WO2020059707A1 - Method for reducing geniposide, genipin and analogue thereof included in ingredients that contain gardenia jasminoides yellow - Google Patents

Method for reducing geniposide, genipin and analogue thereof included in ingredients that contain gardenia jasminoides yellow Download PDF

Info

Publication number
WO2020059707A1
WO2020059707A1 PCT/JP2019/036370 JP2019036370W WO2020059707A1 WO 2020059707 A1 WO2020059707 A1 WO 2020059707A1 JP 2019036370 W JP2019036370 W JP 2019036370W WO 2020059707 A1 WO2020059707 A1 WO 2020059707A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
geniposide
gardenia yellow
genipin
analogs
Prior art date
Application number
PCT/JP2019/036370
Other languages
French (fr)
Japanese (ja)
Inventor
諒 石橋
剛 箕川
Original Assignee
三栄源エフ・エフ・アイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三栄源エフ・エフ・アイ株式会社 filed Critical 三栄源エフ・エフ・アイ株式会社
Publication of WO2020059707A1 publication Critical patent/WO2020059707A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B61/00Dyes of natural origin prepared from natural sources, e.g. vegetable sources

Definitions

  • the present invention relates to a method for reducing geniposide, genipin and their analogs contained in a material containing gardenia yellow pigment.
  • gardenia blue pigment, gardenia red pigment, and gardenia yellow pigment, which are gardenia-derived pigments, have been used as food colorings.
  • gardenia yellow pigment is generally obtained by extracting fruits of gardenia gardenia (Gardenia augusta MERRILL var.grandiflora HORT., Gardenia jasminoides ELLIS) with water or hydrous ethanol.
  • the main pigment components of "gardenia yellow” are crocin and crocetin. Therefore, the "gardenia yellow dye” is not a single compound but usually contains geniposide derived from the raw material.
  • Patent Document 1 discloses that crocin, which is a pigment component of gardenia yellow, is selectively adsorbed to a specific synthetic adsorption resin, and geniposide, which causes greening of gardenia yellow, is used as a main component. Techniques for removing iridoid glycosides have been proposed. In addition, in the said patent document 1, since the activated carbon non-selectively adsorbs both the gardenia yellow pigment component and the geniposide, the activated carbon treatment separates the gardenia yellow pigment component and the geniposide. It states that you cannot do that.
  • Non-Patent Document 2 it is known that gardenia fruits contain a plurality of geniposide having an iridoid skeleton and analogs thereof.
  • Non-Patent Document 2 it has not been clarified whether the geniposide analog is contained in the extract containing the gardenia yellow pigment and the content ratio thereof.
  • an object of the present invention is to provide a new method for reducing geniposide, genipin and their analogs from a material containing gardenia yellow pigment.
  • a material containing a gardenia yellow dye contains geniposide and an analog thereof. Therefore, as a result of intensive studies on materials that can be used to reduce geniposide, genipin and their analogs from the materials, some types of activated carbon were found to contain materials containing gardenia yellow pigment (that is, gardenia yellow pigment).
  • a composition containing a pigment component and geniposide, genipin and their analogs and found to form cake-like lumps, and by treatment with activated carbon having such properties. It was found that geniposide, genipin and their analogs can be reduced while suppressing the loss of the pigment component of gardenia yellow pigment.
  • the present invention includes the following aspects.
  • a method for reducing at least one selected from the group consisting of geniposide, genipin, and analogs thereof contained in a material containing a gardenia yellow dye A method comprising treating with activated carbon which forms a cake-like mass by stirring and mixing with a gardenia yellow extract.
  • the activated carbon is used in an amount of 1 to 10% by mass with respect to a gardenia yellow extract.
  • a method for selecting activated carbon for reducing at least one selected from the group consisting of geniposide, genipin, and analogs thereof from a material containing gardenia yellow pigment A method for selecting activated carbon from which a cake-like mass is formed by stirring and mixing with a gardenia yellow extract.
  • a method for selecting activated carbon from which a cake-like mass is formed by stirring and mixing with a gardenia yellow extract A method for selecting activated carbon from which a cake-like mass is formed by stirring and mixing with a gardenia yellow extract.
  • a method for producing a gardenia yellow element composition wherein at least one selected from the group consisting of geniposide, genipin and analogs thereof is reduced, A step of contacting the activated carbon with a gardenia yellow element-containing material that forms cake-like lumps when brought into contact with the gardenia yellow element extract;
  • a method that includes [7] A method for producing a gardenia yellow element composition, wherein at least one selected from the group consisting of geniposide, genipin and analogs thereof is reduced, A step of selecting activated carbon that forms a cake-like mass when stirred and mixed with the gardenia yellow element extract; and a step of contact-treating the activated carbon selected in the selecting step with a material containing a gardenia yellow element;
  • a gardenia yellow element composition having a total content of geniposide, genipin and their analogs of not more than 35 ppm in terms of a color value of 100.
  • a gardenia yellow pigment composition obtained by the method according to any one of [6] to [8].
  • FIG. 2 (A) is a chromatogram (LC / MS) of the total ion fragments contained in the gardenia yellow dye-containing material.
  • FIG. 2 (B) is a chromatogram of ion fragments of gardenia yellow (upper) and iridoid analogs (lower) contained in a gardenia yellower containing material. The values of each chromatogram are comparable to each other.
  • the “color value” is “E 1 cm 10% ” unless otherwise specified.
  • the “color value” is determined according to the method described in the Ninth Edition Official Standards for Food Additives (Ministry of Health, Labor and Welfare).
  • “100 conversion of color value” means that various numerical values such as measured values are converted into numerical values per 100 color values of target materials, pigments, and the like.
  • the content of geniposide, genipin and their analogs contained in a material having a color value of 200 is 500 ppm
  • the content of geniposide, genipin and their analogs at a color value of 100 is 500 ppm
  • the content of the color value is 500 ppm.
  • the measured value of a sample having a color value of 100 can itself be a numerical value in “converted to a color value of 100”.
  • room temperature and “normal temperature” mean a temperature in the range of 10 to 40 ° C.
  • colorant component or “gardenia yellow component” means the essence of coloring (coloring principal).
  • the "gardenia yellow color composition” contains or consists of only a pigment component; it may contain components derived from raw materials other than the pigment component, components resulting from the production method, or both.
  • “Gardenia yellow element composition” refers to a pigment-containing composition after activated carbon treatment.
  • the “material containing gardenia yellow dye” refers to a dye-containing material containing a gardenia yellow dye derived from a natural product before activated carbon treatment.
  • the gardenia-yellow-containing material can be, for example, a gardenia nut extract.
  • the gardenia fruit extract includes a gardenia yellow crude extract extracted with an extraction solvent, a crude extract containing a solid, a dried product from the extract, a purified product thereof, and the like.
  • the gardenia-yellow-containing material may be a juice or dried juice of gardenia.
  • the gardenia-yellow-containing material may be a gardenia fruit (solid) or a crushed fruit.
  • the gardenia-yellow-containing material may be a gardenia extract or a gardenia-yellow preparation that is commercially available.
  • “Gardenia Yellow” is defined as follows in the Ninth Edition Official Addendum of Food Additives (Ministry of Health, Labor and Welfare of Japan). In the present specification, the “gardenia yellow pigment” can conform to the definition. Definition: "The product is based on crocin and crocetin, obtained from the fruits of the gardenia (Gardenia augusta Merrill or Gardenia jasminoides Ellis). It may contain dextrin or lactose.”
  • the method of the present invention for reducing geniposide, genipin and their analogs contained in gardenia yellow element-containing material is a method of stirring and mixing with a gardenia yellow element extract.
  • the method comprises a treatment using activated carbon, which forms a cake-like mass.
  • a gardenia yellow element-containing material is mixed in a 50 mL glass container by stirring 20 g of a gardenia yellow element extract (color value: 100) and 1 g of activated carbon at room temperature (10 to 40 ° C.) for 1 hour.
  • the method may be a method of reducing geniposide, genipin and their analogs by treating with activated carbon which forms cake-like lumps.
  • the "gardenia yellow pigment extract” refers to a liquid prepared to a color value of 100 from a material containing gardenia yellow pigment.
  • “reduction” means that the amounts of geniposide, genipin and their analogs in the object to be treated are reduced. That is, the “reduction” means that the amount of at least one selected from the group consisting of geniposide, genipin and their analogs in the object to be treated has been reduced as compared to before the treatment, and complete removal thereof However, it is not always necessary to remove all of them. In other words, even if geniposide, genipin and their analogs are not completely removed, it is applicable to the practice of the present invention, but geniposide, genipin and their analogs are completely or almost completely removed. Is preferred.
  • the gardenia yellow pigment is generally obtained by extracting the fruits of the gardenia gardenia with water or hydrous ethanol. Therefore, the gardenia-containing element usually contains geniposide and its analogs derived from the raw material.
  • Gardenia fruit contains various geniposide analogs, and the geniposide analog removed by the method of the present invention may be any compound having an iridoid skeleton (including glycosides). Examples include, but are not limited to, gardenate A, gardenamide, 6 ′′ -Op-cis-coumaroylgenipin gentiobioside, 7 ⁇ , 8 ⁇ -epoxy-8 ⁇ -dihydrogeniposide, and 8-epiapodantheroside.
  • Genipin is, for example, a substance produced by treating geniposide with ⁇ -glucosidase in a process of producing a gardenia blue pigment, and is not contained much in gardenia fruits.
  • genipin and its analogs are produced by treating geniposide and its analogs contained in gardenia fruit with ⁇ -glucosidase.
  • the amount of the ⁇ geniposide, genipin and their analogs '' in the ⁇ material containing gardenia yellow element '' when the reduction method of the present invention is applied is not particularly limited, and may be an amount for which the reduction is desired. I just need.
  • the lower limit of the total content of geniposide, genipin and their analogs in terms of color value 100 is 5 ppm, 10 ppm, 20 ppm, 25 ppm, 30 ppm, 40 ppm, It can be 50 ppm, 80 ppm, 100 ppm, 150 ppm, 200 ppm, 250 ppm, 300 ppm, 350 ppm, or 400 ppm.
  • the amount is in the range of 5 to 5000 ppm, in the range of 10 to 5000 ppm, in the range of 20 to 5000 ppm, and in the range of 25 to 5000 ppm as the total content of geniposide, genipin and their analogs in terms of color value 100.
  • the total content of geniposide, genipin and their analogs in terms of a color value of 100 is in the range of 5 to 1000 ppm, in the range of 10 to 900 ppm, in the range of 50 to 800 ppm, and in the range of 100 to 1000 ppm. Within the range, 200-800 ppm. In the case of gardenia yellow, the "total content of geniposide, genipin and their analogs" is usually equal to the content of geniposide and its analogs.
  • the amounts of geniposide, genipin and their analogs are determined by LC / MS analysis under the following conditions or an analysis method capable of obtaining an analysis result equivalent thereto, unless otherwise specified. .
  • LC / MS using all-ion fragmentation method (AIF method) is preferred.
  • AIF method all-ion fragmentation method
  • the analysis quantifies compounds having a common backbone (analogs).
  • analogs one by one by combining known methods such as NMR.Therefore, a standard product of the identified analog is prepared, and a standard curve method is applied to the sample. It is also possible to quantify the contained analogs.
  • the detection limit of geniposide is about 10 ppb, and the detection limit of genipin is about 100 ppb.
  • the color value of gardenia yellow is determined by the following color value measurement method.
  • ⁇ Method for measuring color value of gardenia yellow element A sample equivalent to about 5 g in terms of a color value of 100 was precisely weighed, 50 ml of a 0.02 mol / L sodium hydroxide solution was added to the sample, and the mixture was heated in a 50 ° C water bath for 20 minutes. If present, dissolve with shaking and add water to make exactly 100 ml. Measure exactly 1 ml, add 50 vol% ethanol to make exactly 100 ml, centrifuge if necessary, and use the supernatant as the test solution.
  • the material containing gardenia yellow pigment is not limited, but for example, a powder or liquid raw material can be diluted with water so as to have a color value of 100 and then subjected to an activated carbon treatment.
  • a commercially available liquid concentrate as a material containing gardenia yellow dye is diluted with water so as to have a color value of 100, and then subjected to activated carbon treatment.
  • a gardenia fruit extract (a gardenia yellow crude extract extracted with an extraction solvent, a crude extract containing a solid, a dried product from the extract, or a purified product thereof) may be used as it is or diluted. , May be subjected to activated carbon treatment.
  • the juice or dried juice of gardenia fruit may be used as it is or diluted and then subjected to activated carbon treatment. Further, gardenia fruits (solid) or crushed fruits may be contacted with activated carbon. Further, gardenia fruit (solid) or a crushed fruit may be brought into contact with activated carbon (solid) in a liquid.
  • the activated carbon used in the reduction method of the present invention is an activated carbon that forms a cake-like mass by stirring and mixing with the gardenia yellow extract.
  • 20 g of a gardenia yellow extract (color value 100) and 1 g of activated carbon are stirred and mixed at room temperature (10 to 40 ° C.) for 1 hour in a 50 mL glass container, and the mixture is stirred at room temperature (10 to 40 ° C.). After 2 hours, a cake-like mass is formed.
  • the 50 mL glass container is preferably a mighty vial manufactured by Maruem Corporation.
  • the normal temperature may be any of 10 to 40 ° C. as described above, but may be, for example, 25 ° C.
  • the stirring and mixing for one hour is preferably performed at 200 to 500 rpm.
  • the cake-like mass is, for example, in a 50-mL glass container, 20 g of gardenia yellow extract (color value 100) and 1 g of activated carbon are stirred and mixed for 1 hour, left to stand for 2 hours, and then decanted.
  • the lump remaining without changing its shape is shown on the glass bottom side.
  • the entire bottom surface of the glass container is covered with a cake of activated carbon, and the glass on the bottom surface is not exposed.
  • the residual amount of the glass container after decantation is preferably 3 g or less, more preferably 2 g or less.
  • the decantation condition refers to a step of removing only the supernatant while tilting the container. That is, in the present invention, at the time of decantation, the activated carbon used for the treatment is present as a lump, and the liquid is in a good drainage state.
  • the cake-like mass is preferably stirred and mixed with 20 g of gardenia yellow extract (color value: 100) and 1 g of activated carbon in a 50 mL glass container for 1 hour, and allowed to stand for 2 hours. It may have the property of remaining in the container after standing for 10 minutes at room temperature in the state of being inverted by 180 °.
  • the activated carbon that can be used in the present invention forms a cake-like mass when contacted with the gardenia yellow extract, and the activated carbon (decant) remaining after removing the extract after the contact is between the activated carbon particles.
  • the mass tends to increase as compared with activated carbon before use.
  • the removal efficiency of geniposide and the like tends to be inferior, so that it is preferably 110% or more, more preferably 120% or more, and further preferably It is at least 130%, even more preferably at least 140%, particularly preferably at least 150%, most preferably at least 160%.
  • the mass increase rate of the activated carbon when the mass increase rate of the activated carbon is more than 320%, the residual rate of the gardenia yellow pigment tends to be low. Therefore, it is preferably 320% or less, more preferably 310% or less, and still more preferably 300% or less. It is even more preferably at most 280%, particularly preferably at most 260%. Accordingly, the mass increase of the activated carbon that can be used in the present invention is, for example, 110% to 320%, preferably 110% to 300%, more preferably 110% to 280%, and further preferably 110% to 260%.
  • the mass increase rate can be determined by [(decant residual amount (wet weight, g)) / initial activated carbon amount (dry weight, g)] ⁇ 100 (%).
  • the mechanism for forming a cake-like mass when the activated carbon is brought into contact with the gardenia yellow extract is not particularly limited, but the dissociable functional groups present on the solid surface of the activated carbon and the activated carbon are formed through the activation process. It is considered that due to the difference in the surface functional groups, the surface charge of the activated carbon surface and the gardenia yellow element attract each other to cause aggregation. That is, the activated carbon that can be used in the present invention is aggregated by some components of the gardenia extract containing geniposide and the like, but the components of the gardenia yellow dye such as crocin are not considered to be involved in the reaction.
  • the activated carbon used in the present invention is not limited, but examples thereof include coconut shell, coal, wood flour and the like, and preferably coconut shell.
  • the activation method is also not particularly limited, but is preferably steam activation.
  • the particle diameter is not particularly limited, either.
  • the powder may preferably be 0.15 mm or less in diameter.
  • the treatment with activated carbon is carried out by bringing a material containing gardenia yellow color into contact with activated carbon.
  • the treatment with activated carbon can be performed in a glass, resin, or stainless steel container by a batch method.
  • the capacity of the container is not limited, for example, it can be performed in a container of 10 L or more, or 100 L or more, or 500 L or more.
  • geniposide, genipin and their analogs are adsorbed on the activated carbon.
  • geniposide, genipin and their analogs are removed by removing the activated carbon to which geniposide, genipin and their analogs are adsorbed.
  • Activated carbon that can be used in the present invention has a property of hardening into a cake by predetermined contact with a gardenia yellow element extract, so that a gardenia yellow element composition in which geniposide, genipin and their analogs are reduced, is used as a supernatant liquid. It becomes possible to collect efficiently and easily. That is, it is easy to separate the dye present in the liquid from geniposide, genipin and their analogs adsorbed on the activated carbon due to the good drainage of the liquid. Further, due to such properties of the activated carbon, an excellent effect that a residue of the activated carbon used in the treatment hardly remains in the gardenia yellow pigment composition is exhibited. Since the residue of the activated carbon hardly remains, clogging or the like by the activated carbon hardly occurs in the next purification operation or the like, and the efficiency of the process can be further improved.
  • Contacting the material containing gardenia yellow yellow with activated carbon is performed when the material is a water-soluble solid, for example, by dissolving or suspending the material in an aqueous or organic solvent to form a liquid, And the activated carbon can be mixed.
  • the material is a water-insoluble solid, for example, it can be carried out by mixing the material and activated carbon in a liquid, or by bringing a mixture of the material and activated carbon into contact with the liquid.
  • the extraction can be performed as it is or by diluting with an aqueous solvent or an organic solvent and mixing the material in the liquid state with activated carbon.
  • the mixing may be performed by a conventional means using a shaker, a stirrer, or the like.
  • the aqueous solvent include water (eg, tap water, ion-exchanged water, distilled water), and hydrated alcohol (eg, hydrated ethanol).
  • the organic solvent include lower alcohols (eg, methanol, ethanol, etc.).
  • the solvent is preferably an aqueous solvent, and the aqueous solvent is more preferably low in the content of alcohol (eg, ethanol), More preferably, it is water (eg, tap water, ion-exchanged water, distilled water).
  • the pH of the “material in a liquid state” is not particularly limited, but is usually in the range of 2.0 to 7.0, preferably 3.0 to 7.0, and more preferably 3.5 to 6. It is within the range of 0.
  • the adjustment may be performed by a conventional method such as using hydrochloric acid or sodium hydroxide.
  • the temperature of the treatment with activated carbon is not particularly limited, but may be usually performed at room temperature.
  • the suitable amount of activated carbon used in the treatment with activated carbon is not particularly limited, but is in the range of 0.1 to 10% by mass, more preferably 1 to 7% by mass, based on the extract. It is.
  • the amount of activated carbon is preferably based on the total amount of extract and activated carbon.
  • the range of 1 to 10% by mass more preferably in the range of 2 to 8% by mass, and still more preferably in the range of 3 to 7% by mass.
  • the preferred amount of the activated carbon used for the treatment with the activated carbon is, for example, the amount of the activated carbon per 1 part by mass (color value: 100) of the solution containing gardenia yellow dye, preferably 0.01 to 0.5 part by mass, more preferably Is 0.03 to 0.5 part by mass, more preferably 0.03 to 0.3 part by mass, still more preferably 0.03 to 0.1 part by mass, particularly preferably 0.05 to 0.3 part by mass. Parts, most preferably 0.05 to 0.1 parts by weight.
  • the time of the treatment with activated carbon is not particularly limited, but the contact time may preferably be a batch method in which the mixing time is 30 minutes or more and the standing time is 10 minutes or more.
  • the mixing time is preferably in the range of 30 minutes to 40 hours, more preferably 1 hour to 30 hours, and the standing time is preferably 10 minutes to 60 hours, more preferably 1 hour to 50 hours. Within the time range.
  • the “material containing gardenia yellow color” may have been previously subjected to an adsorption treatment, and then the “treatment with activated carbon” may be performed.
  • “geniposide, genipin and their analogs” can be removed by the treatment by the adsorption treatment.
  • the amount of activated carbon used in “treatment with activated carbon” can be reduced.
  • the adsorption treatment is not particularly limited, and examples thereof include an adsorption treatment using silica gel or a porous ceramic; and an adsorption treatment using a synthetic adsorption resin.
  • the adsorption treatment can be performed by either a batch method or a column method.
  • the adsorption condition is not particularly limited as long as the gardenia yellow dye is adsorbed on the above-mentioned adsorption resin, but the material containing the gardenia yellow dye is usually brought into liquid contact under conditions of pH 2 to 7, preferably pH 3 to 5. It is desirable.
  • the desorption of gardenia yellow pigment is obtained by washing the above resin with water and then passing it through with a lower organic alcohol such as ethanol or isopropanol or a hydrophilic organic solvent such as acetone or a mixture of these hydrophilic organic solvents and water as an eluent. You can do this by doing
  • geniposide analogs show physical properties (adsorbability) similar to crocin, which is a gardenia yellow component, when the adsorption treatment is performed, so that even if the adsorption treatment is performed, gardenia yellow remains.
  • crocin which is a gardenia yellow component
  • the amount of geniposide, genipin and their analogs in the material is reduced while suppressing the loss of useful components such as gardenia yellow pigment in the material. be able to.
  • the residual ratio in the total content of geniposide, genipin and their analogs is determined. , Preferably 30% or less, more preferably 20% or less, even more preferably 10% or less, particularly preferably 5% or less, more preferably 3% or less, still more preferably 1% or less, particularly preferably 0% or less. 0.5% or less, still more preferably 0.1% or less, and most preferably 0%.
  • the residual ratio of the dye component which is a useful component, (that is, the ratio of the content of the dye component after treatment to the content of the dye component before treatment by the reduction method of the present invention) is preferably 70% or more. It is particularly preferably at least 80%, more preferably at least 85%, most preferably at least 90%.
  • the “residual rate of the dye component” can be the “residual rate of the color value”.
  • any type of activated carbon can reduce geniposide, genipin and their analogs from a material containing a gardenia yellow component without reducing a gardenia yellow component. Not in translation.
  • the present invention also relates to a method for selecting an activated carbon which can be suitably used for reducing geniposide, genipin and their analogs from a gardenia-yellow-containing material.
  • a method for selecting activated carbon may be referred to as a method for selecting activated carbon of the present invention. That is, one embodiment of the present invention may include a step of selecting activated carbon that can be used in the reduction method of the present invention.
  • whether or not a cake-like mass is formed by stirring and mixing with a gardenia yellow extract is used as a criterion.
  • a gardenia yellow extract color value 100
  • 1 g of activated carbon are stirred and mixed at room temperature (10 to 40 ° C.) for 1 hour in a 50 mL glass container, and the mixture is stirred at room temperature (10 to 40 ° C.).
  • a cake-like mass is formed as a criterion. That is, when a cake-like mass is formed under the above conditions, such activated carbon can be suitably used to reduce geniposide, genipin and their analogs from a material containing gardenia yellow pigment.
  • Activated carbon Activated carbon.
  • the room temperature may be any of 10 to 40 ° C as described above, but may be, for example, 25 ° C.
  • the stirring and mixing for one hour is preferably performed at 200 to 500 rpm.
  • the cake-like mass is preferably stirred and mixed in a 50 mL glass container with 20 g of gardenia yellow extract (color value 100) and 1 g of activated carbon, left for 2 hours, and then decanted. And lump remaining on the glass bottom side without changing its shape.
  • the entire bottom surface of the glass container is covered with a cake of activated carbon, and the glass on the bottom surface is not exposed.
  • the amount of the residue in the glass container after decantation is preferably 3 g or less, more preferably 2 g or less.
  • the decantation condition refers to a step of removing only the supernatant while tilting the container. That is, in the present invention, at the time of decantation, the activated carbon used for the treatment is present as a lump, and the liquid is in a good drainage state.
  • the cake-like mass is preferably stirred and mixed with 20 g of gardenia yellow extract (color value: 100) and 1 g of activated carbon in a 50 mL glass container for 1 hour, and allowed to stand for 2 hours. It may have the property of remaining in the container after standing for 10 minutes at room temperature in the state of being inverted by 180 °.
  • the present invention provides a method for selecting activated carbon for reducing geniposide, genipin, and their analogs from a material containing gardenia yellow element, and including a gardenia yellow element extract (with a color value of 100) in a 50 mL glass container.
  • 20 g and activated carbon 1 g were mixed under stirring at room temperature (10 to 40 ° C) for 1 hour, and allowed to stand at room temperature (10 to 40 ° C) for 2 hours.
  • the method may be a selection method including a step of determining whether or not to perform the determination.
  • 20 g of gardenia yellow extract (color value 100) and 1 g of activated carbon are stirred and mixed at room temperature (10 to 40 ° C.) for 1 hour in a 50-mL glass container, and then mixed at room temperature (10 to 40 ° C.). After standing at 40 ° C.) for 2 hours to determine whether or not cake-like lumps are formed; and, using activated carbon which forms cake-like lumps, contains gardenia yellow element Reducing the total content of geniposide, genipin and their analogs from a material containing gardenia yellow pigment, comprising the step of reducing geniposide, genipin and their analogs from the material.
  • geniposide, genipin and genipin are reduced by reducing geniposide, genipin and their analogs from a material containing gardenia yellow pigment containing genipin and their analogs.
  • a gardenia yellow element composition having a reduced total content of analogs thereof is a method for producing a gardenia yellow element composition in which the total content of geniposide, genipin, and their analogs is reduced.
  • the activated carbon that can be used in the method for producing a gardenia yellow dye composition is the same as the activated carbon that can be used in a method for reducing the total content of geniposide, genipin, and their analogs from a material containing a gardenia yellow dye. Accordingly, the method for producing the gardenia yellow element composition may include a step of selecting usable activated carbon.
  • ⁇ reduced '' means that the total content of geniposide, genipin and their analogs is lower than that of the starting material containing gardenia yellow color, and geniposide, genipin and their analogs are Substantially no content and no content are included.
  • the solution after the treatment with the activated carbon may be subjected to a conventional purification treatment (eg, a filtration treatment, a resin treatment, a membrane treatment, etc.).
  • a conventional purification treatment eg, a filtration treatment, a resin treatment, a membrane treatment, etc.
  • the gardenia yellow color composition obtained by the production method of the present invention may be in the form of a solution after treatment with activated carbon, in the form of its concentrate, or dried by any method (eg, vacuum drying, freeze drying, (Eg, spray drying).
  • the amount of ⁇ geniposide, genipin and their analogs '' contained in the gardenia yellow pigment composition obtained by the production method of the present invention is preferably, as a total content of geniposide, genipin and their analogs, in terms of a color value of 100, Is 35 ppm or less, more preferably 30 ppm or less, still more preferably 25 ppm or less, still more preferably 10 ppm or less, particularly preferably 5 ppm or less, more particularly preferably 3.5 ppm or less, still more preferably 2 ppm or less, and still more preferably It can be 1 ppm or less, most preferably 0.5 ppm or less.
  • the lower limit of the amount is not limited, for example, the gardenia yellow element composition in which the amount is 0.1 ppm or more, 0.3 ppm or more, 0.5 ppm or more, 1 ppm or more, 2 ppm or more, or 5 ppm or more is used. May be acceptable depending on the purpose and form of the
  • the total content of geniposide, genipin and their analogs in terms of a color value of 300 is 100 ppm or less (more preferably, 80 ppm or less, still more preferably 50 ppm or less, still more preferably 20 ppm or less, and particularly preferably. Is 10 ppm or less, more preferably 5 ppm or less, still more preferably 3 ppm or less, still more preferably 1 ppm or less, and most preferably 0 ppm (or below the detection limit in the above-mentioned measurement method).
  • a gardenia yellow pigment composition can be obtained by the production method of the present invention described above.
  • the amount of "geniposide and / or genipin" contained in the gardenia yellow color composition obtained by the production method of the present invention is preferably 35 ppm or less, as a total content of geniposide and genipin in terms of a color value of 100, More preferably 30 ppm or less, further preferably 25 ppm or less, still more preferably 10 ppm or less, particularly preferably 5 ppm or less, more particularly preferably 3.5 ppm or less, still more preferably 2 ppm or less, particularly still more preferably 1 ppm or less, and most preferably.
  • the lower limit of the amount is not limited, for example, the gardenia yellow element composition in which the amount is 0.1 ppm or more, 0.3 ppm or more, 0.5 ppm or more, 1 ppm or more, 2 ppm or more, or 5 ppm or more is used. May be acceptable depending on the purpose and form of the
  • One embodiment of the present invention has a total content of geniposide and genipin of 100 ppm or less (more preferably, 80 ppm or less, further preferably 50 ppm or less, still more preferably 20 ppm or less, particularly preferably 10 ppm or less, in terms of a color value of 300. It is particularly preferably at most 5 ppm, more preferably at most 3 ppm, particularly preferably at most 1 ppm, most preferably at 0 ppm (or below the detection limit in the above-mentioned measuring method).
  • a gardenia yellow pigment composition can be obtained by the production method of the present invention described above.
  • the gardenia yellow dye composition obtained by the production method of the present invention can be used in the same manner as a conventional gardenia yellow dye composition, and can be provided as it is as a pigment preparation. Furthermore, a diluent, a carrier or other additives may be added to the gardenia yellow pigment composition as other components, and the composition may be provided as a pigment preparation in that state.
  • diluents those generally used in dye preparations, particularly water-soluble dye preparations, can be widely used as long as the effects of the present invention are not impaired.
  • examples include sucrose, lactose, glucose, dextrin, gum arabic, water, ethanol, propylene glycol, glycerin, starch syrup, and the like.
  • the form of the pigment preparation is not particularly limited, and may be prepared in any form such as powder, granule, tablet, liquid, emulsion, or paste.
  • the gardenia yellow dye composition of the present invention or a pigment preparation containing the same can be widely used as a coloring agent for foods, cosmetics, pharmaceuticals, quasi-drugs, feeds, etc., similarly to the conventional gardenia yellow dye color composition or preparation.
  • the present invention provides a colored composition of food, cosmetics, pharmaceuticals, quasi-drugs, feed, and the like, which is colored using the gardenia yellow pigment composition or a pigment preparation thereof.
  • the food include confectionery such as frozen dessert, raw confectionery, Japanese confectionery, and western confectionery; beverages such as beverages and alcoholic beverages; processed agricultural products such as dried vegetables and pickles; processed marine products; Include.
  • the cosmetics include cosmetics (eg, eye shadow, mascara, lipstick, lip balm, and lotion), soaps, shampoos, rinses, detergents, toothpastes, mouthwashes, and the like.
  • the drug include tablets (eg, sugar-coated tablets), granules, solutions, capsules, and the like.
  • the content of the gardenia yellow pigment in these coloring compositions is not particularly limited, but is about 410 to 425 nm, and is such an amount that the absorbance of the coloring composition at its maximum absorption wavelength becomes 0.01 to 1. be able to.
  • MS / MS measurement in which the collision energy is changed and the decomposition treatment is performed three or more times is possible, and the compound ions after the decomposition treatment in the collision energy are electrically captured.
  • a mass spectrometer capable of detecting and integrating, or detecting and integrating can be used.
  • the apparatus described above i) disperses the compound ions after each decomposition treatment into a certain space during the three or more decomposition treatments in which the collision energy is changed. It is preferable that the mass spectrometer be capable of electronically supplementing and accumulating and accumulating it within the range, and integrating and detecting the same at once after completion of all the decomposition processes.
  • the above-mentioned apparatus may adopt a mode in which ii) the compound ions after the decomposition treatment are detected first, and this is repeated for the set amount of the collision energy, and then the detected values are integrated afterwards.
  • a known or unknown device or instrument can be appropriately used as long as it is a mass spectrometer capable of performing the above analysis.
  • a mass spectrometer based on an electric field Fourier transform method, a magnetic field Fourier transform method, an ion trap method, or the like can be used.
  • a mass spectrometer based on the electric field Fourier transform method examples include, at the time of the present application, a mass spectrometer based on the Orbitrap method manufactured by Thermo Fisher Scientific Co., Ltd.
  • the embodiments of the present invention are not limited to the embodiments using the above device.
  • the device be capable of LC / MS measurement in the analysis before the MS / MS measurement. That is, the device that can be used for quantification and analysis in the present invention is a device that utilizes the above principle, and is preferably a device that can perform LC / MS / MS measurement.
  • the analyzer provided with a quadrupole-type MS measuring means or the like as an analytical instrument before the MS / MS measurement.
  • quantification and analysis can be performed using AIF analysis using a mass spectrometer using the above principle.
  • AIF All Ion Fragmentation analysis
  • MS / MS measurement involving a plurality of decomposition treatments in which a target compound is changed in collision energy, and integrating the fragmented compound ions.
  • the measurement sample containing the target compound is subjected to decomposition treatment with the collision energy changed three times or more, and the fragmented compound ions are integrated. And acquiring a mass spectrum in the MS / MS measurement.
  • the MS / MS measurement in the AIF analysis step the peak ions of the mass spectrum obtained in the first MS measurement are decomposed and generated by giving energy (collision energy) for decomposition processing to detect compound ions.
  • the first MS measurement is a mass spectrometry process for acquiring a mass spectrum in which an undecomposed compound contained in a measurement sample is directly detected.
  • the MS / MS measurement is a second mass spectrometry step for fragmenting and detecting the peak ion of the first MS measurement.
  • the first MS measurement performed before the MS / MS measurement it is preferable that the first MS measurement be obtained as full MS scan data in order to comprehensively quantify a low-content target compound.
  • the first MS measurement it is preferable that the first MS measurement be obtained as full MS scan data in order to comprehensively quantify a low-content target compound.
  • the first MS measurement it is necessary to narrow down and select compounds having a desired molecular weight range to some extent, and then execute the MS / MS measurement. Is preferred.
  • the m / z value is preferably 100 to 2000, preferably 100 to 2000, as the target compound for the first MS measurement. It is preferable to obtain the first MS scan data by narrowing down the range of the molecular weight of the m / z value to about 100 to 1500.
  • the MS / MS measurement in the above analysis step ii) in the first MS measurement, full MS scan data for all compounds is obtained without limiting the molecular weight range, and the subsequent MS measurement is performed.
  • a mode in which the MS / MS measurement is narrowed down to a signal peak equal to or higher than a certain threshold value and / or a signal peak in an upper predetermined range may be adopted.
  • the quantification and analysis in the present invention do not exclude the embodiment described in the above ii), however, in the above embodiment, there is a risk that a compound having a small content in the sample leaks.
  • the first MS measurement in the analysis step is preferably an LC / MS measurement because the analysis target is a compound in a liquid sample.
  • the quantitative AIF analysis step of the present invention includes a step of performing MS / MS measurement by a decomposition treatment with a different collision energy for each of the peak ions constituting the first MS mass spectrum.
  • the MS / MS measurement is performed exhaustively in the above-described embodiment (i), and is performed in a data-dependent manner in the embodiment (ii).
  • HCD collision cell high energy collision dissociation cell
  • the quantification and analysis according to the present invention when a dye composition or the like extracted from a natural raw material composed of an enormous number of similar compounds having different molecular weights and structures is used as a measurement sample, three times or more in the MS / MS measurement described above.
  • the decomposition processing it is desirable to independently perform energy application and the like in each decomposition processing on the measurement sample in three or more times.
  • “independently three or more times” refers to an embodiment in which three or more separate decomposition processes are separately performed on the target sample.
  • the number of times of performing the decomposition treatment in the quantification and analysis in the present invention may be three or more times in order to cover the existence of similar compounds having different energy states required for decomposition in the sample. Specifically, about 3 to 20 times can be given.
  • (Condition 1) at least one of the decomposition processes is performed with low energy collision energy including an undecomposed peak of the target compound.
  • the collision energy of the above (condition 1) is an energy condition for recovering a target fragment ion derived from a low molecular target compound without excessive decomposition.
  • the collision energy is preferably a collision energy that includes the undecomposed peak of the target compound and also includes the peak of the fragment ion having the common structure.
  • At least another one of the decomposition processes substantially includes the undecomposed peak of the target compound and the peak of the fragment ion having the common structure. It is preferable to carry out the process with high energy collision energy.
  • the collision energy of the above (condition 2) is an energy condition for giving sufficient energy for the decomposition of the polymer target compound and recovering the target fragment ion derived from the polymer compound.
  • condition 2 “substantially not containing the undecomposed peak of the target compound” described in the above (condition 2) indicates a state in which the target compound as the measurement sample is sufficiently decomposed, and This shows a sufficient condition that the target fragment ion is decomposed and generated to such an extent that the quantitative property is ensured. Specifically, if the amount of the target compound in the undecomposed state before collision energy application is 10% or less, preferably 5% or less, more preferably 1% or less, it can be determined that the above condition is satisfied. . The determination as to whether or not an undecomposed peak of the target compound under the above conditions is included, it is possible to determine whether or not the target compound contained in the target dye composition or the like has the highest molecular weight as an index. Become.
  • condition 2 including a fragment ion peak is preferably 1% or more, preferably 5% or more, more preferably 10% with respect to the highest peak area of the fragment ion. With the above peak area, it can be determined that the above condition is clearly satisfied. If the peak area is too small, the target fragment ions may be excessively decomposed excessively, which is not preferable.
  • (condition 3) at least another one is performed at an energy between the two collision energies.
  • the collision energy of the decomposition process described in (condition 3) it is preferable that the energy state is different from that of the collision energy in another decomposition process.
  • the total number of decomposition processes in the MS / MS measurement is four or more, it is preferable that the above-mentioned (condition 3) the decomposition process using collision energy is performed a plurality of times.
  • the intervals of energy values between the respective decomposition treatments are evenly or substantially equal. It is preferable to employ a collision energy that makes it even.
  • “substantially equivalent” under the above conditions means that the error is within 10%, preferably within 5%, more preferably within 1%, and the target fragment ion is sufficient to ensure the quantitativeness of the present invention. It indicates the range that is decomposed and generated.
  • the collision energies in all the decomposition processing have different energy states from each other. It should be noted that an aspect in which overlapping decomposition processes are performed using collision energy in the same energy state is not excluded.
  • the order of the energy states of the collision energy in the plurality of decomposition processes is not particularly limited, and the decomposition processes can be performed in any order.
  • a wide and appropriate range of collision energy setting range It is preferable to set the range.
  • the setting range of the collision energy in the AIF analysis is not appropriate, the target compound in the measurement sample cannot be accurately quantified, which is not preferable.
  • the quantification and analysis according to the present invention when the setting range of the collision energy for a predetermined sample is examined by a predetermined apparatus, when the quantification for the same kind of sample is performed thereafter, the collision determined in the previous examination is determined.
  • the energy setting range By using the energy setting range, the quantitative operation can be performed quickly.
  • the above-mentioned AIF analysis step includes a step of obtaining a mass spectrum by MS / MS measurement including the integration of the fragmented compound ions after performing the decomposition treatment with the collision energy changed three times or more as described above. .
  • a mode of performing the integration of the compound ions after the decomposition treatment it is preferable to perform i) a mode in which the compound ions after the decomposition process by the collision energy are electrically supplemented and integrated for detection.
  • various fragmented compound ions including compound ions that remain undecomposed depending on the energy state
  • the compound in the sample is firstly subjected to the decomposition treatment by the collision energy of a certain intensity, and the compound ion obtained by the above treatment is obtained. (Including undecomposed compound ions and fragmented fragment ions, etc.) is electrically captured and accumulated in another space, (second time), and then collision energy of a different intensity from the first time is used.
  • the compound in the sample is subjected to decomposition treatment, and the compound ions obtained in the above treatment are electrically captured and accumulated in the space together with the compound ions in the previous stage (the 3rd to nth times).
  • N is an integer of 4 or more
  • the electrical capture state of the compound ions in the above process is different from the site where the decomposition processing by collision energy is performed in a mass spectrometer based on an electric field Fourier transform method, a magnetic field Fourier transform method, an ion trap method, or the like. It can be realized in a space or the like in which the electrodes are arranged.
  • an electrode arrangement space capable of supplementing and holding by rotating ions in an electric field around the electrode is provided.
  • Separately arranged collision energy decomposition reaction space is arranged, compound ions treated in the collision energy decomposition reaction space are sequentially flowed into the electrode installation space, and compound ions are sequentially captured in the electric field around the electrode.
  • a mode of accumulatively accumulating can be suitably exemplified.
  • the above aspect is particularly suitable for performing precise quantification, and can be realized in a mass spectrometer based on the electric field Fourier transform method or the like.
  • an electric field generated around the spindle electrode of the orbitrap MS2 in an apparatus utilizing the principle of the orbitrap method may be used.
  • the step of obtaining a mass spectrum in MS / MS measurement including the integrated fragmented compound ions in the AIF analysis step includes the step of integrating compound ions after the decomposition treatment as described in the above paragraph.
  • a mode in which the compound ions after the decomposition treatment are detected first, and this is repeated for the set amount of the collision energy, and then the data processing of integrating the detected values afterwards is adopted.
  • the above-mentioned embodiment ii) is not excluded from the scope of the present invention, however, in the present invention, the embodiment of i) described in the above paragraph is employed from the viewpoints of both analytical accuracy and simplicity of analytical operation. Is more preferred.
  • values obtained by performing various arithmetic processes can be used as the value indicating the integrated compound ion.
  • a value obtained by dividing by the number of times of performing the decomposition process and equalizing can be used for the above quantification.
  • the undecomposed target compound ion, the intermediate product ion, and the common structure which constituted the target compound were determined according to the degree of progress of the decomposition.
  • Various compound ions such as ions and excessively decomposed low molecular compound ions are included as integrated peak values at various stages of the degree of decomposition.
  • the target having the common structure contained in the measurement sample is used.
  • the total amount of the compound can be quantified or analyzed.
  • the AIF analysis step in the present invention includes a step of quantifying or analyzing the target compound from the mass spectrum obtained by the MS / MS measurement, using the common structure contained in the target compound as the target fragment ion as an index. .
  • the target component in view of the accurate quantification of the target component, it is a common structure possessed by the molecular species of the target compound in the measurement sample and not a constituent structure of the compound in the measurement sample other than the target compound. It is preferable to employ a compound ion.
  • the aglycone of the target compound contained in the measurement sample or a similar compound derived therefrom As the compound generated after the decomposition treatment that satisfies such conditions, it is preferable to employ the aglycone of the target compound contained in the measurement sample or a similar compound derived therefrom. That is, as the target fragment ion in the present invention, it is preferable that an aglycone ion of the target compound or a similar compound ion derived from the aglycon be a detection target.
  • examples of the ion of the analogous compound derived from aglycone include a functional group-substituted compound generated by a change in metabolism in a plant, storage or processing of a measurement sample, or the like.
  • concentration conversion In order to calculate the actual concentration value from the detection data of the target fragment ion having the common structure in the quantification in the present invention, one or more compounds containing the target fragment structure are prepared and a dilution series of the compound is prepared. The concentration value can be calculated from the detection data of the measurement sample only by creating the calibration curve.
  • a known curve containing the aglycone is analyzed under the same conditions as the AIF method of the present invention (setting collision energy, etc.) to create a calibration curve. From the detection data and molecular weight information of the measurement sample, the concentration value and the content value of the target compound in the measurement sample can be calculated.
  • aglycone is used as a target fragment
  • Any compound can be used as long as it can generate a common structural compound which is a target fragment, such as a known low-molecular-weight target compound containing the aglycone or a chloride of the aglycone.
  • the total amount of the target compound containing the aglycone as a “common structure” is determined by detecting aglycone constituting the target compound contained in the measurement sample as a target fragment ion in the AIF analysis. Becomes possible.
  • the common structure used as the target fragment ion may be, for example, an ion of an aglycone of geniposide (an glycoside of iridoid) or an ion of a similar compound derived from the aglycone.
  • the “total amount of all target compounds” contained in the measurement sample can be quantified using the AIF analysis.
  • the total amount of all target compounds can be quantified.
  • crocetin-based yellow dye components are determined by the AIF analysis using crocetin ion as a target fragment ion. Crocetin glycoside) can be determined and the above value can be used as the total amount of all crocetin-based yellow component contained in gardenia yellow component.
  • a measurement sample can also be suitably used for a dye composition or the like containing two or more target compounds of different types of aglycone.
  • the quantification according to the present invention it is possible to quantify the “individual component amount of each target compound” contained in the measurement sample by using the AIF analysis. Specifically, the aglycone constituting the desired target compound contained in the measurement sample is quantified as the target fragment ion by the AIF method of the present invention, and the signal content derived from the desired individual component is measured, whereby the measurement sample is measured. It is possible to quantify the individual content of the desired target compound in the above.
  • the individual component to be measured is prepared as a standard compound. It is not necessary to perform an operation for creating a calibration curve for each standard compound.
  • the quantification based on the above-described common structure can be performed, and at the same time, the structure of the individual components of the desired target compound contained in the measurement sample can be determined.
  • ordinary MS scan data is also acquired before the AIF analysis is performed. From the mass spectrum of the MS scan data, the fragmentation mass spectrum in the MS / MS measurement, etc.
  • the structure of the desired target compound can be determined by the functions normally provided in the device described in (1). In the above structural analysis, it may be effective to perform a multi-stage analysis by (MS) n-stage analysis (where n is a natural number) as necessary.
  • the present invention includes the following aspects. ⁇ 1> A method for reducing geniposide, genipin, and their analogs contained in a gardenia yellow element-containing material, A method for reducing geniposide, genipin and their analogs, comprising a step of contact-treating a material containing gardenia yellow color with activated carbon satisfying the following conditions: In a 50 mL glass container, 20 g of gardenia yellow extract (color value 100) and 1 g of activated carbon were stirred and mixed at room temperature for 1 hour, and allowed to stand at room temperature for 2 hours, after which a cake-like mass was formed. Activated carbon.
  • ⁇ 2> A method for reducing geniposide, genipin, and their analogs contained in the gardenia yellow element-containing material according to ⁇ 1>, The cake-like mass remains in the container after being left standing at room temperature for 10 minutes in a state where the glass container is inverted by 180 °, and the mass increase rate of the remaining activated carbon is 300% or less. Is the way.
  • a method for reducing geniposide, genipin, and their analogs contained in a gardenia yellow element-containing material according to ⁇ 1> The step of contacting the material containing gardenia yellow color with activated carbon is carried out in such a manner that the activated carbon is used in an amount of 0.01 to 0.5 parts by mass per 1 part by mass of the dye (color value 100), the contact time is 30 minutes or more, and the standing time Is performed in a batch process for 10 minutes or more.
  • a method for selecting activated charcoal for reducing geniposide, genipin and their analogs from a material containing a gardenia yellow dye wherein a material containing a gardenia yellow dye is placed in a 50 mL glass container and then 20 g of the extract (color value: 100) and 1 g of activated carbon were stirred and mixed at room temperature (10 to 40 ° C.) for 1 hour, and allowed to stand at room temperature (10 to 40 ° C.) for 2 hours.
  • a method of selecting, comprising determining whether a lump is formed.
  • ⁇ 5> The selection method according to ⁇ 4>, wherein The cake-like mass remains in the container after being left standing at room temperature for 10 minutes in a state where the glass container is inverted by 180 °, and the mass increase rate of the remaining activated carbon is 300% or less. Is the way.
  • ⁇ 6> A method for reducing geniposide, genipin, and their analogs contained in a gardenia yellow element-containing material, In a 50 mL glass container, 20 g of gardenia yellow extract (color value 100) and 1 g of activated carbon were stirred and mixed at room temperature (10 to 40 ° C.) for 1 hour, and mixed at room temperature (10 to 40 ° C.) for 2 hours.
  • a method that includes ⁇ 7> A method for reducing geniposide, genipin, and their analogs contained in the gardenia yellow element-containing material according to ⁇ 6>,
  • the step of contact-treating the activated carbon with a material containing a gardenia yellow element comprises: 0.01 to 0.5 parts by mass of activated carbon per 1 part by mass of a dye (color value: 100); a contact time of 30 minutes or more; A method wherein the process is performed in a batch process for a time of 10 minutes or more.
  • a gardenia yellow pigment composition having a total content of geniposide and genipin of 35 ppm or less in terms of a color value of 100.
  • a gardenia yellow pigment composition obtained by a method for reducing geniposide, genipin and their analogs contained in a gardenia yellow element-containing material, Gardenia yellow pigment composition, which is a method for reducing geniposide, genipin and their analogs, comprising a step of contact-treating a gardenia yellow element-containing material with an activated carbon satisfying the following conditions: In a 50 mL glass container, 20 g of gardenia yellow extract (color value: 100) and 1 g of activated carbon were stirred and mixed at room temperature for 1 hour, and allowed to stand at room temperature for 2 hours, after which a cake-like mass was formed.
  • a method for producing a gardenia yellow element composition comprising a step of contacting a material containing a gardenia yellow element with an activated carbon satisfying the following conditions: In a 50 mL glass container, 20 g of gardenia yellow extract (color value 100) and 1 g of activated carbon were stirred and mixed at room temperature for 1 hour, and allowed to stand at room temperature for 2 hours, after which a cake-like mass was formed.
  • the step of contacting the gardenia yellow element-containing material with activated carbon comprises: 0.01 to 0.5 parts by mass of activated carbon with respect to 1 part by mass of the dye (color value 100); a contact time of 30 minutes or more; It is performed by a batch method in which the standing time is 10 minutes or more.
  • iridoid analogs total content of geniposide, genipin and their analogs
  • Residual rate of iridoid analog (%) (amount of geniposide after treatment + amount of geniposide after treatment + amount of geniposide analog after treatment) / (amount of geniposide before treatment + amount of geniposide before treatment + amount of geniposide analog before treatment) ⁇ 100
  • the glass vial after decantation was allowed to stand still for 10 minutes in a state where it was inverted by 180 °, and the mass of activated carbon remaining in the vial (remaining amount of decant) was measured.
  • the activated carbons of Examples 1-4 were placed in a 50 ml glass vial in 20 ml of gardenia yellow extract with a color value of 100 and 1 g of activated carbon (5% (w / w / gardenia yellow extract). The mixture obtained in w)) was stirred at 300 rpm for 1 hour and allowed to stand at room temperature for 2 hours, so that the activated carbon became a cake. Thereafter, decantation was performed and the supernatant was recovered. When these activated carbons were used, the gardenia yellow pigment could be easily separated.
  • the activated carbon of the comparative example which did not become cake-like fell with decantation, and the operability was not good.
  • the activated carbon of the comparative example when the glass bottle is inverted by 180 °, the activated carbon falls down partly or entirely, and it is expected that the actual operation when processing a large amount of samples becomes difficult.
  • the decant remaining amount of the activated carbons of Examples 1 to 4 in which geniposide was well adsorbed was smaller than the decanting amount of the activated carbons of Comparative Examples 1 to 4 in which almost no geniposide was adsorbed.
  • the goodness of the drainage of the activated carbon of Examples 1 to 4 which was in the form of a cake was remarkable.
  • Test example 2 Analysis of Geniposide Analogs Contained in gardenia Yellow Element-Containing Materials
  • bioactive components contained in gardenia yellow element genipin and geniposide are known, but have an iridoid skeleton and are close to gardenin yellow element components Since a polar geniposide analog may have been present, a gardenia yellow extract extracted to a color value of 5 with ultrapure water was used as a sample, and the orbitrap method (AIF method) was used for the sample. The contained geniposide analogs were subjected to LC / MS analysis.
  • Test example 3 Removal test of geniposide and its analogs from a material containing gardenia yellow color using activated carbon From the results of Test Example 2, it was found that a material containing a gardenia yellow color contains analogs having an iridoid skeleton other than geniposide. For this reason, a sample prepared in the same manner as in Test Example 1 was used to evaluate the effect of removing activated iridoid analogs by activated carbon treatment. In this test, the activated carbon of Example 1 having the highest effect of reducing geniposide was used and analyzed under the same conditions as in Test Example 2.
  • the activated carbon used in the examples can be efficiently used in a method for reducing geniposide, genipin, and their analogs contained in a gardenia yellow matter-containing material, and can be used for processing a sample on a larger scale. Can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

The present invention addresses the problem of providing a method for reducing geniposide, genipin and an analogue thereof included in ingredients that contain gardenia jasminoides yellow. As a method for reducing geniposide, genipin and an analogue thereof included in ingredients that contain gardenia jasminoides yellow, the present invention provides a method for reducing geniposide, genipin and an analogue thereof, the method comprising a step for processing an ingredient that contains gardenia jasminoides yellow with an activated carbon which forms a cake-shaped mass by stirring and mixing the ingredient with a gardenia jasminoides yellow extract.

Description

クチナシ黄色素を含有する材料に含まれるゲニポシド、ゲニピン及びそれらの類縁体を低減する方法Method for reducing geniposide, genipin and analogs thereof contained in gardenia yellow element-containing material
 本発明は、クチナシ黄色素を含有する材料に含まれるゲニポシド、ゲニピン及びそれらの類縁体を低減する方法に関する。 {Circle over (2)} The present invention relates to a method for reducing geniposide, genipin and their analogs contained in a material containing gardenia yellow pigment.
 従来、食用色素として、クチナシ由来色素である、クチナシ青色素、クチナシ赤色素、及びクチナシ黄色素が使用されている。 Conventionally, gardenia blue pigment, gardenia red pigment, and gardenia yellow pigment, which are gardenia-derived pigments, have been used as food colorings.
 その中で、「クチナシ黄色素」は、一般に、アカネ科クチナシ(Gardenia augusta MERRILL var.grandiflora HORT.,Gardenia jasminoides ELLIS)の果実を、水、又は含水エタノールで抽出して得られる。「クチナシ黄色素」の主な色素成分は、クロシン、及びクロセチンである。従って、「クチナシ黄色素」は、単一化合物ではなく、通常、原料由来のゲニポシドを含有する。 Among them, “gardenia yellow pigment” is generally obtained by extracting fruits of gardenia gardenia (Gardenia augusta MERRILL var.grandiflora HORT., Gardenia jasminoides ELLIS) with water or hydrous ethanol. The main pigment components of "gardenia yellow" are crocin and crocetin. Therefore, the "gardenia yellow dye" is not a single compound but usually contains geniposide derived from the raw material.
 従来、ゲニポシドを含有する食品、及び食品添加物が用いられている。
 しかし、ゲニポシドは、ラットに大量に経口投与すると肝毒性を示し、その毒性発現には、ラットの腸内細菌のβ-グルコシダーゼにより生じたゲニピンが関与している可能性が報告されている(非特許文献1)。
Conventionally, foods containing geniposide and food additives have been used.
However, geniposide shows hepatotoxicity when administered orally to rats in large amounts, and it has been reported that genipin generated by β-glucosidase of rat intestinal bacteria may be involved in the expression of the toxicity (non-patent literature). Patent Document 1).
 ゲニポシドの除去に関して、特許文献1には、クチナシ黄色素の色素成分であるクロシンを特定の合成吸着樹脂に選択的に吸着させて、クチナシ黄色素の緑変の原因となるゲニポシドを主成分とするイリドイド配糖体を除去する技術が提案されている。なお、当該特許文献1には、活性炭が、クチナシ黄色素の色素成分と、ゲニポシドとを共に非選択に吸着してしまうので、活性炭処理では、クチナシ黄色素の色素成分と、ゲニポシドとを分離することはできないことが記載されている。 Regarding the removal of geniposide, Patent Document 1 discloses that crocin, which is a pigment component of gardenia yellow, is selectively adsorbed to a specific synthetic adsorption resin, and geniposide, which causes greening of gardenia yellow, is used as a main component. Techniques for removing iridoid glycosides have been proposed. In addition, in the said patent document 1, since the activated carbon non-selectively adsorbs both the gardenia yellow pigment component and the geniposide, the activated carbon treatment separates the gardenia yellow pigment component and the geniposide. It states that you cannot do that.
 一方、クチナシの果実中には、イリドイド骨格を有するゲニポシド及びその類縁体が複数含まれていることが知られている(非特許文献2)。しかし、クチナシ黄色素を含む抽出液中に、ゲニポシド類縁体が含まれるか、及びそれらの含有割合については、明らかにされていなかった。 On the other hand, it is known that gardenia fruits contain a plurality of geniposide having an iridoid skeleton and analogs thereof (Non-Patent Document 2). However, it has not been clarified whether the geniposide analog is contained in the extract containing the gardenia yellow pigment and the content ratio thereof.
特開昭57-151657号公報JP-A-57-151657
 クチナシ由来黄色素は、従来使用されているものであり、これらに含有される程度の少量のゲニポシドが人体に悪影響を及ぼすことは明らかではないが、前述の状況から、ゲニポシドを含有する組成物から、ゲニポシド、ゲニピン及びそれらの類縁体を低減する新たな方法の提供は、有用である。例えば、特許文献1に記載のような合成吸着樹脂を使用する方法では、クチナシ黄色素の収率が悪いため、それ以外の方法を検討する必要がある。
 そこで、本発明は、クチナシ黄色素を含有する材料から、ゲニポシド、ゲニピン及びそれらの類縁体を低減する新たな方法を提供することを目的とする。
Gardenia-derived yellow pigments are those conventionally used, and it is not clear that a small amount of geniposide contained in them has an adverse effect on the human body. It is useful to provide new methods for reducing geniposide, genipin and their analogs. For example, in a method using a synthetic adsorption resin as described in Patent Document 1, the yield of gardenia yellow is poor, and it is necessary to consider other methods.
Accordingly, an object of the present invention is to provide a new method for reducing geniposide, genipin and their analogs from a material containing gardenia yellow pigment.
 本発明者らは、クチナシ黄色素を含有する材料に、ゲニポシド及びその類縁体が含まれていることを見出した。そこで、該材料から、ゲニポシド、ゲニピン及びそれらの類縁体を低減するために使用できる素材を鋭意検討した結果、一部の種類の活性炭が、クチナシ黄色素を含有する材料(すなわち、クチナシ黄色素の色素成分と、ゲニポシド、ゲニピン及びそれらの類縁体とを含有する組成物)と接触させた場合に、ケーク状の塊を形成することを見出すと共に、そのような性質を有する活性炭で処理することで、クチナシ黄色素の色素成分の損失を抑制しながら、ゲニポシド、ゲニピン及びそれらの類縁体を低減できることを見出した。興味深いことに、ケーク状の塊を形成しない活性炭は、ゲニポシド、ゲニピン及びそれらの類縁体を吸着する能力が著しく劣っており、クチナシ黄色素を含有する材料から、ゲニポシド、ゲニピン及びそれらの類縁体を低減するためには使用できなかった。
 本発明者らは、かかる知見に基づき、更なる研究の結果、本発明を完成するに至った。
The present inventors have found that a material containing a gardenia yellow dye contains geniposide and an analog thereof. Therefore, as a result of intensive studies on materials that can be used to reduce geniposide, genipin and their analogs from the materials, some types of activated carbon were found to contain materials containing gardenia yellow pigment (that is, gardenia yellow pigment). (A composition containing a pigment component and geniposide, genipin and their analogs), and found to form cake-like lumps, and by treatment with activated carbon having such properties. It was found that geniposide, genipin and their analogs can be reduced while suppressing the loss of the pigment component of gardenia yellow pigment. Interestingly, activated carbons that do not form cake-like lumps have a markedly poor ability to adsorb geniposide, genipin and their analogs, and remove geniposide, genipin and their analogs from materials containing gardenia yellow dystin. It could not be used to reduce.
The present inventors have completed the present invention as a result of further studies based on such findings.
 本発明は、次の態様を含む。 The present invention includes the following aspects.
[1] クチナシ黄色素を含有する材料に含まれるゲニポシド、ゲニピン及びそれらの類縁体からなる群から選択される少なくとも1種を低減する方法であって、
 クチナシ黄色素抽出物と攪拌混合することでケーク状の塊が形成される活性炭を用いて処理することを含む方法。
[2] 前記活性炭を、クチナシ黄色素抽出物に対して1~10質量%使用する、[1]に記載の方法。
[3] 攪拌混合後の活性炭の質量増加率が110~320%である、[1]又は[2]に記載の方法。
[4] クチナシ黄色素を含有する材料から、ゲニポシド、ゲニピン及びそれらの類縁体からなる群から選択される少なくとも1種を低減させる為の活性炭の選別方法であって、
 クチナシ黄色素抽出物と攪拌混合することでケーク状の塊が形成される活性炭を選別する方法。
[5] 攪拌混合の活性炭の質量増加率が110~320%である活性炭を選別する、[4]に記載の方法。
[6]  ゲニポシド、ゲニピン及びそれらの類縁体からなる群から選択される少なくとも1種が低減された、クチナシ黄色素組成物の製造方法であって、
 クチナシ黄色素抽出物と接触させた場合に、ケーク状の塊が形成される活性炭とクチナシ黄色素を含有する材料を接触処理する工程;
 を含む方法。
[7] ゲニポシド、ゲニピン及びそれらの類縁体からなる群から選択される少なくとも1種が低減された、クチナシ黄色素組成物の製造方法であって、
 クチナシ黄色素抽出物と攪拌混合した場合に、ケーク状の塊が形成される活性炭を選別する工程;及び
 前記選別する工程で選別された活性炭とクチナシ黄色素を含有する材料を接触処理する工程;
 を含む方法。
[8] 処理後の活性炭の質量増加率が110~320%である活性炭を選別する、[6]又は[7]に記載の方法。
[9] 色価100換算における、ゲニポシド、ゲニピン及びそれらの類縁体の総含有量が35ppm以下である、クチナシ黄色素組成物。
[10] [6]~[8]のいずれか1の方法により得られた、クチナシ黄色素組成物。
[1] A method for reducing at least one selected from the group consisting of geniposide, genipin, and analogs thereof contained in a material containing a gardenia yellow dye,
A method comprising treating with activated carbon which forms a cake-like mass by stirring and mixing with a gardenia yellow extract.
[2] The method according to [1], wherein the activated carbon is used in an amount of 1 to 10% by mass with respect to a gardenia yellow extract.
[3] The method according to [1] or [2], wherein the mass increase of the activated carbon after stirring and mixing is 110 to 320%.
[4] A method for selecting activated carbon for reducing at least one selected from the group consisting of geniposide, genipin, and analogs thereof from a material containing gardenia yellow pigment,
A method for selecting activated carbon from which a cake-like mass is formed by stirring and mixing with a gardenia yellow extract.
[5] The method according to [4], wherein activated carbon having a mass increase rate of the stirred and mixed activated carbon of 110 to 320% is selected.
[6] A method for producing a gardenia yellow element composition, wherein at least one selected from the group consisting of geniposide, genipin and analogs thereof is reduced,
A step of contacting the activated carbon with a gardenia yellow element-containing material that forms cake-like lumps when brought into contact with the gardenia yellow element extract;
A method that includes
[7] A method for producing a gardenia yellow element composition, wherein at least one selected from the group consisting of geniposide, genipin and analogs thereof is reduced,
A step of selecting activated carbon that forms a cake-like mass when stirred and mixed with the gardenia yellow element extract; and a step of contact-treating the activated carbon selected in the selecting step with a material containing a gardenia yellow element;
A method that includes
[8] The method according to [6] or [7], wherein activated carbon whose mass increase rate of the activated carbon after the treatment is 110 to 320% is selected.
[9] A gardenia yellow element composition having a total content of geniposide, genipin and their analogs of not more than 35 ppm in terms of a color value of 100.
[10] A gardenia yellow pigment composition obtained by the method according to any one of [6] to [8].
 本発明によれば、クチナシ黄色素を含有する材料から、ゲニポシド、ゲニピン及びそれらの類縁体を低減することができる。 According to the present invention, it is possible to reduce geniposide, genipin and their analogs from a material containing gardenia yellow pigment.
クチナシ黄色素を含有する材料を実施例又は比較例の活性炭によって処理した後の、活性炭の状態を示す写真である。It is a photograph which shows the state of the activated carbon after the material containing a gardenia yellow color is treated with the activated carbon of an Example or a comparative example. 図2(A)は、クチナシ黄色素を含有する材料に含まれる総イオンフラグメントのクロマトグラム(LC/MS)である。図2(B)は、クチナシ黄色素を含有する材料に含まれる、クチナシ黄色素(上)及びイリドイド類縁体(下)のイオンフラグメントのクロマトグラムである。各クロマトグラムの数値は、相互に比較可能である。FIG. 2 (A) is a chromatogram (LC / MS) of the total ion fragments contained in the gardenia yellow dye-containing material. FIG. 2 (B) is a chromatogram of ion fragments of gardenia yellow (upper) and iridoid analogs (lower) contained in a gardenia yellower containing material. The values of each chromatogram are comparable to each other. 活性炭処理したクチナシ黄色素を含有する材料に含まれる、クチナシ黄色素(上)及びイリドイド類縁体(下)のイオンフラグメントのクロマトグラム。各クロマトグラムの数値は、相互に比較可能である。Chromatogram of ion fragments of gardenia yellow (upper) and iridoid analogs (lower) contained in a material containing gardenia yellow (green) which has been treated with activated carbon. The values of each chromatogram are comparable to each other.
 [用語]
 本明細書中、特に記載の無い限り、「色価」は、「E1cm 10%」である。また、本明細書中、特に記載の無い限り、「色価」は、第9版食品添加物公定書(日本国厚生労働省)に記載の方法に従って決定される。
 本明細書中、「色価100換算」とは、測定値等の各種数値を、対象となる材料、色素等の色価100当たりの数値に換算することをいう。例えば、色価200の材料に含まれるゲニポシド、ゲニピン及びそれらの類縁体の含量が500ppmである場合、色価100換算における、ゲニポシド、ゲニピン及びそれらの類縁体の含量は、500ppmに、色価の比率(100/200)を乗じることで、250ppmと算出される。当然のことであるが、例えば、色価100の試料の測定値は、それ自体が「色価100換算」における数値であることができる。
[the term]
In the present specification, the “color value” is “E 1 cm 10% ” unless otherwise specified. In the present specification, unless otherwise specified, the “color value” is determined according to the method described in the Ninth Edition Official Standards for Food Additives (Ministry of Health, Labor and Welfare).
In the present specification, “100 conversion of color value” means that various numerical values such as measured values are converted into numerical values per 100 color values of target materials, pigments, and the like. For example, when the content of geniposide, genipin and their analogs contained in a material having a color value of 200 is 500 ppm, the content of geniposide, genipin and their analogs at a color value of 100 is 500 ppm, and the content of the color value is 500 ppm. By multiplying by the ratio (100/200), it is calculated as 250 ppm. As a matter of course, for example, the measured value of a sample having a color value of 100 can itself be a numerical value in “converted to a color value of 100”.
 本明細書中、特に記載の無い限り、「室温」及び「常温」は、10~40℃の範囲内の温度を意味する。 室温 In the present specification, unless otherwise specified, “room temperature” and “normal temperature” mean a temperature in the range of 10 to 40 ° C.
 本明細書中、「色素成分」「クチナシ黄色素成分」とは、色素の本質(coloring principle)を意味する。 中 In this specification, the term “colorant component” or “gardenia yellow component” means the essence of coloring (coloring principal).
 本明細書中、「クチナシ黄色素組成物」は、色素成分を含有し、又はこれのみからなり;色素成分以外の原料由来の成分、製法に起因する成分、又はその両方を含有してもよい。「クチナシ黄色素組成物」は、活性炭処理後の色素含有組成物を指す。 In this specification, the "gardenia yellow color composition" contains or consists of only a pigment component; it may contain components derived from raw materials other than the pigment component, components resulting from the production method, or both. . "Gardenia yellow element composition" refers to a pigment-containing composition after activated carbon treatment.
 本明細書中、「クチナシ黄色素を含有する材料」は、天然物由来のクチナシ黄色素を含む、活性炭処理前の色素含有材料を指す。クチナシ黄色素を含有する材料は、例えば、クチナシの実の抽出物であり得る。クチナシの実の抽出物は、抽出溶媒により抽出したクチナシ黄色素粗抽出液、固体を含む粗抽出物、抽出液からの乾燥物、又はこれらの精製物等を包含する。さらに、クチナシ黄色素を含有する材料は、クチナシの実の搾汁液又は搾汁乾燥物であり得る。さらに、クチナシ黄色素を含有する材料は、クチナシ果実(固体)又は果実粉砕物であり得る。また、クチナシ黄色素を含有する材料は、市場に流通するクチナシ抽出物、又はクチナシ黄色素製剤等であり得る。 中 In the present specification, the “material containing gardenia yellow dye” refers to a dye-containing material containing a gardenia yellow dye derived from a natural product before activated carbon treatment. The gardenia-yellow-containing material can be, for example, a gardenia nut extract. The gardenia fruit extract includes a gardenia yellow crude extract extracted with an extraction solvent, a crude extract containing a solid, a dried product from the extract, a purified product thereof, and the like. Further, the gardenia-yellow-containing material may be a juice or dried juice of gardenia. Further, the gardenia-yellow-containing material may be a gardenia fruit (solid) or a crushed fruit. In addition, the gardenia-yellow-containing material may be a gardenia extract or a gardenia-yellow preparation that is commercially available.
 「クチナシ黄色素(Gardenia Yellow)」は、第9版食品添加物公定書(日本国厚生労働省)において、以下の通り定義されている。本明細書中、「クチナシ黄色素」は、当該定義に準じるものであることができる。定義:「本品は,クチナシ(Gardenia augusta Merrill又はGardenia jasminoides Ellis)の果実から得られた,クロシン及びクロセチンを主成分とするものである。デキストリン又は乳糖を含むことがある。」 “Gardenia Yellow” is defined as follows in the Ninth Edition Official Addendum of Food Additives (Ministry of Health, Labor and Welfare of Japan). In the present specification, the “gardenia yellow pigment” can conform to the definition. Definition: "The product is based on crocin and crocetin, obtained from the fruits of the gardenia (Gardenia augusta Merrill or Gardenia jasminoides Ellis). It may contain dextrin or lactose."
 [クチナシ黄色素を含有する材料に含まれるゲニポシド、ゲニピン及びそれらの類縁体を低減する方法]
 本発明の、クチナシ黄色素を含有する材料から、ゲニポシド、ゲニピン及びそれらの類縁体を低減する方法(以下、本発明の低減方法と称する場合がある。)は、クチナシ黄色素抽出物と攪拌混合することでケーク状の塊が形成される活性炭を用いて処理することを含む、方法である。例えば、クチナシ黄色素を含有する材料を、50mLガラス製容器にクチナシ黄色素抽出物(色価100)20g、及び活性炭1gを、常温下(10~40℃)にて、1時間攪拌混合し、常温下(10~40℃)にて2時間静置後、ケーク状の塊が形成される活性炭により処理して、ゲニポシド、ゲニピン及びそれらの類縁体を低減する方法であり得る。ここで、「クチナシ黄色素抽出物」とは、クチナシ黄色素を含有する材料から、色価100に調製した液体を指す。
[Method of reducing geniposide, genipin and their analogs contained in gardenia yellow element-containing material]
The method of the present invention for reducing geniposide, genipin and their analogs from a gardenia yellow element-containing material (hereinafter, sometimes referred to as the reduction method of the present invention) is a method of stirring and mixing with a gardenia yellow element extract. The method comprises a treatment using activated carbon, which forms a cake-like mass. For example, a gardenia yellow element-containing material is mixed in a 50 mL glass container by stirring 20 g of a gardenia yellow element extract (color value: 100) and 1 g of activated carbon at room temperature (10 to 40 ° C.) for 1 hour. After leaving at room temperature (10 to 40 ° C.) for 2 hours, the method may be a method of reducing geniposide, genipin and their analogs by treating with activated carbon which forms cake-like lumps. Here, the "gardenia yellow pigment extract" refers to a liquid prepared to a color value of 100 from a material containing gardenia yellow pigment.
 本発明において「低減」とは、処理対象物中のゲニポシド、ゲニピン及びそれらの類縁体の量が減少することをいう。すなわち、「低減」は、処理対象物中のゲニポシド、ゲニピン及びそれらの類縁体からなる群から選択される少なくとも1種の量が処理前と比較して減少していれば良く、その完全な除去も含まれるが、必ずしも、全て除去されていなくてもよい。すなわち、ゲニポシド、ゲニピン及びそれらの類縁体が完全に除去されていなくても、本発明の実施に該当するが、ゲニポシド、ゲニピン及びそれらの類縁体が完全、又は完全に近い程度で除去されることは好ましい。 に お い て In the present invention, “reduction” means that the amounts of geniposide, genipin and their analogs in the object to be treated are reduced. That is, the “reduction” means that the amount of at least one selected from the group consisting of geniposide, genipin and their analogs in the object to be treated has been reduced as compared to before the treatment, and complete removal thereof However, it is not always necessary to remove all of them. In other words, even if geniposide, genipin and their analogs are not completely removed, it is applicable to the practice of the present invention, but geniposide, genipin and their analogs are completely or almost completely removed. Is preferred.
 材料
 前述したように、クチナシ黄色素は、一般に、アカネ科クチナシの果実を、水、又は含水エタノールで抽出して得られる。従って、クチナシ黄色素を含有する材料は、通常、原料由来のゲニポシド及びその類縁体を含有する。
Ingredients As mentioned above, the gardenia yellow pigment is generally obtained by extracting the fruits of the gardenia gardenia with water or hydrous ethanol. Therefore, the gardenia-containing element usually contains geniposide and its analogs derived from the raw material.
 クチナシの果実には、様々なゲニポシド類縁体が含まれるが、本発明の方法により除去されるゲニポシド類縁体としては、イリドイド骨格を有している化合物(配糖体を含む)であれば良く、例えば、gardenate A、gardenamide、6''-O-p-cis-coumaroylgenipin gentiobioside、7β,8β-epoxy-8α-dihydrogeniposide、及び8-epiapodantheroside等が挙げられるが、それらに限定されない。
 また、ゲニピンは、例えば、クチナシ青色素を製造する工程において、ゲニポシドをβグルコシダーゼ処理することにより生成する物質であり、クチナシの果実中には多く含まれない。一方で、クチナシ果実に含まれる、ゲニポシド及びその類縁体を、βグルコシダーゼ処理することによって、ゲニピン及びその類縁体が生成する。
Gardenia fruit contains various geniposide analogs, and the geniposide analog removed by the method of the present invention may be any compound having an iridoid skeleton (including glycosides). Examples include, but are not limited to, gardenate A, gardenamide, 6 ″ -Op-cis-coumaroylgenipin gentiobioside, 7β, 8β-epoxy-8α-dihydrogeniposide, and 8-epiapodantheroside.
Genipin is, for example, a substance produced by treating geniposide with β-glucosidase in a process of producing a gardenia blue pigment, and is not contained much in gardenia fruits. On the other hand, genipin and its analogs are produced by treating geniposide and its analogs contained in gardenia fruit with β-glucosidase.
 本発明の低減方法を施される際の「クチナシ黄色素を含有する材料」における「ゲニポシド、ゲニピン及びそれらの類縁体」の量は、特に限定されず、その低減が望まれる程度の量であればよい。 The amount of the `` geniposide, genipin and their analogs '' in the `` material containing gardenia yellow element '' when the reduction method of the present invention is applied is not particularly limited, and may be an amount for which the reduction is desired. I just need.
 クチナシ黄色素を含有する材料及びゲニピン並びにそれらの類縁体において、色価100換算における、ゲニポシド、ゲニピン及びそれらの類縁体の総含量の下限値は、5ppm、10ppm、20ppm、25ppm、30ppm、40ppm、50ppm、80ppm、100ppm、150ppm、200ppm、250ppm、300ppm、350ppm、又は400ppmであり得る。
 当該量は、色価100換算における、ゲニポシド、ゲニピン及びそれらの類縁体の総含量として、5~5000ppmの範囲内、10~5000ppmの範囲内、20~5000ppmの範囲内、25~5000ppmの範囲内、30~5000ppmの範囲内、40~5000ppmの範囲内、50~3000ppmの範囲内、80~3000ppmの範囲内、100~2000ppmの範囲内、150~2000ppmの範囲内、200~2000ppmの範囲内、250~2000ppmの範囲内、300~2000ppmの範囲内、350~2000ppmの範囲内、400~2000ppmの範囲内である。
 また、本発明では、色価100換算における、ゲニポシド、ゲニピン及びそれらの類縁体の総含量として、5~1000ppmの範囲内、10~900ppmの範囲内、50~800ppmの範囲内、100~1000ppmの範囲内、200~800ppmの範囲内であることができる。
 クチナシ黄色素の場合、「ゲニポシド、ゲニピン及びそれらの類縁体の総含量」は、通常、ゲニポシド及びその類縁体の含量に等しい。
In the material containing gardenia yellow pigment and genipin and their analogs, the lower limit of the total content of geniposide, genipin and their analogs in terms of color value 100 is 5 ppm, 10 ppm, 20 ppm, 25 ppm, 30 ppm, 40 ppm, It can be 50 ppm, 80 ppm, 100 ppm, 150 ppm, 200 ppm, 250 ppm, 300 ppm, 350 ppm, or 400 ppm.
The amount is in the range of 5 to 5000 ppm, in the range of 10 to 5000 ppm, in the range of 20 to 5000 ppm, and in the range of 25 to 5000 ppm as the total content of geniposide, genipin and their analogs in terms of color value 100. , Within the range of 30 to 5000 ppm, within the range of 40 to 5000 ppm, within the range of 50 to 3000 ppm, within the range of 80 to 3000 ppm, within the range of 100 to 2000 ppm, within the range of 150 to 2000 ppm, within the range of 200 to 2000 ppm, Within the range of 250 to 2000 ppm, within the range of 300 to 2000 ppm, within the range of 350 to 2000 ppm, and within the range of 400 to 2000 ppm.
In the present invention, the total content of geniposide, genipin and their analogs in terms of a color value of 100 is in the range of 5 to 1000 ppm, in the range of 10 to 900 ppm, in the range of 50 to 800 ppm, and in the range of 100 to 1000 ppm. Within the range, 200-800 ppm.
In the case of gardenia yellow, the "total content of geniposide, genipin and their analogs" is usually equal to the content of geniposide and its analogs.
 本明細書中、ゲニポシド、ゲニピン及びそれらの類縁体の量は、特に指定がある場合を除き、以下の条件のLC/MS分析、又はこれと同等の分析結果が得られる分析方法によって決定される。
 天然物に含まれる類縁体を分析する際においては、全ての標準品を準備することが困難である場合があることから、好適には、オールイオンフラグメンテーション法(AIF法)を利用したLC/MS分析によって、共通の骨格を有する化合物(類縁体)が定量される。一方で、NMR等の公知の方法を組合せることによっても、類縁体を一つずつ同定することは可能であることから、同定した類縁体の標準品を作製し、検量線法によって、試料に含まれる類縁体を定量することも可能である。
In the present specification, the amounts of geniposide, genipin and their analogs are determined by LC / MS analysis under the following conditions or an analysis method capable of obtaining an analysis result equivalent thereto, unless otherwise specified. .
When analyzing analogs contained in natural products, it may be difficult to prepare all standard products. Therefore, LC / MS using all-ion fragmentation method (AIF method) is preferred. The analysis quantifies compounds having a common backbone (analogs). On the other hand, it is also possible to identify analogs one by one by combining known methods such as NMR.Therefore, a standard product of the identified analog is prepared, and a standard curve method is applied to the sample. It is also possible to quantify the contained analogs.
 [HPLC分析条件]
 システム: UltiMate 3000 HPLC system
 カラム: L-Column ODS (2.1X150mm、3μm、化学物質評価研究機構)
 移動相: a)0.1%ギ酸水、b)アセトニトリル
 送液速度: 0.2 mL/min
 温度:40℃
 注入量: 5μL
[HPLC analysis conditions]
System: UltiMate 3000 HPLC system
Column: L-Column ODS (2.1 × 150 mm, 3 μm, Research Institute for Chemicals)
Mobile phase: a) 0.1% formic acid aqueous solution, b) acetonitrile Feed rate: 0.2 mL / min
Temperature: 40 ° C
Injection volume: 5 μL
 [MS分析条件]
 装置:Q ExactiveTM ハイブリッド四重極-オービトラップ質量分析計(Thermo Fisher Scientific)
 イオンソース:Positive/Negative HESI
 スプレーボルテージ (+):3000
 スプレーボルテージ (-):3500
 キャピラリー温度:300℃
 シースガス: 50
 オークスガス: 15
 プローブ温度: 350℃
 S-レンズ RF レベルl:50FullMS
 Resolution:140,000
 Scan Range:120to1800m/zData Dependent-MS2
 Resolution:17,500
 Isolation Window:4.0m/z
 (N)CE/stepped nce:10,25,40
[MS analysis conditions]
Apparatus: Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Fisher Scientific)
Ion source: Positive / Negative HESI
Spray voltage (+): 3000
Spray voltage (-): 3500
Capillary temperature: 300 ° C
Sheath gas: 50
Oaks gas: 15
Probe temperature: 350 ° C
S-lens RF level 1: 50 FullMS
Resolution: 140,000
Scan Range: 120 to 1800 m / z Data Dependent-MS2
Resolution: 17,500
Isolation Window: 4.0m / z
(N) CE / stepped nce: 10, 25, 40
 当該分析条件による分析において、ゲニポシドの検出限界は、約10ppbであり、及びゲニピンの検出限界は、約100ppbである。 分析 In the analysis under the analysis conditions, the detection limit of geniposide is about 10 ppb, and the detection limit of genipin is about 100 ppb.
 ここで、クチナシ黄色素の色価は、次の色価測定方法により決定される。 色 Here, the color value of gardenia yellow is determined by the following color value measurement method.
 <クチナシ黄色素の色価測定方法>
 色価100に換算して約5gに相当する量の試料を精密に量り、当該試料に0.02mol/L水酸化ナトリウム溶液50mlを加えて50℃の水浴中で20分間加温し、必要があれば振り混ぜながら溶かし、水を加えて正確に100mlとする。その1mlを正確に量りとり、50vol%エタノールを加えて正確に100mlとし、必要があれば遠心分離し、その上澄み液を検液とする。50vol%エタノールを対照として、410~425nmの極大吸収部における、液層の長さ1cmでの吸光度Aを測定し、次式により色価を求める。
 色価=(A×1000)/採取量(g)
<Method for measuring color value of gardenia yellow element>
A sample equivalent to about 5 g in terms of a color value of 100 was precisely weighed, 50 ml of a 0.02 mol / L sodium hydroxide solution was added to the sample, and the mixture was heated in a 50 ° C water bath for 20 minutes. If present, dissolve with shaking and add water to make exactly 100 ml. Measure exactly 1 ml, add 50 vol% ethanol to make exactly 100 ml, centrifuge if necessary, and use the supernatant as the test solution. Using 50 vol% ethanol as a control, the absorbance A at a maximum absorption area of 410 to 425 nm at a liquid layer length of 1 cm is measured, and the color value is determined by the following equation.
Color value = (A × 1000) / collected amount (g)
 クチナシ黄色素を含有する材料は、限定はされないが、例えば、粉末又は液体原料を色価100になるように水で希釈後、活性炭処理に供することができる。一般的には、クチナシ黄色素を含有する材料として、市販されている液体濃縮品を、色価100になるように水で希釈後、活性炭処理に供する。その他に、例えば、クチナシの実の抽出物(抽出溶媒により抽出したクチナシ黄色素粗抽出液、固体を含む粗抽出物、抽出液からの乾燥物、又はこれらの精製物)をそのままあるいは希釈して、活性炭処理に供してもよい。さらに、クチナシの実の搾汁液又は搾汁乾燥物をそのままあるいは希釈して、活性炭処理に供してもよい。さらに、クチナシ果実(固体)又は果実粉砕物を活性炭と接触させてもよい。さらには、クチナシ果実(固体)又は果実粉砕物と、活性炭(固体)とを、液中で接触させてもよい。 The material containing gardenia yellow pigment is not limited, but for example, a powder or liquid raw material can be diluted with water so as to have a color value of 100 and then subjected to an activated carbon treatment. In general, a commercially available liquid concentrate as a material containing gardenia yellow dye is diluted with water so as to have a color value of 100, and then subjected to activated carbon treatment. In addition, for example, a gardenia fruit extract (a gardenia yellow crude extract extracted with an extraction solvent, a crude extract containing a solid, a dried product from the extract, or a purified product thereof) may be used as it is or diluted. , May be subjected to activated carbon treatment. Further, the juice or dried juice of gardenia fruit may be used as it is or diluted and then subjected to activated carbon treatment. Further, gardenia fruits (solid) or crushed fruits may be contacted with activated carbon. Further, gardenia fruit (solid) or a crushed fruit may be brought into contact with activated carbon (solid) in a liquid.
 (活性炭による処理)
 本発明の低減方法で用いられる活性炭は、クチナシ黄色素抽出物と攪拌混合することでケーク状の塊が形成される活性炭である。例えば、50mLガラス製容器にクチナシ黄色素抽出物(色価100)20g、及び活性炭1gを、常温下(10~40℃)にて、1時間攪拌混合し、常温下(10~40℃)にて2時間静置後、ケーク状の塊が形成される、活性炭であり得る。
(Treatment with activated carbon)
The activated carbon used in the reduction method of the present invention is an activated carbon that forms a cake-like mass by stirring and mixing with the gardenia yellow extract. For example, 20 g of a gardenia yellow extract (color value 100) and 1 g of activated carbon are stirred and mixed at room temperature (10 to 40 ° C.) for 1 hour in a 50 mL glass container, and the mixture is stirred at room temperature (10 to 40 ° C.). After 2 hours, a cake-like mass is formed.
 ここで、50mLガラス製容器は、株式会社マルエム製 マイティバイアルであることが好ましい。 Here, the 50 mL glass container is preferably a mighty vial manufactured by Maruem Corporation.
 常温は、上述の通り、10~40℃のいずれでもよいが、例えば、25℃であり得る。 The normal temperature may be any of 10 to 40 ° C. as described above, but may be, for example, 25 ° C.
 1時間攪拌混合は、好ましくは、200~500rpmの条件で行う。 攪拌 The stirring and mixing for one hour is preferably performed at 200 to 500 rpm.
 ここで、ケーク状の塊は、例えば、50mLガラス製容器に、クチナシ黄色素抽出物(色価100)20g、及び活性炭1gを1時間攪拌混合し、2時間静置後、デカンテーションした後に、ガラス底面側に、形を変えない状態で残存している塊を示す。好ましくは、該ガラス製容器の底面全体が活性炭のケークで覆われ、底面のガラスの露出はない状態である。ここで、デカンテーション後の該ガラス製容器の残存物量は、好ましくは、3g以下、さらに好ましくは、2g以下である。活性炭がケーク状の塊で残存しているにもかかわらず、ガラス製容器中の残存物量が少ない場合には、液切れが良く、効率良くゲニポシド、ゲニピン及びそれらの類縁体を低減することができる。 Here, the cake-like mass is, for example, in a 50-mL glass container, 20 g of gardenia yellow extract (color value 100) and 1 g of activated carbon are stirred and mixed for 1 hour, left to stand for 2 hours, and then decanted. The lump remaining without changing its shape is shown on the glass bottom side. Preferably, the entire bottom surface of the glass container is covered with a cake of activated carbon, and the glass on the bottom surface is not exposed. Here, the residual amount of the glass container after decantation is preferably 3 g or less, more preferably 2 g or less. Despite the activated carbon remaining in a cake-like lump, when the amount of residue in the glass container is small, the liquid drainage is good, and geniposide, genipin and their analogs can be efficiently reduced. .
 ここで、デカンテーションの条件は、上記容器を傾けながら、上澄み液のみを除去する工程を指す。すなわち、本発明においては、デカンテーション時に、処理に使用した活性炭が固まりとして存在しており、液切れの良い状態となる。 Here, the decantation condition refers to a step of removing only the supernatant while tilting the container. That is, in the present invention, at the time of decantation, the activated carbon used for the treatment is present as a lump, and the liquid is in a good drainage state.
 さらに、ケーク状の塊は、好ましくは、50mLガラス製容器に、クチナシ黄色素抽出物(色価100)20g、及び活性炭1gを1時間攪拌混合し、2時間静置後、前記ガラス製容器を180°反転させた状態で、常温下にて、10分静置後、該容器に残存する性質を有し得る。 Further, the cake-like mass is preferably stirred and mixed with 20 g of gardenia yellow extract (color value: 100) and 1 g of activated carbon in a 50 mL glass container for 1 hour, and allowed to stand for 2 hours. It may have the property of remaining in the container after standing for 10 minutes at room temperature in the state of being inverted by 180 °.
 本発明において使用できる活性炭は、クチナシ黄色素抽出物と接触した場合にケーク状の塊を形成し、該接触後の抽出物を除去した後に残存する活性炭(デカント)は、活性炭の粒子の間にゲニポシド等を含む水分をトラップすることにより、使用前の活性炭と比較して、質量が増加する傾向を示す。ここで、残存する活性炭の質量増加率が、110%より低い活性炭である場合、ゲニポシド等の除去効率が劣る傾向にあるため、好ましくは、110%以上、より好ましくは120%以上、さらに好ましくは130%以上、さらにより好ましくは140%以上、特に好ましくは150%以上、最も好ましくは160%以上である。一方、活性炭の質量増加率が、320%超の場合、クチナシ黄色色素の残存率が低くなる傾向にあるため、好ましくは、320%以下、より好ましくは310%以下、さらに好ましくは300%以下、さらにより好ましくは280%以下、特に好ましくは260%以下である。
 従って、本発明において使用できる活性炭の質量増加率は、例えば、110%~320%、好ましくは110%~300%、より好ましくは110%~280%、さらに好ましくは110%~260%である。
質量増加率は、[(デカント残量(湿重量、g))/初期活性炭量(乾重量、g)]×100(%)で求めることができる。
活性炭を、クチナシ黄色素抽出物と接触した場合にケーク状の塊を形成する機構は、特に限定されるものではないが、活性炭の固体表面に存在する解離性官能基、及び賦活プロセスを通じて生成される表面官能基の違いにより、活性炭表面とクチナシ黄色素の表面荷電が引き合う事で凝集するものと考えられる。すなわち、本発明で使用できる活性炭は、ゲニポシド等を含むクチナシ抽出物の何らかの成分によって凝集するが、クロシン等のクチナシ黄色素の成分は、その反応には関与していないと考えられる。
The activated carbon that can be used in the present invention forms a cake-like mass when contacted with the gardenia yellow extract, and the activated carbon (decant) remaining after removing the extract after the contact is between the activated carbon particles. By trapping water containing geniposide and the like, the mass tends to increase as compared with activated carbon before use. Here, in the case of activated carbon in which the mass increase rate of the remaining activated carbon is lower than 110%, the removal efficiency of geniposide and the like tends to be inferior, so that it is preferably 110% or more, more preferably 120% or more, and further preferably It is at least 130%, even more preferably at least 140%, particularly preferably at least 150%, most preferably at least 160%. On the other hand, when the mass increase rate of the activated carbon is more than 320%, the residual rate of the gardenia yellow pigment tends to be low. Therefore, it is preferably 320% or less, more preferably 310% or less, and still more preferably 300% or less. It is even more preferably at most 280%, particularly preferably at most 260%.
Accordingly, the mass increase of the activated carbon that can be used in the present invention is, for example, 110% to 320%, preferably 110% to 300%, more preferably 110% to 280%, and further preferably 110% to 260%.
The mass increase rate can be determined by [(decant residual amount (wet weight, g)) / initial activated carbon amount (dry weight, g)] × 100 (%).
The mechanism for forming a cake-like mass when the activated carbon is brought into contact with the gardenia yellow extract is not particularly limited, but the dissociable functional groups present on the solid surface of the activated carbon and the activated carbon are formed through the activation process. It is considered that due to the difference in the surface functional groups, the surface charge of the activated carbon surface and the gardenia yellow element attract each other to cause aggregation. That is, the activated carbon that can be used in the present invention is aggregated by some components of the gardenia extract containing geniposide and the like, but the components of the gardenia yellow dye such as crocin are not considered to be involved in the reaction.
 本発明において使用される活性炭は、限定はされないが、例えば、由来原料はヤシ殻、石炭、木粉等が挙げられ、好ましくはヤシ殻である。賦活方法も特に限定はされないが、好ましくは水蒸気賦活である。粒子径も特に限定はされないが、例えば、好ましくは、直径0.15mm以下の粉末であり得る。 活性 The activated carbon used in the present invention is not limited, but examples thereof include coconut shell, coal, wood flour and the like, and preferably coconut shell. The activation method is also not particularly limited, but is preferably steam activation. The particle diameter is not particularly limited, either. For example, the powder may preferably be 0.15 mm or less in diameter.
 活性炭による処理は、クチナシ黄色素を含有する材料を活性炭に接触させることによって実施される。限定はされないが、活性炭による処理に当たっては、ガラス製、樹脂製、又はステンレス製容器内で、バッチ法で行われ得る。容器の容量は限定されないが、例えば10L以上、又は100L以上又は500L以上の容器で行うことができる。これにより、ゲニポシド、ゲニピン及びそれらの類縁体が活性炭に吸着する。そして、ゲニポシド、ゲニピン及びそれらの類縁体が吸着した活性炭を除去することにより、ゲニポシド、ゲニピン及びそれらの類縁体が除去される。 処理 The treatment with activated carbon is carried out by bringing a material containing gardenia yellow color into contact with activated carbon. Although not limited, the treatment with activated carbon can be performed in a glass, resin, or stainless steel container by a batch method. Although the capacity of the container is not limited, for example, it can be performed in a container of 10 L or more, or 100 L or more, or 500 L or more. Thereby, geniposide, genipin and their analogs are adsorbed on the activated carbon. Then, geniposide, genipin and their analogs are removed by removing the activated carbon to which geniposide, genipin and their analogs are adsorbed.
 本発明において使用できる活性炭は、クチナシ黄色素抽出物との所定の接触によって、ケーク状に固まる性質を有する為、ゲニポシド、ゲニピン及びそれらの類縁体が低減したクチナシ黄色素組成物を、上澄み液として効率良く簡易に回収することが可能となる。すなわち、液中に存在する色素を、活性炭に吸着したゲニポシド、ゲニピン及びそれらの類縁体と分離することは、液切れの良さにより、容易となる。さらに、このような活性炭の性質によって、クチナシ黄色素組成物中に、処理に使用した活性炭の残渣が残りにくいという優れた効果が発揮される。活性炭の残渣が残りにくい為、次の精製操作等において、活性炭による目詰まり等が生じにくく、さらなる工程の効率化も可能となる。 Activated carbon that can be used in the present invention has a property of hardening into a cake by predetermined contact with a gardenia yellow element extract, so that a gardenia yellow element composition in which geniposide, genipin and their analogs are reduced, is used as a supernatant liquid. It becomes possible to collect efficiently and easily. That is, it is easy to separate the dye present in the liquid from geniposide, genipin and their analogs adsorbed on the activated carbon due to the good drainage of the liquid. Further, due to such properties of the activated carbon, an excellent effect that a residue of the activated carbon used in the treatment hardly remains in the gardenia yellow pigment composition is exhibited. Since the residue of the activated carbon hardly remains, clogging or the like by the activated carbon hardly occurs in the next purification operation or the like, and the efficiency of the process can be further improved.
 クチナシ黄色素を含有する材料を活性炭に接触させることは、当該材料が水溶性固体の場合、例えば、当該材料を水系溶媒又は有機溶媒に溶解又は懸濁することにより、液体の形態にし、当該液体の状態の材料と活性炭とを混合することにより実施できる。当該材料が水不溶性固体の場合、例えば、当該材料と活性炭を液中で混合すること、又は、当該材料と活性炭の混合物を液に接触することにより実施できる。一方、当該材料が液体の場合、例えば、当該抽出物をそのまま、又は、水系溶媒若しくは有機溶媒で希釈して、当該液体の状態の材料と活性炭とを混合することにより実施できる。当該混合は、振とう機、又は攪拌機等を用いる慣用の手段で実施すればよい。
 前記水系溶媒の例は、水(例、水道水、イオン交換水、蒸留水)、及び含水アルコール(例、含水エタノール)を包含する。前記有機溶媒の例は、低級アルコール(例、メタノール、エタノール等)を包含する。クチナシ黄色素が活性炭に吸着されてしまうことを抑制する観点からは、前記溶媒は、水系溶媒であることが好ましく、水系溶媒は、アルコール(例、エタノール)の含有量が小さいことがより好ましく、更に好ましくは水(例、水道水、イオン交換水、蒸留水)である。
Contacting the material containing gardenia yellow yellow with activated carbon is performed when the material is a water-soluble solid, for example, by dissolving or suspending the material in an aqueous or organic solvent to form a liquid, And the activated carbon can be mixed. When the material is a water-insoluble solid, for example, it can be carried out by mixing the material and activated carbon in a liquid, or by bringing a mixture of the material and activated carbon into contact with the liquid. On the other hand, when the material is a liquid, for example, the extraction can be performed as it is or by diluting with an aqueous solvent or an organic solvent and mixing the material in the liquid state with activated carbon. The mixing may be performed by a conventional means using a shaker, a stirrer, or the like.
Examples of the aqueous solvent include water (eg, tap water, ion-exchanged water, distilled water), and hydrated alcohol (eg, hydrated ethanol). Examples of the organic solvent include lower alcohols (eg, methanol, ethanol, etc.). From the viewpoint of suppressing that the gardenia yellow dye is adsorbed on the activated carbon, the solvent is preferably an aqueous solvent, and the aqueous solvent is more preferably low in the content of alcohol (eg, ethanol), More preferably, it is water (eg, tap water, ion-exchanged water, distilled water).
 前記「液体の状態の材料」のpHは、特に限定されないが、通常、2.0~7.0の範囲内、好ましくは、3.0~7.0、より好ましくは3.5~6.0の範囲内である。
 前記「液体の状態の材料」のpHを調整する場合、当該調整は、塩酸、又は水酸化ナトリウムを用いる等の慣用の方法により行えばよい。
The pH of the “material in a liquid state” is not particularly limited, but is usually in the range of 2.0 to 7.0, preferably 3.0 to 7.0, and more preferably 3.5 to 6. It is within the range of 0.
When adjusting the pH of the "liquid state material", the adjustment may be performed by a conventional method such as using hydrochloric acid or sodium hydroxide.
 活性炭による処理の温度は、特に限定されないが、通常、室温で実施すればよい。 (4) The temperature of the treatment with activated carbon is not particularly limited, but may be usually performed at room temperature.
 活性炭による処理に用いられる活性炭の好適な量は、特に限定はされないが、抽出物に対して、0.1~10質量%の範囲内であり、より好ましくは、1~7質量%の範囲内である。色価100当たりの「ゲニポシド、ゲニピン及びそれらの類縁体」の総含量が5~5000ppmの範囲内であるクチナシ黄色素の場合、抽出物と活性炭の総量に対して、活性炭の量は、好ましくは、1~10質量%の範囲内であり、より好ましくは、2~8質量%の範囲内であり、更に好ましくは、3~7質量%の範囲内である。 The suitable amount of activated carbon used in the treatment with activated carbon is not particularly limited, but is in the range of 0.1 to 10% by mass, more preferably 1 to 7% by mass, based on the extract. It is. In the case of gardenia yellow pigment having a total content of “geniposide, genipin and their analogs” per 100 color values in the range of 5 to 5000 ppm, the amount of activated carbon is preferably based on the total amount of extract and activated carbon. , In the range of 1 to 10% by mass, more preferably in the range of 2 to 8% by mass, and still more preferably in the range of 3 to 7% by mass.
 活性炭による処理に用いられる活性炭の好適な量は、例えば、クチナシ黄色素を含む溶液1質量部(色価100)に対する活性炭の量が、好ましくは、0.01~0.5質量部、より好ましくは0.03~0.5質量部、更に好ましくは0.03~0.3質量部、より更に好ましくは、0.03~0.1質量部、特に好ましくは0.05~0.3質量部、最も好ましくは0.05~0.1質量部であり得る。 The preferred amount of the activated carbon used for the treatment with the activated carbon is, for example, the amount of the activated carbon per 1 part by mass (color value: 100) of the solution containing gardenia yellow dye, preferably 0.01 to 0.5 part by mass, more preferably Is 0.03 to 0.5 part by mass, more preferably 0.03 to 0.3 part by mass, still more preferably 0.03 to 0.1 part by mass, particularly preferably 0.05 to 0.3 part by mass. Parts, most preferably 0.05 to 0.1 parts by weight.
 活性炭による処理の時間は、特に限定されないが、接触時間は、好ましくは、混合時間30分以上、及び静置時間が10分以上のバッチ法であり得る。通常、混合時間が好ましくは、30分~40時間、より好ましくは1時間~30時間の範囲内であり、静置時間が、好ましくは、10分~60時間、より好ましくは、1時間~50時間の範囲内である。 時間 The time of the treatment with activated carbon is not particularly limited, but the contact time may preferably be a batch method in which the mixing time is 30 minutes or more and the standing time is 10 minutes or more. Generally, the mixing time is preferably in the range of 30 minutes to 40 hours, more preferably 1 hour to 30 hours, and the standing time is preferably 10 minutes to 60 hours, more preferably 1 hour to 50 hours. Within the time range.
 当該時間が上記の範囲内であると、「ゲニポシド、ゲニピン及びそれらの類縁体」の低減が充分となり、作業効率の点でも有利である。 と If the time is within the above range, “geniposide, genipin and their analogs” will be sufficiently reduced, which is advantageous in terms of working efficiency.
(吸着処理)
 本発明の低減方法においては、好ましくは、前記「クチナシ黄色素を含有する材料」は、先に吸着処理されているものでも良く、次いで、前記「活性炭による処理」が実施され得る。
 当該吸着処理による処理によって、ある程度、「ゲニポシド、ゲニピン及びそれらの類縁体」を除去することができる場合がある。この場合、例えば、「活性炭による処理」における活性炭の使用量を低減できる。
 当該吸着処理は、特に限定されず、例えば、シリカゲル又は多孔質セラミック等による吸着処理;合成吸着樹脂を用いた吸着処理等を挙げることができる。
(Suction treatment)
In the reduction method of the present invention, preferably, the “material containing gardenia yellow color” may have been previously subjected to an adsorption treatment, and then the “treatment with activated carbon” may be performed.
In some cases, "geniposide, genipin and their analogs" can be removed by the treatment by the adsorption treatment. In this case, for example, the amount of activated carbon used in “treatment with activated carbon” can be reduced.
The adsorption treatment is not particularly limited, and examples thereof include an adsorption treatment using silica gel or a porous ceramic; and an adsorption treatment using a synthetic adsorption resin.
 当該吸着処理は、バッチ式及びカラム式のいずれの方法でも行うことができる。吸着条件は、クチナシ黄色素が上記吸着樹脂に吸着する条件であれば特に制限されないが、通常pH2~7、好ましくはpH3~5の条件下で、クチナシ黄色素を含有する材料を通液接触させることが望ましい。クチナシ黄色素の脱離回収は、上記樹脂を水で洗浄後、エタノール、イソプロパノール等の低級アルコールあるいはアセトン等の親水性有機溶媒又はこれら親水性有機溶媒と水との混合液を溶出液として通液することによって行うことができる。 (4) The adsorption treatment can be performed by either a batch method or a column method. The adsorption condition is not particularly limited as long as the gardenia yellow dye is adsorbed on the above-mentioned adsorption resin, but the material containing the gardenia yellow dye is usually brought into liquid contact under conditions of pH 2 to 7, preferably pH 3 to 5. It is desirable. The desorption of gardenia yellow pigment is obtained by washing the above resin with water and then passing it through with a lower organic alcohol such as ethanol or isopropanol or a hydrophilic organic solvent such as acetone or a mixture of these hydrophilic organic solvents and water as an eluent. You can do this by doing
 但し、幾つかのゲニポシド類縁体は、当該吸着処理を行った場合に、クチナシ黄色成分であるクロシンと近い物性(吸着性)を示すため、当該吸着処理を行ったとしても、クチナシ黄色素を残しつつ、ゲニポシド類縁体を完全に除去することはできない。 However, some geniposide analogs show physical properties (adsorbability) similar to crocin, which is a gardenia yellow component, when the adsorption treatment is performed, so that even if the adsorption treatment is performed, gardenia yellow remains. However, geniposide analogs cannot be completely removed.
 一方で、活性炭を使用する本発明の低減方法によれば、材料中のクチナシ黄色素等の有用な成分の損失を抑制しながら、材料中のゲニポシド、ゲニピン及びそれらの類縁体の量を低減することができる。 On the other hand, according to the reduction method of the present invention using activated carbon, the amount of geniposide, genipin and their analogs in the material is reduced while suppressing the loss of useful components such as gardenia yellow pigment in the material. be able to.
 本発明の低減方法においては、ゲニポシド、ゲニピン及びそれらの類縁体の総含量での残存率(すなわち、本発明の低減方法による処理前の当該総含量に対する処理後の当該総含量の質量比)が、好ましくは30%以下、更に好ましくは20%以下、より更に好ましくは10%以下、特に好ましくは5%以下、より特に好ましくは3%以下、更に特に好ましくは1%以下、殊更に好ましくは0.5%以下、より殊更に好ましくは0.1%以下であり、最も好ましくは0%である。 In the reduction method of the present invention, the residual ratio in the total content of geniposide, genipin and their analogs (that is, the mass ratio of the total content after the treatment to the total content before the treatment by the reduction method of the present invention) is determined. , Preferably 30% or less, more preferably 20% or less, even more preferably 10% or less, particularly preferably 5% or less, more preferably 3% or less, still more preferably 1% or less, particularly preferably 0% or less. 0.5% or less, still more preferably 0.1% or less, and most preferably 0%.
 本発明の低減方法においては、有用な成分である色素成分の残存率(すなわち、本発明の低減方法による処理前の色素成分の含量に対する処理後の含量の比)が、好ましくは70%以上、特に好ましくは80%以上、より特に好ましくは85%以上、最も好ましくは90%以上である。 In the reduction method of the present invention, the residual ratio of the dye component, which is a useful component, (that is, the ratio of the content of the dye component after treatment to the content of the dye component before treatment by the reduction method of the present invention) is preferably 70% or more. It is particularly preferably at least 80%, more preferably at least 85%, most preferably at least 90%.
 当該「色素成分」の含量は、色価によって決定される。従って、「色素成分の残存率」は、「色価の残存率」であることができる。
 ここで、「色価の残存率」とは、次のように定義される。
 色価の残存率(%)=(本発明の低減方法による処理後の色価)/(本発明の低減方法による処理前の色価)×100
The content of the “dye component” is determined by the color value. Therefore, the “residual rate of the dye component” can be the “residual rate of the color value”.
Here, the “residual rate of color value” is defined as follows.
Persistence of color value (%) = (color value after processing by reduction method of the present invention) / (color value before processing by reduction method of the present invention) × 100
 [クチナシ黄色素を含有する材料から、ゲニポシド、ゲニピン及びそれらの類縁体の総含量を低減させる為に用いられる活性炭の選択方法、及び該選択方法を含む、クチナシ黄色素を含有する材料から、ゲニポシド、ゲニピン及びそれらの類縁体の総含量を低減させる方法]
 特許文献1にも記載されている通り、どのような活性炭であっても、クチナシ黄色素を含有する材料から、クチナシ黄色素成分を低減させずに、ゲニポシド、ゲニピン及びそれらの類縁体を低減できる訳ではない。
 本発明はまた、クチナシ黄色素を含有する材料から、ゲニポシド、ゲニピン及びそれらの類縁体を低減させる為に、好適に用いることのできる活性炭の選択方法に関する。以下、このような活性炭の選択方法を、本発明の活性炭の選択方法と称する場合がある。すなわち、本発明の一態様においては、本発明の低減方法において使用できる活性炭を選択する工程を含む場合がある。
 本発明の活性炭の選択方法は、クチナシ黄色素抽出物と共に攪拌混合することで、ケーク状の塊が形成されるか否かを判断基準とする。例えば、50mLガラス製容器にクチナシ黄色素抽出物(色価100)20g、及び活性炭1gを、常温下(10~40℃)にて、1時間攪拌混合し、常温下(10~40℃)にて2時間静置後、ケーク状の塊が形成されるか否かを判断基準とする。すなわち、上記条件にて、ケーク状の塊が形成される場合、このような活性炭は、クチナシ黄色素を含有する材料からゲニポシド、ゲニピン及びそれらの類縁体を低減する為に好適に用いることができる活性炭である。
[From a material containing gardenia yellow dye, a method for selecting activated carbon used to reduce the total content of geniposide, genipin and their analogs, and a method for selecting geniposide from a material containing gardenia yellow dye, including the selection method For reducing the total content of genipin, genipin and their analogs]
As described in Patent Document 1, any type of activated carbon can reduce geniposide, genipin and their analogs from a material containing a gardenia yellow component without reducing a gardenia yellow component. Not in translation.
The present invention also relates to a method for selecting an activated carbon which can be suitably used for reducing geniposide, genipin and their analogs from a gardenia-yellow-containing material. Hereinafter, such a method for selecting activated carbon may be referred to as a method for selecting activated carbon of the present invention. That is, one embodiment of the present invention may include a step of selecting activated carbon that can be used in the reduction method of the present invention.
In the method for selecting activated carbon of the present invention, whether or not a cake-like mass is formed by stirring and mixing with a gardenia yellow extract is used as a criterion. For example, 20 g of a gardenia yellow extract (color value 100) and 1 g of activated carbon are stirred and mixed at room temperature (10 to 40 ° C.) for 1 hour in a 50 mL glass container, and the mixture is stirred at room temperature (10 to 40 ° C.). After standing for 2 hours, a cake-like mass is formed as a criterion. That is, when a cake-like mass is formed under the above conditions, such activated carbon can be suitably used to reduce geniposide, genipin and their analogs from a material containing gardenia yellow pigment. Activated carbon.
 ここで、本発明において使用できる50mLガラス製容器としては、株式会社マルエム製 マイティバイアルを挙げることができる。 Here, as a 50 mL glass container that can be used in the present invention, Mighty Vial manufactured by Maruem Co., Ltd. can be mentioned.
 常温は、上述の通り、10~40℃のいずれでもよいが、例えば、25℃であり得る。 The room temperature may be any of 10 to 40 ° C as described above, but may be, for example, 25 ° C.
 1時間攪拌混合は、好ましくは、200~500rpmの条件で行う。 攪拌 The stirring and mixing for one hour is preferably performed at 200 to 500 rpm.
 ここで、ケーク状の塊は、好ましくは、50mLガラス製容器に、クチナシ黄色素抽出物(色価100)20g、及び活性炭1gを1時間攪拌混合し、2時間静置後、デカンテーションした後に、ガラス底面側に、形を変えない状態で残存している塊を示す。好ましくは、該ガラス製容器の底面全体が活性炭のケークで覆われ、底面のガラスの露出はない状態である。ここで、デカンテーション後の該ガラス製容器内の残存物量は、好ましくは、3g以下、さらに好ましくは、2g以下である。 Here, the cake-like mass is preferably stirred and mixed in a 50 mL glass container with 20 g of gardenia yellow extract (color value 100) and 1 g of activated carbon, left for 2 hours, and then decanted. And lump remaining on the glass bottom side without changing its shape. Preferably, the entire bottom surface of the glass container is covered with a cake of activated carbon, and the glass on the bottom surface is not exposed. Here, the amount of the residue in the glass container after decantation is preferably 3 g or less, more preferably 2 g or less.
 ここで、デカンテーションの条件は、上記容器を傾けながら、上澄み液のみを除去する工程を指す。すなわち、本発明においては、デカンテーション時に、処理に使用した活性炭が固まりとして存在しており、液切れの良い状態となる。 Here, the decantation condition refers to a step of removing only the supernatant while tilting the container. That is, in the present invention, at the time of decantation, the activated carbon used for the treatment is present as a lump, and the liquid is in a good drainage state.
 さらに、ケーク状の塊は、好ましくは、50mLガラス製容器に、クチナシ黄色素抽出物(色価100)20g、及び活性炭1gを1時間攪拌混合し、2時間静置後、前記ガラス製容器を180°反転させた状態で、常温下にて、10分静置後、該容器に残存する性質を有し得る。 Further, the cake-like mass is preferably stirred and mixed with 20 g of gardenia yellow extract (color value: 100) and 1 g of activated carbon in a 50 mL glass container for 1 hour, and allowed to stand for 2 hours. It may have the property of remaining in the container after standing for 10 minutes at room temperature in the state of being inverted by 180 °.
 このようにして選択された活性炭を用いて、クチナシ黄色素を含有する材料に含まれるゲニポシド、ゲニピン及びそれらの類縁体を低減する為の活性炭を用いた処理を行うことが可能である。本方法において選択される活性炭の質量増加率、及び本方法における低減処理の詳細は、[クチナシ黄色素を含有する材料に含まれるゲニポシド、ゲニピン及びそれらの類縁体を低減する方法]の項に記載した内容に準ずる。 処理 Using the activated carbon selected in this way, it is possible to carry out a treatment using activated carbon for reducing geniposide, genipin and their analogs contained in the material containing gardenia yellow pigment. Details of the mass increase rate of the activated carbon selected in the present method and the reduction treatment in the present method are described in the section of “Method for Reducing Geniposide, Genipin and Their Analogues in Gardenia Yellow Yellow-Containing Material”. According to the content
 すなわち、本発明は、クチナシ黄色素を含有する材料から、ゲニポシド、ゲニピン及びそれらの類縁体を低減させる為の活性炭の選択方法であって、50mLガラス製容器にクチナシ黄色素抽出物(色価100)20g、及び活性炭1gを、常温下(10~40℃)にて、1時間攪拌混合し、常温下(10~40℃)にて2時間静置後、ケーク状の塊が形成されるか否かを決定する工程を含む、選択方法であり得る。 That is, the present invention provides a method for selecting activated carbon for reducing geniposide, genipin, and their analogs from a material containing gardenia yellow element, and including a gardenia yellow element extract (with a color value of 100) in a 50 mL glass container. ) 20 g and activated carbon 1 g were mixed under stirring at room temperature (10 to 40 ° C) for 1 hour, and allowed to stand at room temperature (10 to 40 ° C) for 2 hours. The method may be a selection method including a step of determining whether or not to perform the determination.
 さらに、本発明は、50mLガラス製容器にクチナシ黄色素抽出物(色価100)20g、及び活性炭1gを、常温下(10~40℃)にて、1時間攪拌混合し、常温下(10~40℃)にて2時間静置後、ケーク状の塊が形成されるか否かを決定する工程;及び該工程によって、ケーク状の塊が形成される活性炭を用いて、クチナシ黄色素を含有する材料からゲニポシド、ゲニピン及びそれらの類縁体を低減する工程、を含む、クチナシ黄色素を含有する材料から、ゲニポシド、ゲニピン及びそれらの類縁体の総含量を低減させる方法であり得る。 Further, in the present invention, 20 g of gardenia yellow extract (color value 100) and 1 g of activated carbon are stirred and mixed at room temperature (10 to 40 ° C.) for 1 hour in a 50-mL glass container, and then mixed at room temperature (10 to 40 ° C.). After standing at 40 ° C.) for 2 hours to determine whether or not cake-like lumps are formed; and, using activated carbon which forms cake-like lumps, contains gardenia yellow element Reducing the total content of geniposide, genipin and their analogs from a material containing gardenia yellow pigment, comprising the step of reducing geniposide, genipin and their analogs from the material.
 [ゲニポシド、ゲニピン及びそれらの類縁体の総含量が低減された、クチナシ黄色素組成物の製造方法]
 前記で説明した本発明の低減方法によれば、ゲニポシド、ゲニピン及びそれらの類縁体を含有するクチナシ黄色素を含有する材料から、ゲニポシド、ゲニピン及びそれらの類縁体を低減することによって、ゲニポシド、ゲニピン及びそれらの類縁体の総含量が低減された、クチナシ黄色素組成物を製造できる。すなわち、本発明の一態様は、ゲニポシド、ゲニピン及びそれらの類縁体の総含量が低減された、クチナシ黄色素組成物の製造方法である。
 クチナシ黄色素組成物の製造方法において使用できる活性炭は、クチナシ黄色素を含有する材料から、ゲニポシド、ゲニピン及びそれらの類縁体の総含量を低減させる方法において使用できる活性炭と同じである。従って、クチナシ黄色素組成物の製造方法は、使用できる活性炭を選択する工程を含んでも良い。
[Method for producing gardenia yellow element composition in which total content of geniposide, genipin and their analogs is reduced]
According to the above-described reduction method of the present invention, geniposide, genipin and genipin are reduced by reducing geniposide, genipin and their analogs from a material containing gardenia yellow pigment containing genipin and their analogs. And a gardenia yellow element composition having a reduced total content of analogs thereof. That is, one embodiment of the present invention is a method for producing a gardenia yellow element composition in which the total content of geniposide, genipin, and their analogs is reduced.
The activated carbon that can be used in the method for producing a gardenia yellow dye composition is the same as the activated carbon that can be used in a method for reducing the total content of geniposide, genipin, and their analogs from a material containing a gardenia yellow dye. Accordingly, the method for producing the gardenia yellow element composition may include a step of selecting usable activated carbon.
 ここで、「低減された」とは、ゲニポシド、ゲニピン及びそれらの類縁体の総含量が出発材料のクチナシ黄色素を含有する材料より減少したことを意味し、ゲニポシド、ゲニピン及びそれらの類縁体を実質的に含有しないこと、及び全く含有しないことを包含する。 Here, `` reduced '' means that the total content of geniposide, genipin and their analogs is lower than that of the starting material containing gardenia yellow color, and geniposide, genipin and their analogs are Substantially no content and no content are included.
 本発明の製造方法においては、更に必要に応じて、前記活性炭による処理後の溶液に、慣用の精製処理[例、濾過処理、樹脂処理、又は膜処理等]を施してもよい。 In the production method of the present invention, if necessary, the solution after the treatment with the activated carbon may be subjected to a conventional purification treatment (eg, a filtration treatment, a resin treatment, a membrane treatment, etc.).
 [クチナシ黄色素組成物、色素製剤、クチナシ黄色素着色組成物]
 本発明の製造方法で得られるクチナシ黄色素組成物は、活性炭による処理後の溶液の形態であってもよく、その濃縮物の形態、又は任意の方法で乾燥(例、真空乾燥、凍結乾燥、噴霧乾燥等)して得られる粉末形態を有するものであってよい。
[Gardenia yellow pigment composition, pigment preparation, gardenia yellow pigment coloring composition]
The gardenia yellow color composition obtained by the production method of the present invention may be in the form of a solution after treatment with activated carbon, in the form of its concentrate, or dried by any method (eg, vacuum drying, freeze drying, (Eg, spray drying).
 本発明の製造方法で得られるクチナシ黄色素組成物が含有する「ゲニポシド、ゲニピン及びそれらの類縁体」の量は、色価100換算における、ゲニポシド、ゲニピン及びそれらの類縁体の総含量として、好ましくは、35ppm以下、より好ましくは30ppm以下、更に好ましくは25ppm以下、より更に好ましくは10ppm以下、特に好ましくは5ppm以下、より特に好ましくは3.5ppm以下、更に特に好ましくは2ppm以下、殊更に好ましくは1ppm以下、最も好ましくは0.5ppm以下であることができる。
 当該量は小さいほど好ましく、前記の測定方法による測定限界未満であることが特に好ましい。従って、当該量の下限は限定されないが、例えば、当該量が0.1ppm以上、0.3ppm以上、0.5ppm以上、1ppm以上、2ppm以上、又は5ppm以上であるクチナシ黄色素組成物は、使用の目的及び形態によって、許容され得る。
The amount of `` geniposide, genipin and their analogs '' contained in the gardenia yellow pigment composition obtained by the production method of the present invention is preferably, as a total content of geniposide, genipin and their analogs, in terms of a color value of 100, Is 35 ppm or less, more preferably 30 ppm or less, still more preferably 25 ppm or less, still more preferably 10 ppm or less, particularly preferably 5 ppm or less, more particularly preferably 3.5 ppm or less, still more preferably 2 ppm or less, and still more preferably It can be 1 ppm or less, most preferably 0.5 ppm or less.
The smaller the amount is, the more preferable it is, and it is particularly preferable that the amount is less than the measurement limit by the above-mentioned measurement method. Therefore, although the lower limit of the amount is not limited, for example, the gardenia yellow element composition in which the amount is 0.1 ppm or more, 0.3 ppm or more, 0.5 ppm or more, 1 ppm or more, 2 ppm or more, or 5 ppm or more is used. May be acceptable depending on the purpose and form of the
 本発明の一態様は、色価300換算における、ゲニポシド、ゲニピン及びそれらの類縁体の総含量が100ppm以下(より好ましくは、80ppm以下、更に好ましくは50ppm以下、より更に好ましくは20ppm以下、特に好ましくは10ppm以下、より特に好ましくは5ppm以下、更に特に好ましくは3ppm以下、殊更に好ましくは1ppm以下、最も好ましくは0ppm(又は前記の測定方法で検出限界未満))である。かかるクチナシ黄色素組成物は、前記した本発明の製造方法で得ることができる。 In one embodiment of the present invention, the total content of geniposide, genipin and their analogs in terms of a color value of 300 is 100 ppm or less (more preferably, 80 ppm or less, still more preferably 50 ppm or less, still more preferably 20 ppm or less, and particularly preferably. Is 10 ppm or less, more preferably 5 ppm or less, still more preferably 3 ppm or less, still more preferably 1 ppm or less, and most preferably 0 ppm (or below the detection limit in the above-mentioned measurement method). Such a gardenia yellow pigment composition can be obtained by the production method of the present invention described above.
 一方で、本発明の製造方法で得られるクチナシ黄色素組成物が含有する「ゲニポシド及び/又はゲニピン」の量は、色価100換算における、ゲニポシド及びゲニピンの総含量として、好ましくは、35ppm以下、より好ましくは30ppm以下、更に好ましくは25ppm以下、より更に好ましくは10ppm以下、特に好ましくは5ppm以下、より特に好ましくは3.5ppm以下、更に特に好ましくは2ppm以下、殊更に好ましくは1ppm以下、最も好ましくは0.5ppm以下であることができる。
 当該量は小さいほど好ましく、前記の測定方法による測定限界未満であることが特に好ましい。従って、当該量の下限は限定されないが、例えば、当該量が0.1ppm以上、0.3ppm以上、0.5ppm以上、1ppm以上、2ppm以上、又は5ppm以上であるクチナシ黄色素組成物は、使用の目的及び形態によって、許容され得る。
On the other hand, the amount of "geniposide and / or genipin" contained in the gardenia yellow color composition obtained by the production method of the present invention is preferably 35 ppm or less, as a total content of geniposide and genipin in terms of a color value of 100, More preferably 30 ppm or less, further preferably 25 ppm or less, still more preferably 10 ppm or less, particularly preferably 5 ppm or less, more particularly preferably 3.5 ppm or less, still more preferably 2 ppm or less, particularly still more preferably 1 ppm or less, and most preferably. Can be 0.5 ppm or less.
The smaller the amount is, the more preferable it is, and it is particularly preferable that the amount is less than the measurement limit by the above-mentioned measurement method. Therefore, although the lower limit of the amount is not limited, for example, the gardenia yellow element composition in which the amount is 0.1 ppm or more, 0.3 ppm or more, 0.5 ppm or more, 1 ppm or more, 2 ppm or more, or 5 ppm or more is used. May be acceptable depending on the purpose and form of the
 本発明の一態様は、色価300換算における、ゲニポシド及びゲニピンの総含量が100ppm以下(より好ましくは、80ppm以下、更に好ましくは50ppm以下、より更に好ましくは20ppm以下、特に好ましくは10ppm以下、より特に好ましくは5ppm以下、更に特に好ましくは3ppm以下、殊更に好ましくは1ppm以下、最も好ましくは0ppm(又は前記の測定方法で検出限界未満))である。かかるクチナシ黄色素組成物は、前記した本発明の製造方法で得ることができる。 One embodiment of the present invention has a total content of geniposide and genipin of 100 ppm or less (more preferably, 80 ppm or less, further preferably 50 ppm or less, still more preferably 20 ppm or less, particularly preferably 10 ppm or less, in terms of a color value of 300. It is particularly preferably at most 5 ppm, more preferably at most 3 ppm, particularly preferably at most 1 ppm, most preferably at 0 ppm (or below the detection limit in the above-mentioned measuring method). Such a gardenia yellow pigment composition can be obtained by the production method of the present invention described above.
 本発明の製造方法で得られるクチナシ黄色素組成物は、従来のクチナシ黄色素組成物と同様に使用でき、そのままの状態で色素製剤として提供することもできる。さらに、クチナシ黄色素組成物に、他成分として希釈剤、担体又はその他の添加剤を添加して、その状態で色素製剤として提供することもできる。 The gardenia yellow dye composition obtained by the production method of the present invention can be used in the same manner as a conventional gardenia yellow dye composition, and can be provided as it is as a pigment preparation. Furthermore, a diluent, a carrier or other additives may be added to the gardenia yellow pigment composition as other components, and the composition may be provided as a pigment preparation in that state.
 このような希釈剤、担体、及び添加剤としては、本発明の効果を妨げないことを限度として、一般に色素製剤、特に水溶性色素製剤に用いられるものを広く用いることができる。
 その例は、シュクロース、乳糖、グルコース、デキストリン、アラビアゴム、水、エタノール、プロピレングリコール、グリセリン、及び水飴等を包含する。
As such diluents, carriers and additives, those generally used in dye preparations, particularly water-soluble dye preparations, can be widely used as long as the effects of the present invention are not impaired.
Examples include sucrose, lactose, glucose, dextrin, gum arabic, water, ethanol, propylene glycol, glycerin, starch syrup, and the like.
 色素製剤の形態は、特に制限されず、例えば粉末状、顆粒状、錠剤状、液状、乳液状、又はペースト状等の任意の形態に調製され得る。 形態 The form of the pigment preparation is not particularly limited, and may be prepared in any form such as powder, granule, tablet, liquid, emulsion, or paste.
 本発明のクチナシ黄色素組成物又はこれを含む色素製剤は、従来のクチナシ黄色素の色素組成物又は製剤と同様に、食品、香粧品、医薬品、医薬部外品、飼料等の着色料として広く用いることができる。
 本発明は、前記のクチナシ黄色素組成物、又はその色素製剤を用いて着色された食品、香粧品、医薬品、医薬部外品、飼料等の着色組成物を提供する。
 当該食品の例は、冷菓、生菓子、和菓子、及び洋菓子等の菓子類;飲料、及びアルコール飲料等の飲料類;乾燥野菜、及び漬け物等の農産加工品;海産物加工品;並びに畜肉加工品等を包含する。
 当該香粧品の例は、化粧料(例、アイシャドー、マスカラ、口紅、リップクリーム、及び化粧水等)、石鹸、シャンプー、リンス、洗剤、歯磨き、及び洗口液等を包含する。
 当該医薬品の例は、錠剤(例、糖衣錠)、顆粒剤、液剤、及びカプセル剤等を包含する。
 通常、これらの着色組成物におけるクチナシ黄色素の含量は、特に制限されないが、410~425nm前後である、その極大吸収波長における着色組成物の吸光度が0.01~1となるような量であることができる。
The gardenia yellow dye composition of the present invention or a pigment preparation containing the same can be widely used as a coloring agent for foods, cosmetics, pharmaceuticals, quasi-drugs, feeds, etc., similarly to the conventional gardenia yellow dye color composition or preparation. Can be used.
The present invention provides a colored composition of food, cosmetics, pharmaceuticals, quasi-drugs, feed, and the like, which is colored using the gardenia yellow pigment composition or a pigment preparation thereof.
Examples of the food include confectionery such as frozen dessert, raw confectionery, Japanese confectionery, and western confectionery; beverages such as beverages and alcoholic beverages; processed agricultural products such as dried vegetables and pickles; processed marine products; Include.
Examples of the cosmetics include cosmetics (eg, eye shadow, mascara, lipstick, lip balm, and lotion), soaps, shampoos, rinses, detergents, toothpastes, mouthwashes, and the like.
Examples of the drug include tablets (eg, sugar-coated tablets), granules, solutions, capsules, and the like.
Usually, the content of the gardenia yellow pigment in these coloring compositions is not particularly limited, but is about 410 to 425 nm, and is such an amount that the absorbance of the coloring composition at its maximum absorption wavelength becomes 0.01 to 1. be able to.
 [本発明における成分の測定装置]
 本発明における成分の定量及び分析は、コリジョンエナジーを変化させた3回以上の分解処理を行うMS/MS測定が可能であって、コリジョンエナジーでの分解処理後の化合物イオンを電気的に補足して積算して検出、又は検出して積算することが可能な質量分析装置を用いることができる。
[Measurement device for components in the present invention]
In the quantification and analysis of the components in the present invention, MS / MS measurement in which the collision energy is changed and the decomposition treatment is performed three or more times is possible, and the compound ions after the decomposition treatment in the collision energy are electrically captured. A mass spectrometer capable of detecting and integrating, or detecting and integrating can be used.
 上記装置として、分析精度、及び分析操作の大幅な簡便性の観点を踏まえると、i)コリジョンエナジーを変化させた3回以上の分解処理の間、各回の分解処理後の化合物イオンを一定の空間範囲内に電気的に補足して加算蓄積されている状態とし、全ての分解処理の回数分の終了後にこれを一度に積算して検出することが可能な質量分析装置であることが好ましい。 From the viewpoint of the analysis accuracy and the simplicity of the analysis operation, the apparatus described above i) disperses the compound ions after each decomposition treatment into a certain space during the three or more decomposition treatments in which the collision energy is changed. It is preferable that the mass spectrometer be capable of electronically supplementing and accumulating and accumulating it within the range, and integrating and detecting the same at once after completion of all the decomposition processes.
 なお、上記装置としては、ii)分解処理後の化合物イオンをまず検出しておき、これをコリジョンエナジーの設定分だけ繰り返してから事後的に検出値を積算する態様を採用することもできる。また、本発明においては、分析精度、及び分析操作の簡便性の両観点から、上記i)の態様を採用する方が通常好ましい。 The above-mentioned apparatus may adopt a mode in which ii) the compound ions after the decomposition treatment are detected first, and this is repeated for the set amount of the collision energy, and then the detected values are integrated afterwards. In the present invention, it is usually preferable to adopt the above-mentioned embodiment i) from the viewpoint of both the analysis accuracy and the simplicity of the analysis operation.
 本発明における定量及び分析に使用可能な装置としては、上記分析を実現可能な質量分析装置であれば、公知又は非公知の、装置又は器具等を適宜用いることができる。上記装置の一態様としては、例えば、電場型フーリエ変換法、磁場型フーリエ変換法、イオントラップ法等を原理とする質量分析装置を用いることができる。 装置 As a device that can be used for quantification and analysis in the present invention, a known or unknown device or instrument can be appropriately used as long as it is a mass spectrometer capable of performing the above analysis. As an embodiment of the above device, for example, a mass spectrometer based on an electric field Fourier transform method, a magnetic field Fourier transform method, an ion trap method, or the like can be used.
 本発明においては、精密測定での精度の観点から、特に、電場型フーリエ変換法を原理とする質量分析装置を用いることが望ましい。ここで、電場型フーリエ変換法を原理とする質量分析装置としては、本出願時においては、サーモフィッシャーサイエンティフィック株式会社製のオービトラップ法を原理とする質量分析装置をあげることができるが、本発明の態様は上記装置を使用する態様に制限されるものではない。 に お い て In the present invention, from the viewpoint of precision in precision measurement, it is particularly desirable to use a mass spectrometer based on the electric field Fourier transform method. Here, examples of the mass spectrometer based on the electric field Fourier transform method include, at the time of the present application, a mass spectrometer based on the Orbitrap method manufactured by Thermo Fisher Scientific Co., Ltd. The embodiments of the present invention are not limited to the embodiments using the above device.
 また、本発明における定量及び分析本発明における定量及び分析に使用可能な装置として、上記MS/MS測定の前段階の分析において、LC/MS測定が可能な装置であることが好ましい。すなわち、本発明における定量及び分析に使用可能な装置としては、上記原理を利用した装置であって、さらにLC/MS/MS測定が可能な装置であることが好ましい。 定量 Quantification and analysis in the present invention As a device that can be used for quantification and analysis in the present invention, it is preferable that the device be capable of LC / MS measurement in the analysis before the MS / MS measurement. That is, the device that can be used for quantification and analysis in the present invention is a device that utilizes the above principle, and is preferably a device that can perform LC / MS / MS measurement.
 上記装置としては、MS/MS測定のスキャンポイントを多く確保して解像度の高いデータ取得を行うために、所望の分子量の範囲にある化合物を選別してから上記MS/MS測定を実行することが好ましい。上記態様において、MS/MS測定の前段階の分析機器として、四重極型のMS測定手段等を備えた装置であることが好ましい。 As the above-mentioned apparatus, in order to secure a large number of scan points for MS / MS measurement and obtain high-resolution data, it is possible to select compounds having a desired molecular weight range before performing the MS / MS measurement. preferable. In the above aspect, it is preferable that the analyzer provided with a quadrupole-type MS measuring means or the like as an analytical instrument before the MS / MS measurement.
 [分析工程]
 本発明における定量及び分析は、上記原理を用いた質量分析装置を用いてAIF分析を利用して定量、及び分析を行うことができる。本明細書中、「AIF(All Ion Fragmentation)分析」とは、対象化合物にコリジョンエナジーを変化させた複数回の分解処理を伴うMS/MS測定を行い、上記断片化された化合物イオンを積算して含むマススペクトルを取得する分析法を指す。
[Analysis process]
In the quantification and analysis in the present invention, quantification and analysis can be performed using AIF analysis using a mass spectrometer using the above principle. In the present specification, “AIF (All Ion Fragmentation) analysis” refers to performing MS / MS measurement involving a plurality of decomposition treatments in which a target compound is changed in collision energy, and integrating the fragmented compound ions. Refers to an analysis method that acquires a mass spectrum that includes
 具体的に、本発明における成分の定量及び不純物の分析では、対象化合物を含む測定試料に対して、コリジョンエナジーを変化させた分解処理を3回以上行って、断片化された化合物イオンを積算して含むMS/MS測定でのマススペクトルを取得する工程を含むことを特徴とする方法である。 Specifically, in the quantification of the components and the analysis of impurities in the present invention, the measurement sample containing the target compound is subjected to decomposition treatment with the collision energy changed three times or more, and the fragmented compound ions are integrated. And acquiring a mass spectrum in the MS / MS measurement.
 <MSスキャンデータの取得>
 上記AIF分析工程におけるMS/MS測定は、第1回目のMS測定にて取得されたマススペクトルのピークイオンに対して分解処理のためエネルギー(コリジョンエナジー)を与えて分解生成されて化合物イオンを検出する工程である。上記第1回目のMS測定は、測定試料中に含まれる未分解化合物をそのまま検出したマススペクトルを取得するための質量分析工程である。また、MS/MS測定は、第1回目のMS測定のピークイオンを断片化して検出するための第2回目の質量分析工程である。
<Acquisition of MS scan data>
In the MS / MS measurement in the AIF analysis step, the peak ions of the mass spectrum obtained in the first MS measurement are decomposed and generated by giving energy (collision energy) for decomposition processing to detect compound ions. This is the step of performing The first MS measurement is a mass spectrometry process for acquiring a mass spectrum in which an undecomposed compound contained in a measurement sample is directly detected. The MS / MS measurement is a second mass spectrometry step for fragmenting and detecting the peak ion of the first MS measurement.
 ここで、MS/MS測定の前に行われる第1回目のMS測定としては、低含量の対象化合物も網羅的に定量するために、フルMSスキャンデータとして取得されることが望ましい。例えば、MS/MS測定のスキャンポイントを多く確保して解像度の高いデータ取得を行うためには、所望の分子量の範囲にある化合物をある程度絞って選別した後に、上記MS/MS測定を実行することが好ましい。 Here, as the first MS measurement performed before the MS / MS measurement, it is preferable that the first MS measurement be obtained as full MS scan data in order to comprehensively quantify a low-content target compound. For example, in order to secure many scan points for MS / MS measurement and obtain high-resolution data, it is necessary to narrow down and select compounds having a desired molecular weight range to some extent, and then execute the MS / MS measurement. Is preferred.
 そのため、本発明における定量及び分析では、i)測定対象である対象化合物の分子量がある程度の範囲内に予測できることから、第1回目のMS測定の対象化合物として、m/z値100~2000、好ましくはm/z値100~1500程度の分子量の範囲に絞って、第1回目のMSスキャンデータを取得することが好ましい。 Therefore, in the quantification and analysis in the present invention, i) since the molecular weight of the target compound to be measured can be predicted within a certain range, the m / z value is preferably 100 to 2000, preferably 100 to 2000, as the target compound for the first MS measurement. It is preferable to obtain the first MS scan data by narrowing down the range of the molecular weight of the m / z value to about 100 to 1500.
 なお、上記分析工程におけるMS/MS測定の別態様としては、ii)第1回目のMS測定では分子量の範囲限定を行わずに全ての化合物についてのフルMSスキャンデータを取得して、その後のMS/MS測定の際に一定閾値以上のシグナルピーク及び/又は上位所定の範囲にあるシグナルピークに絞って、MS/MS測定を行う態様を採用することもできる。本発明における定量及び分析としては、上記ii)に記載の態様を排除するものではないが、ただし、上記態様では試料中の含量の少ない化合物が漏れるリスクがある。 In addition, as another aspect of the MS / MS measurement in the above analysis step, ii) in the first MS measurement, full MS scan data for all compounds is obtained without limiting the molecular weight range, and the subsequent MS measurement is performed. At the time of the / MS measurement, a mode in which the MS / MS measurement is narrowed down to a signal peak equal to or higher than a certain threshold value and / or a signal peak in an upper predetermined range may be adopted. The quantification and analysis in the present invention do not exclude the embodiment described in the above ii), however, in the above embodiment, there is a risk that a compound having a small content in the sample leaks.
 そのため、本発明では、網羅性と解像度の両方を充足する観点から、第1回目のMS測定としては、上記段落に記載のi)の態様を採用する方が好ましい。 Therefore, in the present invention, from the viewpoint of satisfying both the comprehensiveness and the resolution, it is more preferable to adopt the mode i) described in the above paragraph as the first MS measurement.
 また、上記分析工程における第1回目のMS測定としては、分析対象が液体試料中の化合物であることから、LC/MS測定であることが好ましい。 In addition, the first MS measurement in the analysis step is preferably an LC / MS measurement because the analysis target is a compound in a liquid sample.
 <コリジョンエナジーによる分解処理>
 本発明における定量のAIF分析工程では、上記第1回目のMSマススペクトルを構成するピークイオンのそれぞれに対して、コリジョンエナジーを変化させた分解処理によるMS/MS測定を行う工程を含む。上記MS/MS測定は、上記i)の態様では網羅的に実行され、上記ii)の態様ではデータ依存的に実行される。
<Disassembly by collision energy>
The quantitative AIF analysis step of the present invention includes a step of performing MS / MS measurement by a decomposition treatment with a different collision energy for each of the peak ions constituting the first MS mass spectrum. The MS / MS measurement is performed exhaustively in the above-described embodiment (i), and is performed in a data-dependent manner in the embodiment (ii).
 例えば、オービトラップ法を原理とする装置の場合、高エネルギー衝突乖離セル(HCDコリジョンセル)にて上記分解処理を行うことが可能となる。ここで、本明細書中「HCD」とは、higher energy collisional dissociationの略称として記載している。 For example, in the case of an apparatus based on the orbitrap method, the above decomposition processing can be performed in a high energy collision dissociation cell (HCD collision cell). Here, “HCD” in the present specification is described as an abbreviation for higher energy collisional dissociation.
 本発明における定量及び分析では、分子量や構造が異なる膨大な数の類似化合物にて組成される天然原料から抽出された色素組成物等を測定試料とする場合、上記MS/MS測定における3回以上の分解処理として、測定試料に対するそれぞれの分解処理でのエネルギー付与等をそれぞれ独立して3回以上の態様にて実行することが望ましい。ここで、それぞれ独立して3回以上とは、対象試料に対する分解処理を別途に3通り以上独立して行う態様を指す。ここで、本発明における定量及び分析における上記分解処理を行う回数としては、試料中の分解に要するエネルギー状態が違う類似化合物の存在を網羅するために3回以上をあげることができる。具体的には3~20回程度をあげることができる。 In the quantification and analysis according to the present invention, when a dye composition or the like extracted from a natural raw material composed of an enormous number of similar compounds having different molecular weights and structures is used as a measurement sample, three times or more in the MS / MS measurement described above. As for the decomposition processing, it is desirable to independently perform energy application and the like in each decomposition processing on the measurement sample in three or more times. Here, “independently three or more times” refers to an embodiment in which three or more separate decomposition processes are separately performed on the target sample. Here, the number of times of performing the decomposition treatment in the quantification and analysis in the present invention may be three or more times in order to cover the existence of similar compounds having different energy states required for decomposition in the sample. Specifically, about 3 to 20 times can be given.
 上記MS/MS測定における3回以上の分解処理としては、具体的には、(条件1)少なくとも1回が、対象化合物の未分解ピークが含まれる低エネルギーのコリジョンエナジーにて行うものであることが好ましい。上記(条件1)のコリジョンエナジーは、低分子の対象化合物由来の対象フラグメントイオンを過剰分解させることなく回収するためのエネルギー条件である。 Specifically, as the three or more decomposition processes in the MS / MS measurement, (Condition 1) at least one of the decomposition processes is performed with low energy collision energy including an undecomposed peak of the target compound. Is preferred. The collision energy of the above (condition 1) is an energy condition for recovering a target fragment ion derived from a low molecular target compound without excessive decomposition.
 ここで、上記コリジョンエナジーとして好ましくは、対象化合物の未分解ピークを含みかつ上記共通構造のフラグメントイオンのピークも含むコリジョンエナジーにて行うものが好ましい。 Here, the collision energy is preferably a collision energy that includes the undecomposed peak of the target compound and also includes the peak of the fragment ion having the common structure.
 また、上記MS/MS測定における3回以上の分解処理としては、(条件2)少なくとも別の1回が、対象化合物の未分解ピークを実質的に含まずかつ上記共通構造のフラグメントイオンのピークを含む高エネルギーのコリジョンエナジーにて行うものであることが好ましい。上記(条件2)のコリジョンエナジーは、高分子の対象化合物の分解に十分なエネルギーを与えて、高分子化合物由来の対象フラグメントイオンを回収するためのエネルギー条件である。 In addition, as the three or more decomposition processes in the MS / MS measurement, (Condition 2) at least another one of the decomposition processes substantially includes the undecomposed peak of the target compound and the peak of the fragment ion having the common structure. It is preferable to carry out the process with high energy collision energy. The collision energy of the above (condition 2) is an energy condition for giving sufficient energy for the decomposition of the polymer target compound and recovering the target fragment ion derived from the polymer compound.
 ここで、上記(条件2)に記載の「対象化合物の未分解ピークを実質的に含まず」とは、測定試料である対象化合物が十分に分解されている状態を示すもので、本発明の定量性を担保する程度に対象フラグメントイオンが分解生成されていることの十分条件を示すものである。具体的には、コリジョンエナジー付与前の未分解状態の対象化合物量の10%以下、好ましくは5%以下、より好ましくは1%以下となっている状態であれば、上記条件を満たすと判断できる。上記条件における対象化合物の未分解ピークを含むか否かの判断としては、対象の色素組成物等に含まれる対象化合物のうちの最も分子量の高いものを指標としてその有無を判断することが可能となる。 Here, “substantially not containing the undecomposed peak of the target compound” described in the above (condition 2) indicates a state in which the target compound as the measurement sample is sufficiently decomposed, and This shows a sufficient condition that the target fragment ion is decomposed and generated to such an extent that the quantitative property is ensured. Specifically, if the amount of the target compound in the undecomposed state before collision energy application is 10% or less, preferably 5% or less, more preferably 1% or less, it can be determined that the above condition is satisfied. . The determination as to whether or not an undecomposed peak of the target compound under the above conditions is included, it is possible to determine whether or not the target compound contained in the target dye composition or the like has the highest molecular weight as an index. Become.
 また、上記(条件2)に記載の「フラグメントイオンのピークを含む」としては、好適には、フラグメントイオンの最も高いピーク面積に対して1%以上、好ましくは5%以上、より好ましくは10%以上のピーク面積であれば上記条件を明確に満たすと判断することができる。上記ピーク面積が少なすぎる場合、対象フラグメントイオンの過剰分解が進み過ぎている可能性があり好適とはいえない。 In addition, the term “including a fragment ion peak” described in the above (condition 2) is preferably 1% or more, preferably 5% or more, more preferably 10% with respect to the highest peak area of the fragment ion. With the above peak area, it can be determined that the above condition is clearly satisfied. If the peak area is too small, the target fragment ions may be excessively decomposed excessively, which is not preferable.
 また、上記MS/MS測定における3回以上の分解処理としては、(条件3)少なくともさらに別の1回が、上記2回コリジョンエナジーの間にあるエネルギーにて行うことが好ましい。上記(条件3)に記載の分解処理のコリジョンエナジーとしては、他の分解処理におけるコリジョンエナジーとは異なるエネルギー状態であることが好ましい。また、上記MS/MS測定における分解処理の全体での回数が4回以上である場合、上記(条件3)のコリジョンエナジーでの分解処理を複数回行う態様であることが好ましい。 3 As the three or more decomposition processes in the MS / MS measurement, it is preferable that (condition 3) at least another one is performed at an energy between the two collision energies. As the collision energy of the decomposition process described in (condition 3), it is preferable that the energy state is different from that of the collision energy in another decomposition process. When the total number of decomposition processes in the MS / MS measurement is four or more, it is preferable that the above-mentioned (condition 3) the decomposition process using collision energy is performed a plurality of times.
 上記コリジョンエナジーとして好ましくは、中程度の分子量の対象化合物由来の対象フラグメントイオンを確実に回収するために、(条件1~3)の各分解処理間のエネルギー値の間隔が均等に又は実質的に均等になるコリジョンエナジーを採用することが好ましい。ここで、上記条件における実質的に均等とは、誤差が10%以内、好ましくは5%以内、より好ましくは1%以内であって、本発明の定量性を担保する程度に対象フラグメントイオンが十分に分解生成される範囲を指すものである。 As the above-mentioned collision energy, in order to reliably collect target fragment ions derived from a target compound having a medium molecular weight, the intervals of energy values between the respective decomposition treatments (conditions 1 to 3) are evenly or substantially equal. It is preferable to employ a collision energy that makes it even. Here, “substantially equivalent” under the above conditions means that the error is within 10%, preferably within 5%, more preferably within 1%, and the target fragment ion is sufficient to ensure the quantitativeness of the present invention. It indicates the range that is decomposed and generated.
 なお、上記MS/MS測定における分解処理としては、全ての分解処理におけるコリジョンエナジーがお互いに異なるエネルギー状態であることが好ましい。なお、同一のエネルギー状態にあるコリジョンエナジーにて重複した分解処理を行う態様が排除されるものではない。また、複数回の分解処理におけるコリジョンエナジーのエネルギー状態の高さの順番については、特に制限はなくいずれの順番にて分解処理を行うこともできる。 分解 In addition, as for the decomposition processing in the MS / MS measurement, it is preferable that the collision energies in all the decomposition processing have different energy states from each other. It should be noted that an aspect in which overlapping decomposition processes are performed using collision energy in the same energy state is not excluded. The order of the energy states of the collision energy in the plurality of decomposition processes is not particularly limited, and the decomposition processes can be performed in any order.
 本発明における定量及び分析では、MS/MS測定での分解処理をこのようなコリジョンエナジーにて行うことによって、類似化合物の集合である色素組成物等に対しても、イリドイド骨格等の共通構造を有する化合物を定量することができる。 In the quantification and analysis in the present invention, by performing the decomposition treatment in the MS / MS measurement with such collision energy, a common structure such as an iridoid skeleton can be formed even for a dye composition or the like which is a set of similar compounds. Can be quantified.
 特に、本発明における定量においては、天然原料由来の色素組成物等に含まれる様々な分子量の類似化合物の対象化合物からのアグリコン生成を確実に行うために、コリジョンエナジーの設定範囲を広くかつ適切な範囲に設定することが好ましい。ここで、上記AIF分析におけるコリジョンエナジーの設定範囲が適切でない場合、測定試料中の対象化合物の定量を正確に行うことができず、好ましくない。 In particular, in the quantification in the present invention, in order to ensure the production of aglycone from the target compound of similar compounds of various molecular weights contained in dye compositions and the like derived from natural raw materials, a wide and appropriate range of collision energy setting range It is preferable to set the range. Here, if the setting range of the collision energy in the AIF analysis is not appropriate, the target compound in the measurement sample cannot be accurately quantified, which is not preferable.
 本発明における定量及び分析では、所定の装置にて所定の試料に関するコリジョンエナジーの設定範囲の検討を行った場合、それ以降に同種の試料に関する定量を行う際に、以前の検討にて決定したコリジョンエナジーの設定範囲を採用して迅速に定量操作を行うことが可能となる。 In the quantification and analysis according to the present invention, when the setting range of the collision energy for a predetermined sample is examined by a predetermined apparatus, when the quantification for the same kind of sample is performed thereafter, the collision determined in the previous examination is determined. By using the energy setting range, the quantitative operation can be performed quickly.
 <分解処理後化合物イオンの積算>
 上記AIF分析工程では、上記にてコリジョンエナジーを変化させた分解処理を3回以上行った後、断片化された化合物イオンを積算して含むMS/MS測定でのマススペクトルを取得する工程を含む。
<Integration of compound ions after decomposition>
The above-mentioned AIF analysis step includes a step of obtaining a mass spectrum by MS / MS measurement including the integration of the fragmented compound ions after performing the decomposition treatment with the collision energy changed three times or more as described above. .
 ここで、分解処理後化合物イオンの積算を行う態様としては、i)コリジョンエナジーでの分解処理後の化合物イオンを電気的に補足して積算して検出する態様にて行うことが好ましい。上記態様において、詳しくは、コリジョンエナジーを変化させた3回以上の分解処理を順次実行する間、様々に断片化された化合物イオン(エネルギー状態によっては未分解のままの化合物イオンを含む)を一定の空間範囲内に電気的に補足して加算蓄積された混合物状態とし、全ての分解処理の回数分の終了後にこれを一度に積算して検出することにより行う態様を採用することが好ましい。 Here, as a mode of performing the integration of the compound ions after the decomposition treatment, it is preferable to perform i) a mode in which the compound ions after the decomposition process by the collision energy are electrically supplemented and integrated for detection. In the above embodiment, in detail, while sequentially performing three or more decomposition processes in which the collision energy is changed, various fragmented compound ions (including compound ions that remain undecomposed depending on the energy state) are kept constant. It is preferable to adopt a mode in which a mixture state is electrically supplemented and added and accumulated in the spatial range described above, and the mixture state is integrated and detected once at the end of all the decomposition processes.
 上記態様をコリジョンエナジーでの分解処理と併せてさらに例示すると、(第1回目)最初にある強度のコリジョンエナジーにて試料中の化合物の分解処理を行って、上記処理にて得られた化合物イオン(未分解の化合物イオン及び断片化されたフラグメントイオン等を含む)を別の空間内にて電気的に補足蓄積させ、(第2回目)次に第1回目とは異なる強度のコリジョンエナジーにて同様にして試料中の化合物の分解処理を行って、上記処理にて得られた化合物イオンを上記空間内にて前段階の化合物イオンと一緒に電気的に補足蓄積させ、(第3~n回目:nは4以上の整数)さらに前段階とは異なる強度のコリジョンエナジーにて同様にして試料中の化合物の分解処理を行って、上記処理にて得られた化合物イオンを上記空間内にて前段階までの化合物イオンと一緒に電気的に補足蓄積させ、全ての分解処理の回数分の終了後にこれを一度に検出する態様をあげることができる。 When the above embodiment is further exemplified together with the decomposition treatment by collision energy, (first time) the compound in the sample is firstly subjected to the decomposition treatment by the collision energy of a certain intensity, and the compound ion obtained by the above treatment is obtained. (Including undecomposed compound ions and fragmented fragment ions, etc.) is electrically captured and accumulated in another space, (second time), and then collision energy of a different intensity from the first time is used. Similarly, the compound in the sample is subjected to decomposition treatment, and the compound ions obtained in the above treatment are electrically captured and accumulated in the space together with the compound ions in the previous stage (the 3rd to nth times). : N is an integer of 4 or more) Further, the compound in the sample is similarly decomposed by collision energy having a different intensity from the previous stage, and the compound ions obtained by the above process are placed in the space. Electrically is supplemented accumulate together with a compound ions before step, it can be mentioned manner to detect this at a time after the end of the number of times for all of the decomposition process.
 上記工程における化合物イオンの電気的補足状態は、電場型フーリエ変換法、磁場型フーリエ変換法、イオントラップ法等を原理とする質量分析装置において、コリジョンエナジーでの分解処理を行う部位とは異なる部位等での電極を配置した空間等にて実現することができる。 The electrical capture state of the compound ions in the above process is different from the site where the decomposition processing by collision energy is performed in a mass spectrometer based on an electric field Fourier transform method, a magnetic field Fourier transform method, an ion trap method, or the like. It can be realized in a space or the like in which the electrodes are arranged.
 また、上記AIF分析工程における「一定空間内に電気的に補足して加算蓄積する」態様として、電極の周囲の電場にイオンを回転させて補足保持可能な電極配設空間を設置し、これとは別に配置したコリジョンエナジー分解反応空間を配置し、コリジョンエナジー分解反応空間にて処理された化合物イオンを上記電極配設空間に順次流入させて、上記電極の周囲の電場にて化合物イオンを順次補足させて加算的に蓄積される態様を好適にあげることができる。上記態様は、精密定量を行う場合において特に好適であり、電場型フーリエ変換法等を原理とする質量分析装置において実現可能となる。
 また、オービトラップ法の原理を利用した装置におけるオービトラップMS2の紡錘型電極の周囲に発生する電場を利用しても良い。
Further, as an embodiment of “electrically supplementing and accumulating in a certain space and adding and accumulating” in the AIF analysis step, an electrode arrangement space capable of supplementing and holding by rotating ions in an electric field around the electrode is provided. Separately arranged collision energy decomposition reaction space is arranged, compound ions treated in the collision energy decomposition reaction space are sequentially flowed into the electrode installation space, and compound ions are sequentially captured in the electric field around the electrode In this case, a mode of accumulatively accumulating can be suitably exemplified. The above aspect is particularly suitable for performing precise quantification, and can be realized in a mass spectrometer based on the electric field Fourier transform method or the like.
Further, an electric field generated around the spindle electrode of the orbitrap MS2 in an apparatus utilizing the principle of the orbitrap method may be used.
 また、上記AIF分析工程における断片化された化合物イオンを積算して含むMS/MS測定でのマススペクトルを取得する工程としては、分解処理後化合物イオンの積算を行う態様として、上記段落に記載のi)の態様の他に、分解処理後の化合物イオンをまず検出しておき、これをコリジョンエナジーの設定分だけ繰り返してから事後的に検出値を積算するデータ処理を行う態様、を採用することもできる。上記ii)の態様も本発明の範囲から排除されるものではないが、ただし、本発明では、分析精度及び分析操作の簡便性の両観点から、上記段落に記載のi)の態様を採用する方が好ましい。 Further, the step of obtaining a mass spectrum in MS / MS measurement including the integrated fragmented compound ions in the AIF analysis step includes the step of integrating compound ions after the decomposition treatment as described in the above paragraph. In addition to the mode of i), a mode in which the compound ions after the decomposition treatment are detected first, and this is repeated for the set amount of the collision energy, and then the data processing of integrating the detected values afterwards is adopted. Can also. The above-mentioned embodiment ii) is not excluded from the scope of the present invention, however, in the present invention, the embodiment of i) described in the above paragraph is employed from the viewpoints of both analytical accuracy and simplicity of analytical operation. Is more preferred.
 上記AIF分析工程では、上記積算された化合物イオンを示す値としては、各種演算処理を行った値を用いることもできる。例えば、分解処理を行った回数にて除して均等化した値を上記定量に用いることもできる。 (4) In the AIF analysis step, values obtained by performing various arithmetic processes can be used as the value indicating the integrated compound ion. For example, a value obtained by dividing by the number of times of performing the decomposition process and equalizing can be used for the above quantification.
 <対象フラグメントイオン>
 本発明におけるAIF分析工程でのMS/MS測定にて取得されたマススペクトルには、分解の進行度合に従って、未分解の対象化合物イオン、中間生成物イオン、対象化合物を構成していた共通構造物イオン、過剰分解された低分子化合物イオン等の多様な化合物イオンが、分解度合の様々な段階の積算ピーク値として含まれている。
<Target fragment ion>
According to the mass spectrum obtained by the MS / MS measurement in the AIF analysis step in the present invention, the undecomposed target compound ion, the intermediate product ion, and the common structure which constituted the target compound were determined according to the degree of progress of the decomposition. Various compound ions such as ions and excessively decomposed low molecular compound ions are included as integrated peak values at various stages of the degree of decomposition.
 本発明では、これらのうち、測定試料中の対象化合物の分子種が有する共通構造を構成する化合物イオンの積算ピークを指標とすることによって、測定試料中に含まれていた上記共通構造を有する対象化合物の総量を定量、又は分析することが可能となる。 In the present invention, among these, by using the integrated peak of the compound ion constituting the common structure of the molecular species of the target compound in the measurement sample as an index, the target having the common structure contained in the measurement sample is used. The total amount of the compound can be quantified or analyzed.
 すなわち、本発明におけるAIF分析工程では、上記MS/MS測定にて取得されたマススペクトルから、対象化合物に含まれる共通構造を対象フラグメントイオンとして指標とし対象化合物を定量、又は分析する工程が含まれる。 That is, the AIF analysis step in the present invention includes a step of quantifying or analyzing the target compound from the mass spectrum obtained by the MS / MS measurement, using the common structure contained in the target compound as the target fragment ion as an index. .
 上記工程においては、詳しくは、対象成分の正確な定量性を踏まえると、測定試料中の対象化合物の分子種が有する共通構造であってかつ対象化合物以外の測定試料中の化合物の構成構造ではない化合物イオンを採用することが好ましい。 In the above step, in detail, in view of the accurate quantification of the target component, it is a common structure possessed by the molecular species of the target compound in the measurement sample and not a constituent structure of the compound in the measurement sample other than the target compound. It is preferable to employ a compound ion.
 このような条件を充足する分解処理後に生成される化合物としては、測定試料に含まれる対象化合物のアグリコン又はそれに由来する類似化合物を採用することが好ましい。すなわち、本発明における対象フラグメントイオンとしては、対象化合物のアグリコンイオン、又は上記アグリコンに由来する類似化合物イオンを、検出対象とすることが好ましい。ここで、アグリコンに由来する類似化合物のイオンとしては、植物体内での代謝、測定試料の保管や加工等における変化により生成された官能基置換化合物等をあげることができる。 化合物 As the compound generated after the decomposition treatment that satisfies such conditions, it is preferable to employ the aglycone of the target compound contained in the measurement sample or a similar compound derived therefrom. That is, as the target fragment ion in the present invention, it is preferable that an aglycone ion of the target compound or a similar compound ion derived from the aglycon be a detection target. Here, examples of the ion of the analogous compound derived from aglycone include a functional group-substituted compound generated by a change in metabolism in a plant, storage or processing of a measurement sample, or the like.
 <2.具体的な成分の定量方法>
 本発明の成分に定量方法では、上記段落に記載の原理及び知見や記載は、適宜用いることができる。
<2. Specific component quantification method>
In the method of quantifying the components of the present invention, the principles, findings, and descriptions described in the above paragraphs can be appropriately used.
 [濃度換算]
 本発明における定量において上記共通構造である対象フラグメントイオンの検出データから実際の濃度値を算出するためには、上記対象フラグメント構造を含むなんらかの化合物を1以上準備して上記化合物の希釈系列を作成して検量線を作成するのみで、測定試料の検出データから濃度値を算出することが可能となる。
[Concentration conversion]
In order to calculate the actual concentration value from the detection data of the target fragment ion having the common structure in the quantification in the present invention, one or more compounds containing the target fragment structure are prepared and a dilution series of the compound is prepared. The concentration value can be calculated from the detection data of the measurement sample only by creating the calibration curve.
 例えば、対象フラグメントとしてアグリコンを採用する態様では、上記アグリコンを含む既知の化合物に対して本発明におけるAIF法と同条件(コリジョンエナジーの設定等)での分析を行って検量線を作成することで、測定試料の検出データと分子量情報から、測定試料中の対象化合物の濃度値や含量値を算出することが可能となる。 For example, in an embodiment in which aglycone is employed as the target fragment, a known curve containing the aglycone is analyzed under the same conditions as the AIF method of the present invention (setting collision energy, etc.) to create a calibration curve. From the detection data and molecular weight information of the measurement sample, the concentration value and the content value of the target compound in the measurement sample can be calculated.
 ここで、濃度換算を行うための検量線としては、測定試料中の個別成分を標準化合物として準備して検量線を作成する必要はなく、例えば、対象フラグメントとしてアグリコンを採用した場合であれば、上記アグリコンを含む既知の低分子の対象化合物、上記アグリコンの塩化物、等の対象フラグメントである共通構造化合物の生成が可能な化合物であればいずれを用いてもよい。 Here, as a calibration curve for performing concentration conversion, it is not necessary to prepare a calibration curve by preparing individual components in a measurement sample as a standard compound.For example, if aglycone is used as a target fragment, Any compound can be used as long as it can generate a common structural compound which is a target fragment, such as a known low-molecular-weight target compound containing the aglycone or a chloride of the aglycone.
 [各種態様]
 <共通構造を含む全化合物の定量>
 天然原料由来の対象化合物等には、分子量や構造が異なる膨大な種類の分子種が存在し、通常の天然原料由来の色素組成物等にはこれらの類似化合物の集合体組成物として存在するところ、本発明における定量では、上記AIF分析を利用した共通構造である化合物イオンを対象フラグメントイオンとする定量方法であるため、上記共通構造を含む全ての対象化合物の定量が可能となる。
[Various modes]
<Quantification of all compounds containing a common structure>
There are a huge variety of molecular species with different molecular weights and structures in target compounds and the like derived from natural raw materials, and in dye compositions and the like derived from ordinary natural raw materials exist as aggregate compositions of these similar compounds. In the quantification according to the present invention, since the quantification method uses the compound ion having the common structure as the target fragment ion using the AIF analysis, all the target compounds including the common structure can be quantified.
 従って、本発明における定量では、測定試料に含まれる対象化合物を構成するアグリコンをAIF分析での対象フラグメントイオンとして検出することで、上記アグリコンを「共通構造」として含む対象化合物の総量を定量することが可能となる。 Therefore, in the quantification of the present invention, the total amount of the target compound containing the aglycone as a “common structure” is determined by detecting aglycone constituting the target compound contained in the measurement sample as a target fragment ion in the AIF analysis. Becomes possible.
 上記態様の具体的な測定例としては、例えば、クチナシ黄色素を測定試料としてクロセチンイオンを対象フラグメントイオンとして検出した場合、クチナシ黄色素に含まれるクロセチン配糖体の総量を定量することができる。 As a specific measurement example of the above-described embodiment, for example, when gardenia yellow is used as a measurement sample and crocetin ion is detected as a target fragment ion, the total amount of crocetin glycosides contained in gardenia yellow can be quantified.
 また、上記対象フラグメントイオンとする共通構造として、例えば、ゲニポシド(イリドイドの配糖体)のアグリコンのイオン、又は前記アグリコンに由来する類似化合物のイオンなどをあげることができる。 The common structure used as the target fragment ion may be, for example, an ion of an aglycone of geniposide (an glycoside of iridoid) or an ion of a similar compound derived from the aglycone.
 <全対象化合物の総量の定量>
 本発明における定量では、上記AIF分析を利用して測定試料中に含まれる「全対象化合物の総量」を定量することが可能となる。上記態様において、詳しくは、測定試料に含まれる対象化合物を構成するアグリコンの種類の全てを対象フラグメントイオンとして本発明における定量を行うことで、全対象化合物の総量を定量することが可能となる。
<Quantification of the total amount of all target compounds>
In the quantification according to the present invention, the “total amount of all target compounds” contained in the measurement sample can be quantified using the AIF analysis. In the above aspect, specifically, by performing quantification in the present invention using all types of aglycones constituting the target compound contained in the measurement sample as target fragment ions, the total amount of all target compounds can be quantified.
 具体的な測定例として、例えば、クチナシ黄色素を測定試料としてクロセチン配糖体の総量を定量する場合、クロセチンイオンを対象フラグメントイオンとして上記AIF分析にてクロセチン系黄色素成分(クロセチン、及びクロシン等のクロセチン配糖体)の総量を定量し、上記値を以てクチナシ黄色素に含まれる全クロセチン系黄色素成分の総量とすることができる。 As a specific measurement example, for example, when quantifying the total amount of crocetin glycoside using gardenia yellow dye as a measurement sample, crocetin-based yellow dye components (crocetin, crocin, etc.) are determined by the AIF analysis using crocetin ion as a target fragment ion. Crocetin glycoside) can be determined and the above value can be used as the total amount of all crocetin-based yellow component contained in gardenia yellow component.
 また、アグリコンの種類の異なる2系統以上の対象化合物を含んでなる色素組成物等に対しても好適に測定試料とすることができる。 In addition, a measurement sample can also be suitably used for a dye composition or the like containing two or more target compounds of different types of aglycone.
 <個別成分の定量>
 本発明における定量では、上記AIF分析を利用して測定試料中に含まれる「各対象化合物の個別成分量」を定量することが可能となる。具体的には、測定試料に含まれる所望の対象化合物を構成するアグリコンを対象フラグメントイオンとして本発明におけるAIF法にて定量し、所望の個別成分由来のシグナル含有率を測定することで、測定試料中における上記所望の対象化合物の個別含量を定量することが可能となる。
<Quantification of individual components>
In the quantification according to the present invention, it is possible to quantify the “individual component amount of each target compound” contained in the measurement sample by using the AIF analysis. Specifically, the aglycone constituting the desired target compound contained in the measurement sample is quantified as the target fragment ion by the AIF method of the present invention, and the signal content derived from the desired individual component is measured, whereby the measurement sample is measured. It is possible to quantify the individual content of the desired target compound in the above.
 ここで、上記個別成分の測定データから実際の濃度値を算出する場合は、上記した共通構造を利用した検量線が一律に使用できるため、上記測定対象である個別成分を標準化合物として準備して、その標準化合物ごとに検量線を作成する操作を行うことは不要となる。 Here, when calculating the actual concentration value from the measurement data of the individual component, since the calibration curve using the above-described common structure can be used uniformly, the individual component to be measured is prepared as a standard compound. It is not necessary to perform an operation for creating a calibration curve for each standard compound.
 また、本発明における定量では、上記した共通構造に基づく定量を行うと同時に、測定試料に含まれる所望の対象化合物の個別成分の構造決定を行うことが可能となる。本発明における定量においては、AIF分析を行う前段階にて通常のMSスキャンデータが併せて取得されるところ、上記MSスキャンデータのマススペクトル、MS/MS測定での断片化マススペクトル等から、上記に記載の装置が通常に備える機能により、所望の対象化合物の構造決定を行うことが可能となる。上記構造解析では、必要に応じて(MS)n段(nは自然数)の分析による多段階解析を行うことが有効である場合がある。 In the quantification according to the present invention, the quantification based on the above-described common structure can be performed, and at the same time, the structure of the individual components of the desired target compound contained in the measurement sample can be determined. In the quantification according to the present invention, ordinary MS scan data is also acquired before the AIF analysis is performed. From the mass spectrum of the MS scan data, the fragmentation mass spectrum in the MS / MS measurement, etc. The structure of the desired target compound can be determined by the functions normally provided in the device described in (1). In the above structural analysis, it may be effective to perform a multi-stage analysis by (MS) n-stage analysis (where n is a natural number) as necessary.
 本発明は以下の態様を含む。
<1> クチナシ黄色素を含有する材料に含まれるゲニポシド、ゲニピン及びそれらの類縁体を低減する方法であって、
 クチナシ黄色素を含有する材料と、以下の条件を満たす活性炭とを接触処理する工程を含む、ゲニポシド、ゲニピン及びそれらの類縁体を低減する方法:
 50mLガラス製容器にクチナシ黄色素抽出物(色価100)20g、及び活性炭1gを、常温下にて、1時間攪拌混合し、常温下にて2時間静置後、ケーク状の塊が形成される、活性炭。
<2> <1>に記載のクチナシ黄色素を含有する材料に含まれるゲニポシド、ゲニピン及びそれらの類縁体を低減する方法であって、
 前記ケーク状の塊が、前記ガラス製容器を180°反転させた状態で、常温下にて10分静置後、該容器に残存し、且つ、残存する活性炭の質量増加率が、300%以下である、方法。
<3> <1>に記載のクチナシ黄色素を含有する材料に含まれるゲニポシド、ゲニピン及びそれらの類縁体を低減する方法であって、
 クチナシ黄色素を含有する材料と、活性炭との接触処理工程が、色素1質量部(色価100)に対する活性炭が0.01~0.5質量部、接触時間が30分以上、及び静置時間が10分以上のバッチ法で行われる、方法。
<4>クチナシ黄色素を含有する材料から、ゲニポシド、ゲニピン及びそれらの類縁体を低減させる為の活性炭の選択方法であって、クチナシ黄色素を含有する材料を、50mLガラス製容器にクチナシ黄色素抽出物(色価100)20g、及び活性炭1gを、常温下(10~40℃)にて、1時間攪拌混合し、常温下(10~40℃)にて2時間静置後、ケーク状の塊が形成されるか否かを決定する工程を含む、選択方法。
<5> <4>に記載の選択方法であって、
 前記ケーク状の塊が、前記ガラス製容器を180°反転させた状態で、常温下にて10分静置後、該容器に残存し、且つ、残存する活性炭の質量増加率が、300%以下である、方法。
<6>クチナシ黄色素を含有する材料に含まれるゲニポシド、ゲニピン及びそれらの類縁体を低減する方法であって、
 50mLガラス製容器にクチナシ黄色素抽出物(色価100)20g、及び活性炭1gを、常温下(10~40℃)にて、1時間攪拌混合し、常温下(10~40℃)にて2時間静置後、ケーク状の塊が形成されるか否かを決定する工程;及び
 該工程でケーク状の塊を形成することができる活性炭とクチナシ黄色素を含有する材料を接触処理する工程;
 を含む方法。
<7> <6>に記載のクチナシ黄色素を含有する材料に含まれるゲニポシド、ゲニピン及びそれらの類縁体を低減する方法であって、
 前記活性炭とクチナシ黄色素を含有する材料とを接触処理する工程が、色素1質量部(色価100)に対する活性炭が0.01~0.5質量部、接触時間が30分以上、及び静置時間が10分以上のバッチ法で行われる、方法。
<8> 色価100換算における、ゲニポシド及びゲニピンの総含有量が35ppm以下である、クチナシ黄色素組成物。
<9> クチナシ黄色素を含有する材料に含まれるゲニポシド、ゲニピン及びそれらの類縁体を低減する方法により得られるクチナシ黄色色素組成物であって、
 該方法が、クチナシ黄色素を含有する材料と、以下の条件を満たす活性炭とを接触処理する工程を含む、ゲニポシド、ゲニピン及びそれらの類縁体を低減する方法である、クチナシ黄色色素組成物:
 50mLガラス製容器にクチナシ黄色素抽出物(色価100)20g、及び活性炭1gを、常温下にて、1時間攪拌混合し、常温下にて2時間静置後、ケーク状の塊が形成される、活性炭。
<10> クチナシ黄色素を含有する材料と、以下の条件を満たす活性炭とを接触処理する工程を含む、クチナシ黄色素組成物の製造方法:
 50mLガラス製容器にクチナシ黄色素抽出物(色価100)20g、及び活性炭1gを、常温下にて、1時間攪拌混合し、常温下にて2時間静置後、ケーク状の塊が形成される、活性炭;
 ここで、クチナシ黄色素を含有する材料と、活性炭との接触処理工程は、色素1質量部(色価100)に対する活性炭が0.01~0.5質量部、接触時間が30分以上、及び静置時間が10分以上のバッチ法で行われる。
The present invention includes the following aspects.
<1> A method for reducing geniposide, genipin, and their analogs contained in a gardenia yellow element-containing material,
A method for reducing geniposide, genipin and their analogs, comprising a step of contact-treating a material containing gardenia yellow color with activated carbon satisfying the following conditions:
In a 50 mL glass container, 20 g of gardenia yellow extract (color value 100) and 1 g of activated carbon were stirred and mixed at room temperature for 1 hour, and allowed to stand at room temperature for 2 hours, after which a cake-like mass was formed. Activated carbon.
<2> A method for reducing geniposide, genipin, and their analogs contained in the gardenia yellow element-containing material according to <1>,
The cake-like mass remains in the container after being left standing at room temperature for 10 minutes in a state where the glass container is inverted by 180 °, and the mass increase rate of the remaining activated carbon is 300% or less. Is the way.
<3> A method for reducing geniposide, genipin, and their analogs contained in a gardenia yellow element-containing material according to <1>,
The step of contacting the material containing gardenia yellow color with activated carbon is carried out in such a manner that the activated carbon is used in an amount of 0.01 to 0.5 parts by mass per 1 part by mass of the dye (color value 100), the contact time is 30 minutes or more, and the standing time Is performed in a batch process for 10 minutes or more.
<4> A method for selecting activated charcoal for reducing geniposide, genipin and their analogs from a material containing a gardenia yellow dye, wherein a material containing a gardenia yellow dye is placed in a 50 mL glass container and then 20 g of the extract (color value: 100) and 1 g of activated carbon were stirred and mixed at room temperature (10 to 40 ° C.) for 1 hour, and allowed to stand at room temperature (10 to 40 ° C.) for 2 hours. A method of selecting, comprising determining whether a lump is formed.
<5> The selection method according to <4>, wherein
The cake-like mass remains in the container after being left standing at room temperature for 10 minutes in a state where the glass container is inverted by 180 °, and the mass increase rate of the remaining activated carbon is 300% or less. Is the way.
<6> A method for reducing geniposide, genipin, and their analogs contained in a gardenia yellow element-containing material,
In a 50 mL glass container, 20 g of gardenia yellow extract (color value 100) and 1 g of activated carbon were stirred and mixed at room temperature (10 to 40 ° C.) for 1 hour, and mixed at room temperature (10 to 40 ° C.) for 2 hours. Determining whether cake-like lumps are formed after standing for a period of time; and contact-treating a material containing gardenia yellow element with activated carbon capable of forming cake-like lumps in the step;
A method that includes
<7> A method for reducing geniposide, genipin, and their analogs contained in the gardenia yellow element-containing material according to <6>,
The step of contact-treating the activated carbon with a material containing a gardenia yellow element comprises: 0.01 to 0.5 parts by mass of activated carbon per 1 part by mass of a dye (color value: 100); a contact time of 30 minutes or more; A method wherein the process is performed in a batch process for a time of 10 minutes or more.
<8> A gardenia yellow pigment composition having a total content of geniposide and genipin of 35 ppm or less in terms of a color value of 100.
<9> A gardenia yellow pigment composition obtained by a method for reducing geniposide, genipin and their analogs contained in a gardenia yellow element-containing material,
Gardenia yellow pigment composition, which is a method for reducing geniposide, genipin and their analogs, comprising a step of contact-treating a gardenia yellow element-containing material with an activated carbon satisfying the following conditions:
In a 50 mL glass container, 20 g of gardenia yellow extract (color value: 100) and 1 g of activated carbon were stirred and mixed at room temperature for 1 hour, and allowed to stand at room temperature for 2 hours, after which a cake-like mass was formed. Activated carbon.
<10> A method for producing a gardenia yellow element composition, comprising a step of contacting a material containing a gardenia yellow element with an activated carbon satisfying the following conditions:
In a 50 mL glass container, 20 g of gardenia yellow extract (color value 100) and 1 g of activated carbon were stirred and mixed at room temperature for 1 hour, and allowed to stand at room temperature for 2 hours, after which a cake-like mass was formed. Activated carbon;
Here, the step of contacting the gardenia yellow element-containing material with activated carbon comprises: 0.01 to 0.5 parts by mass of activated carbon with respect to 1 part by mass of the dye (color value 100); a contact time of 30 minutes or more; It is performed by a batch method in which the standing time is 10 minutes or more.
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれに限定されるものではない。実施例の温度は、特に記載がない限り、全て25℃で行われた。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto. All temperatures in the examples were at 25 ° C. unless otherwise noted.
 記号及び略号の意味を以下に示す。この他にも、本明細書中、本発明が属する技術分野において、通常用いられる記号及び略号が用いられ得る。
 CV:色価(Color Value)
The meanings of the symbols and abbreviations are shown below. In addition, in this specification, symbols and abbreviations commonly used in the technical field to which the present invention belongs may be used.
CV: Color Value
 以下、「ゲニポシド、ゲニピン及びそれらの類縁体の総含量」等において、「ゲニポシド、ゲニピン及びそれらの類縁体」を「イリドイド類縁体」と表記する場合がある。
 例えば、「イリドイド類縁体残存率」は、次のように定義される。
イリドイド類縁体残存率(%)=(処理後ゲニポシド量+処理後ゲニピン量+処理後ゲニポシド類縁体量)/(処理前ゲニポシド量+処理前ゲニピン量+処理前ゲニポシド類縁体量)×100
Hereinafter, in "total content of geniposide, genipin and their analogs" and the like, "geniposide, genipin and their analogs" may be referred to as "iridoid analogs".
For example, the “remaining ratio of iridoid analog” is defined as follows.
Residual rate of iridoid analog (%) = (amount of geniposide after treatment + amount of geniposide after treatment + amount of geniposide analog after treatment) / (amount of geniposide before treatment + amount of geniposide before treatment + amount of geniposide analog before treatment) × 100
 試験例1 種々の活性炭を用いたゲニポシド低減試験
 クチナシ黄色素を含有する材料(クチナシ果実抽出液、色価1614)6.2gにイオン交換水93.8gを加え、色価100のクチナシ黄色素抽出物を調製した。
 該色素抽出物20mlと、市販されている各種の活性炭1gとを、50mlガラス製バイアル瓶に添加した。該混合物を室温で、1時間、300rpmで撹拌後、2時間静置し、活性炭の状態を観察した。その後、デカンテーションを行った。処理後の試料(上澄み液)の色価を測定すると共に、該試料中のゲニポシド及びそれらの類縁体の残量について、LC/MS分析を行った。
Test Example 1 Geniposide Reduction Test Using Various Activated Carbons 96.2 g of ion-exchanged water was added to 6.2 g of a gardenia-yellow-containing material (gardenia fruit extract, color value 1614), and a gardenia yellow-colored extract with a color value of 100 was added. Was prepared.
20 ml of the pigment extract and 1 g of various commercially available activated carbons were added to a 50 ml glass vial. The mixture was stirred at 300 rpm for 1 hour at room temperature and then allowed to stand for 2 hours, and the state of activated carbon was observed. After that, decantation was performed. The color value of the treated sample (supernatant) was measured, and LC / MS analysis was performed on the remaining amounts of geniposide and their analogs in the sample.
 また、デカンテーション後のガラスバイアル瓶を、180°反転させた状態で、10分間静置し、バイアル瓶内に残存する活性炭の質量(デカント残量)を測定した。 (4) Further, the glass vial after decantation was allowed to stand still for 10 minutes in a state where it was inverted by 180 °, and the mass of activated carbon remaining in the vial (remaining amount of decant) was measured.
 分析試料の調整について
 回収した上澄み液を、超純水にて色価5となるよう希釈し、0.2μm孔径のシリンジフィルターを通し、分析試料とした。表1のグラジエントを使用して、LC/MS分析を行った。
Figure JPOXMLDOC01-appb-T000001
a:0.1%ギ酸水、b:アセトニトリル
Preparation of Analysis Sample The collected supernatant was diluted with ultrapure water to a color value of 5, and passed through a 0.2 μm pore size syringe filter to obtain an analysis sample. LC / MS analysis was performed using the gradients in Table 1.
Figure JPOXMLDOC01-appb-T000001
a: 0.1% formic acid aqueous solution, b: acetonitrile
 結果を表2に示す。表2中、「対照」は、活性炭非処理であり、及び「ND」は、検出限界未満である。当該分析条件の分析において、ゲニポシド、ゲニピンが検出限界未満の場合、ゲニポシド、ゲニピンの総含量は、0ppmであるとみなした。 The results are shown in Table 2. In Table 2, "Control" is untreated with activated carbon, and "ND" is below the detection limit. When geniposide and genipin were below the detection limit in the analysis under the analysis conditions, the total content of geniposide and genipin was considered to be 0 ppm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、実施例1~4の活性炭は、50mlガラス製バイアル瓶に、色価100のクチナシ黄色素抽出物20ml及び活性炭1g(クチナシ黄色素抽出物に対して5%(w/w))の混合物を1時間、300rpmで撹拌後、室温で2時間静置し、活性炭がケーク状となった。その後、デカンテーションを行い、上澄み液を回収したところ、これらの活性炭を使用した場合では、クチナシ黄色色素を容易に分離することができた。一方、ケーク状にならなかった比較例の活性炭では、バラの状態(非ケーク状)の活性炭が、デカンテーションに伴って落下し、操作性が良くなかった。特に、比較例の活性炭では、ガラス瓶を180°反転させた場合に、活性炭が一部又は全部下に落下してしまい、大量の試料を処理する場合の実際の操作が困難となることが予想された。表2の結果から、ゲニポシドを良好に吸着した実施例1~4の活性炭のデカント残量は、ゲニポシドを殆ど吸着出来なかった比較例1~4の活性炭のデカント残量よりも小さかったことから、ケーク状となった実施例1~4の活性炭の液切れの良さが際立った。 As can be seen from Table 2, the activated carbons of Examples 1-4 were placed in a 50 ml glass vial in 20 ml of gardenia yellow extract with a color value of 100 and 1 g of activated carbon (5% (w / w / gardenia yellow extract). The mixture obtained in w)) was stirred at 300 rpm for 1 hour and allowed to stand at room temperature for 2 hours, so that the activated carbon became a cake. Thereafter, decantation was performed and the supernatant was recovered. When these activated carbons were used, the gardenia yellow pigment could be easily separated. On the other hand, in the activated carbon of the comparative example which did not become cake-like, the activated carbon in a loose state (non-cake-like) fell with decantation, and the operability was not good. In particular, in the activated carbon of the comparative example, when the glass bottle is inverted by 180 °, the activated carbon falls down partly or entirely, and it is expected that the actual operation when processing a large amount of samples becomes difficult. Was. From the results in Table 2, the decant remaining amount of the activated carbons of Examples 1 to 4 in which geniposide was well adsorbed was smaller than the decanting amount of the activated carbons of Comparative Examples 1 to 4 in which almost no geniposide was adsorbed. The goodness of the drainage of the activated carbon of Examples 1 to 4 which was in the form of a cake was remarkable.
 さらに、実施例1~4の活性炭を用いた場合、有用なクチナシ黄色素の損失を抑制して、ゲニポシドを選択的に除去できた。 Furthermore, when the activated carbons of Examples 1 to 4 were used, the loss of useful gardenia yellow pigment was suppressed, and geniposide was selectively removed.
 試験例2
 クチナシ黄色素を含有する材料に含まれるゲニポシド類縁体の分析
 クチナシ黄色素中に含まれる生理活性成分としては、ゲニピン及びゲニポシドが知られているが、イリドイド骨格を有し、クチナシ黄色素成分に近い極性を有するゲニポシドの類縁体が存在する可能性があったので、超純水で色価5に調整したクチナシ黄色素抽出物を試料として、オービトラップ法(AIF法)を利用して、試料に含まれるゲニポシド類縁体をLC/MS分析に供した。
 LC/MS分析は、Q ExactiveTMHPLCシステム(Thermo Fisher Scientific)、L-Column ODS (2.1×150mm、3μm、科学物質評価研究機構)、移動相:A)0.1%ギ酸水、B)アセトニトリル、グラジエント条件:B 0%(0分)→10%(10分)→30%(30分)→100%(60-70分)、流量0.2 mL/min、イオン化法:HESI negative、Scan m/z:100-1000、HCD energy: Stepped NCE10, 20, 30にて行った。
Test example 2
Analysis of Geniposide Analogs Contained in Gardenia Yellow Element-Containing Materials As bioactive components contained in gardenia yellow element, genipin and geniposide are known, but have an iridoid skeleton and are close to gardenin yellow element components Since a polar geniposide analog may have been present, a gardenia yellow extract extracted to a color value of 5 with ultrapure water was used as a sample, and the orbitrap method (AIF method) was used for the sample. The contained geniposide analogs were subjected to LC / MS analysis.
For LC / MS analysis, Q Exactive HPLC system (Thermo Fisher Scientific), L-Column ODS (2.1 × 150 mm, 3 μm, Japan Society for the Evaluation of Chemical Substances), mobile phase: A) 0.1% formic acid aqueous solution, B) acetonitrile, gradient Conditions: B 0% (0 min) → 10% (10 min) → 30% (30 min) → 100% (60-70 min), flow rate 0.2 mL / min, ionization method: HESI negative, Scan m / z: Performed at 100-1000, HCD energy: Stepped NCE10, 20, 30.
 まず、分析試料に含まれる総イオンフラグメントを抽出して描画したクロマトグラムでは、クチナシ黄色素及びイリドイド類縁体が重複したピークが検出された(図2A)。次に、同じ試料を使用して、オービトラップ法(AIF法)(「All Ion Fragmentaion」測定モード)により、クチナシ黄色素に関しては共通のクロセチン骨格を有する成分(m/z:327.1611)でフラグメントイオンを抽出すると共に、イリドイド類縁体に関しては共通のゲニピン骨格を有する成分(m/z:225.0760)でフラグメントイオンを抽出して、描画した(図2B)。
 図2Bの結果から、クチナシ黄色素のピーク内に隠れてしまい、従来は判別が難しかった部分に、イリドイド類縁体が存在することを確認した。
First, in a chromatogram drawn by extracting and drawing all ion fragments contained in the analysis sample, a peak in which a gardenia yellow pigment and an iridoid analog were overlapped was detected (FIG. 2A). Next, using the same sample, the orion trap method (AIF method) (“All Ion Fragmentaion” measurement mode) was used to measure the fragment ion of the gardenia yellow component with a component having a common crocetin skeleton (m / z: 327.1611). Was extracted, and for the iridoid analog, a fragment ion was extracted with a component having a common genipin skeleton (m / z: 225.0760) and drawn (FIG. 2B).
From the results in FIG. 2B, it was confirmed that the iridoid analogs were hidden in the peaks of gardenia yellow pigment and were difficult to discriminate conventionally.
試験例3
 活性炭を用いたクチナシ黄色素を含む材料からのゲニポシド及びその類縁体の除去試験
試験例2の結果から、クチナシ黄色素を含む材料にゲニポシド以外のイリドイド骨格を有する類縁体が含まれている事が示唆された為、試験例1と同様に調製した試料を用い、活性炭処理による、イリドイド類縁体の除去効果についても評価した。本試験においては、ゲニポシド低減効果の最も高かった実施例1の活性炭を使用し、試験例2と同じ条件で分析した。定量値の算出については標準品が存在しない為、骨格成分であるゲニピンのイオン強度より得られた検量線で換算した数値を表記した。
 その結果、活性炭処理後のクロマトグラムでは、ゲニポシド及びその類縁体については、ほぼ除去できており、本発明の方法は、ゲニポシドのみならず、ゲニポシドと共通のイリドイド骨格を有する、その類縁体についても除去できることが確認された。
 また、イリドイド類縁体の残存量を、表3に示す。それらの総残存量(色価100換算)は2.21ppmであり、極めて少なかった。
Test example 3
Removal test of geniposide and its analogs from a material containing gardenia yellow color using activated carbon From the results of Test Example 2, it was found that a material containing a gardenia yellow color contains analogs having an iridoid skeleton other than geniposide. For this reason, a sample prepared in the same manner as in Test Example 1 was used to evaluate the effect of removing activated iridoid analogs by activated carbon treatment. In this test, the activated carbon of Example 1 having the highest effect of reducing geniposide was used and analyzed under the same conditions as in Test Example 2. Regarding the calculation of the quantitative value, since there is no standard product, a numerical value converted by a calibration curve obtained from the ionic strength of genipin which is a skeleton component is shown.
As a result, in the chromatogram after activated carbon treatment, geniposide and its analogs were almost completely removed, and the method of the present invention was applied not only to geniposide but also to its analogs having a common iridoid skeleton with geniposide. It was confirmed that it could be removed.
Table 3 shows the remaining amount of the iridoid analog. Their total remaining amount (color value converted into 100) was 2.21 ppm, which was extremely small.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 このように、実施例で使用した活性炭は、クチナシ黄色素を含有する材料に含まれるゲニポシド、ゲニピン及びそれらの類縁体を低減する方法に効率良く使用でき、さらにより大きなスケールでの試料の処理に使用できる。
 
As described above, the activated carbon used in the examples can be efficiently used in a method for reducing geniposide, genipin, and their analogs contained in a gardenia yellow matter-containing material, and can be used for processing a sample on a larger scale. Can be used.

Claims (9)

  1.  クチナシ黄色素を含有する材料に含まれるゲニポシド、ゲニピン及びそれらの類縁体からなる群から選択される少なくとも1種を低減する方法であって、
     クチナシ黄色素抽出物と攪拌混合することでケーク状の塊が形成される活性炭を用いて処理することを含む方法。
    A method for reducing at least one selected from the group consisting of geniposide, genipin, and analogs thereof contained in a gardenia yellow dye-containing material,
    A method comprising treating with activated carbon which forms a cake-like mass by stirring and mixing with a gardenia yellow extract.
  2.  攪拌混合後の活性炭の質量増加率が110~320%である、請求項1に記載の方法。 The method according to claim 1, wherein the mass increase rate of the activated carbon after the stirring and mixing is 110 to 320%.
  3.  クチナシ黄色素を含有する材料から、ゲニポシド、ゲニピン及びそれらの類縁体からなる群から選択される少なくとも1種を低減させる為の活性炭の選別方法であって、
     クチナシ黄色素抽出物と攪拌混合することでケーク状の塊が形成される活性炭を選別する方法。
    A method for selecting activated carbon for reducing at least one selected from the group consisting of geniposide, genipin and analogs thereof from a material containing gardenia yellow pigment,
    A method for selecting activated carbon from which a cake-like mass is formed by stirring and mixing with a gardenia yellow extract.
  4.  攪拌混合の活性炭の質量増加率が110~320%である活性炭を選別する、請求項3に記載の方法。 The method according to claim 3, wherein the activated carbon in which the mass increase rate of the stirred and mixed activated carbon is 110 to 320% is selected.
  5.  ゲニポシド、ゲニピン及びそれらの類縁体からなる群から選択される少なくとも1種が低減された、クチナシ黄色素組成物の製造方法であって、
     クチナシ黄色素抽出物と接触させた場合に、ケーク状の塊が形成される活性炭とクチナシ黄色素を含有する材料を接触処理する工程;
     を含む方法。
    Geniposide, genipin and at least one selected from the group consisting of analogs thereof are reduced, a method for producing a gardenia yellow element composition,
    A step of contacting the activated carbon with a gardenia yellow element-containing material that forms cake-like lumps when brought into contact with the gardenia yellow element extract;
    A method that includes
  6.  ゲニポシド、ゲニピン及びそれらの類縁体からなる群から選択される少なくとも1種が低減された、クチナシ黄色素組成物の製造方法であって、
     クチナシ黄色素抽出物と攪拌混合した場合に、ケーク状の塊が形成される活性炭を選別する工程;及び
     前記選別する工程で選別された活性炭とクチナシ黄色素を含有する材料を接触処理する工程;
     を含む方法。
    Geniposide, genipin and at least one selected from the group consisting of analogs thereof are reduced, a method for producing a gardenia yellow element composition,
    A step of selecting activated carbon that forms a cake-like mass when stirred and mixed with the gardenia yellow element extract; and a step of contact-treating the activated carbon selected in the selecting step with a material containing a gardenia yellow element;
    A method that includes
  7.  処理後の活性炭の質量増加率が110~320%である活性炭を選別する、請求項5又は6に記載の方法。 (7) The method according to the above (5) or (6), wherein activated carbon whose mass increase rate of the activated carbon after the treatment is 110 to 320% is selected.
  8.  色価100換算における、ゲニポシド、ゲニピン及びそれらの類縁体の総含有量が35ppm以下である、クチナシ黄色素組成物。 (4) A gardenia yellow element composition having a total content of geniposide, genipin and their analogs of not more than 35 ppm in terms of a color value of 100.
  9.  請求項5~7のいずれか1項に記載の方法により得られた、クチナシ黄色素組成物。
     
    A gardenia yellow element composition obtained by the method according to any one of claims 5 to 7.
PCT/JP2019/036370 2018-09-18 2019-09-17 Method for reducing geniposide, genipin and analogue thereof included in ingredients that contain gardenia jasminoides yellow WO2020059707A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018174306 2018-09-18
JP2018-174306 2018-09-18

Publications (1)

Publication Number Publication Date
WO2020059707A1 true WO2020059707A1 (en) 2020-03-26

Family

ID=69887089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036370 WO2020059707A1 (en) 2018-09-18 2019-09-17 Method for reducing geniposide, genipin and analogue thereof included in ingredients that contain gardenia jasminoides yellow

Country Status (2)

Country Link
TW (1) TW202020063A (en)
WO (1) WO2020059707A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486668A (en) * 1977-12-15 1979-07-10 Taito Kk Production of red type color composition
JPS57151657A (en) * 1981-03-13 1982-09-18 Riken Vitamin Co Ltd Preparation of yellow pigment resistant to green discoloration
CN105315705A (en) * 2015-11-12 2016-02-10 江西省林业科学院 Method for extracting purified gardenia yellow pigment in gardenia
WO2016068330A1 (en) * 2014-10-30 2016-05-06 三栄源エフ・エフ・アイ株式会社 Method for removing geniposide or genipin or both

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486668A (en) * 1977-12-15 1979-07-10 Taito Kk Production of red type color composition
JPS57151657A (en) * 1981-03-13 1982-09-18 Riken Vitamin Co Ltd Preparation of yellow pigment resistant to green discoloration
WO2016068330A1 (en) * 2014-10-30 2016-05-06 三栄源エフ・エフ・アイ株式会社 Method for removing geniposide or genipin or both
CN105315705A (en) * 2015-11-12 2016-02-10 江西省林业科学院 Method for extracting purified gardenia yellow pigment in gardenia

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU, W. ET AL.: "Selective extraction of gardenia yellow and geniposide from Gardenia jasminoides by mechanochemistry", MOLECULES, vol. 21, no. 5, 2016, pages 1 - 13, XP055693920 *

Also Published As

Publication number Publication date
TW202020063A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
CN107300596B (en) Method suitable for detecting content of organic phosphate flame retardant in various foods
Assimopoulou et al. Analysis of alkannin derivatives from Alkanna species by high‐performance liquid chromatography/photodiode array/mass spectrometry
CN107664670B (en) The remaining ultra performance liquid chromatography of kind bacterium azoles-tandem mass spectrum detection method in corn
Polovka et al. Offline combination of pressurized fluid extraction and electron paramagnetic resonance spectroscopy for antioxidant activity of grape skin extracts assessment
CN108008026B (en) Method for synchronously detecting 13 colorants in hawthorn pills
Zhang et al. Simultaneous quantification of seventeen bioactive components in rhizome and aerial parts of Alpinia officinarum Hance using LC-MS/MS
Šťavíková et al. Antioxidant activity of grape skin aqueous extracts from pressurized hot water extraction combined with electron paramagnetic resonance spectroscopy
CN104614471A (en) Fast extraction, purification and detection method for Sudan red dye residues in food
CN112526047B (en) Method for quantitatively detecting flavonoid compounds in sea buckthorn based on ultra-high performance liquid chromatography-high resolution mass spectrometry technology
CN105241965A (en) Method of on-line quickly detecting total anti-oxidizing property of sample
CN112362798A (en) Detection method of cannabidiol in cosmetics
WO2020059707A1 (en) Method for reducing geniposide, genipin and analogue thereof included in ingredients that contain gardenia jasminoides yellow
CN113325103A (en) Analysis method for simultaneously measuring gelsemium, gelsemine and gelsemine in hair
JP2018205013A (en) Method for quantifying anthocyanin pigment
CN110927088A (en) Method for rapidly detecting anthocyanin in lycium ruthenicum murr
CN106119117A (en) The toxiferous algae of a kind of Azaspiracid toxin and the preparation and application of standard sample thereof
CN102788834B (en) Method for quickly measuring soluble sugar in fruit
CN109211805A (en) A kind of verifying analysis method of mussel Carotenoids Extractss traceability
CN111257471B (en) Method for determining benzalkonium chloride in soil
JP4426987B2 (en) A method for the determination of isofluxidine in Ezocogi
CN110028531B (en) Method for extracting and separating flavonoid substances from soil
CN109142571B (en) Method for measuring content of anthraquinone components
Staneva et al. Ultrasonically assisted extraction of total phenols and flavonoids from Rhodiola rosea
CN115716854B (en) Method for extracting polyphenol from lettuce
Kumar et al. Utilization of mango peels (Mangifera indica) for the extraction of sugars

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP