附的附图,本发明更多的目的、功能和优点将通过本发明实施方式的如下描述得以阐明,其中:
图1示意性示出一种薄型大视场角近眼显示装置结构图;
图2a~图2d所示为本发明第一实施例的薄型大视场角近眼显示装置中的径向反射单元的结构示意图。
图3a~图3f所示为本发明第二实施例的薄型大视场角近眼显示装置中的径向反射单元的结构示意图。
图4a~图4f,图5a~图5g所示为本发明第三实施例的径向反射单元多次反射结构和采用多次反射结构的薄型大视场角近眼显示装置的结构示意图。
图6‐图13a~c所示为本发明第四实施例的薄型大视场角近眼显示装置的结构示意图。
图14‐图16a~d,所示为本发明第五实施例的薄型大视场角近眼显示装置的结构示意图。
图17a~e‐图30所示为本发明第六实施例的薄型大视场角近眼显示装置的结构示意图。
图31a~图31d所示为本发明第七实施例的薄型大视场角近眼显示装置的结构示意图。
图32a~j‐图39a~b所示为本发明第八实施例的薄型大视场角近眼显示装置的结构示意图。
图40a~c‐图44所示为本发明第九实施例的薄型大视场角近眼显示装置的结构示意图。
图45a~d‐图47a~c所示为本发明第十实施例的薄型大视场角近眼显示装置的结构示意图。
具体实施方式
通过参考示范性实施例,本发明的目的和功能以及用于实现这些目的和功能的方法将得以阐明。然而,本发明并不受限于以下所公开的示范性实施例;可以通过不同形式来对其加以实现。说明书的实质仅仅是帮助相关领域技术人员综合理解本发明的具体细节。
在下文中,将参考附图描述本发明的实施例。在附图中,相同的附图标记代表相同或类似的部件,或者相同或类似的步骤。
图1所示为本发明一种薄型大视场角近眼显示装置的结构示意图,如图1所示,大视场近眼显示装置包括两个或多个径向反射单元,本实施例的大视场近眼显示装置包括径向反射单元001径向反射单元和002径向反射单元,其中所述径向反射单元001包括光源101a,反射单元102a,径向反射单元002包括光源101b,反射单元102b;
本实施例的大视场近眼显示装置还包括近眼屈光部件104,本实施例采用两个径向反射单元排列于人眼前,产生出两个子图像103a和子图像103b,并在人眼视网膜上拼接成较大的图像,从而在较薄的体积下实现较大视场角的近眼显示效果。
其中,所述光源包括显示屏、投影器、光束发生器、激光器、光调制器、光反射器、光折射器、光衍射器等器件。
实施例1
图2a~图2d所示为本发明第一实施例的薄型大视场角近眼显示装置中的径向反射单元的结构示意图。
本实施例中,光源发出的光线,在反射成为轴向光线之前,经过透射式屈光器或反射式光学系统进行屈光放大,从而使人眼能够看清。
其中所述透射式屈光器包括凸透镜、菲涅尔透镜、衍射型透镜、偏 振选择型透镜等。所述反射式光学系统包括球面反射镜、非球面反射镜、自由曲面反射镜等。
图2a所示,在光源201a发出的光线经过透镜202a进行屈光放大,再经过反射镜203a变成轴向光线进入人眼。
图2b所示,在光源201b发出的光线经过曲面反射镜202b进行屈光放大,再经过反射镜203b1透射和反射镜203b2的反射变成轴向光线进入人眼。
图2c所示,在光源201c发出的光线经过透镜202c进行屈光放大,再经过反射镜203c1反射和反射镜203c2的反射变成轴向光线进入人眼。
图2d所示,在光源201d发出的光线经过曲面反射镜202d进行屈光放大,再经过反射镜203d的反射变成轴向光线进入人眼。
实施例2
图3a~图3f所示为本发明第二实施例的薄型大视场角近眼显示装置中的径向反射单元的结构示意图。
本实施例中,光源发出的光线,在反射成为轴向光线之后,经过透射式屈光器或反射式光学系统进行屈光放大,从而使人眼能够看清。
其中所述透射式屈光器包括凸透镜、菲涅尔透镜、衍射型透镜、偏振选择型透镜等。
所述反射式光学系统包括球面反射镜、非球面反射镜、自由曲面反射镜等。
图3a所示,在光源301a发出的光线经过反射镜302a的反射进入透射式屈光器303a,经过透射式屈光器303a的屈光放大进入人眼。
图3b所示,在光源301b发出的光线经过反射镜302b1反射和反射镜302b2的反射进入透射式屈光器303b,经过透射式屈光器303b的屈光放大进入人眼。
图3c所示,在光源301c发出的光线经过反射镜302c的反射进入曲面反射镜303c,经过曲面反射镜303c的反射和屈光放大进入人眼。
图3d所示,在光源301d发出的光线经过反射镜302d1的半反射和反射镜302d2的选择性反射进入曲面反射镜303进行反射和屈光放大, 最后经过反射镜302d2的选择性透射进入人眼。
图3e所示,在光源301e发出的光线经过反射镜302e1的半反射,曲面反射镜303e的透射和反射镜302e2的选择性反射,最后再次经过曲面反射镜303e进行反射和屈光放大,最后经过反射镜302e2的选择性透射进入人眼。
图3f所示,在光源301f发出的光线经过反射镜302f1的半反射,曲面反射镜303f的选择性反射和屈光放大,经过反射镜302f1的透射和反射镜302f2的反射,最后再次经过反射镜302f1的透射和曲面反射镜303f的选择性透射进入人眼。
在图3d~图3f中,反射镜302d2、反射镜302e2、曲面反射镜302f均为选择性透光器,光线都经过了3次反射和若干次透射,才最终进入人眼,为了限定光线按照预定的光路运行,需要采用特殊的多次反射结构来实现选择透光性,具体实施方法,请见实施例3。
实施例3
图4a~图4f,图5a~图5g所示为本发明第三实施例的径向反射单元多次反射结构和采用多次反射结构的薄型大视场角近眼显示装置的结构示意图。
其中图4a~图4f为径向反射单元可能采用的一些多次反射结构;图5a~图5g为多次反射结构的其他一些组合形态。
本实施例中,径向反射单元为多次反射径向反射单元,光源发出的光线,在反射成为最终出射光线的过程中,经过两次或两次以上的反射,最终射入人眼。
本实施例采用多个反射面和/或偏振片和/或偶次透射器,和/或偏振透射器,和/或偏振性改变反射器,和/或偏振性改变器实现光线的多次反射。
本实施例中,图4a~图4f,图5a~图5g图中除光线以外,未标注的部件均为反射器(或半反射器),本实施例中的反射器采用反射镜。
图4a,图4b为2次反射结构,图4c、图4d为3次反射结构,图4e, 图4f为4次反射结构。
在图4c、图4e中,分别设置偶次透射器401c和偶次透射器401e,其中,所述偶次投射器是由四分之一波片、半反射膜、四分之一波片、线偏振片组成的四层复合结构。当一定属性的线偏振光第一次射入偶次透射器时,无法透过,只能反射;而当反射光经过第二次反射再射入偶次透射器时,可以通过。由此类似结构,亦可以实现实施例2中所需的选择透光性。
在图4f中,设置偏振透射器402f和偏振性改变反射器403f,其中所述偏振透射器402f是由半反射膜、线偏振片组成的两层复合结构,
偏振性改变反射器403f是由偏振性改变器、反射膜组成的两层复合结构。当一定属性的线偏振光第一次射入偏振透射器时,无法透过,只能反射;而当反射光经过偏振性改变反射器的反射再射入偏振透射器时,可以通过。由此类似结构,亦可以实现实施例2中所需的选择透光性。
其中,所述偏振性改变器可以是任何可改变或者破坏光线原有偏振态的装置,如散射膜、衍射膜、各向异性膜、消偏膜、四分之一波片、半波片、全波片等。
同样的,图4c也可以采用和图4f方案中一样的偏振透射器和偏振性改变反射器来实现的3次反射效果。
图4a~图4f以上六种方案中,反射结构在将径向光线转换为最终出射光线的过程中,一共经历了2次、3次或4次反射。还有更多通过不同反射面的设置,来产生多次反射的应用实例,在此不作赘述。
通过多于1次的反射,可以更多的延长光线在射出之前的传播距离,以满足不同的光学结构需求。
图5a、图5b、图5c为多个2次反射结构组合而成。相当延长了光线传播距离的两倍,从而在焦距一半的厚度下实现了近眼显示效果。
图5a所示,光源501a发出的光线,经过两个2次反射结构,进入近眼屈光部件502a,经过近眼屈光部件502a的屈光放大,进入人眼。
图5b所示,光源501b发出的光线,经过三个2次反射结构所形成的光路通道,进入近眼屈光部件502b,经过近眼屈光部件502b的屈光放大,进入人眼。
图5c所示,光源501c发出的光线,经过多个2次反射结构,进入近 眼屈光部件502c,经过近眼屈光部件502b的屈光放大,进入人眼,其中图5c采用了多个偏振片503,保证了光路之间互不干扰。光线从501c发出后,经过三个偏振片503,被处理成了一种特定的偏振态(线偏振或圆偏振)光线,之后这种光线只能透过与自己偏振态相容的偏振片503,而无法透过与自己偏振态相反的偏振片503,因此三路光线各自经过两次反射和相同的光路长度,最终射入502c。
图5d采用了两个3次反射结构进行组合。相当延长了光线传播距离的三倍,从而在焦距三分之一的厚度下实现了近眼显示效果。
图5d所示,光源501d发出的光线,经过两个3次反射结构,进入近眼屈光部件502d,经过近眼屈光部件502d的屈光放大,进入人眼。
图5e、图5f采用了两个4次反射结构进行组合。其中采用了偏振片和偏振性改变器,来保证光线在完成4次反射之前不会溢出。相当延长了光线传播距离的三倍,从而在焦距三分之一的厚度下实现了近眼显示效果。
图5e所示,光源501e发出的光线,经过两个4次反射结构,进入近眼屈光部件502e,经过近眼屈光部件502e的屈光放大,进入人眼,其中图5e设置偏振片503e和偏振性改变器504e,来保证光线在完成4次反射之前不会溢出。光线从501e发出后,经过偏振片503e,被处理成了一种特定的偏振态(线偏振或圆偏振)光线,这种光线无法透过近眼屈光部件502e附近的偏振片503e(因为与其偏振态相反),只能经过反射,再经过偏振性改变器504e,之后光线的偏振性发生了改变,可以透过近眼屈光部件502e附近的偏振片503e,最终射入近眼屈光部件502e。
图5f所示,光源501f发出的光线,经过两个4次反射结构,进入近眼屈光部件502f,经过近眼屈光部件502f的屈光放大,进入人眼,其中图5f设置偏振片503f和偏振性改变器504f,来保证光线在完成4次反射之前不会溢出。
图5g采用了三个4次反射结构进行组合。相当延长了光线传播距离的三倍,从而在焦距三分之一的厚度下实现了近眼显示效果。
图5g所示,光源501g发出的光线,经过三个4次反射结构,进入近眼屈光部件502g,经过近眼屈光部件502g的屈光放大,进入人眼,其中图5g设置偏振片503g和偏振性改变器504g,来保证光线在完成4次 反射之前不会溢出。
在图5a~图5g中,近眼屈光部件均为透射式屈光器,它可以是单个透镜,也可以由多个透镜拼接而成,也可以是多层透镜组成的复合结构,也可以是多层反射层和折射层组成的复合结构。
在某些情况下,近眼屈光部件可以是由多块光轴和/或焦距不同的子透镜拼接而成的多光轴复合镜片,一个或多个子透镜对应一个特定的光路通道,每个光路通道的光线通过特殊设置的子透镜屈光后射入人眼,可以实现更好的拼接显示效果;或者可以在每个光路通道的出口处设置一个小透镜(或多个小透镜),进行首次屈光,再由后端一个完整的大透镜进行二次屈光,这些小透镜和大透镜共同组成透镜阵列式多光轴近眼屈光部件,光线通过两次屈光后射入人眼,可以实现更好的拼接显示效果。
在某些情况下,近眼屈光部件也可以为反射式屈光器,可将光线屈光和折返后射入人眼。
类似如图5a、图5c的情况,近眼屈光部件可以是自由曲面反射镜,可以将光线屈光、反射,最终进入人眼。特殊的,自由曲面反射镜表面设置有偏振性改变器,使得光路在折返后,不会再受到偏振片的阻挡。
实施例4
本实施例中,多个径向反射单元从不同方向由侧面投射出各个子图像,在人眼视网膜上拼接成完整的图像。
在本实施例中一个光源,代表一个径向反射单元,具体的径向反射单元的结构在本实施中不具体体现。
一. 两个径向反射单元
图6所示为本实施例的两个径向反射单元从不同方向由侧面投射出各个子图像,在人眼视网膜上拼接成完整的图像。
如图6所示,两个径向反射单元从上下两个方向投射出子图像,在人眼视网膜上拼接成完整的图像。
二. 三个或多个径向反射单元
三个或三个以上径向反射单元的结构形态有以下三种类型:
A棱椎式,B涡轮式,C波浪式。
其中图7a1,图7a2所示为本实施例的棱椎式径向反射单元的结构形态。其中,图7a1,图7a2包括6个径向反射单元,还可以包括N个(N大于2)径向反射单元,例如包括3个径向反射单元,或4个径向反射单元,如图8a~图8b。
其中图7b1,图7b2所示为本实施例的涡轮式径向反射单元的结构形态。图7b1,图7b2包括6个径向反射单元,还可以包括N个(N大于2)径向反射单元,例如包括12个径向反射单元,如图9所示,采用12个光源,通过6个涡轮式排列的反射面,投射出12个子图像。图中相同编号的光源和子图像相互对应,互不干扰。
其中图7c1,图7c2所示为本实施例的波浪式径向反射单元的结构形态。其中,图7c1,图7c2包括6个径向反射单元,每2个径向反射单元为一组,还可以包括N个(N大于2)径向反射单元,例如包括三组径向反射单元、五组径向反射单元、七组径向反射单元,如图10a~图10c。采用多个光源,通过对应的多个波浪式排列的反射面,投射出多个子图像。
图11a~图11b所示,为波浪式排列的另一种实施例,通过6个波浪式排列的反射面,反射周围的光源。如图11a,光源可以分为12块排列成六边形,也可以如图11b,采用环形光源的形态
图中相同编号的光源和子图像相互对应,互不干扰。
特殊的,图10a~图10c中,周围的多个光源可以连成一圈,变成一块完整的环形光源。
其中,图7a1,图7a2,图7b1,图7b2,图7c1,图7c2的每个径向反射单元的光路长度一致,可以在末端共用同一个近眼屈光部件(透射式近眼屈光部件或反射式近眼屈光部件),使得人眼能看清。特殊的,当近眼屈光部件为透射式屈光部件时,它可以是单个透镜,也可以由多个透镜拼接而成,也可以是多层透镜组成的复合结构,也可以是多层反射层和折射层组成的复合结构;当近眼屈光部件为反射式屈光部件时,它可以是单个曲面反射镜,也可以由多个曲面反射镜拼接而成,也可以是 多层反射层和折射层组成的复合结构。
图12所示为多个径向反射单元从不同方向由侧面投射出各个子图像,在人眼视网膜上拼接成完整的图像的另一种实施例,采用4个径向反射单元和对应的8个反射面,投射出8个子图像。
三. 对于多个径向反射单元,处理杂光的方法
在采用多个径向反射单元时,光源发出的光线在经过对应的反射面反射的同时,还可能经过其他反射面的错误反射,如果这些错误反射的光线最终射入人眼,则会形成杂光。因此,需要采取相应措施截断杂光。有以下三种解决方案,如图13a~图13c。
如图13a,在光源1301a处,设置椭圆偏振片1302a1(特殊的,可以采用圆偏振片),将光线处理成椭圆偏振光(或圆偏振光),经过正确反射面1303a反射后,再经过二次反射面1305a(可以是平面反射面,或者是曲面反射面)反射,由于光线经过了两次反射,其偏振态正好可以顺利通过出射方向上设置的椭圆偏振片1302a2(特殊的,可以采用圆偏振片)。而光线经过错误反射面1304a反射之后,由于光线只经过了一次反射,其偏振态无法通过椭圆偏振片1302a2,因此不会产生杂光。
如图13b,在光源1301b处,设置线偏振片1302b1,将光线处理成线偏振光。特殊的,光源发出的光线本身就是某种线偏振光。处于线偏振状态下的投射光线,射入正确反射面1303b,产生透射光和反射光。其透射光的偏振性与线偏振片1302b2相互垂直,被阻断,不会投向错误反射面1304b,因此不会产生杂光;其反射光经过偏振性改变器1306b(可以是任何可改变或者破坏光线原有偏振态的装置,如散射膜、衍射膜、各向异性膜、消偏膜、四分之一波片、半波片、全波片等),再经过二次反射面1305b的反射,然后再经过偏振性改变器1306b,此时,光线的偏振性已经发生了改变,因此可以通过线偏振片1302b2,最终射入人眼;
如图13c,在光源1301c处,设置线偏振片1302c,将光线处理成线偏振光。特殊的,光源发出的光线本身就是某种线偏振光。处于线偏振状态下的投射光线,射入正确反射面1303c,正确反射面在此方案中,是一种偏振分光片。
偏振分光片的特性,是对某些偏振态的光线完全反射,而对某些偏 振态的光线完全透过。
处于线偏振态的投射光线在正确反射面1303c表面只发生反射,不发生透射,无法投向错误反射面1304c,因此不会产生杂光;而反射光线经过偏振性改变器1306c之后偏振性发生改变,因而可以透过正确反射面1303c,射入人眼。
实施例5
本实施例中,多个径向反射单元从同一方向由侧面投射出各个子图像,在人眼视网膜上拼接成完整的图像。为了防止各个径向反射单元之间的光线发生干扰,可使得各个光源发出不同偏振态的光线,然后通过偏振选择器,对不同径向反射单元的光线进行单独隔离。
其中所述偏振选择器包括各种偏振滤光片如线偏振片,或偏振分光片。
在本实施例中一个光源,代表一个径向反射单元,具体的径向反射单元的结构在本实施中不具体体现。
图14所示为本实施例的多个径向反射单元从同一方向由侧面投射出各个子图像。如图14所示,径向反射单元1401a和径向反射单元1401b,从上往下透射,由侧面投射出子图像1402a和子图像1402b。
图15a~图15d,图16a~图16d,所示为本实施例的多个径向反射单元从同一方向由侧面投射出各个子图像的具体的径向反射单元结构示意图。
图15a~图15d所示中,两个径向反射单元的结构在空间上有重叠,光源端设置有线偏振片15021和线偏振片15022,使得光源15011和光源15012发出的光线具有不同的偏振态,例如相互垂直的线偏振态。
图15a,在光路末端设置线偏振片15023和线偏振片15024,使得线偏振片15021和线偏振片15023的方向一致,因此光源15011发出的光线最终只通过线偏振片15023射出;同理,使得光源15012发出的光线最终只通过线偏振片15024射出。由于两个光路的长度一致,因此可以共用同一个透射式屈光部件1504,使人眼能看清图像。
图15b,与附图15a的不同之处在于,反射式结构先将光线反射向外, 再反射向内。采用这种结构可以使得整体光路更长,且使得透射式屈光部件和线偏振片15023和线偏振片15024的距离较远,以实现更优的光学效果。由于两个光路的长度一致,因此可以共用同一个透射式屈光部件,使人眼能看清图像。
图15c,反射式结构先将光线反射向外,投向反射式屈光部件,这是一种曲面反射器,会在屈光时偏折光线的传播方向,为了防止后续显示效果受到影响,需要在反射式屈光部件1506c表面设置偏振性改变器1505c,来改变所有光线的既有偏振态,使得光线经过反射式屈光部件反射射向人眼的过程中,不会再被阻断。由于两个光路的长度一致,因此可以共用同一个反射式屈光部件,使人眼能看清图像。
图15d采用一种特殊的偏振分光片,如图光路所示,光源15011发出的偏振光可以在其表面发生完全反射而不发生透射,光源15012发出的偏振光在其表面只发生透射不发生反射。在反射式屈光部件1506d表面设置偏振性改变器1505d,来改变所有光线的既有偏振态,使得光线经过反射式屈光部件反射射向人眼的过程中,不会再被阻断。由于两个光路的长度一致,因此可以共用同一个反射式屈光部件,使人眼能看清图像。
以上图15a~图15d四种情况中,将两个不同光路在两个垂直的线偏振方向上进行隔离,同理,也可以将两个不同的光路在两个相反的圆偏振方向上进行隔离,原理类似,不作赘述。
图16a~图16d,展示了光源、反射面、偏振片排布的其他几种实施方案,其中,光源16011、光源16012为两个独立的光源,用线条填充的矩形表示偏振片,空白矩形表示反射部件,即反射面,具体结构如图,值得注意的是:
在出口处都采用线偏振片作为偏振选择器,同理,也可以采用偏振分光片进行光路隔离;
将两个不同光路在两个垂直的线偏振方向上进行隔离,同理,也可以将两个不同的光路在两个相反的圆偏振方向上进行隔离。
由于两个光路的长度一致,因此可以共用同一个近眼屈光部件(透射式屈光部件或反射式屈光部件),使人眼能看清图像。
如图16c,特殊的,可以只采用一个光源来同时起到两个光源的作用。 例如,在光源16011的位置放入一个光源,这个光源可以同时发出两种偏振方向相互垂直的偏振光,且这两种偏振光组成两幅不同的图像(具体方案,可通过像素表面覆盖偏振片,使得光源表面的相邻两个像素发出不同的偏振光),这两幅图像向下传播后,各自进入不同的光路,最终在人眼上拼接成完整图像;或者这个光源可以在两个不同的时间段产生出两种偏振方向相互垂直的偏振光(具体方案,可在光源外放置偏振器及相应的光学通道,可以在不同时间将光源发出的光线处理成不同的偏振态,如类似图27a、图27b例举的方法,或者采用其他可以在不同时刻产生两种相互垂直的偏振光的光学结构),且这两种偏振光组成两幅不同的图像,两个时间段切换迅速,让人眼察觉不到切换的过程,便认为两个图像同时出现。
同理,如图16d,也可以采用类似的方法,采用一个光源来同时起到两个光源的作用。
实施例6
本实施例中,多个径向反射单元从同一方向由侧面投射出各个子图像,每个径向反射单元有独立的光源,或者多个径向反射单元共用同一个光源,为了防止各个径向反射单元之间的光线发生干扰,可以通过透射式光阀、反射式光阀或可控反射镜等光线控制器,形成多个出射窗口,且使得每一时间段内仅有一个出射窗口打开,允许光线射出,不同时间段中多个径向反射单元交替投射不同的子图像,且每个时间段长度极短,使得人眼同时感觉到多个子图像。
一.多个径向反射单元从同一方向由侧面投射出各个子图像,每个 径向反射单元有独立的光源
图17a~图17e所示为本实施例的示意图,如图17a所示,是一个有多个独立光源的实施例:
上方有四个光源包括光源17011,光源17012,光源17013,光源17014,每一时间段内仅有其中一个光源发光,同时,也仅有一个出射窗口打开,让光线通过。四个光源和对应的出射窗口17021,出射窗口17022,出射窗口17023,出射窗口17024形成的光路长度一致,可以在末端共用同一 个近眼屈光部件(透射式近眼屈光部件或反射式近眼屈光部件),使得人眼能看清。
图17b~图17e,所示为进一步的对本实施进行解释的示意图,如图所示,图17b~图17e分别对应4个时刻,t1,t2,t3,t4,光源分为四个独立的区域(光源17011,光源17012,光源17013,光源17014),可以独立控制发出的光线。下方每个反射面对应一个出射窗口,在本实施例中出射窗口均为透射式光阀。
透射式光阀可以是液晶光阀,或其他透光率可控的器件。在接收到不同的控制信号时,透射式光阀对特定光线(一般来说为偏振光)呈现透光或截断两种效果。
每一时间段内仅有其中一个光源发光,同时,也仅有一个透射式光阀形成的出射窗口让光线通过。
在t1时刻,光源17011发光,与其对应的出射窗口17021打开,让光线通过。
在t2时刻,光源17012发光,与其对应的出射窗口17022打开,让光线通过。
在t3时刻,光源17013发光,与其对应的出射窗口17023打开,让光线通过。
在t4时刻,光源17014发光,与其对应的出射窗口17024打开,让光线通过。
四个光源和对应的出射窗口17021,出射窗口17022,出射窗口17023,出射窗口17024形成的光路长度一致,可以在末端共用同一个近眼屈光部件1703,使得人眼能看清。
其中,所述近眼屈光部件1703包括透射式近眼屈光部件或反射式近眼屈光部件。特殊的,当近眼屈光部件为透射式屈光部件时,它可以是单个透镜,也可以由多个透镜拼接而成,也可以是多层透镜组成的复合结构,也可以是多层反射层和折射层组成的复合结构;当近眼屈光部件为反射式屈光部件时,它可以是单个曲面反射镜,也可以由多个曲面反射镜拼接而成,也可以是多层反射层和折射层组成的复合结构。
图18a~图18b,图19a~图19b,图20a,图20b为本实施例的四种光 源、反射面、出射窗口排布方式不同的的其他实施方案。其中本实施例中未标注的空白矩形表示反射面。
图18a所示为在t1时刻,光源18011发出的光线的光路,其中与光源18011对应的出射窗口18021在t1时刻打开,允许光线通过。
图18b所示为在t2时刻,光源18012发出的光线的光路,其中与光源18012对应的出射窗口18022在t2时刻打开,允许光线通过。
图18a~图18b包括两个独立的光源,可以独立控制发出的光线。光源18011和光源18012在不同的时刻发光,光源18011发出的光线经过两次反射向下,光源18012发出的光线经过一次反射向下。两个光源和对应的出射窗口形成的光路长度一致。
图19a所示为在t1时刻,光源19011发出的光线的光路,其中与光源19011对应的出射窗口19021在t1时刻打开,允许光线通过。
图19b所示为在t2时刻,光源19012发出的光线的光路,其中与光源19012对应的出射窗口19022在t2时刻打开,允许光线通过。
在t1、t2两个不同的时刻,两个光源和对应的出射窗口形成两条光路,且长度一致。
图20a~图20b为另外两种光源、反射面、出射窗口排布方式不同的的实施方案。如图在两个不同的时刻,两个光源和对应的出射窗口形成两条光路,通过调整光源20011和光源20012的位置,可以使得两条光路长度一致或不一致。
二. 多个径向反射单元从同一方向由侧面投射出各个子图像,多个 径向反射单元共用同一个光源
本实施例的附图中未标记的空白矩形均表示反射面。
图21所示为本实施例的示意图,如图21所示,包括光源2101,出射窗口21021,出射窗口21022,出射窗口21023;多个径向反射单元从同一方向由侧面投射出各个子图像,且共用同一个光源。不同时间段内光源显示不同的图像,同时,也仅有一个出射窗口打开,让光线通过。
图22~图24所示为本实施例的具体的径向反射单元结构示意图。
图22所示,包括光源2201,前置屈光器2202,出射窗口22031,出射窗口22032,出射窗口22033,出射窗口22034。本实施例的出射窗口 均为透射式光阀。
同一个光源2201发出的光线经过前置屈光器2202,变成近平行光(远光),再通过后续的多个反射面,在不同时间段通过不同的出射窗口射入人眼,在视网膜上形成图像。
图23所示,包括光源2301,出射窗口23021,出射窗口23022,出射窗口23023,出射窗口23024。本实施例的出射窗口均为透射式光阀。
如图23所示,为了保证多个径向反射单元总光路长度一致,
同一个光源2301,在四个不同的时刻,发出四种不同的图像。在下方的反射结构中,分别采用了多次反射结构,形成了四组反射结构,分别将光线进行1~4次反射。
光源2301和四个出射窗口形成的光路长度一致,可以直接射入人眼;或者在末端共用同一个近眼屈光部件(透射式近眼屈光部件或反射式近眼屈光部件),使得人眼能看清。
图23所示是四个径向反射单元组合的情况,也可以减少其中的某个反射结构,变为三重组合;或者减少其中两个反射结构,变为二重组合。原理类似,不予赘述。
如图24所示,本附图同样是四个径向反射单元组合的情况,多个径向反射单元总光路长度一致,与上一图23不同的是,结构中部分反射面的具体形态不同。
出射窗口的不同结构
图25a~图25b,图26所示为本实施例的出射窗口的不同结构示意图。
其中,本实施例的出射窗口还包括反射式光阀或可控反射镜等光线控制器,形成多个出射窗口。
图25a所示,出射窗口为反射式光阀,包括4个反射式光阀,反射式光阀25011a,反射式光阀25012a,反射式光阀25013a,反射式光阀25014a,近眼屈光部件2502a,反射式光阀可以是液晶光阀和反射镜的组合,也可以是其他透光率、反光率可控的器件。在接收到不同的控制信号时,反射式光阀对特定光线呈现反光和不反光两种效果。
图25b所示,出射窗口为可控反射镜,包括4个可控反射镜,可控 反射镜25011b,可控反射镜25012b,可控反射镜25013b,可控反射镜25014b,近眼屈光部件2502b,可控反射镜可以是机械旋转式、百叶窗式、微机电式的器件,也可以是其他反光率、反光方向可控的器件。在接收到不同的控制信号时,可控反射镜对特定光线呈现有效反光和无效反光(或不反光)两种效果。
图26所示,出射窗口为转镜阵列,采用转镜阵列,形成多个独立的光路。
图26包括光源2601,转镜阵列001,转镜阵列002。
转镜阵列由可控旋转角度的多个微小转镜2602组成,每个转镜2602可以单独根据控制信号,在两种或多种角度状态下快速切换,以实现对光线反射方向的控制。
转镜可以是机械式的,如安置有机械转轴和动力装置;也可以是微机电式的,小至微米级的微机电转镜,在电磁力控制下实现转动;
光源2601面向转镜阵列001发出光线,在某一时刻,只有一个转镜处于工作状态,将光线向下反射到转镜阵列002中对应的处于工作状态的转镜上,最终将光线反射出去。
在每一独立时间段(t1、t2或t3),只有一条光路处于工作状态,因而实现了多重光路的隔离,并保证每条光路的长度一致。可以在末端共用同一个近眼屈光部件(透射式近眼屈光部件或反射式近眼屈光部件),使得人眼能看清。
同一光源两重复用的情况
图27a~图27b所示为本实施的 同一光源两重复用的情况。
如图27a,光源2701a在不同时刻发出两种不同的图像,在其一时刻,反射式光阀27022a不工作,光线经过反射式光阀27021a的反射,形成一种偏振光,这种偏振光只能通过线偏振片27033a,而无法通过线偏振片27034a;在另一时刻,反射式光阀27021a不工作,光线经过反射式光阀27022a的反射,形成一种偏振光,这种偏振光只能通过线偏振片27034a,而无法通过线偏振片27033a。上述不同时刻的两条光路长度一致。
如图27b,光源2701b在不同时刻发出两种不同的图像,在某一时刻, 透射式光阀27022b不工作,光线经过透射式光阀27021b的透过,形成一种偏振光,这种偏振光只能通过线偏振片27031b,而无法通过线偏振片27032b;在另一时刻,透射式光阀27021b不工作,光线经过透射式光阀27022b的透过,形成一种偏振光,这种偏振光只能通过线偏振片27032b,而无法通过线偏振片27031b。上述不同时刻的两条光路长度一致。
一个综合实施方案:
图28a~图28b所示是一种8个子图像投射装置。每个子图像从相应的出射窗口射出。
在其一时刻只有如图四个出射窗口2802(非阴影部分)打开;在另一时刻,另外四个出射窗口(阴影部分)打开。周围采用8个独立光源2801,或者一个环形光源。
8个径向反射单元可采用波浪式或涡轮式。各个径向反射单元光路长度一致,在末端共用同一个近眼屈光部件2803,使得人眼能看清。其中,虚线表示光源镜像2804。
混合隔离法
通过不同偏振态的设置,实现同一方向的多个光路的隔离,称为偏 振隔离法;
通过不同时刻不同光路的通断,实现同一方向多个光路的隔离,称 为时分隔离法。
结合偏振隔离法和时分隔离法,可以实现本实施方案:混合隔离法。
图29所示为一个四重径向反射单元结构。
光源端采用反射式光阀29031,反射式光阀29032作为光路切换器,末端采用透射式光阀29041,透射式光阀29042作为光路通断器。
在t1、t2两个不同时刻,光源2901显示不同的图像,且分为上下两部分以不同的偏振态发出光线,此时,有一个反射式光阀和对应的一个透射式光阀处于工作状态。
两个时刻下,各光路长度一致,在末端共用同一个近眼屈光部件,使得人眼能看清。
图30所示是一个六重径向反射单元结构。
光源3001端采用反射式光阀30021,反射式光阀30022,反射式光阀30023作为光路切换器,末端采用透射式光阀30031,透射式光阀30032,透射式光阀30033作为光路通断器。
t1、t2、t3三个时刻下,各光路长度一致,在末端共用同一个近眼屈光部件,使得人眼能看清。
实施例7
本实施例中多个径向反射单元从不同方向投射光线,每个方向上有多个径向反射单元相互重叠,每个径向反射单元投射出单独的子图像,在人眼视网膜上拼接成完整的图像。
图31a~图31d所示为本实施例的结构示意图。
图31a,上下两个方向投射,每个方向四重投射,每个径向反射单元有独立的光源;其中包括8个光源31011~31018,投射出8个子图像31021~31028。
图31b,上下两个方向投射,每个方向两重投射,每个方向两个径向反射单元共用同一个光源;其中包括2个光源31011~31012,投射出4个子图像31021~31024。
图31c,三个方向投射,每个方向两重投射,每个方向两个径向反射单元共用同一个光源;包括3个光源31011~31013,投射出6个子图像31021~31026。
图31d,与图31c类似,但子图像拼接方式不同。
实施例8
本发明的近眼显示装置,能够实现增强现实的透过式显示效果,具体的实现方法包括:
1)近眼显示装置中部分光学结构可以允许外界光线透过,且保持整个装置对外界光线的焦距为无穷大,使得人眼能看清外部环境,从而实现增强现实的透过式显示效果。
2)近眼显示装置,内部含有透射式屈光部件,可以允许外界光线透 过,但会以一定的焦距对外界射入光线进行屈光,在整个装置的外侧再添加一个补偿屈光部件(如球面透镜、非球面透镜、菲涅尔透镜等),其焦距与透射式屈光部件的焦距相反,相互抵消后即可允许人眼看清外部光线,从而实现增强现实的透过式显示效果。
一.本方案中近眼显示装置允许外界光不经过屈光而直接透过。
方案一
图32a~图32j所示,采用两个独立的光源,通过各自的反射通道,形成两个独立的径向反射单元,产生出两个子图像,并在人眼视网膜上拼接成一个完整图像,同时整个装置允许外界光不经过屈光而直接透过。
图32a~图32j所示,其中包括光源32011,光源32012,线偏振片3202若干,近眼屈光部件3203,反射屈光部件3204,偏振性改变器3205,反射面若干(未标注)。因为如图所示的线偏振片3202、偏振性改变器3205、若干反射面的设置,使得光路只能通过唯一正确的通路射出。其原理与前述偏振隔离法相同,不作赘述。
方案二
图33a~图33b采用两个独立的光源,从上下两个方向上投射图像,每个方向投射出两个子图像。共产生出四个子图像,并在人眼视网膜上拼接成一个完整图像。
同时整个装置允许外界光不经过屈光而直接透过。
在图33a中,包括光源33011,光源33012,若干线偏振片3302,反射屈光部件3303,偏振性改变器3304,
单个光源发出的光线分两块以不同的偏振态向中心投射,被相应线偏振片选择,进入正确的通道,再被反射屈光部件处理成远光,进入人眼而被看清。
图33b在图33a的基础上,加上了平凹透镜3305和平凸透镜3306,在保持整体光学系统对外焦距为无穷大的基础上,使得反射屈光部件3303上的反射屈光面和平凸透镜3306(往返两次)共同实现了更短的屈光焦距。
为了实现更好的显示效果,图33a、图33b两个方案都加入了偏振性 改变器3304。
为了防止光线进入错误的反射通道,在其他位置还可以加入更多的偏振片或遮光片以进行光路隔离,此处不再赘述。
方案三
图34a~图34d都是为了防止光线进入错误的反射通道而进行的一些改进。
如图34a~图34c,包括若干偏振片3401,反射屈光部件3402,在图34a~图34c的某些位置额外加入一些偏振片,除了对内部显示光线进行光路隔离,还有助于防止外界光线经过多个反射面的反射进入人眼,形成重影。
在图34d中,在图中最下方还加入了一片水平放置的边界偏振片3403,以防止光线继续向下传播。因此,可以在边界偏振片3403下方继续增加其他光学结构,而不会与上方发出的光线发生接触。
在上述基础上,在其他位置还可以加入更多的偏振片或遮光片以进行光路隔离,此处不再赘述。
方案四
图35所示,采用了偏振分光片来进行光路隔离。
如图35,光源3501发出的光线,经过线偏振片35021和线偏振片35022的处理,变成了两种偏振方向相互垂直的线偏振光。由线偏振片35021射出的光线,碰到偏振分光片35051时,只会发生反射,不会发生透射;由线偏振片35022射出的光线,碰到偏振分光片35051时,只会发生透射,不会发生反射,而后碰到偏振分光片35052时,只会发生反射,不会发生透射。
所有光线经过偏振分光片35051和偏振分光片35052的反射后,投向偏振性改变器3504,经过反射屈光部件3503的反射后,再经过偏振性改变器3504,此后光线的偏振性已经发生了改变,因而可以顺利通过偏振分光片35051和偏振分光片35052,最终射入人眼。
同时,外界光线经过偏振分光片35052的反射后,向上碰到偏振分光片35051,直接透射过去,不会发生反射,因此不会射入人眼形成重影。
方案五
图36所示,采用上下两个水平放置的光源,一共产生四个子图像。包括光源36011,光源36012,若干偏振片3602,反射屈光部件3603,偏振性改变器3604,边界偏振片3605。
如图36,装置结构中加入了一些偏振片,进行四个光路的隔离,同时可防止外界光线反射多次射入人眼,形成重影;采用边界偏振片3605可防止上下两个光源发出的光线产生干扰。
作为优选,在装置最外侧加入偏振性改变器3604,可以使得外界环境中的偏振光(如镜面反射光,电脑、手机、电视显示光等)可以透过整个装置被人眼完整地看到。
方案六
图37所示,为一个四子图像拼合的实施例。
图37所示在末端采用了偏振选择性透射屈光器3701。所述偏振选择性透射屈光器的特点是,可对通过的光线进行筛选,只对内部显示光(处于一种偏振态)进行屈光,而对外界光线(处于另一种偏振态)不屈光,使得人眼能同时看清内部显示光线和外界环境光线。
能实现这样效果的光学技术在业界已存在,且有多重实现途径,在此不作赘述。
二.设置补偿屈光部件,实现增强现实的透过式显示效果
近眼显示装置,内部含有透射式屈光部件,可以允许外界光线透过,但会以一定的焦距对外界射入光线进行屈光,在整个装置的外侧再添加一个补偿屈光部件(如球面透镜、非球面透镜、菲涅尔透镜等),其焦距与透射式屈光部件的焦距相反,相互抵消后即可允许人眼看清外部光线,从而实现增强现实的透过式显示效果。
图38所示为本实施例的具体近眼显示装置的结构图,如图38所示,包括光源38011,光源38012,偏振片3802(包括8个偏振片),补偿屈光部件3803,透射式屈光部件3804。
图38中,在一个四子图像拼合方案中,内部的透射式屈光部件3804 为一个正焦距透镜,而外部的补偿屈光部件3803为一个负焦距透镜,使得外界光线经过整个光学系统后,等效焦距为零,从而使得人眼能够看清外部光线。
图39a~图39b所示为本实施例的一个综合实施例。
包括光源3901,透射式屈光部件3903,补偿屈光部件3902,出射窗口3904(若干)。
图39a~图39b所示是一种24个子图像投射拼接装置。每个子图像从相应的出射窗口射出,构成一个径向反射单元。
在每个时间段只有四个呈十字形排列的出射窗口3904打开。共有六个时间段,使得24个子图像依次全部投射到人眼视网膜上。
周围采用24个独立光源3901,或者一个环形光源。
24个径向反射单元可采用波浪式或涡轮式。
各个径向反射单元光路长度一致,在末端共用同一个近眼屈光部件3903(本例为透射式近眼屈光部件),使得人眼能看清。
外部采用补偿屈光部件3902,使得人眼能够看清外部光线。
实施例9
本实施例中多个焦距或光路长度不同的径向反射单元在人眼视网膜上同一区域投射出重叠的多个子图像,这些子图像有不同的焦点,随着人眼晶状体聚焦的不同状态,这些子图像中只有某一个是可以在视网膜上清晰成像的,其余的都呈现为模糊状态;这些重叠的子图像,可以同时投射出来,也可以在不同的时间分别投射出来并且快速轮流切换,也可以按照应用需要在某一时刻只投射其中某个子图像。
一. 在人眼视网膜的同一区域投射两个不同焦点的子图像:
图40a~图40c所示为本实施例的在人眼视网膜的同一区域投射两个不同焦点的子图像。
图40a包括光源40011,光源40012,近眼屈光部件4002,若干反射面(未标注),图40a采用了两个独立的光源(光源40011,光源40012), 同时发出光线,两路光线经过多次反射后形成了不同的光路长度,经过近眼屈光部件4002,最终进入人眼,在人眼视网膜上形成了不同焦点的两个子图像。
图40b包括光源40011,光源40012,偏振片4003(若干),近眼屈光部件4002,若干反射面(未标注),图40b与图40a相比,光源40011,光源40012位置不同,增加若干偏振片,采用偏振隔离法实现了更大的视场角。
图40c包括光源4001,反射式光阀40041,反射式光阀40042,近眼屈光部件4002,若干反射面(未标注),图40c光源4001发出的光线在不同时刻经过反射式光阀40042或反射式光阀40041的反射,形成了两条不同长度的光路,从而实现在不同时刻投射不同焦点的两个子图像。两个子图像不能同时显示出来,但可以快速轮流切换;或者按照应用需求,选择其中一个子图像进行显示。
二. 在人眼视网膜的同一区域投射三个不同焦点的子图像:
图41所示为在人眼视网膜的同一区域投射三个不同焦点的子图像,包括3个光源41011~41013,近眼屈光部件4102,若干反射面(未标注)。
图41采用三个独立的光源,三路光线经过多次反射后形成了不同的光路长度,最终进入人眼,在人眼视网膜的同一区域形成了不同焦点的三个子图像。
三. 在人眼视网膜的同一区域投射四个不同焦点的子图像:
图42所示为在人眼视网膜的同一区域投射四个不同焦点的子图像,包括光源4201,反射式光阀42021~42024,近眼屈光部件4203,若干反射面(未标注)
图42采用一个光源,通过切换四个反射式光阀,形成四条光路长度不同的光线,最终经过近眼屈光部件进入人眼,在人眼视网膜的同一区域形成了不同焦点的四个子图像。
四个子图像不能同时显示出来,但可以快速轮流切换;或者按照应用需求,选择其中一个子图像进行显示。
四. 近眼显示装置通过增加运动部件,用以调节径向反射单元的光 路长度,从而在人眼视网膜上投射出不同焦点的子图像。
图43所示为本实施例通过增加运动部件从而在人眼视网膜上投射出不同焦点的子图像,包括光源4301,直线运动装置4302,近眼屈光部件4303,反射面(未标注)
如图43,在光源4301处,增加直线运动装置4302,带动光源上下移动,从而调节整体光路的长度,起到调节投射到人眼视网膜上子图像焦点的作用。
图44所示为本实施例通过增加运动部件从而在人眼视网膜上投射出不同焦点的子图像,包括光源4401,偏振片4402(若干),近眼屈光部件4404,反射面(未标注),直线运动反射镜4403。
图44在光源4401处,增加直线运动反射镜4403,可以前后移动,从而调节整体光路的长度,起到调节投射到人眼视网膜上子图像焦点的作用。
实施例10
本实施例中两个光路长度不同的径向反射单元在人眼视网膜上同一区域投射出重叠的两个子图像,一个子图像较大,提供宽广的边缘视野,一个子图像较小,提供中心高清晰视野,由此提供边缘宽广而中心清晰的近眼显示效果。
方案1
图45a~图45d所示为本实施例的具体结构示意图,包括光源45011,光源45012,子图像45021,子图像45022,偏振片4503(若干),反射式屈光部件45041,反射式屈光部件45042。
实施例提出了一种大小图像嵌套的方案。
如图45a所示,光源45011和光源45012发出的光线具有不同的偏振态,经过不同的反射通道的偏振态选择,与焦距不同的反射屈光部件45041和反射屈光部件45042发生接触,经过反射屈光后,可以同时被人眼看清,但由于两个光路的焦距不同,导致在人眼视网膜上成像的大小 不同。如图,分别形成了较小的子图像45022和较大的子图像45021。
通过对光源45011和光源45012上发出的图像的特殊设置,可以使得子图像45021和子图像45022在衔接区域正好重合,因此可使得用户无法察觉到中心画面和边缘画面的界限。由于子图像45022视觉范围较小,因此清晰度更高,这符合人眼中心视觉分辨力更高的特点。
特殊的,采用图45c方案,通过不同的偏振片的设置,也可以实现大小图像嵌套的效果。
特殊的,采用图45d方案,将反射屈光部件45041镶嵌在反射屈光部件45042的中心,并通过相应偏振片的设置,使得光源45011发出的光线只会经过反射屈光部件45041的反射,而光源45012发出的光线只会经过反射屈光部件45042的反射,从而进行光路的隔离,亦可以实现大小图像嵌套的效果。
除了采用偏振片,还可以采用偏振片和偏振分光片的组合来实现光路的隔离。此处不作赘述。
在图45a,图45c,图45d中,若装置允许外界光线透过,但不会对外界光线作屈光处理,则可实现增强现实的透过式显示效果。在这种情况下,光源45011和光源45012可设置在图中靠右侧位置,光线向左发出,经反射后向下。
方案2
本实施例提出了另一种大小图像嵌套的方案。
图46a中,光源46011发出的光线,经过反射向下后,又经过半反射器4602反射向外,再经过反射屈光部件4603屈光反射,变为发光位置接近光源46012的虚像,因此可以与光源46012发出的光线一起,由透射屈光部件4604一起屈光,变为人眼可以看清的光线。由于光源46011发出的光线经过了负、正焦距的两次屈光,因此在人眼视网膜上投射的子图像较小,清晰度较高。
通过移动反射屈光部件4603的前后位置,可以调节中心子图像在人眼视网膜附近的焦点位置,实现不同焦平面的显示效果。
如图46b,在光路中增加了负焦距透镜4606和平凹透镜4607两个透镜,可以增加光源46011发出的光线的负焦距屈光度。同时增加了平凸 透镜4605,可以使得光源46012的光线或外界透射的光线经过平凸透镜4605和平凹透镜4607时不被屈光。
通过移动平凸透镜4605、反射屈光部件4603、平凹透镜4607的前后位置,可以调节中心子图像在人眼视网膜附近的焦点位置,实现不同焦平面的显示效果。
如图46c,光源46011发出的光线,经过反射向下后,穿过半反射器4602,经过反射屈光部件4603屈光反射,再经过半反射器4602反射,变为发光位置接近光源46012的虚像,因此可以与光源46012发出的光线一起,由透射屈光部件4604一起屈光,变为人眼可以看清的光线。
在图46a~图46c中,若光源46012为半透明显示器,可以允许外界光线透过。则可实现增强现实的透过式显示效果。具体方案不作赘述。
方案3
本实施例提出了另一种大小图像嵌套的方案。
图47a~图47c所示为本实施例的具体结构示意图,包括光源47011,光源47012,偏振片4702(若干),透射式屈光部件4703,透射式屈光部件4704,透射式屈光部件4705,反射镜4706。
如图47a,透射式屈光部件4703镶嵌在透射式屈光部件4704的中心。光源47011发出的光线经过偏振化,经过反射向下后,又经过反射向外,由于偏振选择性,光线只能通过透射式屈光部件4703射入人眼,而无法通过透射式屈光部件4704;光源47012发出的光线经过偏振化后,只能通过透射式屈光部件4704射入人眼,而无法通过透射式屈光部件4703。由于两个光源发出光线的最终光路长度不同,两个透射式屈光部件的焦距也不同,造成了两个子图像的大小不同,一个较小位于中心较清晰,一个较大占据四周较模糊。
在如图47b的方案中,加入了透射式屈光部件4705(可以是正焦距,也可以是负焦距),可以进一步调节中心子图像的投射光路。特殊的,通过移动透射式屈光部件4705的上下位置,可以调节中心子图像在人眼视网膜附近的焦点位置,实现不同焦平面的显示效果。
在如图47c的方案中,加入了反射镜4706,进一步增加了中心子图像的投射光路长度,因而可以获得更小更清晰的图像。特殊的,通过移 动反射镜4706的前后位置,可以调节中心子图像在人眼视网膜附近的焦点位置,实现不同焦平面的显示效果。
结合这里披露的本发明的说明和实践,本发明的其他实施例对于本领域技术人员都是易于想到和理解的。说明和实施例仅被认为是示例性的,本发明的真正范围和主旨均由权利要求所限定。

Claims (14)

  1. 一种薄型大视场角近眼显示装置,包括两个或多个径向反射单元,所述径向反射单元排列于人眼前,产生出两个或多个子图像,并在人眼视网膜上拼接成较大的图像,从而在较薄的体积下实现较大视场角的近眼显示效果。
  2. 根据权利要求1所述的近眼显示装置,其特征在于,所述径向反射单元包括光源,反射面,透射式屈光器和/或反射式光学部件,
    所述光源发出的光线,在反射成为轴向光线之前,先经过透射式屈光器或反射式光学部件进行屈光放大,从而使人眼能够看清。
  3. 根据权利要求1所述的近眼显示装置,其特征在于,所述径向反射单元为多次反射径向反射单元,光源发出的光线,在反射成为最终出射光线的过程中,经过两次或两次以上的反射,最终射入人眼。
  4. 根据权利要求3所述的近眼显示装置,其特征在于,所述多次反射径向反射单元包括多次反射结构,
    所述多次反射结构包括多个反射面和/或偏振片和/或偶次透射器,和/或偏振透射器,和/或偏振性改变反射器,和/或偏振性改变器。
  5. 根据权利要求2所述的近眼显示装置,其特征在于,所述多个径向反射单元从不同方向由侧面投射出各个子图像,在人眼视网膜上拼接成完整的图像。
  6. 根据权利要求5所述的近眼显示装置,其特征在于,两个径向反射单元从上下两个方向投射出子图像,在人眼视网膜上拼接成完整的图像。
  7. 根据权利要求5所述的近眼显示装置,其特征在于,三个或三个以上径向反射单元的反射面的结构形态包括棱椎式,涡轮式,波浪式。
  8. 根据权利要求2所述的近眼显示装置,其特征在于,所述多个径向反射单元从同一方向由侧面投射出各个子图像,在人眼视网膜上拼接成完整的图像。
  9. 根据权利要求2所述的近眼显示装置,其特征在于,所述多个径向反射单元从同一方向由侧面投射出各个子图像,每个径向反射单元设置独立的光源,或者多个径向反射单元共用同一个光源,通过光 线控制器,形成多个出射窗口,且使得每一时间段内仅有一个出射窗口打开,允许光线射出,不同时间段中多个径向反射单元交替投射不同的子图像,且每个时间段长度极短,使得人眼同时感觉到多个子图像。
  10. 根据权利要求9所述的近眼显示装置,其特征在于,所述光线控制器包括透射式光阀、反射式光阀、可控反射镜或转镜阵列。
  11. 根据权利要求2所述的近眼显示装置,其特征在于,所述多个径向反射单元从不同方向投射光线,每个方向上有多个径向反射单元相互重叠,每个径向反射单元投射出单独的子图像,在人眼视网膜上拼接成完整的图像。
  12. 根据权利要求2所述的近眼显示装置,其特征在于,所述近眼显示装置还包括补偿屈光部件,所述补偿屈光部件的焦距与近眼式屈光部件的焦距相反,相互抵消后即可允许人眼看清外部光线,从而实现增强现实的透过式显示效果。
  13. 根据权利要求2所述的近眼显示装置,其特征在于,所述近眼显示装置还包括运动部件,用以调节径向反射单元的光路长度,从而在人眼视网膜上投射出不同焦点的子图像。
  14. 根据权利要求2所述的近眼显示装置,其特征在于,两个光路长度不同的径向反射单元在人眼视网膜上同一区域投射出重叠的两个子图像,一个子图像较大,提供宽广的边缘视野,一个子图像较小,提供中心高清晰视野,由此提供边缘宽广而中心清晰的近眼显示效果。
PCT/CN2018/108550 2018-09-29 2018-09-29 一种薄型大视场角近眼显示装置 WO2020062124A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/420,526 US11852818B2 (en) 2018-09-29 2018-09-29 Thin near-to-eye display device with large field of view angle
PCT/CN2018/108550 WO2020062124A1 (zh) 2018-09-29 2018-09-29 一种薄型大视场角近眼显示装置
US17/719,482 US11846781B2 (en) 2018-09-29 2022-04-13 Thin type large field of view near-eye display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108550 WO2020062124A1 (zh) 2018-09-29 2018-09-29 一种薄型大视场角近眼显示装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/420,526 A-371-Of-International US11852818B2 (en) 2018-09-29 2018-09-29 Thin near-to-eye display device with large field of view angle
US17/719,482 Continuation-In-Part US11846781B2 (en) 2018-09-29 2022-04-13 Thin type large field of view near-eye display device

Publications (1)

Publication Number Publication Date
WO2020062124A1 true WO2020062124A1 (zh) 2020-04-02

Family

ID=69953236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108550 WO2020062124A1 (zh) 2018-09-29 2018-09-29 一种薄型大视场角近眼显示装置

Country Status (2)

Country Link
US (1) US11852818B2 (zh)
WO (1) WO2020062124A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116413911A (zh) * 2021-12-31 2023-07-11 北京耐德佳显示技术有限公司 一种超薄型镜片、使用其的虚像成像装置和近眼显示器
CN114706225B (zh) * 2022-04-19 2023-08-01 业成科技(成都)有限公司 抬头显示器与光学反射结构
CN115145041A (zh) * 2022-08-10 2022-10-04 南昌黑鲨科技有限公司 一种近眼显示系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1894617A (zh) * 2003-12-12 2007-01-10 海德佩公司 用于头戴显示器的光学装置
CN106249412A (zh) * 2015-06-15 2016-12-21 三星电子株式会社 头戴式显示器装置
CN108152951A (zh) * 2016-12-06 2018-06-12 台达电子工业股份有限公司 头戴式显示装置
CN108535866A (zh) * 2017-03-02 2018-09-14 腾讯科技(深圳)有限公司 虚拟现实眼镜

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUP0203993A2 (hu) * 2002-11-19 2004-08-30 László Domján Binokuláris videoszemüveg optikai rendszere
WO2017115505A1 (ja) * 2015-12-28 2017-07-06 ソニー株式会社 表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1894617A (zh) * 2003-12-12 2007-01-10 海德佩公司 用于头戴显示器的光学装置
CN106249412A (zh) * 2015-06-15 2016-12-21 三星电子株式会社 头戴式显示器装置
CN108152951A (zh) * 2016-12-06 2018-06-12 台达电子工业股份有限公司 头戴式显示装置
CN108535866A (zh) * 2017-03-02 2018-09-14 腾讯科技(深圳)有限公司 虚拟现实眼镜

Also Published As

Publication number Publication date
US20220082836A1 (en) 2022-03-17
US11852818B2 (en) 2023-12-26

Similar Documents

Publication Publication Date Title
CN109188695B (zh) 一种薄型大视场角近眼显示装置
WO2020199999A1 (zh) 一种基于全反射的紧凑型大视场角近眼显示装置
US11372257B2 (en) See-through display device
US10436951B2 (en) Display device with total internal reflection
US9753361B2 (en) Transparent display including a screen with patterned light deflective elements
US9091851B2 (en) Light control in head mounted displays
WO2020062124A1 (zh) 一种薄型大视场角近眼显示装置
WO2019179136A1 (zh) 显示装置及显示方法
TW201802536A (zh) 具有包含複數個顯示器裝置之邊緣成像鏡片之增強/虛擬實境近眼顯示器
WO2017186020A1 (en) Three-dimentional display system based on division multiplexing of viewer's entrance-pupil and display method thereof
KR20180043072A (ko) 렌즈 유닛 및 이를 포함하는 투시형 디스플레이 장치
US20200408979A1 (en) Backlight device, holographic display including the same, and method of manufacturing holographic optical element having a multilayered structure
US9081168B2 (en) Light source system with multiband filters and relay lens assemblies for a stereoscopic image
US20220066222A1 (en) Total reflection based compact near-eye display device with large field of view
CN213338216U (zh) 抬头显示装置及车辆
JP2009063914A (ja) 表示装置
JP5397912B2 (ja) 反射型再帰性フロントスクリーンおよび反射型立体表示用スクリーン
CN114252994A (zh) 抬头显示装置及车辆
WO2019044501A1 (ja) ヘッドマウントディスプレイ
CN217484601U (zh) 一种基于全反射的紧凑型大视场角近眼显示装置
US11330249B1 (en) Three-dimensional display method for large field of view and small viewing-zone interval
US11862054B2 (en) Augmented reality optical device for outputting multifocal images
CN112433386B (zh) 一种用于光场显示的紧凑光学结构
WO2012079246A1 (zh) 立体显示装置
CN115542544A (zh) 一种基于mems技术的近眼显示技术、结构及实现方案

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/07/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18935806

Country of ref document: EP

Kind code of ref document: A1