WO2020061854A1 - 协作式机器人的关节及其壳体 - Google Patents
协作式机器人的关节及其壳体 Download PDFInfo
- Publication number
- WO2020061854A1 WO2020061854A1 PCT/CN2018/107736 CN2018107736W WO2020061854A1 WO 2020061854 A1 WO2020061854 A1 WO 2020061854A1 CN 2018107736 W CN2018107736 W CN 2018107736W WO 2020061854 A1 WO2020061854 A1 WO 2020061854A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- joint
- lattice
- housing
- casing
- lattice structural
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J17/00—Joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/0054—Cooling means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/0075—Means for protecting the manipulator from its environment or vice versa
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/0009—Constructional details, e.g. manipulator supports, bases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
Definitions
- the invention relates to the technical field of robots, in particular to a joint of a collaborative robot and a shell thereof.
- an object of the present invention is to provide a joint of a collaborative robot and a shell thereof, which can reduce the weight of the joint.
- the present invention provides a housing of a joint of a collaborative robot, and at least a part of the material in the housing is configured to include a plurality of lattice structural units.
- the weight of the joint can be reduced relative to the shell which is all solid.
- the plurality of lattice structural units are uniformly distributed in at least a portion of the material of the shell.
- the plurality of lattice structural units are distributed in at least a part of the material of the shell through a connection.
- a plurality of lattice structural units are uniformly distributed in at least a part of the material of the shell, which can make the at least part of the material appear uniform and consistent.
- each lattice structural unit is a polyhedron formed by a plurality of connected stripe structural portions.
- each lattice structural unit constitutes a tetrahedral lattice structural unit or a hexahedron for a plurality of stripe structural portions.
- the lattice structural unit is a polyhedron, for example, a tetrahedron or a hexahedron, and the structure of the lattice structural unit is optimized.
- an inner surface portion of the housing that is in contact with or near a heat-generating component included in a joint of the collaborative robot is composed of the at least part of the material.
- the inner surface portion of the housing that is in contact with or close to the heat generating component is configured to include a plurality of lattice structural units, which can improve the heat dissipation of the heat generating component in the housing.
- each lattice structural unit is filled with a thermally conductive medium.
- the lattice structural unit is filled with a thermally conductive medium, so that the thermal conductivity of the shell can be improved.
- the size of each lattice structural unit is on the order of micrometers.
- the housing is made by an additive manufacturing process.
- it is simple and easy to make the shell by using an additive manufacturing process.
- the invention provides a joint of a collaborative robot, the joint comprising the above-mentioned housing.
- the joint provided by the embodiment of the present invention includes the above-mentioned shell. Since at least a part of the material of the above-mentioned shell is configured to include a plurality of lattice structural units, the weight of the joint can be reduced relative to the solid shell.
- FIG. 1 is a schematic diagram of a specific structure of a joint of a collaborative robot according to an embodiment of the present invention
- FIG. 2 is a schematic structural diagram of a joint of a collaborative robot in an embodiment of the present invention
- FIG. 3 is an enlarged schematic view of 2A in FIG. 2;
- FIG. 4 is an enlarged schematic view of 2B in FIG. 2;
- Lattice unit 100 The interior of a lattice structural unit 200 A plurality of stripe structure portions of one lattice structural unit 101 ⁇ 103
- the present invention provides a housing of a joint of a collaborative robot, and at least a portion of the material in the housing is configured to include a plurality of lattice structural units.
- At least a part of the material of the casing may be a part of the material of the casing, or may be the entire material of the casing.
- At least part of the material of the shell is configured to include a plurality of lattice structural units, and it can be understood that at least part of the material of the shell is configured to be a lattice structure.
- the housing can be made using an additive manufacturing process, for example, 3D printing technology.
- 3D printing technology the shell can be made into an integrated structure. Specifically, 3D printing can be performed on a metal material to obtain a metal material shell, which is convenient for heat dissipation. Because 3D printing technology can achieve extreme optimization of the shell structure, and can optimize the shell to any shape, it is easier to realize that one part of the shell is a lattice structure, the other part is a solid structure, and the lattice structure part and the solid structure part It is integrated.
- aluminum alloy can be used to make the joint housing. Because at least part of the material in the shell is a lattice structure, the stiffness-weight ratio of the shell can be improved.
- the lattice structural unit in the shell is not the micro-physical structure of the material itself, but at least a part of the material of the shell is constructed through a manufacturing or processing process (the above-mentioned 3D printing technology or additive manufacturing technology). To make this at least part of the material a structure similar to bones, wood, etc., with many tiny lattices or connections, or a honeycomb-like structure.
- the lattice structural unit of the shell is preferably made by additive manufacturing, so the size of the lattice structural unit can be specified as needed. In a preferred embodiment, the size of the lattice structural unit is configured on the order of micrometers.
- the above-mentioned multiple lattice structural units can be uniformly distributed in at least a part of the material of the shell.
- the multiple lattice structural units are uniformly distributed in the shell through a connection. At least part of the material. Since the lattice structural units are uniformly distributed in the above at least part of the material, the properties (for example, heat dissipation performance, rigidity-weight ratio, etc.) of the at least part of the material can be made uniform and consistent.
- the lattice structural unit may be configured as a polyhedron, such as a tetrahedron and a hexahedron. More preferably, these polyhedrons are equilateral polyhedrons.
- Each lattice structural unit is formed by a plurality of connected stripe structural parts. Since the plurality of stripe structural parts can form a tetrahedron, a hexahedron, or even an octahedron, the lattice structural unit can be a tetrahedral lattice structural unit or a hexahedral crystal. Lattice structural units or even octahedral lattice structural units. As shown in FIG.
- the shell includes a plurality of connected hexahedral lattice structural units (especially an equilateral hexahedron), wherein one lattice structural unit 100 includes four strip-shaped structural portions 101 and four in the same direction.
- the strip-shaped structural portions 102 in the same direction and the four strip-shaped structural portions 103 in the same direction.
- the hexahedron includes four vertices, and each vertex connects three strip structure parts 101, 102, and 103 through a joint 104. That is, the three strip structure parts are connected at the vertices, and the part except the strip structure part is empty.
- the interior 200 of the lattice structural unit 100 is empty, so that the interior 200 of the lattice structural unit 100 can be filled with a thermally conductive medium.
- the lattice structural unit needs to be sealed.
- the inner surface portion of the casing is configured to include a plurality of lattice structural units.
- a sealing layer may be provided on the entire inner surface of the casing to Seal the heat conducting medium in the housing.
- the inner surface portion of the housing that is in contact with or close to the heat-generating component can be set to include multiple lattice structural units, that is, the The at least part of the material is an inner surface portion of the housing that is in contact with at least the heat-generating component.
- a material of a predetermined thickness on the inner surface of the housing is configured to include a plurality of lattice structural units. Therefore, the heat dissipation performance of the at least part of the material is better than that of the solid structure, so the heat dissipation performance of the casing can be improved.
- a heat conducting medium may be sealed in each lattice structural unit. As shown in FIG. 3, the inside of the hexahedral lattice may be filled with a heat conducting medium to further improve the heat conducting performance of the shell.
- These heat conducting medium may be water, for example. Or coolant.
- the joint housing of the collaborative robot provided by the present invention, since at least a part of the material of the housing is configured to include a plurality of lattice structural units, the weight of the joint can be reduced relative to the solid housing.
- the present invention provides a joint of a collaborative robot, and a shell of the joint includes the above-mentioned shell.
- the joints of the collaborative robot provided here adopt the above-mentioned shell, and at least a part of the material of the shell is configured to include a plurality of lattice structural units, so it can be reduced compared to all solid shells.
- the weight of the joint is configured to include a plurality of lattice structural units, so it can be reduced compared to all solid shells.
- FIG. 1 shows a joint 10 of a collaborative robot provided by the present invention.
- the joint 10 includes a housing 2, a harmonic gear 1, a motor 3, an electrical component 4, and a back cover 5.
- the joint housing 2 can be made of aluminum alloy, which is an integrated structure made by 3D printing technology.
- the outer surface portion of the shell is configured as a solid structure 2B, and the solid structure 2B may be specifically referred to in FIG. 4;
- the specific structure of the structure 2A can be seen in FIG. 3, and each lattice structural unit is sealed with water or other thermally conductive fluid having a cooling effect.
- the inner surface portion and the outer surface portion of the casing are two surfaces of the casing, wherein the inner surface portion is a portion of the casing closer to the inner surface of the casing, and the outer surface portion is closer to the casing. On the outer surface of the casing.
- the rigidity-weight of the casing is relatively high.
- the weight of the shell can be reduced by at least 30% compared to the weight of the shells which are all solid structures.
- the above solid structure does not refer to the micro physical structure of the material itself, but refers to that the outer surface portion of the shell is configured as a non-hollow structure.
- the solid physical or lattice structure of the material itself can include a lattice in the microscopic physical structure, but this lattice is a characteristic of the material itself, unlike the lattice in the inner surface portion of the shell, the The lattice is made by 3D printing technology, and its size can be determined according to the specific situation, for example, each lattice is a size on the order of micrometers.
- the manufacturing process of the lattice structure filled with the heat conducting medium includes: after the lattice structure is prepared, the air in each cavity of the lattice structure is extracted and filled with the heat conducting medium and sealed, so that the shell itself becomes A hot cell with super thermal conductivity.
- the above joint includes two large heating components, one is a harmonic gear 1 and one is a motor 3.
- the harmonic gear 1 is used to convert the motor rotor from high-speed rotation to low-speed rotation, and its flange outputs high torque.
- the efficiency of the harmonic gear 1 under grease lubrication and in a predetermined operating state is between 60% and 80%, so that in most states, the thermal power of the harmonic gear 1 can reach 100w or more.
- the heat generated by the harmonic gear 1 is mainly concentrated in the area in contact with or close to the harmonic gear 1 on the inner surface portion, so the inner surface portion is in contact with the harmonic gear 1 Or the close area is the hot zone.
- the inner surface portion of the casing has a lattice structure, so the heat generated by the harmonic gear 1 can be spread to the entire casing, which facilitates heat dissipation.
- the motor 3 is also a large heater, which is used to provide power for the movement of the joint.
- the heat generated by the motor 3 is mainly concentrated in the area in contact with or near the motor 3 on the inner surface portion, so the area in contact with or near the motor 3 on the inner surface portion is also The hot zone, however, in the present invention, the inner surface portion of the casing is a lattice structure, so the heat generated by the motor 3 can be spread to the entire casing, which facilitates heat dissipation.
- the electrical component 4 is a component that generates less heat and is connected to the motor 3.
- the specific structure of the electrical component 4 may include a control drive board, an encoder, and a braking system, and the control of the motor is achieved through the cooperation of various electrical components. These electrical components produce less heat.
- the back cover 5 and the housing 2 form a cavity for accommodating the joint components.
- the back cover 5 can be made of a non-metallic material. Therefore, the back cover 5 can be installed at a location with a low heat generation, that is, the electrical component 4 Location, this can reduce the amount of metal used and reduce joint costs.
- the lattice structure is arranged on the inner surface portion of the case that is in contact with the heating component, and each lattice is sealed with a heat conductive medium, the case becomes a heat chamber with super heat conduction, and the heat is more easily transferred from the local hot spot to
- the entire casing that is, the heat generated by the heating component can be transmitted to the entire casing, which can improve the thermal conductivity of the joint. Since the heat conduction efficiency can be improved, the service life and performance of joints can be improved, and the market competitiveness of collaborative robots can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
一种协作式机器人的关节的壳体(2),该壳体(2)的至少部分材料被构造为包括多个晶格结构单元(2A)。由于壳体(2)的至少部分材料被构造为包括多个晶格结构单元(2A),因此相对于全部是实心的壳体,可以减轻关节的重量。还涉及一种协作式机器人的关节。
Description
本发明涉及机器人技术领域,特别是涉及一种协作式机器人的关节及其壳体。
由于协作式机器人具有安全、灵活、使用方便等特点,因此协作式机器人在未来的工业领域具有广阔的应用前景。关节作为协作式机器人的关键组成部分,其性能对协作式机器人的性能有很大的影响。重量是关节的一项重要性能指标,对关节重量进行小的优化就可以明显减轻协作式机器人的重量,因此如何实现关节的轻量化是关节设计中的重要课题。
发明内容
有鉴于此,本发明的目的在于提供一种协作式机器人的关节及其壳体,能够实现关节的轻量化。
本发明提供一种协作式机器人的关节的壳体,所述壳体中的至少部分材料被构造为包括多个晶格结构单元。本发明实施例中由于壳体的至少部分材料被构造为包括多个晶格结构单元,因此相对于全部是实心的壳体,可以减轻关节的重量。
在一些实施例中,所述多个晶格结构单元均匀地分布在所述壳体的至少部分材料中。例如,所述多个晶格结构单元通过结连的方式分布在所述壳体的至少部分材料中。本发明实施例中多个晶格结构单元均匀分布在壳体的至少部分材料中,可以使得这至少部分材料呈现出均匀和一致性。
在一些实施例中,每一晶格结构单元为由连接的多个条状结构部形成的多面体,例如,每一晶格结构单元为多个条状结构部构成四面体晶格结构单元或六面体晶格结构单元。本发明实施例中晶格结构单元为多面体,例如,四面体或六面体,实现对晶格结构单元的结构优化。
在一些实施例中,所述壳体中与协作式机器人的关节中所包括的发热部件接触或靠近的内表面部分由所述至少部分材料构成。本发明实施例中将壳体中与发热部件接触或 靠近的内表面部分构造为包括多个晶格结构单元,可以提高壳体中发热部件的散热性。
在一些实施例中,每一晶格结构单元内填充有导热介质。本发明实施例中在晶格结构单元中填充有导热介质,这样可以提高壳体的导热能力。
在一些实施例中,每一晶格结构单元的尺寸为微米量级。
在一些实施例中,所述壳体通过增材制造工艺制成。本发明实施例中通过增材制造工艺制作壳体,简单、易实现。
本发明提供一种协作式机器人的关节,所述关节包括上述壳体。本发明实施例提供的关节包括上述壳体,由于上述壳体的至少部分材料被构造为包括多个晶格结构单元,因此相对于全部是实心的壳体,可以减轻关节的重量。
下面将通过参照附图详细描述本发明的优选实施例,使本领域的普通技术人员更清楚本发明的上述及其它特征和优点,附图中:
图1是本发明一实施例中协作式机器人的关节的具体结构示意图;
图2是本发明一实施例中协作式机器人的关节的简略结构示意图;
图3是图2中2A的放大示意图;
图4是图2中2B的放大示意图;
其中,附图标记如下:
关节 | 10 |
谐波齿轮 | 1 |
壳体 | 2 |
电机 | 3 |
电气部件 | 4 |
后盖 | 5 |
壳体中的多个晶格结构单元 | 2A |
壳体中的实心结构 | 2B |
一个晶格结构单元 | 100 |
一个晶格结构单元的内部 | 200 |
一个晶格结构单元的多个条状结构部 | 101~103 |
多个条状结构部的接头 | 104 |
为了对发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式,在各图中相同的标号表示结构相同或结构相似但功能相同的部件。
在本文中,“示意性”表示“充当实例、例子或说明”,不应将在本文中被描述为“示意性”的任何图示、实施方式解释为一种更优选的或更具优点的技术方案。
为使图面简洁,各图中只示意性地表示出了与本发明相关的部分,它们并不代表其作为产品的实际结构。另外,为使图面简洁便于理解,在有些图中具有相同结构或功能的部件,仅示意性地绘示了其中的一个,或仅标出了其中的一个。
一方面,本发明提供一种协作式机器人的关节的壳体,所述壳体中的至少部分材料被构造为包括多个晶格结构单元。
可理解的是,上述壳体中的至少部分材料可以是壳体的一部分材料,也可以是壳体的全部材料。壳体的至少部分材料被构造为包括多个晶格结构单元,可理解为,壳体的至少部分材料被构造为晶格结构。
在实际应用时,壳体可以采用增材制造工艺而成,例如,3D打印技术。采用3D打印技术制作,可以将壳体制作成一体结构。具体可以对金属材料进行3D打印,得到金属材质的壳体,便于散热。由于3D打印技术可以实现壳体结构的极度优化,且可以将壳体优化为任何形状,较容易实现壳体的一部分为晶格结构,另一部分为实心结构,且晶格结构部分和实心结构部分是一体的,在实际应用中,由于壳体的设计必须具有足够的强度、刚度和导热性,同时考虑重量轻以及材料成本,因此可以采用铝合金制造关节的壳体。由于壳体中至少有部分材料为晶格结构,因此可以提高壳体的刚度-重量比。
可理解的是,壳体中的晶格结构单元并非是材料本身的微观物理结构,而是通过制造或加工工艺(上述3D打印技术或者叫增材制造技术)将壳体的至少部分材料进行构造,使这至少部分材料形成类似于骨骼、木材等具有很多微小格子或结连的结构,或者似于蜂窝的结构。依据本发明,优选地通过增材制造将壳体的晶格结构单元制作而成,因此晶格结构单元的尺寸可以根据需要进行指定。在一种优选的实施方式中,将晶格结构单元的尺寸构造为微米量级。
在实际应用时,上述多个晶格结构单元可以均匀的分布在壳体的至少部分材料中,例如,如图3所示,多个晶格结构单元通过结连的方式均匀的分布在壳体的至少部分材料中。由于晶格结构单元均匀的分布在上述至少部分材料中,因此可以使得这至少部分材料的性能(例如,散热性能、刚性-重量比等)呈现出均匀和一致性。
在实际应用时,晶格结构单元可以被构造为多面体,例如四面体和六面体等,更优选的是,这些多面体为等边多面体。每一晶格结构单元由连接的多个条状结构部形成,由于多个条状结构部可以形成四面体、六面体甚至八面体,因此晶格结构单元可以为四面体晶格结构单元、六面体晶格结构单元甚至八面体晶格结构单元。如图3所示,在壳体中包括多个连接的六面体晶格结构单元(特别是等边六面体),其中,一个晶格结构单元100包括四根同方向的条状结构部101、四根同方向的条状结构部102和四根同方向的条状结构部103。六面体包括四个顶点每一个顶点通过接头104连接三根条状结构部101、102和103,即这三根条状结构部在顶点处结连,且除了条状结构部之外的部分是空的,也就是说,该晶格结构单元100的内部200是空的,这样可以在晶格结构单元100的内部200填充导热介质。在填充导热介质时是需要对晶格结构单元密封的,例如,壳体的内表面部分被构造为包括多个晶格结构单元,此时可以在壳体的整个内表面设置一密封层,以对壳体内的导热介质进行密封。
实际应用时,由于关节的壳体中会容纳发热部件,例如电机等,因此可以将壳体上与发热部件接触或靠近的内表面部分设置为包括多个晶格结构单元,即上述壳体的所述至少部分材料为所述壳体中至少与所述发热部件接触的内表面部分,例如上述壳体的内表面的一个预设厚度的材料被构造为包括多个晶格结构单元。由此该至少部分材料的散热性能相对于实心结构较好,因此可以提高壳体的散热性能。进一步的,可以在每一晶格结构单元中密封有导热介质,如图3所示,在六面体晶格的内部可以填充有导热介质,进一步提高壳体的导热性能,这些导热介质例如可以是水或者冷却液。
本发明提供的协作式机器人的关节的壳体,由于壳体的至少部分材料被构造为包括多个晶格结构单元,因此相对于全部是实心的壳体,可以减轻关节的重量。
另一方面,本发明提供一种协作式机器人的关节,所述关节的壳体包括上述壳体。
可理解的是,这里提供的协作式机器人的关节由于采用了上述壳体,而壳体的至少部分材料被构造为包括多个晶格结构单元,因此相对于全部是实心的壳体,可以减轻关节的重量。
举例来说,图1示出了本发明提供的一种协作式机器人的关节10,该关节10包括壳体2、谐波齿轮1、电机3、电气部件4、后盖5。关节的壳体2可以为铝合金材质,其采用3D打印技术制作而成的一体式结构。参见图2,壳体的外表面部分被构造成实心结构2B,实心结构2B具体可参见图4;壳体的内表面部分被构造为包括多个晶格结构单元即晶格结构2A,晶格结构2A的具体结构可参见图3,且每一晶格结构单元内密封有水或其他具有冷却效果的导热流质。
可理解的是,壳体的内表面部分和外表面部分是壳体的两个表面,其中内表面部分为壳体中更接近于壳体内表面的部分,而外表面部分为壳体中更接近于壳体外表面的部分。
由于壳体的内表面部分为晶格结构2A,且壳体为采用3D打印技术制作的一体结构,因此壳体的刚性-重量比较高。将壳体的内表面部分设置成晶格结构,可以使壳体重量比全部都是实心结构的壳体的重量减少至少30%。
可理解的是,上述实心结构也不是指材料本身的微观物理结构,而是指壳体的外表面部分被构造为非中空结构。当然,制作实心或晶格结构的材料的本身的微观物理结构中可以包括晶格,但这种晶格是材料本身的特点,与壳体内表面部分中的晶格不同,壳体内表面部分中的晶格是通过3D打印技术制作而成的,其尺寸可以根据具体情况而定,例如,每一晶格为微米量级的尺寸。
其中,上述填充有导热介质的晶格结构的制作过程包括:在制作好晶格结构后,将晶格结构的各个空腔内的空气抽出并填充导热介质后密封,这样使得壳体本身变成一个具有超导热性的热室。
在上述关节中包括两大发热部件,一个是谐波齿轮1,一个是电机3。
其中,谐波齿轮1,其作用是将电机转子从高速旋转转化为低速旋转,其法兰输出高扭矩。谐波齿轮1在油脂润滑作用下且在预定运行状态下的效率在60%~80%之间,由此在大多数状态下,谐波齿轮1的热功率可以达到100w甚至更多。
如果壳体的内表面部分为实心结构,那么谐波齿轮1产生的热量主要集中在内表面部分上与谐波齿轮1相接触或靠近的区域,因此内表面部分上与谐波齿轮1相接触或靠近的区域为热区。然而,本发明中壳体的内表面部分为晶格结构,因此谐波齿轮1产生的热量可以扩散到整个壳体上,便于散热。
其中,电机3也是一个大的制热器,作用是为关节的动作提供动力。
如果壳体的内表面部分为实心结构,那么电机3产生的热量主要集中在内表面部分上与电机3相接触或靠近的区域,因此内表面部分上与电机3相接触或靠近的区域也为热区,然而,本发明中壳体的内表面部分为晶格结构,因此电机3产生的热量可以扩散到整个壳体上,便于散热。
上述电气部件4,为发热较少的部件,且与电机3连接,电气部件4的具体结构可以包括控制驱动板、编码器和制动系统,通过各个电气部件的配合,实现对电机的控制。这些电气部件的产热较少。
上述后盖5,与壳体2形成容置上述关节部件的腔体,后盖5可以用非金属材料制作而成,因此后盖5可设置在发热量很低的部位即电气部件4对应的位置,这样可以减少金属的使用量,减少关节成本。
由于将晶格结构设置在壳体与发热部件接触的内表面部分,而每一晶格内密封有导热介质,这样壳体成为具有超导热的热室,热量较容易从局部的热点传递到整个壳体,也就是说,发热部件产生的热量可以传导到整个壳体,这样可以提高关节的导热效率。由于能够提高导热效率,因此可以提高关节的使用寿命和性能,进而提高协作式机器人的市场竞争力。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种协作式机器人的关节的壳体(2),其特征在于,所述壳体(2)中的至少部分材料被构造为包括多个晶格结构单元(2A)。
- 根据权利要求1所述的壳体(2),其特征在于,所述多个晶格结构单元均匀地分布在所述壳体的至少部分材料中。
- 根据权利要求1或2所述的壳体(2),其特征在于,所述多个晶格结构单元通过结连的方式分布在所述壳体的至少部分材料中。
- 根据权利要求1或2所述的壳体(2),其特征在于,每一晶格结构单元为由连接的多个条状结构部(100、101、102)形成的多面体。
- 根据权利要求4所述的壳体(2),其特征在于,每一晶格结构单元为多个条状结构部(100、101、102)构成四面体晶格结构单元或六面体晶格结构单元。
- 根据权利要求1所述的壳体(2),其特征在于,所述壳体(2)中与协作式机器人的关节中所包括的发热部件接触或靠近的内表面部分由所述至少部分材料构成。
- 根据权利要求6所述的壳体(2),其特征在于,每一晶格结构单元内填充有导热介质。
- 根据权利要求1至2和5至7中任意一项所述的壳体(2),其特征在于,每一晶格结构单元的尺寸为微米量级。
- 根据权利要求1至2和5至7中任意一项所述的壳体(2),其特征在于,所述壳体(2)通过增材制造工艺制成。
- 一种协作式机器人的关节(10),其特征在于,所述关节(10)包括权利要求1~9中任一项所述的壳体(2)。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880098140.3A CN113242780A (zh) | 2018-09-26 | 2018-09-26 | 协作式机器人的关节及其壳体 |
EP18934852.7A EP3858555A4 (en) | 2018-09-26 | 2018-09-26 | JOINT OF A COLLABORATIVE ROBOT AND HOUSING THEREOF |
PCT/CN2018/107736 WO2020061854A1 (zh) | 2018-09-26 | 2018-09-26 | 协作式机器人的关节及其壳体 |
US17/280,044 US11584027B2 (en) | 2018-09-26 | 2018-09-26 | Joint of collaborative robot, and housing therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/107736 WO2020061854A1 (zh) | 2018-09-26 | 2018-09-26 | 协作式机器人的关节及其壳体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020061854A1 true WO2020061854A1 (zh) | 2020-04-02 |
Family
ID=69953188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/107736 WO2020061854A1 (zh) | 2018-09-26 | 2018-09-26 | 协作式机器人的关节及其壳体 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11584027B2 (zh) |
EP (1) | EP3858555A4 (zh) |
CN (1) | CN113242780A (zh) |
WO (1) | WO2020061854A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003046038A (ja) * | 2001-07-27 | 2003-02-14 | Mitsubishi Electric Corp | 熱伝導基材とその製造方法及び半導体装置 |
JP2003183792A (ja) * | 2001-12-20 | 2003-07-03 | Mitsubishi Electric Corp | 熱伝導基材、及びその製造方法、並びに該熱伝導基材を有する半導体装置 |
CN103874655A (zh) * | 2011-08-12 | 2014-06-18 | 麦卡利斯特技术有限责任公司 | 拥有多个实施方式的结构构造体 |
CN107903555A (zh) * | 2017-12-12 | 2018-04-13 | 常州工程职业技术学院 | 一种石墨烯/pmma导热复合材料、合成方法及其应用 |
CN107904449A (zh) * | 2017-09-27 | 2018-04-13 | 宁波华源精特金属制品有限公司 | 一种机器人连接体及其制备工艺 |
CN107901078A (zh) * | 2017-09-27 | 2018-04-13 | 宁波华源精特金属制品有限公司 | 一种机器人手腕及其制备工艺 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030129501A1 (en) * | 2002-01-04 | 2003-07-10 | Mischa Megens | Fabricating artificial crystalline structures |
DE202004008156U1 (de) * | 2003-11-22 | 2004-08-19 | Nowak, Danial | Funktionsroboter für gefährliche Arbeiten |
DE102009006216B4 (de) * | 2009-01-27 | 2018-11-22 | Modine Manufacturing Co. | Kühlvorrichtung und Herstellungsverfahren |
FR2991221B1 (fr) | 2012-06-01 | 2015-02-27 | Aldebaran Robotics | Colonne vertebrale pour robot humanoide |
GB2521600A (en) * | 2013-12-18 | 2015-07-01 | Skf Ab | A building block for a mechanical construction |
DE102015216659A1 (de) | 2015-09-01 | 2017-03-02 | Siemens Aktiengesellschaft | Vorrichtung zur Anbindung an einen Roboter |
US10982672B2 (en) * | 2015-12-23 | 2021-04-20 | Emerson Climate Technologies, Inc. | High-strength light-weight lattice-cored additive manufactured compressor components |
CN205565995U (zh) * | 2016-03-05 | 2016-09-07 | 鹰潭市睿驰电机有限公司 | 一种大功率双层轴套式直流电机 |
GB201604863D0 (en) * | 2016-03-22 | 2016-05-04 | Esr Technology Ltd | Bearing-support housing/shaft |
CN106272453B (zh) * | 2016-08-24 | 2018-09-11 | 何泽熹 | 穿戴物试用机器人 |
CN107448528A (zh) * | 2017-09-01 | 2017-12-08 | 西北工业大学 | 高能量吸收率和良好缓冲能力的复合轻质结构及结构本体 |
CN207616608U (zh) * | 2017-11-28 | 2018-07-17 | 天津扬天科技有限公司 | 多自由度中空协作机械臂 |
-
2018
- 2018-09-26 US US17/280,044 patent/US11584027B2/en active Active
- 2018-09-26 WO PCT/CN2018/107736 patent/WO2020061854A1/zh unknown
- 2018-09-26 EP EP18934852.7A patent/EP3858555A4/en active Pending
- 2018-09-26 CN CN201880098140.3A patent/CN113242780A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003046038A (ja) * | 2001-07-27 | 2003-02-14 | Mitsubishi Electric Corp | 熱伝導基材とその製造方法及び半導体装置 |
JP2003183792A (ja) * | 2001-12-20 | 2003-07-03 | Mitsubishi Electric Corp | 熱伝導基材、及びその製造方法、並びに該熱伝導基材を有する半導体装置 |
CN103874655A (zh) * | 2011-08-12 | 2014-06-18 | 麦卡利斯特技术有限责任公司 | 拥有多个实施方式的结构构造体 |
CN107904449A (zh) * | 2017-09-27 | 2018-04-13 | 宁波华源精特金属制品有限公司 | 一种机器人连接体及其制备工艺 |
CN107901078A (zh) * | 2017-09-27 | 2018-04-13 | 宁波华源精特金属制品有限公司 | 一种机器人手腕及其制备工艺 |
CN107903555A (zh) * | 2017-12-12 | 2018-04-13 | 常州工程职业技术学院 | 一种石墨烯/pmma导热复合材料、合成方法及其应用 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3858555A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3858555A4 (en) | 2022-06-15 |
US11584027B2 (en) | 2023-02-21 |
CN113242780A (zh) | 2021-08-10 |
EP3858555A1 (en) | 2021-08-04 |
US20220032479A1 (en) | 2022-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5290355B2 (ja) | ハイパワー放熱モジュール | |
CN202403584U (zh) | 一种多腔体相变均温板 | |
CN103000595B (zh) | 一种多向进出相变传热装置及其制作方法 | |
CN107577321B (zh) | 一种基于相变材料的散热器 | |
CN114526627A (zh) | 一种应用于相变蓄冷装置的3d均热板结构及其制作方法 | |
WO2021217881A1 (zh) | 主动散热关节及包含该散热关节的仿生机器人 | |
WO2020061854A1 (zh) | 协作式机器人的关节及其壳体 | |
CN112787465B (zh) | 基于散热铜管技术的高功率密度外转子永磁电机散热装置 | |
CN207070560U (zh) | 一种高效散热机壳结构 | |
Ajour et al. | RETRACTED: Lithium-ion batteries investigation regarding different fins distribution associated electrochemical effects and various voltage types | |
CN205945348U (zh) | 一种散热性好的电机 | |
CN214626831U (zh) | 一种飞行器防热装置及飞行器 | |
CN102223014B (zh) | 一种可冷却转子的飞轮储能装置 | |
CN212286905U (zh) | 一种能够快速散热的数控加工中心主轴 | |
CN210900186U (zh) | 一种基于相变储能材料的储热装置 | |
CN206790251U (zh) | 一种电机定子散热装置 | |
CN207961493U (zh) | 用于电动汽车的减速器及动力系统、电动汽车 | |
CN110957843A (zh) | 一种水冷式中小功率ip55发电机 | |
CN112671266A (zh) | 一种飞行器防热装置及飞行器 | |
CN207585410U (zh) | 一种高速机车用热管 | |
CN206559158U (zh) | 一种无人机马达的散热装置 | |
CN203120364U (zh) | 车载充电器的散热装置 | |
CN107438347B (zh) | 一种散热装置 | |
CN207081362U (zh) | 一种新型热导管 | |
CN216554045U (zh) | 一种高分子材料挤出加工余热回收发电装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18934852 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018934852 Country of ref document: EP Effective date: 20210426 |