WO2020061718A1 - Sistemas y métodos para confinar y decantar material particulado suspendido - Google Patents

Sistemas y métodos para confinar y decantar material particulado suspendido Download PDF

Info

Publication number
WO2020061718A1
WO2020061718A1 PCT/CL2018/050090 CL2018050090W WO2020061718A1 WO 2020061718 A1 WO2020061718 A1 WO 2020061718A1 CL 2018050090 W CL2018050090 W CL 2018050090W WO 2020061718 A1 WO2020061718 A1 WO 2020061718A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
wave
particulate material
frequency
khz
Prior art date
Application number
PCT/CL2018/050090
Other languages
English (en)
French (fr)
Inventor
Guillermo Sebastián GOMEZ VERDEJO
Original Assignee
Quantum Matrix Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quantum Matrix Spa filed Critical Quantum Matrix Spa
Priority to PCT/CL2018/050090 priority Critical patent/WO2020061718A1/es
Publication of WO2020061718A1 publication Critical patent/WO2020061718A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/017Combinations of electrostatic separation with other processes, not otherwise provided for

Definitions

  • the present invention belongs to the field of air pollution, more particularly to primary air pollution such as suspended dust also called aerosol. Specifically, the present invention relates to systems and methods for reducing, decanting and confining (blocking) atmospheric contamination due to the effect of suspended dust or aerosols present.
  • Atmospheric particulate matter refers to a set of solid and / or liquid particles (with the exception of pure water) present in suspension in the atmosphere (Mészáros, 1999).
  • This MP is in atmospheric suspension due to its diameter ranging from 0.1 pm to 100 pm. Dust with a diameter greater than 100 pm is settleable.
  • the PM product of the mechanical action of the wind in desert or arid zones is dragged from the surface and incorporated into the atmosphere by convection and atmospheric circulation mechanisms, being able to reach the upper layers of the atmosphere, moving for several kilometers.
  • This MP has the particularity of being very light and that it is activated by the absorption of the energy of the photons from solar radiation (electromagnetic waves), causing a balance of forces that allows the suspension of the MP in a gaseous medium (air).
  • Particulate matter is made up of a heterogeneous set of components emitted by very diverse sources and the effects on the environment are also very varied. According Spanish documentation, the most important among them are the impact on health (Dockery et al., 1993; Schwartz, 1994 and 1996; Bascom et al., 1996; Dockery and Pope, 1996; Brunekreef et al., 1997; Künzli et al., 2000; HEI, 2000; Lipfert., 2000; Wichmann and Peters, 2000; Hoek et al., 2002; Pope et al., 2002; WHO, 2003), in the climate (Carlson and Benjamin, 1980; Penner et al., 1994; Sokolik and Toon, 1996; Mészáros, 1999; Arimoto, 2001; Wurzler et al., 2000; IPCC, 2001), effects on ecosystems by deposition (WBG, 1998), acidification and eutrophication, alteration of construction materials and coatings (Lauren
  • the emission of particulate material is a constant in mining operations given the nature of these.
  • a large amount of dust of different diameters is generated, among them the fine called particulate material (PM) that is sent to the environment.
  • PM particulate material
  • the chemical and mineralogical composition of these particles varies from region to region depending on the characteristics of the soils or rocks, but is generally made up of: calcite (CaC0 3 ); quartz (Si0 2 ); dolomite [CaMg (C0 3 ) 2 ]; clays, mainly kaolinite [Al 2 YES 2 0 5 (0H) 4 ] and illite [K (Al, Mg) 3 SiAli 0 (OH)]; feldspars [KalSi 3 O s and (Na, Ca) (Al, Si) 4 0 8 ]; lower amounts of calcium sulfate (CaS0 4 x2H 2 0) and iron oxides (Fe 2 0 3 ) (Glaccum and Prospero, 1980; Schütz and Sebert, 1987; Adedokun et al, 1989; Avila et al, 1997; Caquineau et al , 1998).
  • the present invention relates to a method and system for confining (blocking) and decanting suspended particulate matter.
  • the system is arranged in a geometric area and volume.
  • This geometry can be rectangular or square and the other circular.
  • the system defined in a square or rectangular area is comprised of:
  • each tower comprises:
  • transmitters composed of at least one carrier power radio that modulates the signal by frequency at constant amplitude.
  • the system can define a circular area, which is comprised of:
  • o 1 central tower arranged at the center of a surface, which includes:
  • a transmitter composed of at least one carrier power radio that modulates the signal by frequency at constant amplitude
  • each one comprises:
  • the method for decanting suspended particulate material of the present invention comprises: i) locating 4 towers to delimit an established area, arranged on a surface of up to 2 km (length) x 2 km (width) x 10 m (height), to transmit a modulated signal (destabilizing wave + carrier wave) as the energy required to break the stabilization forces of particulate matter;
  • ii) set the range of the destabilizing wave which is in the range between 18 kHz and 200 kHz; iii) generate a wave in terms of geometry, amplitude and frequency, using oscillators; iv) start the transmission and reception of the waves.
  • the method of confining suspended particulate material according to the present invention comprises:
  • i) locate 4 towers to delimit an established area, arranged on a surface of up to 2 km (length) x 2 km (width) x 10 m (height), to transmit a modulated signal (curtain wave + carrier wave) as necessary energy to block the forces of the particulate material, generating a repulsion in the perimeter formed by the waves emitted from the towers; ii) set the range of the curtain wave that is between 2 to 18 kHz;
  • i) locate a tower at the center of a surface to transmit a modulated signal (destabilizing wave + carrier wave) as the energy necessary to break the stabilization forces of particulate matter; ii) delimit a circular area by locating at least 8 towers in a radius of up to 250 m, where each tower comprises a signal receiver and a demodulator to decode the transmitted signal;
  • a modulated signal destabilizing wave + carrier wave
  • iii set the range of the destabilizing wave between 10 kHz and 50 kHz;
  • each tower comprises a signal receiver and a demodulator to decode the transmitted signal
  • Figure 1 Representation of the effect of a wave on MP ⁇ 10 pm.
  • Figure 2 Digital color photography to count the particles.
  • Figure 3 Photograph of Figure 2 processed in grayscale.
  • FIG. 4 Schematic of the signal transmission circuit.
  • Figure 5 Schematic design of the research reactor (column).
  • Figure 6 Photograph of the research reactor (column).
  • Figure 7 Distribution test graph for the M1 Crushing sample, energy measurement by applying radio waves.
  • Figure 8 Distribution test graph for the M1 Crushing sample, concentration measurement applying radio waves.
  • Figure 9 Graph of the general baseline for Crushing Ml sample.
  • Figure 10 Energy graph using 0.5 MHz frequency and 5 V / cm amplitude for Crushed Ml sample.
  • Figure 11 Concentration graph using 0.5 MHz frequency and 5 V / cm amplitude for Ml Crushing sample.
  • Figure 12 Energy graph using 0.5 MHz frequency and 7.5 V / cm amplitude for Crushed Ml sample.
  • Figure 13 Concentration graph using 0.5 MHz frequency and 7.5 V / cm amplitude for Crushed Ml sample.
  • Figure 14 Energy graph using frequency of 0.5 MHz and amplitude of 10 V / cm for sample Crushing Ml.
  • Figure 15 Concentration graph using 0.5 MHz frequency and 10 V / cm amplitude for Ml Crushing sample.
  • Figure 16 Representation of a square area for confining and decanting the MP.
  • Figure 17 Comparative representation between a tower and a person.
  • Figure 18 Scheme of the points studied: inside, perimeter and outside the established system.
  • Figure 19 Graph of concentration of the MP 10 during the day, for 3 days.
  • Figure 20 MP 10 concentration graph as daily averages for 13 days within and within the perimeter of the established system.
  • Figure 21 Representation of a circular area for confining and decanting the MP.
  • the "aerosol” is a colloidal suspension of liquid or solid particles in a gas. Smoke and dust are considered as solid particle aerosols.
  • the interaction of the atmosphere with solar radiation creates absorption and dispersion processes in aerosol-like particles (colloids). A particle absorbs a certain amount of energy from an incident electromagnetic wave, and then emits another at a solid angle centered on that particle. As a result of absorption, the electrical charges of these particles are affected. Due to the above and due to the effect of interaction forces, the fine material RM ⁇ 100 pm remains suspended and does not settle. To cause sedimentation, it is necessary to act on the energy barrier.
  • the present invention aims to destabilize the interaction forces of the suspended dust acting on the energy barrier through the application of energy based on a set of radio waves.
  • Aerosols fine powder composed of particles with a size between 0.01 pm to 100 pm
  • Aerosols have a colloidal behavior, they have an excess of surface charge acquired by adsorption and ionization processes in a dispersion medium. This excess surface charge affects the charges (ions) of the environment in such a way that the ions of the opposite sign (against ions) are attracted to the surface and those of the same sign (co-ions) are repelled.
  • Radio frequency (RF) has the property of achieving displacement of ionic charges and the medium acts as the dielectric of a capacitor. In a given area of known section, in which the medium is air, RF is believed to possess the ability to displace charges.
  • the electromagnetic (EM) signal is attracted to the area where the charges are located and because it is an area of greater signal absorption, it produces a deformation of the signal. The greater the load and the more stabilized the system, the greater the wave absorption and the greater the neutralization of the interaction forces.
  • Electromagnetic waves are a disturbance that transports energy, they propagate through a medium, which in this case is air + particulate matter.
  • the waves are directed from a point of emission to a point of reception.
  • breaking the interaction forces in one case or blocking in the other it is necessary to know:
  • the present invention proposes to destabilize the interaction forces of the suspended dust by means of the interaction on the energy barrier with an energy based on a set of radio waves.
  • the present invention bases its technology on the following observation: "A small particle (less than 100 pm, even less than 10 pm) absorbs a certain amount of energy from an incident electromagnetic wave (absorbs energy) and refracts (changes direction and speed) the wave”. As a result of said absorption, the electrical charges of said particles are affected and two effects occur:
  • FIG. 1 explains the phenomenon of the effect of waves on particulate matter.
  • a transverse wave is shown, with ridges and valleys.
  • This electromagnetic wave is emitted by a frequency generator at a certain frequency and amplitude.
  • This wave is emitted through an antenna and travels through a medium that is air that contains suspended dust, when a wave collides with an obstacle, in this case air + suspended dust, in the direction that it is propagating, the wave undergoes changes.
  • an optical light counter is used through a high-resolution microscope, equipped with fluorescence, dark light field and phase contrast. It has a digital camera. The capture image is observed through software, and from the capture it has several tools related to image resolution such as filters and segmentation techniques.
  • the microscope is isolated from air currents and in a thermally controlled environment. The sample is deposited by means of a dispenser onto a slide.
  • the algorithm that analyzes the image, by a digital camera consists of the following basic steps to obtain the result:
  • the final collection is processed in order to obtain the information and statistics of the data.
  • the highest percentage of particle diameters of the powder in suspension is between 2.5 pm and 10 pm, and that the total of the particles has a size that is less than 100 pm, particularly less than 70 pm.
  • the transmission of the signal is capable of emitting an analog or digital signal whose geometry can be sinusoidal, square or triangular with a variable amplitude between 1 V / cm and 25 V / cm.
  • the transmission is made from point A to be received at point B at a maximum distance of 1 kilometer and a maximum height of 4 meters.
  • a transmitter is also installed so that its signal is received at a point B'. The distance between points A-A 'and B-
  • the operation of the system is based on the capacity of reception and digital tuning to find the signal sent, independent of the distortion induced by the environment.
  • transmitters A-A ’ send the digital data to receivers B-B’ so that they “know” the information sent by the analog channel.
  • the integrated tuning system locates the independent signal. If the signal is distorted on the way, it can be corrected based on the transfer equation.
  • the error is defined as:
  • Distortion is defined as the ratio of the mean error and signal powers, as expressed by the equation:
  • the signal transfer equation will be according to the input and output Laplace transform equation:
  • the power used for data transmission will be around 0.5 W to 10 W, preferably being 5W, which, according to the system, ensures correct signal propagation allowing better distortion of the signal than it needs to be determined.
  • the antennas considered in the system those with high-gain omnidirectional functionality have been selected, since, generally, in cases of multi-path propagation, there is a greater probability that the environment will interfere with the emitted radio frequency signal. , and this type of antennas diminishes the possibility of occurrence of these interferences. However, this does not rule out the use of directional antennas, since a balance point must be found between quality, RF link range and reception sensitivity to receive the signal.
  • a high-gain omnidirectional antenna In the case of a high-gain omnidirectional antenna, it is made of materials resistant to water and corrosion, it can be used indoors or outdoors, allowing installation in base stations and wide area multipoint applications.
  • the signal transmission frequency will be variable and can be selected from 0.433 MHZ, 0.470 MHZ, 0.868 MHZ and 0.915 MHZ. These frequencies are open and allow you to have several options to work according to the physical place where the measurements are made. In turn, the considered digital data transfer rate is between 1,200 Bps and 2,400 Bps taking into account that this helps to maintain a secure and stable link.
  • a first system works with 4 towers, each containing 5 transmit antennas and 5 receive antennas.
  • a second system based on the first, works the same way with 4 towers, but each tower only contains a single vertical antenna with baffles.
  • the antenna would have to be over a kilometer high.
  • the antenna size is significantly reduced because the Higher frequencies have shorter wavelengths. This process is known as modulation.
  • Modulation encompasses the set of techniques that are used to transport information about a carrier wave, typically a sine wave. These techniques allow a better use of the communication channel, which makes it possible to transmit more information simultaneously, as well as improving resistance against possible noise and interference.
  • modulation is the process, or the result of the process, of varying a characteristic of a carrier wave according to a signal that carries information. The purpose of modulation is to superimpose signals on the carrier waves.
  • modulation consists of making a parameter of the carrier wave change its value according to the variations of the modulating signal, which is the information that is to be transmitted.
  • the technique used for modulation in signal transmission is by constant amplitude and variable frequency, that is, modulated frequency.
  • Each antenna tower is composed of a circuit indicated in Figure 4.
  • the electromagnetic wave to be transmitted occurs in 2 function generators that pass to a mixer and a splitter, which take the signal, amplify it and modulate it (elevator of signal), and are transferred to be transmitted identically to 5 radios to finally be transmitted through their antenna
  • any particle at a temperature other than absolute zero has thermal energy that manifests as random motion or thermal agitation.
  • aerosols are known to be colloids, colloids are charged, and charges are electrons. If the particles have a charge due to electrons or dipoles, their random movement generates a random current. If this random current occurs in a conductive medium, a voltage known as "thermal noise or resistance noise" is produced.
  • thermal noise As expected, as a result of the wave-particle duality, there is thermal noise associated with electromagnetic radiation from the sun on the one hand, and noise caused by the particulate material on the other. For this, it begins by transmitting with one power (emission energy) and received with another or the same emission energy. Whichever method is used to quantify, when emitting the signal through an area with particulate matter, noise must be quantified.
  • the reception of the signal is captured directly by the receiving antenna, which, in turn, transmits it to the radio.
  • the radio transmission procedure is a modulation. That is, the radio emits a carrier wave of known frequency and amplitude that varies from 300 to 500 MHz.
  • the carrier wave that the radio emits corresponds to a wave, generally synodal, modified in some of its parameters (amplitude, frequency or phase) by an input signal called modulator in order to transmit information.
  • This carrier wave is of a much higher frequency than that of the signal.
  • the reception of the signal in the antenna is transmitted to the radio and this, in turn, demodulates it in communication systems with DFT multi-carrier modulation and transmultiplexers based on banks of modulated sine and / or cosine filters, and the corresponding devices for transmit and receive the signals for one or multiple users, with one or multiple transmission and reception stages.
  • the radio wave transmission and reception antennas can be at least 4 linear antennas. Where the radio wave transmission and reception antennas can be 5 or more Yagi antennas per tower. In an embodiment of the present invention in the square or rectangular area system the curtain wave signal operates at a frequency in the range of 2 to 18 kHz.
  • the destabilizing wave signal operates at a frequency in the range of 18 kHz to 200 kHz.
  • the carrier wave signal operates at a frequency in the range of 400 MHz to 600 MHz.
  • the curtain signal wave operates at a frequency in the range of 1 to 18 kHz.
  • the destabilizing signal wave operates at a frequency in the range of 10 kHz to 50 kHz.
  • the carrier wave in the circular area system operates at a frequency in the range of 400 MHz to 600 MHz.
  • system in any of its arrangements (square, rectangular or circular) areas further comprises at least one equipment for measuring particulate matter.
  • the particulate material being measured has a particle size of less than or equal to 100 ⁇ m.
  • the particulate material being measured has a size particle less than or equal to 10 pin.
  • particulate material is measured within the system, in any of its arrangements.
  • the particulate material is measured at the perimeter of the system, in any of its provisions.
  • the particulate material is measured outside the system, in any of its arrangements.
  • the method for decanting and / or confining suspended particulate material has a size of less than or equal to 100 pm.
  • the method for decanting and / or confining suspended particulate material has a size of less than or equal to 10 pm.
  • a laboratory-level test was performed using a reactor (column) in order to destabilize the suspended particulate material below 10 pm in a controlled manner.
  • the reactor comprises a vertical column 38 cm in diameter, an interior area of 1,134.12 cm and a height of 1 meter.
  • an environmental dust concentration measurement system was installed at different heights to be able to construct the sedimentation curves, with control of wind speed and radiation, which at a given humidity and temperature, can be injected with suspended dust in a such that light sensors can measure energy and concentration every 10 centimeters over a length of 100 centimeters (1 m).
  • the reactor column consists of a series of equipment to simulate the conditions of a mining site, as well as equipment for measuring and controlling the variables necessary to model the proposed solutions, which are detailed below.
  • the column model used is presented in Figure 5.
  • the column is made up of:
  • a function generator to produce waves between 1 Hz and 3 MHz of sinusoidal, sawtooth and square geometry, with amplitude variation and other wave variables.
  • An oscilloscope to observe the emitted waves and the received waves. With this see the response effect using a transfer function.
  • a microprocessor that converts the signal captured by each sensor into a binary signal to be recorded on a PC through a USB port.
  • the system has 10 photometric spectrum sensors distributed in the center of the reactor that are communicated by means of two data conversion interface boxes that allow the binary signals to be emitted and transformed into a decimal system by means of software that measures the amount of dust in suspension in the form of numerical information in real time.
  • the measurement system consists of a distribution of optical sensors capable of measuring the light distortion between an emitter and a receiver based on the level of environmental contamination, whether it be suspended dust or smoke.
  • This system is designed to measure suspended dust in pg / m3 to be expressed as powder density.
  • the process begins with loading a sample of dust into the research column and the wind speed is set through the anemometer. Once the wind speed is set, the dust particles are injected with the help of a high pressure compressor. Recirculation occurs and the sedimentation rate curve detected by the sensors is measured.
  • the PC receives the data and generates a table for each sensor. The measurements made are continuous with data emission every second.
  • the sensors are distributed at a height of between 10 and 90 cm from the base of the column, with intervals of 10 cm between each one. These sensors are pre-calibrated, emitting a light beam that is received by a receiver in a cylindrical ring through which the powder passes.
  • a microprocessor converts the signal captured by each sensor into a binary signal and an integrator program processes the data in real time. In this way, data is available as a function of time for each sensor, and in turn there are data for height at a certain time.
  • a sensor at a point X captures a certain concentration, which decreases over time. In the same way, a sensor located at a point X-10 cm determines that the concentration is increasing for the same time, but that it is also decreasing as a function of a longer time. For their part, the sensors closest to the base of the column determine that the concentration is increasing.
  • a correlation is used between the measurement of the energy emitted and the energy received at the sensor. For this, an infrared light is emitted through a diode which is captured by a photo-transistor. The signal emitted by the sensor is measured in separate volts at a distance of one centimeter. Therefore, the emission is an electric field measured in Volts / cm. The received signal is also measured in volts. The equilibrium point is demarcated by a correlation graph between the energy measured in volts and the concentration measured in mg / m 3 (see Figures 7 and 8).
  • particulate material ⁇ 10 pg has a very low sedimentation rate, so a linear trend parallel to the abscissa axis should be expected. For this, a sample quantity is taken in such a way that it does not exceed the measurement capacity of the sensor.
  • concentration homolog for M1 Crushing shows the same as Figure 10 looked at as a driving force corresponding to the concentration difference between the highest and lowest point in a unit of time.
  • Energy of the Ml Crushing sample, applying radio wave with a frequency of 0.5 MHz and an amplitude of 7.5 V / cm is shown in Table 2 and Figure 12, and its homologation in concentration in Figure 13.
  • the average speed ratio for the baseline, in all the experiences, is 0.0169 V-cm ⁇ min with a maximum of 0.028 V-cm- 1- min and a minimum of 0.013 V-cm 1 ⁇ min.
  • the average speed ratio for all samples for a frequency of 0.5 MHz and an amplitude of 5 V / cm reaches a value of 0.369 V-cm ⁇ -min with a maximum of 0.56 V-cm ⁇ -min and a minimum of 0.32 V-cm 1 min.
  • the sedimentation rate increases 19 times when using an amplitude of 5 V / cm, 21.7 times when using an amplitude at 7.5 V / cm and 24 times when an amplitude of 10 V / cm is used.
  • the trend is that as the amplitude increases, the sedimentation speed ratio with respect to the baseline increases.
  • Table 4 shows a summary of the data obtained from the sedimentation rate for both the baseline and the three measured amplitudes, for the Crushing Ml sample.
  • Radiofrequency has the property of achieving displacement of ionic charges and the medium behaves like the dielectric of a capacitor.
  • the Radio frequency has the ability to shift loads.
  • the electromagnetic signal identified as a radio wave selectively attracts the intensity. The greater the load and the more stabilized the system, the greater the wave absorption and the greater the neutralization of the interaction forces. Therefore, the most important conclusion is that it is possible to destabilize the interaction forces of the suspended dust by acting on the energy barrier with an energy based on a set of radio waves.
  • the present invention was evaluated in an open space within an open pit copper mining operation located in central Chile.
  • the system used was made up of:
  • a single transmission bar antenna and one reception antenna per tower can be used.
  • the amount of suspended powder, specifically the particulate material, was measured at 10 pm.
  • the monitoring stations were located at three different points, one within the system created by the 4 towers; one where the 4 towers are located (MP area), one at the perimeter of the system and one outside the system at 250 m, as shown in Figure 18.
  • the behavior of the suspended particulate material was evaluated during the hours of operation and the concentration of PM 10 pm time 0 was determined, that is, without applying the destabilizing signal, then after 30 minutes of operation and then every hour.
  • Table 6 shows the values obtained during three different and consecutive days, within the system created by the 4 towers.
  • the developed method not only causes the particulate material to decant within the area where the system is located, but also establishes a confinement area where it is not possible for new contaminating material to enter, regardless of the type of slaughter being carried out. is holding or wind speed.
  • Table 7 summarizes the data obtained both within the system and in its perimeter and Figure 20 the associated graph.
  • the dust concentration maintained within the system is 56% less than the screen or perimeter sector.
  • the destabilizing signal allows the suspended particulate material within the system of the present invention to be decanted.
  • the blocking signal allows concentrations within the system to be maintained independently of the existing conditions, such as wind, type of work, etc.

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

La presente invención describe sistemas y métodos para confinar y decantar el material particulado suspendido menor a 100 μm, preferentemente menor o igual a 10 μm, que comprende irradiar con ondas de radio el medio en donde se encuentra dicho material particulado suspendido para desestabilizarlo, provocando su confinación (bloqueo) y decantación.

Description

SISTEMAS Y METODOS PARA CONFINAR Y DECANTAR
ATERIAL PARTICULADO SUSPENDIDO
MEMORIA DESCRIPTIVA CAMPO DE APLICACIÓN
La presente invención pertenece al campo de la contaminación atmosférica, más particularmente a la contaminación atmosférica primaria como el polvo en suspensión también llamado aerosol. Específicamente, la presente invención se refiere a sistemas y métodos para reducir, decantar y confinar (bloquear) la contaminación atmosférica por efecto de polvo en suspensión o aerosoles presentes.
ANTECEDENTES
El material particulado (MP) atmosférico se refiere a un conjunto de partículas sólidas y/o líquidas (a excepción del agua pura) presentes en suspensión en la atmósfera (Mészáros, 1999). Este MP está en suspensión atmosférica debido a su diámetro cuyo rango van desde 0,1 pm hasta 100 pm. El polvo de diámetro mayor a 100 pm es sedimentable. El MP producto de la acción mecánica del viento en zonas desérticas o áridas es arrastrado desde de la superficie e incorporado a la atmósfera por mecanismos de convección y circulación atmosférica, pudiendo llegar a las capas altas de la atmósfera movilizándose por varios kilómetros. Este MP tiene la particularidad de ser muy liviano y que se activa por la absorción de la energía de los fotones de la radiación solar (ondas electromagnéticas), provocando un equilibrio de fuerzas que permite la suspensión de MP en un medio gaseoso (aire).
El material particulado está constituido por un conjunto heterogéneo de componentes emitidos por muy diversas fuentes y los efectos sobre el entorno son también muy variados. Según documentación española, los más importantes entre ellos son el impacto en la salud (Dockery et al., 1993; Schwartz, 1994 y 1996; Bascom et al., 1996; Dockery y Pope, 1996; Brunekreef et al., 1997; Künzli et al., 2000; HEI, 2000; Lipfert., 2000; Wichmann y Peters, 2000; Hoek et al., 2002; Pope et al., 2002; WHO, 2003), en el clima (Carlson y Benjamín, 1980; Penner et al., 1994; Sokolik y Toon, 1996; Mészáros, 1999; Arimoto, 2001; Wurzler et al., 2000; IPCC, 2001), efectos en ecosistemas por deposición (WBG, 1998), acidificación y eutrofización, alteración de los materiales de construcción y recubrimientos (Laurenzi Tabasso y Marabelli, 1992; Alastuey, 1994), e impacto en la visibilidad (White, 1990, Horvath, 1992).
En la legislación chilena (Decreto 20 del 17 octubre 2015) se ha establecido la norma de emisión del material particulado a fuentes estacionales. Por su parte, el Ministerio de Salud fija las normas de calidad del aire destinadas a prevenir y controlar la contaminación atmosférica, de manera de proteger la salud humana. Estas normas son aplicables a nivel nacional y provee fundamentos técnicos y administrativos del sistema de prevención y control de la contaminación atmosférica. Las concentraciones máximas permitidas en el caso del material particulado PM 10 es de 75 pg/m3 como concentración anual, 260 pg/m3 para una concentración media aritmética en 24 horas y 150 pg/m3 como media aritmética diaria.
En particular, la emisión de material particulado es una constante en las operaciones mineras dada la naturaleza de éstas. Durante los procesos mineros de extracción de mineral, principalmente entre la tronadura, carga y descarga, transporte y molienda, se genera una gran cantidad de polvo de distintos diámetros, entre ellos el fino denominado material particulado (MP) que es enviado al ambiente.
La composición química y mineralógica de estas partículas varía de una región a otra dependiendo de las características de los suelos o rocas, pero generalmente está constituida por: calcita (CaC03); cuarzo (Si02); dolomita [CaMg(C03)2]; arcillas, principalmente caolinita [Al2205(0H)4] e illita [K(Al,Mg)3SiAli0(OH)]; feldespatos [KalSi3Os y (Na,Ca)(Al,Si)408]; cantidades inferiores de sulfato cálcico (CaS04x2H20) y óxidos de hierro (Fe203) (Glaccum y Prospero, 1980; Schütz y Sebert, 1987; Adedokun et al, 1989; Avila et al, 1997; Caquineau et al, 1998). El origen de estas partículas es primario, ya que pasan directamente a la atmósfera. En general, la composición del material particulado de origen mineral es transportado desde regiones desérticas y suele estar enriquecida en arcillas, como consecuencia de su mayor tiempo de residencia atmosférica derivado de su menor diámetro de partícula y su morfología específica laminar (Pósfai y Molnár, 2000).
Dada la contaminación atmosférica propia de las faenas mineras, permanentemente se han buscado las mejores medidas de control y mitigación para reducir los impactos del material particulado sobre la calidad del aire, la salud de las personas y el medio ambiente.
Como parte de las iniciativas de mitigación para reducir la cantidad de material particulado se encuentran: el regadío de los caminos internos de las faenas utilizando diferentes tipos de supresores de polvo, humectación directa del material para evitar que la acción de equipos pesados y camiones genere polvo en suspensión, uso de nebulizadores para humectar la zona de carga, implementación de estructuras metálicas contenedoras y membranas plásticas en los chancadores, e instalación de un domo de acopio de material, entre otras.
A pesar de estas iniciativas, aún persiste la necesidad de contar con sistemas y métodos que permitan confinar y reducir significativamente el polvo suspendido en estos lugares que están continuamente generando este tipo contaminantes.
RESUMEN DE LA INVENCIÓN
La presente invención se refiere a un método y sistema para confinar (bloquear) y decantar el material particulado suspendido.
El sistema está dispuesto en un área y volumen geométrico. Esta geometría puede ser rectangular o cuadrada y la otra circular. En una modalidad de la invención el sistema definido en un área cuadrada o rectangular, está comprendido por:
o 4 torres dispuestas en una superficie de hasta 2 km (largo) x 2 km (ancho) x 10 m (alto), en donde cada torre comprende:
• antenas de transmisión y recepción de ondas de radio;
• demoduladores para decodificar la señal;
• osciladores generadores de dos tipos de señal: desestabilizadora y cortina;
• mezcladores y purificadores de señal que mezclan la señal desestabilizadora con la señal cortina y la envía al transmisor;
• transmisores compuestos por al menos una radio de energía portadora que modula la señal por frecuencia a amplitud constante.
En otra modalidad de la invención, el sistema puede definir un área circular, el cual está comprendido por:
o 1 torre central, dispuesta al centro de una superficie, la cual comprende:
• una antena de transmisión de ondas de radio;
• un generador de señal desestabilizadora;
• un generador de señal cortina;
• un mezclador y amplificador de señal;
• un transmisor compuesto por al menos una radio de energía portadora que modula la señal por frecuencia a amplitud constante;
o al menos 8 torres dispuestas de manera circular a una distancia radial respecto a la torre central de hasta 250 m, en donde cada una comprende:
• 1 receptor de la señal desestabilizadora y cortina;
• 1 demodulador para decodificar la señal. El método para decantar material particulado suspendido de la presente invención comprende: i) ubicar 4 torres para delimitar un área establecida, dispuestas en una superficie de hasta 2 km (largo) x 2 km (ancho) x 10 m (alto), para transmitir una señal modulada (onda desestabilizadora + onda portadora) como energía necesaria para romper las fuerzas de estabilización de material particulado;
ii) fijar el rango de la onda desestabilizadora el cual está en el rango entre 18 kHz y 200 kHz; iii) generar una onda en cuanto a geometría, amplitud y frecuencia, mediante osciladores; iv) comenzar la transmisión y recepción de las ondas.
El método para confinar material particulado suspendido de acuerdo a la presente invención comprende:
i) ubicar 4 torres para delimitar un área establecida, dispuestas en una superficie de hasta 2 km (largo) x 2 km (ancho) x 10 m (alto), para transmitir una señal modulada (onda cortina + onda portadora) como energía necesaria para bloquear las fuerzas del material particulado, generando una repulsión en el perímetro formado por las ondas emitidas desde las torres; ii) fijar el rango de la onda cortina que está comprendido entre 2 a 18 kHz;
iii) generar la onda en cuanto a geometría, amplitud y frecuencia, mediante osciladores según la evaluación del material particulado;
iv) iniciar la transmisión y recepción de las ondas.
En otra modalidad de la invención se describe un método para decantar material particulado suspendido que comprende:
i) ubicar una torre al centro de una superficie para transmitir una señal modulada (onda desestabilizadora + onda portadora) como energía necesaria para romper las fuerzas de estabilización de material particulado; ii) delimitar un área circular ubicando al menos 8 torres en un radio de hasta 250 m, en donde cada torre comprende un receptor de la señal y un demodulador para decodificar la señal transmitida;
iii)fijar el rango de la onda desestabilizadora entre 10 kHz y 50 kHz;
iv) generar la onda en cuanto a geometría, amplitud y frecuencia, mediante osciladores;
i) comenzar la transmisión y recepción de las ondas.
En una modalidad de la invención también se describe un método para confinar material particulado suspendido comprende:
i) ubicar una torre al centro de una superficie para transmitir una señal modulada (onda desestabilizadora + onda portadora) como energía necesaria para romper las fuerzas de estabilización de material particulado;
ii) delimitar un área circular ubicando al menos 8 torres en un radio de hasta 250 m, en donde cada torre comprende un receptor de la señal y un demodulador para decodificar la señal transmitida;
iii)fijar el rango de la onda cortina entre 1 kHz y 18 kHz;
iv) generar la onda en cuanto a geometría, amplitud y frecuencia, mediante osciladores;
v) comenzar la transmisión y recepción de las ondas.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1: Representación del efecto de una onda sobre MP < 10 pm.
Figura 2: Fotografía digital en colores para el conteo de las partículas.
Figura 3: Fotografía de la Figura 2 procesada en escala de grises.
Figura 4: Esquema del circuito de transmisión de la señal.
Figura 5: Diseño esquemático del reactor (columna) de investigación.
Figura 6: Fotografía del reactor (columna) de investigación. Figura 7: Gráfico de prueba de distribución para la muestra Chancado Ml, medición de la energía aplicando ondas de radio.
Figura 8: Gráfico de prueba de distribución para la muestra Chancado Ml, medición de la concentración aplicando ondas de radio.
Figura 9: Gráfico de la línea base general para muestra Chancado Ml.
Figura 10: Gráfico de Energía usando frecuencia de 0,5 MHz y amplitud de 5 V/cm para muestra Chancado Ml.
Figura 11: Gráfico de Concentración usando frecuencia de 0,5 MHz y amplitud de 5 V/cm para muestra Chancado Ml.
Figura 12: Gráfico de Energía usando frecuencia de 0,5 MHz y amplitud de 7,5 V/cm para muestra Chancado Ml.
Figura 13: Gráfico de Concentración usando frecuencia de 0,5 MHz y amplitud de 7,5 V/cm para muestra Chancado Ml.
Figura 14: Gráfico de Energía usando frecuencia de 0,5 MHz y amplitud de 10 V/cm para muestra Chancado Ml.
Figura 15: Gráfico de Concentración usando frecuencia de 0,5 MHz y amplitud de 10 V/cm para muestra Chancado Ml.
Figura 16: Representación de un área cuadrada para la confinación y decantación del MP.
Figura 17: Representación comparativa entre una torre y una persona.
Figura 18: Esquema de los puntos estudiados: dentro, perímetro y fuera del sistema establecido.
Figura 19: Gráfico de concentración del MP 10 durante el día, durante 3 días.
Figura 20: Gráfico de concentración MP 10 como promedios diarios durante 13 días dentro y en el perímetro del sistema establecido.
Figura 21: Representación de un área circular para confinación y decantación del MP. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Fundamentos
Aerosoles
El“aerosol” es una suspensión coloidal de partículas líquidas o sólidas en un gas. El humo y el polvo son considerados como aerosoles de partículas sólidas. La interacción de la atmósfera con la radiación solar crea procesos de absorción y dispersión en las partículas tipo aerosoles (coloides). Una partícula absorbe cierta cantidad de energía de una onda electromagnética incidente, para luego emitir otra en un ángulo sólido centrado en dicha partícula. Producto de la absorción, las cargas eléctricas de dichas partículas se ven afectadas. En razón de lo anterior y por efecto de fuerzas de interacción, el material fino RM<100 pm permanece suspendido y no sedimenta. Para provocar la sedimentación es necesario actuar sobre la barrera energética.
En base a lo anterior, la presente invención plantea desestabilizar las fuerzas de interacción del polvo en suspensión actuando sobre la barrera energética a través de la aplicación de energía basada en un conjunto de ondas de radio.
Los aerosoles (polvo fino compuesto por partículas con tamaño entre 0,01 pm a 100 pm) tienen un comportamiento coloidal, poseen un exceso de carga superficial adquirido por procesos de adsorción y ionización en un medio de dispersión. Este exceso de carga superficial afecta las cargas (iones) del entorno de manera tal que los iones de signo contrario (contra iones) son atraídos a la superficie y los del mismo signo (co-iones) son repelidos.
Esto mismo ocurre con el polvo que por medio de la radiación solar se produce una adsorción de energía y se producen cargas. Este mismo fenómeno, unido a la agitación térmica del sistema, da lugar a una distribución de cargas alrededor de la partícula de polvo cuya estructura adopta la forma de doble capa eléctrica. Esta doble capa eléctrica está formada por dos regiones denominadas Capa Rígida (Stern 1920), Capa difusa (Gouy 1910, Chapman 1913) y que constituye la atmósfera iónica. Efecto de la Radiofrecuencia
La radiofrecuencia (RF) posee la propiedad de conseguir desplazamientos de cargas iónicas y el medio actúa como el dieléctrico de un condensador. En un área determinada de sección conocida, en la que el medio es el aire, se cree que la RF posee la capacidad de desplazar las cargas. La señal electromagnética (EM) es atraída por la zona donde se encuentran las cargas y por ser ésta una zona de mayor absorción de la señal produce una deformación de la señal. A medida que mayor es la carga y más estabilizado está el sistema, mayor es la absorción de la onda y mayor es la neutralización de las fuerzas de interacción.
Las ondas electromagnéticas son una perturbación que transporta energía, se propagan por un medio, que en este caso es aire + material particulado. Las ondas son dirigidas desde un punto de emisión a un punto de recepción. Para que las ondas actúen sobre el material particulado rompiendo las fuerzas de interacción en un caso o bloqueando en el otro, es necesario conocer:
1. La granulo metría del material particulado.
2. La composición química del material particulado.
3. La constante dieléctrica del material particulado.
Todas estas variables se obtienen por medio de técnicas conocidas.
Una vez que el material particulado es caracterizado por medio de estas tres variables es posible realizar una prueba de Barrido de Frecuencia o diagrama de GGV, el cual corresponde a un diagrama de energía en función de un barrido de frecuencia en los límites que se han establecido a priori. Con este barrido de frecuencia se determina el valor de la frecuencia de la señal que se aplicará en las ondas.
Considerando todo lo anterior, la presente invención propone desestabilizar las fuerzas de interacción del polvo en suspensión por medio de la interacción sobre la barrera energética con una energía basada en un conjunto de ondas de radio. La presente invención basa su tecnología en la siguiente observación:“Una partícula pequeña (menor a 100 pm, incluso menor a 10 pm) absorbe cierta cantidad de energía de una onda electromagnética incidente (absorbe energía) y refracta (cambia de dirección y velocidad) la onda”. Producto de dicha absorción, las cargas eléctricas de dichas partículas se ven afectadas y se producen dos efectos:
i) Se rompen las fuerzas de interacción que mantienen en suspensión a las partículas y éstas decantan. Esto, de acuerdo a una cierta geometría, amplitud, frecuencia, aplicado sobre un campo acotado desestabiliza las fuerzas de interacción.
ii) A una cierta frecuencia, amplitud, geometría, aplicada sobre un área acotada produce un efecto de repulsión, barrera o cortina.
En conclusión, producto de la aplicación de las ondas se produce una desestabilización de material particulado < 100 pm, particularmente < 10 pm, y por otra, se crea una cortina o barrera sobre el material particulado < 100 pm, particularmente < 10 pm.
La Figura 1 explica el fenómeno del efecto de ondas sobre material particulado. Se muestra una onda transversal, con crestas y valles. Esta onda electromagnética es emitida por un generador de frecuencia en una frecuencia y amplitud determinada. Esta onda es emitida a través de una antena y viaja por un medio que es aire que contiene polvo en suspensión, cuando una onda choca con un obstáculo, es este caso aire + polvo en suspensión, en la dirección que se está propagando, la onda sufre cambios.
Conteo de partículas - estudio de segmentación
Para realizar el conteo de partículas se utiliza un contador óptico de luz a través de un microscopio de alta resolución, equipado con fluorescencia, campo claro oscuro y contraste de fases. Posee una cámara de fotográfica digital. La imagen de captura es observada a través de un software, y a partir de la captura dispone de varias herramientas relacionadas con la resolución de la imagen tales como filtros y técnicas de segmentación. El microscopio está aislado de corrientes de aire y en un ambiente térmicamente controlado. La muestra es depositada por medio de un dispensador a un portaobjeto. Una vez capturada la imagen (Figura 2) previamente afinada y ajustada, se trabaja con el software que procesa y ajusta la imagen para el conteo de partículas.
El algoritmo que analiza la imagen, por una cámara digital, consta de los siguientes pasos básicos para obtener el resultado:
a) conversión de la imagen en color a escala de grises (Figura 3);
b) detección del fondo en la imagen;
c) binarización de la imagen;
d) segmentación de la imagen;
e) conteo de partículas; y
f) cálculo de la concentración por volumen.
El color de cada pixel en una imagen digital (Imagen 1 en colores) (Figura 2) obtenida por la cámara es posible obtener una imagen final (Imagen 2) (Figura 3), correspondiente a la conversión a escala de grises para reducir la información. Luego, para poder identificar correctamente las partículas es necesario identificar las tonalidades de grises que conforman el fondo y las que pertenecen a las partículas.
La recolección final se procesa para poder obtener la información y estadística de los datos.
Lo relevante del resultado del conteo de partículas es que el mayor porcentaje de diámetros de partícula del polvo en suspensión está comprendido entre 2.5 pm y 10 pm, y que el total de las partículas tiene un tamaño que es menor a 100 pm, particularmente menor a 70 pm.
Ondas de radio
De acuerdo con la presente invención la transmisión de la señal es capaz de emitir una señal análoga o digital cuya geometría puede ser sinusoidal, cuadrada o triangular con amplitud variable entre 1 V/cm y 25 V/cm. La transmisión se realiza desde un punto A para ser recibida en un punto B a una distancia máxima de 1 kilómetro y a una altura máxima de 4 metros. En un punto A’ también se instala un transmisor para que su señal sea recibida en un punto B’. La distancia entre los punto A-A’ y B-
B’ es de 100 metros. Con esto se cubre un área de 100,000 m (10 Hectáreas).
El funcionamiento del sistema se basa en la capacidad de recepción y de sintonización digital para encontrar la señal enviada, independiente de la distorsión inducida por el ambiente. Para lograr esto, los transmisores A- A’ envían los datos digitales a los receptores B-B’ para que estos “conozcan” la información enviada por el canal análogo. De esta forma, el sistema integrado de sintonización localiza la señal independiente. Si en el camino la señal se distorsiona, ésta podrá corregirse en base a la ecuación de transferencia.
Para esto se emplea la teoría de distorsión de señales de radiofrecuencia. Dado un sistema cuya respuesta ideal es x(t), el receptor capta una señal y(t). Si y(t) = x(t), no hay distorsión. Si y(t) es menor a x(t) hay absorbancia de señal. Se define el error como:
e(t) = y(t) - x(t)
La distorsión se define como la relación de las potencias medias de error y de señal, tal como lo expresa la ecuación:
Figure imgf000013_0001
La ecuación de transferencia de la señal será según la ecuación de transformada de Laplace de salida y entrada:
Figure imgf000013_0002
La potencia utilizada para la transmisión de los datos será de alrededor de 0,5 W a 10 W, siendo preferentemente 5W, lo que, de acuerdo al sistema, asegura una correcta propagación de la señal permitiendo obtener de mejor forma la distorsión de señal que se necesita determinar. En cuanto a las antenas consideradas en el sistema, se han seleccionado aquellas que tienen funcionalidad omnidireccional de alta ganancia, ya que, generalmente, en los casos de propagación multi-trayecto hay una mayor probabilidad de que el ambiente interfiera con la señal de radiofrecuencia emitida, y este tipo de antenas disminuye la posibilidad de ocurrencia de estas interferencias. Sin embargo, esto no descarta la el uso de antenas direccionales, por cuanto se debe encontrar un punto de equilibrio entre calidad, alcance del enlace RF y la sensibilidad de recepción para recibir la señal.
En el caso de una antena omnidireccional de alta ganancia está fabricada con materiales resistentes al agua y a la corrosión, puede ser usada en interiores o exteriores, que permiten su instalación en estaciones base y aplicaciones multipunto de área extendida.
Dependiendo del área en donde se instalará el sistema de la presente invención, la frecuencia de transmisión de la señal será variable y se puede seleccionar entre 0,433 MHZ, 0,470 MHZ, 0,868 MHZ y 0,915 MHZ. Estas frecuencias son abiertas y permiten tener varias opciones para trabajar según el lugar físico donde se realicen las mediciones. A su vez, la tasa de transferencia de datos digitales considerada es de entre 1.200 Bps y 2.400 Bps tomando en cuenta que esto ayuda a mantener un enlace seguro y estable.
El sistema que define un área cuadrada o rectangular puede presentarse como dos modalidades que funcionan realizando el mismo efecto:
• Un primer sistema funciona con 4 torres, que contienen cada una 5 antenas de transmisión y 5 antenas de recepción.
• Un segundo sistema, se basa en el primero, funciona de igual manera con 4 torres, pero cada torre solo contiene una sola antena vertical con deflectores.
Si las ondas de sonido se difundieran directamente en forma de señales electromagnéticas, la antena tendría que tener más de un kilómetro de altura. Usando frecuencias mucho más altas para la onda portadora, el tamaño de la antena se reduce significativamente porque las frecuencias más altas tienen longitudes de ondas más cortas. Este proceso se conoce como modulación.
La modulación engloba el conjunto de técnicas que se usan para transportar información sobre una onda portadora, típicamente una onda sinusoidal. Estas técnicas permiten un mejor aprovechamiento del canal de comunicación lo que posibilita transmitir más información de forma simultánea además de mejorar la resistencia contra posibles ruidos e interferencias. Según la American National Standard for Telecommunications, la modulación es el proceso, o el resultado del proceso, de variar una característica de una onda portadora de acuerdo con una señal que transporta información. El propósito de la modulación es sobreponer señales en las ondas portadoras.
Básicamente la modulación consiste en hacer que un parámetro de la onda portadora cambie de valor de acuerdo con las variaciones de la señal moduladora, que es la información que se quiere transmitir. La técnica empleada para la modulación en la transmisión de la señal es por amplitud constante y frecuencia variable, esto es frecuencia modulada.
Transmisión de la señal
Cada torre de antenas está compuesta por un circuito que se indica en la Figura 4. La onda electromagnética a transmitir se produce en 2 generadores de funciones que pasan a un mezclador y a un divisor, que toman la señal, la amplifican y modulan (elevador de señal), y se transfieren para ser transmitida de forma idéntica a 5 radios para finalmente ser transmitidas a través de su antena
Es importante considerar que la señal de acuerdo a la presente invención se transportará en un medio que contiene partículas de material particulado PM < 10 pm. Cualquier partícula a una temperatura diferente del cero absoluto, posee una energía térmica que se manifiesta como movimiento aleatorio o agitación térmica. En este caso, se sabe que los aerosoles son coloides, los coloides tienen carga, y las cargas son electrones. Si las partículas tienen carga producto de electrones o dipolos, su movimiento aleatorio genera una corriente aleatoria. Si esta corriente aleatoria ocurre en un medio conductor, se produce un voltaje conocido como“ruido térmico o ruido de resistencia”. Como es de esperar, producto de la dualidad onda-partícula existe un ruido térmico asociado con la radiación electromagnética del sol por una parte, y por otra, el ruido causado por el material particulado. Para esto, se inicia transmitiendo con una potencia (energía de emisión) y se recibe con otra o la misma energía de emisión. Cualquiera sea el método utilizado para cuantificar, al emitir la señal a través de una zona con material particulado, se debe cuantificar el ruido.
Recepción de la señal
La recepción de la señal es captada directamente por la antena receptora que, a su vez, la transmite a la radio.
El procedimiento de transmisión a través de la radio es una modulación. Esto es, la radio emite una onda portadora de frecuencia y amplitud conocida que varía desde 300 a 500 MHz. La onda portadora que emite la radio corresponde a una onda, generalmente sinodal, modificada en alguno de sus parámetros (amplitud, frecuencia o fase) por una señal de entrada denominada moduladora con el fin de transmitir una información. Esta onda portadora es de una frecuencia mucho más alta que la de la señal.
La recepción de la señal en la antena es transmitida a la radio y ésta, a su vez, la demodula en sistemas de comunicación con modulación multiportadora DFT y transmultiplexadores basados en bancos de filtros modulados en seno y/o coseno, y los correspondientes dispositivos para transmitir y recibir las señales para uno o múltiples usuarios, con una o múltiples etapas de transmisión y de recepción.
DESCRIPCIÓN DE LAS MODALIDADES PREFERIDAS
Antes de explicar las modalidades de la invención de forma detallada, se debe comprender que la invención no se limita en su aplicación a los detalles de construcción y el arreglo de componentes que se indican en la siguiente descripción o se ilustran en las figuras. La invención permite otras modalidades, así como también su puesta en práctica de diversas formas. Asimismo, se debe entender que la terminología utilizada en la presente cumple fines descriptivos y no se deben interpretar como restrictivas.
En una modalidad de la invención en el sistema de área cuadrada o rectangular las antenas de transmisión y recepción de ondas de radio pueden ser al menos 4 antenas lineales. En donde las antenas de transmisión y recepción de ondas de radio pueden ser 5 o más antenas Yagi por torre. En una modalidad de la presente invención en el sistema de área cuadrada o rectangular la señal de la onda cortina funciona a una frecuencia en el rango de 2 a 18 kHz.
En otra modalidad de la presente invención en el sistema de área cuadrada o rectangular la señal de la onda desestabilizadora funciona a una frecuencia en el rango de 18 kHz a 200 kHz.
Aún en otra modalidad de la presente invención en el sistema de área cuadrada o rectangular señal de la onda portadora funciona a una frecuencia en el rango de 400 MHz a 600 MHz.
En otra modalidad de la invención, en el sistema de área circular la onda de la señal cortina funciona a una frecuencia en el rango de 1 a 18 kHz.
En otra modalidad de la invención, en el sistema de área circular la onda de la señal desestabilizadora funciona a una frecuencia en el rango de 10 kHz a 50 kHz.
Aún en otra modalidad de la invención, en el sistema de área circular la onda portadora funciona a una frecuencia en el rango de 400 MHz a 600 MHz.
En una modalidad preferida de la invención el sistema en cualquiera de sus disposiciones (cuadrada, rectangular o circular) áreas además comprende al menos un equipo de medición del material particulado.
En una modalidad de la invención el material particulado que se mide tiene un tamaño de partícula menor o igual a 100 pm.
En una modalidad preferida de la invención el material particulado que se mide tiene un tamaño de partícula menor o igual a 10 pin.
En una modalidad de la invención el material particulado se mide dentro del sistema, en cualquiera de sus disposiciones.
En otra modalidad de la invención el material particulado se mide en el perímetro del sistema, en cualquiera de sus disposiciones.
Aún en otra modalidad de la invención el material particulado se mide fuera del sistema, en cualquiera de sus disposiciones.
En una modalidad de la invención en el método para decantar y/o confinar material particulado suspendido tiene un tamaño menor o igual a 100 pm.
En otra modalidad de la invención en el método para decantar y/o confinar material particulado suspendido tiene un tamaño menor o igual a 10 pm.
EJEMPLOS DE APLICACIÓN
Ejemplo 1
Se realizó una prueba a nivel de laboratorio utilizando un reactor (columna) para poder desestabilizar el material particulado en suspensión menor a 10 pm de manera controlada.
El reactor comprende una columna vertical de 38 cm de diámetro, un área interior de 1.134,12 cm y una altura de 1 metro. En esta columna se instaló un sistema de medición de concentración de polvo ambiental a distintas alturas para poder construir las curvas de sedimentación, con control de velocidad de viento y radiación, el cual a una humedad y temperatura determinada se puede insuflar polvo en suspensión de manera tal que sensores de luz puedan medir la energía y la concentración cada 10 centímetros en un largo de 100 centímetros (1 m).
La columna del reactor consta de una serie de equipos para simular las condiciones de una faena minera, además de unos equipos de medición y control de las variables necesarias para modelar las soluciones propuestas y que se detallan a continuación. El modelo de columna empleado se presenta en la Figura 5. La columna está formada por:
a) Un compresor para inyectar la muestra de polvo hacia el interior de la columna.
b) Una bomba de aire de álabes para insuflarlo a una velocidad de viento definida.
c) Un anemómetro para regular la velocidad del viento que permite simular las condiciones reales.
d) Un generador de funciones para producir ondas entre 1 Hz y 3 MHz de geometría sinusoidal, diente de sierra y cuadrada, con variación de amplitud y otras variables de ondas. e) Un osciloscopio para poder observar las ondas emitidas y las ondas recepcionadas. Con esto ver el efecto respuesta mediante una función de transferencia.
f) Un medidor de humedad y temperatura para establecer las condiciones de humedad y temperatura del ensayo.
g) Una lámpara de radiación UV para medir la cantidad de radiación suministrada.
h) Un sistema de antenas electrodos de acero inoxidable AISI 316 L, para emisión y captación de la señal.
i) Sensores de polvo.
j) Un microprocesador que convierte la señal captada por cada sensor en una señal binaria para ser registrada en un PC a través de un puerto USB.
k) Software integrador para procesar los datos en tiempo real, con medición al segundo. l) PC controlador de 2 núcleos para el procesamiento de curvas y gráficos.
El sistema cuenta con 10 sensores espectro foto métricos distribuidos en el centro del reactor que se comunican mediante dos cajas de interface de conversión de datos que permite emitir las señales binarias y transformarlas a sistema decimal mediante software que mide la cantidad de polvo en suspensión en forma de información numérica en tiempo real. El sistema de medición consta de una distribución de sensores ópticos capaces de medir la distorsión luminosa entre un emisor y un receptor en base al nivel de contaminación ambiental llámese polvo en suspensión o humo.
Este sistema está diseñado para medir el polvo en suspensión en pg/m3 que se expresará como densidad de polvo.
El proceso se inicia con la carga una muestra de polvo en la columna de investigación y a través del anemómetro se fija la velocidad del viento. Una vez fijada la velocidad del viento se inyectan las partículas de polvo con la ayuda de un compresor a alta presión. Se produce una recirculación y se mide la curva de velocidad de sedimentación detectada por los sensores. El PC recibe los datos y genera una tabla para cada sensor. Las mediciones realizadas son en continuo con emisión de datos cada segundo.
Los sensores están distribuidos en una altura de entre 10 y 90 cm de la base de la columna, con intervalos de 10 cm entre cada uno. Estos sensores se calibran previamente, emitiendo un haz de luz que es recibido por un receptor en un anillo cilindrico por donde pasa el polvo. Un microprocesador convierte la señal captada por cada sensor en una señal binaria y un programa integrador procesa los datos en tiempo real. De esta forma, se dispone de datos en función del tiempo por cada sensor, y a su vez se cuenta con de datos por altura a un tiempo determinado. Un sensor en un punto X capta una determinada concentración la que va disminuyendo en el tiempo. De la misma forma, un sensor ubicado en un punto X-10 cm va determinando que la concentración va en aumento para el mismo tiempo, pero que también va disminuyendo en función de un tiempo mayor. Por su parte, los sensores más cercanos a la base de la columna determinan que la concentración va en aumento.
Para realizar la línea base se pesó una cantidad determinada de polvo, la que se inyectó a través de un compresor a la columna, previa recirculación de aire a una velocidad determinada que simula la velocidad del viento. Establecida la línea base, se procedió a determinar la línea operacional que repite el mismo procedimiento de la línea base pero se diferencia por la aplicación de una onda electromagnética de radiofrecuencia, de amplitud constante de 1.5 volts y geometría conocida, esto es, onda sinusoidal, aunque también se puede utilizar onda tipo diente de sierra y cuadrada. De esta manera se obtuvo una segunda curva denominada línea activada.
El procedimiento de operación fue el siguiente:
a) Pesar una cantidad de polvo;
b) Activar el soplador de aire y con el regulador se ajusta la velocidad del viento;
c) Conectar el generador de funciones a dos antenas electrodos separadas a 10 centímetros por donde pasara la mezcla aire-polvo;
d) Inyectar el polvo a presión con el compresor. Para esto el polvo previamente pesado se pone en el dispositivo inyector que se conecta al compresor y se expulsa a la columna; e) Hacer recircular el polvo inyectado por un tiempo determinado, el cual se somete a la RF de amplitud y geometría conocida, para luego activar la medición de todos los sensores; f) Recolectar los datos obtenidos a cada segundo.
Para eliminar la posible contaminación de polvos de diferentes fuentes de origen (polen, orgánicos y partículas minerales) se realiza una medición sin aplicación de polvo ni RF, solo aire, para calibrar el equipo.
Se realizó la calibración y ajuste de datos experimentales utilizando muestras obtenida de una minera durante 21 días eligiendo como punto de recolección una planta de chancado la cual se denominará como Chancado Ml.
Una vez realizadas las experiencias, se realizó un procesamiento de datos con el objetivo de obtener un de datos experimentales con muestras de Chancado Ml.
Producto de la calibración y ajuste de datos experimentales realizados, se observó que la curva tiene una tendencia asintótica al eje cartesiano de las abscisas (ver Figura 7). Por esta razón, se realizaron las mediciones hasta los 45 minutos, a intervalos de 5 minutos. Considerando esto, se muestran una serie de curvas que muestran tendencias, expresadas en energía versus tiempo, y su homólogo de concentración versus tiempo, las que se expresan como experiencias de recolección de datos. Así es posible observar las tendencias y observar el comportamiento del efecto de la aplicación de ondas de radio.
Por otra parte, se procesaron los datos experimentales y se muestran en un resumen, mediante los cuales se puede observar la variación de la concentración promedio en función del tiempo, y así obtener la velocidad de sedimentación para determinar finalmente el efecto de la aplicación de las ondas de radio.
Este estudio se realizó empleando una radiación constante de 5,1 kwh-nT D, una velocidad de viento constante de 5,5 km/h con el objetivo de minimizar variables, de manera de demostrar la desestabilización del polvo en suspensión menor a 10 pm utilizando energía electromagnética, se trató de mantener pruebas con temperatura constante o lo más próximas de manera que las mediciones sean comparables.
Calibración y ajustes de datos experimentales para muestras de Chancado Ml
Para calibrar los sensores se utiliza una correlación entre la medición de la energía emitida y la energía recibida en el sensor. Para esto, se emite una luz infrarroja a través de un diodo el que es captado por un foto-transistor. La señal emitida por el sensor se mide en volts separado a una distancia de un centímetro. Por lo tanto, la emisión es un campo eléctrico medido en Voltios/cm. La señal recibida también se mide en volts. El punto de equilibrio lo demarca una gráfica de correlación entre la energía medida en volts y la concentración medida en mg/m3 (ver Liguras 7 y 8).
Tal como se espera, el material particulado < 10 pg tiene una muy baja velocidad de sedimentación, por lo que se debe esperar una tendencia lineal paralela con el eje de las abscisas. Para esto se toma una cantidad de muestra de manera tal que no sobrepase la capacidad de medición del sensor.
De acuerdo a la Figura 8, en el tiempo se produce una disminución de la concentración en los sensores de mayor altura y se va concentrando en los sensores más bajos. Específicamente, en este ejemplo, se ha aplicado a la muestra de chancado Ml ondas de radio con una frecuencia de 500 KHz (0,5 MHz) con una amplitud de 5 V/cm, que se recircula con 15 a 20 minutos de exposición, y que luego se detiene para recolectar los datos provenientes de los sensores.
Resultados Ejemplo 1
Los resultados obtenidos, que se muestran en la Figura 7, muestran una confluencia de puntos que aumenta a medida que disminuye la altura y disminuye a medida que aumenta el tiempo cuando se aplican las ondas de radio; sin embargo, la tendencia de las muestras sin aplicación de las ondas de radio es permanecer en estado de suspensión.
En la Figura 7, se puede observar claramente el efecto de aplicar las ondas de radio de geometría sinusoidal, emitida por un generador de funciones y controlada por osciloscopio. La tendencia en todos los puntos es mostrar una clara línea de tendencia cuya curva obedece a un polinomio de grado 4 como mínimo con R = 0,987 que explica que este proceso surte su mayor efecto en los primeros 45 minutos. La Figura 8 corresponde al gráfico equivalente al de la Figura 7, pero en medidas de concentración en el eje de las ordenadas.
Considerando este efecto observado, todos los datos presentados consideran la medición de hasta 45 minutos de tiempo real.
Datos obtenidos para la muestra de Chancado Ml
Estas experiencias tienen como objetivo observar el efecto de la amplitud de onda en una configuración de onda de geometría sinusoidal emitida por un generador de funciones. La muestra de Chancado Ml alcanzó una densidad de 2,45 g/cm . En la realización de este estudio se consideró una radiación y humedad constantes. La Tablas 1, 2, 3 muestran los datos obtenidos, los cuales se grafican y muestran en las Figuras 10, 12, 14. a) Energía de la muestra Chancado Ml, aplicando onda de radio con una frecuencia de 0,5 MHz y una amplitud de 5 V/cm (ver Tabla 1 y Figura 10).
Tabla 1
Figure imgf000024_0001
Si se observan los resultados mostrados en la Figura 10, donde se aplicó una onda de radio de 0,5 MHz de frecuencia con una amplitud de 5 V/cm se aprecia que la tendencia de la curva es una típica polinómica de orden 4 que nos indica una reducción de concentración de material particulado en todos los sensores y a distintas alturas. Se puede observar que DE ~ (3,8 V/cm - 1 V/cm) ~ 2,8 V/cm en solo 5 minutos.
Los mismos datos de la Tabla 1 se llevaron a concentración y se graficaron en la Figura 11.
La Figura 11, homologa de concentración para Chancado Ml, muestra lo mismo que la Figura 10 mirado como una fuerza impulsora correspondiente a la diferencia de concentración entre el punto mayor y menor en una unidad de tiempo. b) Energía de la muestra de Chancado Ml, aplicando onda de radio con una frecuencia de 0,5 MHz y una amplitud de 7,5 V/cm se muestra en la Tabla 2 y Figura 12, y su homologa en concentración en la Figura 13.
Tabla 2
Figure imgf000025_0001
c) Energía de la muestra de Chancado Ml, aplicando onda de radio con una frecuencia de 0,5 MHz y amplitud de 10 V/cm se muestra en la Tabla 3, Figura 14 y su homologa de concentración en la Figura 15.
Tabla 3
Figure imgf000025_0002
Figure imgf000026_0001
Si se observa la línea base cuya diferencia de energía alcanza a DE ~ 0,6 V/cm en 43 minutos, tenemos entonces que la razón de velocidad alcanza a 0,014 (V.cní1 · min). Cuando se aplica las onda de radio se puede observar que la diferencia de energía alcanza a DE ~ 2,8 V/cm en 5 minutos, alcanzando una razón de velocidad de 0,56 (V-cni1· min). Se puede apreciar que el efecto de las ondas con respecto a la línea base, cuando se aplica una frecuencia de 0,5 MHz con una amplitud de 5 V/cm, aumenta 40 veces la velocidad de sedimentación del material particulado.
La razón de velocidad promedio para la línea base, en todas las experiencias, es de 0,0169 V-cm ^min con un máximo de 0,028 V-cm-1 -min y un mínimo de 0,013 V-cm 1· min. La razón de velocidad promedio para todas las muestras para una frecuencia de 0,5 MHz y una amplitud de 5 V/cm alcanza a un valor de 0,369 V-cm^-min con un máximo de 0,56 V-cm^-min y un mínimo de 0,32 V-cm 1 min. Con estos promedios se puede decir que, estadísticamente, mediante la presente invención la velocidad de sedimentación aumenta 19 veces al utilizar una amplitud de 5 V/cm, 21,7 veces cuando se utiliza una amplitud a 7,5 V/cm y 24 veces cuando se usa una amplitud de 10 V/cm. La tendencia es que, a medida que aumenta la amplitud, aumenta la razón de velocidad de sedimentación con respecto a la línea base.
En la Tabla 4 se muestra un resumen de los datos obtenidos de velocidad de sedimentación tanto de la línea base como para las tres amplitudes medidas, para la muestra Chancado Ml.
Tabla 4
Figure imgf000027_0001
Estos resultados muestran que la velocidad de sedimentación (expresada como unidad de mg-rn H) para estas muestras es casi 21 veces más rápida que la de la línea base.
Conclusiones del Ejemplo 1
· Al irradiar con ondas de radio con frecuencia de 0,5 MHz y amplitud variable entre 5 V/cm y
10 V/cm, en condiciones de radiación y humedad constante, y velocidad de viento 5,5 Km/H, las partículas de polvo en suspensión son desestabilizadas·
• La interacción de la atmósfera con la radiación solar (coloides) crea procesos de absorción y dispersión en las partículas tipo aerosoles. Una partícula recibe cierta cantidad de energía de una onda electromagnética incidente, absorbe una parte de esa energía y emite otra en un ángulo sólido centrado en dicha partícula. Producto de la absorción, las cargas eléctricas de las partículas se ven afectadas y produciéndose una estabilización que mantiene a estas en suspensión. Al aplicarse una onda de radio la energía emitida hace resonancia con la energía de las fuerzas estabilizadoras, provocando el rompimiento de éstas, con el resultado de un aumento significativo de la velocidad de sedimentación de las partículas de polvo en suspensión.
• La radiofrecuencia posee la propiedad de conseguir desplazamientos de cargas iónicas y el medio se comporta como el dieléctrico de un condensador. En un área determinada de dimensiones conocidas, en la que el medio de suspensión es el aire, se ha demostrado que la radiofrecuencia posee la capacidad de desplazar las cargas. La señal electromagnética identificada como una onda de radio atrae selectivamente la intensidad. A medida que mayor es la carga y más estabilizado está el sistema, mayor es la absorción de la onda y mayor la neutralización de las fuerzas de interacción. Por tanto, la conclusión más importante que se demuestra que es posible desestabilizar las fuerzas de interacción del polvo en suspensión al actuar sobre la barrera energética con una energía basada en un conjunto de ondas de radio.
• La obtención de una línea base paralela al eje de las abscisas que demuestra que el material permanece en suspensión, esto en casi todos los casos, pero esta curva, cuando se aplica el procedimiento de la presente invención, provoca un notable cambio cuya razón de velocidad como mínimo es 20 veces mayor que la línea base.
• Para un sistema cerrado al cual se aplicó ondas electromagnéticas, mostraron una desestabilización de fuerzas de interacción que permitió la sedimentación del polvo que es menor a 10 pm, llegando a aumentar su velocidad de sedimentación significativamente.
Ejemplo 2
Se evaluó la presente invención en un espacio abierto dentro de una operación minera de cobre a rajo abierto localizada en Chile central.
El sistema empleado estaba compuesto por:
• 4 torres con antenas ubicadas en las esquinas de un área formada por 20 m de largo, 20 m de ancho y a 4 m de altura (ver Figura 16). En cada una de estas 4 torres se colocaron 5 antenas de transmisión (Tx) y 5 de recepción (Rx), tal como se muestra en la Figura 17. Por cada torre se transmite una onda portadora que lleva consigo dos señales, una señal desestabiliz adora para sedimentar el polvo en suspensión, y una señal cortina para bloquear el polvo ambiental (< 100 pm).
Como alternativa a estas 5 antenas por torre se puede emplear una sola antena de barra de transmisión y una de recepción por torre. Se midió la cantidad de polvo en suspensión, específicamente el material particulado de 10 pm. Las estaciones de monitoreo se ubicaron en tres puntos diferentes, uno dentro del sistema creado por las 4 torres; uno en donde se ubican las 4 torres (área MP), uno en el perímetro del sistema y uno fuera del sistema a 250 m, tal como se muestra en la Figura 18.
Se evaluó el comportamiento del material particulado en suspensión durante las horas de operación y se determinó la concentración de PM 10 pm tiempo 0, es decir, sin aplicar la señal desestabilizadora, luego a los 30 minutos de funcionamiento y posteriormente a cada hora.
La frecuencia de cada una de las ondas empleadas se muestra a continuación:
Tabla 5
Figure imgf000029_0001
Resultados Ejemplo 2
La Tabla 6 muestra los valores obtenidos durante tres días diferentes y consecutivos, dentro del sistema creado por las 4 torres.
Tabla 6
Figure imgf000029_0002
Figure imgf000030_0001
La Figura 19 muestra el gráfico de las mediciones realizadas que da cuenta del comportamiento. Conclusiones Ejemplo 2
• Los resultados obtenidos muestran que una vez que se da inicio a la emisión de las ondas electromagnéticas generadas por las ondas de radio se produce una disminución significativa de la concentración del PM 10 pm la desestabilización de las partículas en suspensión del tipo aerosol produciéndose su decantamiento. Esta desestabilización ocurre dentro de la primera hora de funcionamiento.
• Estos resultados prueban la presencia de una señal cortina que impide el paso de nuevo material particulado hacia el interior del perímetro establecido por las antenas. Esta concentración permanece constante, y es independiente de lo que ocurra fuera del sistema.
• El método desarrollado no sólo produce que el material particulado decante dentro del área en donde se ubica el sistema sino que además se establece un área de confinamiento en donde no es posible que ingrese nuevo material contaminante, de manera independiente del tipo de faena que se esté llevando a cabo o de la velocidad del viento.
Ejemplo 3
Para determinar comparativamente el comportamiento de las partículas en suspensión dentro y fuera del sistema establecido por las antenas, se midió la concentración a cada hora durante 13 días, el promedio para cada día de medición se muestra en la Tabla 7.
Resultados Ejemplo 3
La Tabla 7 resume los datos obtenidos tanto dentro del sistema y en el perímetro de éste y la Figura 20 el gráfico asociado. Tabla 7
Figure imgf000031_0001
Conclusiones Ejemplo 3
• Los resultados obtenidos demuestran que dentro de sistema definido por las 4 torres la concentración del MP (10 pg) menor que su concentración en el perímetro del sistema, lo que da cuenta que dentro del sistema la decantación del material es mayor, sin embargo, en el perímetro del sistema también se produce un efecto de decantación.
• La concentración de polvo que se mantiene dentro del sistema es un 56% menor que el sector pantalla o perímetro. La señal desestabilizadora permite decantar el material particulado en suspensión que se encuentra dentro del sistema de la presente invención.
La señal de bloqueo permite mantener las concentraciones dentro del sistema de manera independiente a las condiciones existentes, tales como el viento, tipo de faena, etc.

Claims

REIVINDICACIONES
1. Un sistema para confinación y decantación de material particulado suspendido, CARACTERIZADO porque comprende:
o 4 torres dispuestas en una superficie de hasta 2 km (largo) x 2 km (ancho) x 10 m (alto), en donde cada torre comprende:
• antenas de transmisión de ondas de radio;
• antenas de recepción de ondas de radio;
• demoduladores para decodificar la señal;
• osciladores generadores de dos tipos de señal: desestabilizadora y cortina;
• mezcladores y purificadores de señal que mezclan la señal desestabilizadora con la señal cortina y la envía al transmisor;
• transmisores compuestos por al menos una radio de energía portadora que modula la señal por frecuencia a amplitud constante.
2. El sistema de acuerdo a la reivindicación 1, CARACTERIZADO porque las antenas de transmisión y recepción de ondas de radio pueden ser al menos 4 antenas lineales por torre en un área cuadrada o rectangular.
3. El sistema de acuerdo a la reivindicación 1, CARACTERIZADO porque las antenas de transmisión y recepción de ondas de radio pueden ser 5 o más antenas Yagi por torre.
4. El sistema de acuerdo a la reivindicación 1, CARACTERIZADO porque la onda de la señal cortina funciona a una frecuencia en el rango de 2 a 18 kHz.
1
5. El sistema de acuerdo a la reivindicación 1, CARACTERIZADO porque la onda de la señal desestabilizadora funciona a una frecuencia en el rango de 18 kHz a 200 kHz.
6. El sistema de acuerdo a la reivindicación 1, CARACTERIZADO porque la onda portadora funciona a una frecuencia en el rango de 400 MHz a 600 MHz.
7. El sistema de acuerdo a la reivindicación 1, CARACTERIZADO porque además comprende al menos un equipo de medición del material particulado.
8. El sistema de acuerdo a la reivindicación 7, CARACTERIZADO porque el material particulado que se mide tiene un tamaño de partícula menor o igual a 100 pm.
9. El sistema de acuerdo a la reivindicación 8, CARACTERIZADO porque el material particulado que se mide tiene un tamaño de partícula menor o igual a 10 pm.
10. El sistema de acuerdo a la reivindicación 7, CARACTERIZADO porque el material particulado que se mide dentro del sistema definido por las 4 torres.
11. El sistema de acuerdo a la reivindicación 7, CARACTERIZADO porque el material particulado que se mide en el perímetro del sistema definido por las 4 torres.
12. El sistema de acuerdo a la reivindicación 7, CARACTERIZADO porque el material particulado que se mide fuera del sistema definido por las 4 torres.
2
13. Método para decantar material particulado suspendido, CARACTERIZADO porque comprende:
i) ubicar 4 torres para delimitar un área establecida, dispuestas en una superficie de hasta 2 km (largo) x 2 km (ancho) x 10 m (alto), para transmitir una señal modulada (onda desestabilizadora + onda portadora) como energía necesaria para romper las fuerzas de estabilización de material particulado;
i) fijar el rango de la onda desestabilizadora el cual está en el rango entre 18 kHz y 200 kHz;
ii) generar una onda en cuanto a geometría, amplitud y frecuencia, mediante osciladores; iii)comenzar la transmisión y recepción de las ondas.
14. El método de acuerdo con la reivindicación 13, CARACTERIZADO porque el material particulado tiene un tamaño menor o igual a 100 pm.
15. El método de acuerdo con la reivindicación 14, CARACTERIZADO porque el material particulado tiene un tamaño menor o igual a 10 pm.
16. Método para confinar material particulado suspendido, CARACTERIZADO porque comprende:
i) ubicar 4 torres para delimitar un área establecida, dispuestas en una superficie de hasta 2 km (largo) x 2 km (ancho) x 10 m (alto), para transmitir una señal modulada (onda cortina + onda portadora) como energía necesaria para bloquear las fuerzas del material particulado, generando una repulsión en el perímetro formado por las ondas emitidas desde las torres;
ii) fijar el rango de la onda cortina que está comprendido entre 2 a 18 kHz;
3 iii)generar la onda en cuanto a geometría, amplitud y frecuencia, mediante osciladores según la evaluación del material particulado;
iv) iniciar la transmisión y recepción de las ondas.
17. Método de acuerdo a la reivindicación 16, CARACTERIZADO porque el material particulado tiene un tamaño menor o igual a 100 pm.
18. Método de acuerdo a la reivindicación 17, CARACTERIZADO porque el material particulado tiene un tamaño menor o igual a 10 pm.
19. ETn sistema para confinación y decantación de material particulado suspendido, CARACTERIZADO porque comprende:
o 1 torre central, dispuesta al centro de una superficie, la cual comprende:
• una antena de transmisión de ondas de radio;
• un generador de señal desestabilizadora;
• un generador de señal cortina;
• un mezclador y amplificador de señal;
• un transmisor compuesto por al menos una radio de energía portadora que modula la señal por frecuencia a amplitud constante;
o al menos 8 torres dispuestas de manera circular a una distancia radial respecto a la torre central de hasta 250 m, en donde cada una comprende:
• 1 receptor de la señal desestabilizadora y cortina;
• 1 demodulador para decodificar la señal.
4
20. El sistema de acuerdo a la reivindicación 19, CARACTERIZADO porque la onda de la señal cortina funciona a una frecuencia en el rango de 1 a 18 kHz.
21. El sistema de acuerdo a la reivindicación 19, CARACTERIZADO porque la onda de la señal desestabilizadora funciona a una frecuencia en el rango de 10 kHz a 50 kHz.
22. El sistema de acuerdo a la reivindicación 19, CARACTERIZADO porque la onda portadora funciona a una frecuencia en el rango de 400 MHz a 600 MHz.
23. Método para decantar material particulado suspendido, CARACTERIZADO porque comprende: i) ubicar una torre al centro de una superficie para transmitir una señal modulada (onda desestabilizadora + onda portadora) como energía necesaria para romper las fuerzas de estabilización de material particulado;
ii) delimitar un área circular ubicando al menos 8 torres en un radio de hasta 250 m, en donde cada torre comprende un receptor de la señal y un demodulador para decodificar la señal transmitida;
iii)fijar el rango de la onda desestabilizadora entre 10 kHz y 50 kHz;
iv) generar la onda en cuanto a geometría, amplitud y frecuencia, mediante osciladores; v) comenzar la transmisión y recepción de las ondas.
24. Método de acuerdo a la reivindicación 23, CARACTERIZADO porque el material particulado tiene un tamaño menor o igual a 100 pm.
5
25. Método de acuerdo a la reivindicación 24, CARACTERIZADO porque el material particulado tiene un tamaño menor o igual a 10 pm.
26. Método para confinar material particulado suspendido, CARACTERIZADO porque comprende:
i) ubicar una torre al centro de una superficie para transmitir una señal modulada (onda desestabilizadora + onda portadora) como energía necesaria para romper las fuerzas de estabilización de material particulado;
ii) delimitar un área circular ubicando al menos 8 torres en un radio de hasta 250 m, en donde cada torre comprende un receptor de la señal y un demodulador para decodificar la señal transmitida;
iii)fijar el rango de la onda cortina entre 1 kHz y 18 kHz;
iv) generar la onda en cuanto a geometría, amplitud y frecuencia, mediante osciladores; v) comenzar la transmisión y recepción de las ondas.
27. Método de acuerdo a la reivindicación 26, CARACTERIZADO porque el material particulado tiene un tamaño menor o igual a 100 pm.
28. Método de acuerdo a la reivindicación 27, CARACTERIZADO porque el material particulado tiene un tamaño menor o igual a 10 pm.
6
PCT/CL2018/050090 2018-09-28 2018-09-28 Sistemas y métodos para confinar y decantar material particulado suspendido WO2020061718A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2018/050090 WO2020061718A1 (es) 2018-09-28 2018-09-28 Sistemas y métodos para confinar y decantar material particulado suspendido

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2018/050090 WO2020061718A1 (es) 2018-09-28 2018-09-28 Sistemas y métodos para confinar y decantar material particulado suspendido

Publications (1)

Publication Number Publication Date
WO2020061718A1 true WO2020061718A1 (es) 2020-04-02

Family

ID=69950333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2018/050090 WO2020061718A1 (es) 2018-09-28 2018-09-28 Sistemas y métodos para confinar y decantar material particulado suspendido

Country Status (1)

Country Link
WO (1) WO2020061718A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021195793A1 (es) * 2020-03-31 2021-10-07 Quantum Matrix Spa Sistemas y métodos para bloquear, confinar y decantar el polvo en suspensión presente en una zona

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962238A (zh) * 2014-05-14 2014-08-06 武汉永磁科技有限公司 电磁振动冲击波工业除尘设备
EP3171003A1 (en) * 2015-11-18 2017-05-24 Rolls-Royce North American Technologies, Inc. Air-inlet duct having a particle separator and an agglomerator for a gas turbine engine
EP1991359B1 (en) * 2006-03-02 2018-09-05 CleanNano10 B.V. Method for the removal of smut, fine dust and exhaust gas particles and particle catch arrangement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1991359B1 (en) * 2006-03-02 2018-09-05 CleanNano10 B.V. Method for the removal of smut, fine dust and exhaust gas particles and particle catch arrangement
CN103962238A (zh) * 2014-05-14 2014-08-06 武汉永磁科技有限公司 电磁振动冲击波工业除尘设备
EP3171003A1 (en) * 2015-11-18 2017-05-24 Rolls-Royce North American Technologies, Inc. Air-inlet duct having a particle separator and an agglomerator for a gas turbine engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021195793A1 (es) * 2020-03-31 2021-10-07 Quantum Matrix Spa Sistemas y métodos para bloquear, confinar y decantar el polvo en suspensión presente en una zona

Similar Documents

Publication Publication Date Title
Bates et al. Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: An overview
Formenti et al. Recent progress in understanding physical and chemical properties of African and Asian mineral dust
Laskin et al. Heterogeneous chemistry of individual mineral dust particles with nitric acid: A combined CCSEM/EDX, ESEM, and ICP‐MS study
Srivastava et al. Improved air quality during COVID-19 at an urban megacity over the Indo-Gangetic Basin: From stringent to relaxed lockdown phases
Alam et al. Particulate matter and its source apportionment in Peshawar, Northern Pakistan
Samad et al. Vertical distribution of particulate matter, black carbon and ultra-fine particles in Stuttgart, Germany
ES2930680T3 (es) Un material en forma de partículas que comprende un carbonato alcalinotérreo para la captación de NOX
WO2020061718A1 (es) Sistemas y métodos para confinar y decantar material particulado suspendido
Ramachandran Atmospheric aerosols: Characteristics and radiative effects
KR20160132513A (ko) 대기 관리 및 대기질 분석 시스템
Song et al. Investigation of aged Asian dust particles by the combined use of quantitative ED-EPMA and ATR-FTIR imaging
Yamashita et al. CCN ability of Asian mineral dust particles and their effects on cloud droplet formation
Zhang et al. Sources and vertical distribution of PM2. 5 over Shanghai during the winter of 2017
WO2021195793A1 (es) Sistemas y métodos para bloquear, confinar y decantar el polvo en suspensión presente en una zona
CN105651710A (zh) 一种获取气溶胶绝对光强的光学遥感方法
Filep et al. Absorption spectrum of ambient aerosol and its correlation with size distribution in specific atmospheric conditions after a red mud accident
Leonard et al. Preferential emission of microplastics from biosolid-applied agricultural soils: field evidence and theoretical framework
Zuev et al. The" OPTIK–E,’" AN–30 aircraft–laboratory for ecological investigations
Liu et al. Formation and evolution mechanism of regional haze: a case study in the megacity Beijing, China.
Zuev et al. Temperature and ozone anomalies as indicators of volcanic soot in the stratosphere
Greenberg et al. Tethered balloon-based soundings of ozone, aerosols, and solar radiation near Mexico City during MIRAGE-MEX
KR102264168B1 (ko) 극지 대기 중 해양 에어로졸 생성 모사 챔버 장치
Odediran et al. Impacts of COVID-19 lockdown on concentration levels of traffic-related Air pollutants in ibadan-a west African city
Spiridonov et al. Atmospheric chemistry
Gordon et al. EPP-NOx in Antarctic springtime stratospheric column: Evidence from observations and influence of the QBO

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934656

Country of ref document: EP

Kind code of ref document: A1