WO2020061889A1 - 变流装置的散热器堵塞程度确定方法及装置 - Google Patents

变流装置的散热器堵塞程度确定方法及装置 Download PDF

Info

Publication number
WO2020061889A1
WO2020061889A1 PCT/CN2018/107898 CN2018107898W WO2020061889A1 WO 2020061889 A1 WO2020061889 A1 WO 2020061889A1 CN 2018107898 W CN2018107898 W CN 2018107898W WO 2020061889 A1 WO2020061889 A1 WO 2020061889A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal resistance
sample data
radiator
temperature
power loss
Prior art date
Application number
PCT/CN2018/107898
Other languages
English (en)
French (fr)
Inventor
刘志刚
陈杰
付和平
张钢
漆良波
牟富强
路亮
邱瑞昌
魏路
吕海臣
刘祥鹏
Original Assignee
北京千驷驭电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京千驷驭电气有限公司 filed Critical 北京千驷驭电气有限公司
Priority to PCT/CN2018/107898 priority Critical patent/WO2020061889A1/zh
Publication of WO2020061889A1 publication Critical patent/WO2020061889A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • Embodiments of the present invention relate to the technical field of rail transit vehicles, and in particular, to a method and a device for determining a degree of blockage of a radiator of a converter device.
  • Rail transit vehicles usually have a converter device, and a radiator is usually provided in the converter device to dissipate the heat generated by the converter device.
  • Embodiments of the present invention provide a method and a device for determining a blockage degree of a radiator of a converter device, and improve the accuracy of judging the blockage degree of a radiator.
  • an embodiment of the present invention provides a method for determining a blocking degree of a radiator of a converter device, including:
  • a first set of sample data and a second set of sample data corresponding to the first thermal resistance are determined in a sample database, and each set of sample data in the sample database includes a duration and after the radiator runs the duration Thermal resistance, the first thermal resistance is located between a second thermal resistance in the first set of sample data and a third thermal resistance in the second set of sample data;
  • the determining the degree of blockage of the radiator according to the first thermal resistance, the first set of sample data, and the second set of sample data includes:
  • the degree of blockage is determined according to the first difference and the second difference.
  • determining the first thermal resistance according to the first temperature, a preset temperature, and a power loss of the converter device includes:
  • a ratio of the third difference value to the power loss of the converter device is determined as the first thermal resistance.
  • the method before determining the first thermal resistance according to the first temperature, the preset temperature, and the power loss of the converter device, the method further includes:
  • a sum of the first power loss and the second power loss is determined as a power loss of the converter device.
  • the difference between the thermal resistances in each two sets of adjacent sample data in the sample database is the same.
  • an embodiment of the present invention provides a device for determining a blocking degree of a radiator of a converter device, including:
  • An acquisition module a first determination module, a second determination module, and a third determination module, wherein:
  • the obtaining module is configured to obtain a first temperature of the radiator
  • the first determining module is configured to determine a first thermal resistance according to the first temperature, a preset temperature, and a power loss of the converter device;
  • the second determining module is configured to determine a first set of sample data and a second set of sample data corresponding to the first thermal resistance in a sample database, where each set of sample data in the sample database includes a duration and The thermal resistance of the heat sink after running the time, the first thermal resistance is located between a second thermal resistance in the first set of sample data and a third thermal resistance in the second set of sample data;
  • the third determining module is configured to determine a blocking degree of the radiator according to the first thermal resistance, the first set of sample data, and the second set of sample data.
  • the third determining module is specifically configured to:
  • the degree of blockage is determined according to the first difference and the second difference.
  • the first determining module is specifically configured to:
  • a ratio of the third difference value to the power loss of the converter device is determined as the first thermal resistance.
  • the device further includes a fourth determination module, a fifth determination module, and a sixth determination module, wherein:
  • the fourth determining module is configured to determine a first of the IGBT according to a first current, a first fitting parameter, a second temperature, and a first characteristic parameter of the insulated gate bipolar transistor IGBT in the current converter. Power loss;
  • the fifth determining module is configured to determine a second power loss of the diode according to a second current, a second fitting parameter, a second temperature, and a second characteristic parameter of the free-wheeling diode Diode in the converter device. ;
  • the sixth determining module is configured to determine a sum of the first power loss and the second power loss as a power loss of the converter device.
  • the difference between the thermal resistances in each two sets of adjacent sample data in the sample database is the same.
  • an embodiment of the present invention provides a device for determining a degree of blockage of a radiator of a converter device, including: a processor, the processor being coupled to a memory;
  • the memory is configured to store a computer program
  • the processor is configured to execute a computer program stored in the memory, so that the terminal device executes the method according to any one of the foregoing first aspects.
  • an embodiment of the present invention provides a readable storage medium including a program or an instruction.
  • the program or the instruction is run on a computer, the method according to any one of the foregoing first aspects is executed.
  • the method and device for determining the degree of blockage of a radiator provided in this application.
  • a first thermal resistance is determined according to a first temperature of the radiator, a preset temperature, and a power loss of the converter device.
  • a first set of sample data and a second set of sample data corresponding to the first thermal resistance are determined in the database, and the degree of blockage of the radiator is determined according to the first thermal resistance, the first set of sample data, and the second set of sample data.
  • FIG. 1 is a schematic structural diagram of a heat sink according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a method for determining a clogging degree of a radiator according to an embodiment of the present invention
  • FIG. 3 is a circuit diagram of a thermal resistance of a heat sink according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a power loss calculation process of a converter device according to an embodiment of the present invention.
  • FIG. 5 is a first schematic diagram of a device for determining a degree of blockage of a radiator of a converter device according to an embodiment of the present invention
  • FIG. 6 is a second schematic diagram of a device for determining a blockage degree of a radiator of a converter device according to an embodiment of the present invention.
  • Rail transit vehicles have the characteristics of safety, comfort, energy saving and environmental protection, and are the first choice for people to travel.
  • the converter is the core device of a rail transit vehicle, and the radiator is an important component of the converter's heat dissipation.
  • the schematic diagram of the radiator is shown in Figure 1.
  • FIG. 1 is a schematic structural diagram of a heat sink according to an embodiment of the present invention.
  • the heat sink includes a heat dissipation substrate 1, a heat dissipation fin 2, an air cooling channel 3, and a fan 4.
  • the heat generated by the converter is diffused by the heat radiation substrate 1 to the heat radiation fins 2, and the fan 4 generates strong convection air, so that the heat on the heat radiation fins 2 is diffused into the air through the air-cooled channel 3.
  • the present application provides a method for determining the degree of blockage of the radiator of the converter. For details, refer to the embodiment shown in FIG. 2.
  • FIG. 2 is a schematic diagram of a method for determining a clogging degree of a radiator according to an embodiment of the present invention. Referring to FIG. 2, the method includes:
  • the execution body of the embodiment of the present invention may be a device for determining the clogging degree of a radiator.
  • the device for determining the clogging degree of the radiator may be implemented by software, or by a combination of software and hardware.
  • the technical solution shown in the embodiment shown in FIG. 2 may be executed, or the technical solution shown in the embodiment shown in FIG. 2 may be executed periodically according to a preset execution cycle.
  • the preset execution cycle is one hour, two hours, and so on.
  • a temperature sensor is provided on the radiator, and the first temperature of the radiator can be obtained through the temperature sensor.
  • a plurality of temperature sensors may be provided at different positions of the radiator, and the temperatures of different positions of the radiator may be obtained through the plurality of temperature sensors.
  • an average value of multiple temperatures obtained by the multiple temperature sensors may be used as the first temperature of the radiator.
  • S202 Determine the first thermal resistance according to the first temperature, the preset temperature, and the power loss of the converter device.
  • the preset temperature is a radiator temperature obtained by a temperature sensor on the radiator when the blocking degree is zero.
  • the ratio of the absolute value of the third difference between the first temperature and the preset temperature to the power loss of the converter device may be determined as the first thermal resistance.
  • the first temperature is A
  • the preset temperature is B
  • the third difference is C
  • the power loss of the converter is D
  • the first thermal resistance is R
  • the thermal resistance changes with the influence of various factors, including the temperature measurement point of the radiator, the material of the radiator, the cooling method of the radiator, the coolant flow direction and flow rate, the number, size and layout of power devices,
  • the circuit diagram of the thermal resistance is shown in Figure 3, please refer to Figure 3 for details.
  • FIG. 3 is a circuit diagram of a thermal resistance of a heat sink according to an embodiment of the present invention.
  • the thermal resistance R tot of the heat sink in the figure includes: thermal conduction thermal resistance R th, d of a heat dissipation substrate, and thermal conduction thermal resistance of a cooling fin pairs of convective heat transfer resistance R th, a convective heat transfer between the thermal resistance R th, a, convection heat radiating fins air layer between the R th, fin, the heat radiation substrate convection of the air layer.
  • S203 Determine a first set of sample data and a second set of sample data corresponding to the first thermal resistance in the sample database.
  • Each set of sample data in the sample database includes a duration and the thermal resistance of the radiator after the duration of operation.
  • the first thermal resistance is located in the second thermal resistance of the first set of sample data and the second thermal resistance in the second set of sample data.
  • the third thermal resistance is located in the second thermal resistance of the first set of sample data and the second thermal resistance in the second set of sample data.
  • the sample database may be established in advance and stored in a preset storage area of the radiator blockage determination device.
  • the temperature of the radiator at this time is collected by a temperature sensor, and the power of the converter device is calculated according to the temperature of the radiator Loss, and the thermal resistance R 0 of the heat sink is obtained according to the power loss of the AC device.
  • the sample database is shown in Table 1.
  • h in Table 1 represents a unit of time: hours, and K / W is a unit of thermal resistance of the radiator: Kelvin / Watt.
  • sample database is shown in Table 2.
  • the first thermal resistance value is 0.71. Since 0.71 is between the thermal resistance (0.6) of sample data 1 and the thermal resistance (0.8) of sample data 2, the first set of sample data and The second set of sample data is sample data 1 and sample data 2.
  • S204 Determine the degree of blockage of the radiator according to the first thermal resistance, the first set of sample data, and the second set of sample data.
  • the first difference between the second thermal resistance of the first set of sample data and the third thermal resistance of the second set of sample data is the second difference between the first duration of the first set of sample data and the second duration of the second set of sample data.
  • the difference ratio is the slope. Different slopes correspond to different degrees of blockage.
  • k 1 , k ′ 1 and the like in Table 3 indicate the slope, the unit is K / Wh, and 5%,..., 100% indicate the degree of blockage.
  • the method for determining the degree of blockage of a radiator provided in this application.
  • a first thermal resistance is determined according to a first temperature of the radiator, a preset temperature, and a power loss of the converter device.
  • the first set of sample data and the second set of sample data corresponding to the first thermal resistance are determined, and the degree of blockage of the radiator is determined according to the first thermal resistance, the first set of sample data, and the second set of sample data.
  • the multiple sets of sample data in the sample database can truly reflect the corresponding relationship between the thermal resistance and the degree of blockage. Therefore, according to the thermal resistance of the radiator and the sample data in the sample database, the degree of blockage of the radiator can be accurately determined, thereby improving the accuracy of determining the degree of blockage of the radiator.
  • the temperature and current of the radiator are obtained in real time through the temperature sensor and the current sensor, and after the temperature and current are accurately calculated, the degree of blockage of the radiator can be obtained in real time. In order to detect the degree of blockage, the problem of poor real-time performance is caused.
  • FIG. 4 is a schematic diagram of a power loss calculation process of a converter device according to an embodiment of the present invention. Referring to FIG. 4, the method includes:
  • T k represents the second temperature
  • I c represents the first current (ie, the on-state current of the IGBT)
  • I f represents the second current (ie, the off current of the Diode).
  • I the on-state voltage drop of the IGBT when the temperature is T k
  • g represents a multiplication operation
  • a k1 , a k2 , a k3 , and a k4 represent the first fitting parameters.
  • the linear interpolation method is used to obtain the temperature T k of Respectively Performing a third-order function fitting, we get:
  • f sw is the switching frequency and ⁇ is the natural pi.
  • the Diode Diode product manuals provided in at 25 °C and 125 °C two characteristic V f -I f, by linear interpolation, to obtain the temperature T k at Diode Characteristic curve. will Multiple points on the characteristic curve Multiplying the horizontal and vertical coordinate points to obtain the characteristic curve of Diode which is:
  • I the on-state voltage drop of Diode at temperature T k .
  • b k1 , b k2 , b k3 , and b k4 represent the second fitting parameters.
  • the linear interpolation method is used to obtain the temperature T k Characteristic curve, and then use the third-order function fitting method to obtain:
  • o k1 , o k2 , o k3 , and o k4 are fitting parameters. Is the turn-off energy loss of Diode when the temperature is T k , substituting formula (8) into formula (9) to obtain the average turn-off loss of Diode Its calculation formula is:
  • the first power loss of the IGBT when the temperature is T k can be determined through the following feasible implementation methods
  • First power loss of IGBT It includes static loss, switching loss, and driving loss. Among them, static loss is divided into on-state loss and off-state loss, and switching loss is divided into on-loss and off-loss. The off-state loss of the IGBT accounts for a small proportion of the first power loss and is ignored.
  • the second power loss of Diode can be determined through the following feasible implementations
  • the second power loss of Diode includes static loss, switching loss, and driving loss. Among them, static loss is divided into on-state loss and off-state loss, and switching loss is divided into on-state loss and off-state loss. Diode's turn-on loss and off-state loss account for a small proportion of the second power loss and are ignored.
  • the first temperature of the radiator is collected by a temperature sensor at 333K (K means temperature unit Kelvin) and the preset temperature is 303K; when the temperature is 333K, the current sensor obtains the first current and Two currents, according to the first temperature being 333K, the first current and the second current, using formulas (1)-(12), the calculated power loss P tot (333K) of the AC device is 50 watts; then the first thermal resistance Is:
  • the timing is started until the thermal resistance value reaches the third thermal resistance of the second set of sample data.
  • the timing is ended.
  • 0.6) /0.3 0.67.
  • the slope of 0.67 is 0.6-0.8. Therefore, the blockage of the radiator in the converter at this time is between 50% and 55%.
  • FIG. 5 is a first schematic diagram of a device for determining a blocking degree of a radiator of a converter device according to an embodiment of the present invention.
  • the apparatus may include an obtaining module 11, a first determining module 12, a second determining module 13, and a third determining module 14, wherein:
  • the obtaining module 11 is configured to obtain a first temperature of the radiator
  • the first determining module 12 is configured to determine a first thermal resistance according to the first temperature, a preset temperature, and a power loss of the converter device;
  • the second determining module 13 is configured to determine a first set of sample data and a second set of sample data corresponding to the first thermal resistance in a sample database, where each set of sample data in the sample database includes a duration, and Thermal resistance of the heat sink after running the time, the first thermal resistance is between a second thermal resistance in the first set of sample data and a third thermal resistance in the second set of sample data ;
  • the third determining module 14 is configured to determine a blocking degree of the radiator according to the first thermal resistance, the first set of sample data, and the second set of sample data.
  • the device for determining the degree of blockage of the radiator of the converter according to the embodiment of the present invention can execute the technical solution shown in the foregoing method embodiment, and the implementation principles and beneficial effects thereof are similar, and will not be repeated here.
  • the third determining module 14 is specifically configured to:
  • the degree of blockage is determined according to the first difference and the second difference.
  • the first determining module is specifically configured to:
  • a ratio of the third difference value to the power loss of the converter device is determined as the first thermal resistance.
  • FIG. 6 is a second schematic diagram of a device for determining a blockage degree of a radiator of a converter device according to an embodiment of the present invention. Based on the embodiment shown in FIG. 5, and referring to FIG. 6, the device further includes a fourth determination module 15, a fifth determination module 16, and a sixth determination module 17, where:
  • the fourth determination module 15 is configured to determine the first current of the IGBT according to the first current, the first fitting parameter, the second temperature, and the first characteristic parameter of the insulated gate bipolar transistor IGBT in the converter. A power loss;
  • the fifth determining module 16 is configured to determine a second power of the diode according to a second current, a second fitting parameter, a second temperature, and a second characteristic parameter of the freewheeling diode Diode in the converter device. loss;
  • the sixth determining module 17 is configured to determine a sum of the first power loss and the second power loss as a power loss of the converter device.
  • the difference between the thermal resistances in each two sets of adjacent sample data in the sample database is the same.
  • the device for determining the degree of blockage of the radiator of the converter according to the embodiment of the present invention can execute the technical solution shown in the foregoing method embodiment, and the implementation principles and beneficial effects thereof are similar, and will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Conversion In General (AREA)

Abstract

一种变流装置的散热器堵塞程度确定方法及装置,该方法包括:获取散热器的第一温度;根据第一温度、预设温度和变流装置的功率损耗,确定第一热阻;在样本数据库中确定第一热阻对应的第一组样本数据和第二组样本数据,样本数据库中的每组样本数据包括一个时长、及散热器在运行该时长之后的热阻,第一热阻位于第一组样本数据中的第二热阻和第二组样本数据中的第三热阻之间;根据第一热阻、第一组样本数据和第二组样本数据,确定散热器的堵塞程度,提高了确定散热器的堵塞程度的准确性。

Description

变流装置的散热器堵塞程度确定方法及装置 技术领域
本发明实施例涉及轨道交通车辆技术领域,尤其涉及一种变流装置的散热器堵塞程度确定方法及装置。
背景技术
轨道交通车辆(例如,地铁、高铁等)通常具有变流装置,变流装置中通常设置有散热器,以散去变流装置产生的热量。
在散热器工作过程中,大量的灰尘黏附在散热器上,导致散热器堵塞,影响散热器对变流装置的散热功能,进而降低轨道交通车辆运行的安全可靠性。因此,在实际应用过程中,需要检测散热器的堵塞程度并对堵塞物进行及时清理,来提高轨道交通车辆运行的安全可靠性。在现有技术中,通常在轨道交通车辆运行停止时,由工作人员对散热器进行观察,并根据工作经验确定散热器的堵塞程度。
然而,在人工确定散热器的堵塞程度时,很难准确的确定散热器的堵塞程度,导致确定得到散热器的堵塞程度的准确性较低。
发明内容
本发明实施例提供一种变流装置的散热器堵塞程度确定方法及装置,提高了对散热器的堵塞程度判断的准确性。
第一方面,本发明实施例提供一种变流装置的散热器堵塞程度确定方法,包括:
获取所述散热器的第一温度;
根据所述第一温度、预设温度和所述变流装置的功率损耗,确定第一热阻;
在样本数据库中确定所述第一热阻对应的第一组样本数据和第二组样本数据,所述样本数据库中的每组样本数据包括一个时长、及所述散热器在运行所述时长之后的热阻,所述第一热阻位于所述第一组样本数据中的第二热 阻和所述第二组样本数据中的第三热阻之间;
根据所述第一热阻、所述第一组样本数据和所述第二组样本数据,确定所述散热器的堵塞程度。
在一种可能的实施方式中,所述根据所述第一热阻、所述第一组样本数据和所述第二组样本数据,确定所述散热器的堵塞程度,包括:
获取所述第二热阻和所述第三热阻的第一差值;
获取所述第一组样本数据中的第一时长和所述第二样本数据中的第二时长的第二差值;
根据所述第一差值和所述第二差值确定所述堵塞程度。
在另一种可能的实施方式中,所述根据所述第一温度、预设温度和所述变流装置的功率损耗,确定第一热阻,包括:
获取所述第一温度和所述预设温度的第三差值;
将所述第三差值和所述变流装置的功率损耗的比值确定为所述第一热阻。
在另一种可能的实施方式中,所述根据所述第一温度、预设温度和所述变流装置的功率损耗,确定第一热阻之前,还包括:
根据所述变流装置中绝缘栅双极型晶体管IGBT的第一电流、第一拟合参数、第二温度、第一特性参数,确定所述IGBT的第一功率损耗;
根据所述变流装置中的二极管的第二电流、第二拟合参数、第二温度、第二特性参数,确定所述二极管的第二功率损耗;
将所述第一功率损耗和所述第二功率损耗之和,确定为所述变流装置的功率损耗。
在另一种可能的实施方式中,所述样本数据库中每两组相邻的样本数据中的热阻之间的差值相同。
第二方面,本发明实施例提供一种变流装置的散热器堵塞程度确定装置,包括:
获取模块、第一确定模块、第二确定模块和第三确定模块,其中,
所述获取模块用于,获取所述散热器的第一温度;
所述第一确定模块用于,根据所述第一温度、预设温度和所述变流装置的功率损耗,确定第一热阻;
所述第二确定模块用于,在样本数据库中确定所述第一热阻对应的第一组样本数据和第二组样本数据,所述样本数据库中的每组样本数据包括一个时长、及所述散热器在运行所述时长之后的热阻,所述第一热阻位于所述第一组样本数据中的第二热阻和所述第二组样本数据中的第三热阻之间;
所述第三确定模块用于,根据所述第一热阻、所述第一组样本数据和所述第二组样本数据,确定所述散热器的堵塞程度。
在一种可能的实施方式中,所述第三确定模块具体用于:
获取所述第二热阻和所述第三热阻的第一差值;
获取所述第一组样本数据中的第一时长和所述第二样本数据中的第二时长的第二差值;
根据所述第一差值和所述第二差值确定所述堵塞程度。
在另一种可能的实施方式中,所述第一确定模块具体用于:
获取所述第一温度和所述预设温度的第三差值;
将所述第三差值和所述变流装置的功率损耗的比值确定为所述第一热阻。
在另一种可能的实施方式中,所述装置还包括第四确定模块、第五确定模块、第六确定模块,其中,
所述第四确定模块用于,根据所述变流装置中绝缘栅双极型晶体管IGBT的第一电流、第一拟合参数、第二温度、第一特性参数,确定所述IGBT的第一功率损耗;
所述第五确定模块用于,根据所述变流装置中的续流二极管Diode的第二电流、第二拟合参数、第二温度、第二特性参数,确定所述二极管的第二功率损耗;
所述第六确定模块用于,将所述第一功率损耗和所述第二功率损耗之和,确定为所述变流装置的功率损耗。
在另一种可能的实施方式中,所述样本数据库中每两组相邻的样本数据中的热阻之间的差值相同。
第三方面,本发明实施例提供一种变流装置的散热器堵塞程度确定设备,包括:处理器,所述处理器与存储器耦合;
所述存储器用于,存储计算机程序;
所述处理器用于,执行所述存储器中存储的计算机程序,以使得所述终端设备执行上述第一方面任一项所述的方法。
第四方面,本发明实施例提供一种可读存储介质,包括程序或指令,当所述程序或指令在计算机上运行时,如上述第一方面任意一项所述的方法被执行。
本申请提供的散热器堵塞程度确定方法及装置,当需要确定散热器的堵塞程度时,根据散热器的第一温度、预设温度和变流装置的功率损耗,确定第一热阻,在样本数据库中确定第一热阻对应的第一组样本数据和第二组样本数据,根据第一热阻、第一组样本数据和第二组样本数据,确定散热器的堵塞程度。在上述过程中,散热器的热阻和散热器的堵塞程度之间具有一定的对应关系,样本数据库中的多组样本数据可以真实的反映热阻和堵塞程度之间的对应关系。因此,根据散热器的热阻和样本数据库中的样本数据,可以准确的确定得到散热器的堵塞程度,进而提高了确定得到的散热器的堵塞程度的准确性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的散热器的结构示意图;
图2为本发明实施例提供的散热器堵塞程度确定方法示意图;
图3为本发明实施例提供的散热器热阻的电路图;
图4为本发明实施例提供的变流装置的功率损耗计算过程示意图;
图5为本发明实施例提供的变流装置的散热器堵塞程度确定装置示意图一;
图6为本发明实施例提供的变流装置的散热器堵塞程度确定装置示意图二。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
轨道交通车辆具有安全、舒适、节能环保等特点,是人们出行的首要选择。变流装置是轨道交通车辆的核心装置,散热器是变流装置散热的重要部件,其中,散热器的结构示意图如图1所示。
图1为本发明实施例提供的散热器的结构示意图,请参见图1,包括散热基板1、散热翅片2、风冷通道3和风机4。
变流装置产生的热量由散热基板1扩散到散热翅片2上,风机4产生强对流空气,使得散热翅片2上的热量通过风冷通道3扩散到空气中。
在实际中,变流装置中散热器的散热翅片2上容易黏附大量灰尘,导致散热器堵塞,影响对变流装置进行热量扩散的效果。为了准确的确定散热器堵塞程度,本申请提供一种变流装置的散热器堵塞程度确定方法,具体请参见图2所示的实施例。
图2为本发明实施例提供的散热器堵塞程度确定方法示意图,请参见图2,包括:
S201:获取散热器的第一温度。
本发明实施例的执行主体可以为散热器堵塞程度确定装置。可选的,该散热器堵塞程度确定装置可以通过软件实现,也可以通过软件和硬件的结合实现。
当需要确定堵塞程度时,可以执行图2所示的实施例所示的技术方案,或者,按照某预设的执行周期,周期性的执行图2所示的实施例所示的技术方案。
可选的,预设的执行周期为一个小时、两个小时等。
散热器上设置有温度传感器,可以通过温度传感器获取散热器的第一温度。
可选的,可以在散热器的不同位置上设置多个温度传感器,通过该多个 温度传感器获取散热器不同位置的温度。
可选的,当温度传感器的个数为多个时,可以将该多个温度传感器获取的多个温度的平均值作为散热器的第一温度。
S202:根据第一温度、预设温度和变流装置的功率损耗,确定第一热阻。
可选的,预设温度为堵塞程度为零时,通过散热器上的温度传感器获取的散热器温度。
需要说明的是,可以将第一温度和预设温度的第三差值的绝对值与变流装置的功率损耗的比值确定为第一热阻。
例如:假设第一温度为A,预设温度为B,第三差值为C,变流装置的功率损耗为D,第一热阻为R。则A、B、C、D和R之间存在如下对应关系:
Figure PCTCN2018107898-appb-000001
可选的,热阻随多种因素的影响而变化,这些因素包括散热器温度测量点、散热器的材质、散热器冷却方式、冷却剂流向和流速、功率器件的数量、大小和布局等,热阻的电路图如图3所示,具体请参见图3。
图3为本发明实施例提供的散热器热阻的电路图,请参见图3,图中散热器的热阻R tot包括:散热基板的热传导热阻R th,d、散热翅片的热传导热阻R th,fin、散热基板与对流空气层之间的对流传热热阻R th,a、散热翅片与对流空气层之间的对流传热热阻R th,a
在实际应用中,工作人员发现,大量的灰尘会黏附在散热翅片2上,使散热器堵塞,导致散热器的热阻散热器的热阻R tot增加。
S203:在样本数据库中确定第一热阻对应的第一组样本数据和第二组样本数据。
其中,样本数据库中的每组样本数据包括一个时长、及散热器在运行该时长之后的热阻,第一热阻位于第一组样本数据中的第二热阻和第二组样本数据中的第三热阻之间。
需要说明的是,在样本数据库中,每两组相邻样本数据中的热阻之差相同。
可选的,样本数据库可以为预先建立的,并存储在散热器堵塞程度确定装置的预设存储区域中。
下面,对样本数据库的建立过程做进行一步的说明。
在散热器的堵塞程度为零时,即,在堵塞程度为零的散热器运行时长t 0=0时,通过温度传感器采集此时散热器的温度,根据散热器的温度计算变流装置的功率损耗,并根据交流装置的功率损耗获得散热器的热阻R 0
在散热器运行t 1时长时,通过温度传感器采集此时散热器的温度,根据散热器的温度计算交流装置的功率损耗,并根据交流装置的功率损耗获得散热器的热阻R 1
以此类推,获得多个轨道交通车辆运行时长和散热器的热阻,将所述的运行时长和所述热阻构成样本数据库,样本数据库如表1所示。
表1
样本数据 热阻(K/W) 时长(h) 时长(h) 时长(h)
第一组样本数据 R 0 t 0 t′ 0 t″ 0
第二组样本数据 R 1 t 1 t′ 1 t″ 1
需要说明的是,表1中的h代表时间单位:小时,K/W为散热器的热阻单位:开尔文/瓦。
下面,举例说明确定第一热阻对应的第一组样本数据和第二组样本数据。
示例性的,假设样本数据库如表2所示。
表2
样本数据 热阻(K/W) 时长(h) 时长(h) 时长(h)
第一组样本数据 0.6 0.15 0.2 0.45
第二组样本数据 0.8 0.4 0.7 1.1
假设第一热阻值为0.71,由于0.71在样本数据1的热阻(0.6)和样本数据2的热阻(0.8)之间,因此,可以确定第一热阻对应的第一组样本数据和第二组样本数据分别为样本数据1和样本数据2。
S204:根据所述第一热阻、第一组样本数据和第二组样本数据,确定散热器的堵塞程度。
根据样本数据库中每相邻两组数据中热阻范围,建立热阻范围与堵塞程 度的第二数据库。
第一组样本数据的第二热阻和第二组样本数据的第三热阻的第一差值与第一组样本数据中的第一时长和第二样本数据中的第二时长的第二差值比值为斜率。不同的斜率对应不同的堵塞程度。
示例性的,不同的斜率对应不同的堵塞程度的对应关系如表3所示。
表3
热阻范围 5% 10% 依次类推… 100%
0.6-0.8 k 1 k 2 k 3...k 19 k 20
0.8-0.1 k′ 1 k′ 2 k′ 3...k′ 19 k′ 20
需要说明的是,表3中的k 1,k′ 1等表示斜率,单位为K/W.h,5%、…、100%表示堵塞程度。
示例性的,假设第二数据库如表4所示。
表4
热阻范围 50% 55%
0.6-0.8 0.6 0.8
例如,根据表2和表4,第一热阻值为0.71,在第一组样本数据的第二热阻0.6和第二组样本数据的第三热阻0.8之间,且第一差值为0.8-0.6=0.2;第一组样本数据中的第一时长0.15,第二样本数据中的第二时长0.4,则第二差值为0.4-0.15=0.25。第一差值0.2与第二差值0.25的比值为0.2/0.25=0.8,即斜率为0.8,也就是说斜率为0.8时对应的堵塞程度为50%。
本申请提供的散热器堵塞程度确定方法,当需要确定散热器的堵塞程度时,根据散热器的第一温度、预设温度和变流装置的功率损耗,确定第一热阻,在样本数据库中确定第一热阻对应的第一组样本数据和第二组样本数据,根据第一热阻、第一组样本数据和第二组样本数据,确定散热器的堵塞程度。在上述过程中,散热器的热阻和散热器的堵塞程度之间具有一定的对应关系,样本数据库中的多组样本数据可以真实的反映热阻和堵塞程度之间的对应关 系。因此,根据散热器的热阻和样本数据库中的样本数据,可以准确的确定得到散热器的堵塞程度,进而提高了确定得到的散热器的堵塞程度的准确性。
在上述确定散热器的堵塞程度的过程中,无需依靠人工观察来确定散热器的堵塞程度,这不仅节省人力成本,还提高了确定散热器堵塞程度的效率。进一步的,由于本申请中所示的散热器的堵塞程度确定方法,不再依赖人工观察,因此,本申请所示的散热器的堵塞程度确定方法可以适用于任何结构的散热器,使得本申请所示的散热器的堵塞程度确定方法具有通用性。
此外,通过温度传感器和电流传感器实时获取散热器的温度和电流,将所述温度和电流经过精确的运算后,可实时获得散热器的堵塞程度,解决现有技术中只有在散热器停止运行时才能进行堵塞程度检测而导致的实时性差的问题。
在上述任一实施例的基础上,下面,对变流装置的功率损耗计算过程作进一步的说明,具体的参见图4。
图4为本发明实施例提供的变流装置的功率损耗计算过程示意图,参见图4,包括:
S401:计算温度为T k时IGBT的通态损耗
Figure PCTCN2018107898-appb-000002
平均开关损耗
Figure PCTCN2018107898-appb-000003
计算温度为T k时Diode的通态损耗
Figure PCTCN2018107898-appb-000004
平均关断损耗
Figure PCTCN2018107898-appb-000005
需要说明的是,T k代表第二温度,I c表示第一电流(即IGBT的通态电流),I f表示第二电流(即Diode的关断电流)。
计算温度为T k时IGBT的通态损耗
Figure PCTCN2018107898-appb-000006
根据IGBT的产品手册提供的在25℃和125℃条件下IGBT的两条特性曲线V ce-I c,利用线性插值法,得出温度为T k时IGBT的
Figure PCTCN2018107898-appb-000007
特性曲线。将
Figure PCTCN2018107898-appb-000008
特性曲线上多个不同点
Figure PCTCN2018107898-appb-000009
的横、纵坐标点相乘,获得IGBT的特性曲线
Figure PCTCN2018107898-appb-000010
即:
Figure PCTCN2018107898-appb-000011
式中,
Figure PCTCN2018107898-appb-000012
为温度为T k时IGBT的通态压降,g表示乘法运算。
利用函数拟合法,对公式(1)进行函数拟合,得到
Figure PCTCN2018107898-appb-000013
关于I c的3次函数多项式:
Figure PCTCN2018107898-appb-000014
式中,a k1、a k2、a k3、a k4表示第一拟合参数。
计算温度为T k时IGBT的平均开关损耗
Figure PCTCN2018107898-appb-000015
根据IGBT的产品手册提供的在25℃和125℃条件下提供的特性参数(包括第一特性参数:E on-I c、E off-I c),利用线性插值法,获得温度为T k时的
Figure PCTCN2018107898-appb-000016
分别对
Figure PCTCN2018107898-appb-000017
进行3次函数拟合,得到:
Figure PCTCN2018107898-appb-000018
Figure PCTCN2018107898-appb-000019
式中,
Figure PCTCN2018107898-appb-000020
为在第一电流为I c、温度为T k时IGBT的开通、关断能量损耗,m k1、m k2、m k3、m k4、n k1、n k2、n k3、n k4为拟合参数。
将公式(3)和公式(4)代入公式(5),计算IGBT的平均开关损耗
Figure PCTCN2018107898-appb-000021
其计算公式为:
Figure PCTCN2018107898-appb-000022
式中,f sw为开关频率,π为自然圆周率。
计算温度为T k时Diode的通态损耗
Figure PCTCN2018107898-appb-000023
根据Diode的产品手册提供的在25℃和125℃条件下Diode的两条特性曲线V f-I f,利用线性插值法,得出温度为T k时Diode的
Figure PCTCN2018107898-appb-000024
特性曲线。将
Figure PCTCN2018107898-appb-000025
特性曲线上的多个不同点
Figure PCTCN2018107898-appb-000026
的横、纵坐标点相乘,获得Diode的特性曲线
Figure PCTCN2018107898-appb-000027
即:
Figure PCTCN2018107898-appb-000028
式中,
Figure PCTCN2018107898-appb-000029
为温度为T k时Diode的通态压降。
利用函数拟合法,对公式(6)进行函数拟合,得到
Figure PCTCN2018107898-appb-000030
关于I f的3次函数多项式:
Figure PCTCN2018107898-appb-000031
式中,b k1、b k2、b k3、b k4表示第二拟合参数。
计算温度为T k时Diod的平均关断损耗
Figure PCTCN2018107898-appb-000032
根据Diode的产品手册提供的在25℃和125℃条件下提供的特性参数(即特征曲线E rr-I f),利用线性插值法,获得温度为T k
Figure PCTCN2018107898-appb-000033
的特征曲线,然后利用3次函数拟合的方法,得到:
Figure PCTCN2018107898-appb-000034
式中,o k1、o k2、o k3、o k4为拟合参数,
Figure PCTCN2018107898-appb-000035
为温度为T k时Diode的关断能量损耗,将公式(8)代入公式(9),获得Diode的平均关断损耗
Figure PCTCN2018107898-appb-000036
其的计算公式为:
Figure PCTCN2018107898-appb-000037
S402:获得温度为T k时IGBT的第一功率损耗
Figure PCTCN2018107898-appb-000038
和Diode的第二功率损耗
Figure PCTCN2018107898-appb-000039
可选的,可以通过如下可行的实现方式确定温度为T k时IGBT的第一功率损耗
Figure PCTCN2018107898-appb-000040
将公式(2)获得的
Figure PCTCN2018107898-appb-000041
和公式(5)获得的
Figure PCTCN2018107898-appb-000042
代入公式(10),获得IGBT的第一功率损耗
Figure PCTCN2018107898-appb-000043
其计算公式为:
Figure PCTCN2018107898-appb-000044
IGBT的第一功率损耗
Figure PCTCN2018107898-appb-000045
包含静态损耗、开关损耗和驱动损耗,其中,静态损耗分为通态损耗和断态损耗、开关损耗分为开通损耗和关断损耗。IGBT的断态损耗在第一功率损耗中占比很小,忽略不计。
可选的,采用平均开关损耗
Figure PCTCN2018107898-appb-000046
代替IGBT的开通损耗与关断损耗的和,计算IGBT的第一功率损耗
Figure PCTCN2018107898-appb-000047
可选的,可以通过如下可行的实现方式确定Diode的第二功率损耗
Figure PCTCN2018107898-appb-000048
利用公式(7)获得的
Figure PCTCN2018107898-appb-000049
和公式(9)获得
Figure PCTCN2018107898-appb-000050
代入公式(11)中,获得Diode的第二功率损耗
Figure PCTCN2018107898-appb-000051
其计算公式为:
Figure PCTCN2018107898-appb-000052
需要说明的是,Diode的第二功率损耗
Figure PCTCN2018107898-appb-000053
包含静态损耗、开关损耗和驱动损耗,其中,静态损耗分为通态损耗和断态损耗、开关损耗分为开通损耗和关断损耗。Diode的开通损耗和断态损耗在第二功率损耗中占比很小,忽略不计。
可选的,采用平均关断损耗
Figure PCTCN2018107898-appb-000054
代替Diode的关断损耗,计算Diode的第二功率损耗。
S403:计算温度为T k时变流装置的功率损耗计
Figure PCTCN2018107898-appb-000055
将公式(10)获得的
Figure PCTCN2018107898-appb-000056
和公式(11)获得的
Figure PCTCN2018107898-appb-000057
代入公式 (12),获得变流装置的功率损耗
Figure PCTCN2018107898-appb-000058
其计算公式如下:
Figure PCTCN2018107898-appb-000059
下面,通过具体示例,对上述方法实施例所示的技术方案进行详细说明。
示例性的,假设样本数据库如上述表2所示。
假设轨道交通车辆运行一段时间后,通过温度传感器采集此时散热器的第一温度为333K(K表示温度单位开尔文),预设温度为303K;在温度为333K时电流传感器获得第一电流和第二电流,根据第一温度为333K、第一电流和第二电流,利用公式(1)-(12),计算得到的交流装置的功率损耗P tot(333K)为50瓦;则第一热阻的为:
Figure PCTCN2018107898-appb-000060
当第一热阻0.6时,开始计时,直到热阻值达到第二组样本数据的第三热阻0.8时,假设轨道车辆经历的时间0.3小时,结束计时,计算此时的斜率为(0.8-0.6)/0.3=0.67,根据表4,斜率0.67位于0.6-0.8,因此,此时的变流装置中散热器的堵塞程度为50%-55%之间。
图5为本发明实施例提供的变流装置的散热器堵塞程度确定装置示意图一。请参见图5,该装置可以包括获取模块11、第一确定模块12、第二确定模块13和第三确定模块14,其中,
所述获取模块11用于,获取所述散热器的第一温度;
所述第一确定模块12用于,根据所述第一温度、预设温度和所述变流装置的功率损耗,确定第一热阻;
所述第二确定模块13用于,在样本数据库中确定所述第一热阻对应的第一组样本数据和第二组样本数据,所述样本数据库中的每组样本数据包括一个时长、及所述散热器在运行所述时长之后的热阻,所述第一热阻位于所述第一组样本数据中的第二热阻和所述第二组样本数据中的第三热阻之间;
所述第三确定模块14用于,根据所述第一热阻、所述第一组样本数据和所述第二组样本数据,确定所述散热器的堵塞程度。
本发明实施例提供的变流装置的散热器堵塞程度确定装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
在一种可能的实施方式中,所述第三确定模块14具体用于:
获取所述第二热阻和所述第三热阻的第一差值;
获取所述第一组样本数据中的第一时长和所述第二样本数据中的第二时长的第二差值;
根据所述第一差值和所述第二差值确定所述堵塞程度。
在另一种可能的实施方式中,所述第一确定模块具体用于:
获取所述第一温度和所述预设温度的第三差值;
将所述第三差值和所述变流装置的功率损耗的比值确定为所述第一热阻。
图6为本发明实施例提供的变流装置的散热器堵塞程度确定装置示意图二。在图5所示实施例的基础上,请参见图6,所述装置还包括第四确定模块15、第五确定模块16、第六确定模块17,其中,
所述第四确定模块15用于,根据所述变流装置中绝缘栅双极型晶体管IGBT的第一电流、第一拟合参数、第二温度、第一特性参数,确定所述IGBT的第一功率损耗;
所述第五确定模块16用于,根据所述变流装置中的续流二极管Diode的第二电流、第二拟合参数、第二温度、第二特性参数,确定所述二极管的第二功率损耗;
所述第六确定模块17用于,将所述第一功率损耗和所述第二功率损耗之和,确定为所述变流装置的功率损耗。
在一种可能的实施方式中,所述样本数据库中每两组相邻的样本数据中的热阻之间的差值相同。
本发明实施例提供的变流装置的散热器堵塞程度确定装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
最后应说明的是:以上各实施例仅用以说明本发明实施例的技术方案,而非对其限制;尽管参照前述各实施例对本发明实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例方案的范围。

Claims (10)

  1. 一种变流装置的散热器堵塞程度确定方法,其特征在于,所述方法包括:
    获取所述散热器的第一温度;
    根据所述第一温度、预设温度和所述变流装置的功率损耗,确定第一热阻;
    在样本数据库中确定所述第一热阻对应的第一组样本数据和第二组样本数据,所述样本数据库中的每组样本数据包括一个时长、及所述散热器在运行所述时长之后的热阻,所述第一热阻位于所述第一组样本数据中的第二热阻和所述第二组样本数据中的第三热阻之间;
    根据所述第一热阻、所述第一组样本数据和所述第二组样本数据,确定所述散热器的堵塞程度。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一热阻、所述第一组样本数据和所述第二组样本数据,确定所述散热器的堵塞程度,包括:
    获取所述第二热阻和所述第三热阻的第一差值;
    获取所述第一组样本数据中的第一时长和所述第二样本数据中的第二时长的第二差值;
    根据所述第一差值和所述第二差值确定所述堵塞程度。
  3. 根据权利1或2所述的方法,其特征在于,所述根据所述第一温度、预设温度和所述变流装置的功率损耗,确定第一热阻,包括:
    获取所述第一温度和所述预设温度的第三差值;
    将所述第三差值和所述变流装置的功率损耗的比值确定为所述第一热阻。
  4. 根据权利要求1或2所述的方法,其特征在于,所述根据所述第一温度、预设温度和所述变流装置的功率损耗,确定第一热阻之前,还包括:
    根据所述变流装置中绝缘栅双极型晶体管IGBT的第一电流、第一拟合参数、第二温度、第一特性参数,确定所述IGBT的第一功率损耗;
    根据所述变流装置中的续流二极管Diode的第二电流、第二拟合参数、第二温度、第二特性参数,确定所述二极管的第二功率损耗;
    将所述第一功率损耗和所述第二功率损耗之和,确定为所述变流装置的功率损耗。
  5. 根据权利要求1或2所述的方法,其特征在于,所述样本数据库中每两组相邻的样本数据中的热阻之间的差值相同。
  6. 一种变流装置的散热器堵塞程度确定装置,其特征在于,包括获取模块、第一确定模块、第二确定模块和第三确定模块,其中,
    所述获取模块用于,获取所述散热器的第一温度;
    所述第一确定模块用于,根据所述第一温度、预设温度和所述变流装置的功率损耗,确定第一热阻;
    所述第二确定模块用于,在样本数据库中确定所述第一热阻对应的第一组样本数据和第二组样本数据,所述样本数据库中的每组样本数据包括一个时长、及所述散热器在运行所述时长之后的热阻,所述第一热阻位于所述第一组样本数据中的第二热阻和所述第二组样本数据中的第三热阻之间;
    所述第三确定模块用于,根据所述第一热阻、所述第一组样本数据和所述第二组样本数据,确定所述散热器的堵塞程度。
  7. 根据权利要求6所述的装置,其特征在于,所述第三确定模块具体用于:
    获取所述第二热阻和所述第三热阻的第一差值;
    获取所述第一组样本数据中的第一时长和所述第二样本数据中的第二时长的第二差值;
    根据所述第一差值和所述第二差值确定所述堵塞程度。
  8. 根据权利6或7所述的装置,其特征在于,所述第一确定模块具体用于:
    获取所述第一温度和所述预设温度的第三差值;
    将所述第三差值和所述变流装置的功率损耗的比值确定为所述第一热阻。
  9. 根据权利要求6或7所述的装置,其特征在于,所述装置还包括第四确定模块、第五确定模块、第六确定模块,其中,
    所述第四确定模块用于,根据所述变流装置中绝缘栅双极型晶体管IGBT的第一电流、第一拟合参数、第二温度、第一特性参数,确定所述IGBT的 第一功率损耗;
    所述第五确定模块用于,根据所述变流装置中的续流二极管Diode的第二电流、第二拟合参数、第二温度、第二特性参数,确定所述二极管的第二功率损耗;
    所述第六确定模块用于,将所述第一功率损耗和所述第二功率损耗之和,确定为所述变流装置的功率损耗。
  10. 根据权利要求6或7所述的装置,其特征在于,所述样本数据库中每两组相邻的样本数据中的热阻之间的差值相同。
PCT/CN2018/107898 2018-09-27 2018-09-27 变流装置的散热器堵塞程度确定方法及装置 WO2020061889A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107898 WO2020061889A1 (zh) 2018-09-27 2018-09-27 变流装置的散热器堵塞程度确定方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107898 WO2020061889A1 (zh) 2018-09-27 2018-09-27 变流装置的散热器堵塞程度确定方法及装置

Publications (1)

Publication Number Publication Date
WO2020061889A1 true WO2020061889A1 (zh) 2020-04-02

Family

ID=69953227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107898 WO2020061889A1 (zh) 2018-09-27 2018-09-27 变流装置的散热器堵塞程度确定方法及装置

Country Status (1)

Country Link
WO (1) WO2020061889A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131763A (ja) * 2013-01-21 2013-07-04 Fuji Electric Co Ltd 閉鎖型電力変換ユニットの内部空気温度推定方法および電力変換装置の冷却システム
US20160219757A1 (en) * 2014-11-04 2016-07-28 Ge Aviation Systems Llc Cooling structure
CN106097672A (zh) * 2016-08-15 2016-11-09 浙江海得新能源有限公司 强迫风冷igbt模块散热器阻塞的报警方法
CN107219016A (zh) * 2017-05-24 2017-09-29 湖南大学 计算igbt模块瞬态结温的方法和系统
CN107590295A (zh) * 2016-07-08 2018-01-16 台达电子企业管理(上海)有限公司 用于功率模块的散热系统状况评估的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131763A (ja) * 2013-01-21 2013-07-04 Fuji Electric Co Ltd 閉鎖型電力変換ユニットの内部空気温度推定方法および電力変換装置の冷却システム
US20160219757A1 (en) * 2014-11-04 2016-07-28 Ge Aviation Systems Llc Cooling structure
CN107590295A (zh) * 2016-07-08 2018-01-16 台达电子企业管理(上海)有限公司 用于功率模块的散热系统状况评估的方法及装置
CN106097672A (zh) * 2016-08-15 2016-11-09 浙江海得新能源有限公司 强迫风冷igbt模块散热器阻塞的报警方法
CN107219016A (zh) * 2017-05-24 2017-09-29 湖南大学 计算igbt模块瞬态结温的方法和系统

Similar Documents

Publication Publication Date Title
Peftitsis et al. Challenges regarding parallel connection of SiC JFETs
Hou et al. A multivariable turn-on/turn-off switching loss scaling approach for high-voltage GaN HEMTs in a hard-switching half-bridge configuration
Xu et al. Investigation of 600 V GaN HEMTs for high efficiency and high temperature applications
Jiya et al. Overview of power electronic switches: A summary of the past, state-of-the-art and illumination of the future
Yin et al. Electro-thermal modeling of SiC power devices for circuit simulation
WO2020108172A1 (zh) 一种功率模块温度估算方法
Hossain et al. An improved physics-based LTSpice compact electro-thermal model for a SiC power MOSFET with experimental validation
CN104576718A (zh) 具有续流SiC二极管的RC-IGBT
CN109600021B (zh) 变流装置的散热器堵塞程度确定方法及装置
Li et al. Study on structure optimization of a dual IGBT module heat sink in a DC–DC converter under natural convection based on field synergy theory
WO2020061889A1 (zh) 变流装置的散热器堵塞程度确定方法及装置
Zhang et al. Electrical performances degradations and physics based mechanisms under negative bias temperature instability stress for p-GaN gate high electron mobility transistors
CN109669112B (zh) 风机的变流器、igbt模块的结温监测方法和装置
Ji et al. Switching performance analysis of GaN OG-FET using TCAD device-circuit-integrated model
CN107919790B (zh) 确定igbt模块最佳直流电压的方法及装置
CN112054793A (zh) 一种mosfet的有源驱动电路和方法
Peng et al. Analytical model for predicting the junction temperature of chips considering the internal electrothermal coupling inside SiC metal–oxide–semiconductor field‐effect transistor modules
JP2017135868A (ja) 電力変換装置およびパワーモジュールの熱抵抗計測方法
e Silva et al. Analysis and modeling of a liquid cooled heat sink for ev traction inverter systems
CN107689759B (zh) 一种低成本电流检测的电机驱动电路和检测方法
Li et al. An improved MATLAB/simulink model of SiC power MOSFETs
Górecki et al. Non-linear compact thermal model of IGBTs
Cheng et al. Dynamic modeling framework for evaluating electromagnetic-electro-thermal behavior of power conversion system during load operation
El Oualkadi et al. Estimation of losses of GaN HEMT in power switching applications based on experimental characterization
Wu et al. Comparison of Parasitic Capacitances of Packaged Cascode Gallium Nitride Field-effect Transistors.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935100

Country of ref document: EP

Kind code of ref document: A1