WO2020061946A1 - 一种信息处理方法、设备及存储介质 - Google Patents

一种信息处理方法、设备及存储介质 Download PDF

Info

Publication number
WO2020061946A1
WO2020061946A1 PCT/CN2018/108089 CN2018108089W WO2020061946A1 WO 2020061946 A1 WO2020061946 A1 WO 2020061946A1 CN 2018108089 W CN2018108089 W CN 2018108089W WO 2020061946 A1 WO2020061946 A1 WO 2020061946A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
time
rmsi
coreset
candidate
Prior art date
Application number
PCT/CN2018/108089
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201880098105.1A priority Critical patent/CN112753262A/zh
Priority to EP18935532.4A priority patent/EP3855826A4/en
Priority to PCT/CN2018/108089 priority patent/WO2020061946A1/zh
Publication of WO2020061946A1 publication Critical patent/WO2020061946A1/zh
Priority to US17/213,913 priority patent/US12035257B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to an information processing method, device, and storage medium.
  • a time domain candidate position sent by a synchronization signal block (SS / PBCH block, SSB) and a minimum system information (Remaining Minimum System Information, RMSI) associated with the SSB are specified.
  • RMSI Remaining Minimum System Information
  • the network device when the network device successfully listens to an available channel for a period of time through the Listen Before Talk (LBT) mechanism in the unlicensed band (For example, 10 ms), the network device cannot send the complete SSB and the PDCCH of the RMSI transmitted in the CORESET of the RMSI associated with the SSB in the available channel; thus, it is not conducive to the discovery and access of the unlicensed band cell.
  • LBT Listen Before Talk
  • embodiments of the present invention provide an information processing method, device, and storage medium, which realizes transmitting a complete SSB and a PDCCH of the RMSI in the CORESET of the RMSI associated with the SSB in one available channel, which improves the non- Probability of cell discovery and access in the licensed band.
  • an embodiment of the present invention provides an information processing method, including: a terminal device detecting an SSB and detecting a PDCCH of the RMSI within a CORESET of the RMSI associated with the SSB; and the RMSI associated with the SSB
  • the time domain candidate position information of CORESET is determined based on the time domain parameter influence factor of the SSB.
  • an embodiment of the present invention provides an information processing method, including: a network device determining time-domain candidate position information of an SSB and time-domain candidate position information of a CORESET of an RMSI associated with the SSB, so that the SSB And the PDCCH of the RMSI in the CORESET of the RMSI associated with the SSB is transmitted in a time domain interval; the time domain candidate position information of the CORESET of the RMSI associated with the SSB is affected based on the time domain parameters of the SSB Factor determination.
  • an embodiment of the present invention provides a terminal device.
  • the terminal device includes a detection unit configured to detect an SSB in a time domain and detect a PDCCH of the RMSI in a CORESET of the RMSI associated with the SSB. ;
  • the time-domain candidate position information of the CORESET of the RMSI associated with the SSB is determined based on the time-domain parameter influence factor of the SSB.
  • an embodiment of the present invention provides a network device, including: a processing unit configured to determine time-domain candidate position information of an SSB and time-domain candidate position information of a CORESET of an RMSI associated with the SSB, so that all The PDCCH of the RMSI in the SSB and the CORESET of the RMSI associated with the SSB is transmitted in a time domain interval;
  • the time-domain candidate position information of the CORESET of the RMSI associated with the SSB is determined based on the time-domain parameter influence factor of the SSB.
  • an embodiment of the present invention provides a terminal device, including: a processor and a memory for storing a computer program capable of running on the processor, wherein the processor is configured to execute the foregoing when the computer program is run. The steps of the method performed by the terminal device.
  • an embodiment of the present invention provides a network device, including: a processor and a memory for storing a computer program capable of running on the processor, wherein the processor is configured to execute the foregoing when the computer program is run. The steps of the method performed by the network device.
  • an embodiment of the present invention provides a storage medium that stores an executable program.
  • the executable program is executed by a processor, the method for implementing the foregoing terminal device is implemented.
  • an embodiment of the present invention provides a storage medium that stores an executable program.
  • the executable program is executed by a processor, the method for implementing the foregoing network device is implemented.
  • a terminal device detects SSB within a time domain range, and detects PDCCH of RMSI within CORESET of RMSI associated with the SSB; and CORESET of RMSI associated with the SSB
  • the candidate position information of the time domain is determined based on the influence factor of the time domain parameter of the SSB.
  • the network device can send the complete SSB and the CORESET of the RMSI associated with the SSB to the terminal device within one available channel; in this way, the probability of discovery and access of cells in the unlicensed frequency band is improved.
  • FIG. 1 is a schematic diagram of candidate sending positions of SSBs in a slot in the related art
  • FIG. 2 is a schematic diagram of sending / receiving positions of CORESET of SSB and RMSI associated with SSB in the related art
  • FIG. 3 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an optional processing flow of an information processing method applied to a terminal device according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of CORESET of an SSB and an RMSI associated with the SSB according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of an optional processing flow of an information processing method applied to a network device according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a structure of a terminal device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a hardware composition and structure of an electronic device according to an embodiment of the present invention.
  • the candidate transmission position of the SSB is planned and configured within 5ms
  • the candidate configuration position of the COSI of the RMSI associated with the SSB is planned and configured within 20ms.
  • the time domain interval between an SSB and the CORESET of the RMSI associated with the SSB The location varies greatly depending on the configuration. In the study of 5G unlicensed bands, due to the limited transmission opportunities after a successful LBT and the uncertain location of LBT success, it is difficult to ensure that the complete SSB and the SSB can be sent / received in the resources occupied after a successful LTB. CORESET of the associated RMSI.
  • candidate sending positions of SSBs in a slot are shown in FIG. 1.
  • FIG. 2 is a schematic diagram of the sending / receiving positions of CORESET of SSB and RMSI associated with SSB in the related art; the sending / receiving positions of CORESET of SSB and RMSI associated with SSB are both reasonable and available Configuration method used; in this example, the network device sends an SSB in the first half of each odd-numbered frame based on its own scheduling, and sends a CORESET of the RMSI associated with each SSB in the first half of each even-numbered frame.
  • the present invention proposes to increase the value range of the parameter O on the basis of calculating the CORESET position information of the RMSI associated with the SSB in the related art.
  • the present invention provides another information processing method.
  • the information processing method in the embodiments of the present application can be applied to various communication systems, such as: Global System of Mobile (GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, LTE Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access , WiMAX) communication system or 5G system.
  • GSM Global System of Mobile
  • CDMA code division multiple access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G system Global System of Mobile
  • GSM Global System of Mobile
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located within the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • the network device may be a mobile switching center, relay station, access point, vehicle equipment, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in public land mobile networks (PLMN) that will evolve in the future.
  • PLMN public land mobile networks
  • the communication system 100 further includes at least one terminal device 120 located within a coverage area of the network device 110.
  • terminal equipment used herein includes, but is not limited to, connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connection ; And / or another data connection / network; and / or via a wireless interface, such as for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and / or another terminal device configured to receive / transmit communication signals; and / or Internet of Things (IoT) devices.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • DVB-H Digital Video Broadband
  • satellite networks satellite networks
  • AM- FM broadcast transmitter AM- FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device configured to communicate through a wireless interface may be referred to as a “wireless communication terminal”, a “wireless terminal”, or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communications systems (PCS) terminals that can combine cellular radiotelephones with data processing, facsimile, and data communications capabilities; can include radiotelephones, pagers, Internet / internal PDA with network access, web browser, notepad, calendar, and / or Global Positioning System (GPS) receiver; and conventional laptop and / or palm-type receivers or others including radiotelephone transceivers Electronic device.
  • PCS personal communications systems
  • GPS Global Positioning System
  • a terminal device can refer to an access terminal, user equipment (User Equipment), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing (PDA), and wireless communication.
  • terminal devices 120 may perform terminal direct device (D2D) communication.
  • D2D terminal direct device
  • the 5G system or the 5G network may also be referred to as a New Radio (NR) system or an NR network.
  • NR New Radio
  • FIG. 3 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • the device having a communication function in the network / system in the embodiments of the present application may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 having a communication function, and the network device 110 and the terminal device 120 may be specific devices described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobile management entity, and the like, which is not limited in the embodiments of the present application.
  • the optional processing flow of the information processing method applied to the terminal device provided by the embodiment of the present invention includes the following steps:
  • Step S201 The terminal device detects the SSB, and detects the PDCCH of the RMSI within the CORESET of the RMSI associated with the SSB.
  • the time domain candidate position information of the CORESET of the RMSI associated with the SSB is determined based on the time domain parameter influence factor of the SSB.
  • the influence factors of the time domain parameters include:
  • the offset factor of the start position of the half frame where the SSB is located relative to the nearest even system frame boundary before the time domain position of the SSB; and / or, the first candidate transmission position of the SSB and the SSB The offset factor of the second candidate sending position.
  • the influence factor of the time domain parameter is a time offset of a start position of a field where the SSB is located with respect to a nearest even system frame boundary before the time domain position of the SSB
  • an offset is added to the frame number position and the slot position formula in the time domain candidate position information of the CORESET RMSI associated with the SSB in the related art, and the offset is (T ⁇ 2 ⁇ ) indicates that it is the time offset of the start position of the half frame where the SSB is located relative to the nearest even system frame boundary before the time domain position where the SSB is located.
  • the frame number position in the time domain candidate position information of the CORESET of the RMSI associated with the SSB satisfies:
  • the slot position in the time domain candidate position information of the CORESET of the RMSI associated with the SSB is: the Kth slot starting from the n0th slot;
  • T is the time offset of the start position of the half frame where the SSB is located relative to the nearest even system frame boundary before the time domain position of the SSB
  • i is the index number of the SSB
  • M is the system
  • K is a preset value
  • is a subcarrier interval of CORESET of different RMSI
  • I the number of time slots in a system frame
  • the correspondence between ⁇ and the subcarrier interval is shown in the following Table 1: when ⁇ is 0, the corresponding subcarrier interval is 15kHz, and when ⁇ is 1, the corresponding subcarrier interval is 30kHz .
  • Subcarrier interval (kH) 0 15 1 30 2 60 3 120 4 240
  • T is the time offset of the half-frame where the SSB is located relative to the even-numbered system frame boundary (10ms)
  • O is 5ms of system configuration
  • k is predefined as 2.
  • the schematic diagram of CORESET, SSB of RMSI and RMSI associated with SSB is shown in Figure 5.
  • the influence factor of the time domain parameter is an offset factor between a first candidate transmission position of the SSB and a second candidate transmission position of the SSB
  • calculation and correlation are performed in the related art.
  • an influence factor of the time domain offset is added. For example, when the network device sends SSB i at the i-th sending position due to LBT failure, it delays to send the SSB i to the i + t off_SSB candidate sending position.
  • the frame number position in the time domain candidate position information of the CORESET of the RMSI associated with the SSB satisfies:
  • the slot position in the time domain candidate position information of the CORESET of the RMSI associated with the SSB is: the Kth slot starting from the n0th slot;
  • i is the index number of the SSB
  • M is the second parameter of the system configuration.
  • I is the number of slots in a system frame (when the subcarrier interval is the value corresponding to ⁇ )
  • k is a predefined value
  • represents the subcarrier interval of different RMSI CORSET, as shown in Table 1 above.
  • the i-th transmission position is the first candidate transmission position and the candidate transmission position before the SSBi delays transmission.
  • the i + t off_RMSI sending position is the second candidate sending position, that is, the actual candidate sending position of SSBi.
  • the i + t off_RMSI candidate transmission position is still the i-th SSB candidate transmission position.
  • the time domain of the CORESET of the RMSI is calculated.
  • a parameter i 'associated with the delayed transmission position of the SSB is introduced.
  • the time domain position of the CORESET of the RMSI associated with the i-th SSB is also delayed to the CORESET of the i-th RMSI.
  • the frame number position in the time domain candidate position information of the CORESET of the RMSI associated with the SSB satisfies:
  • the slot position in the time domain candidate position information of the CORESET of the RMSI associated with the SSB is: the Kth slot starting from the n0th slot;
  • i ' indicates that the actual transmission position of SSB i is located at the candidate transmission position of the i'th SSB
  • M is the second parameter configured by the system
  • k is a predefined value
  • represents the subcarrier interval of different RMSI CORSET, as shown in Table 1
  • O is the system configuration
  • the i 'candidate transmission position after the i-th SSB delayed transmission is the candidate transmission position of the i'-th SSB that has been identified.
  • the influence factor of the time domain parameter is a time offset of a start position of a field where the SSB is located with respect to a nearest even system frame boundary before the time domain position of the SSB
  • the influence factor of the time domain parameter is an offset factor of the first candidate transmission position of the SSB and the second candidate transmission position of the SSB
  • the time of calculating the CORESET of the RMSI associated with the SSB in the related art Based on the formula of the frame number position and the slot position in the domain candidate position information, the above-mentioned influence factors of the time domain offset are increased.
  • the network device when the network device sends SSB i at the i-th sending position due to LBT failure, it delays to send the SSB i to the i + t off_SSB candidate sending position.
  • a new parameter t off_RMSI associated with the SSB i delayed transmission position t off_SSB is added ; it can be understood that the time domain position of the CORESET of the RMSI associated with the i-th SSB is also delayed to the i + t off_RMSI RMSI CORESET candidate time domain location. Therefore, when t off_SSB is L, t off_RMSI also takes L.
  • the frame number position in the time domain candidate position information of the CORESET of the RMSI associated with the SSB satisfies:
  • the slot position in the time domain candidate position information of the CORESET of the RMSI associated with the SSB is: the Kth slot starting from the n0th slot;
  • T is the time offset of the frame where the SSB is located relative to the boundary of the even system frame
  • i is the index number of the SSB
  • M is the second parameter configured by the system
  • K is a preset value
  • is a different RMSI
  • the subcarrier interval of CORESET , t off_RMSI is an offset factor of the first candidate transmission position before the SSB delayed transmission and the second candidate transmission position after the SSB delayed transmission.
  • the i-th SSB is associated with The time domain position of the CORESET of the RMSI is also delayed to the time position of the CORESET candidate of the i + t off_RMSI RMSI, which avoids the time domain transmission position of the CORESET of the RMSI associated with SSB i falling outside the available channel successfully seized by the network device .
  • the influence factor of the time domain parameter is a time offset of a start position of a field where the SSB is located with respect to a nearest even system frame boundary before the time domain position of the SSB
  • the influence factor of the time domain parameter is an offset factor of the first candidate transmission position of the SSB and the second candidate transmission position of the SSB
  • the CORESET of the RMSI associated with the SSB is calculated in the related art.
  • the above-mentioned influence factors of the time-domain offset are increased.
  • a network device when a network device sends an SSB at the i-th sending position due to LBT failure, it delays to send the SSB to the i-th SSB candidate sending position, and calculates the correlation of the time domain slot position of the CORESET of the RMSI
  • a parameter i 'associated with the delayed transmission position of the SSB i is introduced.
  • the time domain position of the CORESET of the RMSI associated with the ith SSB is also delayed to the candidate time domain position of the CORESET of the i'th RMSI.
  • the frame number position in the time domain candidate position information of the CORESET of the RMSI associated with the SSB satisfies:
  • T is the time offset of the start position of the half frame where the SSB is located relative to the nearest even system frame boundary before the time domain position of the SSB
  • i ′ is an index of the candidate transmission position of the SSB.
  • M is the second parameter of the system configuration
  • K is the preset value
  • is the subcarrier interval of CORESET for different RMSI
  • An optional processing flow of an information processing method applied to a network device according to an embodiment of the present invention, as shown in FIG. 6, includes the following steps:
  • Step S301 The network device determines time-domain candidate position information of the SSB and time-domain candidate position information of CORESET of the RMSI associated with the SSB, so that the SSB and the RMSI in the CORESET of the RMSI associated with the SSB
  • the PDCCH is transmitted in a time domain interval.
  • the time domain candidate position information of the CORESET of the RMSI associated with the SSB is determined based on the time domain parameter influence factor of the SSB.
  • step S201 the specific description of determining the time-domain candidate position information of the SSB and the time-domain candidate position information of the CORESET of the RMSI associated with the SSB is the same as in step S201, and is not repeated here.
  • An embodiment of the present invention further provides a terminal device.
  • the composition structure of the terminal device 400 as shown in FIG. 7, includes:
  • the detection unit 401 is configured to detect the SSB and detect the PDCCH of the RMSI within the CORESET of the RMSI associated with the SSB; the time-domain candidate position information of the CORESET of the RMSI associated with the SSB is based on the SSB's Determination of the influence factor of time domain parameters.
  • the influence factors of the time domain parameters include:
  • the time domain candidate position information of the CORESET of the RMSI associated with the SSB is calculated based on a start position of a field of the time domain position where the SSB is located as a start position.
  • the time domain candidate position information of the CORESET of the RMSI associated with the SSB is:
  • the system frame number satisfies:
  • T is the time offset of the start position of the half frame where the SSB is located relative to the nearest even system frame boundary before the time domain position of the SSB
  • i is the index number of the candidate transmission position of the SSB
  • M and O are configuration values
  • K is a preset value
  • is a subcarrier interval of CORESET of different RMSI
  • I is the number of time slots in a system frame.
  • the time domain candidate position information of the CORESET of the RMSI associated with the SSB is:
  • the system frame number satisfies:
  • t off_RMSI is an offset factor between the first candidate transmission position of the SSB and the second candidate transmission position of the SSB
  • M and O are configuration values
  • K is a preset value
  • is the subcarrier interval of CORESET for different RMSI
  • the time domain candidate position information of the CORESET of the RMSI associated with the SSB is:
  • the system frame number satisfies:
  • T is the time offset of the start position of the half frame where the SSB is located relative to the nearest even system frame boundary before the time domain position of the SSB
  • i is the index number of the SSB
  • t off_RMSI is An offset factor of the first candidate transmission position of the SSB and a second candidate transmission position of the SSB
  • t off_RMSI is an offset factor of the first candidate transmission position of the SSB and a second candidate transmission position of the SSB
  • M and O are configuration values
  • K is a preset value
  • is a subcarrier interval of CORESET of different RMSI
  • t off_RMSI is the maximum number of SSBs transmitted in the first time interval in the current frequency band.
  • the SSB when the SSB is an SSB whose index number is i, and the second candidate transmission position of the SSB whose index number is i is the candidate transmission position of the i'th SSB, the SSB and the SSB
  • the time domain candidate position information of the associated RMRESET's CORESET is:
  • the system frame number satisfies:
  • i ′ is an index number of a candidate transmission position of the SSB
  • M and O are configuration values
  • K is a preset value
  • is a subcarrier interval of CORESET of different RMSI
  • I the number of time slots in a system frame.
  • the SSB and the SSB are SSB whose index number is i, and the second candidate transmission position of the SSB whose index number is i is the candidate transmission position of the i'th SSB, the SSB and the SSB
  • the time domain candidate position information of the associated RMSI's CORESET is that the system frame number satisfies:
  • T is the time offset of the start position of the half frame where the SSB is located relative to the nearest even system frame boundary before the time domain position of the SSB
  • i ′ is an index of the candidate transmission position of the SSB.
  • Number, M and O are configuration values
  • K is a preset value
  • is a subcarrier interval of CORESET of different RMSI
  • the first candidate sending position is a candidate sending position before the SSB delayed sending
  • the second candidate transmission position is an actual candidate transmission position of the SSB.
  • An embodiment of the present invention further provides a network device.
  • the processing unit 501 is configured to determine time-domain candidate position information of the SSB and time-domain candidate position information of the CORESET of the minimum system information resource control set RMSI associated with the SSB, so that the SSB and the The physical downlink control channel PDCCH of the RMSI in the COSI of the RMSI is transmitted in a time domain interval; the time domain candidate position information of the COSI of the RMSI associated with the SSB is determined based on the time domain parameter influence factor of the SSB.
  • the time domain parameter influencing factor includes: a time offset of a start position of a field in which the SSB is located relative to a nearest even system frame boundary before the time domain position of the SSB; and / or An offset factor between a first candidate transmission position of the SSB and a second candidate transmission position of the SSB.
  • the processing unit 501 is configured to calculate, based on a start position of a field in a time domain position where the SSB is located, as a start position, time domain candidate position information of CORESET of the RMSI associated with the SSB; And / or, the terminal device sums an index value of the SSB with an offset factor of a first candidate transmission position before the SSB delayed transmission and an offset factor of a second candidate transmission position after the SSB delayed transmission, as The new index value of the SSB is calculated to obtain the time domain candidate position information of the CORESET of the RMSI associated with the SSB.
  • the processing unit 501 is configured to satisfy a system frame number:
  • the K-th time slot starting from the three time slots is determined as the time domain candidate position information of the CORESET of the RMSI associated with the SSB;
  • T is the time offset of the start position of the half frame where the SSB is located relative to the nearest even system frame boundary before the time domain position of the SSB
  • i is the index number of the candidate transmission position of the SSB
  • M and O are configuration values
  • K is a preset value
  • is a subcarrier interval of CORESET of different RMSI
  • I is the number of time slots in a system frame.
  • the processing unit 501 is configured to satisfy a system frame number:
  • First K time slots starting from the time slots are determined as time domain candidate position information of CORESET of the RMSI associated with the SSB;
  • t off_RMSI is an offset factor between the first candidate transmission position of the SSB and the second candidate transmission position of the SSB
  • M and O are configuration values
  • K is a preset value
  • is the subcarrier interval of CORESET for different RMSI
  • the processing unit 501 is configured to satisfy the system frame number:
  • First K time slots starting from the time slots are determined as time domain candidate position information of CORESET of the RMSI associated with the SSB;
  • T is the time offset of the start position of the half frame where the SSB is located relative to the nearest even system frame boundary before the time domain position of the SSB
  • i is the index number of the SSB
  • t off_RMSI is An offset factor between the first candidate transmission position of the SSB and the second candidate transmission position of the SSB
  • M and O are configuration values
  • K is a preset value
  • is a subcarrier interval of CORESET of different RMSI
  • t off_RMSI is the maximum number of SSBs transmitted in the first time interval in the current frequency band.
  • the processing unit is configured to satisfy a system frame number:
  • First K time slots starting from the time slots are determined as time domain candidate position information of CORESET of the RMSI associated with the SSB;
  • i ′ is an index number of a candidate transmission position of the SSB
  • M and O are configuration values
  • K is a preset value
  • is a subcarrier interval of CORESET of different RMSI Is the number of time slots in a system frame.
  • the processing unit 501 is configured to satisfy a system frame number:
  • First K time slots starting from the time slots are determined as time domain candidate position information of CORESET of the RMSI associated with the SSB;
  • T is the time offset of the start position of the half frame where the SSB is located relative to the nearest even system frame boundary before the time domain position of the SSB
  • i ′ is an index of the candidate transmission position of the SSB Number
  • M and O are configuration values
  • K is a preset value
  • is a subcarrier interval of CORESET of different RMSI
  • the first candidate transmission position is a candidate transmission position before the SSB delayed transmission; and the second candidate transmission position is an actual candidate transmission position of the SSB.
  • the configuration value of O includes: 1,2.5,6,7.5.
  • An embodiment of the present invention further provides a terminal device including a processor and a memory for storing a computer program capable of running on the processor, wherein the processor is configured to execute the computer program executed by the terminal device when the computer program is run. Steps of the power allocation method.
  • An embodiment of the present invention further provides a network device, including a processor and a memory for storing a computer program capable of running on the processor, wherein the processor is configured to execute the computer program executed by the network device when the computer program is run. Steps of the power allocation method.
  • FIG. 9 is a schematic diagram of a hardware composition structure of an electronic device (network device or terminal device) according to an embodiment of the present invention.
  • the electronic device 700 includes: at least one processor 701, a memory 702, and at least one network interface 704.
  • the various components in the electronic device 700 are coupled together via a bus system 705. It can be understood that the bus system 705 is configured to implement connection and communication between these components.
  • the bus system 705 includes a power bus, a control bus, and a status signal bus in addition to the data bus. However, for the sake of clarity, various buses are marked as the bus system 705 in FIG. 9.
  • the memory 702 may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memories.
  • the non-volatile memory may be ROM, Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (EPROM), electrically erasable and programmable memory Programmable read-only memory (EEPROM, Electrically Programmable Read-Only Memory), magnetic random access memory (FRAM, ferromagnetic random access memory), flash memory (Flash memory), magnetic surface memory, optical disc, or read-only disc (CD) -ROM, Compact Disc-Read-Only Memory); magnetic surface storage can be magnetic disk storage or magnetic tape storage.
  • the volatile memory may be random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM random access memory
  • RAM Random Access Memory
  • many forms of RAM are available, such as Static Random Access Memory (SRAM, Static Random Access Memory), Synchronous Static Random Access Memory (SSRAM, Static Random Access, Memory), Dynamic Random Access DRAM (Dynamic Random Access Memory), Synchronous Dynamic Random Access Memory (SDRAM), Double Data Rate Synchronous Dynamic Random Access Memory (DDRSDRAM, Double Data Rate Synchronous Dynamic Random Access Memory), enhanced Type Synchronous Dynamic Random Access Memory (ESDRAM, Enhanced Random Dynamic Access Memory), Synchronous Link Dynamic Random Access Memory (SLDRAM, SyncLink Dynamic Random Access Memory), Direct Memory Bus Random Access Memory (DRRAM, Direct Rambus Random Access Memory) ).
  • the memory 702 described in embodiments of the present invention is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 702 in the embodiment of the present invention is configured to store various types of data to support the operation of the electronic device 700. Examples of such data include: any computer program for operating on the electronic device 700, such as the application program 7022. A program for implementing the method of the embodiment of the present invention may be included in an application program 7022.
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 701, or implemented by the processor 701.
  • the processor 701 may be an integrated circuit chip and has a signal processing capability. In the implementation process, each step of the above method may be completed by using hardware integrated logic circuits or instructions in the form of software in the processor 701.
  • the above-mentioned processor 701 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • DSP Digital Signal Processor
  • the processor 701 may implement or execute various methods, steps, and logic block diagrams disclosed in the embodiments of the present invention.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium.
  • the storage medium is located in the memory 702.
  • the processor 701 reads the information in the memory 702 and completes the steps of the foregoing method in combination with its hardware.
  • the electronic device 700 may be implemented by one or more Application Specific Integrated Circuits (ASICs), DSPs, Programmable Logic Devices (PLDs), and Complex Programmable Logic Devices (CPLDs).
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal processors
  • PLDs Programmable Logic Devices
  • CPLDs Complex Programmable Logic Devices
  • Complex, Programmable (Logic, Device) FPGA, general-purpose processor, controller, MCU, MPU, or other electronic components to implement the foregoing methods.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application. No longer.
  • the computer-readable storage medium can be applied to the terminal device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the terminal device in each method of the embodiments of the present application. For simplicity, here No longer.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions
  • the device implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing device, so that a series of steps can be performed on the computer or other programmable device to produce a computer-implemented process, which can be executed on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信息传输方法,包括:终端设备检测同步信号块(SSB),以及在与所述SSB关联的最小系统信息资源控制集(RMSI的CORESET)内检测RMSI的物理下行控制信道(PDCCH);所述与所述SSB关联的RMSI的CORESET的时域候选位置信息,基于所述SSB的时域参数影响因子确定。本发明还公开了另一种信息传输方法、设备及存储介质。

Description

一种信息处理方法、设备及存储介质 技术领域
本发明涉及无线通信技术领域,尤其涉及一种信息处理方法、设备及存储介质。
背景技术
在无线(New Radio,NR)Rel-15系统中,规定了同步信号块(SS/PBCH block,SSB)发送的时域候选位置以及与所述SSB关联的最小系统信息(Remaining Minimum System Information,RMSI)资源控制集(CORESET)的时域候选位置。但是,由于SSB和与SSB关联的RMSI的CORESET之间的时域间距较大,当网络设备在非授权频段中通过监听避让机制(Listen Before Talk,LBT)成功抢占到一段时间的可利用的信道(如10ms)时,网络设备在该可用信道中不能够发送完整的SSB和与SSB关联的RMSI的CORESET中传输的RMSI的PDCCH;如此,不利于非授权频段小区的发现和接入。
发明内容
为解决上述技术问题,本发明实施例提供一种信息处理方法、设备及存储介质,实现了在一个可用信道内传输完整的SSB和与SSB关联的RMSI的CORESET中的RMSI的PDCCH,提高了非授权频段小区发现和接入的几率。
第一方面,本发明实施例提供一种信息处理方法,包括:终端设备在检测SSB,以及在与所述SSB关联的RMSI的CORESET内检测RMSI的PDCCH;所述与所述SSB关联的RMSI的CORESET的时域候选位置信息,基于所述SSB的时域参数影响因子确定。
第二方面,本发明实施例提供一种信息处理方法,包括:网络设备确定SSB的时域候选位置信息,以及与所述SSB关联的RMSI的CORESET的时域候选位置信息,以使所述SSB和与所述SSB关联的RMSI的CORESET中的RMSI的PDCCH在一个时域区间内传输;所述与所述SSB关联的RMSI的CORESET的时域候选位置信息,基于所述SSB的时域参数影响因子确定。
第三方面,本发明实施例提供一种终端设备,所述终端设备包括:检测单元,配置为在一个时域范围内检测SSB,以及在与所述SSB关联的RMSI的CORESET内检测RMSI的PDCCH;
所述与所述SSB关联的RMSI的CORESET的时域候选位置信息,基于所述SSB的时域参数影响因子确定。
第四方面,本发明实施例提供一种网络设备,包括:处理单元,配置为确定SSB的时域候选位置信息,以及与所述SSB关联的RMSI的CORESET的时域候选位置信息,以使所述SSB和与所述SSB关联的RMSI的CORESET中的RMSI的PDCCH在一个时域区间内传输;
所述与所述SSB关联的RMSI的CORESET的时域候选位置信息,基于所述SSB的时域参数影响因子确定。
第五方面,本发明实施例提供一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述终端设备执行的方法的步骤。
第六方面,本发明实施例提供一种网络设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述网络设备执行的方法的步骤。
第七方面,本发明实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述终端设备执行的方法。
第八方面,本发明实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述网络设备执行的方法。
本发明实施例提供的信息处理方法,终端设备在一个时域范围内检测SSB,以及在与所述SSB关联的RMSI的CORESET内检测RMSI的PDCCH;并且所述与所述SSB关联的RMSI的CORESET的时域候选位置信息,基于所述SSB的时域参数影响因子确定。如此,使得网络设备在一个可用信道内能够向终端设备发送完整的SSB和与SSB关联的RMSI的CORESET;如此,提高非授权频段小区的发现和接入的几率。
附图说明
图1为相关技术中SSB在一个slot内的候选发送位置示意图;
图2为相关技术中SSB和与SSB相关联的RMSI的CORESET的发送/接收位置示意图;
图3为本发明实施例提供的通信系统的组成结构示意图;
图4为本发明实施例应用于终端设备的信息处理方法的可选处理流程示意图;
图5为本发明实施例SSB和与SSB相关联的RMSI的CORESET示意图;
图6为本发明实施例应用于网络设备的信息处理方法的可选处理流程示意图;
图7本发明实施例提供的终端设备的组成结构示意图;
图8本发明实施例提供的网络设备的组成结构示意图;
图9为本发明实施例提供的电子设备的硬件组成结构示意图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点和技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
在对本发明实施例进行详细说明之前,先对SSB在一个Slot内的候选发送位置进行简要说明。
SSB的候选发送位置是在5ms内规划配置的,与SSB相关联的RMSI的CORESET的候选配置位置是在20ms内规划配置的,某一个SSB和与其相关联的RMSI的CORESET之间的时域间隔位置根据不同的配置会相差较大。在5G非授权频段的研究中,由于一次LBT成功后的传输机会有限,并且LBT成功的位置不确定,所以很难保证在一次LTB成功后占用的资源里能够发送/接收完整的SSB和与SSB相关联的RMSI的CORESET。
相关技术中,SSB在一个slot内的候选发送位置如图1所示。RMSI的CORESET的候选发送位置为:系统帧号满足SFN Cmod 2=0(当
Figure PCTCN2018108089-appb-000001
时)或者SFN Cmod 2=1(当
Figure PCTCN2018108089-appb-000002
时)的第
Figure PCTCN2018108089-appb-000003
slot 开始的两个slot位置。
图2为相关技术中SSB和与SSB相关联的RMSI的CORESET的发送/接收位置示意图;图2所示的SSB和与SSB相关联的RMSI的CORESET的发送/接收位置均是合理的、且可利用的配置方式;该实例中,网络设备基于自身调度,在每个奇数帧的前半帧发送SSB,并在每个偶数帧的前半帧发送与各个SSB相关联的RMSI的CORESET。但是,由于SSB和与SSB相关联的RMSI的CORESET之间的时域间距较大,当网络设备在非授权频段中通过LBT成功抢占到一个可利用信道时(比如10ms时),该网络设备也不能在该可用信道中发送完整的SSB和与SSB相关联的RMSI的CORESET。
基于上述问题,本发明提出在相关技术中计算与SSB相关联的RMSI的CORESET位置信息的基础上,增加参数O的取值范围。
可选地,在第一频域范围,O的取值范围由相关技术中的O=0、2、5、7修改为O=0、2、5、7、10、12、15、17。
可选地,O的取值范围包括O=1、2.5、6、7.5以及O=11、12.5、16、17.5。
基于上述问题,本发明提供还一种信息处理方法,本申请实施例的信息处理方法可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100如图3所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或 掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图3示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图3示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
本发明实施例提供的应用于终端设备的信息处理方法的可选处理流程,如图4所示,包括以下步骤:
步骤S201,终端设备检测SSB,以及在与所述SSB关联的RMSI的CORESET内检测RMSI的PDCCH。
本发明实施例中,所述与所述SSB关联的RMSI的CORESET的时域候选位置信息,基于所述SSB的时域参数影响因子确定。
其中,所述时域参数影响因子包括:
所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的偏移因子;和/或,所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子。
在一些可选实施例中,当所述时域参数影响因子为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量时,在相关技术中计算与所述SSB关联的RMSI的CORESET的时域候选位置信息中的帧号位置以及时隙位置的公式的基础上,均增加了一个偏移量,该偏移量以(T·2 μ)表示,是所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量。
因此,与所述SSB关联的RMSI的CORESET的时域候选位置信息中的帧号位置满足:
SFN Cmod2=0,当
Figure PCTCN2018108089-appb-000004
时,
或者SFN Cmod2=1,当
Figure PCTCN2018108089-appb-000005
时,
与所述SSB关联的RMSI的CORESET的时域候选位置信息中的时隙位置为:第 n0个时隙开始的第K个时隙;
其中,
Figure PCTCN2018108089-appb-000006
其中,T为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,i为所述SSB的索引号,M是系统配置的第二参数,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
Figure PCTCN2018108089-appb-000007
为一个系统帧中的时隙个数,O为系统配置的第一参数,O=0、2、5、7,或者O=1、2.5、6、7.5。
在一些实施例中,μ与子载波间隔之间的对应关系,如下表1所示:当μ为0时,对应的子载波间隔为15kHz,当μ为1时,对应的子载波间隔为30kHz。
μ 子载波间隔(kH)
0 15
1 30
2 60
3 120
4 240
表1
举例来说,当网络设备在奇数帧的前半帧发送SSB突发集时,在30kHz的子载波间隔下(μ=1),T是SSB所在半帧的相对于偶数系统帧边界的时间偏移(10ms),O是系统配置的5ms,i是SSB index(i=1),M是系统配置M=1,
Figure PCTCN2018108089-appb-000008
是一个系统帧中的时隙个数(子载波间隔为30kHz时取20),k预定义为2。在上述参数配置下,对于第1个SSB来说,终端设备在系统帧号满足SFN Cmod2=1时,第n 0=11个时隙开始的2个时隙上检测与第1个SSB关联的RMSI的CORESET,SSB和与SSB相关联的RMSI的CORESET示意图,如图5所示。
在另一些可选实施例中,当所述时域参数影响因子为所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子时,在相关技术中计算与所述SSB关联的RMSI的CORESET的时域候选位置信息中的帧号位置以及时隙位置的公式的基础上,均增加了一个时域偏移的影响因子。举例来说,网络设备在第i发送位置发送SSB i的时候由于LBT的失败,延迟到第i+t off_SSB个候选发送位置发送SSB i时,在计算RMSI的CORESET的时隙位置的相关公式中,新增加一个与SSB i延迟发送位置t off_SSB相关联的参数t off_RMSI;可以理解为此时与第i个SSB相关联的RMSI的CORESET的时域位置也延迟到第i+t off_RMSI个RMSI的CORESET的候选时域位置。因此,当t off_SSB为L时,t off_RMSI也取值为L。
因此,与所述SSB关联的RMSI的CORESET的时域候选位置信息中的帧号位置满足:
SFN Cmod2=0,当
Figure PCTCN2018108089-appb-000009
时,
或者SFN Cmod2=1,当
Figure PCTCN2018108089-appb-000010
时,
与所述SSB关联的RMSI的CORESET的时域候选位置信息中的时隙位置为:第n0个时隙开始的第K个时隙;
其中,
Figure PCTCN2018108089-appb-000011
其中,i是SSB的索引号,M是系统配置的第二参数,
Figure PCTCN2018108089-appb-000012
是一个系统帧中的slot个数(子载波间隔为μ所对应的值时),k是一个预定义值,μ代表不同的RMSI CORSET的子载波间隔,如上述表1所示。O为系统配置的第一参数,O=0、2、5、7,或者O=1、2.5、6、7.5。
这里,在第i发送位置发送SSB i时,由于LBT的失败导致未能在第i发送位置发送SSBi,此时第i发送位置为第一候选发送位置,及SSBi延迟发送前的候选发送位置。在第i+t off_RMSI个发送位置发送SSB i时,第i+t off_RMSI个发送位置为第二候选发送位置,即SSBi的实际候选发送位置。
这里,第i+t off_RMSI个候选发送位置仍为第i个SSB的候选发送位置。
在又一些实施例中,网络设备在第i个候选发送位置发送SSB i的时候由于LBT的失败,延迟到第i’个SSB的候选发送位置发送SSB i时,在计算RMSI的CORESET的时域时隙位置的相关公式中,引入一个与SSB i延迟发送位置相关联的参数i’,此时与第i个SSB相关联的RMSI的CORESET的时域位置也延迟到第i’个RMSI的CORESET的候选时域位置。
因此,与所述SSB关联的RMSI的CORESET的时域候选位置信息中的帧号位置满足:
SFN Cmod2=0,当
Figure PCTCN2018108089-appb-000013
时,
或者SFN Cmod2=1,当
Figure PCTCN2018108089-appb-000014
时,
与所述SSB关联的RMSI的CORESET的时域候选位置信息中的时隙位置为:第n0个时隙开始的第K个时隙;
其中,
Figure PCTCN2018108089-appb-000015
其中,i’表示SSB i的实际发送位置位于第i’个SSB的候选发送位置,M是系统配置的第二参数,
Figure PCTCN2018108089-appb-000016
是一个系统帧中的slot个数(子载波间隔为μ所对应的值时),k是预定义值,μ代表不同的RMSI CORSET的子载波间隔,如表1所示;O为系统配置的第一参数,O=0、2、5、7,或者O=1、2.5、6、7.5。
这里,第i个SSB延迟发送之后的第i’个候选发送位置,为已经标识的第i’个SSB的候选发送位置。
再一些实施例中,当所述时域参数影响因子为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,且当所述时域参数影响因子为所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子时,在相关技术中计算与所述SSB关联的RMSI的CORESET的时域候选位置信息中的帧号位置以及时隙位置的公式的基础上,均增加了上述时域偏移的影响因子。举例来说,网络设备在第i发送位置发送SSB i的时候由于LBT的失败,延迟到第i+t off_SSB个候选发送位置发送SSB i时,在计算RMSI的CORESET的时隙位置的相关公式中,新增加一个与SSB i延迟发送位置t off_SSB相关联的参数t off_RMSI;可以理解为此时与第i个SSB相关联的RMSI的CORESET的时域位置也延迟到第i+t off_RMSI个RMSI的CORESET的候选时域位置。因此,当t off_SSB为L时,t off_RMSI也取值为L。
因此,与所述SSB关联的RMSI的CORESET的时域候选位置信息中的帧号位置满足:
SFN Cmod2=0,当
Figure PCTCN2018108089-appb-000017
时,
或者SFN Cmod2=1,当
Figure PCTCN2018108089-appb-000018
时,
与所述SSB关联的RMSI的CORESET的时域候选位置信息中的时隙位置为:第n0个时隙开始的第K个时隙;
其中,
Figure PCTCN2018108089-appb-000019
其中,T是SSB所在半帧的相对于偶数系统帧边界的时间偏移,i为所述SSB的索引号,M是系统配置的第二参数,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,t off_RMSI为所述SSB延迟发送前的第一候选发送位置与所述SSB延迟发送后的第二候选发送位置的偏移因子。O为系统配置的第一参数,O=0、2、5、7,或者O=1、2.5、6、7.5。
本发明实施例中,通过在计算RMSI的CORESET的时域时隙位置的相关公式中,增加一个与SSB i延迟发送位置相关联的参数信息,例如t off_RMSI;并且,第i个SSB相关联的RMSI的CORESET的时域位置也延迟到第i+t off_RMSI个RMSI的CORESET候选时域位置,避免了与SSB i相关联的RMSI的CORESET的时域发送位置落在网络设备成功抢占的可用信道以外。
还有一些实施例中,当所述时域参数影响因子为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,且当所述时域参数影响因子为所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子时,在相关技术中计算与所述SSB关联的RMSI的CORESET的时域候选位置信息中的帧号位置以及时隙位置的公式的基础上,均增加了上述时域偏移的影响因子。举例来说,网络设备在第i发送位置发送SSB i的时候由于LBT的失败,延迟到第i’个SSB的候选发送位置发送SSB i时,在计算RMSI的CORESET的时域时隙位置的相关公式中,引入一个与SSB i延迟发送位置相关联的参数i’,此时与第i个SSB相关联的RMSI的CORESET的时域位置也延迟到第i’个RMSI的CORESET的候选时域位置。
因此,与所述SSB关联的RMSI的CORESET的时域候选位置信息中的帧号位置满足:
SFN Cmod2=0,当
Figure PCTCN2018108089-appb-000020
时,
或者SFN Cmod2=1,当
Figure PCTCN2018108089-appb-000021
时,
Figure PCTCN2018108089-appb-000022
个时隙开始的K个时隙;
其中,T为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,i'为所述SSB的候选发送位置的索引号,M是系统配置的第二参数,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
Figure PCTCN2018108089-appb-000023
是一个系统帧中的时隙个数。O为系统配置的第一参数,O=0、2、5、7,或者O=1、2.5、6、7.5。
本发明实施例提供的应用于网络设备的信息处理方法的可选处理流程,如图6所示,包括以下步骤:
步骤S301,网络设备确定SSB的时域候选位置信息,以及与所述SSB关联的RMSI的CORESET的时域候选位置信息,以使所述SSB和与所述SSB关联的RMSI的CORESET内的RMSI的PDCCH在一个时域区间内传输。
本发明实施例中,所述与所述SSB关联的RMSI的CORESET的时域候选位置信息,基于所述SSB的时域参数影响因子确定。
这里,针对确定SSB的时域候选位置信息,以及与所述SSB关联的RMSI的CORESET的时域候选位置信息的具体说明与步骤S201中相同,这里不再赘述。
本发明实施例还提供一种终端设备,所述终端设备400的组成结构,如图7所示,包括:
检测单元401,配置为在检测SSB,以及在与所述SSB关联的RMSI的CORESET内检测RMSI的PDCCH;所述与所述SSB关联的RMSI的CORESET的时域候选位置信息,基于所述SSB的时域参数影响因子确定。
本发明实施例中,所述时域参数影响因子包括:
所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量;和/或,所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子。
本发明实施例中,所述与所述SSB关联的RMSI的CORESET的时域候选位置信息,是基于所述SSB所在时域位置的半帧的起始位置作为起始位置计算得到。
和/或,是将所述SSB的索引值与所述SSB延迟发送前的第一候选发送位置与所述SSB延迟发送后的第二候选发送位置的偏移因子的加和,作为SSB的新索引值计算得到。
本发明实施例中,所述与所述SSB关联的RMSI的CORESET的时域候选位置信息为:
系统帧号满足:
SFN Cmod2=0,当
Figure PCTCN2018108089-appb-000024
时,
或者,SFN Cmod2=1,当
Figure PCTCN2018108089-appb-000025
时,
Figure PCTCN2018108089-appb-000026
个时隙开始的第K个时隙;
其中,T为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,i为所述SSB的候选发送位置的索引号,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
Figure PCTCN2018108089-appb-000027
是一个系统帧中的时隙个数。
本发明实施例中,其中,所述与所述SSB关联的RMSI的CORESET的时域候选位置信息为:
系统帧号满足:
SFNCmod2=0,当
Figure PCTCN2018108089-appb-000028
时,
或者SFNCmod2=1,当
Figure PCTCN2018108089-appb-000029
时,
Figure PCTCN2018108089-appb-000030
个时隙开始的K个时隙;
其中,i为所述SSB的索引号,t off_RMSI为所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
Figure PCTCN2018108089-appb-000031
是一个系统帧中的时隙个数。
本发明实施例中,所述与所述SSB关联的RMSI的CORESET的时域候选位置信息为:
系统帧号满足:
SFN Cmod2=0,当
Figure PCTCN2018108089-appb-000032
时,
或者SFN Cmod2=1,当
Figure PCTCN2018108089-appb-000033
时,
Figure PCTCN2018108089-appb-000034
个时隙开始的K个时隙;
其中,T为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,i为所述SSB的索引号,t off_RMSI为所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子,t off_RMSI为所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
Figure PCTCN2018108089-appb-000035
是一个系统帧中的时隙个数。
本发明实施例中,t off_RMSI为当前频段下第一时间间隔内传输SSB的最大个数。
本发明实施例中,所述SSB为索引号是i的SSB,且所述索引号是i的SSB的第二候选发送位置为第i'个SSB的候选发送位置时,所述与所述SSB关联的RMSI的CORESET的时域候选位置信息为:
系统帧号满足:
SFN Cmod2=0,当
Figure PCTCN2018108089-appb-000036
时,
或者SFN Cmod2=1,当
Figure PCTCN2018108089-appb-000037
时,
Figure PCTCN2018108089-appb-000038
个时隙开始的K个时隙;
其中,i'为所述SSB的候选发送位置的索引号,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
Figure PCTCN2018108089-appb-000039
是一个系统帧中的时隙个数。
本发明实施例中,所述SSB为索引号是i的SSB,且所述索引号是i的SSB的第二候选发送位置为第i'个SSB的候选发送位置时,所述与所述SSB关联的RMSI的CORESET的时域候选位置信息为,系统帧号满足:
SFN Cmod2=0,当
Figure PCTCN2018108089-appb-000040
时,
或者SFN Cmod2=1,当
Figure PCTCN2018108089-appb-000041
时,
Figure PCTCN2018108089-appb-000042
个时隙开始的K个时隙;
其中,T为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,i'为所述SSB的候选发送位置的索引号,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
Figure PCTCN2018108089-appb-000043
是一个系统帧中的时隙个数。
本发明实施例中,所述第一候选发送位置为所述SSB延迟发送前的候选发送位置;
所述第二候选发送位置为所述SSB实际的候选发送位置。
本发明实施例中,O=0、2、5、7或O=1、2.5、6、7.5。
本发明实施例还提供一种网络设备,所述网络设备500的组成结构示意图,如图8所示,包括:
处理单元501,配置为确定SSB的时域候选位置信息,以及与所述SSB关联的最小系统信息资源控制集RMSI的CORESET的时域候选位置信息,以使所述SSB和与所述SSB关联的RMSI的CORESET中的RMSI的物理下行控制信道PDCCH在一个时域区间内传输;所述与所述SSB关联的RMSI的CORESET的时域候选位置信息,基于所述SSB的时域参数影响因子确定。
上述方案中,所述时域参数影响因子包括:所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量;和/或,所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子。
上述方案中,所述处理单元501,配置为基于所述SSB所在时域位置的半帧的起始位置作为起始位置,计算得到与所述SSB关联的RMSI的CORESET的时域候选位置信息;和/或,所述终端设备将所述SSB的索引值与所述SSB延迟发送前的第一候选发送位置与所述SSB延迟发送后的第二候选发送位置的偏移因子的加和,作为SSB的新索引值,计算得到与所述SSB关联的RMSI的CORESET的时域候选位置信息。
上述方案中,所述处理单元501,配置为将系统帧号满足:
SFNCmod2=0,当
Figure PCTCN2018108089-appb-000044
时,
或者SFNCmod2=1,当
Figure PCTCN2018108089-appb-000045
时,
Figure PCTCN2018108089-appb-000046
个时隙开始的第K个时隙,确定为与所述SSB关联的RMSI的CORESET的时域候选位置信息;
其中,T为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,i为所述SSB的候选发送位置的索引号,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
Figure PCTCN2018108089-appb-000047
是一个系统帧中的时隙个数。
上述方案中,所述处理单元501,配置为将系统帧号满足:
SFNCmod2=0,当
Figure PCTCN2018108089-appb-000048
时,
或者SFNCmod2=1,当
Figure PCTCN2018108089-appb-000049
时,
Figure PCTCN2018108089-appb-000050
个时隙开始的K个时隙,确定为与所述SSB关联的RMSI的CORESET的时域候选位置信息;
其中,i为所述SSB的索引号,t off_RMSI为所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
Figure PCTCN2018108089-appb-000051
是一个系统帧中的时隙个数。
上述方案中,所述处理单元501,配置为将将系统帧号满足:
SFNCmod2=0,当
Figure PCTCN2018108089-appb-000052
时,
或者SFNCmod2=1,当
Figure PCTCN2018108089-appb-000053
时,
Figure PCTCN2018108089-appb-000054
个时隙开始的K个时隙,确定为与所述SSB关联的RMSI的CORESET的时域候选位置信息;
其中,T为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,i为所述SSB的索引号,t off_RMSI为所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
Figure PCTCN2018108089-appb-000055
是一个系统帧中的时隙个数。
上述方案中,t off_RMSI为当前频段下第一时间间隔内传输SSB的最大个数。
上述方案中,所述SSB为第i个SSB,且所述第i个SSB的第二候选发送位置为第i'个SSB的候选发送位置时,
所述处理单元,配置为将系统帧号满足:
SFNCmod2=0,当
Figure PCTCN2018108089-appb-000056
时,
或者SFNCmod2=1,当
Figure PCTCN2018108089-appb-000057
时,
Figure PCTCN2018108089-appb-000058
个时隙开始的K个时隙,确定为与所述SSB关联的RMSI的CORESET的时域候选位置信息;
其中,i'为所述SSB的候选发送位置的索引号,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
Figure PCTCN2018108089-appb-000059
是一个系统帧中的时隙个数。
上述方案中,所述SSB为索引号是i的SSB,且所述索引号是i的SSB的第二候选发送位置为第i'个SSB的候选发送位置时,
所述处理单元501,配置为将系统帧号满足:
SFNCmod2=0,当
Figure PCTCN2018108089-appb-000060
时,
或者SFNCmod2=1,当
Figure PCTCN2018108089-appb-000061
时,
Figure PCTCN2018108089-appb-000062
个时隙开始的K个时隙,确定为与所述SSB关联的RMSI的CORESET的时域候选位置信息;
其中,T为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,i'为所述SSB的候选发送位置的索引号,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
Figure PCTCN2018108089-appb-000063
是一个系统帧中的时隙个数。
上述方案中,所述第一候选发送位置为所述SSB延迟发送前的候选发送位置;所述第二候选发送位置为所述SSB实际的候选发送位置。
上述方案中,O的配置数值包括:1,2.5,6,7.5。
本发明实施例还提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述终端设备执行的功率分配方法的步骤。
本发明实施例还提供一种网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述网络设备执行的功率分配方法的步骤。
图9是本发明实施例的电子设备(网络设备或终端设备)的硬件组成结构示意图,电子设备700包括:至少一个处理器701、存储器702和至少一个网络接口704。电子设备700中的各个组件通过总线系统705耦合在一起。可理解,总线系统705用于实现这些组件之间的连接通信。总线系统705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图9中将各种总线都标为总线系统705。
可以理解,存储器702可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器 (SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本发明实施例描述的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
本发明实施例中的存储器702用于存储各种类型的数据以支持电子设备700的操作。这些数据的示例包括:用于在电子设备700上操作的任何计算机程序,如应用程序7022。实现本发明实施例方法的程序可以包含在应用程序7022中。
上述本发明实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器701可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,电子设备700可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、FPGA、通用处理器、控制器、MCU、MPU、或其他电子元件实现,用于执行前述方法。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (48)

  1. 一种信息处理方法,所述方法包括:
    终端设备检测同步信号块SSB,以及在与所述SSB关联的最小系统信息的控制资源集RMSI的CORESET内检测RMSI的物理下行控制信道PDCCH;
    所述与所述SSB关联的RMSI的CORESET的时域候选位置信息,基于所述SSB的时域参数影响因子确定。
  2. 根据权利要求1所述的方法,其中,所述时域参数影响因子包括:
    所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的偏移因子;
    和/或,所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子。
  3. 根据权利要求2所述的方法,其中,所述与所述SSB关联的RMSI的CORESET的时域候选位置信息,是基于所述SSB所在时域位置的半帧的起始位置作为起始位置计算得到;
    和/或,是将所述SSB的索引值与所述SSB延迟发送前的第一候选发送位置与所述SSB延迟发送后的第二候选发送位置的偏移因子的加和,作为SSB的新索引值计算得到。
  4. 根据权利要求2或3所述的方法,其中,所述与所述SSB关联的RMSI的CORESET的时域候选位置信息为,系统帧号满足:
    SFN Cmod2=0,当
    Figure PCTCN2018108089-appb-100001
    时,
    或者,SFN Cmod2=1,当
    Figure PCTCN2018108089-appb-100002
    时,
    Figure PCTCN2018108089-appb-100003
    个时隙开始的第K个时隙;
    其中,T为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,i为所述SSB的索引号,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
    Figure PCTCN2018108089-appb-100004
    是一个系统帧中的时隙个数。
  5. 根据权利要求2或3所述的方法,其中,所述与所述SSB关联的RMSI的CORESET的时域候选位置信息为,系统帧号满足:
    SFNCmod2=0,当
    Figure PCTCN2018108089-appb-100005
    时,
    或者SFNCmod2=1,当
    Figure PCTCN2018108089-appb-100006
    时,
    Figure PCTCN2018108089-appb-100007
    个时隙开始的K个时隙;
    其中,i为所述SSB的索引号,t off_RMSI为所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
    Figure PCTCN2018108089-appb-100008
    是一个系统帧中的时隙个数。
  6. 根据权利要求2或3所述的方法,其中,所述与所述SSB关联的RMSI的CORESET的时域候选位置信息为,系统帧号满足:
    SFN Cmod2=0,当
    Figure PCTCN2018108089-appb-100009
    时,
    或者SFN Cmod2=1,当
    Figure PCTCN2018108089-appb-100010
    时,
    Figure PCTCN2018108089-appb-100011
    个时隙开始的K个时隙;
    其中,T为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,i为所述SSB的索引号,t off_RMSI为所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
    Figure PCTCN2018108089-appb-100012
    是一个系统帧中的时隙个数。
  7. 根据权利要求5或6所述的方法,其中,t off_RMSI为当前频段下第一时间间隔内传输SSB的最大个数。
  8. 根据权利要求2或3所述的方法,其中,所述SSB为索引号是i的SSB,且所述索引号是i的SSB的第二候选发送位置为第i'个SSB的候选发送位置时,所述与所述SSB关联的RMSI的CORESET的时域候选位置信息为,系统帧号满足:
    SFN Cmod2=0,当
    Figure PCTCN2018108089-appb-100013
    时,
    或者SFN Cmod2=1,当
    Figure PCTCN2018108089-appb-100014
    时,
    Figure PCTCN2018108089-appb-100015
    个时隙开始的K个时隙;
    其中,i'为所述SSB的候选发送位置的索引号,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
    Figure PCTCN2018108089-appb-100016
    是一个系统帧中的时隙个数。
  9. 根据权利要求2或3所述的方法,其中,所述SSB为索引号是i的SSB,且所述索引号是i的SSB的第二候选发送位置为第i'个SSB的候选发送位置时,所述与所述SSB关联的RMSI的CORESET的时域候选位置信息为,系统帧号满足:
    SFN Cmod2=0,当
    Figure PCTCN2018108089-appb-100017
    时,
    或者SFN Cmod2=1,当
    Figure PCTCN2018108089-appb-100018
    时,
    Figure PCTCN2018108089-appb-100019
    个时隙开始的K个时隙;
    其中,T为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,i'为所述SSB的候选发送位置的索引号,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
    Figure PCTCN2018108089-appb-100020
    是一个系统帧中的时隙个数。
  10. 根据权利要求2、5或8所述的方法,其中,所述第一候选发送位置为所述SSB延迟发送前的候选发送位置;
    所述第二候选发送位置为所述SSB实际的候选发送位置。
  11. 根据权利要求4、5、6、8或9任一项所述的方法,其中,O的配置数值包括:1,2.5,6,7.5。
  12. 一种信息处理方法,所述方法包括:
    网络设备确定同步信号块SSB的时域候选位置信息,以及与所述SSB关联的最小系统信息资源控制集RMSI的CORESET的时域候选位置信息,以使所述SSB和与所述SSB关联的RMSI的CORESET中的RMSI的物理下行控制信道PDCCH在一个时域区间内传输;
    所述与所述SSB关联的RMSI的CORESET的时域候选位置信息,基于所述SSB的时域参数影响因子确定。
  13. 根据权利要求12所述的方法,其中,所述时域参数影响因子包括:
    所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量;
    和/或,所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子。
  14. 根据权利要求13所述的方法,其中,所述网络设备确定与所述SSB关联的RMSI的CORESET的时域候选位置信息,包括:
    所述网络设备基于所述SSB所在时域位置的半帧的起始位置作为起始位置,计算得到与所述SSB关联的RMSI的CORESET的时域候选位置信息;
    和/或,所述网络设备将所述SSB的索引值与所述SSB延迟发送前的第一候选发送位置与所述SSB延迟发送后的第二候选发送位置的偏移因子的加和,作为SSB的新索引值,计算得到与所述SSB关联的RMSI的CORESET的时域候选位置信息。
  15. 根据权利要求13或14所述的方法,其中,所述网络设备确定与所述SSB关联的RMSI的CORESET的时域候选位置信息,包括:
    所述网络设备将系统帧号满足:
    SFN Cmod2=0,当
    Figure PCTCN2018108089-appb-100021
    时,
    或者SFN Cmod2=1,当
    Figure PCTCN2018108089-appb-100022
    时,
    Figure PCTCN2018108089-appb-100023
    个时隙开始的第K个时隙,确定为与所述SSB关联的RMSI的CORESET的时域候选位置信息;
    其中,T为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,i为所述SSB的索引号,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
    Figure PCTCN2018108089-appb-100024
    是一个系统帧中的时隙个数。
  16. 根据权利要求13或14所述的方法,其中,所述网络设备确定与所述SSB关联的RMSI的CORESET的时域候选位置信息,包括:
    所述网络设备将系统帧号满足:
    SFNCmod2=0,当
    Figure PCTCN2018108089-appb-100025
    时,
    或者SFNCmod2=1,当
    Figure PCTCN2018108089-appb-100026
    时,
    Figure PCTCN2018108089-appb-100027
    个时隙开始的K个时隙,确定为与所述SSB关联的RMSI的CORESET的时域候选位置信息;
    其中,i为所述SSB的索引号,t off_RMSI为所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
    Figure PCTCN2018108089-appb-100028
    是一个系统帧中的时隙个数。
  17. 根据权利要求13或14所述的方法,其中,所述网络设备确定与所述SSB关联的RMSI的CORESET的时域候选位置信息,包括:
    所述网络设备将系统帧号满足:
    SFNCmod2=0,当
    Figure PCTCN2018108089-appb-100029
    时,
    或者SFN Cmod2=1,当
    Figure PCTCN2018108089-appb-100030
    时,
    Figure PCTCN2018108089-appb-100031
    个时隙开始的K个时隙,确定为与所述SSB关联的RMSI的CORESET的时域候选位置信息;
    其中,T为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,i为所述SSB的索引号,t off_RMSI为所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子,M和O为配置值、K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
    Figure PCTCN2018108089-appb-100032
    是一个系统帧中的时隙个数。
  18. 根据权利要求16或17所述的方法,其中,t off_RMSI为当前频段下第一时间间隔内传输SSB的最大个数。
  19. 根据权利要求13或14所述的方法,其中,所述SSB为索引号是i的SSB,且所述索引号是i的SSB的第二候选发送位置为第i'个SSB的候选发送位置时,所述网络设备确定与所述SSB关联的RMSI的CORESET的时域候选位置信息,包括:
    所述网络设备将系统帧号满足:
    SFN Cmod2=0,当
    Figure PCTCN2018108089-appb-100033
    时,
    或者SFN Cmod2=1,当
    Figure PCTCN2018108089-appb-100034
    时,
    Figure PCTCN2018108089-appb-100035
    个时隙开始的K个时隙,确定为与所述SSB关联的RMSI的CORESET的时域候选位置信息;
    其中,i'为所述SSB的候选发送位置的索引号,M和O为配置值、K为预设值, μ为不同的RMSI的CORESET的子载波间隔,
    Figure PCTCN2018108089-appb-100036
    是一个系统帧中的时隙个数。
  20. 根据权利要求13或14所述的方法,其中,所述SSB为索引号是i的SSB,且所述索引号是i的SSB的第二候选发送位置为第i'个SSB的候选发送位置时,所述网络设备确定与所述SSB关联的RMSI的CORESET的时域候选位置信息,包括:
    所述网络设备将系统帧号满足:
    SFN Cmod2=0,当
    Figure PCTCN2018108089-appb-100037
    时,
    或者SFN Cmod2=1,当
    Figure PCTCN2018108089-appb-100038
    时,
    Figure PCTCN2018108089-appb-100039
    个时隙开始的K个时隙,确定为与所述SSB关联的RMSI的CORESET的时域候选位置信息;
    其中,T为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,i'为所述SSB的候选发送位置的索引号,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
    Figure PCTCN2018108089-appb-100040
    是一个系统帧中的时隙个数。
  21. 根据权利要求13、14或19所述的方法,其中,所述第一候选发送位置为所述SSB延迟发送前的候选发送位置;
    所述第二候选发送位置为所述SSB实际的候选发送位置。
  22. 根据权利要求15、16、17、19或20任一项所述的方法,其中,O的配置数值包括:1,2.5,6,7.5。
  23. 一种终端设备,所述终端设备包括:
    检测单元,配置为检测同步信号块SSB,以及在与所述SSB关联的最小系统信息资源控制集RMSI的CORESET内检测RMSI的物理下行控制信道PDCCH;
    所述与所述SSB关联的RMSI的CORESET的时域候选位置信息,基于所述SSB的时域参数影响因子确定。
  24. 根据权利要求23所述的终端设备,其中,所述时域参数影响因子包括:
    所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量;
    和/或,所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子。
  25. 根据权利要求24所述的终端设备,其中,所述与所述SSB关联的RMSI的CORESET的时域候选位置信息,是基于所述SSB所在时域位置的半帧的起始位置作为起始位置计算得到;
    和/或,是将所述SSB的索引值与所述SSB延迟发送前的第一候选发送位置与所述SSB延迟发送后的第二候选发送位置的偏移因子的加和,作为SSB的新索引值计算得到。
  26. 根据权利要求24或25所述的终端设备,其中,所述与所述SSB关联的RMSI的CORESET的时域候选位置信息为,系统帧号满足:
    SFN Cmod2=0,当
    Figure PCTCN2018108089-appb-100041
    时,
    或者,SFN Cmod2=1,当
    Figure PCTCN2018108089-appb-100042
    时,
    Figure PCTCN2018108089-appb-100043
    个时隙开始的第K个时隙;
    其中,T为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,i为所述SSB的索引号,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
    Figure PCTCN2018108089-appb-100044
    是一个系统帧中的时隙个数。
  27. 根据权利要求24或25所述的终端设备,其中,所述与所述SSB关联的RMSI的CORESET的时域候选位置信息为,系统帧号满足:
    SFNCmod2=0,当
    Figure PCTCN2018108089-appb-100045
    时,
    或者SFNCmod2=1,当
    Figure PCTCN2018108089-appb-100046
    时,
    Figure PCTCN2018108089-appb-100047
    个时隙开始的K个时隙;
    其中,i为所述SSB的索引号,t off_RMSI为所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
    Figure PCTCN2018108089-appb-100048
    是一个系统帧中的时隙个数。
  28. 根据权利要求24或25所述的终端设备,其中,所述与所述SSB关联的RMSI的CORESET的时域候选位置信息为,系统帧号满足:
    SFN Cmod2=0,当
    Figure PCTCN2018108089-appb-100049
    时,
    或者SFN Cmod2=1,当
    Figure PCTCN2018108089-appb-100050
    时,
    Figure PCTCN2018108089-appb-100051
    个时隙开始的K个时隙;
    其中,T为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,i为所述SSB的索引号,t off_RMSI为所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
    Figure PCTCN2018108089-appb-100052
    是一个系统帧中的时隙个数。
  29. 根据权利要求27或28所述的终端设备,其中,t off_RMSI为当前频段下第一时间间隔内传输SSB的最大个数。
  30. 根据权利要求24或25所述的终端设备,其中,所述SSB为索引号是i的SSB,且所述索引号是i的SSB的第二候选发送位置为第i'个SSB的候选发送位置时,所述与所述SSB关联的RMSI的CORESET的时域候选位置信息为,系统帧号满足:
    SFN Cmod2=0,当
    Figure PCTCN2018108089-appb-100053
    时,
    或者SFN Cmod2=1,当
    Figure PCTCN2018108089-appb-100054
    时,
    Figure PCTCN2018108089-appb-100055
    个时隙开始的K个时隙;
    其中,i'为所述SSB的候选发送位置的索引号,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
    Figure PCTCN2018108089-appb-100056
    是一个系统帧中的时隙个数。
  31. 根据权利要求24或25所述的终端设备,其中,所述SSB为索引号是i的SSB,且所述索引号是i的SSB的第二候选发送位置为第i'个SSB的候选发送位置时,所述与所述SSB关联的RMSI的CORESET的时域候选位置信息为,系统帧号满足:
    SFN Cmod2=0,当
    Figure PCTCN2018108089-appb-100057
    时,
    或者SFN Cmod2=1,当
    Figure PCTCN2018108089-appb-100058
    时,
    Figure PCTCN2018108089-appb-100059
    个时隙开始的K个时隙;
    其中,T为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,i'为所述SSB的候选发送位置的索引号,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
    Figure PCTCN2018108089-appb-100060
    是一个系统帧中的时隙个数。
  32. 根据权利要求24、27或30所述的终端设备,其中,所述第一候选发送位置为所述SSB延迟发送前的候选发送位置;
    所述第二候选发送位置为所述SSB实际的候选发送位置。
  33. 根据权利要求26、27、28、30或31任一项所述的终端设备,其中,O的配置数值包括:1,2.5,6,7.5。
  34. 一种网络设备,所述网络设备包括:
    处理单元,配置为确定同步信号块SSB的时域候选位置信息,以及与所述SSB关联的最小系统信息资源控制集RMSI的CORESET的时域候选位置信息,以使所述SSB和与所述SSB关联的RMSI的CORESET中的RMSI的物理下行控制信道PDCCH在一个时域区间内传输;
    所述与所述SSB关联的RMSI的CORESET的时域候选位置信息,基于所述SSB的时域参数影响因子确定。
  35. 根据权利要求34所述的网络设备,其中,所述时域参数影响因子包括:
    所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量;
    和/或,所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子。
  36. 根据权利要求34所述的网络设备,其中,所述处理单元,配置为基于所述SSB所在时域位置的半帧的起始位置作为起始位置,计算得到与所述SSB关联的RMSI的CORESET的时域候选位置信息;
    和/或,所述终端设备将所述SSB的索引值与所述SSB延迟发送前的第一候选发送位置与所述SSB延迟发送后的第二候选发送位置的偏移因子的加和,作为SSB的新索引值,计算得到与所述SSB关联的RMSI的CORESET的时域候选位置信息。
  37. 根据权利要求35或36所述的网络设备,其中,所述处理单元,配置为将系统 帧号满足:
    SFN Cmod2=0,当
    Figure PCTCN2018108089-appb-100061
    时,
    或者SFN Cmod2=1,当
    Figure PCTCN2018108089-appb-100062
    时,
    Figure PCTCN2018108089-appb-100063
    个时隙开始的第K个时隙,确定为与所述SSB关联的RMSI的CORESET的时域候选位置信息;
    其中,T为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,i为所述SSB的索引号,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
    Figure PCTCN2018108089-appb-100064
    是一个系统帧中的时隙个数。
  38. 根据权利要求35或36所述的网络设备,其中,所述处理单元,配置为将系统帧号满足:
    SFNCmod2=0,当
    Figure PCTCN2018108089-appb-100065
    时,
    或者SFNCmod2=1,当
    Figure PCTCN2018108089-appb-100066
    时,
    Figure PCTCN2018108089-appb-100067
    个时隙开始的K个时隙,确定为与所述SSB关联的RMSI的CORESET的时域候选位置信息;
    其中,i为所述SSB的索引号,t off_RMSI为所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
    Figure PCTCN2018108089-appb-100068
    是一个系统帧中的时隙个数。
  39. 根据权利要求35或36所述的网络设备,其中,所述处理单元,配置为将系统帧号满足:
    SFNCmod2=0,当
    Figure PCTCN2018108089-appb-100069
    时,
    或者SFN Cmod2=1,当
    Figure PCTCN2018108089-appb-100070
    时,
    Figure PCTCN2018108089-appb-100071
    个时隙开始的K个时隙,确定为与所述SSB关联的RMSI的CORESET的时域候选位置信息;
    其中,T为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,i为所述SSB的索引号,t off_RMSI为所述SSB的第一候选发送位置与所述SSB的第二候选发送位置的偏移因子,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
    Figure PCTCN2018108089-appb-100072
    是一个系统帧中的时隙个数。
  40. 根据权利要求38或39所述的网络设备,其中,t off_RMSI为当前频段下第一时间间隔内传输SSB的最大个数。
  41. 根据权利要求35或36所述的网络设备,其中,所述SSB为索引号是i的SSB,且所述索引号是i的SSB的第二候选发送位置为第i'个SSB的候选发送位置时,
    所述处理单元,配置为将系统帧号满足:
    SFN Cmod2=0,当
    Figure PCTCN2018108089-appb-100073
    时,
    或者SFN Cmod2=1,当
    Figure PCTCN2018108089-appb-100074
    时,
    Figure PCTCN2018108089-appb-100075
    个时隙开始的K个时隙,确定为与所述SSB关联的RMSI的CORESET的时域候选位置信息;
    其中,i'为所述SSB的候选发送位置的索引号,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
    Figure PCTCN2018108089-appb-100076
    是一个系统帧中的时隙个数。
  42. 根据权利要求35或36所述的网络设备,其中,所述SSB为索引号是i的SSB,且所述索引号是i的SSB的第二候选发送位置为第i'个SSB的候选发送位置时,
    所述处理单元,配置为将系统帧号满足:
    SFN Cmod2=0,当
    Figure PCTCN2018108089-appb-100077
    时,
    或者SFN Cmod2=1,当
    Figure PCTCN2018108089-appb-100078
    时,
    Figure PCTCN2018108089-appb-100079
    个时隙开始的K个时隙,确定为与所述SSB关联的RMSI的CORESET的时域候选位置信息;
    其中,T为所述SSB所在半帧的起始位置相对于所述SSB所在时域位置之前的最邻近的偶数系统帧边界的时间偏移量,i'为所述SSB的候选发送位置的索引号,M和O为配置值,K为预设值,μ为不同的RMSI的CORESET的子载波间隔,
    Figure PCTCN2018108089-appb-100080
    是一个系统帧中的时隙个数。
  43. 根据权利要求35、36或41所述的网络设备,其中,所述第一候选发送位置为所述SSB延迟发送前的候选发送位置;
    所述第二候选发送位置为所述SSB实际的候选发送位置。
  44. 根据权利要求37、38、39、41或42所述的网络设备,其中,O的配置数值包括:1,2.5,6,7.5。
  45. 一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求1至11任一项所述的信息处理方法的步骤。
  46. 一种网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求12至22任一项所述的信息处理方法的步骤。
  47. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求1至11任一项所述的信息处理方法。
  48. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求12至22任一项所述的信息处理方法。
PCT/CN2018/108089 2018-09-27 2018-09-27 一种信息处理方法、设备及存储介质 WO2020061946A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880098105.1A CN112753262A (zh) 2018-09-27 2018-09-27 一种信息处理方法、设备及存储介质
EP18935532.4A EP3855826A4 (en) 2018-09-27 2018-09-27 INFORMATION PROCESSING METHOD, DEVICE AND STORAGE MEDIUM
PCT/CN2018/108089 WO2020061946A1 (zh) 2018-09-27 2018-09-27 一种信息处理方法、设备及存储介质
US17/213,913 US12035257B2 (en) 2021-03-26 Position information processing method, device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108089 WO2020061946A1 (zh) 2018-09-27 2018-09-27 一种信息处理方法、设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/213,913 Continuation US12035257B2 (en) 2021-03-26 Position information processing method, device and storage medium

Publications (1)

Publication Number Publication Date
WO2020061946A1 true WO2020061946A1 (zh) 2020-04-02

Family

ID=69949481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108089 WO2020061946A1 (zh) 2018-09-27 2018-09-27 一种信息处理方法、设备及存储介质

Country Status (3)

Country Link
EP (1) EP3855826A4 (zh)
CN (1) CN112753262A (zh)
WO (1) WO2020061946A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108064466A (zh) * 2017-11-15 2018-05-22 北京小米移动软件有限公司 剩余关键系统信息的公共控制资源集合的周期信息指示方法
US20180192383A1 (en) * 2017-01-04 2018-07-05 Samsung Electronics Co., Ltd. Method and apparatus for system information delivery in advanced wireless systems
CN108401527A (zh) * 2017-08-04 2018-08-14 北京小米移动软件有限公司 获取剩余关键系统信息的公共控制资源集时频资源位置的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180192383A1 (en) * 2017-01-04 2018-07-05 Samsung Electronics Co., Ltd. Method and apparatus for system information delivery in advanced wireless systems
CN108401527A (zh) * 2017-08-04 2018-08-14 北京小米移动软件有限公司 获取剩余关键系统信息的公共控制资源集时频资源位置的方法
CN108064466A (zh) * 2017-11-15 2018-05-22 北京小米移动软件有限公司 剩余关键系统信息的公共控制资源集合的周期信息指示方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Summary of Offline Discussion on RMSr", 3GPP TSG RAN WG1 MEETING AH 1801 R1-1800230, 26 January 2018 (2018-01-26), XP051385242 *
See also references of EP3855826A4 *

Also Published As

Publication number Publication date
US20210219249A1 (en) 2021-07-15
CN112753262A (zh) 2021-05-04
EP3855826A1 (en) 2021-07-28
EP3855826A4 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
EP3820100B1 (en) Data transmission method, terminal device, and network device
US12003450B2 (en) Signal transmission method and device and terminal
WO2020248288A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020061958A1 (zh) 接收信息、发送信息的方法和设备
US20220046632A1 (en) Communication method in d2d system, terminal device, and network device
US20220322368A1 (en) Method and terminal for data transmission using unlicensed carrier
TW202025838A (zh) 通訊方法、終端設備和網路設備
WO2020061948A1 (zh) 检测信道、发送信息的方法和设备
TW202014015A (zh) 傳輸訊息的方法和終端設備
WO2020034203A1 (zh) 传输信号的方法、终端设备和网络设备
WO2020024249A1 (zh) 一种数据传输方法、终端设备、网络设备及存储介质
WO2021237531A1 (zh) 一种测量方法及装置、终端设备、网络设备
WO2019157756A1 (zh) 信号传输的方法和设备
WO2020164075A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020061873A1 (zh) 一种资源指示方法、设备及存储介质
US11956793B2 (en) Information processing method, device and storage medium
WO2020087540A1 (zh) 一种控制信息的传输方法、设备及存储介质
WO2020061946A1 (zh) 一种信息处理方法、设备及存储介质
WO2019080111A1 (zh) 无线通信方法和设备
WO2021068172A1 (zh) 一种随机接入方法、电子设备及存储介质
WO2020056642A1 (zh) 一种数据传输方法、设备及存储介质
WO2020248281A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020056777A1 (zh) 无线通信的方法、发送节点和接收节点
US12035257B2 (en) Position information processing method, device and storage medium
US11950293B2 (en) Random access method and terminal device, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018935532

Country of ref document: EP

Effective date: 20210422