WO2020059676A1 - Shift range control device - Google Patents
Shift range control device Download PDFInfo
- Publication number
- WO2020059676A1 WO2020059676A1 PCT/JP2019/036258 JP2019036258W WO2020059676A1 WO 2020059676 A1 WO2020059676 A1 WO 2020059676A1 JP 2019036258 W JP2019036258 W JP 2019036258W WO 2020059676 A1 WO2020059676 A1 WO 2020059676A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- duty
- shift range
- angle
- limit value
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/26—Generation or transmission of movements for final actuating mechanisms
- F16H61/28—Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
- F16H61/32—Electric motors actuators or related electrical control means therefor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
Definitions
- the present disclosure relates to a shift range control device.
- An object of the present disclosure is to provide a shift range control device capable of suppressing overcurrent.
- the shift range control device of the present disclosure controls switching of the shift range by controlling driving of a motor having a motor winding, and includes a drive circuit and a control unit.
- the drive circuit has a switching element that switches energization of the motor winding.
- the control unit has a motor angle calculation unit, a drive control unit, and a duty limit unit.
- the motor angle calculator calculates a motor angle based on a signal obtained from a rotation angle sensor that detects a rotation position of the motor.
- the drive control unit controls driving of the motor such that the motor angle becomes a target rotation angle corresponding to the target shift range.
- the duty limiter determines a duty limit value that limits a duty, which is a ratio of the ON time of the switching element during a predetermined period, according to the motor angle. Thereby, overcurrent can be suppressed.
- FIG. 1 is a perspective view showing a shift-by-wire system according to the first embodiment
- FIG. 2 is a schematic configuration diagram illustrating a shift-by-wire system according to the first embodiment
- FIG. 3 is a circuit diagram showing a motor and a motor driver according to the first embodiment
- FIG. 4 is an explanatory diagram showing the relationship between the torque, the rotation speed, and the motor current according to the first embodiment.
- FIG. 5 is a flowchart illustrating a duty limit value calculation process according to the first embodiment.
- FIG. 6 is a time chart for explaining the drive control processing according to the first embodiment.
- FIG. 7 is a time chart for explaining the drive control processing according to the reference example.
- FIG. 8 is a flowchart illustrating a duty limit value calculation process according to the second embodiment.
- FIG. 9 is a time chart illustrating a drive control process according to the second embodiment.
- FIG. 10 is a time chart for explaining the drive control processing according to the reference example.
- the shift-by-wire system 1 as a shift range switching system includes a motor 10, a shift range switching mechanism 20, a parking lock mechanism 30, a shift range control device 40, and the like.
- the motor 10 rotates when supplied with electric power from a battery 45 mounted on a vehicle (not shown), and functions as a drive source of the shift range switching mechanism 20.
- the motor 10 of the present embodiment is a permanent magnet type DC brushless motor.
- the motor 10 has two sets of motor windings 11 and 12 wound around a stator (not shown).
- the first motor winding 11 has a U1 coil 111, a V1 coil 112, and a W1 coil 113.
- the second motor winding 12 has a U2 coil 121, a V2 coil 122, and a W2 coil 123.
- the encoder 13 as a motor rotation angle sensor detects the rotation position of the rotor 105.
- the encoder 13 is, for example, a magnetic rotary encoder, and includes a magnet that rotates integrally with the rotor, a Hall IC for detecting magnetism, and the like.
- the encoder 13 is a three-phase encoder that outputs an A-phase, a B-phase, and a C-phase pulse signal, which are pulse signals at predetermined angles, in synchronization with the rotation of the rotor.
- the speed reducer 14 is provided between the motor shaft of the motor 10 and the output shaft 15, and reduces the rotation of the motor 10 and outputs the rotation to the output shaft 15.
- the output shaft 15 is provided with an output shaft sensor 16 for detecting the angle of the output shaft 15.
- the output shaft sensor 16 of the present embodiment is, for example, a potentiometer.
- the shift range switching mechanism 20 has a detent plate 21, a detent spring 25, and the like, and applies a rotational driving force output from the reduction gear 14 to a manual valve 28 and a parking lock mechanism 30. Communicate to
- the detent plate 21 is fixed to the output shaft 15 and is driven by the motor 10.
- the direction in which the detent plate 21 moves away from the base of the detent spring 25 is defined as a forward rotation direction
- the direction in which the detent plate 21 approaches the base is defined as a reverse rotation direction.
- the detent plate 21 is provided with a pin 24 projecting in parallel with the output shaft 15.
- the pin 24 is connected to the manual valve 28.
- the shift range switching mechanism 20 converts the rotational movement of the motor 10 into a linear movement and transmits the linear movement to the manual valve 28.
- the manual valve 28 is provided on a valve body 29.
- concave portions 22 and 23 are provided on the detent spring 25 side of the detent plate 21.
- the side closer to the base of the detent spring 25 is referred to as the concave portion 22 and the side farther from the base is referred to as the concave portion 23.
- the concave portion 22 corresponds to a NotP range other than the P range
- the concave portion 23 corresponds to the P range.
- the detent spring 25 is a plate-like member that can be elastically deformed, and has a detent roller 26 at the tip.
- the detent spring 25 urges the detent roller 26 toward the center of rotation of the detent plate 21.
- a rotational force greater than a predetermined value is applied to the detent plate 21, the detent spring 25 is elastically deformed, and the detent roller 26 moves between the concave portions 22 and 23.
- the detent roller 26 fits into one of the recesses 22 and 23, the swing of the detent plate 21 is regulated, the axial position of the manual valve 28 and the state of the parking lock mechanism 30 are determined, and the automatic transmission is changed.
- the shift range of the machine 5 is fixed.
- the detent roller 26 fits into the concave portion 22 when the shift range is the NotP range, and fits into the concave portion 23 when the shift range is the P range.
- the parking lock mechanism 30 includes a parking rod 31, a cone 32, a parking lock pawl 33, a shaft 34, and a parking gear 35.
- the parking rod 31 is formed in a substantially L-shape, and one end 311 side is fixed to the detent plate 21.
- a cone 32 is provided on the other end 312 side of the parking rod 31, a cone 32 is provided.
- the conical body 32 is formed so as to decrease in diameter toward the other end 312 side. When the detent plate 21 swings in the reverse rotation direction, the cone 32 moves in the P direction.
- the parking lock pawl 33 is in contact with the conical surface of the cone 32, and is provided so as to be swingable about a shaft portion 34.
- a convex portion capable of meshing with the parking gear 35 is provided on the parking gear 35 side of the parking lock pawl 33.
- 331 are provided.
- the parking gear 35 is provided on an axle (not shown), and is provided so as to be able to mesh with the projection 331 of the parking lock pole 33.
- the rotation of the axle is restricted.
- the shift range is the NotP range
- the parking gear 35 is not locked by the parking lock pawl 33, and the rotation of the axle is not hindered by the parking lock mechanism 30.
- the shift range is the P range
- the parking gear 35 is locked by the parking lock pole 33, and the rotation of the axle is restricted.
- the shift range control device 40 includes motor drivers 41 and 42 as drive circuits, an ECU 50, and the like.
- the first motor driver 41 is a three-phase inverter that switches energization of the first motor winding 11, and the switching elements 411 to 416 are bridge-connected.
- One end of the U1 coil 111 is connected to a connection point of the pair of U-phase switching elements 411 and 414.
- One end of the V1 coil 112 is connected to a connection point of the V-phase switching elements 412 and 415 that form a pair.
- One end of the W1 coil 113 is connected to a connection point of the W-phase switching elements 413 and 416 that form a pair.
- the other ends of the coils 111 to 113 are connected by a connection section 115.
- the second motor driver 42 is a three-phase inverter for switching the energization of the second motor winding 12, and the switching elements 421 to 426 are bridge-connected.
- One end of the U2 coil 121 is connected to a connection point of the pair of U-phase switching elements 421 and 424.
- One end of the V2 coil 122 is connected to a connection point of the V-phase switching elements 422 and 425 that form a pair.
- One end of the W2 coil 123 is connected to a connection point of the paired W-phase switching elements 423 and 426.
- the other ends of the coils 121 to 123 are connected at a connection portion 125.
- the switching elements 411 to 416 and 421 to 426 of the present embodiment are MOSFETs, other elements such as IGBTs may be used.
- a motor relay 46 is provided between the motor driver 41 and the battery 45.
- a motor relay 47 is provided between the motor driver 42 and the battery 45.
- the motor relays 46 and 47 are turned on when a start switch such as an ignition switch is turned on, and power is supplied to the motor 10 side. Further, when the motor relays 46 and 47 are on, power is supplied from the battery 45 to the motor 10, and when the motor relays 46 and 47 are off, power from the battery 45 to the motor 10 is cut off.
- a voltage sensor 48 for detecting a battery voltage is provided on the high potential side of the battery 45.
- the ECU 50 is mainly configured by a microcomputer or the like, and includes a CPU, ROM, RAM, I / O, bus lines for connecting these components, and the like, which are not shown.
- Each process in the ECU 50 may be a software process by executing a program stored in advance in a substantial memory device such as a ROM (ie, a readable non-temporary tangible recording medium) by the CPU, or a dedicated process. Hardware processing by an electronic circuit may be used.
- the ECU 50 controls the on / off operations of the switching elements 411 to 416 and 421 to 426 so that the driver requested shift range input by operating a shift lever or the like (not shown) matches the shift range in the shift range switching mechanism 20. , And controls the driving of the motor 10. Further, the ECU 50 controls the driving of the shift hydraulic control solenoid 6 based on the vehicle speed, the accelerator opening, the driver's requested shift range, and the like. The shift speed is controlled by controlling the shift hydraulic control solenoid 6. The number of shift hydraulic control solenoids 6 is provided in accordance with the number of shift stages.
- one ECU 50 controls the driving of the motor 10 and the solenoid 6, but the motor ECU for controlling the motor 10 for controlling the motor 10 and the AT-ECU for controlling the solenoid may be separated.
- the drive control of the motor 10 will be mainly described.
- the ECU 50 includes an angle calculation unit 51, a drive control unit 53, a duty limit unit 55, and the like.
- the angle calculator 51 counts the pulse edges of each phase of the encoder signal output from the encoder 13 and calculates the encoder count value ⁇ en.
- the encoder count value ⁇ en is a value corresponding to the rotational position of the motor 10, and corresponds to “motor angle”.
- the drive control unit 53 controls the drive of the motor 10 so that the encoder count value ⁇ en becomes the target count value ⁇ cmd set according to the target shift range.
- the motor 10 is rotated by switching the energized phase based on the encoder count value ⁇ en.
- the energized phase is the UV phase
- the switching elements 411 and 421 as the upper arm elements of the U phase are turned on
- the switching elements 415 and 425 as the lower arm elements of the V phase are turned on and off at the set duty D.
- the duty D is a ratio of the ON time in one cycle, and in the present embodiment, the time during acceleration is defined as positive and the time during deceleration is defined as negative.
- the duty limiter 55 sets a duty limit value Dlim for limiting the duty D.
- FIG. 4 shows the relationship among the motor rotation speed, the torque, and the motor current.
- the horizontal axis represents torque
- the vertical axis represents motor speed and motor current.
- the duty in the acceleration range at the initial stage of motor driving is 100% in order to improve the responsiveness so that the range switching time is shortened, the motor current Im exceeds the upper limit Ilim at the time of motor low speed, and the motor driver 41, There is a possibility that a circuit failure of 42 will be caused.
- a current limiting circuit can be provided, but a component for realizing the function is required separately, which increases the number of components and the mounting area on the board.
- the current limiting function is provided by software, high-spec operation performance such as AD conversion at a predetermined timing of the ON time of the switching element is required.
- the responsiveness is reduced because the maximum torque is reduced.
- step S101 The duty limit value calculation processing of the present embodiment will be described based on the flowchart of FIG. This process is executed by the duty limiting unit 55 at a predetermined cycle during range switching.
- step S101 the “step” of step S101 will be omitted, and will be simply referred to as a symbol “S”.
- S the other steps are the same.
- the drive count ⁇ A and the remaining count ⁇ B will be described.
- the encoder count value ⁇ en_init at the start of driving which is the encoder count value before the driving of the motor 10 is started, is held in a storage unit (not shown).
- the absolute value of the difference between the current encoder count value ⁇ en and the encoder count value at the start of driving ⁇ en_init is defined as the drive count ⁇ A (see equation (1)).
- the target count value ⁇ cmd is set.
- the absolute value of the difference between the target count value ⁇ cmd and the current encoder count value ⁇ en is defined as the remaining count ⁇ B (see Equation (2)).
- the duty limiter 55 determines whether the drive count ⁇ A is smaller than one. When it is determined that the drive count ⁇ A is smaller than 1 (S101: YES), the process proceeds to S102, and the duty limit value Dlim is set to 50%. When it is determined that the drive count ⁇ A is 1 or more (S101: NO), the process proceeds to S103.
- the duty limiter 55 determines whether the drive count ⁇ A is smaller than two. When it is determined that the drive count ⁇ A is smaller than 2 (S103: YES), the process proceeds to S104, and the duty limit value Dlim is set to 60%. When it is determined that the drive count ⁇ A is 2 or more (S103: NO), the process proceeds to S105.
- the duty limiter 55 determines whether the drive count ⁇ A is smaller than three. When it is determined that the drive count ⁇ A is smaller than 3 (S105: YES), the process proceeds to S106, and the duty limit value Dlim is set to 70%. When it is determined that the drive count ⁇ A is 3 or more (S105: NO), the process proceeds to S107.
- the duty limiter 55 determines whether the drive count ⁇ A is smaller than four. If it is determined that the drive count ⁇ A is smaller than 4 (S107: YES), the flow shifts to S108 to set the duty limit value Dlim to 80%. When it is determined that the drive count ⁇ A is 4 or more (S107: NO), the process proceeds to S109.
- the duty limiter 55 determines whether the drive count ⁇ A is smaller than 5. If it is determined that the drive count ⁇ A is smaller than 5 (S109: YES), the flow shifts to S110 to set the duty limit value Dlim to 90%. When it is determined that the drive count ⁇ A is 5 or more (S109: NO), the process proceeds to S111.
- the duty limiter 55 determines whether the remaining count ⁇ B is smaller than two. If it is determined that the remaining count ⁇ B is smaller than 2 (S111: YES), the flow shifts to S112 to set the duty limit value Dlim to 50%. When it is determined that the remaining count ⁇ B is 2 or more (S111: NO), the process proceeds to S113.
- the duty limiter 55 determines whether the remaining count ⁇ B is smaller than three. When it is determined that the remaining count ⁇ B is smaller than 3 (S113: YES), the process proceeds to S114, and the duty limit value Dlim is set to 60%. When it is determined that the remaining count ⁇ B is 3 or more (S113: NO), the process proceeds to S115.
- the duty limiter 55 determines whether the remaining count ⁇ B is smaller than four. If it is determined that the remaining count ⁇ B is smaller than 4 (S115: YES), the flow shifts to S116 to set the duty limit value Dlim to 70%. When it is determined that the remaining count ⁇ B is 4 or more (S115: NO), the process proceeds to S117.
- the duty limiter 55 determines whether the remaining count ⁇ B is smaller than 5. If it is determined that the remaining count ⁇ B is smaller than 5 (S117: YES), the flow shifts to S118, where the duty limit value Dlim is set to 80%. If it is determined that the remaining count ⁇ B is 4 or more (S117: NO), that is, if the drive count ⁇ A is 5 or more and the remaining count ⁇ B is 5 or more, the duty control is not performed, and this processing is performed. finish.
- the duty limit value Dlim at the beginning of driving is set to 50%, and the duty limit value Dlim is increased by 10% each time the encoder count value ⁇ en changes by one count.
- the restriction has been removed.
- the duty limit value Dlim when the remaining 4 counts are reached up to the target count value ⁇ cmd is set to 80%, and the duty limit value Dlim is reduced by 10% every time the encoder count value ⁇ en changes by one count, until the target count value ⁇ cmd.
- the duty limit value Dlim for the remaining one count is set to 50%.
- the duty limit value Dlim and the count width for switching the duty limit value Dlim shown in FIG. 5 are merely examples, and can be arbitrarily set.
- the horizontal axis is a common time axis, and the shift range switching request, angle, duty, rotation speed, and motor current are shown from the top.
- the encoder count value ⁇ en is indicated by a solid line
- the target count value ⁇ cmd is indicated by a chain line.
- the encoder count value corresponding to the P range is described as (P)
- the angle corresponding to the notP range is described as (notP).
- the actual duty D is indicated by a solid line
- the duty limit value Dlim is indicated by a two-dot chain line
- acceleration is defined as positive and deceleration is defined as negative.
- the duty limit value Dlim is set to a value on both the positive and negative sides having the same absolute value.
- the switching request is turned on. Further, the control mode is switched from the standby mode to the feedback mode, and the target count value ⁇ cmd is set.
- an acceleration range is from time t10 to time t12
- a constant speed range is from time t12 to time t13
- a deceleration range is from time t13 to time t15.
- the mode is switched from the feedback mode to the stop mode.
- the motor 10 is reliably stopped by performing fixed-phase energization at a predetermined duty.
- the stop control is not limited to the stationary phase energization, and may be any control. After performing the stop control for a predetermined time, the mode is switched to the standby mode at time t16.
- the upper limit value is set.
- a motor current Im exceeding Ilim flows.
- a current exceeding the upper limit Ilim flows during a period from time ty1 to time ty2.
- the driving of the motor 10 is started in response to the switching request, and the motor 10 is stopped at the target count value ⁇ cmd corresponding to the target shift range. Therefore, when the drive count ⁇ A and the remaining count ⁇ B are small, the motor 10 is rotating at a low speed, and the motor current Im may be large. Therefore, the duty limit value Dlim is set small. Thereby, the motor drivers 41 and 42 can be protected. On the other hand, when the drive count ⁇ A and the remaining count ⁇ B are large, the motor 10 is rotating at a high speed of a certain degree or more and the motor current Im is small, so that the duty is not limited. Thereby, responsiveness can be secured without suppressing torque.
- the duty limit value Dlim is set to 50%. Further, since the rotation speed of the motor 10 increases each time the drive count ⁇ A increases by one count, the duty limit value Dlim is gradually increased to 60%, 70%, 80%, and 90%. At time t11, when the drive count ⁇ A becomes 5 or more, the duty limit value Dlim is set to 100%, and the duty limit is released. Until the remaining count ⁇ B becomes 5, the state where the duty limitation is not performed is continued.
- the duty limit value Dlim is set to 80%. Further, the rotational speed of the motor 10 decreases every time the remaining count ⁇ B decreases by one count, so the duty limit value Dlim is reduced to 70%, 60%, and 50%. As a result, the motor current Im from the start to the completion of the shift range switching can be suppressed to less than the upper limit Ilim.
- the shift range control device 40 of the present embodiment controls the switching of the shift range by controlling the drive of the motor 10 having the motor windings 11 and 12, and includes a motor driver 41, 42 and an ECU 50.
- the motor drivers 41 and 42 have switching elements 411 to 416 and 421 to 426 for switching energization of the motor windings 11 and 12.
- the ECU 50 includes a motor angle calculator 51, a drive controller 53, and a duty limiter 55.
- the motor angle calculator 51 calculates an encoder count value ⁇ en based on an encoder signal obtained from the encoder 13 that detects the rotational position of the motor 10.
- the drive control unit 53 controls the drive of the motor 10 so that the encoder count value ⁇ en becomes the target count value ⁇ cmd corresponding to the target shift range.
- the duty limiter 55 determines a duty limit value Dlim that limits a duty D, which is a ratio of the ON time of the switching elements 411 to 416 and 421 to 426 during a predetermined period, according to the encoder count value ⁇ en.
- the motor drivers 41 and 42 can be configured to suppress overcurrent without changing the circuit or the like. Can be protected, and range switching responsiveness can be ensured.
- the duty limiter 55 increases the duty limit value Dlim as the drive count ⁇ A, which is the difference between the encoder count value ⁇ en_init at the start of driving the motor 10 and the current encoder count value ⁇ en, increases during motor acceleration. Then, the duty limit value Dlim is determined. Thus, an overcurrent at the time of low-speed rotation at the time of starting the motor can be prevented.
- the duty limiter 55 determines the duty limit value Dlim such that the smaller the remaining count ⁇ Bg, which is the difference between the target count value ⁇ cmd and the current encoder count value ⁇ en, during motor deceleration, the smaller the duty limit value Dlim. I do. This can prevent an overcurrent at the time of low-speed rotation before the motor stops.
- the motor drivers 41 and 42 correspond to a “drive circuit”
- the ECU 50 corresponds to a “control unit”
- the encoder 13 corresponds to a “rotation angle sensor”.
- the encoder count value ⁇ en corresponds to “motor angle”
- the target count value ⁇ cmd corresponds to “target rotation angle”.
- FIGS. A second embodiment is shown in FIGS.
- overcurrent due to the lock current is prevented by limiting the duty according to the encoder count value ⁇ en.
- the duty limit value calculation processing of the present embodiment will be described with reference to the flowchart of FIG. This process is executed at a predetermined cycle during a period from when the target shift range is switched to when the stop control is started, and can be performed in parallel with the duty limit value calculation process described with reference to FIG. is there.
- the duty limiter 55 determines whether or not the encoder count value ⁇ en has changed. If it is determined that the encoder count value ⁇ en has changed (S201: YES), the process proceeds to S202, where the continuation count value Ct is cleared, and this routine ends. When it is determined that the encoder count value ⁇ en has not changed (S201: NO), the process proceeds to S203. In S203, the duty limiter 55 increments the continuous count value Ct that measures the time during which the encoder count value ⁇ en has not been switched.
- the duty limiter 55 calculates the estimated rotation speed Ne.
- the estimated rotation speed Ne is a value when the motor 10 is rotating normally, and is calculated by a map calculation or the like based on the drive count ⁇ A.
- the continuation determination time T_th is set based on the estimated rotation speed Ne.
- the continuation determination time T_th is set to a value equal to or longer than the same energized phase continuation time Te, which is the time during which the same energized phase is continued when the motor 10 is rotating at the estimated rotational speed Ne. Further, a count value corresponding to the continuation determination time T_th is defined as a determination count value Ct_th.
- S206 it is determined whether the continuation count value Ct is equal to or greater than the determination count value Ct_th.
- the process of S207 is not performed, and the routine ends.
- the process proceeds to S207, and the duty limit value Dlim is set to 50%.
- the duty limit value Dlim set here is an arbitrary value at which the motor current Im does not exceed the upper limit value Ilim when the lock is energized and the energized phase can be switched in a normal state.
- FIG. 10 shows a drive control process according to the reference example.
- the processing from time t10 to time t11 is the same as in the first embodiment.
- the duty limit is released, and thereafter, the duty limit value Dlim becomes 100%.
- the current becomes small (see FIG. 6).
- time tz1 which is a timing before time t12, which is a constant speed range in a normal state
- the lock current is supplied to the same energizing phase
- the motor current larger than the upper limit Ilim Im may flow. If the motor current Im whose duty is not limited continues to flow, there is a possibility that the circuit of the motor drivers 41 and 42 may fail until the abnormality is determined.
- the estimated rotational speed Ne is calculated based on the drive count ⁇ A. Then, the same energized phase continuation time Te when the motor 10 is rotating at the estimated rotation speed Ne is determined (S204 in FIG. 8), and the continuation determination time T_th is set (S205). For example, when the estimated rotational speed Ne is 4000 [rpm] and the calculation is such that the energized phase is switched at 0.625 [ms], the continuation determination time T_th is set to 1 [ms]. Then, the duty limit value Dlim is set to 50% at a time tz2 when the continuation determination time T_th has elapsed from the time tz1 at which the abnormality in which the motor 10 stops occurs (S207). Further, at time tz3 when a predetermined time has elapsed from the occurrence of the abnormality, the abnormality is determined and the mode shifts to the fail mode.
- the duty limit unit 55 sets the duty limit value Dlim to be smaller than normal. . This suppresses an overcurrent in the event of a failure in which the motor 10 stops, so that the motor drivers 41 and 42 can be protected.
- the continuation determination time T_th is set according to the estimated rotation speed Ne estimated based on the drive count ⁇ A, which is the difference between the encoder count value ⁇ en_init at the start of motor driving and the current encoder count value ⁇ en. Accordingly, when a failure that stops the motor 10 occurs, the duty can be appropriately limited. Further, the same effects as those of the above embodiment can be obtained.
- the duty is limited according to the drive count ⁇ A and the remaining count ⁇ B.
- the duty limitation during the motor deceleration according to the remaining count ⁇ B may be omitted.
- the duty limit during acceleration (ii) the duty limit during deceleration, and (iii) the duty limit when a failure that stops the motor occurs.
- some of the above (i) to (iii) may be omitted.
- the continuation determination time is made variable according to the drive count. In another embodiment, the continuation determination time may be fixed without depending on the drive count.
- two sets of motor windings and motor drivers are provided. In other embodiments, there may be one set of motor windings and motor drivers, or three or more sets.
- the motor rotation angle sensor that detects the rotation angle of the motor is a three-phase encoder.
- the motor rotation angle sensor may be a two-phase encoder, and is not limited to an encoder, but may be any type such as a resolver.
- a potentiometer has been exemplified as the output shaft sensor.
- the output shaft sensor may be any. Further, the output shaft sensor may be omitted.
- the detent plate is provided with two concave portions.
- the number of recesses is not limited to two, and for example, a recess may be provided for each range.
- the shift range switching mechanism, the parking lock mechanism, and the like may be different from those in the above embodiment.
- the speed reducer is provided between the motor shaft and the output shaft.
- the details of the reduction gear are not mentioned in the above embodiment, for example, a cycloid gear, a planetary gear, a gear using a spur gear that transmits torque from a reduction mechanism substantially coaxial with the motor shaft to the drive shaft, Any configuration may be used, such as a combination of the above.
- the speed reducer between the motor shaft and the output shaft may be omitted, or a mechanism other than the speed reducer may be provided.
- the present disclosure is not limited to the above embodiments, and can be implemented in various forms without departing from the gist of the present disclosure.
- control unit and the technique according to the present disclosure are implemented by a dedicated computer provided by configuring a processor and a memory programmed to execute one or more functions embodied by a computer program. May be done.
- control unit and the technique described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits.
- control unit and the method according to the present disclosure may be implemented by a combination of a processor and a memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may be realized by one or more dedicated computers configured.
- the computer program may be stored in a computer-readable non-transitional tangible recording medium as instructions to be executed by a computer.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Gear-Shifting Mechanisms (AREA)
- Control Of Ac Motors In General (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
This shift range control device (40) is provided with drive circuits (41, 42) and a control unit (50). The drive circuits (41, 42) have switching elements (411-416, 421-426) for switching the electrical conduction of motor windings (11, 12). The control unit (50) has a motor angle computation unit (51), a drive control unit (53), and a duty limiting unit (55). The motor angle computation unit (51) computes a motor angle on the basis of a signal acquired from a rotational angle sensor (13) that detects the rotational position of a motor (10). The drive control unit (53) controls the driving of the motor (10) so that the motor angle reaches a desired rotation angle that corresponds to a desired shift range. The duty limiting unit (55) determines, in accordance with the motor angle, a duty limiting value for limiting the duty, which is the proportion of ON time of the switching elements (411-416, 421-426) in a prescribed period.
Description
本出願は、2018年9月18日に出願された特許出願番号2018-173820号に基づくものであり、ここにその記載内容を援用する。
This application is based on patent application No. 2018-173820 filed on Sep. 18, 2018, the contents of which are incorporated herein by reference.
本開示は、シフトレンジ制御装置に関する。
The present disclosure relates to a shift range control device.
従来、運転者からのシフトレンジ切り替え要求に応じてモータを制御することでシフトレンジを切り替えるシフトレンジ制御装置が知られている。例えば特許文献1では、モータ速度が目標モータ速度以上となるまでの間、最大デューティでモータを駆動している。
Conventionally, there is known a shift range control device that switches a shift range by controlling a motor in response to a shift range switching request from a driver. For example, in Patent Document 1, the motor is driven at the maximum duty until the motor speed becomes equal to or higher than the target motor speed.
例えば、低速回転時のデューティが大きいと、電流が大きくなり、駆動回路等が故障する虞がある。本開示の目的は、過電流を抑制可能なシフトレンジ制御装置を提供することにある。
For example, if the duty at the time of low-speed rotation is large, the current becomes large, and there is a possibility that the drive circuit or the like may break down. An object of the present disclosure is to provide a shift range control device capable of suppressing overcurrent.
本開示のシフトレンジ制御装置は、モータ巻線を有するモータの駆動を制御することでシフトレンジの切り替えを制御するものであって、駆動回路と、制御部と、を備える。駆動回路は、モータ巻線の通電を切り替えるスイッチング素子を有する。
The shift range control device of the present disclosure controls switching of the shift range by controlling driving of a motor having a motor winding, and includes a drive circuit and a control unit. The drive circuit has a switching element that switches energization of the motor winding.
制御部は、モータ角度演算部、駆動制御部、および、デューティ制限部を有する。モータ角度演算部は、モータの回転位置を検出する回転角センサから取得される信号に基づき、モータ角度を演算する。駆動制御部は、モータ角度が目標シフトレンジに応じた目標回転角度となるように、モータの駆動を制御する。デューティ制限部は、所定期間におけるスイッチング素子のオン時間の割合であるデューティを制限するデューティ制限値を、モータ角度に応じて決定する。これにより、過電流を抑制可能である。
The control unit has a motor angle calculation unit, a drive control unit, and a duty limit unit. The motor angle calculator calculates a motor angle based on a signal obtained from a rotation angle sensor that detects a rotation position of the motor. The drive control unit controls driving of the motor such that the motor angle becomes a target rotation angle corresponding to the target shift range. The duty limiter determines a duty limit value that limits a duty, which is a ratio of the ON time of the switching element during a predetermined period, according to the motor angle. Thereby, overcurrent can be suppressed.
本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態によるシフトバイワイヤシステムを示す斜視図であり、
図2は、第1実施形態によるシフトバイワイヤシステムを示す概略構成図であり、
図3は、第1実施形態によるモータおよびモータドライバを示す回路図であり、
図4は、第1実施形態によるトルク、回転数およびモータ電流の関係を示す説明図であり、
図5は、第1実施形態によるデューティ制限値演算処理を説明するフローチャートであり、
図6は、第1実施形態による駆動制御処理を説明するタイムチャートであり、
図7は、参考例による駆動制御処理を説明するタイムチャートであり、
図8は、第2実施形態によるデューティ制限値演算処理を説明するフローチャートであり、
図9は、第2実施形態による駆動制御処理を説明するタイムチャートであり、
図10は、参考例による駆動制御処理を説明するタイムチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a perspective view showing a shift-by-wire system according to the first embodiment, FIG. 2 is a schematic configuration diagram illustrating a shift-by-wire system according to the first embodiment, FIG. 3 is a circuit diagram showing a motor and a motor driver according to the first embodiment, FIG. 4 is an explanatory diagram showing the relationship between the torque, the rotation speed, and the motor current according to the first embodiment. FIG. 5 is a flowchart illustrating a duty limit value calculation process according to the first embodiment. FIG. 6 is a time chart for explaining the drive control processing according to the first embodiment. FIG. 7 is a time chart for explaining the drive control processing according to the reference example. FIG. 8 is a flowchart illustrating a duty limit value calculation process according to the second embodiment. FIG. 9 is a time chart illustrating a drive control process according to the second embodiment. FIG. 10 is a time chart for explaining the drive control processing according to the reference example.
以下、本開示によるシフトレンジ制御装置を図面に基づいて説明する。以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。
Hereinafter, a shift range control device according to the present disclosure will be described with reference to the drawings. Hereinafter, in a plurality of embodiments, substantially the same configuration is denoted by the same reference numeral, and description thereof is omitted.
(第1実施形態)
第1実施形態を図1~図6に示す。図1および図2に示すように、シフトレンジ切替システムとしてのシフトバイワイヤシステム1は、モータ10、シフトレンジ切替機構20、パーキングロック機構30、および、シフトレンジ制御装置40等を備える。モータ10は、図示しない車両に搭載されるバッテリ45から電力が供給されることで回転し、シフトレンジ切替機構20の駆動源として機能する。本実施形態のモータ10は、永久磁石式のDCブラシレスモータである。 (1st Embodiment)
A first embodiment is shown in FIGS. As shown in FIGS. 1 and 2, the shift-by-wire system 1 as a shift range switching system includes a motor 10, a shift range switching mechanism 20, a parking lock mechanism 30, a shift range control device 40, and the like. The motor 10 rotates when supplied with electric power from a battery 45 mounted on a vehicle (not shown), and functions as a drive source of the shift range switching mechanism 20. The motor 10 of the present embodiment is a permanent magnet type DC brushless motor.
第1実施形態を図1~図6に示す。図1および図2に示すように、シフトレンジ切替システムとしてのシフトバイワイヤシステム1は、モータ10、シフトレンジ切替機構20、パーキングロック機構30、および、シフトレンジ制御装置40等を備える。モータ10は、図示しない車両に搭載されるバッテリ45から電力が供給されることで回転し、シフトレンジ切替機構20の駆動源として機能する。本実施形態のモータ10は、永久磁石式のDCブラシレスモータである。 (1st Embodiment)
A first embodiment is shown in FIGS. As shown in FIGS. 1 and 2, the shift-by-
図3に示すように、モータ10は、図示しないステータに巻回される2組のモータ巻線11、12を有する。第1モータ巻線11は、U1コイル111、V1コイル112、および、W1コイル113を有する。第2モータ巻線12は、U2コイル121、V2コイル122、および、W2コイル123を有する。
As shown in FIG. 3, the motor 10 has two sets of motor windings 11 and 12 wound around a stator (not shown). The first motor winding 11 has a U1 coil 111, a V1 coil 112, and a W1 coil 113. The second motor winding 12 has a U2 coil 121, a V2 coil 122, and a W2 coil 123.
図2に示すように、モータ回転角センサとしてのエンコーダ13は、ロータ105の回転位置を検出する。エンコーダ13は、例えば磁気式のロータリーエンコーダであって、ロータと一体に回転する磁石と、磁気検出用のホールIC等により構成される。エンコーダ13は、ロータの回転に同期して、所定角度ごとにA相、B相およびC相のパルス信号であるエンコーダ信号を出力する3相エンコーダである。
エ ン コ ー ダ As shown in FIG. 2, the encoder 13 as a motor rotation angle sensor detects the rotation position of the rotor 105. The encoder 13 is, for example, a magnetic rotary encoder, and includes a magnet that rotates integrally with the rotor, a Hall IC for detecting magnetism, and the like. The encoder 13 is a three-phase encoder that outputs an A-phase, a B-phase, and a C-phase pulse signal, which are pulse signals at predetermined angles, in synchronization with the rotation of the rotor.
減速機14は、モータ10のモータ軸と出力軸15との間に設けられ、モータ10の回転を減速して出力軸15に出力する。これにより、モータ10の回転がシフトレンジ切替機構20に伝達される。出力軸15には、出力軸15の角度を検出する出力軸センサ16が設けられる。本実施形態の出力軸センサ16は、例えばポテンショメータである。
The speed reducer 14 is provided between the motor shaft of the motor 10 and the output shaft 15, and reduces the rotation of the motor 10 and outputs the rotation to the output shaft 15. Thus, the rotation of the motor 10 is transmitted to the shift range switching mechanism 20. The output shaft 15 is provided with an output shaft sensor 16 for detecting the angle of the output shaft 15. The output shaft sensor 16 of the present embodiment is, for example, a potentiometer.
図1に示すように、シフトレンジ切替機構20は、ディテントプレート21、および、ディテントスプリング25等を有し、減速機14から出力された回転駆動力を、マニュアルバルブ28、および、パーキングロック機構30へ伝達する。
As shown in FIG. 1, the shift range switching mechanism 20 has a detent plate 21, a detent spring 25, and the like, and applies a rotational driving force output from the reduction gear 14 to a manual valve 28 and a parking lock mechanism 30. Communicate to
ディテントプレート21は、出力軸15に固定され、モータ10により駆動される。本実施形態では、ディテントプレート21がディテントスプリング25の基部から離れる方向を正回転方向、基部に近づく方向を逆回転方向とする。
The detent plate 21 is fixed to the output shaft 15 and is driven by the motor 10. In the present embodiment, the direction in which the detent plate 21 moves away from the base of the detent spring 25 is defined as a forward rotation direction, and the direction in which the detent plate 21 approaches the base is defined as a reverse rotation direction.
ディテントプレート21には、出力軸15と平行に突出するピン24が設けられる。ピン24は、マニュアルバルブ28と接続される。ディテントプレート21がモータ10によって駆動されることで、マニュアルバルブ28は軸方向に往復移動する。すなわち、シフトレンジ切替機構20は、モータ10の回転運動を直線運動に変換してマニュアルバルブ28に伝達する。マニュアルバルブ28は、バルブボディ29に設けられる。マニュアルバルブ28が軸方向に往復移動することで、図示しない油圧クラッチへの油圧供給路が切り替えられ、油圧クラッチの係合状態が切り替わることでシフトレンジが変更される。
The detent plate 21 is provided with a pin 24 projecting in parallel with the output shaft 15. The pin 24 is connected to the manual valve 28. When the detent plate 21 is driven by the motor 10, the manual valve 28 reciprocates in the axial direction. That is, the shift range switching mechanism 20 converts the rotational movement of the motor 10 into a linear movement and transmits the linear movement to the manual valve 28. The manual valve 28 is provided on a valve body 29. When the manual valve 28 reciprocates in the axial direction, the hydraulic supply path to the hydraulic clutch (not shown) is switched, and the shift range is changed by switching the engagement state of the hydraulic clutch.
ディテントプレート21のディテントスプリング25側には、2つの凹部22、23が設けられる。本実施形態では、ディテントスプリング25の基部に近い側を凹部22、遠い側を凹部23とする。本実施形態では、凹部22がPレンジ以外のNotPレンジに対応し、凹部23がPレンジに対応する。
Two concave portions 22 and 23 are provided on the detent spring 25 side of the detent plate 21. In this embodiment, the side closer to the base of the detent spring 25 is referred to as the concave portion 22 and the side farther from the base is referred to as the concave portion 23. In the present embodiment, the concave portion 22 corresponds to a NotP range other than the P range, and the concave portion 23 corresponds to the P range.
ディテントスプリング25は、弾性変形可能な板状部材であり、先端にディテントローラ26が設けられる。ディテントスプリング25は、ディテントローラ26をディテントプレート21の回動中心側に付勢する。ディテントプレート21に所定以上の回転力が加わると、ディテントスプリング25が弾性変形し、ディテントローラ26が凹部22、23間を移動する。ディテントローラ26が凹部22、23のいずれかに嵌まり込むことで、ディテントプレート21の揺動が規制され、マニュアルバルブ28の軸方向位置、および、パーキングロック機構30の状態が決定され、自動変速機5のシフトレンジが固定される。ディテントローラ26は、シフトレンジがNotPレンジのとき、凹部22に嵌まり込み、Pレンジのとき、凹部23に嵌まり込む。
The detent spring 25 is a plate-like member that can be elastically deformed, and has a detent roller 26 at the tip. The detent spring 25 urges the detent roller 26 toward the center of rotation of the detent plate 21. When a rotational force greater than a predetermined value is applied to the detent plate 21, the detent spring 25 is elastically deformed, and the detent roller 26 moves between the concave portions 22 and 23. When the detent roller 26 fits into one of the recesses 22 and 23, the swing of the detent plate 21 is regulated, the axial position of the manual valve 28 and the state of the parking lock mechanism 30 are determined, and the automatic transmission is changed. The shift range of the machine 5 is fixed. The detent roller 26 fits into the concave portion 22 when the shift range is the NotP range, and fits into the concave portion 23 when the shift range is the P range.
パーキングロック機構30は、パーキングロッド31、円錐体32、パーキングロックポール33、軸部34、および、パーキングギア35を有する。パーキングロッド31は、略L字形状に形成され、一端311側がディテントプレート21に固定される。パーキングロッド31の他端312側には、円錐体32が設けられる。円錐体32は、他端312側にいくほど縮径するように形成される。ディテントプレート21が逆回転方向に揺動すると、円錐体32がP方向に移動する。
The parking lock mechanism 30 includes a parking rod 31, a cone 32, a parking lock pawl 33, a shaft 34, and a parking gear 35. The parking rod 31 is formed in a substantially L-shape, and one end 311 side is fixed to the detent plate 21. On the other end 312 side of the parking rod 31, a cone 32 is provided. The conical body 32 is formed so as to decrease in diameter toward the other end 312 side. When the detent plate 21 swings in the reverse rotation direction, the cone 32 moves in the P direction.
パーキングロックポール33は、円錐体32の円錐面と当接し、軸部34を中心に揺動可能に設けられる、パーキングロックポール33のパーキングギア35側には、パーキングギア35と噛み合い可能な凸部331が設けられる。ディテントプレート21が逆回転方向に回転し、円錐体32がP方向に移動すると、パーキングロックポール33が押し上げられ、凸部331とパーキングギア35とが噛み合う。一方、ディテントプレート21が正回転方向に回転し、円錐体32がNotP方向に移動すると、凸部331とパーキングギア35との噛み合いが解除される。
The parking lock pawl 33 is in contact with the conical surface of the cone 32, and is provided so as to be swingable about a shaft portion 34. On the parking gear 35 side of the parking lock pawl 33, a convex portion capable of meshing with the parking gear 35 is provided. 331 are provided. When the detent plate 21 rotates in the reverse rotation direction and the cone 32 moves in the P direction, the parking lock pole 33 is pushed up, and the projection 331 and the parking gear 35 mesh. On the other hand, when the detent plate 21 rotates in the normal rotation direction and the cone 32 moves in the NotP direction, the engagement between the projection 331 and the parking gear 35 is released.
パーキングギア35は、図示しない車軸に設けられ、パーキングロックポール33の凸部331と噛み合い可能に設けられる。パーキングギア35と凸部331とが噛み合うと、車軸の回転が規制される。シフトレンジがNotPレンジのとき、パーキングギア35はパーキングロックポール33によりロックされず、車軸の回転は、パーキングロック機構30により妨げられない。また、シフトレンジがPレンジのとき、パーキングギア35はパーキングロックポール33によってロックされ、車軸の回転が規制される。
The parking gear 35 is provided on an axle (not shown), and is provided so as to be able to mesh with the projection 331 of the parking lock pole 33. When the parking gear 35 and the projection 331 mesh with each other, the rotation of the axle is restricted. When the shift range is the NotP range, the parking gear 35 is not locked by the parking lock pawl 33, and the rotation of the axle is not hindered by the parking lock mechanism 30. When the shift range is the P range, the parking gear 35 is locked by the parking lock pole 33, and the rotation of the axle is restricted.
図2および図3に示すように、シフトレンジ制御装置40は、駆動回路としてのモータドライバ41、42、および、ECU50等を備える。図3に示すように、第1モータドライバ41は、第1モータ巻線11の通電を切り替える3相インバータであって、スイッチング素子411~416がブリッジ接続される。対になるU相のスイッチング素子411、414の接続点には、U1コイル111の一端が接続される。対になるV相のスイッチング素子412、415の接続点には、V1コイル112の一端が接続される。対になるW相のスイッチング素子413、416の接続点には、W1コイル113の一端が接続される。コイル111~113の他端は、結線部115で結線される。
As shown in FIGS. 2 and 3, the shift range control device 40 includes motor drivers 41 and 42 as drive circuits, an ECU 50, and the like. As shown in FIG. 3, the first motor driver 41 is a three-phase inverter that switches energization of the first motor winding 11, and the switching elements 411 to 416 are bridge-connected. One end of the U1 coil 111 is connected to a connection point of the pair of U-phase switching elements 411 and 414. One end of the V1 coil 112 is connected to a connection point of the V- phase switching elements 412 and 415 that form a pair. One end of the W1 coil 113 is connected to a connection point of the W- phase switching elements 413 and 416 that form a pair. The other ends of the coils 111 to 113 are connected by a connection section 115.
第2モータドライバ42は、第2モータ巻線12の通電を切り替える3相インバータであって、スイッチング素子421~426がブリッジ接続される。対になるU相のスイッチング素子421、424の接続点には、U2コイル121の一端が接続される。対になるV相のスイッチング素子422、425の接続点には、V2コイル122の一端が接続される。対になるW相のスイッチング素子423、426の接続点には、W2コイル123の一端が接続される。コイル121~123の他端は、結線部125で結線される。本実施形態のスイッチング素子411~416、421~426は、MOSFETであるが、IGBT等の他の素子を用いてもよい。
The second motor driver 42 is a three-phase inverter for switching the energization of the second motor winding 12, and the switching elements 421 to 426 are bridge-connected. One end of the U2 coil 121 is connected to a connection point of the pair of U-phase switching elements 421 and 424. One end of the V2 coil 122 is connected to a connection point of the V- phase switching elements 422 and 425 that form a pair. One end of the W2 coil 123 is connected to a connection point of the paired W- phase switching elements 423 and 426. The other ends of the coils 121 to 123 are connected at a connection portion 125. Although the switching elements 411 to 416 and 421 to 426 of the present embodiment are MOSFETs, other elements such as IGBTs may be used.
図2および図3に示すように、モータドライバ41とバッテリ45との間には、モータリレー46が設けられる。モータドライバ42とバッテリ45との間には、モータリレー47が設けられる。モータリレー46、47は、イグニッションスイッチ等である始動スイッチがオンされているときにオンされ、モータ10側へ電力が供給される。また、モータリレー46、47がオンされているとき、バッテリ45からモータ10側へ電力が供給され、オフされているとき、バッテリ45からモータ10側への電力が遮断される。バッテリ45の高電位側には、バッテリ電圧を検出する電圧センサ48が設けられる。
モ ー タ As shown in FIGS. 2 and 3, a motor relay 46 is provided between the motor driver 41 and the battery 45. A motor relay 47 is provided between the motor driver 42 and the battery 45. The motor relays 46 and 47 are turned on when a start switch such as an ignition switch is turned on, and power is supplied to the motor 10 side. Further, when the motor relays 46 and 47 are on, power is supplied from the battery 45 to the motor 10, and when the motor relays 46 and 47 are off, power from the battery 45 to the motor 10 is cut off. On the high potential side of the battery 45, a voltage sensor 48 for detecting a battery voltage is provided.
図2に示すように、ECU50は、マイコン等を主体として構成され、内部にはいずれも図示しないCPU、ROM、RAM、I/O、及び、これらの構成を接続するバスライン等を備えている。ECU50における各処理は、ROM等の実体的なメモリ装置(すなわち、読み出し可能非一時的有形記録媒体)に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。
As shown in FIG. 2, the ECU 50 is mainly configured by a microcomputer or the like, and includes a CPU, ROM, RAM, I / O, bus lines for connecting these components, and the like, which are not shown. . Each process in the ECU 50 may be a software process by executing a program stored in advance in a substantial memory device such as a ROM (ie, a readable non-temporary tangible recording medium) by the CPU, or a dedicated process. Hardware processing by an electronic circuit may be used.
ECU50は、スイッチング素子411~416、421~426のオンオフ作動を制御し、図示しないシフトレバー等の操作により入力されるドライバ要求シフトレンジと、シフトレンジ切替機構20におけるシフトレンジとが一致するように、モータ10の駆動を制御する。また、ECU50は、車速、アクセル開度、および、ドライバ要求シフトレンジ等に基づき、変速用油圧制御ソレノイド6の駆動を制御する。変速用油圧制御ソレノイド6を制御することで、変速段が制御される。変速用油圧制御ソレノイド6は、変速段数等に応じた本数が設けられる。本実施形態では、1つのECU50がモータ10およびソレノイド6の駆動を制御するが、モータ10を制御するモータ制御用のモータECUと、ソレノイド制御用のAT-ECUとを分けてもよい。以下、モータ10の駆動制御を中心に説明する。
The ECU 50 controls the on / off operations of the switching elements 411 to 416 and 421 to 426 so that the driver requested shift range input by operating a shift lever or the like (not shown) matches the shift range in the shift range switching mechanism 20. , And controls the driving of the motor 10. Further, the ECU 50 controls the driving of the shift hydraulic control solenoid 6 based on the vehicle speed, the accelerator opening, the driver's requested shift range, and the like. The shift speed is controlled by controlling the shift hydraulic control solenoid 6. The number of shift hydraulic control solenoids 6 is provided in accordance with the number of shift stages. In the present embodiment, one ECU 50 controls the driving of the motor 10 and the solenoid 6, but the motor ECU for controlling the motor 10 for controlling the motor 10 and the AT-ECU for controlling the solenoid may be separated. Hereinafter, the drive control of the motor 10 will be mainly described.
ECU50は、角度演算部51、駆動制御部53、および、デューティ制限部55等を有する。角度演算部51は、エンコーダ13から出力されるエンコーダ信号の各相のパルスエッジをカウントし、エンコーダカウント値θenを演算する。エンコーダカウント値θenは、モータ10の回転位置に応じた値であって、「モータ角度」に対応する。
The ECU 50 includes an angle calculation unit 51, a drive control unit 53, a duty limit unit 55, and the like. The angle calculator 51 counts the pulse edges of each phase of the encoder signal output from the encoder 13 and calculates the encoder count value θen. The encoder count value θen is a value corresponding to the rotational position of the motor 10, and corresponds to “motor angle”.
駆動制御部53は、エンコーダカウント値θenが、目標シフトレンジに応じて設定される目標カウント値θcmdとなるように、モータ10の駆動を制御する。本実施形態では、エンコーダカウント値θenに基づいて、通電相を切り替えていくことで、モータ10を回転させる。例えば通電相がUV相であれば、U相の上アーム素子であるスイッチング素子411、421をオン、V相の下アーム素子であるスイッチング素子415、425を設定されたデューティDにてオンオフする。デューティDは、1周期中におけるオン時間の割合であり、本実施形態では、加速時を正、減速時を負として定義する。デューティ制限部55は、デューティDを制限するデューティ制限値Dlimを設定する。
The drive control unit 53 controls the drive of the motor 10 so that the encoder count value θen becomes the target count value θcmd set according to the target shift range. In the present embodiment, the motor 10 is rotated by switching the energized phase based on the encoder count value θen. For example, if the energized phase is the UV phase, the switching elements 411 and 421 as the upper arm elements of the U phase are turned on, and the switching elements 415 and 425 as the lower arm elements of the V phase are turned on and off at the set duty D. The duty D is a ratio of the ON time in one cycle, and in the present embodiment, the time during acceleration is defined as positive and the time during deceleration is defined as negative. The duty limiter 55 sets a duty limit value Dlim for limiting the duty D.
ここで、モータ回転数、トルク、および、モータ電流の関係を図4に示す。図4は、横軸をトルク、縦軸をモータ回転数およびモータ電流とする。図4に示すように、モータ回転数が小さい状態にて大きなトルクを出力する場合、モータ電流が大きくなる。また、モータ電流Imが上限値Ilimを超えると、モータドライバ41、42の故障に至る虞がある。
(4) Here, FIG. 4 shows the relationship among the motor rotation speed, the torque, and the motor current. In FIG. 4, the horizontal axis represents torque, and the vertical axis represents motor speed and motor current. As shown in FIG. 4, when a large torque is output in a state where the motor speed is low, the motor current increases. If the motor current Im exceeds the upper limit Ilim, the motor drivers 41 and 42 may fail.
参考例として、レンジ切替時間が短くなるよう応答性を向上させるべく、モータ駆動初期の加速域におけるデューティを100%とすると、モータ低速時には、モータ電流Imが上限値Ilimを超え、モータドライバ41、42の回路故障に至る虞がある。これを回避するための対策として、電流制限回路を設けることもできるが、当該機能を実現するための部品が別途必要となり、部品点数の増加および基板上の実装面積が増加してしまう。また、ソフトウェアで電流制限機能を入れる場合、スイッチング素子のオン時間の所定タイミングでのAD変換等、ハイスペックな演算性能が要求される。また、電流制限回路またはソフトウェアでの電流制限を行うと、最大トルクが低下するため、応答性が低下する。
As a reference example, assuming that the duty in the acceleration range at the initial stage of motor driving is 100% in order to improve the responsiveness so that the range switching time is shortened, the motor current Im exceeds the upper limit Ilim at the time of motor low speed, and the motor driver 41, There is a possibility that a circuit failure of 42 will be caused. As a countermeasure for avoiding this, a current limiting circuit can be provided, but a component for realizing the function is required separately, which increases the number of components and the mounting area on the board. In addition, when the current limiting function is provided by software, high-spec operation performance such as AD conversion at a predetermined timing of the ON time of the switching element is required. In addition, when the current is limited by the current limiting circuit or software, the responsiveness is reduced because the maximum torque is reduced.
そこで本実施形態では、エンコーダカウント値θen応じてデューティ制限値Dlimを可変させることで、回路変更等を行うことなく、応答性を犠牲にすることもなく、過電流を防ぎ、モータドライバ41、42を保護する。
Thus, in the present embodiment, by changing the duty limit value Dlim according to the encoder count value θen, the overcurrent is prevented without changing the circuit, sacrificing the response, and preventing the motor drivers 41, 42. To protect.
本実施形態のデューティ制限値演算処理を図5のフローチャートに基づいて説明する。この処理は、レンジ切替中において、デューティ制限部55にて所定の周期で実行される。以下、ステップS101の「ステップ」を省略し、単に記号「S」と記す。他のステップも同様である。
デ ュ ー テ ィ The duty limit value calculation processing of the present embodiment will be described based on the flowchart of FIG. This process is executed by the duty limiting unit 55 at a predetermined cycle during range switching. Hereinafter, the “step” of step S101 will be omitted, and will be simply referred to as a symbol “S”. The other steps are the same.
デューティ制限値演算処理の説明に先立ち、駆動カウントθAおよび残りカウントθBについて説明する。目標シフトレンジが切り替わったとき、モータ10の駆動を開始する前のエンコーダカウント値である駆動開始時のエンコーダカウント値θen_initが図示しない記憶部に保持される。現在のエンコーダカウント値θenと駆動開始時のエンコーダカウント値θen_initとの差の絶対値を駆動カウントθAとする(式(1)参照)。
Prior to the description of the duty limit value calculation processing, the drive count θA and the remaining count θB will be described. When the target shift range is switched, the encoder count value θen_init at the start of driving, which is the encoder count value before the driving of the motor 10 is started, is held in a storage unit (not shown). The absolute value of the difference between the current encoder count value θen and the encoder count value at the start of driving θen_init is defined as the drive count θA (see equation (1)).
θA=|θen-θen_init| ・・・(1)
ΘA = | θen-θen_init | (1)
また、目標シフトレンジが切り替わると、目標シフトレンジに応じた目標カウント値θcmdが設定される。目標カウント値θcmdと現在のエンコーダカウント値θenとの差の絶対値を残りカウントθBとする(式(2)参照)。
(4) When the target shift range is switched, the target count value θcmd according to the target shift range is set. The absolute value of the difference between the target count value θcmd and the current encoder count value θen is defined as the remaining count θB (see Equation (2)).
θB=|θcmd-θen| ・・・(2)
ΘB = | θcmd-θen | (2)
図5中のS101では、デューティ制限部55は、駆動カウントθAが1より小さいか否かを判断する。駆動カウントθAが1より小さいと判断された場合(S101:YES)、S102へ移行し、デューティ制限値Dlimを50%とする。駆動カウントθAが1以上であると判断された場合(S101:NO)、S103へ移行する。
In S101 in FIG. 5, the duty limiter 55 determines whether the drive count θA is smaller than one. When it is determined that the drive count θA is smaller than 1 (S101: YES), the process proceeds to S102, and the duty limit value Dlim is set to 50%. When it is determined that the drive count θA is 1 or more (S101: NO), the process proceeds to S103.
S103では、デューティ制限部55は、駆動カウントθAが2より小さいか否かを判断する。駆動カウントθAが2より小さいと判断された場合(S103:YES)、S104へ移行し、デューティ制限値Dlimを60%とする。駆動カウントθAが2以上であると判断された場合(S103:NO)、S105へ移行する。
In S103, the duty limiter 55 determines whether the drive count θA is smaller than two. When it is determined that the drive count θA is smaller than 2 (S103: YES), the process proceeds to S104, and the duty limit value Dlim is set to 60%. When it is determined that the drive count θA is 2 or more (S103: NO), the process proceeds to S105.
S105では、デューティ制限部55は、駆動カウントθAが3より小さいか否かを判断する。駆動カウントθAが3より小さいと判断された場合(S105:YES)、S106へ移行し、デューティ制限値Dlimを70%とする。駆動カウントθAが3以上であると判断された場合(S105:NO)、S107へ移行する。
In S105, the duty limiter 55 determines whether the drive count θA is smaller than three. When it is determined that the drive count θA is smaller than 3 (S105: YES), the process proceeds to S106, and the duty limit value Dlim is set to 70%. When it is determined that the drive count θA is 3 or more (S105: NO), the process proceeds to S107.
S107では、デューティ制限部55は、駆動カウントθAが4より小さいか否かを判断する。駆動カウントθAが4より小さいと判断された場合(S107:YES)、S108へ移行し、デューティ制限値Dlimを80%とする。駆動カウントθAが4以上であると判断された場合(S107:NO)、S109へ移行する。
In S107, the duty limiter 55 determines whether the drive count θA is smaller than four. If it is determined that the drive count θA is smaller than 4 (S107: YES), the flow shifts to S108 to set the duty limit value Dlim to 80%. When it is determined that the drive count θA is 4 or more (S107: NO), the process proceeds to S109.
S109では、デューティ制限部55は、駆動カウントθAが5より小さいか否かを判断する。駆動カウントθAが5より小さいと判断された場合(S109:YES)、S110へ移行し、デューティ制限値Dlimを90%とする。駆動カウントθAが5以上であると判断された場合(S109:NO)、S111へ移行する。
In S109, the duty limiter 55 determines whether the drive count θA is smaller than 5. If it is determined that the drive count θA is smaller than 5 (S109: YES), the flow shifts to S110 to set the duty limit value Dlim to 90%. When it is determined that the drive count θA is 5 or more (S109: NO), the process proceeds to S111.
S111では、デューティ制限部55は、残りカウントθBが2より小さいか否かを判断する。残りカウントθBが2より小さいと判断された場合(S111:YES)、S112へ移行し、デューティ制限値Dlimを50%とする。残りカウントθBが2以上であると判断された場合(S111:NO)、S113へ移行する。
In S111, the duty limiter 55 determines whether the remaining count θB is smaller than two. If it is determined that the remaining count θB is smaller than 2 (S111: YES), the flow shifts to S112 to set the duty limit value Dlim to 50%. When it is determined that the remaining count θB is 2 or more (S111: NO), the process proceeds to S113.
S113では、デューティ制限部55は、残りカウントθBが3より小さいか否かを判断する。残りカウントθBが3より小さいと判断された場合(S113:YES)、S114へ移行し、デューティ制限値Dlimを60%とする。残りカウントθBが3以上であると判断された場合(S113:NO)、S115へ移行する。
In S113, the duty limiter 55 determines whether the remaining count θB is smaller than three. When it is determined that the remaining count θB is smaller than 3 (S113: YES), the process proceeds to S114, and the duty limit value Dlim is set to 60%. When it is determined that the remaining count θB is 3 or more (S113: NO), the process proceeds to S115.
S115では、デューティ制限部55は、残りカウントθBが4より小さいか否かを判断する。残りカウントθBが4より小さいと判断された場合(S115:YES)、S116へ移行し、デューティ制限値Dlimを70%とする。残りカウントθBが4以上であると判断された場合(S115:NO)、S117へ移行する。
In S115, the duty limiter 55 determines whether the remaining count θB is smaller than four. If it is determined that the remaining count θB is smaller than 4 (S115: YES), the flow shifts to S116 to set the duty limit value Dlim to 70%. When it is determined that the remaining count θB is 4 or more (S115: NO), the process proceeds to S117.
S117では、デューティ制限部55は、残りカウントθBが5より小さいか否かを判断する。残りカウントθBが5より小さいと判断された場合(S117:YES)、S118へ移行し、デューティ制限値Dlimを80%とする。残りカウントθBが4以上であると判断された場合(S117:NO)、すなわち、駆動カウントθAが5以上であり、かつ、残りカウントθBが5以上の場合、デューティ制限を行わず、本処理を終了する。
In S117, the duty limiter 55 determines whether the remaining count θB is smaller than 5. If it is determined that the remaining count θB is smaller than 5 (S117: YES), the flow shifts to S118, where the duty limit value Dlim is set to 80%. If it is determined that the remaining count θB is 4 or more (S117: NO), that is, if the drive count θA is 5 or more and the remaining count θB is 5 or more, the duty control is not performed, and this processing is performed. finish.
図5では、駆動初期のデューティ制限値Dlimを50%とし、エンコーダカウント値θenが1カウント変わるごとに、デューティ制限値Dlimを10%ずつ増やし、5カウント以上、モータ10が駆動された場合、デューティ制限を解除している。また、目標カウント値θcmdまで残り4カウントとなったときのデューティ制限値Dlimを80%とし、エンコーダカウント値θenが1カウント変わるごとに、デューティ制限値Dlimを10%ずつ減らし、目標カウント値θcmdまで残り1カウントでのデューティ制限値Dlimを50%としている。図5にて示したデューティ制限値Dlimおよびデューティ制限値Dlimを切り替えるカウント幅等は、一例であって、任意に設定可能である。
In FIG. 5, the duty limit value Dlim at the beginning of driving is set to 50%, and the duty limit value Dlim is increased by 10% each time the encoder count value θen changes by one count. The restriction has been removed. Further, the duty limit value Dlim when the remaining 4 counts are reached up to the target count value θcmd is set to 80%, and the duty limit value Dlim is reduced by 10% every time the encoder count value θen changes by one count, until the target count value θcmd. The duty limit value Dlim for the remaining one count is set to 50%. The duty limit value Dlim and the count width for switching the duty limit value Dlim shown in FIG. 5 are merely examples, and can be arbitrarily set.
本実施形態の駆動制御処理を図6のタイムチャートに示す。図6では、横軸を共通時間軸とし、上段から、シフトレンジ切替要求、角度、デューティ、回転数、モータ電流を示す。角度は、エンコーダカウント値θenを実線、目標カウント値θcmdを一点鎖線で示した。また、Pレンジに対応するエンコーダカウント値を(P)、notPレンジに対応する角度を(notP)と記載した。また、本実施形態では、実際のデューティDを実線、デューティ制限値Dlimを二点鎖線で示し、加速時を正、減速時を負と定義する。すなわち、正負が異なっていても、絶対値が同じであれば、所定期間におけるオン時間の比は同じであり、デューティ制限値Dlimは、絶対値が等しい正負両側の値に設定される。ここでは、PレンジからnotPレンジに切り替える場合を例に説明する。図7、図9および図10も同様とする。
駆 動 The drive control processing of the present embodiment is shown in the time chart of FIG. In FIG. 6, the horizontal axis is a common time axis, and the shift range switching request, angle, duty, rotation speed, and motor current are shown from the top. As for the angle, the encoder count value θen is indicated by a solid line, and the target count value θcmd is indicated by a chain line. The encoder count value corresponding to the P range is described as (P), and the angle corresponding to the notP range is described as (notP). In the present embodiment, the actual duty D is indicated by a solid line, the duty limit value Dlim is indicated by a two-dot chain line, and acceleration is defined as positive and deceleration is defined as negative. In other words, even if the sign is different, if the absolute value is the same, the ratio of the ON time in the predetermined period is the same, and the duty limit value Dlim is set to a value on both the positive and negative sides having the same absolute value. Here, a case where the range is switched from the P range to the notP range will be described as an example. 7, 9, and 10 are the same.
図6に示すように、時刻t10にて、要求シフトレンジがPレンジからnotPレンジに切り替わると、切替要求がオンになる。また、制御モードがスタンバイモードからフィードバックモードに切り替わり、目標カウント値θcmdが設定される。本実施形態では、時刻t10から時刻t12までを加速域、時刻t12から時刻t13までを定速域、時刻t13から時刻t15までを減速域とする。また、時刻t15にて、エンコーダカウント値θenが目標カウント値θcmdを含む所定範囲内(例えば±2カウント)となると、フィードバックモードから停止モードに切り替える。停止制御では、所定デューティでの固定相通電を行い、モータ10を確実に停止させる。なお、停止制御は固定相通電に限らず、どのような制御であってよい。所定時間に亘って停止制御を行った後、時刻t16にてスタンバイモードに切り替える。
As shown in FIG. 6, when the required shift range is switched from the P range to the notP range at time t10, the switching request is turned on. Further, the control mode is switched from the standby mode to the feedback mode, and the target count value θcmd is set. In the present embodiment, an acceleration range is from time t10 to time t12, a constant speed range is from time t12 to time t13, and a deceleration range is from time t13 to time t15. At time t15, when the encoder count value θen falls within a predetermined range including the target count value θcmd (for example, ± 2 counts), the mode is switched from the feedback mode to the stop mode. In the stop control, the motor 10 is reliably stopped by performing fixed-phase energization at a predetermined duty. The stop control is not limited to the stationary phase energization, and may be any control. After performing the stop control for a predetermined time, the mode is switched to the standby mode at time t16.
ここで、図7に示す参考例のように、駆動開始直後の低速回転時において、デューティ制限を行わず、例えばデューティ100%にてモータ10を駆動すると、時刻tx1から時刻tx2の期間、上限値Ilimを超えるモータ電流Imが流れる。また、減速時においても、デューティ制限を行わず、例えばデューティ-100%にてモータ10を駆動すると、時刻ty1から時刻ty2の期間、上限値Ilimを超える電流が流れる。
Here, as in the reference example shown in FIG. 7, when the motor 10 is driven at a duty of 100% without performing the duty limitation at the time of the low-speed rotation immediately after the start of the driving, for example, from the time tx1 to the time tx2, the upper limit value is set. A motor current Im exceeding Ilim flows. In addition, even during deceleration, if the motor 10 is driven with, for example, a duty of −100% without performing duty limitation, a current exceeding the upper limit Ilim flows during a period from time ty1 to time ty2.
シフトレンジを切り替える際、切替要求に応じてモータ10の駆動を開始し、目標シフトレンジに応じた目標カウント値θcmdにてモータ10を停止させる。そのため、駆動カウントθAおよび残りカウントθBが小さいとき、モータ10が低速回転しておりモータ電流Imが大きくなる虞があるので、デューティ制限値Dlimを小さく設定する。これにより、モータドライバ41、42を保護可能である。一方、駆動カウントθAおよび残りカウントθBが大きいとき、モータ10はある程度以上の高速回転しておりモータ電流Imが小さくなるため、デューティ制限をしない。これにより、トルクを抑制せず、応答性を確保可能である。
When the shift range is switched, the driving of the motor 10 is started in response to the switching request, and the motor 10 is stopped at the target count value θcmd corresponding to the target shift range. Therefore, when the drive count θA and the remaining count θB are small, the motor 10 is rotating at a low speed, and the motor current Im may be large. Therefore, the duty limit value Dlim is set small. Thereby, the motor drivers 41 and 42 can be protected. On the other hand, when the drive count θA and the remaining count θB are large, the motor 10 is rotating at a high speed of a certain degree or more and the motor current Im is small, so that the duty is not limited. Thereby, responsiveness can be secured without suppressing torque.
具体的には、図6に示すように、時刻t10では、駆動カウントθA=0であるので、デューティ制限値Dlimを50%とする。また、駆動カウントθAが1カウント増えるごとに、モータ10の回転速度が大きくなるので、デューティ制限値Dlimを、60%、70%、80%、90%と段階的に引き上げていく。時刻t11にて、駆動カウントθAが5以上となると、デューティ制限値Dlimを100%とし、デューティ制限を解除する。また、残りカウントθBが5となるまでの間、デューティ制限が行われていない状態を継続する。
Specifically, as shown in FIG. 6, at time t10, since the drive count θA = 0, the duty limit value Dlim is set to 50%. Further, since the rotation speed of the motor 10 increases each time the drive count θA increases by one count, the duty limit value Dlim is gradually increased to 60%, 70%, 80%, and 90%. At time t11, when the drive count θA becomes 5 or more, the duty limit value Dlim is set to 100%, and the duty limit is released. Until the remaining count θB becomes 5, the state where the duty limitation is not performed is continued.
時刻t14にて、残りカウントθBが4になると、デューティ制限値Dlimを80%とする。また、残りカウントθBが1カウント減るごとに、モータ10の回転速度が小さくなるので、デューティ制限値Dlimを70%、60%、50%と引き下げていく。これにより、シフトレンジ切替開始から完了までの間のモータ電流Imを、上限値Ilim未満に抑えることができる。
(4) At time t14, when the remaining count θB becomes 4, the duty limit value Dlim is set to 80%. Further, the rotational speed of the motor 10 decreases every time the remaining count θB decreases by one count, so the duty limit value Dlim is reduced to 70%, 60%, and 50%. As a result, the motor current Im from the start to the completion of the shift range switching can be suppressed to less than the upper limit Ilim.
以上説明したように、本実施形態のシフトレンジ制御装置40は、モータ巻線11、12を有するモータ10の駆動を制御することでシフトレンジの切り替えを制御するものであって、モータドライバ41、42と、ECU50と、を備える。モータドライバ41、42は、モータ巻線11、12の通電を切り替えるスイッチング素子411~416、421~426を有する。
As described above, the shift range control device 40 of the present embodiment controls the switching of the shift range by controlling the drive of the motor 10 having the motor windings 11 and 12, and includes a motor driver 41, 42 and an ECU 50. The motor drivers 41 and 42 have switching elements 411 to 416 and 421 to 426 for switching energization of the motor windings 11 and 12.
ECU50は、モータ角度演算部51、駆動制御部53、および、デューティ制限部55を有する。モータ角度演算部51は、モータ10の回転位置を検出するエンコーダ13から取得されるエンコーダ信号に基づき、エンコーダカウント値θenを演算する。駆動制御部53は、エンコーダカウント値θenが目標シフトレンジに応じた目標カウント値θcmdとなるように、モータ10の駆動を制御する。デューティ制限部55は、所定期間におけるスイッチング素子411~416、421~426のオン時間の割合であるデューティDを制限するデューティ制限値Dlimを、エンコーダカウント値θenに応じて決定する。
The ECU 50 includes a motor angle calculator 51, a drive controller 53, and a duty limiter 55. The motor angle calculator 51 calculates an encoder count value θen based on an encoder signal obtained from the encoder 13 that detects the rotational position of the motor 10. The drive control unit 53 controls the drive of the motor 10 so that the encoder count value θen becomes the target count value θcmd corresponding to the target shift range. The duty limiter 55 determines a duty limit value Dlim that limits a duty D, which is a ratio of the ON time of the switching elements 411 to 416 and 421 to 426 during a predetermined period, according to the encoder count value θen.
本実施形態では、容易にモニタ可能な情報であるエンコーダカウント値θenに基づいてデューティ制限値Dlimを可変にすることで、回路変更等を行うことなく、過電流を抑制してモータドライバ41、42を保護可能であるとともに、レンジ切替応答性を確保することができる。
In the present embodiment, by changing the duty limit value Dlim based on the encoder count value θen, which is information that can be easily monitored, the motor drivers 41 and 42 can be configured to suppress overcurrent without changing the circuit or the like. Can be protected, and range switching responsiveness can be ensured.
デューティ制限部55は、モータ加速時において、モータ10の駆動開始時のエンコーダカウント値θen_initと、現在のエンコーダカウント値θenとの差である駆動カウントθAが大きくなるほど、デューティ制限値Dlimが大きくなるように、デューティ制限値Dlimを決定する。これにより、モータ始動時の低速回転時の過電流を防ぐことができる。
The duty limiter 55 increases the duty limit value Dlim as the drive count θA, which is the difference between the encoder count value θen_init at the start of driving the motor 10 and the current encoder count value θen, increases during motor acceleration. Then, the duty limit value Dlim is determined. Thus, an overcurrent at the time of low-speed rotation at the time of starting the motor can be prevented.
デューティ制限部55は、モータ減速時において、目標カウント値θcmdと、現在のエンコーダカウント値θenとの差である残りカウントθBg小さくなるほど、デューティ制限値Dlimが小さくなるように、デューティ制限値Dlimを決定する。これにより、モータ停止前の低速回転時の過電流を防ぐことができる。
The duty limiter 55 determines the duty limit value Dlim such that the smaller the remaining count θBg, which is the difference between the target count value θcmd and the current encoder count value θen, during motor deceleration, the smaller the duty limit value Dlim. I do. This can prevent an overcurrent at the time of low-speed rotation before the motor stops.
本実施形態では、モータドライバ41、42が「駆動回路」、ECU50が「制御部」、エンコーダ13が「回転角センサ」に対応する。また、エンコーダカウント値θenが「モータ角度」、目標カウント値θcmdが「目標回転角度」に対応する。
In the present embodiment, the motor drivers 41 and 42 correspond to a “drive circuit”, the ECU 50 corresponds to a “control unit”, and the encoder 13 corresponds to a “rotation angle sensor”. The encoder count value θen corresponds to “motor angle”, and the target count value θcmd corresponds to “target rotation angle”.
(第2実施形態)
第2実施形態を図8~図10に示す。本実施形態では、エンコーダカウント値θenに応じたデューティ制限により、ロック電流による過電流を防ぐ。本実施形態のデューティ制限値演算処理を図8のフローチャートに基づいて説明する。この処理は、目標シフトレンジが切り替わってから停止制御を開始するまでの期間に所定の周期で実行されるものであって、図5にて説明したデューティ制限値演算処理と並行して実施可能である。 (2nd Embodiment)
A second embodiment is shown in FIGS. In the present embodiment, overcurrent due to the lock current is prevented by limiting the duty according to the encoder count value θen. The duty limit value calculation processing of the present embodiment will be described with reference to the flowchart of FIG. This process is executed at a predetermined cycle during a period from when the target shift range is switched to when the stop control is started, and can be performed in parallel with the duty limit value calculation process described with reference to FIG. is there.
第2実施形態を図8~図10に示す。本実施形態では、エンコーダカウント値θenに応じたデューティ制限により、ロック電流による過電流を防ぐ。本実施形態のデューティ制限値演算処理を図8のフローチャートに基づいて説明する。この処理は、目標シフトレンジが切り替わってから停止制御を開始するまでの期間に所定の周期で実行されるものであって、図5にて説明したデューティ制限値演算処理と並行して実施可能である。 (2nd Embodiment)
A second embodiment is shown in FIGS. In the present embodiment, overcurrent due to the lock current is prevented by limiting the duty according to the encoder count value θen. The duty limit value calculation processing of the present embodiment will be described with reference to the flowchart of FIG. This process is executed at a predetermined cycle during a period from when the target shift range is switched to when the stop control is started, and can be performed in parallel with the duty limit value calculation process described with reference to FIG. is there.
S201では、デューティ制限部55は、エンコーダカウント値θenが変化したか否かを判断する。エンコーダカウント値θenが変化したと判断された場合(S201:YES)、S202へ移行し、継続カウント値Ctをクリアし、本ルーチンを終了する。エンコーダカウント値θenが変化していないと判断された場合(S201:NO)、S203へ移行する。S203では、デューティ制限部55は、エンコーダカウント値θenが切り替わっていない時間を計時する継続カウント値Ctをインクリメントする。
In S201, the duty limiter 55 determines whether or not the encoder count value θen has changed. If it is determined that the encoder count value θen has changed (S201: YES), the process proceeds to S202, where the continuation count value Ct is cleared, and this routine ends. When it is determined that the encoder count value θen has not changed (S201: NO), the process proceeds to S203. In S203, the duty limiter 55 increments the continuous count value Ct that measures the time during which the encoder count value θen has not been switched.
S204では、デューティ制限部55は、推定回転数Neを算出する。推定回転数Neは、モータ10が正常に回転しているときの値であって、駆動カウントθAに基づくマップ演算等により算出される。
In S204, the duty limiter 55 calculates the estimated rotation speed Ne. The estimated rotation speed Ne is a value when the motor 10 is rotating normally, and is calculated by a map calculation or the like based on the drive count θA.
S205では、推定回転数Neに基づき、継続判定時間T_thを設定する。継続判定時間T_thは、推定回転数Neにてモータ10が回転しているときに、同一の通電相が継続される時間である同一通電相継続時間Te以上の値に設定される。また、継続判定時間T_thに相当するカウント値を判定カウント値Ct_thとする。
In S205, the continuation determination time T_th is set based on the estimated rotation speed Ne. The continuation determination time T_th is set to a value equal to or longer than the same energized phase continuation time Te, which is the time during which the same energized phase is continued when the motor 10 is rotating at the estimated rotational speed Ne. Further, a count value corresponding to the continuation determination time T_th is defined as a determination count value Ct_th.
S206では、継続カウント値Ctが判定カウント値Ct_th以上か否かを判断する。継続カウント値Ctが判定カウント値Ct_th未満であると判断された場合(S206:NO)、S207の処理を行わず、本ルーチンを終了する。継続カウント値Ctが判定カウント値Ct_th以上であると判断された場合(S206:YES)、S207へ移行し、デューティ制限値Dlimを50%とする。ここで設定されるデューティ制限値Dlimは、ロック通電時にモータ電流Imが上限値Ilimを超えず、かつ、正常時に通電相を切替可能な任意の値とする。
In S206, it is determined whether the continuation count value Ct is equal to or greater than the determination count value Ct_th. When it is determined that the continuation count value Ct is less than the determination count value Ct_th (S206: NO), the process of S207 is not performed, and the routine ends. When it is determined that the continuation count value Ct is equal to or greater than the determination count value Ct_th (S206: YES), the process proceeds to S207, and the duty limit value Dlim is set to 50%. The duty limit value Dlim set here is an arbitrary value at which the motor current Im does not exceed the upper limit value Ilim when the lock is energized and the energized phase can be switched in a normal state.
ここで参考例による駆動制御処理を図10に示す。時刻t10から時刻t11までの処理は第1実施形態と同様であって、時刻t11にて、デューティ制限が解除され、以降、デューティ制限値Dlim=100%となる。正常時、通電相が順次切り替わっていれば、電流が小さくなる(図6参照)。一方、正常時に定速域となる時刻t12より前のタイミングである時刻tz1にて、モータ10が停止する異常が発生した場合、同じ通電相にロック通電されると、上限値Ilimより大きいモータ電流Imが流れる虞がある。デューティ制限されないモータ電流Imが流れ続けると、異常確定までの間に、モータドライバ41、42の回路故障に至る虞がある。
FIG. 10 shows a drive control process according to the reference example. The processing from time t10 to time t11 is the same as in the first embodiment. At time t11, the duty limit is released, and thereafter, the duty limit value Dlim becomes 100%. In a normal state, if the energized phases are sequentially switched, the current becomes small (see FIG. 6). On the other hand, at time tz1, which is a timing before time t12, which is a constant speed range in a normal state, when an abnormality occurs in which the motor 10 stops, if the lock current is supplied to the same energizing phase, the motor current larger than the upper limit Ilim Im may flow. If the motor current Im whose duty is not limited continues to flow, there is a possibility that the circuit of the motor drivers 41 and 42 may fail until the abnormality is determined.
そこで本実施形態では、図9に示すように、駆動カウントθAに基づいて、推定回転数Neを算出する。そして、モータ10が推定回転数Neにて回転しているときの同一通電相継続時間Teを割り出し(図8中のS204)、継続判定時間T_thを設定する(S205)。例えば、推定回転数Neが4000[rpm]のとき、0.625[ms]で通電相が切り替わる計算であれば、継続判定時間T_thを1[ms]に設定する、といった具合である。そして、モータ10が停止する異常が発生した時刻tz1から、継続判定時間T_thが経過した時刻tz2にて、デューティ制限値Dlimを50%とする(S207)。また、異常発生から所定時間が経過した時刻tz3にて、異常確定し、フェイルモードに移行する。
Therefore, in the present embodiment, as shown in FIG. 9, the estimated rotational speed Ne is calculated based on the drive count θA. Then, the same energized phase continuation time Te when the motor 10 is rotating at the estimated rotation speed Ne is determined (S204 in FIG. 8), and the continuation determination time T_th is set (S205). For example, when the estimated rotational speed Ne is 4000 [rpm] and the calculation is such that the energized phase is switched at 0.625 [ms], the continuation determination time T_th is set to 1 [ms]. Then, the duty limit value Dlim is set to 50% at a time tz2 when the continuation determination time T_th has elapsed from the time tz1 at which the abnormality in which the motor 10 stops occurs (S207). Further, at time tz3 when a predetermined time has elapsed from the occurrence of the abnormality, the abnormality is determined and the mode shifts to the fail mode.
これにより、モータ10が停止する異常が発生している場合であっても、異常確定前に上限値Ilimを超えるモータ電流Imが流れないので、モータドライバ41、42の回路故障を防ぐことができる。
As a result, even if an abnormality in which the motor 10 stops occurs, the motor current Im exceeding the upper limit Ilim does not flow before the abnormality is determined, so that the circuit failure of the motor drivers 41 and 42 can be prevented. .
本実施形態では、デューティ制限部55は、モータ10の駆動制御中において、エンコーダカウント値θenが変化しない状態が継続判定時間T_thに亘って継続した場合、デューティ制限値Dlimを通常時よりも小さくする。これにより、モータ10が停止する故障が生じた場合の過電流が抑制され、モータドライバ41、42を保護することができる。
In the present embodiment, when the state where the encoder count value θen does not change continues for the continuation determination time T_th during the drive control of the motor 10, the duty limit unit 55 sets the duty limit value Dlim to be smaller than normal. . This suppresses an overcurrent in the event of a failure in which the motor 10 stops, so that the motor drivers 41 and 42 can be protected.
継続判定時間T_thは、モータ駆動開始時のエンコーダカウント値θen_initと、現在のエンコーダカウント値θenとの差である駆動カウントθAに基づいて推定される推定回転数Neに応じて設定される。これにより、モータ10が停止する故障が発生した場合において、デューティ制限を適切に行うことができる。また、上記実施形態と同様の効果を奏する。
The continuation determination time T_th is set according to the estimated rotation speed Ne estimated based on the drive count θA, which is the difference between the encoder count value θen_init at the start of motor driving and the current encoder count value θen. Accordingly, when a failure that stops the motor 10 occurs, the duty can be appropriately limited. Further, the same effects as those of the above embodiment can be obtained.
(他の実施形態)
第1実施形態では、駆動カウントθAおよび残りカウントθBに応じてデューティ制限を行う。他の実施形態では、例えば減速域において、デューティ制限を行わなくてもモータ電流が上限値を超えない場合、残りカウントθBに応じたモータ減速時のデューティ制限を省略してもよい。また上記実施形態では、(i)加速時のデューティ制限、(ii)減速時のデューティ制限、(iii)モータが停止する故障が生じたときのデューティ制限について説明した。他の実施形態では、上記(i)~(iii)のうちの一部を省略してもよい。第2実施形態では、駆動カウントに応じて継続判定時間を可変とする。他の実施形態では、駆動カウントによらず、継続判定時間を固定としてもよい。 (Other embodiments)
In the first embodiment, the duty is limited according to the drive count θA and the remaining count θB. In another embodiment, for example, when the motor current does not exceed the upper limit value without performing the duty limitation in the deceleration range, the duty limitation during the motor deceleration according to the remaining count θB may be omitted. In the above-described embodiment, (i) the duty limit during acceleration, (ii) the duty limit during deceleration, and (iii) the duty limit when a failure that stops the motor occurs. In other embodiments, some of the above (i) to (iii) may be omitted. In the second embodiment, the continuation determination time is made variable according to the drive count. In another embodiment, the continuation determination time may be fixed without depending on the drive count.
第1実施形態では、駆動カウントθAおよび残りカウントθBに応じてデューティ制限を行う。他の実施形態では、例えば減速域において、デューティ制限を行わなくてもモータ電流が上限値を超えない場合、残りカウントθBに応じたモータ減速時のデューティ制限を省略してもよい。また上記実施形態では、(i)加速時のデューティ制限、(ii)減速時のデューティ制限、(iii)モータが停止する故障が生じたときのデューティ制限について説明した。他の実施形態では、上記(i)~(iii)のうちの一部を省略してもよい。第2実施形態では、駆動カウントに応じて継続判定時間を可変とする。他の実施形態では、駆動カウントによらず、継続判定時間を固定としてもよい。 (Other embodiments)
In the first embodiment, the duty is limited according to the drive count θA and the remaining count θB. In another embodiment, for example, when the motor current does not exceed the upper limit value without performing the duty limitation in the deceleration range, the duty limitation during the motor deceleration according to the remaining count θB may be omitted. In the above-described embodiment, (i) the duty limit during acceleration, (ii) the duty limit during deceleration, and (iii) the duty limit when a failure that stops the motor occurs. In other embodiments, some of the above (i) to (iii) may be omitted. In the second embodiment, the continuation determination time is made variable according to the drive count. In another embodiment, the continuation determination time may be fixed without depending on the drive count.
上記実施形態では、モータ巻線およびモータドライバが2組設けられる。他の実施形態では、モータ巻線およびモータドライバは1組であってもよいし、3組以上であってもよい。
In the above embodiment, two sets of motor windings and motor drivers are provided. In other embodiments, there may be one set of motor windings and motor drivers, or three or more sets.
上記実施形態では、モータの回転角を検出するモータ回転角センサは、3相エンコーダである。他の実施形態では、モータ回転角センサは、2相エンコーダであってもよいし、エンコーダに限らず、レゾルバ等、どのようなものを用いてもよい。上記実施形態では、出力軸センサとしてポテンショメータを例示した。他の実施形態では、出力軸センサは、どのようなものであってもよい。また、出力軸センサを省略してもよい。
In the above embodiment, the motor rotation angle sensor that detects the rotation angle of the motor is a three-phase encoder. In another embodiment, the motor rotation angle sensor may be a two-phase encoder, and is not limited to an encoder, but may be any type such as a resolver. In the above embodiment, a potentiometer has been exemplified as the output shaft sensor. In other embodiments, the output shaft sensor may be any. Further, the output shaft sensor may be omitted.
上記実施形態では、ディテントプレートには2つの凹部が設けられる。他の実施形態では、凹部の数は2つに限らず、例えばレンジ毎に凹部が設けられていてもよい。また、シフトレンジ切替機構やパーキングロック機構等は、上記実施形態と異なっていてもよい。
で は In the above embodiment, the detent plate is provided with two concave portions. In another embodiment, the number of recesses is not limited to two, and for example, a recess may be provided for each range. Further, the shift range switching mechanism, the parking lock mechanism, and the like may be different from those in the above embodiment.
上記実施形態では、モータ軸と出力軸との間に減速機が設けられる。減速機の詳細について、上記実施形態では言及していないが、例えば、サイクロイド歯車、遊星歯車、モータ軸と略同軸の減速機構から駆動軸へトルクを伝達する平歯歯車を用いたものや、これらを組み合わせて用いたもの等、どのような構成であってもよい。また、他の実施形態では、モータ軸と出力軸との間の減速機を省略してもよいし、減速機以外の機構を設けてもよい。以上、本開示は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。
で は In the above embodiment, the speed reducer is provided between the motor shaft and the output shaft. Although the details of the reduction gear are not mentioned in the above embodiment, for example, a cycloid gear, a planetary gear, a gear using a spur gear that transmits torque from a reduction mechanism substantially coaxial with the motor shaft to the drive shaft, Any configuration may be used, such as a combination of the above. Further, in another embodiment, the speed reducer between the motor shaft and the output shaft may be omitted, or a mechanism other than the speed reducer may be provided. As described above, the present disclosure is not limited to the above embodiments, and can be implemented in various forms without departing from the gist of the present disclosure.
本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
The control unit and the technique according to the present disclosure are implemented by a dedicated computer provided by configuring a processor and a memory programmed to execute one or more functions embodied by a computer program. May be done. Alternatively, the control unit and the technique described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and the method according to the present disclosure may be implemented by a combination of a processor and a memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may be realized by one or more dedicated computers configured. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as instructions to be executed by a computer.
本開示は、実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。
The present disclosure has been described based on the embodiments. However, the present disclosure is not limited to the embodiment and the structure. The present disclosure also encompasses various modifications and variations within equivalent scope. In addition, various combinations and forms, and other combinations and forms including only one element, more or less, are also included in the scope and spirit of the present disclosure.
Claims (5)
- モータ巻線(11、12)を有するモータ(10)の駆動を制御することでシフトレンジの切り替えを制御するシフトレンジ制御装置であって、
前記モータ巻線の通電を切り替えるスイッチング素子(411~416、421~426)を有する駆動回路(41、42)と、
前記モータの回転位置を検出する回転角センサ(13)から取得される信号に基づき、モータ角度を演算するモータ角度演算部(51)、前記モータ角度が目標シフトレンジに応じた目標回転角度となるように、前記モータの駆動を制御する駆動制御部(53)、および、所定期間における前記スイッチング素子のオン時間の割合であるデューティを制限するデューティ制限値を、前記モータ角度に応じて決定するデューティ制限部(55)を有する制御部(50)と、
を備えるシフトレンジ制御装置。 A shift range control device that controls switching of a shift range by controlling driving of a motor (10) having motor windings (11, 12),
Drive circuits (41, 42) having switching elements (411 to 416, 421 to 426) for switching energization of the motor windings;
A motor angle calculator (51) for calculating a motor angle based on a signal obtained from a rotation angle sensor (13) for detecting a rotation position of the motor, wherein the motor angle becomes a target rotation angle corresponding to a target shift range; A drive control unit (53) for controlling the driving of the motor, and a duty for determining a duty limit value for limiting a duty, which is a ratio of the ON time of the switching element in a predetermined period, according to the motor angle. A control unit (50) having a restriction unit (55);
A shift range control device comprising: - 前記デューティ制限部は、モータ加速時において、前記モータの駆動開始時の前記モータ角度と現在の前記モータ角度との差が大きくなるほど前記デューティ制限値が大きくなるように、前記デューティ制限値を決定する請求項1に記載のシフトレンジ制御装置。 The duty limiter determines the duty limit value such that the larger the difference between the motor angle at the start of driving the motor and the current motor angle is, the larger the duty limit value becomes during motor acceleration. The shift range control device according to claim 1.
- 前記デューティ制限部は、モータ減速時において、前記目標回転角度と現在の前記モータ角度との差が小さくなるほど前記デューティ制限値が小さくなるように、前記デューティ制限値を決定する請求項1または2に記載のシフトレンジ制御装置。 3. The motor according to claim 1, wherein the duty limiter determines the duty limit value such that the smaller the difference between the target rotation angle and the current motor angle is, the smaller the duty limit value becomes when the motor is decelerated. The shift range control device as described in the above.
- 前記デューティ制限部は、前記モータの駆動制御中において、前記モータ角度が変化しない状態が継続判定時間に亘って継続した場合、前記デューティ制限値を通常時よりも小さくする請求項1に記載のシフトレンジ制御装置。 2. The shift according to claim 1, wherein the duty limit unit sets the duty limit value to be smaller than a normal state when a state in which the motor angle does not change continues for a continuation determination time during drive control of the motor. Range control device.
- 前記継続判定時間は、前記モータの駆動開始時の前記モータ角度と現在の前記モータ角度との差に基づいて推定される推定回転数に応じて設定される請求項4に記載のシフトレンジ制御装置。 5. The shift range control device according to claim 4, wherein the continuation determination time is set according to an estimated rotation speed estimated based on a difference between the motor angle at the start of driving of the motor and the current motor angle. 6. .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018173820A JP7067382B2 (en) | 2018-09-18 | 2018-09-18 | Shift range controller |
JP2018-173820 | 2018-09-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020059676A1 true WO2020059676A1 (en) | 2020-03-26 |
Family
ID=69887084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/036258 WO2020059676A1 (en) | 2018-09-18 | 2019-09-16 | Shift range control device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7067382B2 (en) |
WO (1) | WO2020059676A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003247638A (en) * | 2002-02-22 | 2003-09-05 | Hitachi Unisia Automotive Ltd | Range selector for automatic transmission |
JP2008032176A (en) * | 2006-07-31 | 2008-02-14 | Denso Corp | Control device of range switching mechanism |
JP2018135919A (en) * | 2017-02-21 | 2018-08-30 | 株式会社デンソー | Shift range control device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6862906B2 (en) * | 2017-02-24 | 2021-04-21 | 株式会社デンソー | Shift range controller |
-
2018
- 2018-09-18 JP JP2018173820A patent/JP7067382B2/en active Active
-
2019
- 2019-09-16 WO PCT/JP2019/036258 patent/WO2020059676A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003247638A (en) * | 2002-02-22 | 2003-09-05 | Hitachi Unisia Automotive Ltd | Range selector for automatic transmission |
JP2008032176A (en) * | 2006-07-31 | 2008-02-14 | Denso Corp | Control device of range switching mechanism |
JP2018135919A (en) * | 2017-02-21 | 2018-08-30 | 株式会社デンソー | Shift range control device |
Also Published As
Publication number | Publication date |
---|---|
JP2020045949A (en) | 2020-03-26 |
JP7067382B2 (en) | 2022-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10844954B2 (en) | Shift range control device | |
WO2017221689A1 (en) | Shift range switching device | |
WO2018155333A1 (en) | Shift range control device | |
JP6569584B2 (en) | Shift range control device | |
US10615724B2 (en) | Shift range control apparatus | |
US11112007B2 (en) | Shift range switching system | |
US11125325B2 (en) | Shift range switching system | |
WO2020158434A1 (en) | Shift range control device | |
US11084493B2 (en) | Shift range control device | |
JP6992481B2 (en) | Motor control device | |
US12119762B2 (en) | Motor control device | |
US11894792B2 (en) | Motor control device | |
WO2020059676A1 (en) | Shift range control device | |
WO2020045146A1 (en) | Shift range control device | |
US12063006B2 (en) | Motor control device | |
CN113748596B (en) | motor control device | |
JP2019033620A (en) | Motor control device | |
JP7363648B2 (en) | motor control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19863423 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19863423 Country of ref document: EP Kind code of ref document: A1 |