WO2020061963A1 - 用于同频小区切换的方法和装置 - Google Patents

用于同频小区切换的方法和装置 Download PDF

Info

Publication number
WO2020061963A1
WO2020061963A1 PCT/CN2018/108145 CN2018108145W WO2020061963A1 WO 2020061963 A1 WO2020061963 A1 WO 2020061963A1 CN 2018108145 W CN2018108145 W CN 2018108145W WO 2020061963 A1 WO2020061963 A1 WO 2020061963A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
network device
cell
subband
sub
Prior art date
Application number
PCT/CN2018/108145
Other languages
English (en)
French (fr)
Inventor
唐珣
王宏
张戬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/108145 priority Critical patent/WO2020061963A1/zh
Publication of WO2020061963A1 publication Critical patent/WO2020061963A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • This application relates to the field of communications, and more specifically, to a method and apparatus for co-frequency cell switching in the field of communications.
  • a handover of a serving cell of the UE occurs according to a change in signal strength between the UE and a base station.
  • the UE receives the handover command sent by the source base station, it disconnects the radio resource control (RRC) connection with the source cell, and then starts a random access process for the target cell.
  • RRC radio resource control
  • a make-before-break (MBB) technology is proposed, that is, the UE does not immediately interrupt the UE and the source cell after receiving the handover command from the source cell. Instead, the connection between the UE and the source cell is maintained until the first uplink transmission time of the UE for the target cell. That is, after receiving the handover command, the UE still maintains communication with the source cell, and does not interrupt communication with the source cell until the UE sends a random access preamble to the target cell.
  • the connection between the UE and the source cell will not be interrupted. In this way, there will be a period of time during the handover.
  • the UE maintains a connection with the source cell and the target cell at the same time, and can also perform data transmission at the same time. If the two cells are on the same frequency, the same frequency interference will occur and affect the communication quality. Therefore, in a scenario where the UE maintains data transmission with the source network device and the target network device at the same time, how to avoid co-frequency interference between the source cell and the target cell is an urgent problem to be solved.
  • the present application provides a method and device for intra-frequency cell handover.
  • a terminal device maintains data transmission with a source network device and a target network device at the same time, co-frequency interference between the source cell and the target cell can be avoided.
  • a method for cell handover includes:
  • the terminal device sends a measurement result of a neighboring cell to the source network device, where the measurement result of the neighboring cell includes a measurement result of a first subband or a measurement result of a second subband within a bandwidth of the neighboring cell;
  • the terminal device receives second scheduling information, and the second scheduling information is used to indicate that a frequency domain resource occupied by the terminal device for data transmission in a target cell is the second subband, and the target cell is Said neighbourhood;
  • the target cell and the source cell are co-frequency cells, and the bandwidth of the target cell or the source cell includes the first subband and the second subband, and the first subband and the The second sub-band is different.
  • the terminal device can measure the subbands within the full bandwidth, refine the cell measurement results, and provide more detailed cell measurement information.
  • the source network device and the target network device can be based on the subbands of neighboring cells.
  • Level measurement results, the first subband and the second subband that are different from the band resources are selected for data transmission, and the resources used by the source network device and the target network device are isolated in the frequency domain to reach the current serving cell and the target cell. Effect of interference avoidance.
  • the measurement result of the neighboring cell may further include the measurement result of the full bandwidth of the neighboring cell, and the measurement result of the full bandwidth may be used as a basis for the handover decision.
  • the source network device can determine the target cell to which the handover is required based on the measurement results of the full bandwidth of the neighboring cell.
  • the terminal device receives a measurement configuration from the source network device, the measurement configuration includes a first indication, and the first indication is used to instruct the terminal The device measures a sub-band within a bandwidth of the neighboring cell.
  • the embodiments of the present application can separately measure at least two sub-bands in the full bandwidth, can refine the measurement results in the full bandwidth of the cell, and then provide more detailed cell measurement information.
  • the first indication may be a sub-band measurement identification and / or sub-band width information.
  • the subband measurement identifier may be a field for instructing the terminal device to perform subband measurement, and this field may occupy 1 or 2 bits, for example.
  • the subband width information may be a field used to indicate a width of each subband measured by the terminal device, and the field may occupy 1 or 2 bits, for example.
  • the terminal device when the terminal device measures the subbands within the bandwidth of the neighboring cell according to the first instruction, it may measure all the subbands within the full bandwidth of the neighboring cell, or The measurement is performed on a part of the sub-bands within the full bandwidth, which is not limited in the embodiment of the present application.
  • the terminal device receives a measurement configuration from the source network device, the measurement configuration includes a second indication, and the second indication is used to instruct the terminal
  • the device measures subbands other than the first subband in a bandwidth of the neighboring cell, and subbands other than the first subband in the bandwidth of the neighboring cell include the second subband.
  • the terminal device can measure and report part of the subbands in the full bandwidth in the neighboring cell, and the target network device only needs to perform downlink resources on the frequency band other than the first subband in the full bandwidth of the target cell. Scheduling and data transmission, thereby reducing the power overhead of terminal equipment for neighboring cell measurements.
  • the measurement configuration further includes information used to indicate a frequency domain resource of the first subband, or includes information indicating a bandwidth of the neighboring cell. Information on frequency domain resources of a sub-band other than the first sub-band.
  • the network device may indicate the frequency domain resource of the first subband to the terminal device in an implicit indication manner.
  • the protocol may stipulate that the terminal device uses the subband corresponding to the resource in the downlink scheduling instruction information of the network device of the last or multiple times as the first subband, and at this time, the network device does not need to send an indication field to the terminal device.
  • the number of scheduling times may be configured by a network device or pre-configured in a protocol, which is not limited in the embodiment of the present application.
  • the measurement configuration further includes a third indication, where the third indication is used to instruct the terminal device to report a measurement result of a sub-band that meets a condition.
  • the satisfying condition here is, for example, that the measured value is greater than or equal to a threshold value
  • the threshold value may be, for example, a reference signal receiving power (RSRP) threshold, or a reference signal receiving quality (RSRQ)
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • the threshold of the signal, or the signal to interference plus noise ratio (signal to interference plus noise ratio, SINR) threshold is not limited in this embodiment of the present application.
  • the third indication may be a threshold value or a combination of at least two thresholds, such as a combination of an RSRP threshold and an RSRQ threshold.
  • the measurement configuration may further include information for indicating a measurement result of measuring the full bandwidth of the neighboring cell.
  • a cell handover method includes:
  • the source network device receives a measurement result of a neighboring cell from a terminal device, where the measurement result of the neighboring cell includes a measurement result of a second sub-band within a bandwidth of the neighboring cell;
  • the source network device sends a handover request to a target network device, the handover request including a measurement result of a subband within a bandwidth of a target cell, wherein the measurement result of a subband within a bandwidth of the target cell includes the second A measurement result of a sub-band, the target cell is the neighboring cell;
  • the target cell and the source cell are co-frequency cells, and the bandwidth of the target cell or the source cell includes the first sub-band and the second sub-band, and the second sub-band is a terminal device at In a frequency domain resource occupied by data transmission in the target cell, the first subband is different from the second subband.
  • the terminal device can measure the subbands within the full bandwidth, refine the cell measurement results, and provide more detailed cell measurement information.
  • the source network device and the target network device can be based on the subbands of neighboring cells.
  • Level measurement results, the first subband and the second subband that are different from the band resources are selected for data transmission, and the resources used by the source network device and the target network device are isolated in the frequency domain to reach the current serving cell and the target cell. Effect of interference avoidance.
  • the handover request carries the target cell The measurement results of the sub-bands within the bandwidth, excluding the measurement results of the first sub-band.
  • the measurement result of the neighboring cell reported by the terminal device to the source network device includes the measurement results of all subbands (for example, the first subband and the second subband) in the bandwidth
  • the source network device The measurement result of the first sub-band in the measurement result can be eliminated, and only the measurement result of the second sub-band is reported to the target network device.
  • the source network device receives a handover confirmation from the target network device, the handover confirmation includes second scheduling information, and the second scheduling information is used for Instructing the terminal device to use a frequency domain resource occupied by data transmission in the target cell as the second sub-band;
  • the method further includes:
  • the source network device sends a measurement configuration to the terminal device, the measurement configuration includes a first indication, and the first indication is used to instruct the terminal The device measures a sub-band within a bandwidth of the neighboring cell.
  • the embodiments of the present application can separately measure at least two sub-bands in the full bandwidth, can refine the measurement results in the full bandwidth of the cell, and then provide more detailed cell measurement information.
  • the source network device sends a measurement configuration to the terminal device, the measurement configuration includes a second indication, and the second indication is used to instruct the terminal
  • the device measures subbands other than the first subband in a bandwidth of the neighboring cell, and subbands other than the first subband in the bandwidth of the neighboring cell include the second subband.
  • the terminal device can measure and report part of the subbands in the full bandwidth in the neighboring cell, and the target network device only needs to perform downlink resources on the frequency band other than the first subband in the full bandwidth of the target cell. Scheduling and data transmission, thereby reducing the power overhead of terminal equipment for neighboring cell measurements.
  • the measurement configuration includes information used to indicate a frequency domain resource of the first sub-band, or includes used to indicate a bandwidth division of the neighboring cell. Information on frequency domain resources of sub-bands other than the first sub-band.
  • the measurement configuration information further includes a third indication, where the third indication is used to instruct the terminal device to report a measurement result of a sub-band that meets a condition.
  • the satisfying condition here is, for example, that the measured value is greater than or equal to a threshold value
  • the threshold value may be, for example, a reference signal receiving power (RSRP) threshold, or a reference signal receiving quality (RSRQ)
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • the threshold of the signal, or the signal to interference plus noise ratio (signal to interference plus noise ratio, SINR) threshold is not limited in this embodiment of the present application.
  • the third indication may be a threshold value or a combination of at least two thresholds, such as a combination of an RSRP threshold and an RSRQ threshold.
  • the measurement configuration may further include information for indicating a measurement result of measuring the full bandwidth of the neighboring cell.
  • a method for cell handover including:
  • the source network device receives a measurement result of a neighboring cell from a terminal device, where the measurement result of the neighboring cell includes a measurement result of a first subband or a measurement result of a second subband within a bandwidth of the neighboring cell;
  • the source network device sends a handover request to a target network device, where the handover request includes instruction information for indicating the second subband, and the second subband is used by the terminal device for data transmission in the target cell.
  • the target cell is the neighboring cell;
  • the target cell and the source cell are co-frequency cells, and the bandwidth of the target cell or the source cell includes the first subband and the second subband, and the first subband and the The second sub-band is different.
  • the terminal device can measure the subbands within the full bandwidth, refine the cell measurement results, and provide more detailed cell measurement information.
  • the source network device and the target network device can be based on the subbands of neighboring cells.
  • Level measurement results, the first subband and the second subband that are different from the band resources are selected for data transmission, and the resources used by the source network device and the target network device are isolated in the frequency domain to reach the current serving cell and the target cell. Effect of interference avoidance.
  • the source network device carries the indication information of the second subband in the handover request, so that the source network device does not need to send the related information of the measurement result of the target cell to the target network device, which saves signaling overhead.
  • the source network device sends second scheduling information to the terminal device, where the second scheduling information is used to indicate that the terminal device is in the target cell
  • the frequency domain resource occupied by data transmission in the middle is the second sub-band.
  • the source network device sends a measurement configuration to the terminal device, the measurement configuration includes a first indication, and the first indication is used to instruct the terminal The device measures a sub-band within a bandwidth of the neighboring cell.
  • the embodiments of the present application can separately measure at least two sub-bands in the full bandwidth, can refine the measurement results in the full bandwidth of the cell, and then provide more detailed cell measurement information.
  • the source network device sends a measurement configuration to the terminal device, the measurement configuration includes a second indication, and the second indication is used to instruct the terminal
  • the device measures subbands other than the first subband in a bandwidth of the neighboring cell, and subbands other than the first subband in the bandwidth of the neighboring cell include the second subband.
  • the terminal device can measure and report part of the subbands in the full bandwidth in the neighboring cell, and the target network device only needs to perform downlink resources on the frequency band other than the first subband in the full bandwidth of the target cell. Scheduling and data transmission, thereby reducing the power overhead of terminal equipment for neighboring cell measurements.
  • the measurement configuration includes information indicating frequency domain resources of the first sub-band, or includes indicating a bandwidth division of the neighboring cell. Information on frequency domain resources of sub-bands other than the first sub-band.
  • the measurement configuration information further includes a third indication, and the third indication is used to instruct the terminal device to report a measurement result of a sub-band that meets a condition.
  • the satisfying condition here is, for example, that the measured value is greater than or equal to a threshold value
  • the threshold value may be, for example, a reference signal receiving power (RSRP) threshold or a reference signal receiving quality (RSRQ)
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • the threshold of the signal, or the signal to interference plus noise ratio (signal to interference plus noise ratio, SINR) threshold is not limited in this embodiment of the present application.
  • the third indication may be a threshold value or a combination of at least two thresholds, such as a combination of an RSRP threshold and an RSRQ threshold.
  • the measurement configuration may further include information for indicating a measurement result of measuring the full bandwidth of the neighboring cell.
  • a cell handover method including:
  • the source network device receives a measurement result of a neighboring cell from a terminal device, where the measurement result of the neighboring cell includes a measurement result of a first sub-band and a measurement result of a second sub-band within a bandwidth of the neighboring cell;
  • the source network device sends a handover request to a target network device, where the handover request includes instruction information for indicating the first subband and a measurement result of the target cell, and the measurement result of the target cell includes the first subband.
  • the handover request includes instruction information for indicating the first subband and a measurement result of the target cell, and the measurement result of the target cell includes the first subband.
  • a measurement result of a frequency band and a measurement result of the second sub-band, the target cell is the neighboring cell;
  • the target cell and the source cell are co-frequency cells, and the bandwidth of the target cell or the source cell includes the first sub-band and the second sub-band, and the second sub-band is a terminal device at In a frequency domain resource occupied by data transmission in the target cell, the first subband is different from the second subband.
  • the terminal device can measure the subbands within the full bandwidth, refine the cell measurement results, and provide more detailed cell measurement information.
  • the source network device and the target network device can be based on the subbands of neighboring cells.
  • Level measurement results, the first subband and the second subband that are different from the band resources are selected for data transmission, and the resources used by the source network device and the target network device are isolated in the frequency domain to reach the current serving cell and the target cell. Effect of interference avoidance.
  • the handover request message may further include indication information for indicating simultaneous connection, and is specifically used to instruct the terminal device to connect with the cell and the target cell during the handover process.
  • the terminal device maintains the connection with the source base station and the target base station at the same time during the handover process, thereby ensuring that the data transmission is not interrupted during the handover process.
  • the source network device receives a handover confirmation from the target network device, the handover confirmation includes second scheduling information, and the second scheduling information is used for Instructing the terminal device to use a frequency domain resource occupied by data transmission in the target cell as the second sub-band;
  • the method further includes:
  • the source network device sends a measurement configuration to the terminal device, where the measurement configuration includes a first indication, and the first indication is used to instruct the terminal The device measures a sub-band within a bandwidth of the neighboring cell.
  • the embodiments of the present application can separately measure at least two sub-bands in the full bandwidth, can refine the measurement results in the full bandwidth of the cell, and then provide more detailed cell measurement information.
  • the source network device sends a measurement configuration to the terminal device, the measurement configuration includes a second indication, and the second indication is used to instruct the terminal
  • the device measures subbands other than the first subband in a bandwidth of the neighboring cell, and subbands other than the first subband in the bandwidth of the neighboring cell include the second subband.
  • the terminal device can measure and report part of the subbands in the full bandwidth in the neighboring cell, and the target network device only needs to perform downlink resources on the frequency band other than the first subband in the full bandwidth of the target cell. Scheduling and data transmission, thereby reducing the power overhead of terminal equipment for neighboring cell measurements.
  • the measurement configuration includes information used to indicate a frequency domain resource of the first sub-band, or includes used to indicate a bandwidth division of the neighboring cell. Information on frequency domain resources of sub-bands other than the first sub-band.
  • the measurement configuration information further includes a third indication, where the third indication is used to instruct the terminal device to report a measurement result of a sub-band that meets a condition.
  • the satisfying condition here is, for example, that the measured value is greater than or equal to a threshold value
  • the threshold value may be, for example, a reference signal receiving power (RSRP) threshold, or a reference signal receiving quality (RSRQ)
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • the threshold of the signal, or the signal to interference plus noise ratio (signal to interference plus noise ratio, SINR) threshold is not limited in this embodiment of the present application.
  • the third indication may be a threshold value or a combination of at least two thresholds, such as a combination of an RSRP threshold and an RSRQ threshold.
  • the measurement configuration may further include information for indicating a measurement result of measuring the full bandwidth of the neighboring cell.
  • a cell handover method including:
  • the target network device receives a handover request from the source network device, the handover request message includes a measurement result of a subband within a bandwidth of the target cell, and the measurement result of a subband within the bandwidth of the target cell includes a measurement result of a second subband ;
  • the target cell and the source cell of the terminal device are co-frequency cells, and the bandwidth of the target cell or the source cell includes the first subband and the second subband, and the first subband is In the frequency domain resource occupied by the terminal device for data transmission in the source cell, the first subband is different from the second subband.
  • the terminal device can measure the subbands within the full bandwidth, refine the cell measurement results, and provide more detailed cell measurement information.
  • the source network device and the target network device can be based on the subbands of neighboring cells.
  • Level measurement results, the first subband and the second subband that are different from the band resources are selected for data transmission, and the resources used by the source network device and the target network device are isolated in the frequency domain to reach the current serving cell and the target cell. Effect of interference avoidance.
  • a cell handover method including:
  • the target network device receives a handover request from the source network device, the handover request includes indication information for indicating the second sub-band, and the second sub-band is occupied by the terminal device for data transmission in the target cell.
  • Frequency domain resources include indication information for indicating the second sub-band, and the second sub-band is occupied by the terminal device for data transmission in the target cell.
  • the target cell and the source cell of the terminal device are co-frequency cells, and the bandwidth of the target cell or the source cell includes the first subband and the second subband, and the first subband is In the frequency domain resource occupied by the terminal device for data transmission in the source cell, the first subband is different from the second subband.
  • the terminal device can measure the subbands within the full bandwidth, refine the cell measurement results, and provide more detailed cell measurement information.
  • the source network device and the target network device can be based on the subbands of neighboring cells.
  • Level measurement results, the first subband and the second subband that are different from the band resources are selected for data transmission, and the resources used by the source network device and the target network device are isolated in the frequency domain to reach the current serving cell and the target cell. Effect of interference avoidance.
  • a cell handover method including:
  • the target network device receives a handover request from the source network device, the handover request includes indication information for indicating the first subband and a measurement result of the target cell, and the measurement result of the target cell includes the measurement result of the first subband And measurement results of the second sub-band;
  • the target cell and the source cell of the terminal device are co-frequency cells, and the bandwidth of the target cell or the source cell includes the first subband and the second subband, and the first subband is In the frequency domain resource occupied by the terminal device for data transmission in the source cell, the first subband is different from the second subband.
  • the terminal device can measure the subbands within the full bandwidth, refine the cell measurement results, and provide more detailed cell measurement information.
  • the source network device and the target network device can be based on the subbands of neighboring cells.
  • Level measurement results, the first subband and the second subband that are different from the band resources are selected for data transmission, and the resources used by the source network device and the target network device are isolated in the frequency domain to reach the current serving cell and the target cell. Effect of interference avoidance.
  • An eighth aspect provides a method for cell handover, including:
  • the source network device sends a handover request to the target network device, where the handover request includes a fourth instruction, and the fourth instruction is used to instruct the source network device to allocate time-frequency resources to the terminal device;
  • the source network device Receiving, by the source network device, a handover confirmation sent by the target network device, where the handover confirmation includes a handover command, and the handover command includes the fourth instruction and the fifth instruction, and the fifth instruction information is used to indicate the The time-frequency resource allocated by the target network device to the terminal device, and the time-frequency resource allocated by the source network device is different from the time-frequency resource allocated by the target network device;
  • the source network device sends the handover command to the terminal device
  • the target cell of the terminal device and the source cell of the terminal device are co-frequency cells.
  • the time-frequency resource allocated by the target network device is different from the time-frequency resource allocated by the source network device. Therefore, when the source cell and the target cell of the terminal device are co-frequency cells, the embodiment of the present application can realize the terminal device Maintain data transmission with source and target cells, and avoid co-channel interference between source and target cells.
  • a cell handover method including:
  • the source network device sends a handover request to the target network device, where the handover request includes a fourth instruction, and the fourth instruction is used to instruct the source network device to allocate time-frequency resources to the terminal device;
  • the source network device Receiving, by the source network device, a handover confirmation sent by the target network device, the handover confirmation including a handover command, the handover command including a fifth instruction, the fifth instruction information used to indicate that the target network device is
  • the time-frequency resources allocated by the terminal device, the time-frequency resources allocated by the source network device and the time-frequency resources allocated by the target network device are different;
  • the source network device sends the handover command to the terminal device
  • the target cell of the terminal device and the source cell of the terminal device are co-frequency cells.
  • the time-frequency resource allocated by the target network device is different from the time-frequency resource allocated by the source network device. Therefore, when the source cell and the target cell of the terminal device are co-frequency cells, the embodiment of the present application can implement the terminal device at the same time. Maintain data transmission with source and target cells, and avoid co-channel interference between source and target cells.
  • a cell handover method including:
  • the target network device receives a handover request sent by the source network device, where the handover request includes a fourth instruction, and the fourth instruction is used to instruct the source network device to allocate time-frequency resources to the terminal device;
  • the target network device sends a handover confirmation to the source network device, the handover confirmation includes a handover command, and the handover command includes a fifth instruction, where the fifth instruction is used to indicate that the target network device is the Time-frequency resources allocated by the terminal device, the time-frequency resources allocated by the source network device and the time-frequency resources allocated by the target network device are different;
  • the target cell of the terminal device and the source cell of the terminal device are co-frequency cells.
  • the time-frequency resource allocated by the target network device is different from the time-frequency resource allocated by the source network device. Therefore, when the source cell and the target cell of the terminal device are co-frequency cells, the embodiment of the present application can implement the terminal device at the same time. Maintain data transmission with source and target cells, and avoid co-channel interference between source and target cells.
  • the switching command further includes the fourth instruction.
  • a cell handover method including:
  • the terminal device receives a handover command sent by a source network device, where the handover command includes a fourth instruction and a fifth instruction, and the fourth instruction is used to instruct the source network device to allocate time-frequency resources to the terminal device.
  • the fifth instruction is used to instruct the target network device to allocate time-frequency resources to the terminal device, and the time-frequency resources occupied by the target network device are different from the time-frequency resources allocated by the source network device to the terminal device;
  • the target cell of the terminal device and the source cell of the terminal device are co-frequency cells.
  • the time-frequency resource allocated by the target network device is different from the time-frequency resource allocated by the source network device. Therefore, when the source cell and the target cell of the terminal device are co-frequency cells, the embodiment of the present application can implement the terminal device at the same time. Maintain data transmission with source and target cells, and avoid co-channel interference between source and target cells.
  • a cell handover method including:
  • a handover command sent by the source network device including a fifth instruction, where the fifth instruction is used to instruct the target network device to allocate time-frequency resources to the terminal device, and the target The time-frequency resource occupied by the network device is different from the time-frequency resource allocated by the source network device to the terminal device;
  • the target cell of the terminal device and the source cell of the terminal device are co-frequency cells.
  • the time-frequency resource allocated by the target network device is different from the time-frequency resource allocated by the source network device. Therefore, when the source cell and the target cell of the terminal device are co-frequency cells, the embodiment of the present application can implement the terminal device at the same time. Maintain data transmission with source and target cells, and avoid co-channel interference between source and target cells.
  • the fourth instruction is used to instruct the source network device to allocate a downlink to the terminal device.
  • a time domain resource, and the fifth indication is used to indicate a downlink time domain resource allocated by the target network device to the terminal device;
  • the fourth indication is used to indicate an uplink time domain resource allocated by the source network device to the terminal device
  • the fifth indication is used to indicate an uplink time domain resource allocated by the target network device to the terminal device.
  • the frequency domain resources of the terminal device and the source network device transmitting data can be dynamically scheduled, and the frequency domain resources of the terminal device and the target network device transmitting data can also be Dynamic scheduling is adopted instead of fixed frequency domain resources, so the downlink data transmission rate can be increased.
  • this method also prevents the terminal device from sending data to two networks at the same time or receiving data from two network devices at the same time, reducing the implementation complexity of the terminal device.
  • the fourth instruction is used to instruct the source network device to allocate an uplink to the terminal device.
  • a frequency domain resource is used to instruct the target network device to allocate an uplink frequency domain resource to the terminal device, and the uplink frequency domain resource uses RB as a minimum indication unit.
  • the source network device and the target network device can perform uplink scheduling of the terminal device on the corresponding frequency domain resources, avoiding the frequency domain resources of the terminal device and the source network device transmitting uplink data and the frequency of the terminal device and the target network device transmitting uplink data. Domain resource conflicts improve the signal-to-noise ratio of uplink data transmission.
  • a communication device for performing any one of the foregoing aspects or a method in any possible implementation manner of any aspect.
  • the communication apparatus includes a unit for performing any one of the foregoing aspects or a method in any possible implementation manner of any aspect.
  • a communication device includes a processor and a transceiver.
  • the device may further include a memory and a bus system.
  • the transceiver, the memory, and the processor are connected through the bus system.
  • the memory is used to store instructions.
  • the processor is used to execute instructions, such as executing instructions stored in the memory, to control the transceiver to receive and / or send signals. And when the processor executes an instruction, such as an instruction stored in the memory, the execution causes the processor or the communication device to execute a method in any one of the foregoing aspects or any possible implementation manner of any aspect.
  • a computer-readable medium for storing a computer program, the computer program including instructions for performing a method in any possible implementation manner of any of the foregoing aspects.
  • a computer program product includes: computer program code, where the computer program code is received by a communication unit, a processing unit, or a transceiver of a communication device (for example, a terminal device or a network device).
  • a communication device for example, a terminal device or a network device.
  • the communication device is caused to execute the method in any possible implementation manner of any of the foregoing aspects.
  • a chip which is applicable to a communication device.
  • the chip includes at least one processor, and when the at least one processor executes an instruction, the chip or the communication device executes any of the foregoing aspects.
  • the chip may further include a memory, and the memory may be used to store related instructions.
  • a communication system including the foregoing source network device and target network device.
  • FIG. 1 shows a schematic scenario diagram of a cell switching method applicable to an embodiment of the present application.
  • FIG. 2 shows a measurement result of a sub-band within a bandwidth.
  • FIG. 3 shows a schematic flowchart of a method for intra-frequency cell handover provided by an embodiment of the present application.
  • FIG. 4 shows a schematic flowchart of an intra-frequency cell handover method according to an embodiment of the present application.
  • FIG. 5 shows a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 6 shows a schematic block diagram of another communication device according to an embodiment of the present application.
  • FIG. 7 shows a schematic block diagram of another communication device according to an embodiment of the present application.
  • FIG. 8 shows a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 1 shows a schematic scenario diagram of a cell switching method applicable to an embodiment of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Global Interoperability for Microwave Access
  • the terminal device in the embodiments of the present application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or User device.
  • Terminal equipment can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), and wireless communications Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearables, drones, and automobiles, terminal devices in future 5G networks, or public land mobile networks that are evolving in the future (public mobile terminal, etc. in a network (PLMN), which is not limited in this embodiment of the present application.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • PLMN public land mobile networks
  • the network device (including the source network device and the target network device) in the embodiment of the present application may be a device for communicating with a terminal device, for example, configuring downlink resources for the terminal device and performing cooperation between network devices (base stations).
  • the network equipment may be a global mobile communication (GSM) system or a base station (BTS) in code division multiple access (CDMA), or a broadband code division multiple access (wideband code division multiple access, WCDMA) base station (NodeB, NB), can also be an evolved base station (evolved NodeB, eNB or eNodeB) in the LTE system, or a cloud radio access network (cloud radio access network (CRAN) scenario, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, a network device in a future 5G network, or a network device in a future evolved PLMN network.
  • GSM global mobile communication
  • BTS base station
  • CDMA code division multiple access
  • an LTE communication system there may be multiple cells under each eNB, and the technical solution in the embodiment of the present application may be applicable to the eNB and the UE in each cell.
  • under one gNB there may be one or more transmission and reception points (TRP), and the technical solution in the embodiment of the present application may be applied to each gNB or TRP.
  • TRP transmission and reception points
  • CU central unit
  • DU distributed unit
  • the technical solution in the embodiment of the present application may be applied to each CU or DU.
  • the difference between the CU-DU separation scenario and the multi-TRP scenario is that the TRP is only a radio frequency unit or an antenna device, and the protocol stack function can be implemented in the DU, for example, the physical layer function can be implemented in the DU.
  • the source network device is a network device to which a serving cell where the terminal device is currently located belongs
  • the target network device is a network device to which the target device is to be handed over.
  • the current serving cell is the source cell.
  • the connection between the terminal device and the source network device will not be interrupted. In this way, there will be a period of time during the switching process.
  • the terminal device maintains a connection with the source network device and the target network device at the same time, and the terminal device can perform data transmission with the source network device and the target network device at the same time.
  • the terminal device needs to perform cell measurement on the current serving cell and / or the neighboring cell, where the current serving cell and the neighboring cell may be intra-frequency cells.
  • the terminal device may measure at least one sub-band within a bandwidth of the neighboring cell, so that the source network device and / or the target network device may select a terminal device for communication with the terminal based on a measurement result of the sub-band of the neighboring cell Frequency domain resources for data transmission of the device, thereby helping to avoid the same-frequency interference when the terminal device performs data transmission with the source network device and the target network device in the cell switching scenario.
  • the full bandwidth of a cell can be divided into at least two sub-bands.
  • the full bandwidth of a cell if 10 resource blocks (RBs) are used as a frequency unit as a subband, if the full bandwidth of a cell is 100 RBs, the full bandwidth of the cell can be divided into 10 Subbands.
  • the subband width may be RB as a granularity, or RB Group (RBG) as a granularity, which is not limited in this embodiment of the present application.
  • the width of the sub-band may be 10 RBs, 4 RBs, or 1 RGB.
  • RBG is a group of RBs.
  • the terminal device only measures a cell measurement result of a full bandwidth.
  • the embodiment of the present application can separately measure at least two subbands in the full bandwidth, and can refine the measurement results in the full bandwidth of the cell. For example, subbands 1 to 6 can be obtained separately. Measurement results to provide more detailed cell measurement information.
  • FIG. 3 shows a schematic flowchart of a method for intra-frequency cell handover provided by an embodiment of the present application. It should be understood that FIG. 3 illustrates steps or operations of the cell handover method, but these steps or operations are merely examples, and other embodiments or variations of each operation in FIG. 3 may be performed in the embodiment of the present application. In addition, each step in FIG. 3 may be performed in a different order than that presented in FIG. 3, and it may not be necessary to perform all operations in FIG. 3.
  • a terminal device, a source network device, and a target network device are used as an example to perform the method for performing a method for intra-frequency cell handover.
  • the terminal device may also be replaced with a chip of the terminal device, which is not limited in the embodiment of the present application.
  • the source network device sends a measurement configuration to the terminal device.
  • the measurement configuration may include a first indication, and the first indication is used to instruct the terminal device to measure a sub-band within a bandwidth of a neighboring cell.
  • the first indication may be a sub-band measurement identification and / or sub-band width information.
  • the subband measurement identifier may be a field for instructing the terminal device to perform subband measurement, and this field may occupy 1 or 2 bits, for example.
  • the subband width information may be a field used to indicate a width of each subband measured by the terminal device, and the field may occupy 1 or 2 bits, for example.
  • the width of each sub-band indicated by the sub-band width information may be 10 RBs, 4 RBs, or 1 RGB, etc., which is not limited in this embodiment of the present application.
  • the terminal device may measure subbands within a full bandwidth of the neighboring cell, and the measured width of each subband is based on the subband.
  • the band width information is determined.
  • the terminal device may be configured to confirm that the subband measurement is required once the subband width information is acquired. That is, at this time, the subband width information can instruct the terminal device to measure the subbands within the bandwidth of the neighboring cell, and can also indicate the width of each subband when the terminal device performs subband measurement.
  • the terminal device may measure a subband within a full bandwidth of a neighboring cell. At this time, the measured width of each sub-band may be specified by a protocol.
  • the terminal device when the terminal device measures the subbands within the bandwidth of the neighboring cell according to the first instruction, it may measure all the subbands within the full bandwidth of the neighboring cell, or The measurement is performed on a part of the sub-bands within the full bandwidth, which is not limited in the embodiment of the present application.
  • the terminal device may not measure the subband corresponding to the resource in the downlink scheduling instruction information of the source network device in the latest or multiple times.
  • the measurement configuration may include a second indication, and the second indication is used to instruct the terminal device to measure a subband other than the first subband in a bandwidth of the neighboring cell.
  • the first sub-band includes sub-bands occupied by the terminal device for data transmission in the source cell, and the number of sub-bands included in the first sub-band may be one or more.
  • the first subband may include the subband corresponding to the resource in the downlink scheduling instruction information of the source network device in the latest or multiple times.
  • the terminal device can measure and report part of the subbands in the full bandwidth in the neighboring cell, and the target network device only needs to perform downlink resources on the frequency band other than the first subband in the full bandwidth of the target cell. Scheduling and data transmission, thereby reducing the power overhead of terminal equipment for neighboring cell measurements.
  • a subband other than the first subband in a bandwidth of an adjacent cell includes a second subband
  • the second subband includes a subband occupied by the terminal device for data transmission in the target cell. It can be seen that the first subband and the second subband are different subbands. Therefore, when the source cell and the target cell are on the same frequency, the terminal device can use the first subband for data transmission in the source cell, and can also The target cell uses the second sub-band for data transmission without co-frequency interference.
  • the source network device may notify the terminal device of a subband list, and the terminal device may exclude the subbands in the list when selecting the reported measurement results, or the terminal device may not measure the subbands in the list when measuring.
  • the physical layer of the terminal device does not measure the subbands in the list, or the upper layer of the terminal device does not perform L3 filtering on the measurement results of the subbands in the list.
  • the terminal device may obtain the frequency domain resource range of each sub-band in the full bandwidth of the neighboring cell through the configuration information.
  • the frequency domain resources of the neighboring cell can be notified in advance, and the frequency domain resources of the neighboring cell can be divided into multiple sub-bands, and then each sub-band within the full bandwidth of the neighboring cell can be numbered in sequence, and the number of each sub-band is taken as The ID of the subband.
  • the foregoing subband list may include an identifier of a subband that does not need to be measured or reported.
  • the measurement configuration may include a first indication and a second indication, so that the terminal device can measure the subbands within the bandwidth of the neighboring cell, and only measure the first subband except the first subband indicated by the second indication. Outside the sub-band.
  • the terminal device when the measurement configuration includes the second indication but does not include the foregoing first indication, the terminal device may be considered to be configured to measure a subband within a bandwidth of the neighboring cell, and only measure the frequency in the neighboring cell. Subbands other than the first subband, at this time, the second indication may also be used to instruct the terminal device to measure the subbands within the bandwidth of the neighboring cell.
  • the measurement configuration when the terminal device does not know the frequency domain resource of the first subband, the measurement configuration further includes information indicating the frequency domain resource of the first subband, or Information indicating frequency domain resources of subbands other than the first subband in a bandwidth of the neighboring cell.
  • the network device may display a frequency domain resource indicating the first sub-band to the terminal device.
  • the first sub-band may be a frequency band from RB0 to RB20, or a frequency domain resource other than the first sub-band in a bandwidth of an adjacent cell may be a frequency band from RB21 to RB49 (taking a 10 MHz bandwidth as an example) .
  • the terminal device can measure the sub-bands within the bandwidth of the neighboring cell, and only measure the sub-bands other than the first sub-band, then The information used to indicate the frequency domain resources of the first sub-band may also be used to instruct the terminal device to measure the sub-bands within the bandwidth of the neighboring cell.
  • the network device may indicate the frequency domain resource of the first sub-band to the terminal device in an implicit indication manner.
  • the protocol may stipulate that the terminal device uses the subband corresponding to the resource in the downlink scheduling instruction information of the network device of the last or multiple times as the first subband, and at this time, the network device does not need to send an indication field to the terminal device.
  • the number of scheduling times may be configured by a network device or pre-configured in a protocol, which is not limited in the embodiment of the present application.
  • the number of scheduling times configured by the network device or pre-configured in the protocol is 1, it indicates that the terminal device may use the subband corresponding to the resource in the latest downlink scheduling instruction information as the first subband.
  • the number of scheduling times configured by the network device or pre-configured in the protocol is 3, it means that the terminal device may determine the subband corresponding to the resource in the last 3 downlink scheduling instructions as the first subband.
  • the measurement configuration further includes a third indication, and the third indication is used to instruct the terminal device to report a measurement result of a sub-band that satisfies a condition.
  • the satisfying condition here is, for example, that the measured value is greater than or equal to a threshold value.
  • the threshold value may be, for example, a reference signal receiving power (RSRP) threshold, or a reference signal receiving quality. (RSRQ) threshold, or signal to interference plus noise ratio (SINR) threshold, which is not limited in this embodiment of the present application.
  • the third indication information may be a threshold value or a combination of at least two thresholds, for example, a combination of an RSRP threshold and an RSRQ threshold.
  • the threshold value may also be preset in the protocol, which is not limited in the embodiment of the present application.
  • the measurement configuration may further include information for indicating a measurement result of measuring the full bandwidth of the neighboring cell.
  • the terminal device may also measure each subband in the full bandwidth, but exclude the measurement result of the first subband when reporting the measurement result.
  • the terminal device reports a measurement report to the source network device.
  • the terminal device may perform cell measurement on the neighboring cell according to the measurement configuration sent by the source network device, and then report the measurement result of the neighboring cell to the network device.
  • the measurement result of the neighboring cell may include the measurement result of the first sub-band and / or the measurement result of the second sub-band, wherein the sub-bands of the bandwidth of the neighboring cell other than the first sub-band include the second Sub-band.
  • the measurement result of the neighboring cell may further include a measurement result of the full bandwidth of the neighboring cell.
  • the terminal device may perform measurement based on the neighboring cell reference signal.
  • the neighboring cell reference signal may be a channel state information reference signal (channel-information reference signal (CSI-RS) or a common reference signal (common reference signal (CRS)).
  • CSI-RS channel-information reference signal
  • CRS common reference signal
  • the following uses the reference signal as a CSI-RS as an example to describe in detail how a terminal device measures a neighboring cell.
  • the terminal device can measure the signal strength of the neighboring cell within the zero-power CSI-RS resources configured by the current serving cell.
  • the zero-power CSI-RS resource is configured by the current serving cell.
  • the zero-power CSI-RS resource refers to the time-frequency resource for which no CSI-RS transmission is performed in the current serving cell. Therefore, the terminal device can The cell performs interference measurement.
  • the terminal device may perform signal measurement of the designated cell on the resource.
  • the current serving network device needs to indicate the zero-power CSI-RS resource configuration to the terminal device, and it also needs to indicate the cell identification (ID) that needs to be measured.
  • the terminal device performs signal strength measurement (including but not limited to RSRP, RSRQ, SINR, etc.) of the neighboring cell at the corresponding zero power CSI-RS according to this instruction. After the terminal device performs measurement on the corresponding zero-power CSI-RS resource, it reports the measurement result according to the reported configuration information.
  • the reported configuration information may be sent by the source network device to the terminal device, or may be pre-configured by a protocol, which is not limited in the embodiment of the present application.
  • the reported content includes the measurement result of the subband, which may be, for example, the CQI of the subband, and the subband may be, for example, a granularity of 4RB.
  • the reported measurement result is a collection of measurement results of multiple sub-bands, which is not limited in this embodiment of the present application.
  • the reported content may further include a full-bandwidth CQI, that is, a measurement result based on a cell bandwidth.
  • the target cell when the terminal device measures neighboring cells within the zero-power CSI-RS resources configured by the current serving cell, the target cell is required to send corresponding CSI-RS signals on the corresponding zero-power CSI-RS time-frequency resources.
  • One way is to exchange information between network devices in advance. For example, the current serving network device notifies neighboring network devices of the current zero-power CSI-RS configuration, and the neighboring network device returns a confirmation message to the currently serving network device.
  • the CSI-RS signal is transmitted at the zero-power CSI-RS resource.
  • the other method is implemented by Network Operation and Maintenance (OAM), that is, it is implemented by means of background configuration, and does not require information interaction between network devices.
  • OFAM Network Operation and Maintenance
  • the neighboring cell CSI-RS measurement based on the zero-power CSI-RS resources of the current serving cell can shield the interference of the current serving cell and approximate the signal quality of the actual interference cancellation scenario.
  • the scheduling based on this measurement result is more accurate, but this This method may require resource configuration information exchange between base stations on the one hand, and synchronization between base stations on the other.
  • the subband measurement method based on the neighboring cell CRS does not require additional interaction between stations. The UE only needs to perform measurement in accordance with the subband during measurement. The operation is simpler, but the disadvantage is that the influence of neighboring cell interference cannot be ruled out.
  • the physical layer of the terminal device provides the subband measurement results to the upper layer according to the current subband measurement mode, and then the upper layer performs layer three (L3) filtering on each subband to obtain the sublayer level high layer measurement results.
  • L3 layer three
  • the terminal device reports the measurement result to the base station. For example, when the full-bandwidth RSRP of the neighboring cell is higher than the full-bandwidth RSRP of the current serving cell by 3dB, the terminal device is triggered to report the measurement result.
  • the source network device performs a handover decision.
  • the source network device After the source network device receives the measurement result reported by the terminal device, if it is determined that a handover is required, it will select a target cell among neighboring cells according to the measurement result reported by the terminal device, and start the handover preparation process.
  • the network device corresponding to the target cell is the target network device.
  • the measurement result on which the source network device performs the handover decision may be a measurement result of the full bandwidth of the neighboring cell, or a subband measurement result in the bandwidth of the neighboring cell, which is not limited in this embodiment of the present application.
  • the source network device sends a handover request to the target network device.
  • the handover request carries a measurement result of a subband within a bandwidth of a target cell.
  • the measurement result of the subband in the bandwidth of the target cell includes the measurement result of the second subband, so that the target network device selects the terminal device for communication with the terminal device according to the measurement result of the subband in the bandwidth of the target cell.
  • Frequency domain resources used for data transmission are used for data transmission.
  • the handover request carries the bandwidth of the target cell.
  • the measurement result of the sub-band and does not include the measurement result of the first sub-band.
  • the source network device may The measurement result of the first sub-band is removed, and only the measurement result of the second sub-band is reported to the target network device.
  • the measurement results of the subbands within the bandwidth of the target cell include the measurement results of all the subbands (for example, the first subband and the second subband) within the bandwidth, and the handover request further includes the first Subband indication information.
  • the source network device can notify the target network device to select a sub-band for transmitting data with the terminal device on a sub-band other than the first sub-band (for example, the second sub-band) in the full bandwidth.
  • the first sub-band is a frequency domain resource used by the source network device to determine data transmission with the terminal device.
  • the source network device may include the downlink scheduling instruction information of the source network device one or more times.
  • the subband corresponding to the resource is used as the first subband, so the first subband is known to the source network device.
  • the handover request includes indication information of the second sub-band.
  • the source network device determines that the source network device and the terminal device perform data transmission on the first sub-band, and the target network device and the terminal device perform data transmission on the second sub-band according to the measurement result of the neighboring cell reported by the terminal device.
  • the indication information of the second sub-band may be carried in the handover request. In this way, the source network device may not need to send the related information of the measurement result of the target cell to the target network device, which saves signaling overhead.
  • the handover request includes indication information of the first sub-band.
  • the handover request may carry indication information of the first sub-band, so that the target network device divides the full bandwidth of the target cell.
  • a second sub-band is selected on a sub-band other than the first sub-band.
  • the handover request may include measurement results of all sub-bands (for example, the first sub-band and the second sub-band) within the bandwidth of the target cell, so that the target network device may be based on the measurement results.
  • the target network device may be based on the measurement results.
  • the handover request message may further include indication information for indicating simultaneous connection, and is specifically used to instruct the terminal device to connect with the cell and the target cell during the handover process.
  • the terminal device maintains the connection with the source base station and the target base station at the same time during the handover process, thereby ensuring that the data transmission is not interrupted during the handover process.
  • the indication information may be referred to as simultaneous connection indication information. It should be understood that the indication information may also be called other names, which are not limited in the embodiments of the present application.
  • the target network device performs admission control, that is, the target network device determines whether to agree to receive the terminal device.
  • the target network device may determine whether to agree to receive the terminal device according to its own resource usage and / or based on the measurement result of the target cell included in the handover request by the terminal device. As an example, when the network resource utilization is low, the target network device may agree to receive the terminal device.
  • the target network device may determine a second subband used for data transmission between the target network device and the terminal device according to a measurement result of the second subband of the target cell sent by the source network device.
  • the target network device may use all the second sub-bands in the handover request for data transmission with the terminal device, or use part of the second sub-bands in the handover request for data transmission with the terminal device.
  • a part of the second sub-band may be a sub-band with a better measurement result, which is not limited in the embodiment of the present application.
  • the target network device when the measurement result of the target cell in the handover request includes the measurement results of all subbands within the bandwidth, and the handover request also includes the indication information of the first subband, the target network device is in full bandwidth In the sub-band other than the first sub-band, a sub-band used for transmitting data with the terminal device is selected.
  • the sub-bands other than the first sub-band include a second sub-band.
  • the target network device may directly determine the frequency domain resource used for data transmission with the terminal device according to the handover request, that is, the second Sub-band.
  • the target network device may determine itself based on the measurement results.
  • the target network device sends a handover confirmation to the source network device.
  • a handover confirmation is sent to the source network device. Otherwise, when the target network device does not agree to receive the terminal device, it will send a handover preparation failure message.
  • the handover confirmation may include a container.
  • the container includes a handover command, and the handover command is used to instruct the terminal device to switch from the source network device to the target network device.
  • the handover command is generated by the target network device and is included in the handover confirmation and sent to the source network device.
  • the handover confirmation may further include second scheduling information, where the second scheduling information is used to indicate that the frequency domain resources occupied by the terminal device for data transmission in the target cell are the second sub-nodes. frequency band.
  • the handover confirmation may further include indication information for indicating the second sub-band, and is used to notify the source network device of a frequency domain resource used for data transmission between the target network device and the terminal device.
  • the handover confirmation may further include instruction information for indicating the first sub-band, which is used to notify the source network device of data transmission between the source network device and the terminal device. Frequency domain resources used.
  • the handover confirmation may include simultaneous connection instruction information, which is used to instruct the terminal device to maintain a connection with the source cell and the target cell at the same time during the handover process.
  • the simultaneous connection instruction information may be carried in a container, which is not specifically limited in this embodiment of the present application.
  • the source network device After receiving the handover confirmation, the source network device sends a handover command to the terminal device.
  • the source network device After the source network device obtains the handover command included in the handover confirmation, it forwards the handover command to the terminal device.
  • the switch command is used to instruct the terminal device to switch from the source network device to the target network device.
  • the terminal device performs a corresponding switching action.
  • the terminal device can maintain a connection with the source network device and the target network device at the same time, and simultaneously perform data transmission with the source network device and the target network device.
  • the source network device sends first scheduling information to the terminal device, where the first scheduling information is used to indicate that the frequency domain resource occupied by the terminal device for data transmission in the source cell is the first subband.
  • the source network device forwards the second scheduling information to the terminal device.
  • the source network device may generate second scheduling information and send the second scheduling information to the terminal device. Scheduling information. In this case, the second scheduling information is not included in the handover confirmation.
  • the target network device may directly send the second scheduling information to the terminal device without passing through the source network device. It should be noted that when the second scheduling information is included in the handover confirmation in step 306, step 309 is not performed.
  • the sequence of sending the first scheduling information and the second scheduling information is not limited. That is, the first scheduling information may be sent before the second scheduling information, or may be sent after the second scheduling information, or may be sent simultaneously with the second scheduling information.
  • the target network device may also send the first scheduling information and / or the second scheduling information to the terminal device, which is not limited in the embodiment of the present application.
  • this embodiment of the present application does not limit this.
  • the first subband and the second subband may be used for uplink data transmission or downlink transmission, which is not limited in the embodiment of the present application.
  • the first scheduling information and the second scheduling information may be downlink control information (downlink control information (DCI)).
  • DCI downlink control information
  • the terminal device can measure the subbands within the full bandwidth, refine the cell measurement results, and provide more detailed cell measurement information, so that the source network device and the target network device are based on the subbands of neighboring cells Level measurement results, the first subband and the second subband that are different from the band resources are selected for data transmission, and the resources used by the source network device and the target network device are isolated in the frequency domain to reach the current serving cell and the target cell. Effect of interference avoidance.
  • the downlink / uplink transmission timing between network devices is not aligned.
  • only a frequency domain resource isolation scheme can be used to avoid downlink interference.
  • the downlink / uplink transmission timing between network devices is aligned, and the downlink timing deviation between network devices is defined according to the protocol to not exceed 3us.
  • a time domain resource isolation scheme may be considered to avoid interference between the target cell and the serving cell. In this way, the source network device and the target network device use different times for downlink / uplink transmission, and the signal transmission times do not overlap.
  • Time domain resource isolation information In the embodiment of the present application, in a scenario where the terminal device communicates with the source network device and the target network device at the same time during the handover process, in order to avoid downlink / uplink co-frequency interference, it is necessary to notify the terminal device of the time domain resource isolation information. In this way, in the time domain resources allocated to the source terminal device, the terminal device monitors the scheduling information of the source network device and sends / receives data, and in the time domain resources allocated to the target network device, the terminal device monitors the scheduling information and sends the target network device. /Receive data. Because the time-domain isolation method is used, the frequency-domain resources can no longer be fixed, but a dynamic scheduling method can be used, which can improve the data transmission rate.
  • FIG. 4 shows a schematic flowchart of an intra-frequency cell handover method according to an embodiment of the present application. It should be understood that FIG. 4 shows the steps or operations of the cell handover method, but these steps or operations are merely examples, and the embodiments of the present application may also perform other operations or a modification of each operation in FIG. 4. In addition, each step in FIG. 4 may be performed in a different order than that presented in FIG. 4, and it is possible that not all operations in FIG. 4 are to be performed.
  • a terminal device, a source network device, and a target network device are taken as an execution subject of an execution method as an example to describe the method.
  • the execution subject of the execution method may also be a chip corresponding to a terminal device, a chip corresponding to a source network device, and a chip corresponding to a target network device.
  • the network device here may be an eNB.
  • the source network device sends a handover request to the target network device.
  • the handover request includes a fourth instruction, where the fourth instruction is used to instruct the source network device to allocate time-frequency resources to the terminal device.
  • time-frequency resources can be understood as “time-domain resources and / or frequency-domain resources”.
  • the time domain resource may be one or more symbols, one or more time slots, one or more mini time slots, or one or more subframes.
  • Frequency domain resources can be one or more RBs, one or more REs, one or more carriers, one or more cells, or one or more partial bandwidths. , BWP).
  • the target network device sends a handover confirmation to the source network device.
  • the handover confirmation includes a handover command
  • the handover command includes a fifth instruction, where the fifth instruction is used to instruct the target network device to allocate time-frequency resources to the terminal device.
  • the time-frequency resources allocated by the source network device to the terminal device are different from the time-frequency resources allocated by the target network device to the terminal device, and the source cell (that is, the serving cell) of the terminal device is the same as the target cell. Frequency cell.
  • the target network device may include the fifth indication in the container in the handover confirmation, that is, the container includes the handover command and sends it to the source network device.
  • the switching command may further include a fourth instruction.
  • the target network device may include the fourth indication in the container included in the handover confirmation, that is, the container includes the handover command and sends it to the source network device.
  • the target network device may also directly send a fifth instruction to the terminal device without passing through the source network device, so that the terminal device determines the time-frequency resource allocated by the target network device.
  • the source network device sends a handover command to the terminal device.
  • the source network device obtains the handover command in the handover confirmation and forwards the handover command to the terminal device, so that the terminal device can switch from the source network device to the target network device according to the handover command.
  • the terminal device when the handover command includes the fifth instruction, the terminal device can obtain the fifth instruction through the handover command, and determine the time-frequency resource allocated by the target network device according to the fifth instruction.
  • the terminal device when the fourth instruction is included in the handover command, the terminal device can obtain the fourth instruction through the handover command, and determine the time-frequency resource allocated by the source network device according to the fourth instruction.
  • the source network device may separately send a fourth instruction to the terminal device.
  • the fourth instruction may not include the fourth instruction at this time, but the source network device directly sends the fourth instruction to the terminal device.
  • the source network device may send a separate message to the terminal device, and the separate message may include a fourth indication, or the source network device may include the fourth indication in an existing message (for example, an RRC connection reconfiguration message). ), Which is sent to the terminal device, which is not limited in the embodiment of the present application.
  • the first data is transmitted between the source network device and the terminal device.
  • the second data is transmitted between the target network device and the terminal device.
  • the fourth indication is used to indicate an uplink frequency domain resource allocated by the source network device to the terminal device
  • the fifth indication is used to indicate that the target network device is The uplink frequency domain resources allocated by the terminal device are described.
  • the source network device and the target network device can perform uplink scheduling of the terminal device on the corresponding frequency domain resources, avoiding the frequency domain resources of the terminal device and the source network device transmitting uplink data and the frequency of the terminal device and target network device transmitting uplink data Domain resource conflicts, and improve the signal-to-noise ratio (signal to interference-plus-noise ratio, SINR) of uplink data transmission.
  • SINR signal to interference-plus-noise ratio
  • the fourth indication is used to instruct the source network device to allocate downlink frequency domain resources to the terminal device
  • the fifth indication is used to instruct the target network device to be the destination network device.
  • the downlink frequency domain resources allocated by the terminal device are described.
  • the source network device and the target network device can perform downlink scheduling of the terminal device on the corresponding frequency domain resources, avoiding the frequency domain resources of the terminal device and the source network device transmitting downlink data and the frequency of the terminal device and the target network device transmitting downlink data. Domain resource conflicts improve SINR for downlink data transmission.
  • the frequency domain resource may use RB as a minimum indication unit.
  • the frequency domain resources allocated by the network equipment indicated by the fourth indication or the fifth indication may be in units of RBs or RB groups, where one RB group may include multiple RBs.
  • the fourth indication or the fifth indication may be indicated in a bitmap (bitmap) manner.
  • bitmap bitmap
  • the 100 bit identifier of the response can be used, where "1" can indicate that the corresponding RB is occupied, and "0" can indicate that the corresponding RB is not occupied.
  • "occupied” means that the network device allocates the RB to the terminal device for data transmission
  • “non-occupied” means that the network device does not allocate the RB to the terminal device for data transmission.
  • the fourth indication is used to indicate an uplink time domain resource allocated by the source network device to the terminal device
  • the fifth indication is used to indicate that the target network device is The uplink time domain resources allocated by the terminal device are described.
  • the terminal device may monitor the uplink scheduling information of the source network device on the uplink time domain resource allocated by the source network device according to the received fourth instruction, and receive the uplink data, that is, the first data, sent by the source network device at the target.
  • the uplink time domain resources allocated by the network device monitor the uplink scheduling information of the target network device, and receive the uplink data, that is, the second data, sent by the target network device.
  • the fourth indication is used to indicate a downlink time domain resource allocated by the source network device to the terminal device
  • the fifth indication is used to indicate that the target network device is the The downlink time domain resources allocated by the terminal device are described.
  • the terminal device may monitor the downlink scheduling information of the source network device on the downlink time domain resources allocated by the source network device according to the received fourth instruction, and receive the downlink data sent by the source network device, that is, the first data, at the target.
  • the downlink time domain resources allocated by the network device monitor the downlink scheduling information of the target network device, and receive the downlink data, that is, the second data, sent by the target network device.
  • the frequency domain resources of the terminal device and the source network device transmitting data can be dynamically scheduled, and the frequency domain resources of the terminal device and the target network device transmitting data can also be Dynamic scheduling is adopted instead of fixed frequency domain resources, so the downlink data transmission rate can be increased.
  • this method also prevents the terminal device from sending data to two networks at the same time or receiving data from two network devices at the same time, reducing the implementation complexity of the terminal device.
  • the time domain resources allocated by the network device indicated by the fourth indication or the fifth indication may be in units of subframes, time slots, mini time slots, symbols, or symbol groups.
  • one symbol group may include multiple symbols.
  • a possible method for indicating time domain resources may be to indicate a specific subframe number.
  • the source base station uses subframes 1 and 6, and the target base station uses subframes 3 and 8.
  • One possible way is to indicate through a bitmap that a frame contains 10 subframes, so 10 bits can be used to represent 10 subframes, for example, 1 represents occupied, 0 represents non-occupied, and the lowest bit represents subframe 0. So 0001000010 means use subframes 1 and 6, and 0100001000 means use subframes 3 and 8.
  • Another possible way is indicated by a formula, which is as follows:
  • subframe [N * ul-SchedInterval + ul-StartSubframe] modulo 10
  • the subframe is an occupied subframe
  • ul-SchedInterval is a period value
  • ul-StartSubframe is a start subframe.
  • the occupied subframe number can be calculated according to the above formula.
  • the source network device or the target network device notifies the terminal device of the start time when the resource isolation configuration takes effect, and / or the resource isolation configuration End Time.
  • the starting time may be an absolute time point, such as a combination of a frame number + a subframe number, or a delay after receiving a handover command from a terminal device, such as N + 6, where the terminal device is in a subframe
  • N receives the handover command
  • the terminal device will simultaneously communicate with the source network device and the target network device in a resource isolation mode starting from subframe N + 6.
  • the end time can be an absolute point in time or a delay after receiving a handover command from the terminal device, such as N + 36.
  • a separate timer can be designed for the receiving point in time
  • the start condition can be the terminal device receiving a switch command
  • the timeout condition can be the timer running longer than a preset time
  • the stop condition can be the terminal device receiving a command to terminate simultaneous transmission .
  • the time-frequency domain resource isolation can be controlled at the same time.
  • the method of simultaneous time-frequency domain resource isolation can also be referred to as a completely pattern-based transmission method.
  • the source network device may notify the target network device of the time-frequency domain resources allocated for the terminal device in the handover request, and then the target network device selects the uplink / downlink resources on the time-frequency domain resources not occupied by the terminal device, so that the source The network device and the target network device are separated on uplink / downlink time-frequency domain resources.
  • the source network device sends a handover command to the terminal device, and the handover command includes a fourth instruction, where the fourth instruction is used to indicate the fourth instruction of the time-frequency resource allocated by the target network device to the terminal device.
  • the handover command A fifth instruction may also be included in the fifth instruction, which is used to instruct the source network device to allocate time-frequency resources to the terminal device, or the source network device may send the fifth instruction to the terminal device separately, so that the terminal device may perform the fourth instruction according to the fourth instruction.
  • the fifth instruction perform data transmission with the source network device and the target network device, respectively.
  • the time-frequency resource allocated by the target network device is different from the time-frequency resource allocated by the source network device. Therefore, when the source cell and the target cell of the terminal device are co-frequency cells, the embodiment of the present application can implement the terminal device at the same time. Maintain data transmission with source and target cells, and avoid co-channel interference between source and target cells.
  • the source network device, the target network device, and the terminal device include a hardware structure and / or a software module corresponding to each function.
  • the embodiments of this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application of the technical solution and design constraints. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the technical solutions of the embodiments of the present application.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated.
  • a processing unit may be implemented in the form of hardware or in the form of software functional unit. It should be noted that the division of the units in the embodiments of the present application is schematic, and is only a logical function division. There may be another division manner in actual implementation.
  • FIG. 5 shows a possible exemplary block diagram of a communication device involved in the embodiment of the present application.
  • the device 500 may exist in the form of software, hardware, or a combination of software and hardware. .
  • FIG. 5 shows a possible schematic block diagram of a device involved in an embodiment of the present application.
  • the apparatus 500 includes a processing unit 502 and a communication unit 503.
  • the processing unit 502 is configured to control and manage the operation of the device.
  • the communication unit 503 is used to support communication between the device and other devices.
  • the device may further include a storage unit 501 for storing program code and data of the device.
  • the apparatus 500 shown in FIG. 5 may be a source network device and a target network network device involved in the embodiments of the present application.
  • the processing unit 502 can support the apparatus 500 to perform the actions performed by the source network device in the foregoing method examples.
  • the processing unit 502 supports the apparatus 500 to execute, for example, a terminal device in FIG. 3 Perform the measurement configuration and generate the measurement configuration in 301, the measurement report in processing 302, the 305 handover decision, generate the 304 handover request, process 306 handover confirmation, etc., generate the first scheduling information action in 308, and generate 401 in FIG. 4
  • the communication unit 503 can support communication between the device 500 and the target network device, terminal device, etc.
  • the communication unit 503 supports the device 500 to perform steps 301, 302, 304, 306, 307, 308 in FIG. 3, and Steps 401, 402, 403, 404, 405, and / or other related communication processes.
  • the processing unit 502 can support the apparatus 500 to perform the actions performed by the target network device in the foregoing method examples.
  • the processing unit 502 supports the apparatus 500 to execute the process 304 in FIG. 3 Handover request, 305 admission control, handover confirmation in 306, second scheduling information in 309, process 401 in FIG. 4, handover request in 401, handover confirmation in 402, and / or Other processes described in the technique.
  • the communication unit 503 can support communication between the device 500 and a source network device, a terminal device, and the like.
  • the communication unit 503 supports the device 500 to perform steps 304, 306, and 309 in FIG. 3 and steps 401, 402, and 406 in FIG. , And / or other related communication processes.
  • the processing unit 602 may be a processor or a controller.
  • the processing unit 602 may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (application).
  • the processor may also be a combination that implements computing functions, such as a combination including one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication unit 503 may be a communication interface.
  • the communication interfaces are collectively referred to. In a specific implementation, the communication interface may include one or more interfaces.
  • the storage unit 501 may be a memory.
  • the processing unit 502 is a processor
  • the communication unit 503 is a communication interface
  • the storage unit 501 is a memory
  • the device 500 involved in the embodiment of the present application may be the communication device 600 shown in FIG. 6.
  • the apparatus 600 includes: a processor 602 and a communication interface 603. Further, the apparatus 600 may further include a memory 601. Optionally, the device 600 may further include a bus 604.
  • the communication interface 603, the processor 602, and the memory 601 can be connected to each other through a bus 604.
  • the bus 604 can be a peripheral component interconnect (PCI) bus or an extended industrial standard architecture (EISA). Bus, etc.
  • the bus 604 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only a thick line is used in FIG. 6, but it does not mean that there is only one bus or one type of bus.
  • the processor 602 may execute various functions of the device 600 by running or executing a program stored in the memory 601.
  • the communication apparatus 600 shown in FIG. 6 may be a source network device and a target network device involved in the embodiment of the present application.
  • the processor 602 can execute the actions performed by the source network device in the foregoing method examples by running or executing a program stored in the memory 601.
  • the processor 602 may execute the actions performed by the target network device in the foregoing method examples by running or executing a program stored in the memory 601.
  • FIG. 7 shows a possible exemplary block diagram of another device involved in the embodiment of the present application.
  • the device 700 may exist in the form of software, hardware, or a combination of software and hardware. .
  • FIG. 7 shows a possible schematic block diagram of a device involved in an embodiment of the present application.
  • the apparatus 700 includes a processing unit 702 and a communication unit 703.
  • the processing unit 702 is configured to control and manage the operation of the device.
  • the communication unit 703 is configured to support communication between the device and other devices.
  • the device may further include a storage unit 701 for storing program code and data of the device.
  • the communication device 700 shown in FIG. 7 may be a terminal device or a chip applied to the terminal device.
  • the processing unit 702 can support the device 700 to perform the actions performed by the terminal device in the foregoing method examples.
  • the processing unit 702 supports the device 702 to perform, for example, the measurement report in processing 301 in FIG. 3, the measurement report in 302, and processing 307.
  • the communication unit 703 can support communication between the device 700 and the source network device and the target network device.
  • the communication unit 703 supports the device 700 to perform steps 301, 302, 307, 308, and 309 in FIG. 3 and steps in FIG. 4 403, 404, 405, 406, and / or other related communication processes.
  • the processing unit 702 may be a processor or a controller, for example, it may be a CPU, a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute various exemplary logical blocks, units, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination including one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication unit 703 may be a communication interface. The communication interfaces are collectively referred to. In a specific implementation, the communication interface may include one or more interfaces.
  • the storage unit 701 may be a memory.
  • the apparatus 700 involved in this embodiment of the present application may be a terminal device as shown in FIG. 8.
  • FIG. 8 shows a simplified schematic diagram of a possible design structure of a terminal device involved in an embodiment of the present application.
  • the terminal device 800 includes a transmitter 801, a receiver 802, and a processor 803.
  • the processor 803 may also be a controller, which is shown as "controller / processor 803" in FIG. 8.
  • the terminal device 800 may further include a modem processor 805.
  • the modem processor 805 may include an encoder 806, a modulator 807, a decoder 808, and a demodulator 809.
  • the transmitter 801 conditions (e.g., analog conversion, filtering, amplification, upconversion, etc.) the output samples and generates an uplink signal, which is transmitted to the base station described in the above embodiment via an antenna .
  • the antenna receives the downlink signal transmitted by the base station in the above embodiment.
  • the receiver 802 conditions (e.g., filters, amplifies, downconverts, and digitizes, etc.) a signal received from an antenna and provides input samples.
  • the encoder 806 receives service data and signaling messages to be transmitted on the uplink, and processes (e.g., formats, encodes, and interleaves) the service data and signaling messages.
  • the modulator 807 further processes (e.g., symbol maps and modulates) the encoded service data and signaling messages and provides output samples.
  • a demodulator 809 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 808 processes (e.g., deinterleaves and decodes) the symbol estimates and provides decoded data and signaling messages sent to the terminal device 1100.
  • the encoder 806, the modulator 807, the demodulator 809, and the decoder 808 may be implemented by a synthesized modem processor 805. These units are processed according to the radio access technologies (e.g., access technologies of LTE, 5G, and other evolved systems) adopted by the radio access network. It should be noted that when the terminal device 800 does not include the modem processor 805, the above functions of the modem processor 805 may also be performed by the processor 803.
  • the radio access technologies e.g., access technologies of LTE, 5G, and other evolved systems
  • the processor 803 controls and manages the actions of the terminal device 800, and is configured to execute the processing procedure performed by the terminal device 800 in the foregoing embodiment of the present application.
  • the processor 803 is further configured to execute a processing process involving a terminal device in the methods shown in 3 and FIG. 4 and / or other processes of the technical solution described in this application.
  • the terminal device 800 may further include a memory 804, and the memory 804 is configured to store program codes and data for the terminal device 800.
  • the steps of the method or algorithm described in connection with the disclosure of the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner that a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules.
  • Software modules can be stored in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), erasable programmable read-only memory (ROM Erasable (Programmable ROM, EPROM), electrically erasable programmable read-only memory (EPROM), registers, hard disks, removable hard disks, read-only optical disks (CD-ROMs), or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may be located in a control plane entity of the centralized unit, a user plane entity of the centralized unit, a terminal device, or a unified data storage network element.
  • the processor and the storage medium may also exist as discrete components in a control plane entity of the centralized unit, a user plane entity of the centralized unit, a terminal device, or a unified data storage network element.
  • An embodiment of the present application further provides a computer-readable storage medium including a computer program, and when the computer program is run on a computer, the computer is caused to execute the method provided by the foregoing method embodiment.
  • An embodiment of the present application further provides a computer program product containing instructions, and when the computer program product runs on a computer, the computer is caused to execute the method provided by the foregoing method embodiment.
  • An embodiment of the present application further provides a chip applicable to a communication device.
  • the chip includes at least one processor, and when the at least one processor executes an instruction, the chip or the communication device executes the foregoing method embodiment.
  • the chip may further include a memory, and the memory may be used for storing related instructions.
  • processors mentioned in the embodiment of the present invention may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSPs), and application-specific integrated circuits (DSPs).
  • DSPs digital signal processors
  • DSPs application-specific integrated circuits
  • ASIC Application Specific Integrated Circuit
  • FPGA off-the-shelf Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the size of the sequence numbers of the above processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memories (ROMs), random access memories (RAMs), magnetic disks or compact discs and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种用于同频小区切换的方法和装置。本申请实施例中,终端设备能够对全带宽内的子频带进行测量,细化小区的测量结果,提供更细致的小区测量信息,源网络设备和目标网络设备能够基于邻小区的子带级的测量结果,分别选择与频带资源不同的第一子频带和第二子频带进行数据传输,在频域上对源网络设备和目标网络设备使用的资源进行隔离,达到当前服务小区和目标小区干扰避免的效果。

Description

用于同频小区切换的方法和装置 技术领域
本申请涉及通信领域,并且更具体的,涉及通信领域中的用于同频小区切换的方法和装置。
背景技术
在蜂窝通信系统中,当用户设备(user equipment,UE)移动时,根据UE与基站之间的信号强度的变化情况,会发生UE的服务小区的切换。具体而言,当UE接收到源基站发送的切换命令时,会断开与源小区的无线资源控制(radio resource control,RRC)连接,随后开始进行针对目标小区的随机接入过程。当UE向目标小区发送完切换完成消息之后,UE与目标基站之间建立RRC连接。这样,导致在UE断开与源小区的RRC连接到UE与目标基站之间建立RRC连接之间的过程中,UE的数据传输是中断的。
为减少UE切换过程中的数据传输的中断时间,提出了中断延时(make-before-break,MBB)技术,即当UE收到源小区的切换命令后,并不立即中断UE与源小区之间的连接,而是将UE与源小区之间的连接继续维持到UE针对目标小区的首次上行传输时刻。也就是说,UE在收到切换命令后,仍然维持了与源小区的通信,直到UE向目标小区发送随机接入前导码时才中断与源小区之间的通信。
进一步的,增强的MBB方案中,在UE与目标小区的随机接入过程中,UE与源小区的连接也不会中断。这样在切换的过程中,会存在一段时间,UE同时与源小区和目标小区保持连接,也可以同时进行数据传输,如果两个小区是同频的,会产生同频干扰影响通信质量。因此,在UE同时与源网络设备和目标网络设备保持数据传输的场景下,如何避免源小区和目标小区的同频干扰是亟需解决的问题。
发明内容
本申请提供一种用于同频小区切换的方法和装置,在终端设备同时与源网络设备和目标网络设备保持数据传输的场景下,能够避免源小区和目标小区的同频干扰。
第一方面,提供了一种小区切换的方法,该方法包括:
终端设备向源网络设备发送邻小区的测量结果,所述邻小区的测量结果包括所述邻小区的带宽内的第一子频带的测量结果或者第二子频带的测量结果;
所述终端设备接收第一调度信息,所述第一调度信息用于指示所述终端设备在源小区中进行数据传输所占用的频域资源为所述第一子频带;
所述终端设备接收第二调度信息,所述第二调度信息用于指示所述终端设备在目标小区中进行数据传输所占用的频域资源为所述第二子频带,所述目标小区为所述邻小区;
其中,所述目标小区与所述源小区为同频小区,所述目标小区或所述源小区的带宽包括所述第一子频带和所述第二子频带,所述第一子频带与所述第二子频带不同。
因此,本申请实施例中,终端设备能够对全带宽内的子频带进行测量,细化小区的测量结果,提供更细致的小区测量信息,源网络设备和目标网络设备能够基于邻小区的子带级的测量结果,分别选择与频带资源不同的第一子频带和第二子频带进行数据传输,在频域上对源网络设备和目标网络设备使用的资源进行隔离,达到当前服务小区和目标小区干扰避免的效果。
可选的,邻小区的测量结果中还可以包括邻小区的全带宽的测量结果,全带宽的测量结果可以作为切换判决的依据。这样,源网络设备可以根据邻小区的全带宽的测量结果,确定需要切换到的目标小区。
结合第一方面,在第一方面的某些实现方式中,所述终端设备从所述源网络设备接收测量配置,所述测量配置包括第一指示,所述第一指示用于指示所述终端设备对所述邻小区的带宽内的子频带进行测量。
因此,本申请实施例能够对全带宽内的至少两个子频带分别进行测量,能够细化小区的全带宽内的测量结果,进而提供更细致的小区测量信息。
作为示例,第一指示可以为子带测量标识和/或子带宽度信息。具体的,子带测量标识可以为用于指示终端设备进行子带测量的字段,该字段例如可以占1个或2个比特(bit)。子带宽度信息可以为用于指示终端设备所测量的每个子频带的宽度的字段,该字段例如可以占用1或2个bit。
可选的,本申请实施例中,当终端设备根据第一指示对邻小区的带宽内的子频带进行测量时,可以对邻小区的全带宽内的全部子频带进行测量,或者对邻小区的全带宽内的部分子频带进行测量,本申请实施例对此不作限定。
结合第一方面,在第一方面的某些实现方式中,所述终端设备从所述源网络设备接收测量配置,所述测量配置包括第二指示,所述第二指示用于指示所述终端设备测量所述邻小区的带宽中除所述第一子频带之外的子频带,所述邻小区的带宽中除所述第一子频带之外的子频带包括所述第二子频带。
这样,终端设备可以对邻小区中的全带宽中的部分子频带进行测量和上报,并且目标网络设备也只需要在其目标小区的全带宽中除第一子频带之外的频带上进行下行资源调度以及数据传输,从而降低终端设备进行邻区测量的功率开销。
结合第一方面,在第一方面的某些实现方式中,所述测量配置还包括用于指示所述第一子频带的频域资源的信息,或包括用于指示所述邻小区的带宽中除所述第一子频带之外的子频带的频域资源的信息。
可选的,本申请实施例中,网络设备可以通过隐式指示的方式向终端设备指示第一子频带的频域资源。例如,协议中可以规定终端设备将最近一次或多次的网络设备的下行调度指示信息中的资源对应的子带作为第一子频带,此时网络设备并不需要向终端设备发送指示字段。这里,调度的次数可以由网络设备配置,或者在协议中预先配置,本申请实施例对此不作限定。
结合第一方面,在第一方面的某些实现方式中,所述测量配置还包括第三指示,所述第三指示用于指示所述终端设备上报满足条件的子频带的测量结果。
这里的满足条件例如为测量值大于或等于门限值,该门限值例如可以为参考信号接收功率(reference signal receiving power,RSRP)的门限、或参考信号接收质量(reference signal  receiving quality,RSRQ)的门限,或信号与干扰加噪声比(signal to Interference plus Noise Ratio,SINR)的门限,本申请实施例对此不做限定。
可选的,该第三指示可以是一个门限值,或者是至少两个门限的组合,例如RSRP门限和RSRQ门限的组合。
可选的,本申请实施例中,测量配置还可以包括用于指示测量邻小区全带宽的测量结果的信息。
第二方面,提供了一种小区切换的方法,该方法包括:
源网络设备从终端设备接收邻小区的测量结果,所述邻小区的测量结果包括所述邻小区的带宽内的第二子频带的测量结果;
所述源网络设备向目标网络设备发送切换请求,所述切换请求包括目标小区的带宽内的子频带的测量结果,其中,所述目标小区的带宽内的子频带的测量结果包括所述第二子频带的测量结果,所述目标小区为所述邻小区;
所述源网络设备向所述终端设备发送第一调度信息,所述第一调度信息用于指示所述终端设备在源小区中进行数据传输所占用的频域资源为第一子频带;
其中,所述目标小区与所述源小区为同频小区,所述目标小区或所述源小区的带宽包括所述第一子频带和所述第二子频带,第二子频带为终端设备在所述目标小区中进行数据传输所占用的频域资源,所述第一子频带与所述第二子频带不同。
因此,本申请实施例中,终端设备能够对全带宽内的子频带进行测量,细化小区的测量结果,提供更细致的小区测量信息,源网络设备和目标网络设备能够基于邻小区的子带级的测量结果,分别选择与频带资源不同的第一子频带和第二子频带进行数据传输,在频域上对源网络设备和目标网络设备使用的资源进行隔离,达到当前服务小区和目标小区干扰避免的效果。
一种可能的实现方式,当终端设备向源网络设备上报的邻小区的测量结果中包括第二子频带的测量结果,且不包括第一子频带的测量结果时,该切换请求中携带目标小区的带宽内的子频带的测量结果,且不包括第一子频带的测量结果。
另一种可能的实现方式,当终端设备向源网络设备上报的邻小区的测量结果中包括带宽内的所有子频带(例如第一子频带和第二子频带)的测量结果时,源网络设备可以将测量结果中的第一子频带的测量结果剔除掉,只向目标网络设备上报第二子频带的测量结果。
结合第二方面,在第二方面的某些实现方式中,所述源网络设备从所述目标网络设备接收切换确认,所述切换确认中包括第二调度信息,所述第二调度信息用于指示所述终端设备在所述目标小区中进行数据传输所占用的频域资源为所述第二子频带;
所述方法还包括:
所述源网络设备向所述终端设备发送所述第二调度信息。
结合第二方面,在第二方面的某些实现方式中,所述源网络设备向所述终端设备发送测量配置,所述测量配置包括第一指示,所述第一指示用于指示所述终端设备对所述邻小区的带宽内的子频带进行测量。
因此,本申请实施例能够对全带宽内的至少两个子频带分别进行测量,能够细化小区的全带宽内的测量结果,进而提供更细致的小区测量信息。
结合第二方面,在第二方面的某些实现方式中,所述源网络设备向所述终端设备发送测量配置,所述测量配置包括第二指示,所述第二指示用于指示所述终端设备测量所述邻小区的带宽中除所述第一子频带之外的子频带,所述邻小区的带宽中除所述第一子频带之外的子频带包括所述第二子频带。
这样,终端设备可以对邻小区中的全带宽中的部分子频带进行测量和上报,并且目标网络设备也只需要在其目标小区的全带宽中除第一子频带之外的频带上进行下行资源调度以及数据传输,从而降低终端设备进行邻区测量的功率开销。
结合第二方面,在第二方面的某些实现方式中,所述测量配置包括用于指示所述第一子频带的频域资源的信息,或包括用于指示所述邻小区的带宽中除所述第一子频带之外的子频带的频域资源的信息。
结合第二方面,在第二方面的某些实现方式中,所述测量配置信息还包括第三指示,所述第三指示用于指示所述终端设备上报满足条件的子频带的测量结果。
这里的满足条件例如为测量值大于或等于门限值,该门限值例如可以为参考信号接收功率(reference signal receiving power,RSRP)的门限、或参考信号接收质量(reference signal receiving quality,RSRQ)的门限,或信号与干扰加噪声比(signal to Interference plus Noise Ratio,SINR)的门限,本申请实施例对此不做限定。
可选的,该第三指示可以是一个门限值,或者是至少两个门限的组合,例如RSRP门限和RSRQ门限的组合。
可选的,本申请实施例中,测量配置还可以包括用于指示测量邻小区全带宽的测量结果的信息。
第三方面,提供了一种小区切换的方法,包括:
源网络设备从终端设备接收邻小区的测量结果,所述邻小区的测量结果包括所述邻小区的带宽内的第一子频带的测量结果或第二子频带的测量结果;
所述源网络设备向目标网络设备发送切换请求,所述切换请求包括用于指示所述第二子频带的指示信息,所述第二子频带为所述终端设备在目标小区中进行数据传输所占用的频域资源,所述目标小区为所述邻小区;
所述源网络设备向所述终端设备发送第一调度信息,所述第一调度信息用于指示所述终端设备在源小区中进行数据传输所占用的频域资源为所述第一子频带;
其中,所述目标小区与所述源小区为同频小区,所述目标小区或所述源小区的带宽包括所述第一子频带和所述第二子频带,所述第一子频带与所述第二子频带不同。
因此,本申请实施例中,终端设备能够对全带宽内的子频带进行测量,细化小区的测量结果,提供更细致的小区测量信息,源网络设备和目标网络设备能够基于邻小区的子带级的测量结果,分别选择与频带资源不同的第一子频带和第二子频带进行数据传输,在频域上对源网络设备和目标网络设备使用的资源进行隔离,达到当前服务小区和目标小区干扰避免的效果。
另外,源网络设备向通过在切换请求中携带第二子频带的指示信息,使得源网络设备可以不需要向目标网络设备发送目标小区的测量结果的相关信息,节省信令开销。
结合第三方面,在第三方面的某些实现方式中,所述源网络设备向所述终端设备发送第二调度信息,所述第二调度信息用于指示所述终端设备在所述目标小区中进行数据传输 所占用的频域资源为所述第二子频带。
结合第三方面,在第三方面的某些实现方式中,所述源网络设备向所述终端设备发送测量配置,所述测量配置包括第一指示,所述第一指示用于指示所述终端设备对所述邻小区的带宽内的子频带进行测量。
因此,本申请实施例能够对全带宽内的至少两个子频带分别进行测量,能够细化小区的全带宽内的测量结果,进而提供更细致的小区测量信息。
结合第三方面,在第三方面的某些实现方式中,所述源网络设备向所述终端设备发送测量配置,所述测量配置包括第二指示,所述第二指示用于指示所述终端设备测量所述邻小区的带宽中除所述第一子频带之外的子频带,所述邻小区的带宽中除所述第一子频带之外的子频带包括所述第二子频带。
这样,终端设备可以对邻小区中的全带宽中的部分子频带进行测量和上报,并且目标网络设备也只需要在其目标小区的全带宽中除第一子频带之外的频带上进行下行资源调度以及数据传输,从而降低终端设备进行邻区测量的功率开销。
结合第三方面,在第三方面的某些实现方式中,所述测量配置包括用于指示所述第一子频带的频域资源的信息,或包括用于指示所述邻小区的带宽中除所述第一子频带之外的子频带的频域资源的信息。
结合第三方面,在第三方面的某些实现方式中,所述测量配置信息还包括第三指示,所述第三指示用于指示所述终端设备上报满足条件的子频带的测量结果。
这里的满足条件例如为测量值大于或等于门限值,该门限值例如可以为参考信号接收功率(reference signal receiving power,RSRP)的门限、或参考信号接收质量(reference signal receiving quality,RSRQ)的门限,或信号与干扰加噪声比(signal to Interference plus Noise Ratio,SINR)的门限,本申请实施例对此不做限定。
可选的,该第三指示可以是一个门限值,或者是至少两个门限的组合,例如RSRP门限和RSRQ门限的组合。
可选的,本申请实施例中,测量配置还可以包括用于指示测量邻小区全带宽的测量结果的信息。
第四方面,提供了一种小区切换的方法,包括:
源网络设备从终端设备接收邻小区的测量结果,所述邻小区的测量结果包括所述邻小区的带宽内的第一子频带的测量结果和第二子频带的测量结果;
所述源网络设备向目标网络设备发送切换请求,所述切换请求包括用于指示所述第一子频带的指示信息和目标小区的测量结果,所述目标小区的测量结果包括所述第一子频带的测量结果和所述第二子频带的测量结果,所述目标小区为所述邻小区;
所述源网络设备向所述终端设备发送第一调度信息,所述第一调度信息用于指示所述终端设备在源小区中进行数据传输所占用的频域资源为所述第一子频带;
其中,所述目标小区与所述源小区为同频小区,所述目标小区或所述源小区的带宽包括所述第一子频带和所述第二子频带,第二子频带为终端设备在所述目标小区中进行数据传输所占用的频域资源,所述第一子频带与所述第二子频带不同。
因此,本申请实施例中,终端设备能够对全带宽内的子频带进行测量,细化小区的测量结果,提供更细致的小区测量信息,源网络设备和目标网络设备能够基于邻小区的子带 级的测量结果,分别选择与频带资源不同的第一子频带和第二子频带进行数据传输,在频域上对源网络设备和目标网络设备使用的资源进行隔离,达到当前服务小区和目标小区干扰避免的效果。
可选的,本申请实施例中,切换请求消息中还可以包括用于指示同时连接的指示信息,具体用于指示终端设备在切换过程中同小区和目标小区的连接。此时,终端设备在切换的过程中会同时保持与源基站和目标基站的连接,进而可以保证切换过程中数据传输不中断。
结合第四方面,在第四方面的某些实现方式中,所述源网络设备从所述目标网络设备接收切换确认,所述切换确认中包括第二调度信息,所述第二调度信息用于指示所述终端设备在所述目标小区中进行数据传输所占用的频域资源为所述第二子频带;
所述方法还包括:
所述源网络设备向所述终端设备发送所述第二调度信息。
结合第四方面,在第四方面的某些实现方式中,所述源网络设备向所述终端设备发送测量配置,所述测量配置包括第一指示,所述第一指示用于指示所述终端设备对所述邻小区的带宽内的子频带进行测量。
因此,本申请实施例能够对全带宽内的至少两个子频带分别进行测量,能够细化小区的全带宽内的测量结果,进而提供更细致的小区测量信息。
结合第四方面,在第四方面的某些实现方式中,所述源网络设备向所述终端设备发送测量配置,所述测量配置包括第二指示,所述第二指示用于指示所述终端设备测量所述邻小区的带宽中除所述第一子频带之外的子频带,所述邻小区的带宽中除所述第一子频带之外的子频带包括所述第二子频带。
这样,终端设备可以对邻小区中的全带宽中的部分子频带进行测量和上报,并且目标网络设备也只需要在其目标小区的全带宽中除第一子频带之外的频带上进行下行资源调度以及数据传输,从而降低终端设备进行邻区测量的功率开销。
结合第四方面,在第四方面的某些实现方式中,所述测量配置包括用于指示所述第一子频带的频域资源的信息,或包括用于指示所述邻小区的带宽中除所述第一子频带之外的子频带的频域资源的信息。
结合第四方面,在第四方面的某些实现方式中,所述测量配置信息还包括第三指示,所述第三指示用于指示所述终端设备上报满足条件的子频带的测量结果。
这里的满足条件例如为测量值大于或等于门限值,该门限值例如可以为参考信号接收功率(reference signal receiving power,RSRP)的门限、或参考信号接收质量(reference signal receiving quality,RSRQ)的门限,或信号与干扰加噪声比(signal to Interference plus Noise Ratio,SINR)的门限,本申请实施例对此不做限定。
可选的,该第三指示可以是一个门限值,或者是至少两个门限的组合,例如RSRP门限和RSRQ门限的组合。
可选的,本申请实施例中,测量配置还可以包括用于指示测量邻小区全带宽的测量结果的信息。
第五方面,提供了一种小区切换的方法,包括:
目标网络设备从源网络设备接收切换请求,所述切换请求消息包括目标小区的带宽内 的子频带的测量结果,所述目标小区的带宽内的子频带的测量结果包括第二子频带的测量结果;
所述目标网络设备向所述终端设备发送第二调度信息,或向所述源网络设备发送切换确认,所述切换确认中包括所述第二调度信息,其中,所述第二调度信息用于指示所述终端设备在所述目标小区中进行数据传输所占用的频域资源为所述第二子频带;
其中,所述目标小区与所述终端设备的源小区为同频小区,所述目标小区或所述源小区的带宽包括所述第一子频带和所述第二子频带,第一子频带为终端设备在所述源小区中进行数据传输所占用的频域资源,所述第一子频带与所述第二子频带不同。
因此,本申请实施例中,终端设备能够对全带宽内的子频带进行测量,细化小区的测量结果,提供更细致的小区测量信息,源网络设备和目标网络设备能够基于邻小区的子带级的测量结果,分别选择与频带资源不同的第一子频带和第二子频带进行数据传输,在频域上对源网络设备和目标网络设备使用的资源进行隔离,达到当前服务小区和目标小区干扰避免的效果。
第六方面,提供了一种小区切换的方法,包括:
目标网络设备从源网络设备接收切换请求,所述切换请求包括用于指示所述第二子频带的指示信息,所述第二子频带为所述终端设备在目标小区中进行数据传输所占用的频域资源;
所述目标网络设备向所述终端设备发送第二调度信息,或向所述源网络设备发送切换确认,所述切换确认中包括所述第二调度信息,其中,所述第二调度信息用于指示所述终端设备在所述目标小区中进行数据传输所占用的频域资源为所述第二子频带;
其中,所述目标小区与所述终端设备的源小区为同频小区,所述目标小区或所述源小区的带宽包括所述第一子频带和所述第二子频带,第一子频带为终端设备在所述源小区中进行数据传输所占用的频域资源,所述第一子频带与所述第二子频带不同。
因此,本申请实施例中,终端设备能够对全带宽内的子频带进行测量,细化小区的测量结果,提供更细致的小区测量信息,源网络设备和目标网络设备能够基于邻小区的子带级的测量结果,分别选择与频带资源不同的第一子频带和第二子频带进行数据传输,在频域上对源网络设备和目标网络设备使用的资源进行隔离,达到当前服务小区和目标小区干扰避免的效果。
第七方面,提供了一种小区切换的方法,包括:
目标网络设备从源网络设备接收切换请求,所述切换请求包括用于指示第一子频带的指示信息和目标小区的测量结果,所述目标小区的测量结果包括所述第一子频带的测量结果和第二子频带的测量结果;
所述目标网络设备向所述终端设备发送第二调度信息,或向所述源网络设备发送切换确认,所述切换确认中包括所述第二调度信息,其中,所述第二调度信息用于指示所述终端设备在所述目标小区中进行数据传输所占用的频带资源为所述第二子频带;
其中,所述目标小区与所述终端设备的源小区为同频小区,所述目标小区或所述源小区的带宽包括所述第一子频带和所述第二子频带,第一子频带为终端设备在所述源小区中进行数据传输所占用的频域资源,所述第一子频带与所述第二子频带不同。
因此,本申请实施例中,终端设备能够对全带宽内的子频带进行测量,细化小区的测 量结果,提供更细致的小区测量信息,源网络设备和目标网络设备能够基于邻小区的子带级的测量结果,分别选择与频带资源不同的第一子频带和第二子频带进行数据传输,在频域上对源网络设备和目标网络设备使用的资源进行隔离,达到当前服务小区和目标小区干扰避免的效果。
第八方面,提供了一种小区切换的方法,包括:
源网络设备向目标网络设备发送切换请求,所述切换请求包括第四指示,所述第四指示用于指示所述源网络设备为终端设备分配的时频资源;
所述源网络设备接收所述目标网络设备发送的切换确认,所述切换确认包括切换命令,所述切换命令中包括所述第四指示和第五指示,所述第五指示信息用于指示所述目标网络设备为所述终端设备分配的时频资源,所述源网络设备分配的时频资源与所述目标网络设备分配的时频资源不同;
所述源网络设备向所述终端设备发送所述切换命令;
其中,所述终端设备的目标小区与所述终端设备的源小区为同频小区。
本申请实施例中,目标网络设备分配的时频资源与源网络设备分配的时频资源不同,因此当终端设备的源小区与目标小区为同频小区时,本申请实施例能够实现终端设备同时与源小区和目标小区保持数据传输,并避免源小区和目标小区的同频干扰。
第九方面,提供了一种小区切换的方法,包括:
源网络设备向目标网络设备发送切换请求,所述切换请求包括第四指示,所述第四指示用于指示所述源网络设备为终端设备分配的时频资源;
所述源网络设备接收所述目标网络设备发送的切换确认,所述切换确认包括切换命令,所述切换命令中包括第五指示,所述第五指示信息用于指示所述目标网络设备为所述终端设备分配的时频资源,所述源网络设备分配的时频资源与所述目标网络设备分配的时频资源不同;
所述源网络设备向所述终端设备发送所述切换命令;
所述源网络设备向所述终端设备发送所述第四指示;
其中,所述终端设备的目标小区与所述终端设备的源小区为同频小区。
本申请实施例中,目标网络设备分配的时频资源与源网络设备分配的时频资源不同,因此当终端设备的源小区与目标小区为同频小区时,本申请实施例能够实现终端设备同时与源小区和目标小区保持数据传输,并避免源小区和目标小区的同频干扰。
第十方面,提供了一种小区切换的方法,包括:
目标网络设备接收源网络设备发送的切换请求,所述切换请求包括第四指示,所述第四指示用于指示所述源网络设备为终端设备分配的时频资源;
所述目标网络设备向所述源网络设备发送切换确认,所述切换确认中包括切换命令,所述切换命令中包括第五指示,所述第五指示用于指示所述目标网络设备为所述终端设备分配的时频资源,所述源网络设备分配的时频资源与所述目标网络设备分配的时频资源不同;
其中,所述终端设备的目标小区与所述终端设备的源小区为同频小区。
本申请实施例中,目标网络设备分配的时频资源与源网络设备分配的时频资源不同,因此当终端设备的源小区与目标小区为同频小区时,本申请实施例能够实现终端设备同时 与源小区和目标小区保持数据传输,并避免源小区和目标小区的同频干扰。
结合第十方面,在第十方面的任一种可能的实现方式中,所述切换命令中还包括所述第四指示。
第十一方面,提供了一种小区切换的方法,包括:
终端设备接收源网络设备发送的切换命令,所述切换命令中包括第四指示和第五指示,所述第四指示用于指示所述源网络设备为所述终端设备分配的时频资源,所述第五指示用于指示所述目标网络设备为终端设备分配的时频资源,所述目标网络设备占用的时频资源与所述源网络设备为所述终端设备分配的时频资源不同;
其中,所述终端设备的目标小区与所述终端设备的源小区为同频小区。
本申请实施例中,目标网络设备分配的时频资源与源网络设备分配的时频资源不同,因此当终端设备的源小区与目标小区为同频小区时,本申请实施例能够实现终端设备同时与源小区和目标小区保持数据传输,并避免源小区和目标小区的同频干扰。
第十二方面,提供了一种小区切换的方法,包括:
终端设备接收源网络设备发送的第四指示,所述第四指示用于指示所述源网络设备为所述终端设备分配的时频资源;
所述终端设备接收所述源网络设备发送的切换命令,所述切换命令中包括第五指示,所述第五指示用于指示所述目标网络设备为终端设备分配的时频资源,所述目标网络设备占用的时频资源与所述源网络设备为所述终端设备分配的时频资源不同;
其中,所述终端设备的目标小区与所述终端设备的源小区为同频小区。
本申请实施例中,目标网络设备分配的时频资源与源网络设备分配的时频资源不同,因此当终端设备的源小区与目标小区为同频小区时,本申请实施例能够实现终端设备同时与源小区和目标小区保持数据传输,并避免源小区和目标小区的同频干扰。
结合第八至第十二方面,在第八至第十二方面中的任一方面的可能的实现方式中,所述第四指示用于指示所述源网络设备为所述终端设备分配的下行时域资源,所述第五指示用于指示所述目标网络设备为所述终端设备分配的下行时域资源;或者
所述第四指示用于指示所述源网络设备为所述终端设备分配的上行时域资源,所述第五指示用于指示所述目标网络设备为所述终端设备分配的上行时域资源。
因此,本申请实施例中,由于采用了时域隔离的方式,终端设备与源网络设备传输数据的频域资源可以采用动态调度的方式,终端设备和目标网络设备传输数据的频域资源也可以采用动态调度的方式,而不是采用固定的频域资源的方式,因此能够提高下行数据的传输速率。同时这种方式也避免了终端设备同时向两个网络发送数据或同时接收两个网络设备的数据,降低了终端设备的实现复杂度。
结合第八至第十二方面,在第八至第十二方面中的任一方面的可能的实现方式中,所述第四指示用于指示所述源网络设备为所述终端设备分配的上行频域资源,所述第五指示用于指示所述目标网络设备为所述终端设备分配的上行频域资源,所述上行频域资源以RB为最小指示单元。
这样,源网络设备和目标网络设备可以在相应的频域资源上进行终端设备的上行调度,避免终端设备与源网络设备传输上行数据的频域资源和终端设备与目标网络设备传输上行数据的频域资源冲突,提高上行数据传输的信噪比。
第十三方面,提供了一种通信装置,用于执行上述任一方面或任一方面的任意可能的实现方式中的方法。示例性的,该通信装置包括用于执行上述任一方面或任一方面的任意可能的实现方式中的方法的单元。
第十四方面,提供了一种通信装置,该装置包括:处理器和收发器,可选的,该装置还可以包括存储器和总线系统。其中,该收发器、该存储器和该处理器通过该总线系统相连,该存储器用于存储指令,该处理器用于执行指令,比如执行该存储器存储的指令,以控制收发器接收和/或发送信号,并且当该处理器执行指令,比如执行该存储器存储的指令时,该执行使得该处理器或该通信装置执行上述任一方面或任一方面的任意可能的实现方式中的方法。
第十五方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行上述任一方面的任意可能的实现方式中的方法的指令。
第十六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被通信设备(例如,终端设备或网络设备)的通信单元、处理单元或收发器、处理器运行时,使得通信设备执行上述任一方面的任意可能的实现方式中的方法。
第十七方面,提供了一种芯片,该芯片可应用于通信装置,该芯片包括至少一个处理器,当该至少一个处理器执行指令时,使得该芯片或该通信装置执行上述任一方面的任意可能的实现方式中的方法,该芯片还可以包括存储器,该存储器可用于存储涉及的指令。
第十八方面,提供了一种通信系统,包括上述源网络设备和目标网络设备。
附图说明
图1示出了适用于本申请实施例的小区切换的方法的示意性场景图。
图2示出了带宽内子频带的测量结果的示意图。
图3示出了本申请实施例提供的一种用于同频小区切换的方法的示意性流程图。
图4示出了本申请实施例提供的一种同频小区切换的方法的示意性流程图。
图5示出了本申请实施例提供的一种通信装置的示意性框图。
图6示出了本申请实施例提供的另一种通信装置的示意性框图。
图7示出了本申请实施例提供的另一种通信装置的示意性框图。
图8示出了本申请实施例提供的一种终端设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1示出了适用于本申请实施例的小区切换的方法的示意性场景图。本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球 互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR),以及后续演进通信系统等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、无人机以及汽车,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备(包括源网络设备和目标网络设备)可以是用于与终端设备通信的设备,例如为终端设备配置下行资源并进行网络设备(基站)间协作。该网络设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
作为举例,对于LTE通信系统而言,每个eNB下可以存在多个小区,本申请实施例的技术方案可以适用于每个小区中的eNB和UE。对于5G或NR系统而言,在一个gNB下,可能存在一个或多个发送接收点(transmission reception point,TRP),本申请实施例的技术方案可以适用于每个gNB或TRP。对于中心单元(central unit,CU)-分布式单元(distributed unit,DU)分离的场景,在一个CU下,可能存在多个DU,本申请实施例的技术方案可以适用于每个CU或DU。需要说明的是,CU-DU分离场景和多TRP场景的区别在于,TRP只是一个射频单元或一个天线设备,而DU中可以实现协议栈功能,例如DU中可以实现物理层功能。
如图1所示,当终端设备移动时,能够根据小区的信号强度的变化,发生服务小区的切换。在图1中,源网络设备为终端设备当前所在的服务小区所属的网络设备,目标网络设备为终端设备将要切换到的目标小区所属的网络设备。这里,终端设备在没有完成切换之前,当前的服务小区即源小区。本申请实施例中,在终端设备与目标网络设备的随机接入过程中以及随机接入过程完成后,终端设备与源网络设备的连接也不会中断。这样在切换的过程中,会存在一段时间,终端设备同时与源网络设备和目标网络设备保持连接,终端设备可以同时与源网络设备和目标网络设备进行数据传输。
本申请实施例中,针对移动性过程,终端设备需要对当前服务小区和/或邻小区进行小区测量,其中当前服务小区和邻小区可以为同频小区。本申请实施例中,终端设备可以对邻小区的带宽内的至少一个子频带进行测量,以使得源网络设备和/或目标网络设备可以基于邻小区的子频带的测量结果,选择用于与终端设备进行数据传输的频域资源,从而 有助于避免在小区切换的场景中,终端设备在与源网络设备和目标网络设备同时进行数据传输时产生同频干扰。
需要说明的是,一个小区的全带宽可以被分成至少两个子频带。作为示例而非限定,以10个资源块(resource block,RB)为一个频率单位称为一个子频带时,如果一个小区的全带宽为100个RB,则该小区的全带宽可以被分为10个子频带。本申请实施例中,子带宽度可以以RB为粒度,也可以RB组(RB Group,RBG)为粒度,本申请实施例对此不作限定。例如,子频带的宽度可以为10个RB,4个RB或者1个RGB等。这里RBG为一组RB。
如图2中右侧所示,现有技术中终端设备仅测量全带宽的小区测量结果。如图2中左侧所示,本申请实施例能够对全带宽内的至少两个子频带分别进行测量,能够细化小区的全带宽内的测量结果,例如可以分别获得子带1至子带6的测量结果,进而提供更细致的小区测量信息。
图3示出了本申请实施例提供的一种用于同频小区切换的方法的示意性流程图。应理解,图3示出了小区切换的方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图3中的各个操作的变形。此外,图3中的各个步骤可以按照与图3呈现的不同的顺序来执行,并且有可能并非要执行图3中的全部操作。
图3中以终端设备、源网络设备和目标网络设备作为执行用于同频小区切换的方法的执行主体为例进行说明。作为示例而非限定,这里终端设备也可以替换为终端设备的芯片,本申请实施例对此不作限定。
301.源网络设备向终端设备发送测量配置。
可选的,本申请实施例中,测量配置中可以包括第一指示,第一指示用于指示该终端设备对邻小区的带宽内的子频带进行测量。
具体的,当终端设备的源小区(即当前的服务小区)和邻小区为同频小区时,源网络设备在向终端设备发送针对该邻小区的测量配置时,可以指示需要进行子带测量及上报。作为示例,第一指示可以为子带测量标识和/或子带宽度信息。具体的,子带测量标识可以为用于指示终端设备进行子带测量的字段,该字段例如可以占1个或2个比特(bit)。子带宽度信息可以为用于指示终端设备所测量的每个子频带的宽度的字段,该字段例如可以占用1或2个bit。例如,子带宽度信息所指示的每个子频带的宽度可以为10个RB,4个RB,或着1个RGB等,本申请实施例对此不作限定。
一种可能的实现方式中,当第一指示包括子带测量标识和子带宽度信息时,终端设备可以对邻小区全带宽内的子频带进行测量,并且测量的每个子频带的宽度是根据该子带宽度信息确定的。
一种可能的实现方式,第一指示包括子带宽度信息而不包括子带测量标识时,此时终端设备可以被配置为一旦获取了子带宽度信息,即确认需要进行子带测量。也就是说,这时子带宽度信息除了能够指示该终端设备对邻小区的带宽内的子频带进行测量之外,还可以指示终端设备进行子频带测量时每个子频带的宽度。
一种可能的实现方式,第一指示包括子带测量标识而不包括子带宽度信息时,终端设备可以对邻小区全带宽内的子频带进行测量。此时,测量的每个子频带的宽度可以由协议规定。
可选的,本申请实施例中,当终端设备根据第一指示对邻小区的带宽内的子频带进行测量时,可以对邻小区的全带宽内的全部子频带进行测量,或者对邻小区的全带宽内的部分子频带进行测量,本申请实施例对此不作限定。例如,终端设备可以不对最近一次或多次的源网络设备的下行调度指示信息中的资源对应的子带进行测量。
可选的,本申请实施例中,测量配置中可以包括第二指示,第二指示用于指示终端设备测量邻小区的带宽中除第一子频带之外的子频带。这里,第一子频带包括终端设备在源小区中进行数据传输所占用的子频带,第一子频带中包括的子频带的数量可以为一个或多个。示例性的,第一子频带可以包括最近一次或多次的源网络设备的下行调度指示信息中的资源对应的子带。这样,终端设备可以对邻小区中的全带宽中的部分子频带进行测量和上报,并且目标网络设备也只需要在其目标小区的全带宽中除第一子频带之外的频带上进行下行资源调度以及数据传输,从而降低终端设备进行邻区测量的功率开销。
本申请实施例中,邻小区的带宽中除所述第一子频带之外的子频带包括第二子频带,第二子频带包括终端设备在目标小区中进行数据传输所占用的子频带。由此可知,第一子频带和第二子频带为不同的子频带,因此,当源小区与目标小区同频时,终端设备可以在源小区使用第一子频带进行数据传输,同时也可以在目标小区使用第二子频带进行数据传输,而不会产生同频干扰。
作为一例,源网络设备可以通知终端设备一个子带列表,终端设备在选择上报的测量结果时可以排除该列表中的子带,或者,终端设备在测量时可以不对该列表中的子频带进行测量。例如,终端设备的物理层不对该列表中的子频带进行测量,或者终端设备的高层不对列表中的子频带的测量结果进行L3滤波。
需要说明的是,本申请实施例中,终端设备可以通过配置信息获得邻小区的全带宽中每个子频带的频域资源范围。例如,可以预先通知邻小区的频域资源,并将邻小区的频域资源划分为多个子频带,然后可以依次对邻小区全带宽内的每个子频带进行编号,并将每个子频带的编号作为该子频带的标识。此时,上述子带列表中可以包括不需要测量或上报的子频带的标识。
一种可能的实现方式,测量配置中可以包括第一指示和第二指示,这样终端设备可以对邻小区的带宽内的子频带进行测量,并且仅测量除第二指示所指示的第一子频带之外的子频带。
一种可能的实现方式中,当测量配置中包括第二指示而不包括上述第一指示时,终端设备可以认为被配置为对邻小区的带宽内的子频带进行测量,并且只测量邻小区中除第一子频带之外的子频带,则此时第二指示也可以用于指示终端设备对邻小区的带宽内的子频带进行测量。
可选的,本申请实施例中,在终端设备并不知道第一子频带的频域资源的情况下,测量配置还包括用于指示所述第一子频带的频域资源的信息,或用于指示所述邻小区的带宽中除所述第一子频带之外的子频带的频域资源的信息。
具体的,一种可能的实现方式,网络设备可以向终端设备显示指示第一子频带的频域资源。作为举例,第一子频带可以为从RB0至RB20的频段,或者邻小区的带宽中除所述第一子频带之外的频域资源可以为从RB21至RB49的频段(以10MHz带宽为例)。
在网络设备向终端设备显示指示第一子频带的频域资源时,终端设备可以对邻小区的 带宽内的子频带进行测量,并且仅测量除第一子频带之外的子频带,则此时该用于指示第一子频带的频域资源的信息也可以用于指示终端设备对邻小区的带宽内的子频带进行测量。
另一种可能的实现方式,网络设备可以通过隐式指示的方式向终端设备指示第一子频带的频域资源。例如,协议中可以规定终端设备将最近一次或多次的网络设备的下行调度指示信息中的资源对应的子带作为第一子频带,此时网络设备并不需要向终端设备发送指示字段。
这里,调度的次数可以由网络设备配置,或者在协议中预先配置,本申请实施例对此不作限定。例如,当网络设备配置的或者协议中预配置的调度的次数为1时,表示终端设备可以将最近1次的下行调度指示信息中的资源对应的子频带作为第一子频带。当网络设备配置的或者协议中预配置的调度的次数为3时,表示终端设备可以将最近3次下行调度指示信息中的资源对应的子频带确定为第一子频带。
可选的,测量配置中还包括第三指示,第三指示用于指示终端设备上报满足条件的子频带的测量结果。作为示例,这里的满足条件例如为测量值大于或等于门限值,该门限值例如可以为参考信号接收功率(reference signal receiving power,RSRP)的门限、或参考信号接收质量(reference signal receiving quality,RSRQ)的门限,或信号与干扰加噪声比(signal to Interference plus Noise Ratio,SINR)的门限,本申请实施例对此不做限定。一些可能的实现方式中,该第三指示信息可以是一个门限值,或者是至少两个门限的组合,例如RSRP门限和RSRQ门限的组合。
本申请实施例中,可替换的,门限值除了可以由网络设备通知给终端设备之外,还可以在协议中预先设置,本申请实施例对此不作限定。
可选的,本申请实施例中,测量配置还可以包括用于指示测量邻小区全带宽的测量结果的信息。
可选的,本申请实施例中,终端设备还可以对全带宽中的各个子带进行测量,但是在上报测量结果时排除第一子频带的测量结果。
302.终端设备向源网络设备上报测量报告。
具体的,终端设备可以根据源网络设备发送的测量配置,对邻小区进行小区测量,然后将邻小区的测量结果上报给网络设备。这里,邻小区的测量结果可以包括第一子频带的测量结果和/或第二子频带的测量结果,其中邻小区的带宽中除所述第一子频带之外的子频带包括所述第二子频带。
可选的,邻小区的测量结果中还可以包括邻小区的全带宽的测量结果。
可选的,本申请实施例中,终端设备可以基于邻区参考信号进行测量。作为举例,邻区参考信号可以为信道状态信息参考信号(channel state information reference signal,CSI-RS)或公共参考信号(common reference signal,CRS)。
下面以参考信号为CSI-RS为例,详细描述终端设备如何对邻小区进行测量。
具体的,终端设备可以在当前服务小区配置的零功率CSI-RS资源内测量邻小区的信号强度。这里,零功率CSI-RS资源是当前服务小区配置的,零功率CSI-RS资源指的是,在当前服务小区没有进行CSI-RS发送的时频资源,所以终端设备在该资源上能够对邻小区进行干扰测量。
进一步的,终端设备可以在该资源上进行指定小区的信号测量。为实现这一目的,需要当前服务网络设备向终端设备指示零功率CSI-RS资源配置的同时,还需要指示需要测量的小区标识(ID)。终端设备根据这个指示在相应零功率CSI-RS处进行邻小区的信号强度测量(包括但不限于RSRP,RSRQ,SINR等)。终端设备在相应零功率CSI-RS资源上进行测量后,根据上报配置信息进行测量结果上报。
可选的,本申请实施例中,上报配置信息可以由源网络设备发送给终端设备,也可以由协议预先配置,本申请实施例对此不作限定。本申请实施例中,上报内容包括子频带的测量结果,例如可以为子频带的CQI,这里子频带例如可以为4RB的粒度。可选的,上报的测量结果是多个子频带的测量结果的集合,本申请实施例对此不作限定。可选的,上报内容还可以包括全宽带CQI,即基于小区带宽的测量结果。
需要说明的是,当终端设备在当前服务小区配置的零功率CSI-RS资源内测量邻小区时,要求目标小区在相应零功率CSI-RS时频资源上发送相应的CSI-RS信号。一种方式是网络设备之间提前进行信息交互,例如当前服务网络设备通知邻网络设备当前的零功率CSI-RS配置,邻网络设备向当前服务网络设备返回确认消息,在确认消息中指示在相应零功率CSI-RS资源处发送CSI-RS信号。另一种方式由网络操作维护(Operation and Maintenance,OAM)实现,即通过后台配置的方式实现,不需要网络设备间的信息交互。
此外,基于当前服务小区零功率CSI-RS资源的邻区CSI-RS测量,能够屏蔽掉当前服务小区的干扰,近似实际的干扰消除场景的信号质量,基于这个测量结果的调度更准确,但是这种方法一方面可能需要基站间的资源配置信息交互,另一方面也需要基站间是同步的。基于邻区CRS的子带测量方法,站间不需要额外交互,只需要UE在测量时按照子带进行测量,操作更简单,但是缺点就是无法排除邻区干扰的影响。
具体的,终端设备的物理层向高层,按照当前的子带测量模式提供子带测量结果,随后高层对每个子带进行层三(L3)滤波获得子带级别的高层测量结果。
可选的,当测量结果满足一定条件时,终端设备将测量结果上报给基站。例如当邻区的全带宽RSRP高于当前服务小区全带宽RSRP 3dB时,触发终端设备上报测量结果。
303.源网络设备进行切换判决。
具体的,源网络设备接收到终端设备上报的测量结果后,如果判断需要进行切换,则会根据终端设备上报的测量结果,在邻小区中选择一个目标小区,并开始切换准备过程。该目标小区对应的网络设备即为目标网络设备。
这里,源网络设备进行切换判决所依据的测量结果,可以为邻小区的全带宽的测量结果,或者为邻小区的带宽中的子带测量结果,本申请实施例对此不作限定。
304.源网络设备向目标网络设备发送切换请求。
可选的,本申请实施例中,该切换请求中携带目标小区的带宽内的子频带的测量结果。
一种可能的实现方式,目标小区的带宽内的子带的测量结果包括第二子频带的测量结果,使得目标网络设备根据目标小区的带宽内的子带的测量结果,选择用于与终端设备进行数据传输所使用的频域资源。
具体的,当终端设备向源网络设备上报的邻小区的测量结果中包括第二子频带的测量结果,且不包括第一子频带的测量结果时,该切换请求中携带目标小区的带宽内的子频带的测量结果,且不包括第一子频带的测量结果。
或者,当终端设备向源网络设备上报的邻小区的测量结果中包括带宽内的所有子频带(例如第一子频带和第二子频带)的测量结果时,源网络设备可以将测量结果中的第一子频带的测量结果剔除掉,只向目标网络设备上报第二子频带的测量结果。
一种可能的实现方式,目标小区的带宽内的子频带的测量结果包括带宽内的所有子频带(例如第一子频带和第二子频带)的测量结果,并且该切换请求中还包括第一子频带的指示信息。这样,源网络设备可以通知目标网络设备在全带宽中除第一子频带之外的子频带上(例如第二子频带)选择用于与终端设备传输数据的子频带。
需要说明的是,第一子频带是源网络设备确定与终端设备进行数据传输时使用的频域资源,作为示例,源网络设备可以将最近一次或多次的源网络设备的下行调度指示信息中的资源对应的子带作为第一子频带,因此第一子频带对于源网络设备而言是已知的。
可选的,本申请实施例中,该切换请求中包括第二子频带的指示信息。具体的,当源网络设备根据终端设备上报的邻小区的测量结果,确定源网络设备与终端设备在第一子频带上进行数据传输,目标网络设备与终端设备在第二子频带上进行数据传输时,可以在切换请求中携带第二子频带的指示信息。这样,源网络设备可以不需要向目标网络设备发送目标小区的测量结果的相关信息,节省信令开销。
可选的,本申请实施例中,该切换请求中包括第一子频带的指示信息。具体的,当源网络设备确定自己与终端设备在第一子频带上进行数据传输时,可以在切换请求中携带第一子频带的指示信息,使得目标网络设备在目标小区的全带宽中除所述第一子频带之外的子频带上选择第二子频带。
可选的,本申请实施例中,该切换请求中可以包括目标小区的带宽内的所有子频带(例如第一子频带和第二子频带)的测量结果,使得目标网络设备可以基于该测量结果,确定自己与终端设备进行数据传输使用的第二子频带,以及为源网络设备确定源网络设备与终端设备进行数据传输的第一子频带。
可选的,本申请实施例中,切换请求消息中还可以包括用于指示同时连接的指示信息,具体用于指示终端设备在切换过程中同小区和目标小区的连接。此时,终端设备在切换的过程中会同时保持与源基站和目标基站的连接,进而可以保证切换过程中数据传输不中断。作为示例,该指示信息可以称为同时连接指示信息。应理解,该指示信息还可以被称为其他名称,本申请实施例对此不作限定。
305.目标网络设备进行准入控制,即该目标网络设备确定是否同意接收该终端设备。
具体的,目标网络设备可以根据自身资源使用情况,和/或根据切换请求中包括的终端设备对该目标小区的测量结果,确定是否同意接收该终端设备。作为示例,在网络资源利用率较低的情况下,目标网络设备可以同意接收该终端设备。
一种可能的实现方式,目标网络设备可以根据源网络设备发送的该目标小区的第二子频带的测量结果,确定用于目标网络设备与终端设备进行数据传输所使用的第二子频带。作为示例,目标网络设备可以将切换请求中的所有的第二子频带用于与终端设备进行数据传输,也可以将切换请求中的第二子频带中的部分频带用于与终端设备进行数据传输,这里,第二子频带中的部分频带可以为测量结果较优的子频带,本申请实施例对此不作限定。
一种可能的实现方式,当切换请求中的目标小区的测量结果包括带宽内的所有子频带的测量结果,且该切换请求中还包括第一子频带的指示信息时,目标网络设备在全带宽中 的除第一子频带之外的子频带上选择用于与终端设备传输数据的子频带。这里,除第一子频带之外的子频带包括第二子频带。
一种可能的实现方式,当切换请求中包括第二子频带的指示信息时,目标网络设备可以直接根据该切换请求,确定用于与终端设备进行数据传输所使用的频域资源,即第二子频带。
一种可能的实现方式,当切换请求中可以包括目标小区的带宽内的所有子频带(例如第一子频带和第二子频带)的测量结果,目标网络设备可以基于该测量结果,确定自己与终端设备进行数据传输使用的第二子频带,以及为源网络设备确定源网络设备与终端设备进行数据传输的第一子频带。
306.目标网络设备向源网络设备发送切换确认。
具体的,在目标网络设备同意接收该终端设备的情况下,会向源网络设备发送切换确认。否则,当目标网络设备不同意接收该终端设备的情况下,则会发送切换准备失败消息。
本申请实施例中,一种可能的实现方式中,切换确认中可以包括一个容器(container),该container中包含有切换命令,切换命令用于指示终端设备由源网络设备切换至目标网络设备。具体的,该切换命令由目标网络设备生成,并包含在切换确认中发送给源网络设备。
可选的,本申请实施例中,切换确认中还可以包括第二调度信息,该第二调度信息用于指示终端设备在目标小区中进行数据传输所占用的频域资源为所述第二子频带。
可选的,切换确认中还可以包括用于指示第二子频带的指示信息,用于向源网络设备通知目标网络设备与终端设备之间进行数据传输所使用的频域资源。
可选的,当目标网络设备确定第一子频带时,切换确认中还可以包括用于指示第一子频带的指示信息,用于向源网络设备通知源网络设备与终端设备之间进行数据传输所使用的频域资源。
可选的,切换确认中可以包括同时连接指示信息,该同时连接指示信息用于指示终端设备在切换过程中同时保持与源小区和目标小区的连接。一种可能的实现方式中,该同时连接指示信息可以携带于在container中,本申请实施例对此不作具体限定。
307,源网络设备在收到切换确认之后,向终端设备发送切换命令。
源网络设备获取切换确认中包括的切换命令之后,将该切换命令转发给终端设备。其中,切换命令用于指示终端设备由源网络设备切换至目标网络设备。
随后,终端设备执行相应切换动作。本申请实施例中,终端设备在切换过程中,可以同时与源网络设备和目标网络设备保持连接,并同时与源网络设备和目标网络设备进行数据传输。
308,源网络设备向终端设备发送第一调度信息,该第一调度信息用于指示终端设备在源小区中进行数据传输所占用的频域资源为所述第一子频带。
可选的,当切换确认中包括第二调度信息时,源网络设备向终端设备转发该第二调度信息。或者,可选的,当源网络设备向目标网络设备发送的切换请求中包括用于指示第二子频带的指示信息时,源网络设备可以生成第二调度信息,并向终端设备发送该第二调度信息,这时,切换确认中不包括第二调度信息。
或者,可选的,309,目标网络设备可以不经过源网络设备,直接向终端设备发送第二调度信息。需要说明的是,当步骤306中切换确认中包括第二调度信息时,不执行步骤 309。
需要说明的是,本申请实施例中,对发送第一调度信息和第二调度信息的先后顺序不作限定。也就是说,第一调度信息可以在第二调度信息之前发送,也可以在第二调度信息之后发送,也可以与第二调度信息同时发送。另外,可替换的,目标网络设备也可以向终端设备发送第一调度信息和/或第二调度信息,本申请实施例对此不作限定。
作为示例,本申请实施例中,本申请实施例对此不作限定。
本申请实施例中,第一子频带和第二子频带可以用于上行数据传输,或者用于下行传输,本申请实施例对此不作限定。示例性的,第一调度信息、第二调度信息可以为下行控制信息(downlink control infomation,DCI)。
因此,本申请实施例中,终端设备能够对全带宽内的子频带进行测量,细化小区的测量结果,提供更细致的小区测量信息,使得源网络设备和目标网络设备基于邻小区的子带级的测量结果,分别选择与频带资源不同的第一子频带和第二子频带进行数据传输,在频域上对源网络设备和目标网络设备使用的资源进行隔离,达到当前服务小区和目标小区干扰避免的效果。
需要说明的是,当网络部署是异步的时候,网络设备间下行/上行发送定时是不对齐的,这种情况下只能使用频域的资源隔离方案避免下行干扰。当网络部署是同步的时候,网络设备间下行/上行发送定时是对齐的,根据协议定义网络设备间下行定时偏差不超过3us。此时可以考虑采用时域的资源隔离方案避免目标小区和服务小区之间的干扰。这样,源网络设备和目标网络设备使用不同的时刻进行下行/上行发送,并且信号传输时间没有重叠。
网络设备间交互时域资源隔离的信息已在现有标准中体现,但是这些信息都是在网络设备间传递的,网络设备在调度下行/上行资源时使用这些信息,不需要将这些信息通知给终端设备。而本申请实施例中,切换过程中终端设备同时与源网络设备和目标网络设备通信的场景,为了避免下行/上行的同频干扰,需要将时域资源隔离的信息通知给终端设备。这样,在分配给源终端设备的时域资源,终端设备监听源网络设备的调度信息以及发送/接收数据,在分配给目标网络设备的时域资源,终端设备监听目标网络设备的调度信息以及发送/接收数据。由于采用了时域隔离的方式,频域资源可以不再固定,而是采用动态调度的方式,这样能够提高数据传输速率。
图4示出了本申请实施例提供的一种同频小区切换的方法的示意性流程图。应理解,图4示出了小区切换的方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图4中的各个操作的变形。此外,图4中的各个步骤可以按照与图4呈现的不同的顺序来执行,并且有可能并非要执行图4中的全部操作。
图4中以终端设备、源网络设备和目标网络设备作为执行方法的执行主体为例,对方法进行说明。作为示例而非限定,执行方法的执行主体也可以是对应终端设备的芯片、对应源网络设备的芯片和对应目标网络设备的芯片。作为一例,这里网络设备可以为eNB。
401.源网络设备向目标网络设备发送切换请求,该切换请求中包括第四指示,该第四指示用于指示源网络设备为终端设备分配的时频资源。
这里,“时频资源”可以理解为“时域资源和/或频域资源”。时域资源可以是一个或多个符号,也可以是一个或多个时隙,也可以是一个或多个迷你时隙,也可以是一个或 多个子帧。频域资源可以是一个或多个RB,也可以是一个或多个RE,也可以是一个或多个载波,也可以是一个或多个小区,也可以是一个或多个部分带宽(bandwidth part,BWP)。
402.目标网络设备向源网络设备发送切换确认,该切换确认中包括切换命令,该切换命令中包括第五指示,该第五指示用于指示目标网络设备为终端设备分配的时频资源。本申请实施例中,源网络设备为终端设备分配的时频资源与目标网络设备为终端设备分配的时频资源不同,并且终端设备的源小区(即当前所在的服务小区)与目标小区为同频小区。
具体的,目标网络设备可以将第五指示包含在切换确认中的container,即包含在切换命令中发送给源网络设备。
可选的,切换命令中还可以包括第四指示。具体的,目标网络设备可以将第四指示也包含在切换确认中的container,即包含在切换命令中发送给源网络设备。
可选的,目标网络设备也可以不经过源网络设备,而直接向终端设备发送第五指示,使得终端设备确定目标网络设备为其分配的时频资源。
403.源网络设备向终端设备发送切换命令。
具体的,源网络设备获取切换确认中的该切换命令,并将该切换命令转发给终端设备,使得终端设备能够根据该切换命令,由源网络设备切换至目标网络设备。
可选的,本申请实施例中,当切换命令中包括第五指示时,终端设备能够通过该切换命令获取第五指示,并根据第五指示确定目标网络设备为其分配的时频资源。当切换命令中包括第四指示时,终端设备能够通过该切换命令获取第四指示,并根据第四指示确定源网络设备为其分配的时频资源。
可选的,源网络设备可以单独地向终端设备发送第四指示。换句话说,此时切换命令中可以没有包括第四指示,而是由源网络设备直接向终端设备发送第四指示。示例性的,源网络设备可以向终端设备发送单独的消息,该单独的消息中可以包括第四指示,或者,源网络设备可以将第四指示包含在现有消息中(例如RRC连接重配置消息),发送给终端设备,本申请实施例对此不作限定。
404.源网络设备与终端设备之间传输第一数据。
405.目标网络设备与终端设备之间传输第二数据。
可选的,本申请实施例中,所述第四指示用于指示所述源网络设备为所述终端设备分配的上行频域资源,所述第五指示用于指示所述目标网络设备为所述终端设备分配的上行频域资源。
这样,源网络设备和目标网络设备可以在相应的频域资源上进行终端设备的上行调度,避免终端设备与源网络设备传输上行数据的频域资源和终端设备与目标网络设备传输上行数据的频域资源冲突,提高上行数据传输的信噪比(signal to interference-plus-noise ratio,SINR)。
可选的,本申请实施例中,所述第四指示用于指示所述源网络设备为所述终端设备分配的下行频域资源,所述第五指示用于指示所述目标网络设备为所述终端设备分配的下行频域资源。
这样,源网络设备和目标网络设备可以在相应的频域资源上进行终端设备的下行调度,避免终端设备与源网络设备传输下行数据的频域资源和终端设备与目标网络设备传输 下行数据的频域资源冲突,提高下行数据传输的SINR。
可选的,本申请实施例中,所述频域资源可以以RB为最小指示单元。具体的,第四指示或第五指示所指示网络设备分配的频域资源,可以以RB或RB组为单位,其中,一个RB组中可以包括多个RB。
一种可能的实现方式中,第四指示或第五指示可以采用位图(bitmap)的方式进行指示。例如,当小区带宽为20M,共100个RB时,可以采用响应的100个bit标识,其中,“1”可以表示对应的RB被占用,“0”可以表示对应的RB非占用。这里,“占用”即表示网络设备将该RB分配给终端设备用于数据传输,“非占用”表示网络设备没有将该RB分配给终端设备进行数据传输。
可选的,本申请实施例中,所述第四指示用于指示所述源网络设备为所述终端设备分配的上行时域资源,所述第五指示用于指示所述目标网络设备为所述终端设备分配的上行时域资源。
具体的,终端设备可以根据接收到的第四指示,在源网络设备分配的上行时域资源上监听源网络设备的上行调度信息,接收源网络设备发送的上行数据,即第一数据,在目标网络设备分配的上行时域资源上监听目标网络设备的上行调度信息,接收目标网络设备发送的上行数据,即第二数据。
可选的,本申请实施例中,所述第四指示用于指示所述源网络设备为所述终端设备分配的下行时域资源,所述第五指示用于指示所述目标网络设备为所述终端设备分配的下行时域资源。
具体的,终端设备可以根据接收到的第四指示,在源网络设备分配的下行时域资源上监听源网络设备的下行调度信息,接收源网络设备发送的下行数据,即第一数据,在目标网络设备分配的下行时域资源上监听目标网络设备的下行调度信息,接收目标网络设备发送的下行数据,即第二数据。
因此,本申请实施例中,由于采用了时域隔离的方式,终端设备与源网络设备传输数据的频域资源可以采用动态调度的方式,终端设备和目标网络设备传输数据的频域资源也可以采用动态调度的方式,而不是采用固定的频域资源的方式,因此能够提高下行数据的传输速率。同时这种方式也避免了终端设备同时向两个网络发送数据或同时接收两个网络设备的数据,降低了终端设备的实现复杂度。
可选的,本申请实施例中,第四指示或第五指示所指示网络设备分配的时域资源,可以以子帧、时隙、迷你时隙、符号或符号组为单位。其中,一个符号组中可以包括多个符号。
一种可能的时域资源的指示方法,可以是指示具体的子帧号,例如源基站使用子帧1和6,目标基站使用子帧3和8。一种可能的方式是通过bitmap指示,一个帧中包含了10个子帧,所以可以使用10bit表示10个子帧,例如1表示占用,0表示非占用,且最低位bit表示子帧0。所以0001000010表示使用子帧1和6,0100001000表示使用子帧3和8。另一种可能的方式通过公式指示,该公式如下:
subframe=[N*ul-SchedInterval+ul-StartSubframe]modulo 10
其中subframe为占用的子帧,ul-SchedInterval为周期值,ul-StartSubframe为开始子帧,根据以上公式能够计算得到占用的子帧号。
需要说明的是,基于时域或频域的资源隔离方案中,可以进一步增强的,是源网络设备或目标网络设备通知终端设备资源隔离配置生效的起始时间,和/或,资源隔离配置的结束时间。其中,起始时间可以是一个绝对的时间点,例如帧号+子帧号的组合;也可以是从终端设备收到切换命令后的一段时延,例如N+6,其中终端设备在子帧N收到切换命令,则终端设备将从子帧N+6开始按资源隔离的模式与源网络设备和目标网络设备同时通信。结束时间可以是一个绝对的时间点,也可以是从终端设备收到切换命令后的一段时延,例如N+36。具体实现时,可以为接收时间点单独设计一个定时器,启动条件可以为终端设备收到切换命令,超时条件可以为定时器运行超过预设时长,停止条件为终端设备收到终止同时传输的命令。
本申请实施例中,可以同时控制时频域资源隔离,此时也可以称时频域资源同时隔离的方法为完全基于图样(pattern)的传输方法。具体的,源网络设备可以在切换请求中将为终端设备分配的时频域资源通知给目标网络设备,然后目标网络设备在终端设备没有占用的时频域资源上选择上行/下行资源,使得源网络设备和目标网络设备在上行/下行时频域资源上隔离开。
本申请实施例中,源网络设备向终端设备发送切换命令,切换命令中包括第四指示,该第四指示用于指示目标网络设备为终端设备分配的时频资源的第四指示,该切换命令中还可以包括第五指示,该第五指示用于指示源网络设备为终端设备分配的时频资源,或者源网络设备可以单独向终端设备发送用第五指示,使得终端设备可以根据第四指示和第五指示,分别与源网络设备和目标网络设备进行数据传输。本申请实施例中,目标网络设备分配的时频资源与源网络设备分配的时频资源不同,因此当终端设备的源小区与目标小区为同频小区时,本申请实施例能够实现终端设备同时与源小区和目标小区保持数据传输,并避免源小区和目标小区的同频干扰。
上述结合图3和图4主要从不同设备之间交互的角度对本申请实施例提供的方案进行了介绍。下面将结合图5至图8描述执行本申请实施例提供的方案的设备。可以理解的是,源网络设备、目标网络设备和终端设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对源网络设备、目标网络设备和终端设备等进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图5示出了本申请实施例中所涉及的一种通信装置的一种可能的示例性框图,该装置500可以以软件、硬件或软硬结合的形式存在。图5示出了本申请实施例中所涉及的装置的一种可能的示意性框图。装置500包括:处理单元502和通信单元503。处理单元502用于对装置的动作进行控制管理。通信单元503用于支持装 置与其他设备的通信。装置还可以包括存储单元501,用于存储装置的程序代码和数据。
图5所示的装置500可以是本申请实施例所涉及的源网络设备、目标网络网设备。
当图5所示的装置500为源网络设备时,处理单元502能够支持装置500执行上述各方法示例中由源网络设备完成的动作,例如,处理单元502支持装置500执行例如图3为终端设备进行测量配置并生成301中的测量配置、处理302中的测量报告、305切换判决、生成304的切换请求、处理306的切换确认等、生成308中的第一调度信息动作,图4中生成401中的切换请求、处理402中的切换确认、生成405中的第一数据动作,和/或用于本文所描述的技术的其它过程。通信单元503能够支持装置500与目标网络设备、终端设备等之间的通信,例如,通信单元503支持装置500执行图3中的步骤301、302、304、306、307、308,图4中的步骤401、402、403、404、405,和/或其他相关的通信过程。
当图5所示的装置500为目标网络设备时,处理单元502能够支持装置500执行上述各方法示例中由目标网络设备完成的动作,例如,处理单元502支持装置500执行图3中处理304中的切换请求、305准入控制、生成306中的切换确认、生成309中的第二调度信息,图4中的处理401中的切换请求、生成402中的切换确认,和/或用于本文所描述的技术的其它过程。通信单元503能够支持装置500与源网络设备、终端设备等之间的通信,例如,通信单元503支持装置500执行图3中的步骤304、306、309,图4中的步骤401、402、406,和/或其他相关的通信过程。
示例性地,处理单元602可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,单元和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元503可以是通信接口,该通信接口是统称,在具体实现中,该通信接口可以包括一个或多个接口。存储单元501可以是存储器。
当处理单元502为处理器,通信单元503为通信接口,存储单元501为存储器时,本申请实施例所涉及的装置500可以为图6所示的通信装置600。
参阅图6所示,该装置600包括:处理器602和通信接口603。进一步地,该装置600还可以包括存储器601。可选的,装置600还可以包括总线604。其中,通信接口603、处理器602以及存储器601可以通过总线604相互连接;总线604可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线604可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
其中,处理器602可以通过运行或执行存储在存储器601内的程序,执行所述装置600的各种功能。
示例性地,图6所示的通信装置600可以是本申请实施例所涉及的源网络设备、目标网络设备。
当装置600为源网络设备时,处理器602可以通过运行或执行存储在存储器601内的 程序,执行上述各方法示例中由源网络设备完成的动作。当装置600为目标网络设备时,处理器602可以通过运行或执行存储在存储器601内的程序,执行上述各方法示例中由目标网络设备完成的动作。
在采用集成的单元的情况下,图7示出了本申请实施例中所涉及的另一种装置的一种可能的示例性框图,该装置700可以以软件、硬件或软硬结合的形式存在。图7示出了本申请实施例中所涉及的装置的一种可能的示意性框图。装置700包括:处理单元702和通信单元703。处理单元702用于对装置的动作进行控制管理。通信单元703用于支持装置与其他设备的通信。装置还可以包括存储单元701,用于存储装置的程序代码和数据。
图7所示的通信装置700可以是终端设备,也可以为应用于终端设备的芯片。处理单元702能够支持装置700执行上述各方法示例中由终端设备完成的动作,例如,处理单元702支持装置702执行例如图3中的处理301中的测量报告、生成302中的测量报告、处理307中的切换命令、308中的第一调度信息以及309中的第二调度信息的动作,图4中的404中的处理切换命令,和/或用于本文所描述的技术的其它过程。通信单元703能够支持装置700与源网络设备和目标网络设备等之间的通信,例如,通信单元703支持装置700执行图3中的步骤301、302、307、308、309,图4中的步骤403、404、405、406,和/或其他相关的通信过程。
示例性地,处理单元702可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,单元和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元703可以是通信接口,该通信接口是统称,在具体实现中,该通信接口可以包括一个或多个接口。存储单元701可以是存储器。
当处理单元702为处理器,通信单元703为收发器,存储单元701为存储器时,本申请实施例所涉及的装置700可以为图8所示的终端设备。
图8示出了本申请实施例中所涉及的终端设备的一种可能的设计结构的简化示意图。所述终端设备800包括发射器801,接收器802和处理器803。其中,处理器803也可以为控制器,图8中表示为“控制器/处理器803”。可选的,所述终端设备800还可以包括调制解调处理器805,其中,调制解调处理器805可以包括编码器806、调制器807、解码器808和解调器809。
在一个示例中,发射器801调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收上述实施例中基站发射的下行链路信号。接收器802调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器805中,编码器806接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器807进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器809处理(例如,解调)该输入采样并提供符号估计。解码器808处理(例如,解交织和解码)该符号估计并提供发送给终端设备1100的已解码的数据和信令消息。编码器806、调制器807、解调器809和解码器808可以由合成的调制解调处理器805来实现。这些单元根据无线接入网采用的无线接入 技术(例如,LTE、5G及其他演进系统的接入技术)来进行处理。需要说明的是,当终端设备800不包括调制解调处理器805时,调制解调处理器805的上述功能也可以由处理器803完成。
处理器803对终端设备800的动作进行控制管理,用于执行上述本申请实施例中由终端设备800进行的处理过程。例如,处理器803还用于执行3、图4所示方法中涉及终端设备的处理过程和/或本申请所描述的技术方案的其他过程。
进一步的,终端设备800还可以包括存储器804,存储器804用于存储用于终端设备800的程序代码和数据。
结合本申请实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于集中式单元的控制面实体、集中式单元的用户面实体、终端设备或统一数据存储网元中。当然,处理器和存储介质也可以作为分立组件存在于集中式单元的控制面实体、集中式单元的用户面实体、终端设备或统一数据存储网元中。
本申请实施例还提供了一种计算机可读存储介质,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述方法实施例提供的方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行上述方法实施例提供的方法。
本申请实施例还提供了一种芯片,该芯片可应用于通信装置,该芯片包括至少一个处理器,当该至少一个处理器执行指令时,使得该芯片或该通信装置执行上述方法实施例提供的方法,该芯片还可以包括存储器,该存储器可用于存储涉及的指令。
应理解,本发明实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以 硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种小区切换的方法,其特征在于,包括:
    终端设备向源网络设备发送邻小区的测量结果,所述邻小区的测量结果包括所述邻小区的带宽内的第一子频带的测量结果或者第二子频带的测量结果;
    所述终端设备接收第一调度信息,所述第一调度信息用于指示所述终端设备在源小区中进行数据传输所占用的频域资源为所述第一子频带;
    所述终端设备接收第二调度信息,所述第二调度信息用于指示所述终端设备在目标小区中进行数据传输所占用的频域资源为所述第二子频带,所述目标小区为所述邻小区;
    其中,所述目标小区与所述源小区为同频小区,所述目标小区或所述源小区的带宽包括所述第一子频带和所述第二子频带,所述第一子频带与所述第二子频带不同。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    所述终端设备从所述源网络设备接收测量配置,所述测量配置包括第一指示,所述第一指示用于指示所述终端设备对所述邻小区的带宽内的子频带进行测量。
  3. 根据权利要求1所述的方法,其特征在于,还包括:
    所述终端设备从所述源网络设备接收测量配置,所述测量配置包括第二指示,所述第二指示用于指示所述终端设备测量所述邻小区的带宽中除所述第一子频带之外的子频带,所述邻小区的带宽中除所述第一子频带之外的子频带包括所述第二子频带。
  4. 根据权利要求2或3所述的方法,其特征在于,所述测量配置还包括用于指示所述第一子频带的频域资源的信息,或包括用于指示所述邻小区的带宽中除所述第一子频带之外的子频带的频域资源的信息。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,所述测量配置还包括第三指示,所述第三指示用于指示所述终端设备上报满足条件的子频带的测量结果。
  6. 一种小区切换的方法,其特征在于,包括:
    源网络设备从终端设备接收邻小区的测量结果,所述邻小区的测量结果包括所述邻小区的带宽内的第二子频带的测量结果;
    所述源网络设备向目标网络设备发送切换请求,所述切换请求包括目标小区的带宽内的子频带的测量结果,其中,所述目标小区的带宽内的子频带的测量结果包括所述第二子频带的测量结果,所述目标小区为所述邻小区;
    所述源网络设备向所述终端设备发送第一调度信息,所述第一调度信息用于指示所述终端设备在源小区中进行数据传输所占用的频域资源为第一子频带;
    其中,所述目标小区与所述源小区为同频小区,所述目标小区或所述源小区的带宽包括所述第一子频带和所述第二子频带,第二子频带为终端设备在所述目标小区中进行数据传输所占用的频域资源,所述第一子频带与所述第二子频带不同。
  7. 根据权利要求6所述的方法,其特征在于,还包括:
    所述源网络设备从所述目标网络设备接收切换确认,所述切换确认中包括第二调度信息,所述第二调度信息用于指示所述终端设备在所述目标小区中进行数据传输所占用的频域资源为所述第二子频带;
    所述方法还包括:所述源网络设备向所述终端设备发送所述第二调度信息。
  8. 一种小区切换的方法,其特征在于,包括:
    源网络设备从终端设备接收邻小区的测量结果,所述邻小区的测量结果包括所述邻小区的带宽内的第一子频带的测量结果或第二子频带的测量结果;
    所述源网络设备向目标网络设备发送切换请求,所述切换请求包括用于指示所述第二子频带的指示信息,所述第二子频带为所述终端设备在目标小区中进行数据传输所占用的频域资源,所述目标小区为所述邻小区;
    所述源网络设备向所述终端设备发送第一调度信息,所述第一调度信息用于指示所述终端设备在源小区中进行数据传输所占用的频域资源为所述第一子频带;
    其中,所述目标小区与所述源小区为同频小区,所述目标小区或所述源小区的带宽包括所述第一子频带和所述第二子频带,所述第一子频带与所述第二子频带不同。
  9. 根据权利要求8所述的方法,其特征在于,还包括:
    所述源网络设备向所述终端设备发送第二调度信息,所述第二调度信息用于指示所述终端设备在所述目标小区中进行数据传输所占用的频域资源为所述第二子频带。
  10. 一种小区切换的方法,其特征在于,包括:
    源网络设备从终端设备接收邻小区的测量结果,所述邻小区的测量结果包括所述邻小区的带宽内的第一子频带的测量结果和第二子频带的测量结果;
    所述源网络设备向目标网络设备发送切换请求,所述切换请求包括用于指示所述第一子频带的指示信息和目标小区的测量结果,所述目标小区的测量结果包括所述第一子频带的测量结果和所述第二子频带的测量结果,所述目标小区为所述邻小区;
    所述源网络设备向所述终端设备发送第一调度信息,所述第一调度信息用于指示所述终端设备在源小区中进行数据传输所占用的频域资源为所述第一子频带;
    其中,所述目标小区与所述源小区为同频小区,所述目标小区或所述源小区的带宽包括所述第一子频带和所述第二子频带,第二子频带为终端设备在所述目标小区中进行数据传输所占用的频域资源,所述第一子频带与所述第二子频带不同。
  11. 根据权利要求10所述的方法,其特征在于,还包括:
    所述源网络设备从所述目标网络设备接收切换确认,所述切换确认中包括第二调度信息,所述第二调度信息用于指示所述终端设备在所述目标小区中进行数据传输所占用的频域资源为所述第二子频带;
    所述方法还包括:所述源网络设备向所述终端设备发送所述第二调度信息。
  12. 根据权利要求6-11任一项所述的方法,其特征在于,还包括:
    所述源网络设备向所述终端设备发送测量配置,所述测量配置包括第一指示,所述第一指示用于指示所述终端设备对所述邻小区的带宽内的子频带进行测量。
  13. 根据权利要求6-11任一项所述的方法,其特征在于,还包括:
    所述源网络设备向所述终端设备发送测量配置,所述测量配置包括第二指示,所述第二指示用于指示所述终端设备测量所述邻小区的带宽中除所述第一子频带之外的子频带,所述邻小区的带宽中除所述第一子频带之外的子频带包括所述第二子频带。
  14. 根据权利要求12或13所述的方法,其特征在于,所述测量配置包括用于指示所述第一子频带的频域资源的信息,或包括用于指示所述邻小区的带宽中除所述第一子频带 之外的子频带的频域资源的信息。
  15. 根据权利要求12-14任一项所述的方法,其特征在于,所述测量配置信息还包括第三指示,所述第三指示用于指示所述终端设备上报满足条件的子频带的测量结果。
  16. 一种小区切换的方法,其特征在于,包括:
    目标网络设备从源网络设备接收切换请求,所述切换请求消息包括目标小区的带宽内的子频带的测量结果,所述目标小区的带宽内的子频带的测量结果包括第二子频带的测量结果;
    所述目标网络设备向所述终端设备发送第二调度信息,或向所述源网络设备发送切换确认,所述切换确认中包括所述第二调度信息,其中,所述第二调度信息用于指示所述终端设备在所述目标小区中进行数据传输所占用的频域资源为所述第二子频带;
    其中,所述目标小区与所述终端设备的源小区为同频小区,所述目标小区或所述源小区的带宽包括所述第一子频带和所述第二子频带,第一子频带为终端设备在所述源小区中进行数据传输所占用的频域资源,所述第一子频带与所述第二子频带不同。
  17. 一种小区切换的方法,其特征在于,包括:
    目标网络设备从源网络设备接收切换请求,所述切换请求包括用于指示所述第二子频带的指示,所述第二子频带为所述终端设备在目标小区中进行数据传输占用的频域资源;
    所述目标网络设备向所述终端设备发送第二调度信息,或向所述源网络设备发送切换确认,所述切换确认中包括所述第二调度信息,其中,所述第二调度信息用于指示所述终端设备在所述目标小区中进行数据传输所占用的频域资源为所述第二子频带;
    其中,所述目标小区与所述终端设备的源小区为同频小区,所述目标小区或所述源小区的带宽包括所述第一子频带和所述第二子频带,第一子频带为终端设备在所述源小区中进行数据传输所占用的频域资源,所述第一子频带与所述第二子频带不同。
  18. 一种小区切换的方法,其特征在于,包括:
    目标网络设备从源网络设备接收切换请求,所述切换请求包括用于指示第一子频带的指示信息和目标小区的测量结果,所述目标小区的测量结果包括所述第一子频带的测量结果和第二子频带的测量结果;
    所述目标网络设备向所述终端设备发送第二调度信息,或向所述源网络设备发送切换确认,所述切换确认中包括所述第二调度信息,其中,所述第二调度信息用于指示所述终端设备在所述目标小区中进行数据传输所占用的频带资源为所述第二子频带;
    其中,所述目标小区与所述终端设备的源小区为同频小区,所述目标小区或所述源小区的带宽包括所述第一子频带和所述第二子频带,第一子频带为终端设备在所述源小区中进行数据传输所占用的频域资源,所述第一子频带与所述第二子频带不同。
  19. 一种终端设备,包括处理器和存储器;
    所述处理器用于从所述存储器读取并运行指令,以实现如权1-5任一所述的方法。
  20. 一种网络设备,包括处理器和存储器;
    所述处理器用于从所述存储器读取并运行指令,以实现如权6-15任一所述的方法。
  21. 一种网络设备,包括处理器和存储器;
    所述处理器用于从所述存储器读取并运行指令,以实现如权16-18任一所述的方法。
  22. 一种通信系统,包括如权20的网络设备以及权21的网络设备。
PCT/CN2018/108145 2018-09-27 2018-09-27 用于同频小区切换的方法和装置 WO2020061963A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108145 WO2020061963A1 (zh) 2018-09-27 2018-09-27 用于同频小区切换的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108145 WO2020061963A1 (zh) 2018-09-27 2018-09-27 用于同频小区切换的方法和装置

Publications (1)

Publication Number Publication Date
WO2020061963A1 true WO2020061963A1 (zh) 2020-04-02

Family

ID=69950905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108145 WO2020061963A1 (zh) 2018-09-27 2018-09-27 用于同频小区切换的方法和装置

Country Status (1)

Country Link
WO (1) WO2020061963A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220174616A1 (en) * 2019-03-29 2022-06-02 Mediatek Inc. Design of uplink power control and time-division multiplexing patterns for dual active protocol stack based handover

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005046283A1 (en) * 2003-10-30 2005-05-19 Qualcomm Incorporated Layered reuse for a wireless communication system
CN101212763A (zh) * 2006-12-25 2008-07-02 中兴通讯股份有限公司 N频点小区系统的频点选择方法
US20110280205A1 (en) * 2008-12-30 2011-11-17 China Academy Of Telecommunications Method and access network device for interference coordination
CN103518399A (zh) * 2013-03-19 2014-01-15 华为技术有限公司 小区切换方法及设备
CN108259094A (zh) * 2016-12-29 2018-07-06 中国移动通信集团设计院有限公司 一种lte网络上行干扰优化方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005046283A1 (en) * 2003-10-30 2005-05-19 Qualcomm Incorporated Layered reuse for a wireless communication system
CN101212763A (zh) * 2006-12-25 2008-07-02 中兴通讯股份有限公司 N频点小区系统的频点选择方法
US20110280205A1 (en) * 2008-12-30 2011-11-17 China Academy Of Telecommunications Method and access network device for interference coordination
CN103518399A (zh) * 2013-03-19 2014-01-15 华为技术有限公司 小区切换方法及设备
CN108259094A (zh) * 2016-12-29 2018-07-06 中国移动通信集团设计院有限公司 一种lte网络上行干扰优化方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANRITSU: "Introduction of Intra frequency handover Test case 5.1.15 for Cat-Mi UEs in CEModeA", R5-167068, 3GPP TSG-RAN5 MEETING #2-1OT ADHOC, 14 October 2016 (2016-10-14), pages 1 - 19, XP051153557 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220174616A1 (en) * 2019-03-29 2022-06-02 Mediatek Inc. Design of uplink power control and time-division multiplexing patterns for dual active protocol stack based handover

Similar Documents

Publication Publication Date Title
US11910257B2 (en) Radio resource management (RRM) measurement for new radio (NR) network
US20210067258A1 (en) Radio Resource Management Measurement Method and Apparatus
EP3217701B1 (en) Terminal device, base station device, and method
EP2915362B1 (en) Methods and devices related to interference mitigated effective measurements
EP2678955B1 (en) Method and device for measuring signal in wireless communication system
WO2019242775A1 (en) Method for nr radio link monitoring (rlm) and evaluation period determination
EP2629566B1 (en) System, method and apparatus for reporting measurement capability
US20140204765A1 (en) Interference control method and device
WO2020063502A1 (zh) 无线资源管理rrm测量的方法和装置
EP3731431B1 (en) Beam configuration method and device
CN113709798B (zh) Rrm测量的方法、设备和存储介质
WO2021208111A1 (zh) 通信方法及装置
WO2015149337A1 (zh) 一种tdd系统中rrm测量方法及装置
US20160249226A1 (en) Wireless communication method and apparatus
WO2018028272A1 (zh) 一种上行资源调度方法及相关设备
WO2018228593A1 (en) Radio resource managmenet (rrm) measurement for new radio (nr) network
US20210227419A1 (en) Communications method and apparatus
KR20160132055A (ko) 우선순위화된 셀 식별 및 측정 방법
WO2020061963A1 (zh) 用于同频小区切换的方法和装置
US20220150766A1 (en) Data exchange method
CN112105031B (zh) 测量方法、终端及网络侧设备
CN116456483A (zh) 无线通信方法、网络节点以及设备
CN113141652B (zh) 在测量时隙内收发信号的方法、网元设备及可读存储介质
CN117880988A (zh) 资源确定方法、装置及通信设备
CN115843062A (zh) 通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935909

Country of ref document: EP

Kind code of ref document: A1