WO2020059634A1 - Intermediate production method - Google Patents

Intermediate production method Download PDF

Info

Publication number
WO2020059634A1
WO2020059634A1 PCT/JP2019/035933 JP2019035933W WO2020059634A1 WO 2020059634 A1 WO2020059634 A1 WO 2020059634A1 JP 2019035933 W JP2019035933 W JP 2019035933W WO 2020059634 A1 WO2020059634 A1 WO 2020059634A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
carbon atoms
solution
substituent
Prior art date
Application number
PCT/JP2019/035933
Other languages
French (fr)
Japanese (ja)
Inventor
坂本 圭
久美 奥山
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201980059201.XA priority Critical patent/CN112689622A/en
Priority to JP2020548438A priority patent/JP7327408B2/en
Publication of WO2020059634A1 publication Critical patent/WO2020059634A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/52Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/75Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring of acids with a six-membered ring

Definitions

  • the present invention relates to a method for producing an intermediate.
  • the retardation plate examples include a ⁇ wavelength plate that converts linearly polarized light into circularly polarized light, and a ⁇ wavelength plate that converts the polarization oscillation plane of linearly polarized light by 90 degrees. These retardation plates are capable of accurately converting a specific monochromatic light into a phase difference of ⁇ ⁇ or ⁇ of the light wavelength.
  • the conventional retardation plate has a problem that polarized light output through the retardation plate is converted into colored polarized light. This is because the material constituting the retardation plate has a wavelength dispersion property with respect to the retardation, and distribution occurs in the polarization state for each wavelength with respect to white light, which is a composite wave in which light rays in the visible light region are mixed.
  • Patent Documents 1 to 3 have a problem that the number of steps in the manufacturing method is large and the manufacturing method is complicated.
  • Patent Document 4 an intermediate containing the target compound at a high concentration was not obtained, and the amount of the solvent used in the reaction was large, and there was room for improvement from the viewpoint of production efficiency.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for producing an intermediate which can efficiently produce an intermediate containing a predetermined compound (I) at a high concentration.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, added a protic solvent to a solution (X) containing the compound (I) and the compound (II) to precipitate the compound (II).
  • the inventors have found that removing the precipitated compound (II) makes it possible to efficiently produce an intermediate containing the compound (I) at a high concentration, and has completed the present invention.
  • the present invention there is provided the following method for producing an intermediate.
  • R 21 to R 26 each independently represent a hydrogen atom or a carbon atom.
  • R 31 and R 32 each independently represent a hydrogen atom, a methyl group or a chlorine atom; d1 and d2 each independently represent an integer of 1 to 20, e1 and e2 are each independently 1 or 2.
  • a protic solvent is added to the solution (X) to precipitate the compound (II), and the precipitated compound (II) is removed to obtain an intermediate containing the compound (I).
  • a method for producing an intermediate comprising a step ( ⁇ ), The method for producing an intermediate, wherein the intermediate obtained in the step ( ⁇ ) contains 86% by mass or more of the compound (I).
  • the method for producing an intermediate of the above [1] is a method for producing an intermediate containing the compound (I), (I) a step ( ⁇ ) of obtaining a solution (X) containing the formula compound (I) and the compound (II); (Ii) A protic solvent is added to the solution (X) to precipitate the compound (II), and the precipitated compound (II) is removed to contain the compound (I) at 86% by mass or more. Step ( ⁇ ) of obtaining an intermediate.
  • “may have a substituent” means “unsubstituted or has a substituent”.
  • an organic group such as an alkyl group or an aromatic hydrocarbon ring group included in the general formula has a substituent
  • the carbon number of the organic group having the substituent does not include the carbon number of the substituent.
  • the aromatic hydrocarbon ring group having 6 to 20 carbon atoms has a substituent
  • the carbon number of the aromatic hydrocarbon ring group having 6 to 20 carbon atoms does not include the carbon number of such a substituent.
  • the “alkyl group” means a chain (linear or branched) saturated hydrocarbon group, and the “alkyl group” includes a cyclic saturated hydrocarbon group “cyclo” "Alkyl group” is not included.
  • the “total number of ⁇ electrons contained in the ring structure in Rf” includes the ⁇ electrons of the ring structure contained in the substituent.
  • the “intermediate” includes at least the compound (I), may be the compound (I) alone, or may be a compound other than the compound (I) and the compound (I). And a mixture containing
  • the process for producing an intermediate according to the present invention comprises a step ( ⁇ ) of obtaining a solution (X) containing a compound (I) and a compound (II), and adding a protic solvent to the solution (X) to obtain a compound (II) ), And removing the precipitated compound (II) to obtain an intermediate containing the compound (I) ( ⁇ ), and further including other steps as necessary.
  • Step ( ⁇ ) is a step of obtaining a solution (X) containing compound (I) and compound (II).
  • Solution (X) contains at least compound (I) and compound (II), and further contains an organic solvent and other components as necessary.
  • the concentration of the compound (I) in the solution (X) is preferably 8.0% by mass or more, more preferably 8.5% by mass or more, and particularly preferably 9.0% by mass or more.
  • the content is preferably 40% by mass or less, more preferably 30% by mass or less, and particularly preferably 20% by mass or less.
  • concentration of the compound (I) in the solution (X) is equal to or higher than the lower limit and equal to or lower than the upper limit, the compound represented by the formula (II) can be selectively removed.
  • the concentration of the compound (II) in the solution (X) is preferably at least 3.0% by mass, more preferably at least 3.5% by mass, particularly preferably at least 4.0% by mass. Preferably, it is preferably at most 10% by mass, more preferably at most 9.0% by mass, particularly preferably at most 8.0% by mass.
  • concentration of the compound (II) in the solution (X) is equal to or higher than the lower limit and equal to or lower than the upper limit, the compound represented by the formula (II) can be selectively removed.
  • the ratio of the concentration of compound (II) in solution (X) to the concentration of compound (I) in solution (X) Is preferably 20% or more, more preferably 25% or more, particularly preferably 30% or more, and preferably 60% or less, and 55% or less. More preferably, it is particularly preferably at most 50%.
  • the ratio of the concentration of the compound (II) in the solution (X) is not less than the lower limit, When the content is equal to or less than the above upper limit, the compound represented by the formula (II) can be highly selectively removed.
  • the compound (I) represented by the following formula (I) may be composed of only one kind of compound or may be composed of two kinds of compounds, but is composed of only one kind of compound. Is preferred.
  • the compound (I) is composed of only one compound, the corresponding groups in the compounds (II) is a symmetrical about the A 21.
  • a 2 and B 2 each independently represent a cyclic aliphatic group which may have a substituent, or an aromatic group which may have a substituent.
  • a 2 and B 2 each independently represent a cycloaliphatic group having 5 to 20 carbon atoms which may have a substituent or 2 carbon atoms which may have a substituent. Up to 20 aromatic groups are preferred.
  • cycloaliphatic group examples include cyclopentane-1,3-diyl group, cyclohexane-1,4-diyl group, cycloheptane-1,4-diyl group, cyclooctane-1,5-diyl group and the like.
  • the cycloaliphatic group is preferably an optionally substituted cycloalkanediyl group having 5 to 20 carbon atoms, more preferably a cyclohexanediyl group, and particularly preferably a 1,4-cyclohexylene group (cyclohexane-1,4 -Diyl group), and a trans-1,4-cyclohexylene group is more preferable.
  • aromatic group examples include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 1,4-naphthylene group, 1,5-naphthylene group and 2,6-naphthylene group
  • Aromatic hydrocarbon ring groups having 6 to 20 carbon atoms such as 4,4'-biphenylene group; furan-2,5-diyl, thiophen-2,5-diyl, pyridine-2,5-diyl, pyrazine-
  • the aromatic group is preferably an aromatic hydrocarbon ring group having 6 to 20 carbon atoms, more preferably a phenylene group, and particularly preferably a 1,4-phenylene group.
  • Examples of the substituent for the cyclic aliphatic group and the aromatic group include a halogen atom such as a fluorine atom, a chlorine atom and a bromine atom; an alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; An alkoxy group having 1 to 5 carbon atoms such as a propoxy group; a nitro group; a cyano group;
  • the cyclic aliphatic group, the cyclic aliphatic group having 5 to 20 carbon atoms, the aromatic group, and the aromatic group having 2 to 20 carbon atoms may have at least one substituent selected from the above-described substituents. Good. When a compound has a plurality of substituents, the substituents may be the same or different.
  • a 2 is preferably a cyclic aliphatic group which may have a substituent
  • B 2 is preferably an aromatic group which may have a substituent
  • a 2 is a “trans-1,4-cyclohexylene group optionally having a substituent” represented by the formula (a)
  • B 2 is a “trans-1,4-cyclohexylene group” represented by the formula (b).
  • the combination of "1,4-phenylene group which may have a substituent" is more preferable.
  • Ra is an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, or a substituent.
  • a halogen atom such as a fluorine atom and a chlorine atom
  • an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group and a propyl group
  • a cyano group such as a nitro group
  • an alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group or a propoxy group
  • p1 represents an integer of 0 to 4, and is preferably 0.
  • alkyl group having 1 to 20 carbon atoms of the alkyl group having 1 to 20 carbon atoms which may have a substituent include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and an n-butyl group.
  • the alkenyl group having 2 to 20 carbon atoms alkenyl group substituents to 2 carbon atoms which may have a 20, a vinyl group, propenyl group, isopropenyl group, butenyl group, isobutenyl group, pentenyl Group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, undecenyl group, dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, and icosenyl group.
  • Examples of the substituent for the alkyl group having 1 to 20 carbon atoms and the alkenyl group having 2 to 20 carbon atoms for Ra include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; N, N-dialkylamino group; an alkoxy group having 1 to 20 carbon atoms such as methoxy group, ethoxy group, isopropoxy group and butoxy group; an alkoxy group having 1 to 12 carbon atoms such as methoxymethoxy group and methoxyethoxy group Substituted alkoxy group having 1 to 12 carbon atoms; nitro group; aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as phenyl group and naphthyl group; triazolyl group, pyrrolyl group, furanyl group, thiophenyl group, benzothiazole group An aromatic heterocyclic group having 2 to 20 carbon atoms such as a 2-ylthio group; a
  • halogen atoms such as fluorine atom and chlorine atom
  • cyano group methoxy group, ethoxy group
  • An alkoxy group having 1 to 20 carbon atoms such as a propoxy group or a butoxy group; a nitro group
  • an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group or a naphthyl group
  • An aromatic heterocyclic group having from 20 to 20; a cycloalkyl group having from 3 to 8 carbon atoms such as a cyclopropyl group, a cyclopentyl group and a cyclohexyl group; at least one group such as a trifluoromethyl group, a pentafluoroethyl group and -CH 2 CF 3 ;
  • the alkyl group having 1 to 20 carbon atoms and the alkenyl group having 2 to 20 carbon atoms of Ra may have a plurality of substituents selected from the above-described substituents.
  • the alkyl group having 1 to 20 carbon atoms and the alkenyl group having 2 to 20 carbon atoms of Ra have a plurality of substituents, the plurality of substituents may be the same or different.
  • Examples of the cycloalkyl group having 3 to 12 carbon atoms of the cycloalkyl group having 3 to 12 carbon atoms which may have a substituent include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group and a cyclooctyl group. And the like. Among these, a cyclopentyl group and a cyclohexyl group are preferred.
  • Examples of the substituent of the cycloalkyl group having 3 to 12 carbon atoms of Ra include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; an N, N-dialkylamino group having 2 to 12 carbon atoms such as a dimethylamino group; C1-C6 alkyl groups such as methyl group, ethyl group and propyl group; C1-C6 alkoxy groups such as methoxy group, ethoxy group and isopropoxy group; nitro group; and phenyl group and naphthyl group And an aromatic hydrocarbon ring group having 6 to 20 carbon atoms.
  • a halogen atom such as a fluorine atom and a chlorine atom
  • a cyano group such as a dimethylamino group
  • C1-C6 alkyl groups such as methyl group, ethyl group and propyl group
  • examples of the substituent of the cycloalkyl group having 3 to 12 carbon atoms of Ra include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group and a propyl group. Groups; alkoxy groups having 1 to 6 carbon atoms such as methoxy group, ethoxy group and isopropoxy group; nitro groups; and aromatic hydrocarbon ring groups having 6 to 20 carbon atoms such as phenyl group and naphthyl group.
  • the cycloalkyl group having 3 to 12 carbon atoms of Ra may have a plurality of substituents. When the cycloalkyl group having 3 to 12 carbon atoms of Ra has a plurality of substituents, the plurality of substituents may be the same or different.
  • Examples of the aromatic hydrocarbon ring group having 5 to 12 carbon atoms of the optionally substituted aromatic hydrocarbon ring group having 5 to 12 carbon atoms for Ra include a phenyl group, a 1-naphthyl group, -Naphthyl group and the like. Among these, a phenyl group is preferred.
  • Examples of the substituent of the aromatic hydrocarbon ring group having 5 to 12 carbon atoms which may have a substituent include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; N, N-dialkylamino group; C1-C20 alkoxy group such as methoxy group, ethoxy group, isopropoxy group, butoxy group; C1-C12 alkoxy group such as methoxymethoxy group, methoxyethoxy group A nitro group; an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group or a naphthyl group; a triazolyl group, a pyrrolyl group, a furanyl group, a thiophenyl group or the like; An aromatic heterocyclic group having 2 to 20 carbon atoms; a cycloalkyl group having 3 to 8 carbon atoms such as a cyclopropyl group, a cyclopent
  • a substituent of an aromatic hydrocarbon ring group having 5 to 12 carbon atoms includes a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a carbon atom having 1 carbon atom such as a methoxy group, an ethoxy group, an isopropoxy group and a butoxy group.
  • Aromade group aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as phenyl group and naphthyl group; aromatic group having 2 to 20 carbon atoms such as triazolyl group, pyrrolyl group, furanyl group and thiophenyl group A heterocyclic group; a cycloalkyl group having 3 to 8 carbon atoms such as a cyclopropyl group, a cyclopentyl group, and a cyclohexyl group; at least one hydrogen atom such as a trifluoromethyl group, a pentafluoroethyl group, and —CH 2 CF 3 Is preferably a fluoroalkyl group having 1 to 12 carbon atoms substituted with a fluorine atom; and at least one substituent selected from —OCF 3 is preferable.
  • the aromatic hydrocarbon ring group having 5 to 12 carbon atoms may have a plurality of substituents. When the aromatic hydrocarbon ring group having 5 to 12
  • R 21 to R 26 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Y 2 is preferably -O-
  • R 3 represents a hydrogen atom, a methyl group or a chlorine atom.
  • R 3 is preferably a hydrogen atom from the viewpoint of ease of synthesis and polymerization rate.
  • FG 2 represents a hydroxyl group, a carboxyl group or an amino group.
  • FG 2 is synthesized from the standpoint of ease and desired optical properties expression is preferably a carboxyl group.
  • d represents an integer of 1 to 20.
  • d is preferably an integer of 2 to 12, more preferably an integer of 4 to 12, and more preferably an integer of 4 to 10, from the viewpoints of ease of synthesis and expression of desired optical properties. Is particularly preferred.
  • e is 1 or 2.
  • e is preferably 1.
  • the two B 2 may be the same or different and also, the two L 2 may be different even in the same.
  • the compound (I) include, for example, a compound (I-1) represented by the following formula (I-1).
  • R 3 and d have the same meanings as described above, and preferred examples thereof are also the same as described above.
  • compound (I) (compound (Ia) represented by the following formula (Ia)) includes, for example, compound (A-0) represented by the following formula (A-0) It can be obtained by reacting a compound (B-0) represented by the following formula (B-0), and more specifically, a compound (A-1) represented by the following formula (A-1) , And trans-1,4-cyclohexanedicarboxylic acid dichloride are subjected to an esterification reaction in a reaction solvent containing a base such as triethylamine, followed by hydrolysis.
  • a base such as triethylamine
  • a compound (A-1) represented by the following formula (A-1) and trans-1,4-cyclohexanedicarboxylic acid are reacted in a reaction solvent in the presence of a dehydration condensing agent.
  • a 2 , B 2 , Y 2 , L 2 , R 3 , FG 2 and d are each independently the same as defined above. The meaning is shown, and preferable examples are the same as described above.
  • Z represents a hydroxyl group, a carboxyl group, or an amino group. Among them, Z is preferably a hydroxyl group from the viewpoint of ease of synthesis.
  • R 3 and d have the same meanings as described above, and preferred examples thereof are also the same as described above.
  • the compound (I) (compound (Ib) represented by the following formula (Ib)) is, for example, a compound (A-2) represented by the following formula (A-2) It can be obtained by reacting with a compound (B-0) represented by the following formula (B-0).
  • a 2 , B 2 , Y 2 , L 2 , R 3 , FG 2 and d are each independently the same as defined above. Meaning is shown, and preferable examples are the same as described above.
  • Z represents a hydroxyl group, a carboxyl group, or an amino group.
  • Z is preferably a hydroxyl group from the viewpoint of easy synthesis.
  • FQ has the same meaning as described above, and preferred examples thereof are also the same as described above.
  • Two B 2 in the formula (Ib) may be the same or different, and two L 2 in the formula (Ib) may be the same or different.
  • reaction solvent examples include ethers such as cyclopentyl methyl ether (CPME), tetrahydrofuran, methyl-t-butyl ether, diethyl ether, dibutyl ether, diisopropyl ether, and 1,2-dimethoxyethane; ketones such as 2-butanone and methyl isobutyl ketone Halogenated hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane; esters such as ethyl acetate and propyl acetate; aromatic hydrocarbons such as benzene, toluene and xylene; alicycles such as cyclopentane and cyclohexane Formula hydrocarbons; amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone; nitriles such as acetonitrile and propionitrile;
  • ethers such as
  • the amount of the reaction solvent used in the above reaction is preferably 10 mL or more, more preferably 20 mL or more, and more preferably 40 mL or more, based on 10 g of the compound (A-0) or the compound (A-2). It is particularly preferable, and the volume is preferably 500 mL or less, more preferably 250 mL or less, and particularly preferably 100 mL or less.
  • the amount of the reaction solvent is at least the lower limit and at most the upper limit, the selectivity of the compound represented by the formula (I) can be improved.
  • Compound represented by the following formula (II) (II) is, around the A 21, even symmetrical, but may be asymmetrical in terms of ease of synthesis, the left and right around the A 21 Symmetric (ie, B 21 and B 22 are the same, Y 21 and Y 22 are the same, L 21 and L 22 are the same, R 31 and R 32 are the same, Preferably, d1 and d2 are the same, and e1 and e2 are the same.
  • a 21 , B 21 , B 22 each independently represent the same meaning as A 2 and B 2, and preferred examples thereof are also the same as A 2 and B 2 .
  • Y 21 , Y 22 each independently represent the same meaning as Y 2, and preferred examples thereof are also the same as Y 2 .
  • L 21 , L 22 each independently represent the same meaning as L 2, and preferred examples thereof are also the same as L 2 .
  • R 31 and R 32 each independently represent the same meaning as R 3, and preferred examples thereof are also the same as R 3 .
  • d1 and d2 each independently represent the same meaning as d, and preferred examples thereof are also the same as d.
  • the compound (II) include, for example, a compound (II-1) represented by the following formula (II-1).
  • R 3 and d represent the same meaning as described above, and preferred examples thereof are also the same as described above.
  • Organic solvent examples include cyclopentyl methyl ether (CPME), tetrahydrofuran, methyl-t-butyl ether, diethyl ether, dibutyl ether, diisopropyl ether, 1,2-dimethoxyethane, 1,4-dioxane, and 1,3-dioxolan.
  • CPME cyclopentyl methyl ether
  • tetrahydrofuran methyl-t-butyl ether
  • diethyl ether diethyl ether
  • dibutyl ether diisopropyl ether
  • 1,2-dimethoxyethane 1,4-dioxane
  • 1,3-dioxolan examples include 1,3-dioxolan.
  • Ketones such as 2-butanone and methyl isobutyl ketone; halogenated hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane; esters such as ethyl acetate and propyl acetate; aromatics such as benzene, toluene and xylene Hydrocarbons; alicyclic hydrocarbons such as cyclopentane and cyclohexane; amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone; acetonitrile, propionitrile Nitriles such as; Beauty a mixed solvent thereof and the like.
  • halogenated hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane
  • esters such as ethyl acetate and propyl acetate
  • aromatics such as benzene, toluene and xylene Hydro
  • water-immiscible organic solvent is an organic solvent having a property of being separated into two phases without being compatible even when mixed with water.
  • the solubility of the water-immiscible organic solvent in water is 40 g (organic solvent) / 100 mL (water) or less, preferably 30 g (organic solvent) / 100 mL (water) or less, more preferably 15 g (organic solvent) / 100 mL (water). Water).
  • the mixed solvent is a “water-immiscible organic solvent”.
  • water-immiscible organic solvent examples include cyclopentyl methyl ether (CPME), 2-methyltetrahydrofuran, 1,4-dioxane, 1,3-dioxolan, tetrahydrofuran, methyl-t-butyl ether, diethyl ether, dibutyl ether, Ethers such as diisopropyl ether and 1,2-dimethoxyethane; ketones such as 2-butanone; halogenated hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane; esters such as ethyl acetate and propyl acetate; Hydrocarbons such as cyclopentane and cyclohexane; amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone Acetonitrile, pro Nitriles such as Onitoriru; and mixed solvents thereof.
  • Solubility parameter of the water-immiscible organic solvent in Hildebrand is preferably at 14.0 MPa 1/2 or more, more preferably 14.3MPa 1/2 or more, is 14.5 MPa 1/2 or more it is particularly preferred, also, is preferably 22.0MPa 1/2 or less, more preferably 20.0 MPa 1/2 or less, and particularly preferably 19.5MPa 1/2 or less.
  • solubility parameter of Hildebrand of the water-immiscible organic solvent is equal to or higher than the lower limit and equal to or lower than the upper limit, the compound represented by the formula (I) can be obtained with high selectivity.
  • Hildebrand solubility parameter is a value ( ⁇ ) introduced by Hildebrand that provides a numerical prediction of the degree of interaction between materials, as defined by regular solution theory.
  • cyclopentyl methyl ether (Hildebrand solubility parameter ( ⁇ ): 17.2 MPa 1/2 ) , Tetrahydrofuran (( ⁇ ): 18.6 MPa 1/2 ), methyl-t-butyl ether (( ⁇ ): 15.6 MPa 1/2 ), diethyl ether (( ⁇ ): 15.1 MPa 1/2 ), dibutyl ether (( ⁇ ): 14.9 MPa 1/2 ), diisopropyl ether (( ⁇ ): 14.1 MPa 1/2 ), 1,2-dimethoxyethane (( ⁇ ): 19.2 MPa 1/2 ), 2-butanone (( ⁇ ): 19.0MPa 1/2) ethers such as: chloroform (( ⁇ ): 19.0MPa 1/2) halogen, such as Hydrocarbons; ethyl acetate (( ⁇ ): 18.6MPa 1/2) esters such as: tol
  • the content of the organic solvent in the solution (X) is preferably 50% by mass or more, more preferably 60% by mass or more, particularly preferably 70% by mass or more, and 95% by mass. Or less, more preferably 93% by mass or less, particularly preferably 90% by mass or less.
  • the compound represented by the formula (II) can be removed with a high selectivity.
  • Other components include, for example, bases such as triethylamine (Et 3 N), diisopropylethylamine, pyridine, N, N-dimethyl-4-dimethylaminopyridine; dicyclohexylcarbodiimide, N, N-diisopropylcarbodiimide, 1- (3- Dehydration condensing agents such as dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride; and polymerization inhibitors such as 2,6-di-tert-butyl-p-cresol and paramethoxyphenol.
  • bases such as triethylamine (Et 3 N), diisopropylethylamine, pyridine, N, N-dimethyl-4-dimethylaminopyridine
  • dicyclohexylcarbodiimide N, N-diisopropylcarbodiimide
  • 1- 3- Dehydration condensing agents such as dimethylamino
  • Step ( ⁇ )> a step of adding a protic solvent to the solution (X) to precipitate the compound (II) and removing the precipitated compound (II) to obtain an intermediate containing the compound (I) It is.
  • the protic solvent examples include alcohols such as ethanol, methanol, 1-propanol, 2-propanol, 1-butanol, cyclohexanol and cyclopentanol; glycols such as glycerin, ethylene glycol and propylene glycol; formic acid and acetic acid. Carboxylic acids; hydroxy acids such as glycolic acid, 2-hydroxymalonic acid and glyceric acid; and the like. One of these may be used alone, or two or more of them may be used in any ratio. Among these, alcohol is preferable and methanol is more preferable in that the compound (II) can be efficiently precipitated.
  • alcohols such as ethanol, methanol, 1-propanol, 2-propanol, 1-butanol, cyclohexanol and cyclopentanol
  • glycols such as glycerin, ethylene glycol and propylene glycol
  • formic acid and acetic acid formic acid and acetic acid
  • the amount of the protic solvent to be used is preferably at least 0.1 times by mass, more preferably at least 0.2 times by mass, based on the compound (A-0) or the compound (A-2). It is particularly preferably at least 0.3 times by mass, more preferably at most 5 times by mass, even more preferably at most 3 times by mass, particularly preferably at most 2 times by mass. If the amount of the protic solvent used is greater than or equal to the lower limit and less than or equal to the upper limit, the compound represented by the formula (II) is removed with a high selectivity to remove the compound represented by the formula (I) Can be improved in purity.
  • Examples of the removal method for removing the precipitated compound (II) include filtration, centrifugation, and the like, and more specifically, suction filtration, pressure filtration, and the like as filtration. Among these, centrifugal separation and pressure filtration are preferred from the viewpoint of removal efficiency.
  • the intermediate contains at least the compound (I), may be the compound (I) alone, or may contain the compound (I) and components other than the compound (I) (eg, the compound (II)). May be used as a mixture.
  • the content of the compound (I) in the intermediate must be 86% by mass or more, is preferably 88% by mass or more, more preferably 90% by mass or more, and is 92% by mass or more. Is particularly preferred.
  • the content of the compound (I) in the intermediate is not less than the above lower limit, a compound capable of obtaining an optical film capable of performing uniform polarization conversion in a wide wavelength range can be efficiently produced.
  • the cooling temperature is preferably 20 ° C. or lower, more preferably 10 ° C. or lower, particularly preferably 5 ° C. or lower, and most preferably about 0 ° C. When the cooling temperature is equal to or lower than the upper limit, the intermediate can be efficiently precipitated.
  • ⁇ Other steps> Other steps include, for example, a step of preparing the above-mentioned compound (I) such as drying.
  • the polymerizable compound produced from the intermediate produced by the method for producing an intermediate of the present invention will be described.
  • the polymerizable compound is, for example, a compound represented by the following formula (III) (hereinafter, sometimes referred to as “polymerizable compound (III)”), and prepares a polymer, an optical film, and an optically anisotropic material described later. Can be used advantageously.
  • Ar is represented by the following formula (IV-1) or (IV-2), and preferably by the following formula (IV-3) or (IV-4).
  • IV-1) and (IV-2) * represents binding to Y 3 or Y 4.
  • IV-3) and (IV-4) * represents binding to Y 3 or Y 4.
  • R represents an organic group having 1 to 60 carbon atoms which may have a substituent, and is represented by Rf-K-Ga (Ga is bonded to N). It is preferable that it is represented by Gb.
  • the organic group having 1 to 60 carbon atoms of the organic group having 1 to 60 carbon atoms which may have a substituent is not particularly limited, and examples thereof include (i) an alkyl group having 1 to 60 carbon atoms. (Ii) an alkenyl group having 2 to 60 carbon atoms; (iii) an alkynyl group having 2 to 60 carbon atoms;
  • alkyl group having 1 to 60 carbon atoms examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a t-butyl group, an n-pentyl group, and an n-hexyl group. , N-heptyl, n-undecyl, n-dodecyl, 1-methylpentyl, 1-ethylpentyl and the like.
  • an alkyl group having 1 to 12 carbon atoms is preferable, an n-butyl group, an n-hexyl group, and an n-octyl group are more preferable, and an n-hexyl group is particularly preferable.
  • alkenyl group having 2 to 60 carbon atoms examples include a vinyl group, an allyl group, an isopropenyl group and a butynyl group, and an alkenyl group having 2 to 12 carbon atoms is preferable.
  • Alkynyl group having 2 to 60 carbon atoms examples include a propynyl group, a propargyl group and a butynyl group, and an alkynyl group having 2 to 12 carbon atoms is preferable.
  • Examples of the substituent of the organic group having 1 to 60 carbon atoms for R include a cyano group; a nitro group; a hydroxyl group; a halogen atom such as a fluorine atom, a chlorine atom and a bromine atom; Alkoxy group having 1 to 6 carbon atoms such as methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, t-butoxy group; methoxymethoxy group, methoxyethoxy group, ethoxyethoxy group C1-C6 alkoxy group substituted by C1-C6 alkoxy group; C3-C8 cycloalkyl group such as cyclopropyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group; methyl Substituted amino groups such as an amino group, an ethylamino group, an acetylamino group, and a
  • Rf represents a cyclic group having at least one of an aromatic hydrocarbon ring and an aromatic heterocyclic ring. Among these, an aromatic hydrocarbon ring group having 6 to 30 carbon atoms is more preferable.
  • -Aromatic hydrocarbon ring examples include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, and a fluorene ring.
  • a benzene ring, a naphthalene ring, an anthracene ring and a fluorene ring are preferred, and a benzene ring and a naphthalene ring are more preferred.
  • aromatic heterocycle examples include a 1H-isoindole-1,3 (2H) -dione ring, a 1-benzofuran ring, a 2-benzofuran ring, an acridine ring, an isoquinoline ring, an imidazole ring, an indole ring, and an oxadiazole ring.
  • examples of the aromatic heterocyclic ring include monocyclic aromatic heterocyclic rings such as furan ring, pyran ring, thiophene ring, oxazole ring, oxadiazole ring, thiazole ring, and thiadiazole ring; and benzothiazole ring and benzoxazole Ring, quinoline ring, 1-benzofuran ring, 2-benzofuran ring, benzo [b] thiophene ring, 1H-isoindole-1,3 (2H) -dione ring, benzo [c] thiophene ring, thiazolopyridine ring, thia
  • a condensed aromatic heterocyclic ring such as a zolopyrazine ring, a benzoisoxazole ring, a benzooxadiazole ring, or a benzothiadiazole ring is preferable.
  • the aromatic hydrocarbon ring and the aromatic hetero ring of Rf may have a substituent.
  • a substituent include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group and a propyl group; An alkenyl group having 1 to 6 carbon atoms, wherein at least one hydrogen atom such as a trifluoromethyl group and a pentafluoroethyl group is substituted with halogen; an N, N-dialkyl having 2 to 12 carbon atoms such as a dimethylamino group amino group; methoxy group, an ethoxy group, an alkoxy group having 1 to 6 carbon atoms such as an isopropoxy group, a nitro group, a phenyl group, an aromatic having 6 to 20 carbon atoms such as phenyl or naphthyl hydrocarbon ring group
  • R x represents “(i) an alkyl group having 1 to 20 carbon atoms which may have a substituent” or “(ii) an alkenyl group having 2 to 20 carbon atoms which may have a substituent. ", (Iii) a cycloalkyl group having 3 to 12 carbon atoms which may have a substituent", or "(iv) an aromatic carbon atom having 5 to 18 carbon atoms which may have a substituent”.
  • a hydrogen ring group ".
  • R b is an alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group; or an alkyl group having 1 to 6 carbon atoms such as a phenyl group, a 4-methylphenyl group or a 4-methoxyphenyl group; Represents an aromatic hydrocarbon ring group having 6 to 20 carbon atoms which may have an alkoxy group having 1 to 6 carbon atoms as a substituent.
  • a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms are preferable as the substituent of the aromatic hydrocarbon ring and the aromatic hetero ring of Rf.
  • Rf may have a plurality of substituents selected from the above-described substituents. When Rf has a plurality of substituents, the substituents may be the same or different.
  • alkenyl group having 2 to 20 carbon atoms which may have a substituent examples include a vinyl group, a propenyl group, an isopropenyl group, Butenyl, isobutenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl And an icosenyl group.
  • alkenyl group having 2 to 20 carbon atoms examples include a vinyl group, a propenyl group, an isopropenyl group, Butenyl, isobutenyl, pentenyl, hexenyl, heptenyl, octeny
  • R x represents “(i) an alkyl group having 1 to 20 carbon atoms which may have a substituent”, “an alkyl group having 1 to 20 carbon atoms”, and “(ii) an alkyl group having a substituent.
  • substituent of the "alkenyl group having 2 to 20 carbon atoms" of the “alkenyl group having 2 to 20 carbon atoms” include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; An alkoxy group having 1 to 20 carbon atoms such as a methoxy group, an ethoxy group, an isopropoxy group or a butoxy group; an alkoxy group having 1 to 12 carbon atoms such as a methoxymethoxy group or a methoxyethoxy group A nitro group; an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group or a naphthyl group; a triazolyl group,
  • R x has “(i) an alkyl group having 1 to 20 carbon atoms which may have a substituent”, “an alkyl group having 1 to 20 carbon atoms” and “(ii) a substituent.
  • the substituent of the "alkenyl group having 2 to 20 carbon atoms" of the "alkenyl group having 2 to 20 carbon atoms which may be substituted” includes a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a methoxy group, an ethoxy group, C1-C20 alkoxy groups such as isopropoxy group and butoxy group; nitro group; C6-C20 aromatic hydrocarbon ring groups such as phenyl group and naphthyl group; furanyl group, thiophenyl group, benzothiazole-2 An aromatic heterocyclic group having 2 to 20 carbon atoms, such as -ylthio group; a cycloalkyl group having 3 to
  • Rx has “(i) an alkyl group having 1 to 20 carbon atoms which may have a substituent”, “an alkyl group having 1 to 20 carbon atoms” and “(ii) a substituent.
  • R x represents “(i) an alkyl group having 1 to 20 carbon atoms which may have a substituent”, “an alkyl group having 1 to 20 carbon atoms”, and “(ii) an alkyl group having a substituent.
  • the plurality of substituents may be the same or different.
  • cycloalkyl group having 3 to 12 carbon atoms which may have a substituent examples include a cyclopropyl group, a cyclobutyl group, and a cyclopentyl Group, cyclohexyl group, cyclooctyl group and the like. Among these, a cyclopentyl group and a cyclohexyl group are preferred.
  • the substituent of the “cycloalkyl group having 3 to 12 carbon atoms” of the “(iii) cycloalkyl group having 3 to 12 carbon atoms which may have a substituent” for R x is a fluorine atom, a chlorine atom A halogen atom such as a cyano group; an N, N-dialkylamino group having 2 to 12 carbon atoms such as a dimethylamino group; an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group and a propyl group; a methoxy group and an ethoxy group A nitro group; an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group and a naphthyl group; and the like.
  • the substituent of “(iii) a cycloalkyl group having 3 to 12 carbon atoms which may have a substituent” of “(cycloalkyl group having 3 to 12 carbon atoms)” of R x is fluorine.
  • Halogen atoms such as atoms and chlorine atoms; cyano groups; alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; alkoxy groups having 1 to 6 carbon atoms such as methoxy group, ethoxy group and isopropoxy group.
  • the “(3) cycloalkyl group having 3 to 12 carbon atoms which may have a substituent” of the “cycloalkyl group having 3 to 12 carbon atoms” of R x has a plurality of substituents. May be.
  • the substituents may be the same or different.
  • an aromatic hydrocarbon ring group having 5 to 18 carbon atoms which may have a substituent As the "(5) aromatic hydrocarbon ring group having 5 to 18 carbon atoms which may have a substituent (s)" for R x , the "aromatic hydrocarbon ring group having 5 to 18 carbon atoms" is a phenyl group , 1-naphthyl group, 2-naphthyl group and the like. Among these, a phenyl group and a naphthyl group are preferable, and a phenyl group, a 1-naphthyl group and a 2-naphthyl group are more preferable.
  • Examples of the substituent of “(iv) an aromatic hydrocarbon ring group having 5 to 18 carbon atoms which may have a substituent” for R x include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; An N, N-dialkylamino group having 2 to 12 carbon atoms such as a group; an alkoxy group having 1 to 20 carbon atoms such as a methoxy group, an ethoxy group, an isopropoxy group and a butoxy group; a methoxymethoxy group, a methoxyethoxy group and the like; An alkoxy group having 1 to 12 carbon atoms substituted with an alkoxy group having 1 to 12 carbon atoms; a nitro group; an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group and a naphthyl group; a triazolyl group, a pyrrolyl group, An aromatic heterocyclic group having 2
  • the “(iv) aromatic hydrocarbon ring group having 5 to 18 carbon atoms which may have a substituent” of R x includes a plurality of “aromatic hydrocarbon ring groups having 5 to 18 carbon atoms”. May have a substituent.
  • Rx is represented by “(iv) an aromatic hydrocarbon ring group having 5 to 18 carbon atoms which may have a substituent”, wherein “an aromatic hydrocarbon ring group having 5 to 18 carbon atoms” has a plurality of substituents; In the case of having, the substituents may be the same or different.
  • the “carbon number” of the cyclic group having at least one of an aromatic hydrocarbon ring and an aromatic heterocyclic ring of Rf is at least one of an aromatic hydrocarbon ring and an aromatic heterocyclic ring not containing a carbon atom of a substituent.
  • Rf is preferably a “cyclic group having at least one of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms”.
  • cyclic group having at least one of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms are shown below. However, it is not limited to the following. In the following formula, "-" represents a bond extending from an arbitrary position of the ring to K.
  • Specific examples of the optionally substituted hydrocarbon ring group having at least one aromatic hydrocarbon ring having 6 to 30 carbon atoms include the following formulas (1-1) to (1-21) And a hydrocarbon ring group having 6 to 18 carbon atoms represented by formulas (1-8) to (1-21) is preferable.
  • the groups represented by the following formulas (1-1) to (1-21) may have a substituent.
  • Specific examples include structures represented by the following formulas (2-1) to (2-51) and the like. Sixteen heterocyclic groups are preferred.
  • the groups represented by the following formulas (2-1) to (2-51) may have a substituent.
  • A represents -CH 2- , -NR c- , an oxygen atom, a sulfur atom, -SO- or -SO 2-
  • B and D each independently represent -NR c- , an oxygen atom, a sulfur atom, -SO- or -SO 2-
  • E represents -NR c- , an oxygen atom or a sulfur atom.
  • R c represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, and a propyl group.
  • Rf is determined by the above formulas (1-8), (1-11), (1-12), (1-13), (1-14), (1-15), Formula (1-20), Formula (2-9) to Formula (2-11), Formula (2-24) to Formula (2-33), Formula (2-35) to Formula (2-43), Formula It is preferably any of groups represented by (2-47) and formulas (2-49) to (2-51).
  • the total number of ⁇ electrons contained in the ring structure in Rf is preferably 4 or more, more preferably 6 or more, still more preferably 8 or more, and particularly preferably 10 or more. , 20 or less, more preferably 18 or less.
  • Rf is any of the following (i-1) to (i-6).
  • the groups represented by the following formulas (i-1) to (i-6) may have a substituent.
  • J represents —CH 2 —, —NR d —, an oxygen atom, a sulfur atom, —SO— or —SO 2 —
  • R d represents a hydrogen atom or a carbon number of 1 to 6; Represents an alkyl group.
  • the “cyclic group having at least one of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms” of Rf may have one or more substituents. . When it has a plurality of substituents, the plurality of substituents may be the same or different from each other.
  • Examples of the substituent of “a cyclic group having at least one of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms” of Rf include, for example, a fluorine atom, a chlorine atom and the like.
  • Rx and Rb represent the same meaning as described above, and preferred examples thereof are also the same as described above.
  • the plurality of substituents may be the same or different.
  • at least one substituent selected from a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms is preferable.
  • R 14 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • Rc and Rb each independently represent a hydrogen atom or a substituent having 6 to 12 carbon atoms. It represents a good aromatic hydrocarbon ring group or an aromatic heterocyclic group which may have a substituent having 3 to 12 carbon atoms.
  • R 14 represents (i) a hydrogen atom or (ii) an alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group, and among them, R 14 is preferably a hydrogen atom.
  • Rc and Rb each independently have a hydrogen atom, an aromatic hydrocarbon ring group which may have a substituent having 6 to 12 carbon atoms, or a substituent having 3 to 12 carbon atoms. Represents an aromatic heterocyclic group.
  • Rc and Rb may be the same or different.
  • An aromatic hydrocarbon ring group of Rb and Rc which may have a substituent having 6 to 12 carbon atoms, or an aromatic heterocyclic group which may have a substituent having 3 to 12 carbon atoms, Specific examples include those having the same defined number of carbon atoms among those similar to Rf described above.
  • the substituents of Rb and Rc the same as the substituents of the above-mentioned Rf can be mentioned, and the preferable ones are also the same.
  • the compound has a plurality of substituents, they may be the same or different.
  • Rc and Rb are each independently preferably a hydrogen atom or an aromatic hydrocarbon ring group which may have a substituent having 6 to 12 carbon atoms, and further each independently is a hydrogen atom, a phenyl group or A naphthyl group is preferred, and a combination in which both Rc and Rb are simultaneously a hydrogen atom, a combination in which a hydrogen atom and a phenyl group, or a combination of a hydrogen atom and a naphthyl group are particularly preferred.
  • Rb and Rc have the same meaning as described above, and T indicates the direction in which Ga is bonded.
  • black circle
  • the groups represented by the following formulas (ii-1) to (ii-45) and the groups represented by the following formulas (iii-1) to (iii-46) may have a substituent.
  • J represents —CH 2 —, —NR d —, an oxygen atom, a sulfur atom, Represents —SO— or —SO 2 —, and R d represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Ga is a divalent organic group having 1 to 20 carbon atoms which may have a substituent, and preferably a divalent organic group having 3 to 20 carbon atoms which may have a substituent. is there. Ga is more preferably —CH 2 contained in (i) a divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms and (ii) a divalent aliphatic hydrocarbon group having 3 to 20 carbon atoms.
  • R 15 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Examples of the substituent of the organic group represented by Ga include an alkyl group having 1 to 5 carbon atoms such as a methyl group, an ethyl group and a propyl group; and an alkoxy group having 1 to 5 carbon atoms such as a methoxy group, an ethoxy group and a propoxy group.
  • the substituent for Ga include an alkyl group having 1 to 5 carbon atoms such as a hydroxyl group, a methyl group, an ethyl group and a propyl group; an alkoxy group having 1 to 5 carbon atoms such as a methoxy group, an ethoxy group and an isopropoxy group; Group: a halogen atom such as a fluorine atom and a chlorine atom.
  • the “divalent aliphatic hydrocarbon group” is preferably a divalent chain-like aliphatic hydrocarbon group, and more preferably an alkylene group.
  • the “divalent aliphatic hydrocarbon group” preferably has 3 to 20 carbon atoms, more preferably 3 to 18 carbon atoms.
  • the “divalent aliphatic hydrocarbon group” is preferably a divalent aliphatic hydrocarbon group having 2 to 20 carbon atoms, and is preferably a divalent linear aliphatic hydrocarbon group having 2 to 18 carbon atoms. It is preferably a hydrogen group, more preferably an alkylene group having 2 to 18 carbon atoms.
  • the carbon number of Ga is preferably 4 to 16 carbon atoms, more preferably 5 to 14 carbon atoms, particularly preferably 6 to 12 carbon atoms, and most preferably 6 to 10 carbon atoms.
  • the structure of Ga is preferably an unsubstituted alkylene group having 4 to 16 carbon atoms, more preferably an unsubstituted alkylene group having 5 to 14 carbon atoms, and still more preferably an unsubstituted alkylene group having 6 to 12 carbon atoms.
  • An unsubstituted alkylene group having 6 to 10 carbon atoms is particularly preferred, and an n-hexylene group and an n-octylene group are most preferred.
  • both terminals of Ga be —CH 2 — (both terminals of Ga are not substituted).
  • Gb is an organic group having 1 to 20 carbon atoms which may have a substituent, and preferably an organic group having 3 to 20 carbon atoms which may have a substituent.
  • Gb is more preferably (i) an aliphatic hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and (ii) 3 to 20 carbon atoms optionally having a substituent.
  • R 15 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Among them, a hydrogen atom or a methyl group is preferable.
  • Rg represents a hydrogen atom, a methyl group, or a chlorine atom.
  • the “aliphatic hydrocarbon group” is preferably a chain-like aliphatic hydrocarbon group, and more preferably an alkyl group, an alkynyl group, or an alkenyl group.
  • the “aliphatic hydrocarbon group” is preferably an aliphatic hydrocarbon group having 2 to 20 carbon atoms, and is preferably a linear aliphatic hydrocarbon group having 2 to 18 carbon atoms. More preferably, it is an alkyl group (eg, an n-hexyl group), an alkynyl group (eg, a 2-butynyl group), or an alkenyl group (eg, a 1-butenyl group) of Formulas 2 to 18.
  • the carbon number of Gb is preferably 4 to 16 carbon atoms, more preferably 4 to 14 carbon atoms, particularly preferably 4 to 12 carbon atoms, and most preferably 4 to 10 carbon atoms.
  • the structure of Gb is preferably an unsubstituted alkyl group, alkynyl group or alkenyl group having 4 to 16 carbon atoms, more preferably an unsubstituted alkyl group, alkynyl group or alkenyl group having 4 to 14 carbon atoms. And more preferably an unsubstituted alkyl group, alkynyl group or alkenyl group having 4 to 12 carbon atoms, particularly preferably an unsubstituted alkyl group, alkynyl group or alkenyl group having 4 to 10 carbon atoms. More particularly preferred are up to 10 unsubstituted alkyl groups, most preferably n-hexyl groups.
  • Gb has 3 or more carbon atoms
  • one terminal of Gb is —CH 2 — (one terminal of Gb is not substituted).
  • -O- and -S- do not substitute a continuous -CH 2 -in the aliphatic hydrocarbon group (that is, -OO- and -S- It is preferable that the compound does not form an S- structure (that is, it is preferable to exclude the case where
  • (Ii) "It is preferably a linear aliphatic hydrocarbon group having 3 to 18 carbon atoms which may have a substituent", and (iii) "It may have a substituent.
  • (Vi) Unsubstituted alkyl, alkynyl or alkenyl groups having 4 to 14 carbon atoms are even more preferable, and (vi) unsubstituted alkyl, alkynyl or alkenyl groups having 4 to 14 carbon atoms are more preferable; Even more preferred are "unsubstituted alkyl, alkynyl or alkenyl groups having 4 to 12 carbon atoms", and (vii) "unsubstituted alkyl, alkynyl or alkenyl groups having 4 to 10 carbon atoms” Is particularly preferable, and an unsubstituted al
  • Q represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • alkyl group having 1 to 6 carbon atoms of the alkyl group having 1 to 6 carbon atoms which may have a substituent include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • aromatic hydrocarbon groups having 6 to 12 carbon atoms such as phenyl and naphthalene groups.
  • R I to R IV each independently represent a hydrogen atom; a halogen atom such as a fluorine atom and a chlorine atom; a carbon atom such as a methyl group, an ethyl group and a propyl group.
  • R I to R IV are hydrogen atoms, or (ii) at least one of R I to R IV has 1 to 1 carbon atoms which may have a substituent.
  • it is an alkoxy group of No. 6 and the remainder is a hydrogen atom.
  • R I to R IV may be the same or different, and at least one of C R I to C R IV constituting the ring may be replaced by a nitrogen atom. Specific examples of the group in which at least one of CR I to CR IV is replaced by a nitrogen atom are shown below. However, the group in which at least one of CR I to CR IV is replaced by a nitrogen atom is not limited to these. [In each formula, R I to R IV represent the same meaning as described above, and preferred examples thereof are also the same as described above. ]
  • a halogen atom such as a fluorine atom and a chlorine atom
  • an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group and a propyl group
  • a cyano group such as a nitro group
  • an alkyl group having 1 to 6 carbon atoms in which at least one hydrogen atom is substituted with a halogen atom, such as a pentafluoroethyl group or a pentafluoroethyl group, or an alkoxy group having 1 to 6 carbon atoms, such as a methoxy group, an ethoxy group, or a propoxy group.
  • R 0 is plural, a plurality of R 0 is may be the same or different from each other.
  • p represents an integer of 0 to 3
  • p1 represents an integer of 0 to 4
  • p2 represents 0 or 1
  • p, p1 and p2 represent Both are preferably 0.
  • R 13 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • a 23 and A 24 each independently and independently represent the same meaning as A 2, and preferred examples thereof are also the same as A 2 .
  • B 21, B 22, Y 21, Y 22, L 21, L 22, R 31, R 32, d1, d2, e1, e2
  • B 21 , B 22 , Y 21 , Y 22 , L 21 , L 22 , R 31 , R 32 , d 1, d 2, e 1 and e 2 have the same meanings as described above, and preferred examples thereof are also included. Same as above.
  • the polymerizable compound (III) has a symmetrical structure around Ar, although not particularly limited (that is, Y 3 and Y 4 , A 23 and A 24 , B 21 and B 22 , Y It is preferable that 21 and Y 22 , L 21 and L 22 , R 31 and R 32 , d 1 and d 2, e 1 and e 2 are the same (symmetric with respect to Ar).
  • the polymerizable compound (III) is preferably a polymerizable compound represented by any of the following formulas (V-1) and (V-2), and is preferably the following formula (V-1) More preferred.
  • R, Q, R I to R IV , R 0 , Y 3 , Y 4 , A 23 , A 24 , B 21 , B 22 , Y 21 , Y 22 , L 21 , L 22 , R 31 , R 32 , d1, d2, e1, e2, p, p1 and p2 have the same meaning as described above, and preferred examples thereof are also the same as described above.
  • the polymerizable compound represented by the formula (V-1) is preferably a polymerizable compound (iii-1) represented by the following formula (iii-1), and is preferably a compound represented by the following formula (iii-2): And more preferably a polymerizable compound (iii-2) represented by the following formula (1) or (2).
  • R, Q, R I to R IV , R 0 , Y 3 , Y 4 , A 23 , A 24 , B 21 , B 22 , Y 21 , Y 22 , L 21 , L 22 , R 31 , R 32 , d 1, d 2, e 1, e 2 and p have the same meaning as described above, and preferred examples thereof are also the same as described above.
  • R I to R IV , Q and R have the same meanings as described above, and preferred examples thereof are also the same as described above.
  • K and l are each independently 1 to 18 Represents an integer.
  • the above-mentioned polymerizable compound (III) can be synthesized by combining known synthesis reactions. That is, various documents (for example, WO2012 / 141245, WO2012 / 147904, WO2014 / 010325, WO2013 / 0466781, WO2014 / 061709, WO WO 2014/126113, WO 2015/064698, WO 2015-140302, WO 2015/129654, WO 2015/141784, WO 2016/159193, WO 2012 / 169424, WO2012 / 176679, WO2015 / 122385, JP-A-2016-190818, WO2017 / 150622, and the like.
  • various documents for example, WO2012 / 141245, WO2012 / 147904, WO2014 / 010325, WO2013 / 0466781, WO2014 / 061709, WO WO 2014/126113, WO 2015/064698, WO 2015-140302, WO
  • R 3 Y 2 , B 2 , L 2 , A 2 , FG 2 , d, e, Y 3 , Y 4 , A 23 , A 24 , B 21 , B 22 , Y 21 , Y 22 , L 21 , L 22 , R 31 , R 32 , d 1, d 2, e 1, e 2, R, and R I to R IV are as described above. And the preferred examples are also the same as above.
  • the polymerizable composition contains at least a polymerizable compound (III) and a polymerization initiator.
  • the polymerizable composition is useful as a raw material for producing a polymer, an optical film, and an optically anisotropic material, as described later. According to the polymerizable composition, an optical film or the like having excellent in-plane uniformity of film thickness and improved in-plane uniformity of optical characteristics can be favorably produced.
  • the polymerization initiator is blended from the viewpoint of more efficiently performing the polymerization reaction of the polymerizable compound (III) contained in the polymerizable composition.
  • the polymerization initiator used include a radical polymerization initiator, an anionic polymerization initiator, and a cationic polymerization initiator.
  • radical polymerization initiator examples include a thermal radical generator, which is a compound that generates an active species capable of initiating polymerization of a polymerizable compound when heated;
  • a photo-radical generator which is a compound that generates an active species capable of initiating polymerization of a polymerizable compound by exposure to exposure light such as X-rays and X-rays; Is preferred.
  • Examples of the photo-radical generator include acetophenone compounds, biimidazole compounds, triazine compounds, O-acyl oxime compounds, onium salt compounds, benzoin compounds, benzophenone compounds, ⁇ -diketone compounds, and polynuclear quinone compounds. , A xanthone-based compound, a diazo-based compound, and an imidosulfonate-based compound. These compounds are components that generate active radicals or active acids or both active radicals and active acids upon exposure.
  • the photoradical generator can be used alone or in combination of two or more.
  • acetophenone-based compound examples include 2-hydroxy-2-methyl-1-phenylpropan-1-one and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1- [4- (phenylthio) phenyl] -octane-1,2-dione 2- (O-benzoyloxime) and the like.
  • biimidazole compound examples include 2,2′-bis (2-chlorophenyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) -1,2′-biimidazole, , 2'-Bis (2-bromophenyl) -4,4 ', 5,5'-tetrakis (4-ethoxycarbonylphenyl) -1,2'-biimidazole, 2,2'-bis (2-chlorophenyl) -4,4 ', 5,5'-Tetraphenyl-1,2'-biimidazole, 2,2'-bis (2,4-dichlorophenyl) -4,4', 5,5'-tetraphenyl-1 , 2'-biimidazole, 2,2'-bis (2,4,6-trichlorophenyl) -4,4 ', 5,5'-tetraphenyl-1,2'-biimi
  • hydrogen donor means a compound capable of donating a hydrogen atom to a radical generated from a biimidazole-based compound upon exposure.
  • hydrogen donor a mercaptan compound, an amine compound and the like defined below are preferable.
  • mercaptan-based compound examples include 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, 2-mercaptobenzimidazole, 2,5-dimercapto-1,3,4-thiadiazole, 2-mercapto-2,5-dimethyl Aminopyridine and the like can be mentioned.
  • Examples of the amine compound include 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4-diethylaminoacetophenone, 4-dimethylaminopropiophenone, ethyl-4-dimethylaminobenzoate, Examples thereof include 4-dimethylaminobenzoic acid and 4-dimethylaminobenzonitrile.
  • triazine-based compound examples include 2,4,6-tris (trichloromethyl) -s-triazine, 2-methyl-4,6-bis (trichloromethyl) -s-triazine, 2- [2- (5 -Methylfuran-2-yl) ethenyl] -4,6-bis (trichloromethyl) -s-triazine, 2- [2- (furan-2-yl) ethenyl] -4,6-bis (trichloromethyl)- s-Triazine, 2- [2- (4-diethylamino-2-methylphenyl) ethenyl] -4,6-bis (trichloromethyl) -s-triazine, 2- [2- (3,4-dimethoxyphenyl) ethenyl -4,6-bis (trichloromethyl) -s-triazine, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl)
  • O-acyl oxime compound examples include 1- [4- (phenylthio) phenyl] -heptane-1,2-dione 2- (O-benzoyloxime) and 1- [4- (phenylthio) phenyl]- Octane-1,2-dione 2- (O-benzoyloxime), 1- [4- (benzoyl) phenyl] -octane-1,2-dione 2- (O-benzoyloxime), 1- [9-ethyl- 6- (2-Methylbenzoyl) -9H-carbazol-3-yl] -ethanone 1- (O-acetyloxime), 1- [9-ethyl-6- (3-methylbenzoyl) -9H-carbazole-3- Yl] -ethanone 1- (O-acetyloxime), 1- (9-ethyl-6-benzoyl-9H-carbazol-3-yl) -ethanone 1- (O-acety
  • ⁇ ⁇ As the photoradical generator, a commercially available product can be used as it is.
  • anionic polymerization initiator examples include alkyl lithium compounds; monolithium salts or monosodium salts such as biphenyl, naphthalene and pyrene; and polyfunctional initiators such as dilithium salts and trilithium salts.
  • Examples of the cationic polymerization initiator include protonic acids such as sulfuric acid, phosphoric acid, perchloric acid, and trifluoromethanesulfonic acid; Lewis acids such as boron trifluoride, aluminum chloride, titanium tetrachloride, and tin tetrachloride; A combination system of an aromatic onium salt or an aromatic onium salt and a reducing agent.
  • These polymerization initiators can be used alone or in combination of two or more.
  • the mixing ratio of the polymerization initiator is usually 0.1 to 30 parts by mass, preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the polymerizable compound contained in the polymerizable composition. Parts by weight.
  • the surfactant is not particularly limited, but is preferably a nonionic surfactant.
  • a nonionic surfactant a commercially available product may be used.
  • a nonionic surfactant which is an oligomer containing a fluorine-containing group, a hydrophilic group, and a lipophilic group, such as Surflon manufactured by AGC Seimi Chemical Co., Ltd.
  • the mixing ratio of the surfactant is usually 0.01 to 10 parts by mass, preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the polymerizable compound contained in the polymerizable composition. 2 parts by mass.
  • the polymerizable composition may further contain other components in addition to the polymerizable compound, the polymerization initiator, and the surfactant.
  • Other components include metals, metal complexes, dyes, pigments, fluorescent materials, phosphorescent materials, leveling agents, thixotropic agents, gelling agents, polysaccharides, ultraviolet absorbers, infrared absorbers, antioxidants, ion exchange resins, Metal oxides such as titanium oxide are exemplified.
  • Other components include other copolymerizable monomers.
  • the polymerizable composition can be usually prepared by mixing and dissolving a predetermined amount of a polymerizable compound, a polymerization initiator, and other components to be added as required in a suitable organic solvent. .
  • Examples of the organic solvent used for preparing the polymerizable composition include ketones such as cyclopentanone, cyclohexanone, and methyl ethyl ketone; acetates such as butyl acetate and amyl acetate; halogenated hydrocarbons such as chloroform, dichloromethane, and dichloroethane; , 4-dioxane, cyclopentyl methyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxolan and the like; and the like.
  • ketones such as cyclopentanone, cyclohexanone, and methyl ethyl ketone
  • acetates such as butyl acetate and amyl acetate
  • halogenated hydrocarbons such as chloroform, dichloromethane, and dichloroethane
  • 4-dioxane 4-dioxane, cyclopentyl
  • the polymer is obtained by polymerizing the above-mentioned polymerizable compound (III) or the above-mentioned polymerizable composition.
  • polymerization means a chemical reaction in a broad sense including a cross-linking reaction in addition to a normal polymerization reaction.
  • the polymer usually has a monomer unit derived from the polymerizable compound (III).
  • the polymer is prepared using the above-mentioned polymerizable compound (III) or the above-mentioned polymerizable composition, it can be used favorably as a constituent material of an optical film or the like.
  • the polymer is not particularly limited, and can be used in an arbitrary shape according to the use such as a film, a powder, and a layer in which the powder is aggregated.
  • a polymer film can be favorably used as a constituent material of an optical film and an optically anisotropic material described later, and a polymer powder is used for a paint, an anti-counterfeit article, a security article, and the like.
  • the layer made of the polymer powder can be favorably used as a constituent material of the optically anisotropic body.
  • the polymer is specifically ( ⁇ ) subjected to the polymerization reaction of the above-mentioned polymerizable compound (III) or the above-mentioned polymerizable composition in the presence of an appropriate organic solvent, and Isolating the polymer, dissolving the obtained polymer in a suitable organic solvent to prepare a solution, applying the solution on a suitable substrate, drying the obtained coating film, and optionally heating.
  • the organic solvent used in the polymerization reaction in the method ( ⁇ ) is not particularly limited as long as it is inert.
  • aromatic hydrocarbons such as toluene, xylene and mesitylene
  • ketones such as cyclohexanone, cyclopentanone and methyl ethyl ketone
  • acetates such as butyl acetate and amyl acetate
  • halogenated hydrocarbons such as chloroform, dichloromethane and dichloroethane
  • Ethers such as cyclopentyl methyl ether, tetrahydrofuran, and tetrahydropyran; and the like.
  • those having a boiling point of 60 to 250 ° C are preferable, and those having a boiling point of 60 to 150 ° C are more preferable from the viewpoint of excellent handling properties.
  • the organic solvent for dissolving the isolated polymer and the organic solvent used in the method ( ⁇ ) include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, Ketone solvents such as cyclohexanone; ester solvents such as butyl acetate and amyl acetate; halogenated hydrocarbon solvents such as dichloromethane, chloroform and dichloroethane; tetrahydrofuran, tetrahydropyran, 1,2-dimethoxyethane, 1,4-dioxane, Ether solvents such as cyclopentyl methyl ether and 1,3-dioxolane; N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, ⁇ -butyrolactone, N-methylpyrrolidone (N-methyl-2-pyrrolidone) and the like
  • a substrate of a known and commonly used material can be used irrespective of organic or inorganic.
  • organic material polycycloolefin [for example, ZEONEX, ZEONOR (registered trademark; manufactured by Nippon Zeon), ARTON (registered trademark; manufactured by JSR), and Apel (registered trademark; manufactured by Mitsui Chemicals, Inc.)], Polyethylene terephthalate, polycarbonate, polyimide, polyamide, polymethyl methacrylate, polystyrene, polyvinyl chloride, polytetrafluoroethylene, cellulose, cellulose triacetate, polyether sulfone, etc., and inorganic materials such as silicon, glass, calcite, etc.
  • the substrate to be used may be a single layer or a laminate.
  • a substrate made of an organic material is preferable, and a resin film in which the organic material is formed into a film is more preferable.
  • examples of the substrate include a substrate used for producing an optically anisotropic body described later.
  • the drying temperature is not particularly limited as long as the solvent can be removed, but the lower limit temperature is preferably 50 ° C or higher, and more preferably 70 ° C or higher, from the viewpoint that a constant temperature can be stably obtained. More preferably, there is.
  • the upper limit of the drying temperature is preferably 200 ° C. or lower, more preferably 195 ° C. or lower, from the viewpoint of not adversely affecting the substrate.
  • Examples of the method of polymerizing the above-mentioned polymerizable compound (III) or the above-mentioned polymerizable composition include a method of irradiating with active energy rays and a thermal polymerization method.
  • the method of irradiating with an active energy ray is preferable because of the progress of the process.
  • a method of irradiating light such as ultraviolet light is preferable because of easy operation.
  • the temperature at which light such as ultraviolet light is irradiated is not particularly limited as long as the liquid crystal phase can be maintained.
  • the temperature is 20 ° C. or higher.
  • the upper limit of the temperature at which light such as ultraviolet rays is irradiated is preferably 200 ° C. or lower, more preferably 195 ° C. or lower, from the viewpoint of not adversely affecting the substrate.
  • the temperature at the time of light irradiation is preferably 100 ° C. or less.
  • the light irradiation intensity is usually in the range of 1 W / m 2 to 10 kW / m 2 , preferably in the range of 5 W / m 2 to 2 kW / m 2 .
  • the dose of ultraviolet rays is preferably 0.1 mJ / cm 2 or more, more preferably 0.5 mJ / cm 2 or more, preferably 5000 mJ / cm 2 or less, more preferably 4000 mJ / cm 2 or less.
  • the polymer obtained as described above can be transferred from the substrate and used, or can be peeled off from the substrate and used alone, or can be used as it is as a constituent material of an optical film without peeling off the substrate You can also. Further, the polymer peeled from the substrate can be used after being pulverized by a known method into powder.
  • the number average molecular weight of the polymer obtained as described above is preferably 500 to 500,000, more preferably 5,000 to 300,000. When the number average molecular weight is in such a range, high hardness is obtained and handleability is excellent, which is desirable.
  • the number average molecular weight of the polymer can be measured by gel permeation chromatography (GPC) using monodispersed polystyrene as a standard sample and tetrahydrofuran as an eluent.
  • an optical film having excellent in-plane uniformity of film thickness and improved in-plane uniformity of optical characteristics can be obtained.
  • the optical film is formed using a polymer and / or a polymerizable compound, and includes a layer having an optical function.
  • the optical function simply means transmission, reflection, refraction, birefringence, and the like.
  • the optical film may be an optical film using a polymer as a main constituent material of the layer having an optical function, or an optical film in which the layer having an optical function contains a polymerizable compound.
  • the occupation ratio of the polymer is more than 50% by mass when all components of the layer having an optical function are 100% by mass.
  • the optical film containing the polymerizable compound contains the polymerizable compound in an amount of 0.01% by mass or more when all the components of the layer having an optical function are 100% by mass.
  • the optical film is in the form as it is formed on the alignment substrate (orientation substrate / (alignment film) / optical film) which may have an alignment film, and is formed on a transparent substrate film different from the alignment substrate. It may be in the form of a transferred film (transparent substrate film / optical film) or, if the optical film has self-supporting properties, in the form of an optical film single layer (optical film).
  • the alignment film and the alignment substrate the same substrate and alignment film as an optical anisotropic body described later can be used as the alignment film and the alignment substrate.
  • the optical film is obtained by applying a solution containing a polymerizable compound (A) or a solution of the polymerizable composition on an alignment substrate, drying the obtained coating film, and performing heat treatment (alignment of liquid crystal), and A method of performing light irradiation and / or heat treatment (polymerization), or (B) a solution of a liquid crystalline polymer obtained by polymerizing a polymerizable compound or a polymerizable composition is applied on an alignment substrate, and optionally obtained. It can be produced by a method of drying the obtained coating film, or a method of applying a solution containing the polymerizable compound and the resin (C) on an alignment substrate and drying the obtained coating film.
  • the optical film can be used for an optical anisotropic body, an alignment film for a liquid crystal display element, a color filter, a low-pass filter, a light polarizing prism, various optical filters, and the like.
  • the optical film is determined from the phase difference at a wavelength of 400 nm to 800 nm measured with a Mueller Matrix Polarimeter Axoscan. It is preferable that the following ⁇ value and ⁇ value are within a predetermined range. Specifically, the ⁇ value is preferably from 0.70 to 0.99, more preferably from 0.75 to 0.90. Further, the ⁇ value is preferably from 1.00 to 1.25, and more preferably from 1.01 to 1.20.
  • the optically anisotropic body has a layer containing a polymer as a constituent material.
  • the optically anisotropic body can be obtained, for example, by forming an alignment film on a substrate and further forming a polymer layer (liquid crystal layer) on the alignment film.
  • the optically anisotropic body may be a layer in which a polymer layer (liquid crystal layer) is directly formed on a substrate, or may be a layer only of a polymer layer (liquid crystal layer).
  • the polymer layer may be a film-like polymer or may be a powdery polymer aggregate.
  • the alignment film is formed on the surface of the substrate in order to regulate the alignment of the polymerizable compound in one direction within the plane.
  • a solution composition for alignment film
  • a polymer such as polyimide, polyvinyl alcohol, polyester, polyarylate, polyamide imide, or polyether imide is applied on a substrate in a film form, dried, and dried in one direction. Rubbing treatment or the like.
  • the thickness of the alignment film is preferably from 0.001 to 5 ⁇ m, more preferably from 0.001 to 1.0 ⁇ m.
  • the method of the rubbing treatment is not particularly limited, and examples thereof include a method of rubbing the alignment film in a certain direction with a roll made of synthetic fiber such as nylon or natural fiber such as cotton, or a roll around which felt is wound.
  • the alignment film is preferably washed with isopropyl alcohol or the like in order to remove the fine powder (foreign matter) generated during the rubbing treatment and to keep the surface of the alignment film clean.
  • a method of irradiating polarized ultraviolet light to the surface of the alignment film can also have a function of regulating the alignment in one direction in the plane.
  • the substrate on which the alignment film is formed examples include a glass substrate and a substrate made of a synthetic resin film.
  • synthetic resin acrylic resin, polycarbonate resin, polyether sulfone resin, polyethylene terephthalate resin, polyimide resin, polymethyl methacrylate resin, polysulfone resin, polyarylate resin, polyethylene resin, polystyrene resin, polyvinyl chloride resin, cellulose diacetate , Cellulose triacetate, and thermoplastic resins such as alicyclic olefin polymers.
  • Examples of the alicyclic olefin polymer include cyclic olefin random multi-component copolymers described in JP-A-05-310845 and US Pat. No. 5,179,171, JP-A 05-97978, and US Pat. No. 5,202,388.
  • a hydrogenated polymer described in JP-A-11-124429 International Publication No. WO 99/20676
  • a hydrogenated product of the thermoplastic dicyclopentadiene-based ring-opened polymer described in JP-A-11-124429. .
  • the same method (the above ( ⁇ ) and ( ⁇ )) as described in the section of the polymer can be used.
  • the thickness of the obtained liquid crystal layer is not particularly limited, but is usually 1 to 10 ⁇ m.
  • optical anisotropic body there is no particular limitation, and a retardation plate, a viewing angle widening plate, and the like can be given.
  • the optically anisotropic body is obtained from a phase difference at a wavelength of 400 nm to 800 nm measured by a Mueller Matrix Polarimeter Axoscan. It is preferable that the following ⁇ value and ⁇ value are within a predetermined range. Specifically, the ⁇ value is preferably from 0.70 to 0.99, more preferably from 0.75 to 0.90. Further, the ⁇ value is preferably from 1.00 to 1.25, and more preferably from 1.01 to 1.25.
  • (Phase difference at 450 nm) / (Phase difference at 550 nm)
  • (phase difference at 650 nm) / (phase difference at 550 nm)
  • the polarizing plate includes an optically anisotropic body and a polarizing film.
  • Specific examples of the polarizing plate include those obtained by laminating an optically anisotropic body on a polarizing film directly or via another layer (such as a glass plate).
  • the method for producing the polarizing film is not particularly limited.
  • a method of producing a PVA-based polarizing film a method of uniaxially stretching after adsorbing iodine ions to the PVA-based film, a method of adsorbing iodine ions after uniaxially stretching the PVA-based film, A method of simultaneously performing iodine ion adsorption and uniaxial stretching, a method of uniaxially stretching a PVA-based film after dyeing it with a dichroic dye, a method of uniaxially stretching a PVA-based film and then dyeing it with a dichroic dye, PVA-based A method of simultaneously dyeing a film with a dichroic dye and uniaxially stretching the film is exemplified.
  • a method for producing a polyene-based polarizing film a method in which a PVA-based film is uniaxially stretched and then heated and dehydrated in the presence of a dehydration catalyst, and a method in which a polyvinyl chloride-based film is uniaxially stretched and then subjected to a dehydrochlorination catalyst And a known method such as a method of heating and dewatering.
  • the polarizing film and the optically anisotropic body may be in contact with each other via an adhesive layer made of an adhesive (including an adhesive).
  • the average thickness of the adhesive layer is usually 0.01 ⁇ m to 30 ⁇ m, preferably 0.1 ⁇ m to 15 ⁇ m.
  • the adhesive layer is preferably a layer having a tensile breaking strength of 40 MPa or less according to JIS K7113.
  • Examples of the adhesive constituting the adhesive layer include an acrylic adhesive, a urethane adhesive, a polyester adhesive, a polyvinyl alcohol adhesive, a polyolefin adhesive, a modified polyolefin adhesive, a polyvinyl alkyl ether adhesive, a rubber adhesive, and vinyl chloride.
  • Ethylene adhesives, and acrylate ester adhesives such as ethylene-methyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl methacrylate copolymer and ethylene-ethyl acrylate copolymer, etc. Is mentioned.
  • the polarizing plate uses an optically anisotropic body, it has excellent in-plane uniformity of optical characteristics while having reverse wavelength dispersion.
  • a display device having a panel and an antireflection film can be suitably manufactured.
  • the panel include a liquid crystal panel and an organic electroluminescence panel.
  • the display device include a flat panel display device including a polarizing plate and a liquid crystal panel, and an organic electroluminescence display device including a liquid crystal panel and an organic electroluminescence panel.
  • Step 1 Synthesis of compound A> First, a compound A represented by the following structural formula was synthesized by the method described in WO 2017/150622 (Step 1).
  • ⁇ Step 2 Synthesis of compound 1>
  • 83.05 g (0.397 mol) of trans-1,4-cyclohexanedicarboxylic acid dichloride and 830 g of cyclopentyl methyl ether (CPME) were added to a three-necked reactor equipped with a thermometer.
  • 100 g (0.378 mol) of the compound A synthesized in the previous step 1 was added, and the reactor was immersed in an ice bath to adjust the internal temperature of the reaction solution to 0 ° C.
  • 40.2 g (0.397 mol) of triethylamine (Et 3 N) was slowly dropped over 20 minutes while maintaining the reaction solution internal temperature at 10 ° C. or lower.
  • Example 2 Synthesis of compound 1
  • CPME cyclopentyl methyl ether
  • the mixture was further stirred at 10 ° C. or lower for 1 hour.
  • 250 g of water was added to the obtained reaction solution, and the mixture was stirred at 50 ° C. for 2 hours.
  • 250 g of water was newly added, and the mixture was stirred at 50 ° C. for 2 hours. This operation was performed three times in total.
  • the organic layer was further washed by stirring at 40 ° C. for 30 minutes using 416 g of a buffer solution (pH 5.5) composed of acetic acid and sodium acetate at a concentration of 1 mol / liter. After washing, liquid separation was performed, and the aqueous layer was extracted.
  • Example 3 Synthesis of compound 1
  • CPME cyclopentyl methyl ether
  • the mixture was further stirred at 10 ° C. or lower for 1 hour.
  • 250 g of water was added to the obtained reaction solution, and the mixture was stirred at 50 ° C. for 2 hours.
  • 250 g of water was newly added, and the mixture was stirred at 50 ° C. for 2 hours. This operation was performed three times in total.
  • the concentration of Compound 1 in the organic layer (solution (X)) at this stage was determined by high performance liquid chromatography to be 10.59% by mass.
  • the organic layer at this stage contained 45.0 g of the compound X represented by the above structural formula.
  • the filtrate was washed with normal hexane and then dried under vacuum to obtain 99.22 g of a white solid (mixture Y of compound 1 and compound X) as an intermediate.
  • a white solid mixture Y of compound 1 and compound X
  • the content of compound 1 relative to the white solid was 92.5 mass%. %Met.
  • the yield of Compound 1 was 57.97 mol% based on Compound A.
  • Example 4 Synthesis of compound 1
  • CPME cyclopentyl methyl ether
  • the mixture was further stirred at 10 ° C. or lower for 1 hour.
  • 250 g of water was added to the obtained reaction solution, and the mixture was stirred at 50 ° C. for 2 hours.
  • 250 g of water was newly added, and the mixture was stirred at 50 ° C. for 2 hours. This operation was performed three times in total.
  • the organic layer was further washed by stirring at 40 ° C. for 30 minutes using 416 g of a buffer solution (pH 5.5) composed of acetic acid and sodium acetate at a concentration of 1 mol / liter. After washing, liquid separation was performed, and the aqueous layer was extracted.
  • Example 5 Synthesis of compound 1
  • CPME cyclopentyl methyl ether
  • Example 6 Synthesis of compound 1
  • CPME cyclopentyl methyl ether
  • the mixture was further stirred at 10 ° C. or lower for 1 hour.
  • 250 g of water was added to the obtained reaction solution, and the mixture was stirred at 50 ° C. for 2 hours.
  • 250 g of water was newly added, and the mixture was stirred at 50 ° C. for 2 hours. This operation was performed three times in total.
  • the organic layer was further washed by stirring at 40 ° C. for 30 minutes using 416 g of a buffer solution (pH 5.5) composed of acetic acid and sodium acetate at a concentration of 1 mol / liter. After washing, liquid separation was performed, and the aqueous layer was extracted.
  • the obtained organic layer was gradually cooled, and slowly stirred at 0 ° C. for 1 hour to precipitate a solid.
  • the precipitated solid was removed by filtration to obtain a filtrate.
  • the filtrate in the filter was washed with 100 g of separately prepared CPME cooled to 0 ° C., and the washing solution obtained by this washing and the previous filtrate were combined.
  • the filtrate combined with this washing solution was further washed with 416 g of a buffer solution (pH 5.5) consisting of acetic acid and sodium acetate having a concentration of 1 mol / liter by stirring at 40 ° C. for 30 minutes. After washing, liquid separation was carried out, and the aqueous layer was extracted.
  • the mixture was further stirred at 10 ° C. or lower for 1 hour.
  • 250 g of water was added to the obtained reaction solution, and the mixture was stirred at 50 ° C. for 2 hours.
  • 250 g of water was newly added, and the mixture was stirred at 50 ° C. for 2 hours. This operation was performed three times in total.
  • the organic layer was further washed by stirring at 40 ° C. for 30 minutes using 416 g of a buffer solution (pH 5.5) composed of acetic acid and sodium acetate at a concentration of 1 mol / liter. After washing, liquid separation was performed, and the aqueous layer was extracted.
  • the obtained organic layer was gradually cooled, and slowly stirred at 0 ° C. for 1 hour to precipitate a solid.
  • the precipitated solid was removed by filtration to obtain a filtrate.
  • the filtrate in the filter was washed with 100 g of separately prepared CPME cooled to 0 ° C., and the washing solution obtained by this washing was combined with the previous filtrate.
  • the filtrate combined with the washing liquid was separated, and the organic layer (oil layer) obtained by extracting the aqueous layer was added with 1200 g of normal hexane and gradually cooled to 0 ° C. to precipitate a solid.
  • the solid was collected by filtration.
  • the mixture was further stirred at 10 ° C. or lower for 1 hour.
  • 250 g of water was added to the obtained reaction solution, and the mixture was stirred at 50 ° C. for 2 hours.
  • 250 g of water was newly added, and the mixture was stirred at 50 ° C. for 2 hours. This operation was performed three times in total.
  • the concentration of Compound 1 in the organic layer (solution (X)) at this stage was determined by high performance liquid chromatography to be 10.55% by mass. Note that the organic layer at this stage contained 44.6 g of the compound X represented by the above structural formula.
  • the precipitate was mixed with toluene, and the insoluble matter was removed by filtration.
  • the filtrate was concentrated under reduced pressure, and heptane was added to the obtained concentrate.
  • the precipitate was taken out by filtration and dried under vacuum to obtain 7.8 g of a powder (intermediate) containing the compound represented by the above formula (6-a) (compound (I)).
  • the yield of the compound represented by the above formula (6-a) was 40.00 mol% based on the compound represented by the above formula (A-IV).
  • the content (purity) of the compound represented by the above formula (6-a) with respect to the obtained powder was 70.0% by mass.
  • Step 1 Synthesis of compound B>
  • 100 g (0.605 mol) of 2-hydrazinobenzothiazole was added to 750 g of N, N-dimethylformamide in a nitrogen stream, and then 119.9 g (0.1 g) of 1-bromohexane. 726 mol).
  • 192.72 g (0.908 mol) of tripotassium phosphate was added, and the whole volume was stirred at 100 ° C. for 3 hours.
  • reaction solution was cooled to 60 ° C., and 750 g of toluene and 750 g of water were added to the cooled reaction solution, and the mixture was stirred at 60 ° C. for 15 minutes.
  • reaction solution was allowed to stand, it was separated into three layers. Two lower layers were extracted.
  • 430 g of a 10% by mass aqueous sodium chloride solution was added, and the mixture was stirred at 60 ° C. for 15 minutes.
  • the liquid layer was separated, the aqueous layer was extracted, and the toluene layer (organic layer) obtained was concentrated under reduced pressure to extract 560 g of toluene.
  • the structure of Compound B was identified by 1 H-NMR. The 1 H-NMR spectrum data is shown below.
  • Step 2 Synthesis of polymerizable compound 1>
  • a white solid mixture Y of compound 1 and compound X
  • a pure amount of compound 1 10.00 g (23.90 mmol)
  • 100 g of chloroform and 3.49 g of dimethylformamide (DMF) were added, and the mixture was cooled to 10 ° C or lower.
  • 3.27 g (27.48 mmol) of thionyl chloride was added dropwise while controlling the reaction temperature to 10 ° C. or lower.
  • reaction solution was returned to 25 ° C and stirred for 1 hour. After the completion of the reaction, the reaction solution was concentrated by an evaporator until the amount of the reaction solution became 1/4. Thereafter, 25 g of chloroform was added to obtain a chloroform solution of the acid chloride of Compound 1.
  • a three-necked reactor equipped with a thermometer 1.50 g (10.86 mmol) of 2,5-dihydroxybenzaldehyde and 6.98 g (65.17 mmol) of 2,6-lutidine as a base were placed in a nitrogen stream. And 50 g of chloroform, and the resulting solution was cooled to 10 ° C. or lower.
  • Example 8 Synthesis of polymerizable compound 1
  • a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 1 was 10.80 g (10.00 g (23% in pure amount of compound 1). .90 mmol)) instead of using: 10.89 g of a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 2 (10.00 g (23.
  • a polymerizable compound 1 was synthesized in the same manner as in Example 7, except that 90 mmol)) was used. As a result, 11.6 g of the polymerizable compound 1 was obtained.
  • the isolation yield of the polymerizable compound 1 was 91.3 mol% based on 2,5-dihydroxybenzaldehyde.
  • Example 9 Synthesis of polymerizable compound 1
  • a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 1 was 10.80 g (10.00 g (23% in pure amount of compound 1). .90 mmol)) instead of using: 10.81 g of a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 3 (10.00 g (23.
  • a polymerizable compound 1 was synthesized in the same manner as in Example 7, except that 90 mmol)) was used. As a result, 11.7 g of polymerizable compound 1 was obtained.
  • the isolation yield of the polymerizable compound 1 was 92.0 mol% based on 2,5-dihydroxybenzaldehyde.
  • Example 10 Synthesis of polymerizable compound 1
  • a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 1 was 10.80 g (10.00 g (23% in pure amount of compound 1).
  • a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 4 10.81 g (10.00 g (23.
  • a polymerizable compound 1 was synthesized in the same manner as in Example 7, except that 90 mmol)) was used. As a result, 11.8 g of the polymerizable compound 1 was obtained.
  • the isolation yield of the polymerizable compound 1 was 92.8 mol% based on 2,5-dihydroxybenzaldehyde.
  • Example 11 Synthesis of polymerizable compound 1
  • a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 1 was 10.80 g (10.00 g (23% in pure amount of compound 1). .90 mmol)
  • 10.89 g of a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 5 (10.00 g (23.
  • a polymerizable compound 1 was synthesized in the same manner as in Example 7, except that 90 mmol)) was used.
  • the isolation yield of the polymerizable compound 1 was 90.5 mol% based on 2,5-dihydroxybenzaldehyde.
  • Example 12 Synthesis of polymerizable compound 1
  • a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 1 was 10.80 g (10.00 g (23% in pure amount of compound 1). .90 mmol)), 11.14 g of a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 6 (10.00 g of pure compound 1 (23.90 mmol)).
  • a polymerizable compound 1 was synthesized in the same manner as in Example 7, except that 90 mmol)) was used. As a result, 11.6 g of the polymerizable compound 1 was obtained.
  • the isolation yield of the polymerizable compound 1 was 91.3 mol% based on 2,5-dihydroxybenzaldehyde.
  • Step 1 Synthesis of compound C>
  • 500.5 g (2.69 mol) of 1-naphthylacetic acid and 1049 g of toluene were charged into a three-necked reactor equipped with a thermometer.
  • 349.5 g (2.56 mol) of 6-chloro-1-hexanol and 48.6 g (0.26 mol) of paratoluenesulfonic acid monohydrate were added to prepare a solution.
  • the prepared solution was heated, and azeotropic dehydration (internal temperature: about 95 ° C.) was performed for 2 hours while discharging generated water out of the reaction system.
  • Step 2 Synthesis of compound D>
  • 59.52 g (55.35 g (0.182 mol) as a net amount of compound C) of the light brown oil containing compound C synthesized in the above step 1 and N 235 g of -methyl-2-pyrrolidone was charged to obtain a uniform solution.
  • 25.0 g (0.151 mol) of 2-hydrazinobenzothiazole was added to the homogeneous solution.
  • 48.18 g (0.227 mol) of tripotassium phosphate was added, and the whole volume was stirred at 100 ° C. for 3 hours.
  • the reaction solution was cooled to 60 ° C., and after adding 312.5 g of ethyl acetate to the cooled reaction solution, filtration was performed while maintaining the temperature at 60 ° C.
  • the organic layer which was the filtrate, was slowly dropped into 250 g of a 0.5 N aqueous citric acid solution, stirred at an internal temperature of 60 ° C. for 30 minutes, and then the aqueous layer was extracted. Further, 275 g of a 9.1 mass% aqueous sodium chloride solution was added to the organic layer, and the mixture was stirred at an internal temperature of 60 ° C. for 30 minutes, and then allowed to stand for 30 minutes to extract an aqueous layer.
  • Step 3 Synthesis of polymerizable compound 2>
  • a white solid as an intermediate synthesized in Example 3 32.43 g (as a pure amount of compound 1) 30.00 g (71.7 mmol)
  • 300 g of chloroform and 10.5 g (143.4 mmol) of N, N-dimethylformamide (DMF) were added, and the mixture was cooled to 10 ° C. or lower.
  • 9.81 g (82.44 mmol) of thionyl chloride was added dropwise while controlling the reaction temperature to 10 ° C. or lower.
  • the whole amount of the chloroform solution of the acid chloride of Compound 1 synthesized previously was slowly added dropwise while maintaining the reaction solution internal temperature at 10 ° C. or lower. After completion of the dropwise addition, the whole volume was further stirred at 5 to 10 ° C. for 1 hour to carry out a reaction. After completion of the reaction, while maintaining the temperature at 10 ° C. or lower, 120 g of a 1.0 N aqueous hydrochloric acid solution was added to the reaction solution, and the reaction was stirred at 10 ° C. or lower for 30 minutes.
  • the organic layer obtained by extracting the aqueous layer was cooled to 25 ° C., 1.5 g of LocaHelp # 479 was added, and the mixture was stirred for 30 minutes. Thereafter, filtration was performed with a Kiriyama funnel covered with 1 g of LocaHelp # 479 to remove LocaHelp # 479. 180 g of chloroform was extracted with a rotary evaporator from the organic layer obtained by removing LocaHelp # 479, and concentrated. 210 g of hexane was added to the organic layer obtained by concentration over 1 hour to precipitate a solid, and a pale yellow solid was obtained by filtration.
  • the obtained pale yellow solid was dissolved in 120 g of tetrahydrofuran at 25 ° C., 1.5 g of LocaHelp # 479 was added, and the mixture was stirred for 30 minutes. Thereafter, filtration was performed with a Kiriyama funnel covered with 1 g of LocaHelp # 479 to remove LocaHelp # 479. 165 g of methanol was slowly dropped at 15 ° C. to the organic layer obtained by removing LocaHelp # 479 to precipitate a solid, which was filtered to obtain a solid. The obtained solid was dried with a vacuum drier to obtain 40.2 g of the polymerizable compound 2 as a pale yellow solid. The yield of the polymerizable compound 2 was 91.0 mol% based on 2,5-dihydroxybenzaldehyde. The structure of the polymerizable compound 2 was identified by 1 H-NMR. The 1 H-NMR spectrum data is shown below.
  • Example 14 Synthesis of polymerizable compound 2
  • polymerizable compound 2 was synthesized in the same manner as in Example 13.
  • 40.6 g of polymerizable compound 2 was obtained.
  • a method for producing an intermediate which can efficiently produce an intermediate containing compound (I) at a high concentration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The purpose of the present invention is to provide an intermediate production method capable of efficiently producing an intermediate containing a compound (I) at a high concentration. An intermediate production method according to the present invention includes: (i) a step (α) for obtaining a solution (X) containing a compound (I) represented by formula (I) and a compound (II) represented by formula (II); and (ii) a step (β) for obtaining an intermediate containing 86 mass% or more of the compound (I) by adding a protic solvent to the solution (X) to precipitate the compound (II) and by removing the precipitated compound (II).

Description

中間体の製造方法Production method of intermediate
 本発明は、中間体の製造方法に関する。 The present invention relates to a method for producing an intermediate.
 位相差板には、直線偏光を円偏光に変換する1/4波長板や直線偏光の偏光振動面を90度変換する1/2波長板等がある。これらの位相差板は、ある特定の単色光に対しては正確に光線波長の1/4λあるいは1/2λの位相差に変換可能なものである。
 しかしながら、従来の位相差板には、位相差板を通過して出力される偏光が有色の偏光に変換されてしまうという問題があった。これは、位相差板を構成する材料が位相差について波長分散性を有し、可視光域の光線が混在する合成波である白色光に対して各波長ごとの偏光状態に分布が生じることから、全ての波長領域において正確な1/4λあるいは1/2λの位相差に調整することが不可能であることに起因する。
 このような問題を解決するため、広い波長域において一様の偏光変換が可能な光学フィルムを得ることが可能な化合物およびその製造方法が検討されている(例えば、特許文献1~4参照)。
Examples of the retardation plate include a 板 wavelength plate that converts linearly polarized light into circularly polarized light, and a 波長 wavelength plate that converts the polarization oscillation plane of linearly polarized light by 90 degrees. These retardation plates are capable of accurately converting a specific monochromatic light into a phase difference of 光線 λ or λλ of the light wavelength.
However, the conventional retardation plate has a problem that polarized light output through the retardation plate is converted into colored polarized light. This is because the material constituting the retardation plate has a wavelength dispersion property with respect to the retardation, and distribution occurs in the polarization state for each wavelength with respect to white light, which is a composite wave in which light rays in the visible light region are mixed. It is impossible to accurately adjust the phase difference to 1 / 4λ or 1 / 2λ in all wavelength regions.
In order to solve such a problem, a compound capable of obtaining an optical film capable of performing uniform polarization conversion in a wide wavelength range and a production method thereof have been studied (for example, see Patent Documents 1 to 4).
国際公開第2009/116657号International Publication No. 2009/116657 国際公開第2011/068138号International Publication No. 2011/068138 特開2016-216433号公報JP 2016-216433 A 国際公開第2016/159193号International Publication No. WO 2016/159193
 しかしながら、特許文献1~3では、製造方法における工程数が多く、製造方法が煩雑となってしまうという問題があった。また、特許文献4では、目的化合物を高濃度で含有する中間体は得られておらず、また、反応に使用している溶剤の量が多く、生産効率の観点から改善の余地があった。 However, Patent Documents 1 to 3 have a problem that the number of steps in the manufacturing method is large and the manufacturing method is complicated. In Patent Document 4, an intermediate containing the target compound at a high concentration was not obtained, and the amount of the solvent used in the reaction was large, and there was room for improvement from the viewpoint of production efficiency.
 本発明は、上記事情に鑑みてなされたものであり、所定の化合物(I)を高濃度で含有する中間体を効率的に製造することが可能な中間体の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for producing an intermediate which can efficiently produce an intermediate containing a predetermined compound (I) at a high concentration. And
 本発明者らは、上記課題を解決すべく鋭意研究した結果、化合物(I)と化合物(II)とを含有する溶液(X)にプロトン性溶媒を添加して化合物(II)を析出させて、析出した化合物(II)を除去すれば、化合物(I)を高濃度で含有する中間体を効率的に製造することが可能であることを見出し、本発明を完成するに至った。
 かくして本発明によれば、下記に示す中間体の製造方法が提供される。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, added a protic solvent to a solution (X) containing the compound (I) and the compound (II) to precipitate the compound (II). The inventors have found that removing the precipitated compound (II) makes it possible to efficiently produce an intermediate containing the compound (I) at a high concentration, and has completed the present invention.
Thus, according to the present invention, there is provided the following method for producing an intermediate.
 〔1〕 (i)下記式(I):
Figure JPOXMLDOC01-appb-C000005
〔式(I)中、AおよびBは、それぞれ独立して、置換基を有していてもよい環状脂肪族基、または、置換基を有していてもよい芳香族基を表し、
 YおよびLは、それぞれ独立して、化学的な単結合、-O-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-NR21-C(=O)-、-C(=O)-NR22-、-O-C(=O)-O-、-NR23-C(=O)-O-、-O-C(=O)-NR24-、または、-NR25-C(=O)-NR26-を表し、R21~R26は、それぞれ独立して、水素原子または炭素数1~6のアルキル基を表し、
 Rは、水素原子、メチル基または塩素原子を表し、
 FGは、水酸基、カルボキシル基またはアミノ基を表し、
 dは1~20の整数を表し、
 eは1または2である。〕で示される化合物(I)と、
 下記式(II):
Figure JPOXMLDOC01-appb-C000006
〔式(II)中、A21、B21およびB22は、それぞれ独立して、置換基を有していてもよい環状脂肪族基、または、置換基を有していてもよい芳香族基を表し、
 Y21、Y22、L21およびL22は、それぞれ独立して、化学的な単結合、-O-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-NR21-C(=O)-、-C(=O)-NR22-、-O-C(=O)-O-、-NR23-C(=O)-O-、-O-C(=O)-NR24-、または、-NR25-C(=O)-NR26-を表し、R21~R26は、それぞれ独立して、水素原子または炭素数1~6のアルキル基を表し、
 R31およびR32は、それぞれ独立して、水素原子、メチル基または塩素原子を表し、
 d1およびd2は、それぞれ独立して、1~20の整数を表し、
 e1およびe2は、それぞれ独立して、1または2である。〕で示される化合物(II)とを含有する溶液(X)を得る工程(α)、並びに、
(ii)前記溶液(X)にプロトン性溶媒を添加して前記化合物(II)を析出させて、前記析出した化合物(II)を除去して、前記化合物(I)を含有する中間体を得る工程(β)を含む中間体の製造方法であって、
 前記工程(β)により得られた中間体は、前記化合物(I)を86質量%以上含む、中間体の製造方法。
 換言すると、上記〔1〕の中間体の製造方法は、前記化合物(I)を含む中間体の製造方法であって、
(i)前記式化合物(I)と、前記化合物(II)とを含有する溶液(X)を得る工程(α)、並びに、
(ii)前記溶液(X)にプロトン性溶媒を添加して前記化合物(II)を析出させて、前記析出した化合物(II)を除去して、前記化合物(I)を86質量%以上含有する中間体を得る工程(β)を含む。
[1] (i) The following formula (I):
Figure JPOXMLDOC01-appb-C000005
[In formula (I), A 2 and B 2 each independently represent a cyclic aliphatic group which may have a substituent, or an aromatic group which may have a substituent;
Y 2 and L 2 are each independently a chemical single bond, —O—, —C (= O) —, —C (= O) —O—, —OC (= O) —, —NR 21 —C (= O) —, —C (= O) —NR 22 —, —OC (= O) —O—, —NR 23 —C (= O) —O—, —O— Represents C (= O) —NR 24 — or —NR 25 —C (= O) —NR 26 —, wherein R 21 to R 26 are each independently a hydrogen atom or an alkyl having 1 to 6 carbon atoms. Represents a group,
R 3 represents a hydrogen atom, a methyl group or a chlorine atom,
FG 2 represents a hydroxyl group, a carboxyl group or an amino group,
d represents an integer of 1 to 20,
e is 1 or 2. A compound (I) represented by the formula:
The following formula (II):
Figure JPOXMLDOC01-appb-C000006
[In the formula (II), A 21 , B 21 and B 22 each independently represent a cyclic aliphatic group which may have a substituent, or an aromatic group which may have a substituent. Represents
Y 21 , Y 22 , L 21 and L 22 are each independently a chemical single bond, —O—, —C (= O) —, —C (= O) —O—, —OC. (= O) -, - NR 21 -C (= O) -, - C (= O) -NR 22 -, - O-C (= O) -O -, - NR 23 -C (= O) - O—, —OC (= O) —NR 24 — or —NR 25 —C (= O) —NR 26 —, wherein R 21 to R 26 each independently represent a hydrogen atom or a carbon atom. Represents an alkyl group of Formulas 1 to 6,
R 31 and R 32 each independently represent a hydrogen atom, a methyl group or a chlorine atom;
d1 and d2 each independently represent an integer of 1 to 20,
e1 and e2 are each independently 1 or 2. A) obtaining a solution (X) containing the compound (II) represented by the formula:
(Ii) A protic solvent is added to the solution (X) to precipitate the compound (II), and the precipitated compound (II) is removed to obtain an intermediate containing the compound (I). A method for producing an intermediate comprising a step (β),
The method for producing an intermediate, wherein the intermediate obtained in the step (β) contains 86% by mass or more of the compound (I).
In other words, the method for producing an intermediate of the above [1] is a method for producing an intermediate containing the compound (I),
(I) a step (α) of obtaining a solution (X) containing the formula compound (I) and the compound (II);
(Ii) A protic solvent is added to the solution (X) to precipitate the compound (II), and the precipitated compound (II) is removed to contain the compound (I) at 86% by mass or more. Step (β) of obtaining an intermediate.
 〔2〕 前記溶液(X)中における前記化合物(I)の濃度が8.0質量%以上である、前記〔1〕の中間体の製造方法。 {[2]} The method for producing the intermediate of [1], wherein the concentration of the compound (I) in the solution (X) is 8.0% by mass or more.
 〔3〕 前記化合物(I)が下記式(I-1)で示される化合物(I-1)である、前記〔1〕または〔2〕の中間体の製造方法。
Figure JPOXMLDOC01-appb-C000007
〔式(I-1)中、R、dは、前記と同じ意味を表す。〕
[3] The method for producing the intermediate of [1] or [2], wherein the compound (I) is a compound (I-1) represented by the following formula (I-1).
Figure JPOXMLDOC01-appb-C000007
[In the formula (I-1), R 3 and d represent the same meaning as described above. ]
 〔4〕 前記化合物(II)が下記式(II-1)で示される化合物(II-1)である、前記〔1〕~〔3〕の何れかの中間体の製造方法。
Figure JPOXMLDOC01-appb-C000008
〔式(II-1)中、R、dは、前記と同じ意味を表す。〕
[4] The method for producing an intermediate according to any one of [1] to [3], wherein the compound (II) is a compound (II-1) represented by the following formula (II-1).
Figure JPOXMLDOC01-appb-C000008
[In the formula (II-1), R 3 and d represent the same meaning as described above. ]
 〔5〕 前記溶液(X)が有機溶媒をさらに含み、該有機溶媒が水非混和性有機溶媒である、前記〔1〕~〔4〕の何れかの中間体の製造方法。 {[5]} The method for producing an intermediate according to any one of the above [1] to [4], wherein the solution (X) further contains an organic solvent, and the organic solvent is a water-immiscible organic solvent.
 〔6〕 前記水非混和性有機溶媒は、ヒルデブランドの溶解度パラメーターが14.0MPa1/2以上22.0MPa1/2以下である、前記〔5〕の中間体の製造方法。 [6] The method for producing an intermediate according to [5], wherein the water-immiscible organic solvent has a Hildebrand solubility parameter of 14.0 MPa 1/2 or more and 22.0 MPa 1/2 or less.
 〔7〕 前記プロトン性溶媒がアルコールである、前記〔1〕~〔6〕の何れかの中間体の製造方法。 {[7]} The method for producing an intermediate according to any one of the above [1] to [6], wherein the protic solvent is an alcohol.
 本発明によれば、化合物(I)を高濃度で含有する中間体を効率的に製造することが可能な中間体の製造方法が提供される。 According to the present invention, there is provided a method for producing an intermediate which can efficiently produce an intermediate containing compound (I) at a high concentration.
 以下、本発明を詳細に説明する。なお、本発明において、「置換基を有していてもよい」とは、「無置換の、または、置換基を有する」の意味である。また、一般式中に含まれるアルキル基や芳香族炭化水素環基等の有機基が置換基を有する場合、当該置換基を有する有機基の炭素数には、置換基の炭素数を含まないものとする。例えば、炭素数6~20の芳香族炭化水素環基が置換基を有する場合、炭素数6~20の芳香族炭化水素環基の炭素数には、このような置換基の炭素数を含まないものとする。また、本発明において、「アルキル基」とは、鎖状(直鎖状または分岐状)の飽和炭化水素基を意味し、「アルキル基」には、環状の飽和炭化水素基である、「シクロアルキル基」は含まれないものとする。一方、「Rf中の環構造に含まれるπ電子の総数」には、置換基に含まれている環構造のπ電子も含まれるものとする。さらに、本発明において、「中間体」とは、少なくとも化合物(I)を含有するものであり、化合物(I)単体であってもよく、化合物(I)と化合物(I)以外の他の成分と含有する混合物であってもよい。 Hereinafter, the present invention will be described in detail. In the present invention, “may have a substituent” means “unsubstituted or has a substituent”. Further, when an organic group such as an alkyl group or an aromatic hydrocarbon ring group included in the general formula has a substituent, the carbon number of the organic group having the substituent does not include the carbon number of the substituent. And For example, when the aromatic hydrocarbon ring group having 6 to 20 carbon atoms has a substituent, the carbon number of the aromatic hydrocarbon ring group having 6 to 20 carbon atoms does not include the carbon number of such a substituent. Shall be. In the present invention, the “alkyl group” means a chain (linear or branched) saturated hydrocarbon group, and the “alkyl group” includes a cyclic saturated hydrocarbon group “cyclo” "Alkyl group" is not included. On the other hand, the “total number of π electrons contained in the ring structure in Rf” includes the π electrons of the ring structure contained in the substituent. Further, in the present invention, the “intermediate” includes at least the compound (I), may be the compound (I) alone, or may be a compound other than the compound (I) and the compound (I). And a mixture containing
(中間体の製造方法)
 以下、本発明の中間体の製造方法を詳細に説明する。
 本発明の中間体の製造方法は、化合物(I)と化合物(II)とを含有する溶液(X)を得る工程(α)と、溶液(X)にプロトン性溶媒を添加して化合物(II)を析出させて、析出した化合物(II)を除去して、化合物(I)を含有する中間体を得る工程(β)と、を少なくとも含み、必要に応じて、その他の工程をさらに含む。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(Method for producing intermediate)
Hereinafter, the method for producing the intermediate of the present invention will be described in detail.
The process for producing an intermediate according to the present invention comprises a step (α) of obtaining a solution (X) containing a compound (I) and a compound (II), and adding a protic solvent to the solution (X) to obtain a compound (II) ), And removing the precipitated compound (II) to obtain an intermediate containing the compound (I) (β), and further including other steps as necessary.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
<工程(α)>
 工程(α)は、化合物(I)と化合物(II)とを含有する溶液(X)を得る工程である。
<Step (α)>
Step (α) is a step of obtaining a solution (X) containing compound (I) and compound (II).
<<溶液(X)>>
 溶液(X)は、少なくとも、化合物(I)と化合物(II)とを含み、さらに、必要に応じて、有機溶媒、その他の成分を含む。
<< Solution (X) >>
Solution (X) contains at least compound (I) and compound (II), and further contains an organic solvent and other components as necessary.
 溶液(X)中における化合物(I)の濃度は、8.0質量%以上であることが好ましく、8.5質量%以上であることがより好ましく、9.0質量%以上であることが特に好ましく、また、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることが特に好ましい。溶液(X)中における化合物(I)の濃度が、上記下限値以上であり、上記上限値以下であれば、式(II)で表される化合物を高選択的に除去することができる。
 なお、「溶液(X)中における化合物(I)の濃度」は、下記式で計算される。
溶液(X)中における化合物(I)の濃度(質量%)=
(化合物(I)の質量)/[(化合物(I)の質量)+溶媒質量]×100
The concentration of the compound (I) in the solution (X) is preferably 8.0% by mass or more, more preferably 8.5% by mass or more, and particularly preferably 9.0% by mass or more. The content is preferably 40% by mass or less, more preferably 30% by mass or less, and particularly preferably 20% by mass or less. When the concentration of the compound (I) in the solution (X) is equal to or higher than the lower limit and equal to or lower than the upper limit, the compound represented by the formula (II) can be selectively removed.
The “concentration of compound (I) in solution (X)” is calculated by the following equation.
Concentration (% by mass) of compound (I) in solution (X) =
(Mass of compound (I)) / [(mass of compound (I)) + mass of solvent] × 100
 溶液(X)中における化合物(II)の濃度は、3.0質量%以上であることが好ましく、3.5質量%以上であることがより好ましく、4.0質量%以上であることが特に好ましく、また、10質量%以下であることが好ましく、9.0質量%以下であることがより好ましく、8.0質量%以下であることが特に好ましい。溶液(X)中における化合物(II)の濃度が、上記下限値以上であり、上記上限値以下であれば、式(II)で表される化合物を高選択的に除去することができる。
 なお、「溶液(X)中における化合物(II)の濃度」は、下記式で計算される。
溶液(X)中における化合物(II)の濃度=
(化合物(II)の質量)/[(化合物(II)の質量)+溶媒質量]×100
The concentration of the compound (II) in the solution (X) is preferably at least 3.0% by mass, more preferably at least 3.5% by mass, particularly preferably at least 4.0% by mass. Preferably, it is preferably at most 10% by mass, more preferably at most 9.0% by mass, particularly preferably at most 8.0% by mass. When the concentration of the compound (II) in the solution (X) is equal to or higher than the lower limit and equal to or lower than the upper limit, the compound represented by the formula (II) can be selectively removed.
The “concentration of the compound (II) in the solution (X)” is calculated by the following equation.
Concentration of compound (II) in solution (X) =
(Mass of compound (II)) / [(mass of compound (II)) + mass of solvent] × 100
 溶液(X)中における化合物(I)の濃度に対する溶液(X)中における化合物(II)の濃度の比(溶液(X)中における化合物(II)の濃度/溶液(X)中における化合物(I)の濃度)は、20%以上であることが好ましく、25%以上であることがより好ましく、30%以上であることが特に好ましく、また、60%以下であることが好ましく、55%以下であることがより好ましく、50%以下であることが特に好ましい。溶液(X)中における化合物(II)の濃度の比(溶液(X)中における化合物(II)の濃度/溶液(X)中における化合物(I)の濃度)が、上記下限値以上であり、上記上限値以下であれば、式(II)で表される化合物を高選択的に除去することができる。 The ratio of the concentration of compound (II) in solution (X) to the concentration of compound (I) in solution (X) (concentration of compound (II) in solution (X) / compound (I) in solution (X) ) Is preferably 20% or more, more preferably 25% or more, particularly preferably 30% or more, and preferably 60% or less, and 55% or less. More preferably, it is particularly preferably at most 50%. The ratio of the concentration of the compound (II) in the solution (X) (the concentration of the compound (II) in the solution (X) / the concentration of the compound (I) in the solution (X)) is not less than the lower limit, When the content is equal to or less than the above upper limit, the compound represented by the formula (II) can be highly selectively removed.
[化合物(I)]
 下記式(I)で示される化合物(I)は、1種の化合物のみで構成されていてもよく、2種の化合物から構成されていてもよいが、1種の化合物のみで構成されていることが好ましい。ここで、化合物(I)が1種の化合物のみで構成されていると、後述する化合物(II)は、A21を中心として左右対称となる。
Figure JPOXMLDOC01-appb-C000011
[Compound (I)]
The compound (I) represented by the following formula (I) may be composed of only one kind of compound or may be composed of two kinds of compounds, but is composed of only one kind of compound. Is preferred. Here, when the compound (I) is composed of only one compound, the corresponding groups in the compounds (II) is a symmetrical about the A 21.
Figure JPOXMLDOC01-appb-C000011
〔A、B
 式(I)中、AおよびBは、それぞれ独立して、置換基を有していてもよい環状脂肪族基、または、置換基を有していてもよい芳香族基を表す。
 これらの中でも、AおよびBは、それぞれ独立して、置換基を有していてもよい炭素数5~20の環状脂肪族基、または、置換基を有していてもよい炭素数2~20の芳香族基が好ましい。
[A 2 , B 2 ]
In the formula (I), A 2 and B 2 each independently represent a cyclic aliphatic group which may have a substituent, or an aromatic group which may have a substituent.
Among these, A 2 and B 2 each independently represent a cycloaliphatic group having 5 to 20 carbon atoms which may have a substituent or 2 carbon atoms which may have a substituent. Up to 20 aromatic groups are preferred.
 環状脂肪族基の具体例としては、シクロペンタン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基、シクロヘプタン-1,4-ジイル基、シクロオクタン-1,5-ジイル基等の炭素数5~20のシクロアルカンジイル基;デカヒドロナフタレン-1,5-ジイル基、デカヒドロナフタレン-2,6-ジイル基等の炭素数5~20のビシクロアルカンジイル基等が挙げられる。中でも、環状脂肪族基としては、置換されていてもよい炭素数5~20のシクロアルカンジイル基が好ましく、シクロヘキサンジイル基がより好ましく、特に、1,4-シクロヘキシレン基(シクロヘキサン-1,4-ジイル基)が好ましく、トランス-1,4-シクロヘキシレン基がより好ましい。 Specific examples of the cycloaliphatic group include cyclopentane-1,3-diyl group, cyclohexane-1,4-diyl group, cycloheptane-1,4-diyl group, cyclooctane-1,5-diyl group and the like. A cycloalkanediyl group having 5 to 20 carbon atoms; a bicycloalkanediyl group having 5 to 20 carbon atoms such as a decahydronaphthalene-1,5-diyl group and a decahydronaphthalene-2,6-diyl group. Among them, the cycloaliphatic group is preferably an optionally substituted cycloalkanediyl group having 5 to 20 carbon atoms, more preferably a cyclohexanediyl group, and particularly preferably a 1,4-cyclohexylene group (cyclohexane-1,4 -Diyl group), and a trans-1,4-cyclohexylene group is more preferable.
 芳香族基の具体例としては、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,6-ナフチレン基、4,4’-ビフェニレン基等の、炭素数6~20の芳香族炭化水素環基;フラン-2,5-ジイル、チオフェン-2,5-ジイル、ピリジン-2,5-ジイル、ピラジン-2,5-ジイル等の、炭素数2~20の芳香族複素環基;等が挙げられる。中でも、芳香族基としては、炭素数6~20の芳香族炭化水素環基が好ましく、フェニレン基がさらに好ましく、特に、1,4-フェニレン基が好ましい。 Specific examples of the aromatic group include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 1,4-naphthylene group, 1,5-naphthylene group and 2,6-naphthylene group Aromatic hydrocarbon ring groups having 6 to 20 carbon atoms, such as 4,4'-biphenylene group; furan-2,5-diyl, thiophen-2,5-diyl, pyridine-2,5-diyl, pyrazine- An aromatic heterocyclic group having 2 to 20 carbon atoms, such as 2,5-diyl; Among them, the aromatic group is preferably an aromatic hydrocarbon ring group having 6 to 20 carbon atoms, more preferably a phenylene group, and particularly preferably a 1,4-phenylene group.
 環状脂肪族基、および芳香族基の置換基としては、例えば、フッ素原子、塩素原子、臭素原子等のハロゲン原子;メチル基、エチル基等の炭素数1~6のアルキル基;メトキシ基、イソプロポキシ基等の炭素数1~5のアルコキシ基;ニトロ基;シアノ基;等が挙げられる。前記環状脂肪族基、炭素数5~20の環状脂肪族基、芳香族基、炭素数2~20の芳香族基は、上述した置換基から選ばれる少なくとも1つの置換基を有していてもよい。なお、置換基を複数有する場合は、各置換基は同一でも相異なっていてもよい。 Examples of the substituent for the cyclic aliphatic group and the aromatic group include a halogen atom such as a fluorine atom, a chlorine atom and a bromine atom; an alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; An alkoxy group having 1 to 5 carbon atoms such as a propoxy group; a nitro group; a cyano group; The cyclic aliphatic group, the cyclic aliphatic group having 5 to 20 carbon atoms, the aromatic group, and the aromatic group having 2 to 20 carbon atoms may have at least one substituent selected from the above-described substituents. Good. When a compound has a plurality of substituents, the substituents may be the same or different.
 ここで、Aは置換基を有していてもよい環状脂肪族基であり、Bは置換基を有していてもよい芳香族基であることが好ましい。
 そして、Aが、式(a)で表される「置換基を有していてもよいトランス-1,4―シクロヘキシレン基」であり、Bが、式(b)で表される「置換基を有していてもよい1,4‐フェニレン基」である組み合わせがより好ましい。
Here, A 2 is preferably a cyclic aliphatic group which may have a substituent, and B 2 is preferably an aromatic group which may have a substituent.
A 2 is a “trans-1,4-cyclohexylene group optionally having a substituent” represented by the formula (a), and B 2 is a “trans-1,4-cyclohexylene group” represented by the formula (b). The combination of "1,4-phenylene group which may have a substituent" is more preferable.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(a)および式(b)中、Rは、ハロゲン原子;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;シアノ基;ニトロ基;トリフルオロメチル基、ペンタフルオロエチル基等の少なくとも1つの水素原子がハロゲン原子で置換された炭素数1~6のアルキル基;メトキシ基、エトキシ基、プロポキシ基等の炭素数1~6のアルコキシ基;-OCF;-C(=O)-O-R;または-O-C(=O)-Rを表す。ここで、Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、または、置換基を有していてもよい炭素数5~12の芳香族炭化水素環基を表す。 In the formulas (a) and (b), R 0 is a halogen atom; an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group and a propyl group; a cyano group; a nitro group; An alkyl group having 1 to 6 carbon atoms in which at least one hydrogen atom such as an ethyl group is substituted by a halogen atom; an alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group and a propoxy group; -OCF 3 ; It represents a or -O-C (= O) -R a; (= O) -O-R a. Here, Ra is an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, or a substituent. A cycloalkyl group having 3 to 12 carbon atoms, or an aromatic hydrocarbon ring group having 5 to 12 carbon atoms which may have a substituent.
 Rとしては、溶解性向上の観点から、フッ素原子、塩素原子等のハロゲン原子;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;シアノ基;ニトロ基;トリフルオロメチル基、ペンタフルオロエチル基等の少なくとも1つの水素原子がハロゲン原子で置換された炭素数1~6のアルキル基;メトキシ基、エトキシ基、プロポキシ基等の炭素数1~6のアルコキシ基;が好ましい。なお、Rが複数の場合は、複数のRは互いに同一でも異なっていてもよい。さらに、p1は0~4の整数を表し、0であることが好ましい。 As R 0 , a halogen atom such as a fluorine atom and a chlorine atom; an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group and a propyl group; a cyano group; a nitro group; An alkyl group having 1 to 6 carbon atoms in which at least one hydrogen atom is substituted with a halogen atom such as a pentafluoroethyl group or a pentafluoroethyl group; an alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group or a propoxy group; . In the case R 0 is plural, a plurality of R 0 is may be the same or different from each other. Further, p1 represents an integer of 0 to 4, and is preferably 0.
 Rの、置換基を有していてもよい炭素数1~20のアルキル基の炭素数1~20のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、1-メチルペンチル基、1-エチルペンチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-へキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、およびn-イコシル基等が挙げられる。なお、置換基を有していてもよい炭素数1~20のアルキル基の炭素数は、1~12であることが好ましく、4~10であることが更に好ましい。 Examples of the alkyl group having 1 to 20 carbon atoms of the alkyl group having 1 to 20 carbon atoms which may have a substituent include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and an n-butyl group. Group, isobutyl group, 1-methylpentyl group, 1-ethylpentyl group, sec-butyl group, t-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, isohexyl group, n-heptyl Group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl Group, n-octadecyl group, n-nonadecyl group, n-icosyl group and the like. The alkyl group having 1 to 20 carbon atoms which may have a substituent preferably has 1 to 12 carbon atoms, and more preferably 4 to 10 carbon atoms.
 Rの、置換基を有していてもよい炭素数2~20のアルケニル基の炭素数2~20のアルケニル基としては、ビニル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、およびイコセニル基等が挙げられる。
 置換基を有していてもよい炭素数2~20のアルケニル基の炭素数は、2~12であることが好ましい。
Of R a, the alkenyl group having 2 to 20 carbon atoms alkenyl group substituents to 2 carbon atoms which may have a 20, a vinyl group, propenyl group, isopropenyl group, butenyl group, isobutenyl group, pentenyl Group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, undecenyl group, dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, and icosenyl group. Can be
The carbon number of the alkenyl group having 2 to 20 carbon atoms which may have a substituent is preferably 2 to 12.
 Rの炭素数1~20のアルキル基および炭素数2~20のアルケニル基の置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;ジメチルアミノ基等の炭素数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の炭素数1~20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素環基;トリアゾリル基、ピロリル基、フラニル基、チオフェニル基、ベンゾチアゾール-2-イルチオ基等の、炭素数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の炭素数3~8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の炭素数2~12の環状エーテル基;フェノキシ基、ナフトキシ基等の炭素数6~14のアリールオキシ基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、少なくとも1個の水素原子がフッ素原子で置換された炭素数1~12のフルオロアルキル基;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;およびベンゾジオキサニル基;などが挙げられる。これらの中でも、Rの炭素数1~20のアルキル基および炭素数2~20のアルケニル基の置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の炭素数1~20のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素環基;フラニル基、チオフェニル基等の、炭素数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、少なくとも1個の水素原子がフッ素原子で置換された炭素数1~12のフルオロアルキル基が好ましい。
 なお、Rの炭素数1~20のアルキル基、炭素数2~20のアルケニル基は、上述した置換基から選ばれる複数の置換基を有していてもよい。Rの炭素数1~20のアルキル基、炭素数2~20のアルケニル基が複数の置換基を有する場合、複数の置換基は互いに同一でも相異なっていてもよい。
Examples of the substituent for the alkyl group having 1 to 20 carbon atoms and the alkenyl group having 2 to 20 carbon atoms for Ra include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; N, N-dialkylamino group; an alkoxy group having 1 to 20 carbon atoms such as methoxy group, ethoxy group, isopropoxy group and butoxy group; an alkoxy group having 1 to 12 carbon atoms such as methoxymethoxy group and methoxyethoxy group Substituted alkoxy group having 1 to 12 carbon atoms; nitro group; aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as phenyl group and naphthyl group; triazolyl group, pyrrolyl group, furanyl group, thiophenyl group, benzothiazole group An aromatic heterocyclic group having 2 to 20 carbon atoms such as a 2-ylthio group; a C3 to C8 aromatic group such as a cyclopropyl group, a cyclopentyl group or a cyclohexyl group; A cycloalkyl group having 3 to 8 carbon atoms such as a cyclopentyloxy group and a cyclohexyloxy group; a cyclic ether group having 2 to 12 carbon atoms such as a tetrahydrofuranyl group, a tetrahydropyranyl group, a dioxolanyl group, and a dioxanyl group; a phenoxy group, an aryloxy group having 6 to 14 carbon atoms such as a naphthoxy group; trifluoromethyl group, pentafluoroethyl group, such as -CH 2 CF 3, carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom A benzofuryl group; a benzopyranyl group; a benzodioxolyl group; and a benzodioxanyl group. Among these, as the substituent of the alkyl group having 1 to 20 carbon atoms and the alkenyl group having 2 to 20 carbon atoms of Ra , halogen atoms such as fluorine atom and chlorine atom; cyano group; methoxy group, ethoxy group, An alkoxy group having 1 to 20 carbon atoms such as a propoxy group or a butoxy group; a nitro group; an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group or a naphthyl group; An aromatic heterocyclic group having from 20 to 20; a cycloalkyl group having from 3 to 8 carbon atoms such as a cyclopropyl group, a cyclopentyl group and a cyclohexyl group; at least one group such as a trifluoromethyl group, a pentafluoroethyl group and -CH 2 CF 3 ; A fluoroalkyl group having 1 to 12 carbon atoms in which hydrogen atoms are substituted by fluorine atoms is preferred.
In addition, the alkyl group having 1 to 20 carbon atoms and the alkenyl group having 2 to 20 carbon atoms of Ra may have a plurality of substituents selected from the above-described substituents. When the alkyl group having 1 to 20 carbon atoms and the alkenyl group having 2 to 20 carbon atoms of Ra have a plurality of substituents, the plurality of substituents may be the same or different.
 Rの、置換基を有していてもよい炭素数3~12のシクロアルキル基の炭素数3~12のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。これらの中でも、シクロペンチル基、シクロヘキシル基が好ましい。
 Rの炭素数3~12のシクロアルキル基の置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;ジメチルアミノ基等の炭素数2~12のN,N-ジアルキルアミノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;および、フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素環基等が挙げられる。中でも、Rの炭素数3~12のシクロアルキル基の置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;および、フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素環基が好ましい。
 なお、Rの炭素数3~12のシクロアルキル基は、複数の置換基を有していてもよい。Rの炭素数3~12のシクロアルキル基が複数の置換基を有する場合、複数の置換基は互いに同一でも相異なっていてもよい。
Examples of the cycloalkyl group having 3 to 12 carbon atoms of the cycloalkyl group having 3 to 12 carbon atoms which may have a substituent include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group and a cyclooctyl group. And the like. Among these, a cyclopentyl group and a cyclohexyl group are preferred.
Examples of the substituent of the cycloalkyl group having 3 to 12 carbon atoms of Ra include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; an N, N-dialkylamino group having 2 to 12 carbon atoms such as a dimethylamino group; C1-C6 alkyl groups such as methyl group, ethyl group and propyl group; C1-C6 alkoxy groups such as methoxy group, ethoxy group and isopropoxy group; nitro group; and phenyl group and naphthyl group And an aromatic hydrocarbon ring group having 6 to 20 carbon atoms. Among them, examples of the substituent of the cycloalkyl group having 3 to 12 carbon atoms of Ra include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group and a propyl group. Groups; alkoxy groups having 1 to 6 carbon atoms such as methoxy group, ethoxy group and isopropoxy group; nitro groups; and aromatic hydrocarbon ring groups having 6 to 20 carbon atoms such as phenyl group and naphthyl group.
The cycloalkyl group having 3 to 12 carbon atoms of Ra may have a plurality of substituents. When the cycloalkyl group having 3 to 12 carbon atoms of Ra has a plurality of substituents, the plurality of substituents may be the same or different.
 Rの、置換基を有していてもよい炭素数5~12の芳香族炭化水素環基の炭素数5~12の芳香族炭化水素環基としては、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。これらの中でも、フェニル基が好ましい。
 置換基を有していてもよい炭素数5~12の芳香族炭化水素環基の置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;ジメチルアミノ基等の炭素数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の炭素数1~20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素環基;トリアゾリル基、ピロリル基、フラニル基、チオフェニル基等の、炭素数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の炭素数3~8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の炭素数2~12の環状エーテル基;フェノキシ基、ナフトキシ基等の炭素数6~14のアリールオキシ基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、少なくとも1個の水素原子がフッ素原子で置換された炭素数1~12のフルオロアルキル基;-OCF;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;ベンゾジオキサニル基等が挙げられる。中でも、炭素数5~12の芳香族炭化水素環基の置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の炭素数1~20のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素環基;トリアゾリル基、ピロリル基、フラニル基、チオフェニル基等の、炭素数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、少なくとも1個の水素原子がフッ素原子で置換された炭素数1~12のフルオロアルキル基;-OCFから選ばれる少なくとも1つの置換基が好ましい。
 なお、炭素数5~12の芳香族炭化水素環基は、複数の置換基を有していてもよい。炭素数5~12の芳香族炭化水素環基が複数の置換基を有する場合、置換基は同一でも相異なっていてもよい。
Examples of the aromatic hydrocarbon ring group having 5 to 12 carbon atoms of the optionally substituted aromatic hydrocarbon ring group having 5 to 12 carbon atoms for Ra include a phenyl group, a 1-naphthyl group, -Naphthyl group and the like. Among these, a phenyl group is preferred.
Examples of the substituent of the aromatic hydrocarbon ring group having 5 to 12 carbon atoms which may have a substituent include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; N, N-dialkylamino group; C1-C20 alkoxy group such as methoxy group, ethoxy group, isopropoxy group, butoxy group; C1-C12 alkoxy group such as methoxymethoxy group, methoxyethoxy group A nitro group; an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group or a naphthyl group; a triazolyl group, a pyrrolyl group, a furanyl group, a thiophenyl group or the like; An aromatic heterocyclic group having 2 to 20 carbon atoms; a cycloalkyl group having 3 to 8 carbon atoms such as a cyclopropyl group, a cyclopentyl group, a cyclohexyl group; a cyclopentyloxy group; A cycloalkyloxy group having 3 to 8 carbon atoms such as a rohexyloxy group; a cyclic ether group having 2 to 12 carbon atoms such as a tetrahydrofuranyl group, a tetrahydropyranyl group, a dioxolanyl group, a dioxanyl group; a phenoxy group, a naphthoxy group and the like An aryloxy group having 6 to 14 carbon atoms; a fluoroalkyl group having 1 to 12 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom, such as a trifluoromethyl group, a pentafluoroethyl group, and -CH 2 CF 3 ; -OCF 3; benzofuryl; benzopyranyl group; benzodioxolyl group; benzodioxanyl group and the like. Among them, a substituent of an aromatic hydrocarbon ring group having 5 to 12 carbon atoms includes a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a carbon atom having 1 carbon atom such as a methoxy group, an ethoxy group, an isopropoxy group and a butoxy group. Nitro group; aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as phenyl group and naphthyl group; aromatic group having 2 to 20 carbon atoms such as triazolyl group, pyrrolyl group, furanyl group and thiophenyl group A heterocyclic group; a cycloalkyl group having 3 to 8 carbon atoms such as a cyclopropyl group, a cyclopentyl group, and a cyclohexyl group; at least one hydrogen atom such as a trifluoromethyl group, a pentafluoroethyl group, and —CH 2 CF 3 Is preferably a fluoroalkyl group having 1 to 12 carbon atoms substituted with a fluorine atom; and at least one substituent selected from —OCF 3 is preferable.
The aromatic hydrocarbon ring group having 5 to 12 carbon atoms may have a plurality of substituents. When the aromatic hydrocarbon ring group having 5 to 12 carbon atoms has a plurality of substituents, the substituents may be the same or different.
〔Y、L
 式(I)中、YおよびLは、それぞれ独立して、化学的な単結合、-O-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-NR21-C(=O)-、-C(=O)-NR22-、-O-C(=O)-O-、-NR23-C(=O)-O-、-O-C(=O)-NR24-、または、-NR25-C(=O)-NR26-を表す。ここで、R21~R26は、それぞれ独立して、水素原子または炭素数1~6のアルキル基を表す。
 これらの中でも、合成し易さと所望の光学特性発現の観点から、Yは、-O-であることが好ましく、Lは、-C(=O)-O-または-O-C(=O)-であることが好ましい。
[Y 2 , L 2 ]
In the formula (I), Y 2 and L 2 are each independently a chemical single bond, —O—, —C (= O) —, —C (= O) —O—, —OC (= O) -, - NR 21 -C (= O) -, - C (= O) -NR 22 -, - O-C (= O) -O -, - NR 23 -C (= O) - Represents —O—, —OC (= O) —NR 24 —, or —NR 25 —C (= O) —NR 26 —. Here, R 21 to R 26 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
Among these, Y 2 is preferably -O-, and L 2 is -C (= O) -O- or -OC (=, from the viewpoints of ease of synthesis and expression of desired optical properties. O)-.
〔R
 式(I)中、Rは、水素原子、メチル基または塩素原子を表す。
 これらの中でも、Rは、合成し易さと重合速度の観点から、水素原子であることが好ましい。
[R 3 ]
In the formula (I), R 3 represents a hydrogen atom, a methyl group or a chlorine atom.
Among these, R 3 is preferably a hydrogen atom from the viewpoint of ease of synthesis and polymerization rate.
〔FG
 式(I)中、FGは、水酸基、カルボキシル基またはアミノ基を表す。
 これらの中でも、FGは、合成し易さと所望の光学特性発現の観点から、カルボキシル基であることが好ましい。
[FG 2 ]
In the formula (I), FG 2 represents a hydroxyl group, a carboxyl group or an amino group.
Among these, FG 2 is synthesized from the standpoint of ease and desired optical properties expression is preferably a carboxyl group.
〔d〕
 式(I)中、dは、1~20の整数を表す。
 これらの中でも、dは、合成し易さと所望の光学特性発現の観点から、2~12の整数であることが好ましく、4~12の整数であることがより好ましく、4~10の整数であることが特に好ましい。
[D]
In the formula (I), d represents an integer of 1 to 20.
Among these, d is preferably an integer of 2 to 12, more preferably an integer of 4 to 12, and more preferably an integer of 4 to 10, from the viewpoints of ease of synthesis and expression of desired optical properties. Is particularly preferred.
〔e〕
 式(I)中、eは、1または2である。
 これらの中でも、eは、1であることが好ましい。
 なお、eが2である場合において、2つのBは同一であっても異なっていてもよく、また、2つのLは同一であっても異なっていてもよい。
[E]
In the formula (I), e is 1 or 2.
Among these, e is preferably 1.
Incidentally, in the case e is 2, the two B 2 may be the same or different and also, the two L 2 may be different even in the same.
 化合物(I)の具体例としては、例えば、下記式(I-1)で示される化合物(I-1)が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000013
 式(I-1)中、R、dは、前記と同じ意味を表し、その好適例も前記と同じである。
Specific examples of the compound (I) include, for example, a compound (I-1) represented by the following formula (I-1).
Figure JPOXMLDOC01-appb-C000013
In Formula (I-1), R 3 and d have the same meanings as described above, and preferred examples thereof are also the same as described above.
〔化合物(I)の調製〕
 化合物(I)の調製について、eが1である場合と、eが2である場合とに分けて説明する。
 eが1である場合、化合物(I)(下記式(I-a)で示される化合物(I-a))は、例えば、下記式(A-0)で示される化合物(A-0)と下記式(B-0)で示される化合物(B-0)とを反応させることにより得ることができ、より具体的には、下記式(A-1)で示される化合物(A-1)と、トランス-1,4-シクロヘキサンジカルボン酸ジクロライドとを、トリエチルアミン等の塩基を含有する反応溶媒中で、エステル化反応させた後、加水分解することにより得ることができる。また、下記式(A-1)で示される化合物(A-1)と、トランス-1,4-シクロヘキサンジカルボン酸とを、脱水縮合剤存在下にて反応溶媒中で、反応させることにより得ることもできる。
Figure JPOXMLDOC01-appb-C000014
 式(A-0)、(B-0)および(I-a)中、A、B、Y、L、R、FG、およびdは、それぞれ独立して、前記と同じ意味を表し、その好適例も前記と同じである。
 式(A-0)中、Zは、水酸基、カルボキシル基、またはアミノ基を表す。
 これらの中でも、Zは、合成のし易さの観点から、水酸基であることが好ましい。
 式(B-0)中、FQは、Zと反応してLを形成し、且つ、FGとなり得る官能基であり、-C(=O)Cl、ClC(=O)-、-COOH、HOOC-、-NH、またはHN-を表す。
 これらの中でも、FQは、合成のし易さの観点の観点から、-C(=O)ClまたはClC(=O)-、-COOH、HOOC-であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
 式(A-1)中、R、dは、前記と同じ意味を表し、その好適例も前記と同じである。
[Preparation of Compound (I)]
The preparation of compound (I) will be described separately for the case where e is 1 and for the case where e is 2.
When e is 1, compound (I) (compound (Ia) represented by the following formula (Ia)) includes, for example, compound (A-0) represented by the following formula (A-0) It can be obtained by reacting a compound (B-0) represented by the following formula (B-0), and more specifically, a compound (A-1) represented by the following formula (A-1) , And trans-1,4-cyclohexanedicarboxylic acid dichloride are subjected to an esterification reaction in a reaction solvent containing a base such as triethylamine, followed by hydrolysis. Further, a compound (A-1) represented by the following formula (A-1) and trans-1,4-cyclohexanedicarboxylic acid are reacted in a reaction solvent in the presence of a dehydration condensing agent. Can also.
Figure JPOXMLDOC01-appb-C000014
In the formulas (A-0), (B-0) and (Ia), A 2 , B 2 , Y 2 , L 2 , R 3 , FG 2 and d are each independently the same as defined above. The meaning is shown, and preferable examples are the same as described above.
In the formula (A-0), Z represents a hydroxyl group, a carboxyl group, or an amino group.
Among them, Z is preferably a hydroxyl group from the viewpoint of ease of synthesis.
Formula (B-0) in, FQ is the L 2 formed by reaction with Z, and is a functional group which can be a FG 2, -C (= O) Cl, ClC (= O) -, - COOH , HOOC-, -NH 2 , or H 2 N-.
Among these, FQ is preferably —C (= O) Cl or ClC (= O) —, —COOH, or HOOC— from the viewpoint of ease of synthesis.
Figure JPOXMLDOC01-appb-C000015
In Formula (A-1), R 3 and d have the same meanings as described above, and preferred examples thereof are also the same as described above.
 eが2である場合の化合物(I)(下記式(I-b)で示される化合物(I-b))は、例えば、下記式(A-2)で示される化合物(A-2)と下記式(B-0)で示される化合物(B-0)とを反応させることにより得ることができる。
Figure JPOXMLDOC01-appb-C000016
 式(A-2)、(B-0)および(I-b)中、A、B、Y、L、R、FG、およびdは、それぞれ独立して、前記と同じ意味を表し、その好適例も前記と同じである。
 式(A-2)中、Zは、水酸基、カルボキシル基、またはアミノ基を表す。
 これらの中でも、Zは、合成し易さの観点から、水酸基であることが好ましい。
 式(B-0)中、FQは、前記と同じ意味を表し、その好適例も前記と同じである。
 式(I-b)中における2つのBは同一であっても異なっていてもよく、式(I-b)中における2つのLは同一であっても異なっていてもよい。
When e is 2, the compound (I) (compound (Ib) represented by the following formula (Ib)) is, for example, a compound (A-2) represented by the following formula (A-2) It can be obtained by reacting with a compound (B-0) represented by the following formula (B-0).
Figure JPOXMLDOC01-appb-C000016
In the formulas (A-2), (B-0) and (Ib), A 2 , B 2 , Y 2 , L 2 , R 3 , FG 2 and d are each independently the same as defined above. Meaning is shown, and preferable examples are the same as described above.
In the formula (A-2), Z represents a hydroxyl group, a carboxyl group, or an amino group.
Among them, Z is preferably a hydroxyl group from the viewpoint of easy synthesis.
In the formula (B-0), FQ has the same meaning as described above, and preferred examples thereof are also the same as described above.
Two B 2 in the formula (Ib) may be the same or different, and two L 2 in the formula (Ib) may be the same or different.
-反応溶媒-
 反応溶媒としては、シクロペンチルメチルエーテル(CPME)、テトラヒドロフラン、メチル-t-ブチルエーテル、ジエチルエーテル、ジブチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン等のエーテル類;2-ブタノン、メチルイソブチルケトン等のケトン類;ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素類;酢酸エチル、酢酸プロピル等のエステル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;シクロペンタン、シクロヘキサン等の脂環式炭化水素類;N,N-ジメチルホルムアミド、N,N-ジメチルアセタミド、N-メチル-2-ピロリドン等のアミド類;アセトニトリル、プロピオニトリル等のニトリル類;及びこれらの混合溶媒等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を任意の比率で使用してもよい。
-Reaction solvent-
Examples of the reaction solvent include ethers such as cyclopentyl methyl ether (CPME), tetrahydrofuran, methyl-t-butyl ether, diethyl ether, dibutyl ether, diisopropyl ether, and 1,2-dimethoxyethane; ketones such as 2-butanone and methyl isobutyl ketone Halogenated hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane; esters such as ethyl acetate and propyl acetate; aromatic hydrocarbons such as benzene, toluene and xylene; alicycles such as cyclopentane and cyclohexane Formula hydrocarbons; amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone; nitriles such as acetonitrile and propionitrile; and mixed solvents thereof. No. One of these may be used alone, or two or more of them may be used in any ratio.
 上記反応に用いる反応溶媒の使用量は、上記化合物(A-0)または化合物(A-2)10gに対し、10mL以上であることが好ましく、20mL以上であることがより好ましく、40mL以上であることが特に好ましく、また、500mL以下であることが好ましく、250mL以下であることがより好ましく、100mL以下であることが特に好ましい。反応溶媒の使用量が、上記下限値以上であり、上記上限値以下であれば、式(I)で示される化合物の選択性を向上させることができる。 The amount of the reaction solvent used in the above reaction is preferably 10 mL or more, more preferably 20 mL or more, and more preferably 40 mL or more, based on 10 g of the compound (A-0) or the compound (A-2). It is particularly preferable, and the volume is preferably 500 mL or less, more preferably 250 mL or less, and particularly preferably 100 mL or less. When the amount of the reaction solvent is at least the lower limit and at most the upper limit, the selectivity of the compound represented by the formula (I) can be improved.
[化合物(II)]
 下記式(II)で示される化合物(II)は、A21を中心として、左右対称であっても、左右非対称であってもよいが、合成し易さの点で、A21を中心として左右対称である(即ち、B21とB22とが同一であり、Y21とY22とが同一であり、L21とL22とが同一であり、R31とR32とが同一であり、d1とd2とが同一であり、e1とe2とが同一であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
[Compound (II)]
Compound represented by the following formula (II) (II) is, around the A 21, even symmetrical, but may be asymmetrical in terms of ease of synthesis, the left and right around the A 21 Symmetric (ie, B 21 and B 22 are the same, Y 21 and Y 22 are the same, L 21 and L 22 are the same, R 31 and R 32 are the same, Preferably, d1 and d2 are the same, and e1 and e2 are the same.
Figure JPOXMLDOC01-appb-C000017
〔A21、B21、B22
 式(II)中、A21、B21およびB22は、それぞれ独立して、前記A、Bと同じ意味を表し、その好適例も前記A、Bと同じである。
[A 21 , B 21 , B 22 ]
In the formula (II), A 21 , B 21 and B 22 each independently represent the same meaning as A 2 and B 2, and preferred examples thereof are also the same as A 2 and B 2 .
〔Y21、Y22
 式(II)中、Y21およびY22は、それぞれ独立して、前記Yと同じ意味を表し、その好適例も前記Yと同じである。
[Y 21 , Y 22 ]
In Formula (II), Y 21 and Y 22 each independently represent the same meaning as Y 2, and preferred examples thereof are also the same as Y 2 .
〔L21、L22
 式(II)中、L21およびL22は、それぞれ独立して、前記Lと同じ意味を表し、その好適例も前記Lと同じである。
[L 21 , L 22 ]
In Formula (II), L 21 and L 22 each independently represent the same meaning as L 2, and preferred examples thereof are also the same as L 2 .
〔R31、R32
 式(II)中、R31およびR32は、それぞれ独立して、前記Rと同じ意味を表し、その好適例も前記Rと同じである。
[R 31 , R 32 ]
In Formula (II), R 31 and R 32 each independently represent the same meaning as R 3, and preferred examples thereof are also the same as R 3 .
〔d1、d2〕
 式(II)中、d1およびd2は、それぞれ独立して、前記dと同じ意味を表し、その好適例も前記dと同じである。
[D1, d2]
In formula (II), d1 and d2 each independently represent the same meaning as d, and preferred examples thereof are also the same as d.
〔e1、e2〕
 式(II)中、e1およびe2は、それぞれ独立して、前記eと同じ意味を表し、その好適例も前記eと同じである。
[E1, e2]
In Formula (II), e1 and e2 each independently represent the same meaning as e, and preferred examples thereof are also the same as e.
 化合物(II)の具体例としては、例えば、下記式(II-1)で示される化合物(II-1)が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000018
〔式(II-1)中、R、dは、前記と同じ意味を表し、その好適例も前記と同じである。
Specific examples of the compound (II) include, for example, a compound (II-1) represented by the following formula (II-1).
Figure JPOXMLDOC01-appb-C000018
[In the formula (II-1), R 3 and d represent the same meaning as described above, and preferred examples thereof are also the same as described above.
[有機溶媒]
 有機溶媒としては、シクロペンチルメチルエーテル(CPME)、テトラヒドロフラン、メチル-t-ブチルエーテル、ジエチルエーテル、ジブチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン等のエーテル類;2-ブタノン、メチルイソブチルケトン等のケトン類;ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素類;酢酸エチル、酢酸プロピル等のエステル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;シクロペンタン、シクロヘキサン等の脂環式炭化水素類;N,N-ジメチルホルムアミド、N,N-ジメチルアセタミド、N-メチル-2-ピロリドン等のアミド類;アセトニトリル、プロピオニトリル等のニトリル類;及びこれらの混合溶媒等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を任意の比率で使用してもよい。
 これらの中でも、水非混和性有機溶媒が好ましい。ここで、「水非混和性有機溶媒」は、水と混合しても相溶することなく2相分離する性質を有する有機溶媒である。水非混和性有機溶媒の水への溶解度は、40g(有機溶媒)/100mL(水)以下、好ましくは30g(有機溶媒)/100mL(水)以下、より好ましくは15g(有機溶媒)/100mL(水)以下である。
 なお、2種以上の混合溶媒を用いる場合において、水混和性溶媒を添加する際には、水混和性溶媒と水非混和性有機溶媒の総和に対して上記水への溶解度を満たす場合、その混合溶媒は「水非混和性有機溶媒」とする。
[Organic solvent]
Examples of the organic solvent include cyclopentyl methyl ether (CPME), tetrahydrofuran, methyl-t-butyl ether, diethyl ether, dibutyl ether, diisopropyl ether, 1,2-dimethoxyethane, 1,4-dioxane, and 1,3-dioxolan. Ketones such as 2-butanone and methyl isobutyl ketone; halogenated hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane; esters such as ethyl acetate and propyl acetate; aromatics such as benzene, toluene and xylene Hydrocarbons; alicyclic hydrocarbons such as cyclopentane and cyclohexane; amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone; acetonitrile, propionitrile Nitriles such as; Beauty a mixed solvent thereof and the like. One of these may be used alone, or two or more of them may be used in any ratio.
Among these, a water-immiscible organic solvent is preferable. Here, the “water-immiscible organic solvent” is an organic solvent having a property of being separated into two phases without being compatible even when mixed with water. The solubility of the water-immiscible organic solvent in water is 40 g (organic solvent) / 100 mL (water) or less, preferably 30 g (organic solvent) / 100 mL (water) or less, more preferably 15 g (organic solvent) / 100 mL (water). Water).
In the case of using a mixed solvent of two or more, when adding a water-miscible solvent, when satisfying the solubility in water with respect to the sum of the water-miscible solvent and the water-immiscible organic solvent, The mixed solvent is a “water-immiscible organic solvent”.
 水非混和性有機溶媒の具体例としては、シクロペンチルメチルエーテル(CPME)、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、テトラヒドロフラン、メチル-t-ブチルエーテル、ジエチルエーテル、ジブチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン等のエーテル類;2-ブタノン等のケトン類;ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素類;酢酸エチル、酢酸プロピル等のエステル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;シクロペンタン、シクロヘキサン等の脂環式炭化水素類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド類;アセトニトリル、プロピオニトリル等のニトリル類;及びこれらの混合溶媒等が挙げられる。 Specific examples of the water-immiscible organic solvent include cyclopentyl methyl ether (CPME), 2-methyltetrahydrofuran, 1,4-dioxane, 1,3-dioxolan, tetrahydrofuran, methyl-t-butyl ether, diethyl ether, dibutyl ether, Ethers such as diisopropyl ether and 1,2-dimethoxyethane; ketones such as 2-butanone; halogenated hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane; esters such as ethyl acetate and propyl acetate; Hydrocarbons such as cyclopentane and cyclohexane; amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone Acetonitrile, pro Nitriles such as Onitoriru; and mixed solvents thereof.
 水非混和性有機溶媒のヒルデブランドの溶解度パラメーターは、14.0MPa1/2以上であることが好ましく、14.3MPa1/2以上であることがより好ましく、14.5MPa1/2以上であることが特に好ましく、また、22.0MPa1/2以下であることが好ましく、20.0MPa1/2以下であることがより好ましく、19.5MPa1/2以下であることが特に好ましい。水非混和性有機溶媒のヒルデブランドの溶解度パラメーターが、上記下限値以上であり、上記上限値以下であれば、式(I)で表される化合物を高い選択率で得ることができる。 Solubility parameter of the water-immiscible organic solvent in Hildebrand is preferably at 14.0 MPa 1/2 or more, more preferably 14.3MPa 1/2 or more, is 14.5 MPa 1/2 or more it is particularly preferred, also, is preferably 22.0MPa 1/2 or less, more preferably 20.0 MPa 1/2 or less, and particularly preferably 19.5MPa 1/2 or less. When the solubility parameter of Hildebrand of the water-immiscible organic solvent is equal to or higher than the lower limit and equal to or lower than the upper limit, the compound represented by the formula (I) can be obtained with high selectivity.
 ヒルデブランドの溶解度パラメーターとは、ヒルデブランドにより導入された、正則溶液論により定義された、材料間の相互作用の程度の数値予測を提供する値(δ)である。 Hildebrand solubility parameter is a value (δ) introduced by Hildebrand that provides a numerical prediction of the degree of interaction between materials, as defined by regular solution theory.
 ヒルデブランドの溶解度パラメーターが14.0MPa1/2以上22.0MPa1/2以下である有機溶媒としては、シクロペンチルメチルエーテル(CPME)(ヒルデブランドの溶解度パラメーター(δ):17.2MPa1/2)、テトラヒドロフラン((δ):18.6MPa1/2)、メチル-t-ブチルエーテル((δ):15.6MPa1/2)、ジエチルエーテル((δ):15.1MPa1/2)、ジブチルエーテル((δ):14.9MPa1/2)、ジイソプロピルエーテル((δ):14.1MPa1/2)、1,2-ジメトキシエタン((δ):19.2MPa1/2)、2-ブタノン((δ):19.0MPa1/2)等のエーテル類;クロロホルム((δ):19.0MPa1/2)等のハロゲン化炭化水素類;酢酸エチル((δ):18.6MPa1/2)等のエステル類;トルエン((δ):18.2MPa1/2)等の芳香族炭化水素類;シクロヘキサン((δ):16.7MPa1/2)等の脂環式炭化水素類;及びこれらの混合溶媒等を好ましく例示することができる。混合溶媒を用いる場合、その溶解度パラメーターは、加成則で計算することができる。 As the organic solvent having a Hildebrand solubility parameter of 14.0 MPa 1/2 or more and 22.0 MPa 1/2 or less, cyclopentyl methyl ether (CPME) (Hildebrand solubility parameter (δ): 17.2 MPa 1/2 ) , Tetrahydrofuran ((δ): 18.6 MPa 1/2 ), methyl-t-butyl ether ((δ): 15.6 MPa 1/2 ), diethyl ether ((δ): 15.1 MPa 1/2 ), dibutyl ether ((Δ): 14.9 MPa 1/2 ), diisopropyl ether ((δ): 14.1 MPa 1/2 ), 1,2-dimethoxyethane ((δ): 19.2 MPa 1/2 ), 2-butanone ((δ): 19.0MPa 1/2) ethers such as: chloroform ((δ): 19.0MPa 1/2) halogen, such as Hydrocarbons; ethyl acetate ((δ): 18.6MPa 1/2) esters such as: toluene ((δ): 18.2MPa 1/2) aromatic hydrocarbons such as; cyclohexane (([delta]): Alicyclic hydrocarbons such as 16.7 MPa 1/2 ); and mixed solvents thereof. When a mixed solvent is used, its solubility parameter can be calculated by the addition rule.
 溶液(X)中における有機溶媒の含有量は、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることが特に好ましく、また、95質量%以下であることが好ましく、93質量%以下であることがより好ましく、90質量%以下であることが特に好ましい。溶液(X)中における有機溶媒の含有量が、上記下限値以上であり、上記上限値以下であれば、高い選択率で式(II)で表される化合物を除去することができる。 The content of the organic solvent in the solution (X) is preferably 50% by mass or more, more preferably 60% by mass or more, particularly preferably 70% by mass or more, and 95% by mass. Or less, more preferably 93% by mass or less, particularly preferably 90% by mass or less. When the content of the organic solvent in the solution (X) is equal to or more than the lower limit and equal to or less than the upper limit, the compound represented by the formula (II) can be removed with a high selectivity.
[その他の成分]
 その他の成分としては、例えば、トリエチルアミン(EtN)、ジイソプロピルエチルアミン、ピリジン、N,N-ジメチル-4-ジメチルアミノピリジン等の塩基;ジシクロヘキシルカルボジイミド、N,N-ジイソプロピルカルボジイミド、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩等の脱水縮合剤;2,6-ジ-tert-ブチル-p-クレゾール、パラメトキシフェノール等の重合禁止剤;などが挙げられる。
[Other ingredients]
Other components include, for example, bases such as triethylamine (Et 3 N), diisopropylethylamine, pyridine, N, N-dimethyl-4-dimethylaminopyridine; dicyclohexylcarbodiimide, N, N-diisopropylcarbodiimide, 1- (3- Dehydration condensing agents such as dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride; and polymerization inhibitors such as 2,6-di-tert-butyl-p-cresol and paramethoxyphenol.
<工程(β)>
 工程(β)は、溶液(X)にプロトン性溶媒を添加して化合物(II)を析出させて、析出した化合物(II)を除去して、化合物(I)を含有する中間体を得る工程である。
<Step (β)>
In the step (β), a step of adding a protic solvent to the solution (X) to precipitate the compound (II) and removing the precipitated compound (II) to obtain an intermediate containing the compound (I) It is.
<<プロトン性溶媒>>
 プロトン性溶媒は、化合物(I)と化合物(II)とを含有する溶液(X)に添加した際に、化合物(I)は溶け易く、且つ、化合物(II)は溶けにくい溶媒(即ち、溶液(X)中における化合物(I)に対して良溶媒であり、溶液(X)中における化合物(II)に対して貧溶媒である溶媒)である。
 なお、化合物(I)単体に対して良溶媒であっても、溶液(X)中における化合物(I)に対して良溶媒であるとは限らず、また、化合物(II)単体に対して貧溶媒であっても、溶液(X)中における化合物(II)に対して貧溶媒であるとは限らない。
 プロトン性溶媒としては、例えば、エタノール、メタノール、1-プロパノール、2-プロパノール、1-ブタノール、シクロヘキサノール、シクロペンタノール等のアルコール;グリセリン、エチレングリコール、プロピレングリコール等のグリコール;ギ酸、酢酸等のカルボン酸;グリコール酸、2-ヒドロキシマロン酸、グリセリン酸等のヒドロキシ酸;などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を任意の比率で使用してもよい。
 これらの中でも、化合物(II)を効率良く析出させることができる点で、アルコールが好ましく、メタノールがより好ましい。
<< Protic solvent >>
When the protic solvent is added to the solution (X) containing the compound (I) and the compound (II), the compound (I) is easily soluble, and the compound (II) is hardly soluble in the solvent (that is, the solution). (A solvent that is a good solvent for the compound (I) in (X) and a poor solvent for the compound (II) in the solution (X)).
Note that even if the solvent is a good solvent for the compound (I) alone, it is not necessarily a good solvent for the compound (I) in the solution (X), and the solvent is poor for the compound (II) alone. Even a solvent is not always a poor solvent for the compound (II) in the solution (X).
Examples of the protic solvent include alcohols such as ethanol, methanol, 1-propanol, 2-propanol, 1-butanol, cyclohexanol and cyclopentanol; glycols such as glycerin, ethylene glycol and propylene glycol; formic acid and acetic acid. Carboxylic acids; hydroxy acids such as glycolic acid, 2-hydroxymalonic acid and glyceric acid; and the like. One of these may be used alone, or two or more of them may be used in any ratio.
Among these, alcohol is preferable and methanol is more preferable in that the compound (II) can be efficiently precipitated.
 プロトン性溶媒の使用量は、上記化合物(A-0)または化合物(A-2)基準で、0.1質量倍数以上であることが好ましく、0.2質量倍数以上であることがより好ましく、0.3質量倍数以上であることが特に好ましく、また、5質量倍数以下であることが好ましく、3質量倍数以下であることがより好ましく、2質量倍数以下であることが特に好ましい。プロトン性溶媒の使用量が、上記下限値以上であり、上記上限値以下であれば、高い選択率で式(II)で表される化合物を除去して、式(I)で表される化合物の純度を向上させることができる。 The amount of the protic solvent to be used is preferably at least 0.1 times by mass, more preferably at least 0.2 times by mass, based on the compound (A-0) or the compound (A-2). It is particularly preferably at least 0.3 times by mass, more preferably at most 5 times by mass, even more preferably at most 3 times by mass, particularly preferably at most 2 times by mass. If the amount of the protic solvent used is greater than or equal to the lower limit and less than or equal to the upper limit, the compound represented by the formula (II) is removed with a high selectivity to remove the compound represented by the formula (I) Can be improved in purity.
<<除去>>
 析出した化合物(II)を除去する除去方法としては、例えば、ろ過、遠心分離、などが挙げられ、より具体的には、ろ過としての、吸引ろ過、加圧ろ過等が挙げられる。これらの中でも、除去効率の観点で、遠心分離、加圧ろ過が好ましい。
<< Removal >>
Examples of the removal method for removing the precipitated compound (II) include filtration, centrifugation, and the like, and more specifically, suction filtration, pressure filtration, and the like as filtration. Among these, centrifugal separation and pressure filtration are preferred from the viewpoint of removal efficiency.
<<中間体>>
 中間体は、少なくとも化合物(I)を含有するものであり、化合物(I)単体であってもよく、化合物(I)と化合物(I)以外の他の成分(例えば、化合物(II))とを含有する混合物であってもよい。
 中間体における化合物(I)の含有量としては、86質量%以上である必要があり、88質量%以上であることが好ましく、90質量%以上であることがより好ましく、92質量%以上であることが特に好ましい。中間体における化合物(I)の含有量が上記下限値以上であれば、広い波長域において一様の偏光変換が可能な光学フィルムを得ることが可能な化合物を効率的に製造することができる。
<<< intermediate >>>
The intermediate contains at least the compound (I), may be the compound (I) alone, or may contain the compound (I) and components other than the compound (I) (eg, the compound (II)). May be used as a mixture.
The content of the compound (I) in the intermediate must be 86% by mass or more, is preferably 88% by mass or more, more preferably 90% by mass or more, and is 92% by mass or more. Is particularly preferred. When the content of the compound (I) in the intermediate is not less than the above lower limit, a compound capable of obtaining an optical film capable of performing uniform polarization conversion in a wide wavelength range can be efficiently produced.
 なお、工程(β)では、上記中間体を得るために、化合物(II)の除去を行った後に、冷却して、化合物(I)を含有する中間体を析出させて、ろ取し、真空乾燥することなどが行われる。
 冷却温度としては、20℃以下であることが好ましく、10℃以下であることがより好ましく、5℃以下であることが特に好ましく、0℃付近であることが最も好ましい。冷却温度が上記上限値以下であれば、中間体を効率良く析出させることができる。
In the step (β), in order to obtain the above intermediate, after removing the compound (II), the mixture is cooled, an intermediate containing the compound (I) is precipitated, collected by filtration, and vacuum Drying and the like are performed.
The cooling temperature is preferably 20 ° C. or lower, more preferably 10 ° C. or lower, particularly preferably 5 ° C. or lower, and most preferably about 0 ° C. When the cooling temperature is equal to or lower than the upper limit, the intermediate can be efficiently precipitated.
<その他の工程>
 その他の工程は、例えば、乾燥等の上述した化合物(I)を調製する工程、などが挙げられる。
<Other steps>
Other steps include, for example, a step of preparing the above-mentioned compound (I) such as drying.
<重合性化合物>
 本発明の中間体の製造方法により製造された中間体から製造される重合性化合物について説明する。
 重合性化合物は、例えば、下記式(III)で示される化合物(以下、「重合性化合物(III)」ということがある。)であり、後述する高分子、光学フィルムおよび光学異方体を調製する際に有利に用いることができる。
Figure JPOXMLDOC01-appb-C000019
<Polymerizable compound>
The polymerizable compound produced from the intermediate produced by the method for producing an intermediate of the present invention will be described.
The polymerizable compound is, for example, a compound represented by the following formula (III) (hereinafter, sometimes referred to as “polymerizable compound (III)”), and prepares a polymer, an optical film, and an optically anisotropic material described later. Can be used advantageously.
Figure JPOXMLDOC01-appb-C000019
 なお、後述するように、式(III)で表される化合物を用いることで、塗布性に優れる重合性組成物を得て、膜厚の面内均一性に優れ、光学特性の面内均一性が改善された光学フィルム等を有利に製造することができる。 In addition, as described later, by using the compound represented by the formula (III), a polymerizable composition having excellent coatability is obtained, and excellent in-plane uniformity of film thickness and in-plane uniformity of optical characteristics are obtained. Can be advantageously produced.
<<Ar>>
 ここで、式(III)中、Arは下記式(IV-1)または(IV-2)で表され、好ましくは、下記式(IV-3)または(IV-4)で表される。
Figure JPOXMLDOC01-appb-C000020
(上記式(IV-1)および(IV-2)中、*は、YあるいはYと結合することを表す。)
Figure JPOXMLDOC01-appb-C000021
(上記式(IV-3)および(IV-4)中、*は、YあるいはYと結合することを表す。)
<< Ar >>
Here, in the formula (III), Ar is represented by the following formula (IV-1) or (IV-2), and preferably by the following formula (IV-3) or (IV-4).
Figure JPOXMLDOC01-appb-C000020
(In the above formulas (IV-1) and (IV-2), * represents binding to Y 3 or Y 4. )
Figure JPOXMLDOC01-appb-C000021
(In the above formulas (IV-3) and (IV-4), * represents binding to Y 3 or Y 4. )
[R]
 式(IV-1)~(IV-4)中、Rは、置換基を有していてもよい炭素数1~60の有機基を表し、Rf-K-Ga(GaがNと結合)で表されるものであること、Gbで表されるものであること、が好ましい。
[R]
In the formulas (IV-1) to (IV-4), R represents an organic group having 1 to 60 carbon atoms which may have a substituent, and is represented by Rf-K-Ga (Ga is bonded to N). It is preferable that it is represented by Gb.
 Rの、置換基を有していてもよい炭素数1~60の有機基の炭素数1~60の有機基としては、特に制限はなく、例えば、(i)炭素数1~60のアルキル基;(ii)炭素数2~60のアルケニル基;(iii)炭素数2~60のアルキニル基;等が挙げられる。 The organic group having 1 to 60 carbon atoms of the organic group having 1 to 60 carbon atoms which may have a substituent is not particularly limited, and examples thereof include (i) an alkyl group having 1 to 60 carbon atoms. (Ii) an alkenyl group having 2 to 60 carbon atoms; (iii) an alkynyl group having 2 to 60 carbon atoms;
〔(i)炭素数1~60のアルキル基〕
 炭素数1~60のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-へキシル基、n-ヘプチル基、n-ウンデシル基、n-ドデシル基、1-メチルペンチル基、1-エチルペンチル基、等が挙げられる。これらの中でも、炭素数1~12のアルキル基が好ましく、n-ブチル基、n-へキシル基、n-オクチル基がより好ましく、n-へキシル基が特に好ましい。
[(I) an alkyl group having 1 to 60 carbon atoms]
Examples of the alkyl group having 1 to 60 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a t-butyl group, an n-pentyl group, and an n-hexyl group. , N-heptyl, n-undecyl, n-dodecyl, 1-methylpentyl, 1-ethylpentyl and the like. Among these, an alkyl group having 1 to 12 carbon atoms is preferable, an n-butyl group, an n-hexyl group, and an n-octyl group are more preferable, and an n-hexyl group is particularly preferable.
〔(ii)炭素数2~60のアルケニル基〕
 炭素数2~60のアルケニル基としては、ビニル基、アリル基、イソプロペニル基、ブチニル基、等が挙げられ、炭素数2~12のアルケニル基が好ましい。
[(Ii) Alkenyl group having 2 to 60 carbon atoms]
Examples of the alkenyl group having 2 to 60 carbon atoms include a vinyl group, an allyl group, an isopropenyl group and a butynyl group, and an alkenyl group having 2 to 12 carbon atoms is preferable.
〔(iii)炭素数2~60のアルキニル基〕
 炭素数2~60のアルキニル基としては、プロピニル基、プロパルギル基、ブチニル基、等が挙げられ、炭素数2~12のアルキニル基が好ましい。
[(Iii) Alkynyl group having 2 to 60 carbon atoms]
Examples of the alkynyl group having 2 to 60 carbon atoms include a propynyl group, a propargyl group and a butynyl group, and an alkynyl group having 2 to 12 carbon atoms is preferable.
 Rの、炭素数1~60の有機基の置換基としては、シアノ基;ニトロ基;水酸基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メチル基、エチル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基等の炭素数1~6のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基、エトキシエトキシ基等の、炭素数1~6のアルコキシ基で置換された炭素数1~6のアルコキシ基;シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の炭素数3~8のシクロアルキル基;メチルアミノ基、エチルアミノ基、アセチルアミノ基、ジメチルアミノ基等の置換アミノ基;等が挙げられる。 Examples of the substituent of the organic group having 1 to 60 carbon atoms for R include a cyano group; a nitro group; a hydroxyl group; a halogen atom such as a fluorine atom, a chlorine atom and a bromine atom; Alkoxy group having 1 to 6 carbon atoms such as methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, t-butoxy group; methoxymethoxy group, methoxyethoxy group, ethoxyethoxy group C1-C6 alkoxy group substituted by C1-C6 alkoxy group; C3-C8 cycloalkyl group such as cyclopropyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group; methyl Substituted amino groups such as an amino group, an ethylamino group, an acetylamino group, and a dimethylamino group; and the like.
〔Rf〕
 Rfは、芳香族炭化水素環および芳香族複素環の少なくとも一方を有する環状基を表す。
 これらの中でも、炭素数6~30の芳香族炭化水素環基がより好ましい。
[Rf]
Rf represents a cyclic group having at least one of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
Among these, an aromatic hydrocarbon ring group having 6 to 30 carbon atoms is more preferable.
-芳香族炭化水素環-
 芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピレン環、フルオレン環等が挙げられる。これらの中でも、ベンゼン環、ナフタレン環、アントラセン環、フルオレン環が好ましく、ベンゼン環、ナフタレン環がより好ましい。
-Aromatic hydrocarbon ring-
Examples of the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, and a fluorene ring. Among these, a benzene ring, a naphthalene ring, an anthracene ring and a fluorene ring are preferred, and a benzene ring and a naphthalene ring are more preferred.
-芳香族複素環-
 芳香族複素環としては、例えば、1H-イソインドール-1,3(2H)-ジオン環、1-ベンゾフラン環、2-ベンゾフラン環、アクリジン環、イソキノリン環、イミダゾール環、インドール環、オキサジアゾール環、オキサゾール環、オキサゾロピラジン環、オキサゾロピリジン環、オキサゾロピリダジル環、オキサゾロピリミジン環、キナゾリン環、キノキサリン環、キノリン環、シンノリン環、チアジアゾール環、チアゾール環、チアゾロピラジン環、チアゾロピリジン環、チアゾロピリダジン環、チアゾロピリミジン環、チオフェン環、トリアジン環、トリアゾール環、ナフチリジン環、ピラジン環、ピラゾール環、ピラノン環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピロール環、フェナントリジン環、フタラジン環、フラン環、ベンゾ[b]チオフェン環、ベンゾ[c]チオフェン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ベンゾオキサジアゾール環、ベンゾオキサゾール環、ベンゾチアジアゾール環、ベンゾチアゾール環、ベンゾチオフェン環、ベンゾトリアジン環、ベンゾトリアゾール環、ベンゾピラゾール環、ペンゾピラノン環、等が挙げられる。
 これらの中でも、芳香族複素環としては、フラン環、ピラン環、チオフェン環、オキサゾール環、オキサジアゾール環、チアゾール環、チアジアゾール環等の単環の芳香族複素環;およびベンゾチアゾール環、ベンゾオキサゾール環、キノリン環、1-ベンゾフラン環、2-ベンゾフラン環、ベンゾ[b]チオフェン環、1H-イソインドール-1,3(2H)-ジオン環、ベンゾ[c]チオフェン環、チアゾロピリジン環、チアゾロピラジン環、ベンゾイソオキサゾール環、ベンゾオキサジアゾール環、ベンゾチアジアゾール環等の縮合環の芳香族複素環;が好ましい。
-Aromatic heterocycle-
Examples of the aromatic heterocycle include a 1H-isoindole-1,3 (2H) -dione ring, a 1-benzofuran ring, a 2-benzofuran ring, an acridine ring, an isoquinoline ring, an imidazole ring, an indole ring, and an oxadiazole ring. , Oxazole ring, oxazolopyrazine ring, oxazolopyridin ring, oxazolopyridazyl ring, oxazolopyrimidine ring, quinazoline ring, quinoxaline ring, quinoline ring, cinnoline ring, thiadiazole ring, thiazole ring, thiazolopyrazine ring, thia Zolopyridine ring, thiazolopyridazine ring, thiazolopyrimidine ring, thiophene ring, triazine ring, triazole ring, naphthyridine ring, pyrazine ring, pyrazole ring, pyranone ring, pyran ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrrole ring, Phenanthridine ring, phthalazine Ring, furan ring, benzo [b] thiophene ring, benzo [c] thiophene ring, benzoisoxazole ring, benzoisothiazole ring, benzimidazole ring, benzooxadiazole ring, benzoxazole ring, benzothiadiazole ring, benzothiazole ring Benzothiophene ring, benzotriazine ring, benzotriazole ring, benzopyrazole ring, benzopyranone ring and the like.
Among them, examples of the aromatic heterocyclic ring include monocyclic aromatic heterocyclic rings such as furan ring, pyran ring, thiophene ring, oxazole ring, oxadiazole ring, thiazole ring, and thiadiazole ring; and benzothiazole ring and benzoxazole Ring, quinoline ring, 1-benzofuran ring, 2-benzofuran ring, benzo [b] thiophene ring, 1H-isoindole-1,3 (2H) -dione ring, benzo [c] thiophene ring, thiazolopyridine ring, thia A condensed aromatic heterocyclic ring such as a zolopyrazine ring, a benzoisoxazole ring, a benzooxadiazole ring, or a benzothiadiazole ring is preferable.
 Rfが有する芳香族炭化水素環および芳香族複素環は置換基を有していてもよい。かかる置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;ビニル基、アリル基等の炭素数2~6のアルケニル基;トリフルオロメチル基、ペンタフルオロエチル基等の少なくとも1つの水素原子がハロゲンで置換された炭素数1~6アルキル基;ジメチルアミノ基等の炭素数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素環基;-OCF;-C(=O)-R;-C(=O)-O-R;-O-C(=O)-R;および-SO;等が挙げられる。ここで、Rは「(i)置換基を有していてもよい炭素数1~20のアルキル基」、「(ii)置換基を有していてもよい炭素数2~20のアルケニル基」、「(iii)置換基を有していてもよい炭素数3~12のシクロアルキル基」、または、「(iv)置換基を有していてもよい炭素数5~18の芳香族炭化水素環基」を表す。また、Rは、メチル基、エチル基等の炭素数1~6のアルキル基;または、フェニル基、4-メチルフェニル基、4-メトキシフェニル基等の、炭素数1~6のアルキル基若しくは炭素数1~6のアルコキシ基を置換基として有していてもよい炭素数6~20の芳香族炭化水素環基を表す。
 これらの中でも、Rfが有する芳香族炭化水素環および芳香族複素環の置換基としては、ハロゲン原子、シアノ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基が好ましい。
 なお、Rfは、上述した置換基から選ばれる複数の置換基を有していてもよい。Rfが複数の置換基を有する場合、置換基は同一でも相異なっていてもよい。
The aromatic hydrocarbon ring and the aromatic hetero ring of Rf may have a substituent. Examples of such a substituent include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group and a propyl group; An alkenyl group having 1 to 6 carbon atoms, wherein at least one hydrogen atom such as a trifluoromethyl group and a pentafluoroethyl group is substituted with halogen; an N, N-dialkyl having 2 to 12 carbon atoms such as a dimethylamino group amino group; methoxy group, an ethoxy group, an alkoxy group having 1 to 6 carbon atoms such as an isopropoxy group, a nitro group, a phenyl group, an aromatic having 6 to 20 carbon atoms such as phenyl or naphthyl hydrocarbon ring group; -OCF 3; —C (= O) —R x ; —C (= O) —O—R x ; —OC (= O) —R x ; and —SO 2 R b . Here, R x represents “(i) an alkyl group having 1 to 20 carbon atoms which may have a substituent” or “(ii) an alkenyl group having 2 to 20 carbon atoms which may have a substituent. ", (Iii) a cycloalkyl group having 3 to 12 carbon atoms which may have a substituent", or "(iv) an aromatic carbon atom having 5 to 18 carbon atoms which may have a substituent". A hydrogen ring group ". R b is an alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group; or an alkyl group having 1 to 6 carbon atoms such as a phenyl group, a 4-methylphenyl group or a 4-methoxyphenyl group; Represents an aromatic hydrocarbon ring group having 6 to 20 carbon atoms which may have an alkoxy group having 1 to 6 carbon atoms as a substituent.
Among these, a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms are preferable as the substituent of the aromatic hydrocarbon ring and the aromatic hetero ring of Rf.
Note that Rf may have a plurality of substituents selected from the above-described substituents. When Rf has a plurality of substituents, the substituents may be the same or different.
--R--
---(i)置換基を有していてもよい炭素数1~20のアルキル基---
 Rの、「(i)置換基を有していてもよい炭素数1~20のアルキル基」の「炭素数1~20のアルキル基」としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、1-メチルペンチル基、1-エチルペンチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-へキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-イコシル基等が挙げられる。
 なお、「(i)置換基を有していてもよい炭素数1~20のアルキル基」の炭素数は、1~12であることが好ましく、1~10であることがさらに好ましい。
--- R x ---
--- (i) an alkyl group having 1 to 20 carbon atoms which may have a substituent ---
Examples of the “alkyl group having 1 to 20 carbon atoms” of “(i) an alkyl group having 1 to 20 carbon atoms which may have a substituent” for R x include a methyl group, an ethyl group and an n-propyl group , Isopropyl, n-butyl, isobutyl, 1-methylpentyl, 1-ethylpentyl, sec-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl , Isohexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n -Hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-icosyl group and the like.
The “(i) alkyl group having 1 to 20 carbon atoms which may have a substituent” preferably has 1 to 12 carbon atoms, and more preferably 1 to 10 carbon atoms.
---(ii)置換基を有していてもよい炭素数2~20のアルケニル基---
 Rの、「(ii)置換基を有していてもよい炭素数2~20のアルケニル基」の「炭素数2~20のアルケニル基」としては、ビニル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基等が挙げられる。
 なお、「(ii)置換基を有していてもよい炭素数2~20のアルケニル基」の炭素数は、2~12であることが好ましい。
--- (ii) an alkenyl group having 2 to 20 carbon atoms which may have a substituent ---
Examples of the “alkenyl group having 2 to 20 carbon atoms” of “(ii) an alkenyl group having 2 to 20 carbon atoms which may have a substituent” for R x include a vinyl group, a propenyl group, an isopropenyl group, Butenyl, isobutenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl And an icosenyl group.
The “(ii) alkenyl group having 2 to 20 carbon atoms which may have a substituent” preferably has 2 to 12 carbon atoms.
 Rの、「(i)置換基を有していてもよい炭素数1~20のアルキル基」の「炭素数1~20のアルキル基」および「(ii)置換基を有していてもよい炭素数2~20のアルケニル基」の「炭素数2~20のアルケニル基」の置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;ジメチルアミノ基等の炭素数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の炭素数1~20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素環基;トリアゾリル基、ピロリル基、フラニル基、チオフェニル基、ベンゾチアゾール-2-イルチオ基等の、炭素数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の炭素数3~8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の炭素数2~12の環状エーテル基;フェノキシ基、ナフトキシ基等の炭素数6~14のアリールオキシ基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、少なくとも1個の水素原子がフッ素原子で置換された炭素数1~12のフルオロアルキル基;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;ベンゾジオキサニル基;などが挙げられる。これらの中でも、Rの、「(i)置換基を有していてもよい炭素数1~20のアルキル基」の「炭素数1~20のアルキル基」および「(ii)置換基を有していてもよい炭素数2~20のアルケニル基」の「炭素数2~20のアルケニル基」の置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の炭素数1~20のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素環基;フラニル基、チオフェニル基、ベンゾチアゾール-2-イルチオ基、等の、炭素数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、少なくとも1個の水素原子がフッ素原子で置換された炭素数1~12のフルオロアルキル基;が好ましい。
 なお、Rの、「(i)置換基を有していてもよい炭素数1~20のアルキル基」の「炭素数1~20のアルキル基」および「(ii)置換基を有していてもよい炭素数2~20のアルケニル基」の「炭素数2~20のアルケニル基」は、上述した置換基から選ばれる複数の置換基を有していてもよい。Rの、「(i)置換基を有していてもよい炭素数1~20のアルキル基」の「炭素数1~20のアルキル基」および「(ii)置換基を有していてもよい炭素数2~20のアルケニル基」の「炭素数2~20のアルケニル基」が複数の置換基を有する場合、複数の置換基は互いに同一でも相異なっていてもよい。
R x represents “(i) an alkyl group having 1 to 20 carbon atoms which may have a substituent”, “an alkyl group having 1 to 20 carbon atoms”, and “(ii) an alkyl group having a substituent. Examples of the substituent of the "alkenyl group having 2 to 20 carbon atoms" of the "alkenyl group having 2 to 20 carbon atoms" include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; An alkoxy group having 1 to 20 carbon atoms such as a methoxy group, an ethoxy group, an isopropoxy group or a butoxy group; an alkoxy group having 1 to 12 carbon atoms such as a methoxymethoxy group or a methoxyethoxy group A nitro group; an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group or a naphthyl group; a triazolyl group, a pyrrolyl group, a furanyl group, a thiophenyl group, a benzene group An aromatic heterocyclic group having 2 to 20 carbon atoms such as a zothiazol-2-ylthio group; a cycloalkyl group having 3 to 8 carbon atoms such as a cyclopropyl group, a cyclopentyl group and a cyclohexyl group; a cyclopentyloxy group and a cyclohexyloxy group A cycloalkyloxy group having 3 to 8 carbon atoms; a cyclic ether group having 2 to 12 carbon atoms such as a tetrahydrofuranyl group, a tetrahydropyranyl group, a dioxolanyl group, a dioxanyl group; and a 6 to 14 carbon atoms such as a phenoxy group and a naphthoxy group An aryloxy group; a trifluoromethyl group, a pentafluoroethyl group, a fluoroalkyl group having 1 to 12 carbon atoms in which at least one hydrogen atom is substituted by a fluorine atom, such as —CH 2 CF 3 ; a benzofuryl group; benzopyranyl Benzodioxolyl group; benzodioxanyl group; and the like. . Among them, R x has “(i) an alkyl group having 1 to 20 carbon atoms which may have a substituent”, “an alkyl group having 1 to 20 carbon atoms” and “(ii) a substituent. The substituent of the "alkenyl group having 2 to 20 carbon atoms" of the "alkenyl group having 2 to 20 carbon atoms which may be substituted" includes a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a methoxy group, an ethoxy group, C1-C20 alkoxy groups such as isopropoxy group and butoxy group; nitro group; C6-C20 aromatic hydrocarbon ring groups such as phenyl group and naphthyl group; furanyl group, thiophenyl group, benzothiazole-2 An aromatic heterocyclic group having 2 to 20 carbon atoms, such as -ylthio group; a cycloalkyl group having 3 to 8 carbon atoms, such as cyclopropyl group, cyclopentyl group, cyclohexyl group; trifluoromethyl group, pentafluoro group And a fluoroalkyl group having 1 to 12 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom, such as a loethyl group or -CH 2 CF 3 .
In addition, Rx has “(i) an alkyl group having 1 to 20 carbon atoms which may have a substituent”, “an alkyl group having 1 to 20 carbon atoms” and “(ii) a substituent. The “alkenyl group having 2 to 20 carbon atoms” of the “alkenyl group having 2 to 20 carbon atoms” which may have a plurality of substituents selected from the above-mentioned substituents. R x represents “(i) an alkyl group having 1 to 20 carbon atoms which may have a substituent”, “an alkyl group having 1 to 20 carbon atoms”, and “(ii) an alkyl group having a substituent. When the “alkenyl group having 2 to 20 carbon atoms” of the “alkenyl group having a good carbon number of 2 to 20” has a plurality of substituents, the plurality of substituents may be the same or different.
---(iii)置換基を有していてもよい炭素数3~12のシクロアルキル基---
 Rの、「(iii)置換基を有していてもよい炭素数3~12のシクロアルキル基」の「炭素数3~12のシクロアルキル基」としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。これらの中でも、シクロペンチル基、シクロヘキシル基が好ましい。
 Rの、「(iii)置換基を有していてもよい炭素数3~12のシクロアルキル基」の「炭素数3~12のシクロアルキル基」の置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;ジメチルアミノ基等の炭素数2~12のN,N-ジアルキルアミノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素環基;などが挙げられる。これらの中でも、Rの、「(iii)置換基を有していてもよい炭素数3~12のシクロアルキル基」の「炭素数3~12のシクロアルキル基」の置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素環基;が好ましい。
 なお、Rの、「(iii)置換基を有していてもよい炭素数3~12のシクロアルキル基」の「炭素数3~12のシクロアルキル基」は、複数の置換基を有していてもよい。Rの、「(iii)置換基を有していてもよい炭素数3~12のシクロアルキル基」の「炭素数3~12のシクロアルキル基」が複数の置換基を有する場合、複数の置換基は互いに同一でも相異なっていてもよい。
--- (iii) a cycloalkyl group having 3 to 12 carbon atoms which may have a substituent ---
Examples of the “cycloalkyl group having 3 to 12 carbon atoms” of “(iii) cycloalkyl group having 3 to 12 carbon atoms which may have a substituent” for R x include a cyclopropyl group, a cyclobutyl group, and a cyclopentyl Group, cyclohexyl group, cyclooctyl group and the like. Among these, a cyclopentyl group and a cyclohexyl group are preferred.
The substituent of the “cycloalkyl group having 3 to 12 carbon atoms” of the “(iii) cycloalkyl group having 3 to 12 carbon atoms which may have a substituent” for R x is a fluorine atom, a chlorine atom A halogen atom such as a cyano group; an N, N-dialkylamino group having 2 to 12 carbon atoms such as a dimethylamino group; an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group and a propyl group; a methoxy group and an ethoxy group A nitro group; an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group and a naphthyl group; and the like. Among them, the substituent of “(iii) a cycloalkyl group having 3 to 12 carbon atoms which may have a substituent” of “(cycloalkyl group having 3 to 12 carbon atoms)” of R x is fluorine. Halogen atoms such as atoms and chlorine atoms; cyano groups; alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; alkoxy groups having 1 to 6 carbon atoms such as methoxy group, ethoxy group and isopropoxy group. A nitro group; an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group and a naphthyl group;
The “(3) cycloalkyl group having 3 to 12 carbon atoms which may have a substituent” of the “cycloalkyl group having 3 to 12 carbon atoms” of R x has a plurality of substituents. May be. When the “cycloalkyl group having 3 to 12 carbon atoms” of the “(iii) cycloalkyl group having 3 to 12 carbon atoms which may have a substituent” for R x has a plurality of substituents, The substituents may be the same or different.
---(iv)置換基を有していてもよい炭素数5~18の芳香族炭化水素環基---
 Rの、「(iv)置換基を有していてもよい炭素数5~18の芳香族炭化水素環基」の「炭素数5~18の芳香族炭化水素環基」としては、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。これらの中でも、フェニル基、ナフチル基が好ましく、フェニル基、1-ナフチル基、2-ナフチル基がより好ましい。
 Rの「(iv)置換基を有していてもよい炭素数5~18の芳香族炭化水素環基」の置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;ジメチルアミノ基等の炭素数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の炭素数1~20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素環基;トリアゾリル基、ピロリル基、フラニル基、チオフェニル基等の、炭素数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の炭素数3~8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の炭素数2~12の環状エーテル基;フェノキシ基、ナフトキシ基等の炭素数6~14のアリールオキシ基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、少なくとも1個の水素原子がフッ素原子で置換された炭素数1~12のフルオロアルキル基;-OCF;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;ベンゾジオキサニル基;などが挙げられる。これらの中でも、Rの「(iv)置換基を有していてもよい炭素数5~18の芳香族炭化水素環基」の置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の炭素数1~20のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素環基;トリアゾリル基、ピロリル基、フラニル基、チオフェニル基等の、炭素数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、少なくとも1個の水素原子がフッ素原子で置換された炭素数1~12のフルオロアルキル基;-OCF;から選ばれる少なくとも1つの置換基が好ましい。
 なお、Rの、「(iv)置換基を有していてもよい炭素数5~18の芳香族炭化水素環基」の「炭素数5~18の芳香族炭化水素環基」は、複数の置換基を有していてもよい。Rの、「(iv)置換基を有していてもよい炭素数5~18の芳香族炭化水素環基」の「炭素数5~18の芳香族炭化水素環基」が複数の置換基を有する場合、置換基は同一でも相異なっていてもよい。
--- (iv) an aromatic hydrocarbon ring group having 5 to 18 carbon atoms which may have a substituent
As the "(5) aromatic hydrocarbon ring group having 5 to 18 carbon atoms which may have a substituent (s)" for R x , the "aromatic hydrocarbon ring group having 5 to 18 carbon atoms" is a phenyl group , 1-naphthyl group, 2-naphthyl group and the like. Among these, a phenyl group and a naphthyl group are preferable, and a phenyl group, a 1-naphthyl group and a 2-naphthyl group are more preferable.
Examples of the substituent of “(iv) an aromatic hydrocarbon ring group having 5 to 18 carbon atoms which may have a substituent” for R x include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; An N, N-dialkylamino group having 2 to 12 carbon atoms such as a group; an alkoxy group having 1 to 20 carbon atoms such as a methoxy group, an ethoxy group, an isopropoxy group and a butoxy group; a methoxymethoxy group, a methoxyethoxy group and the like; An alkoxy group having 1 to 12 carbon atoms substituted with an alkoxy group having 1 to 12 carbon atoms; a nitro group; an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group and a naphthyl group; a triazolyl group, a pyrrolyl group, An aromatic heterocyclic group having 2 to 20 carbon atoms such as a furanyl group and a thiophenyl group; a cycloalkyl group having 3 to 8 carbon atoms such as a cyclopropyl group, a cyclopentyl group and a cyclohexyl group; A cycloalkyloxy group having 3 to 8 carbon atoms such as an ethyloxy group and a cyclohexyloxy group; a cyclic ether group having 2 to 12 carbon atoms such as a tetrahydrofuranyl group, a tetrahydropyranyl group, a dioxolanyl group and a dioxanyl group; a phenoxy group and a naphthoxy group An aryloxy group having 6 to 14 carbon atoms, such as a trifluoromethyl group, a pentafluoroethyl group, a fluoro group having 1 to 12 carbon atoms, in which at least one hydrogen atom is substituted by a fluorine atom, such as —CH 2 CF 3, etc. An alkyl group; —OCF 3 ; a benzofuryl group; a benzopyranyl group; a benzodioxolyl group; a benzodioxanyl group; Among these, as the substituent of “(iv) an aromatic hydrocarbon ring group having 5 to 18 carbon atoms which may have a substituent” for R x , a halogen atom such as a fluorine atom and a chlorine atom; A C1-C20 alkoxy group such as a methoxy group, an ethoxy group, an isopropoxy group or a butoxy group; a nitro group; a C6-C20 aromatic hydrocarbon ring group such as a phenyl group or a naphthyl group; a triazolyl group An aromatic heterocyclic group having 2 to 20 carbon atoms, such as, a pyrrolyl group, a furanyl group, a thiophenyl group; a cycloalkyl group having 3 to 8 carbon atoms, such as a cyclopropyl group, a cyclopentyl group, a cyclohexyl group; pentafluoroethyl group, such as -CH 2 CF 3, has been having 1 to 12 carbon atoms fluoroalkyl group substituted with at least one hydrogen atom is a fluorine atom; a; -OCF 3 At least one substituent barrel preferred.
The “(iv) aromatic hydrocarbon ring group having 5 to 18 carbon atoms which may have a substituent” of R x includes a plurality of “aromatic hydrocarbon ring groups having 5 to 18 carbon atoms”. May have a substituent. Rx is represented by “(iv) an aromatic hydrocarbon ring group having 5 to 18 carbon atoms which may have a substituent”, wherein “an aromatic hydrocarbon ring group having 5 to 18 carbon atoms” has a plurality of substituents; In the case of having, the substituents may be the same or different.
 ここで、Rfの芳香族炭化水素環および芳香族複素環の少なくとも一方を有する環状基の「炭素数」は、置換基の炭素原子を含まない芳香族炭化水素環および芳香族複素環の少なくとも一方を有する有機基自体の炭素数を意味する。
 Rfが、複数の芳香族炭化水素環および/または複数の芳香族複素環を有する場合は、それぞれが同じであっても異なっていてもよい。
Here, the “carbon number” of the cyclic group having at least one of an aromatic hydrocarbon ring and an aromatic heterocyclic ring of Rf is at least one of an aromatic hydrocarbon ring and an aromatic heterocyclic ring not containing a carbon atom of a substituent. Means the carbon number of the organic group itself having
When Rf has a plurality of aromatic hydrocarbon rings and / or a plurality of aromatic heterocycles, each may be the same or different.
 前記Rfは、「炭素数6~30の芳香族炭化水素環および炭素数2~30の芳香族複素環の少なくとも一方を有する環状基」であることが好ましい。 Rf is preferably a “cyclic group having at least one of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms”.
 Rfの、「炭素数6~30の芳香族炭化水素環および炭素数2~30の芳香族複素環の少なくとも一方を有する環状基」の好ましい具体例を以下に示す。但し、以下に示すものに限定されるものではない。なお、下記式中、「-」は環の任意の位置からのび、Kとの結合手を表す。 Preferred specific examples of the “cyclic group having at least one of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms” of の Rf are shown below. However, it is not limited to the following. In the following formula, "-" represents a bond extending from an arbitrary position of the ring to K.
1)少なくとも一つの炭素数6~30の芳香族炭化水素環を有する、置換基を有していてもよい炭化水素環基の具体例としては、下記式(1-1)~(1-21)で表される構造が挙げられ、式(1-8)~(1-21)等で表される炭素数6~18の炭化水素環基が好ましい。なお、下記式(1-1)~(1-21)で表される基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
1) Specific examples of the optionally substituted hydrocarbon ring group having at least one aromatic hydrocarbon ring having 6 to 30 carbon atoms include the following formulas (1-1) to (1-21) And a hydrocarbon ring group having 6 to 18 carbon atoms represented by formulas (1-8) to (1-21) is preferable. The groups represented by the following formulas (1-1) to (1-21) may have a substituent.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
2)炭素数6~30の芳香族炭化水素環および炭素数2~30の芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、置換基を有していてもよい複素環基の具体例としては、下記式(2-1)~(2-51)で表される構造等が挙げられ、式(2-11)~(2-51)等で表される炭素数2~16の複素環基が好ましい。なお、下記式(2-1)~(2-51)で表される基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
〔各式中、Aは、-CH-、-NR-、酸素原子、硫黄原子、-SO-または-SO-を表し、
 BおよびDは、それぞれ独立して、-NR-、酸素原子、硫黄原子、-SO-または-SO-を表し、
 Eは、-NR-、酸素原子または硫黄原子を表す。
 ここで、Rは、水素原子、または、メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基を表す。(但し、各式中において酸素原子、硫黄原子、-SO-、-SO-は、それぞれ隣接しないものとする。)〕
2) an optionally substituted heterocyclic group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms; Specific examples include structures represented by the following formulas (2-1) to (2-51) and the like. Sixteen heterocyclic groups are preferred. The groups represented by the following formulas (2-1) to (2-51) may have a substituent.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
[In each formula, A represents -CH 2- , -NR c- , an oxygen atom, a sulfur atom, -SO- or -SO 2- ,
B and D each independently represent -NR c- , an oxygen atom, a sulfur atom, -SO- or -SO 2- ,
E represents -NR c- , an oxygen atom or a sulfur atom.
Here, R c represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, and a propyl group. (However, in each formula, an oxygen atom, a sulfur atom, —SO—, and —SO 2 — are not adjacent to each other.)]
 上述した中でも、Rfは、上記式(1-8)、式(1-11)、式(1-12)、式(1-13)、式(1-14)、式(1-15)、式(1-20)、式(2-9)~式(2-11)、式(2-24)~式(2-33)、式(2-35)~式(2-43)、式(2-47)および、式(2-49)~(2-51)で表される基のいずれかであることが好ましい。 Among the above, Rf is determined by the above formulas (1-8), (1-11), (1-12), (1-13), (1-14), (1-15), Formula (1-20), Formula (2-9) to Formula (2-11), Formula (2-24) to Formula (2-33), Formula (2-35) to Formula (2-43), Formula It is preferably any of groups represented by (2-47) and formulas (2-49) to (2-51).
 なお、Rf中の環構造に含まれるπ電子の総数は、4以上であることが好ましく、6以上であることがより好ましく、8以上であることが更に好ましく、10以上であることが特に好ましく、20以下であることが好ましく、18以下であることがより好ましい。 The total number of π electrons contained in the ring structure in Rf is preferably 4 or more, more preferably 6 or more, still more preferably 8 or more, and particularly preferably 10 or more. , 20 or less, more preferably 18 or less.
 さらに、Rfが下記(i-1)~(i-6)のいずれかであることが好ましい。なお、下記式(i-1)~(i-6)で表される基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000028
(式(i-4)中、Jは、-CH-、-NR-、酸素原子、硫黄原子、-SO-または-SO-を表し、Rは水素原子または炭素数1~6のアルキル基を表す。)
Further, it is preferable that Rf is any of the following (i-1) to (i-6). The groups represented by the following formulas (i-1) to (i-6) may have a substituent.
Figure JPOXMLDOC01-appb-C000028
(In the formula (i-4), J represents —CH 2 —, —NR d —, an oxygen atom, a sulfur atom, —SO— or —SO 2 —, and R d represents a hydrogen atom or a carbon number of 1 to 6; Represents an alkyl group.)
 なお、Rfの、「炭素数6~30の芳香族炭化水素環および炭素数2~30の芳香族複素環の少なくとも一方を有する環状基」は、1以上の置換基を有していてもよい。複数の置換基を有する場合は、複数の置換基は互いに同一でも相異なっていてもよい。 The “cyclic group having at least one of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms” of Rf may have one or more substituents. . When it has a plurality of substituents, the plurality of substituents may be the same or different from each other.
 Rfの、「炭素数6~30の芳香族炭化水素環および炭素数2~30の芳香族複素環の少なくとも一方を有する環状基」が有する置換基としては、例えば、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;ビニル基、アリル基等の炭素数2~6のアルケニル基;トリフルオロメチル基、ペンタフルオロエチル基等の少なくとも1つの水素原子がハロゲンで置換された炭素数1~6アルキル基;ジメチルアミノ基等の炭素数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素環基;-OCF;-C(=O)-R;-C(=O)-O-R;-O-C(=O)-R;-SO;などが挙げられる。ここでRおよびRは、前記と同じ意味を表し、その好適例も前記と同じである。そして、複数の置換基を有する場合は、複数の置換基は互いに同一でも相異なっていてもよい。
 これらの中でも、ハロゲン原子、シアノ基、炭素数1~6のアルキル基、および、炭素数1~6のアルコキシ基から選ばれる少なくとも1つの置換基が好ましい。
Examples of the substituent of “a cyclic group having at least one of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms” of Rf include, for example, a fluorine atom, a chlorine atom and the like. A halogen atom; a cyano group; an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group and a propyl group; an alkenyl group having 2 to 6 carbon atoms such as a vinyl group and an allyl group; a trifluoromethyl group and a pentafluoroethyl group A C1 to C6 alkyl group in which at least one hydrogen atom is substituted with halogen; a C2 to C12 N, N-dialkylamino group such as a dimethylamino group; a methoxy group, an ethoxy group, an isopropoxy group, etc. A nitro group; an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group and a naphthyl group; —OCF 3 ; —C (= O) —R x ; = O) -OR x ; -OC (= O) -R x ; -SO 2 R b ; Here, Rx and Rb represent the same meaning as described above, and preferred examples thereof are also the same as described above. And when it has a plurality of substituents, the plurality of substituents may be the same or different.
Among these, at least one substituent selected from a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms is preferable.
〔K〕
 Kは、化学的な単結合、-O-、-S-、-C(=O)-、-O-CRbRc-、-CRbRc-O-、-O-CH-CH-、-CH-CH-O-、-C(=O)-O-、-O-C(=O)-、-C(=O)-S-、-S-C(=O)-、-NR14-C(=O)-、-C(=O)-NR14-、-CH=CH-C(=O)-O-、-O-C(=O)-CH=CH-、-CH-CH-C(=O)-O-、-O-C(=O)-CH-CH-、-CH-CH-O-C(=O)-、-C(=O)-O-CH-CH-、-C(=O)-O-CRbRc-、-CRcRb-O-C(=O)-、-O-C(=O)-CRbRc-、-CRcRb-C(=O)-O-、-O-C(=O)-NR14-、-NR14-C(=O)-O-、-O-C(=O)-CH-S-、-S-CH-C(=O)-O-、または、-O-C(=O)-O-を表す。ここで、R14は、水素原子、または、炭素数1~6のアルキル基を表し、Rc、Rbは、それぞれ独立して、水素原子、炭素数6~12の置換基を有していてもよい芳香族炭化水素環基、または、炭素数3~12の置換基を有していてもよい芳香族複素環基を表す。
 Kとしては、これらの中でも、化学的な単結合、-O-、-O-CRbRc-、-CRcRb-O-、-O-CH-CH-、-CH-CH-O-、-C(=O)-O-、-O-C(=O)-、-CH-CH-C(=O)-O-、-O-C(=O)-CH-CH-、-CH-CH-O-C(=O)-、-C(=O)-O-CH-CH-、-C(=O)-O-CRbRc-、-CRcRb-O-C(=O)-、-O-C(=O)-CRbRc-、-CRcRb-C(=O)-O-、-O-C(=O)-NR14-、-NR14-C(=O)-O-、-O-C(=O)-CH-S-、-S-CH-C(=O)-O-、-O-C(=O)-O-、が好ましく、化学的な単結合、-O-、-O-CRbRc-、-CRcRb-O-、-O-CH-CH-、-CH-CH-O-、-C(=O)-O-、-O-C(=O)-、-CH-CH-C(=O)-O-、-O-C(=O)-CH-CH-、-CH-CH-O-C(=O)-、-C(=O)-O-CH-CH-、-C(=O)-O-CRbRc-、-CRcRb-O-C(=O)-、-O-C(=O)-CRbRc-、-CRcRb-C(=O)-O-、-O-C(=O)-NR14-、-NR14-C(=O)-O-、-S-CH-C(=O)-O-、-O-C(=O)-CH-S-がより好ましく、化学的な単結合、-O-、-O-CRbRc-、-CRcRb-O-、-O-CH-CH-、-CH-CH-O-、-C(=O)-O-、-O-C(=O)-、-CH-CH-C(=O)-O-、-O-C(=O)-CH-CH-、-C(=O)-O-CRbRc-、-CRcRb-O-C(=O)-、-O-C(=O)-CRbRc-、-CRcRb-C(=O)-O-、-O-C(=O)-NR14-、-NR14-C(=O)-O-、-S-CH-C(=O)-O-、-O-C(=O)-CH-S-が特に好ましい。
 ここで、R14は、(i)水素原子、または、(ii)メチル基、エチル基等の炭素数1~6のアルキル基を表し、これらの中でも、R14は、水素原子が好ましい。
 Rc、Rbは、それぞれ独立して、水素原子、炭素数6~12の置換基を有していてもよい芳香族炭化水素環基、または、炭素数3~12の置換基を有していてもよい芳香族複素環基を表す。Rc、Rbは、互いに同一であってもよく、相異なっていてもよい。
 RbおよびRcの、炭素数6~12の置換基を有していてもよい芳香族炭化水素環基、または、炭素数3~12の置換基を有していてもよい芳香族複素環基、の具体例としては、前記Rfと同様のもののうちそれぞれ規定された炭素数のものが挙げられる。Rb、Rcの有する置換基としては、前記Rfが有する置換基と同様のものが挙げられ、その好ましいものも同様である。また、複数の置換基を有する時には、同一であっても、相異なっていても構わない。
 Rc、Rbは、それぞれ独立して、水素原子、炭素数6~12の置換基を有していてもよい芳香族炭化水素環基が好ましく、さらに、それぞれ独立して、水素原子、フェニル基またはナフチル基が好ましく、さらに、RcおよびRbの両方が同時に水素原子である組み合わせ、水素原子とフェニル基である組み合わせ、または、水素原子とナフチル基の組み合わせが特に好ましい。
 Rf-K-の好ましい組み合わせとしては、
 Rfが、前記一般式(i-1)~(i-6)から選択され、Kが、化学的な単結合、-O-T、-O-CRbRc-T、-CRbRc-O-T、-O-CH-CH-T、-CH-CH-O-T、-C(=O)-O-T、-O-C(=O)-T、-CH-CH-C(=O)-O-T、-O-C(=O)-CH-CH-T、-C(=O)-O-CRbRc-T、-CRbRc-O-C(=O)-T、-O-C(=O)-CRbRc-T、-CRbRc-C(=O)-O-T、-NR14-C(=O)-O-T、-S-CH-C(=O)-O-Tから選択される組み合わせが好ましく、
 Rfが、前記一般式(i-1)~(i-6)から選択され、Kが、化学的な単結合、-O-T、-CRbRc-O-T、-CH-CH-O-T、-C(=O)-O-T、-O-C(=O)-T、-CH-CH-C(=O)-O-T、-CRbRc-O-C(=O)-T、-CRbRc-C(=O)-O-T、-NR14-C(=O)-O-T、-S-CH-C(=O)-O-Tから選択される組み合わせがより好ましく、
 更に、Rf-K-は、下記式(ii-1)~(ii-45)のいずれかであることが特に好ましく、(iii-1)~(iii-46)のいずれかであることが最も好ましい。Rb、Rcは前記と同じ意味を表し、TはGaと結合する方向を示している。また、下記式(ii-1)~(ii-45)で表される基、および、(iii-1)~(iii-46)で表される基中の●(黒い円)は、Gaとの結合部位を示す。
 下記式(ii-1)~(ii-45)で表される基および(iii-1)~(iii-46)で表される基は置換基を有していてもよい。
 なお、下記式(ii-26)~(ii-32)および下記式(iii-26)~(iii-32)中、Jは、-CH-、-NR-、酸素原子、硫黄原子、-SO-または-SO-を表し、Rは水素原子または炭素数1~6のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
[K]
K is a chemical single bond, —O—, —S—, —C (= O) —, —O—CRbRc—, —CRbRc—O—, —O—CH 2 —CH 2 —, —CH 2 -CH 2 -O-, -C (= O) -O-, -OC (= O)-, -C (= O) -S-, -SC (= O)-, -NR 14 —C (= O) —, —C (= O) —NR 14 —, —CH = CH—C (= O) —O—, —OC (= O) —CH = CH—, —CH 2 —CH 2 —C (= O) —O—, —OC (= O) —CH 2 —CH 2 —, —CH 2 —CH 2 —OC (= O) —, —C (= O ) -O-CH 2 -CH 2- , -C (= O) -O-CRbRc-, -CRcRb-OC (= O)-, -OC (= O) -CRbRc-, -CRcRb- C (= O) -O -, - O-C (= O) -NR 14 -, - NR 14 -C (= O) -O-, -OC (= O) -CH 2 -S-, -S-CH 2 -C (= O) -O-, or -OC (= O ) Represents -O-. Here, R 14 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and Rc and Rb each independently represent a hydrogen atom or a substituent having 6 to 12 carbon atoms. It represents a good aromatic hydrocarbon ring group or an aromatic heterocyclic group which may have a substituent having 3 to 12 carbon atoms.
The K, among these, chemical single bond, -O -, - O-CRbRc -, - CRcRb-O -, - O-CH 2 -CH 2 -, - CH 2 -CH 2 -O-, -C (= O) -O -, - O-C (= O) -, - CH 2 -CH 2 -C (= O) -O -, - O-C (= O) -CH 2 -CH 2 -, -CH 2 -CH 2 -OC (= O)-, -C (= O) -O-CH 2 -CH 2- , -C (= O) -O-CRbRc-, -CRcRb-O -C (= O) -, - O-C (= O) -CRbRc -, - CRcRb-C (= O) -O -, - O-C (= O) -NR 14 -, - NR 14 -C (= O) -O-, -OC (= O) -CH 2 -S-, -S-CH 2 -C (= O) -O-, -OC (= O) -O-, Is preferable, and a chemical single bond, -O-, -OC bRc -, - CRcRb-O - , - O-CH 2 -CH 2 -, - CH 2 -CH 2 -O -, - C (= O) -O -, - O-C (= O) -, - CH 2 —CH 2 —C (= O) —O—, —OC (= O) —CH 2 —CH 2 —, —CH 2 —CH 2 —OC (= O) —, —C ( = O) -O-CH 2 -CH 2- , -C (= O) -O-CRbRc-, -CRcRb-OC (= O)-, -OC (= O) -CRbRc-,- CRcRb-C (= O) -O -, - O-C (= O) -NR 14 -, - NR 14 -C (= O) -O -, - S-CH 2 -C (= O) -O —, —OC (= O) —CH 2 —S— are more preferable, and a chemical single bond, —O—, —O—CRbRc—, —CRcRb—O—, —O—CH 2 —CH 2 -, - CH 2 -CH 2 -O- -C (= O) -O -, - O-C (= O) -, - CH 2 -CH 2 -C (= O) -O -, - O-C (= O) -CH 2 -CH 2 -, -C (= O) -O-CRbRc-, -CRcRb-OC (= O)-, -OC (= O) -CRbRc-, -CRcRb-C (= O) -O-, —OC (= O) —NR 14 —, —NR 14 —C (= O) —O—, —S—CH 2 —C (= O) —O—, —OC () O) — CH 2 —S— is particularly preferred.
Here, R 14 represents (i) a hydrogen atom or (ii) an alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group, and among them, R 14 is preferably a hydrogen atom.
Rc and Rb each independently have a hydrogen atom, an aromatic hydrocarbon ring group which may have a substituent having 6 to 12 carbon atoms, or a substituent having 3 to 12 carbon atoms. Represents an aromatic heterocyclic group. Rc and Rb may be the same or different.
An aromatic hydrocarbon ring group of Rb and Rc which may have a substituent having 6 to 12 carbon atoms, or an aromatic heterocyclic group which may have a substituent having 3 to 12 carbon atoms, Specific examples include those having the same defined number of carbon atoms among those similar to Rf described above. As the substituents of Rb and Rc, the same as the substituents of the above-mentioned Rf can be mentioned, and the preferable ones are also the same. When the compound has a plurality of substituents, they may be the same or different.
Rc and Rb are each independently preferably a hydrogen atom or an aromatic hydrocarbon ring group which may have a substituent having 6 to 12 carbon atoms, and further each independently is a hydrogen atom, a phenyl group or A naphthyl group is preferred, and a combination in which both Rc and Rb are simultaneously a hydrogen atom, a combination in which a hydrogen atom and a phenyl group, or a combination of a hydrogen atom and a naphthyl group are particularly preferred.
Preferred combinations of Rf-K- include:
Rf is selected from the general formulas (i-1) to (i-6), and K is a chemical single bond, -OT, -O-CRbRc-T, -CRbRc-OT,- O-CH 2 -CH 2 -T, -CH 2 -CH 2 -OT, -C (= O) -OT, -OC (= O) -T, -CH 2 -CH 2- C (= O) -OT, -OC (= O) -CH 2 -CH 2 -T, -C (= O) -O-CRbRc-T, -CRbRc-OC (= O) -T, -OC (= O) -CRbRc-T, -CRbRc-C (= O) -OT, -NR 14 -C (= O) -OT, -S-CH 2 -C A combination selected from (= O) —OT is preferred,
Rf is selected from the general formulas (i-1) to (i-6), and K is a chemical single bond, -OT, -CRbRc-OT, -CH 2 -CH 2 -O -T, -C (= O) -OT, -OC (= O) -T, -CH 2 -CH 2 -C (= O) -OT, -CRbRc-OC (= O) -T, -CRbRc-C (= O) -OT, -NR 14 -C (= O) -OT, -S-CH 2 -C (= O) -OT Is more preferable,
Further, Rf-K- is particularly preferably one of the following formulas (ii-1) to (ii-45), and most preferably one of (iii-1) to (iii-46). preferable. Rb and Rc have the same meaning as described above, and T indicates the direction in which Ga is bonded. Further, in the groups represented by the following formulas (ii-1) to (ii-45) and the groups represented by (iii-1) to (iii-46), ● (black circle) represents Ga and Indicates the binding site.
The groups represented by the following formulas (ii-1) to (ii-45) and the groups represented by the following formulas (iii-1) to (iii-46) may have a substituent.
In the following formulas (ii-26) to (ii-32) and the following formulas (iii-26) to (iii-32), J represents —CH 2 —, —NR d —, an oxygen atom, a sulfur atom, Represents —SO— or —SO 2 —, and R d represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
〔Ga〕
 Gaは、置換基を有していてもよい炭素数1~20の2価の有機基であり、好ましくは、置換基を有していてもよい炭素数3~20の2価の有機基である。
 Gaは、より好ましくは、(i)炭素数1~20の2価の脂肪族炭化水素基、および、(ii)炭素数3~20の2価の脂肪族炭化水素基に含まれる-CH-の少なくとも一つが、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR15-C(=O)-、-C(=O)-NR15-、-NR15-、または、-C(=O)-に置換された基、のいずれかの有機基である。ただし、-O-または-S-がそれぞれ2以上隣接して介在する場合を除く。
 ここで、R15は、水素原子、または、炭素数1~6のアルキル基を表す。これらの中でも、水素原子、または、メチル基が好ましい。また、Gaの前記有機基が有する置換基としては、メチル基、エチル基、プロピル基等の炭素数1~5のアルキル基;メトキシ基、エトキシ基、プロポキシ基等の炭素数1~5のアルコキシ基;シアノ基;フッ素原子、塩素原子等のハロゲン原子;が挙げられる。
 Gaの上記置換基としては、水酸基、メチル基、エチル基、プロピル基等の炭素数1~5のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~5のアルコキシ基;シアノ基;フッ素原子、塩素原子等のハロゲン原子が挙げられる。
 ここで、Gaに関し、前記「2価の脂肪族炭化水素基」は、2価の鎖状の脂肪族炭化水素基であることが好ましく、アルキレン基であることがより好ましい。また、前記「2価の脂肪族炭化水素基」の炭素数は、3~20であることが好ましく、3~18であることがより好ましい。そして、前記「2価の脂肪族炭化水素基」は、炭素数2~20の2価の脂肪族炭化水素基であることが好ましく、炭素数2~18の2価の鎖状の脂肪族炭化水素基であることが好ましく、炭素数2~18のアルキレン基であることがより好ましい。
[Ga]
Ga is a divalent organic group having 1 to 20 carbon atoms which may have a substituent, and preferably a divalent organic group having 3 to 20 carbon atoms which may have a substituent. is there.
Ga is more preferably —CH 2 contained in (i) a divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms and (ii) a divalent aliphatic hydrocarbon group having 3 to 20 carbon atoms. - at least one of the, -O -, - S -, - O-C (= O) -, - C (= O) -O -, - O-C (= O) -O -, - NR 15 - C (= O) -, - C (= O) -NR 15 -, - NR 15 -, or, -C (= O) - is a substituted group, the one of the organic groups. However, this excludes the case where two or more of -O- or -S- are adjacent to each other.
Here, R 15 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Among them, a hydrogen atom or a methyl group is preferable. Examples of the substituent of the organic group represented by Ga include an alkyl group having 1 to 5 carbon atoms such as a methyl group, an ethyl group and a propyl group; and an alkoxy group having 1 to 5 carbon atoms such as a methoxy group, an ethoxy group and a propoxy group. A cyano group; a halogen atom such as a fluorine atom and a chlorine atom;
Examples of the substituent for Ga include an alkyl group having 1 to 5 carbon atoms such as a hydroxyl group, a methyl group, an ethyl group and a propyl group; an alkoxy group having 1 to 5 carbon atoms such as a methoxy group, an ethoxy group and an isopropoxy group; Group: a halogen atom such as a fluorine atom and a chlorine atom.
Here, with respect to Ga, the “divalent aliphatic hydrocarbon group” is preferably a divalent chain-like aliphatic hydrocarbon group, and more preferably an alkylene group. The “divalent aliphatic hydrocarbon group” preferably has 3 to 20 carbon atoms, more preferably 3 to 18 carbon atoms. The “divalent aliphatic hydrocarbon group” is preferably a divalent aliphatic hydrocarbon group having 2 to 20 carbon atoms, and is preferably a divalent linear aliphatic hydrocarbon group having 2 to 18 carbon atoms. It is preferably a hydrogen group, more preferably an alkylene group having 2 to 18 carbon atoms.
 Gaの炭素数は、炭素数4~16が好ましく、炭素数5~14が更に好ましく、炭素数6~12が特に好ましく、炭素数6~10が最も好ましい。 The carbon number of Ga is preferably 4 to 16 carbon atoms, more preferably 5 to 14 carbon atoms, particularly preferably 6 to 12 carbon atoms, and most preferably 6 to 10 carbon atoms.
 Gaの構造としては、炭素数4~16の無置換のアルキレン基が好ましく、炭素数5~14の無置換のアルキレン基がより好ましく、炭素数6~12の無置換のアルキレン基がさらに好ましく、炭素数6~10の無置換のアルキレン基が特に好ましく、n-ヘキシレン基、n-オクチレン基が最も好ましい。 The structure of Ga is preferably an unsubstituted alkylene group having 4 to 16 carbon atoms, more preferably an unsubstituted alkylene group having 5 to 14 carbon atoms, and still more preferably an unsubstituted alkylene group having 6 to 12 carbon atoms. An unsubstituted alkylene group having 6 to 10 carbon atoms is particularly preferred, and an n-hexylene group and an n-octylene group are most preferred.
 なお、Gaの炭素数が3以上の場合、Gaの両末端は-CH-であること(Gaの両末端が置換されていないこと)が好ましい。また、「(ii)炭素数3~20の2価の脂肪族炭化水素基に含まれる-CH-の少なくとも一つが、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR15-C(=O)-、-C(=O)-NR15-、-NR15-、または、-C(=O)-に置換された基」において、-O-および-S-は、脂肪族炭化水素基中の連続した-CH-を置換しない(すなわち、-O-O-および-S-S-の構造を形成しない)ことが好ましく(つまり、-O-または-S-がそれぞれ2以上隣接して介在する場合を除くことが好ましく)、-C(=O)-は、脂肪族炭化水素基中の連続した-CH-を置換しない(すなわち、-C(=O)-C(=O)-の構造を形成しない)ことが好ましい。
 炭素数3~20の2価の脂肪族炭化水素基に含まれる-CH-の少なくとも一つが、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR15-C(=O)-、-C(=O)-NR15-、-NR15-、または、-C(=O)-に置換される場合、-O-で置換されることが最も好ましく、炭素数2ごとに-O-に置換される、いわゆるエチレンオキシを繰り返し単位とし、Gaの両末端は-CH-であることが好ましい。
When Ga has 3 or more carbon atoms, it is preferable that both terminals of Ga be —CH 2 — (both terminals of Ga are not substituted). Further, “(ii) at least one of —CH 2 — contained in a divalent aliphatic hydrocarbon group having 3 to 20 carbon atoms is represented by —O—, —S—, —OC— (O) —, —C (= O) —O—, —OC (= O) —O—, —NR 15 —C (= O) —, —C (= O) —NR 15 —, —NR 15 —, or , —C (= O) —- substituted group ”, —O— and —S— do not substitute for consecutive —CH 2 — in the aliphatic hydrocarbon group (ie, —O—O— and It is preferable not to form a structure of -SS- (that is, it is preferable to exclude a case where two or more of -O- or -S- are adjacent to each other), and -C (= O)- not replace - -CH 2 consecutive aliphatic hydrocarbon group (i.e., -C (= O) -C ( = O) - does not form a structure) is preferably .
At least one of —CH 2 — contained in the divalent aliphatic hydrocarbon group having 3 to 20 carbon atoms is —O—, —S—, —OC (= O) —, or —C (= O); —O—, —OC (= O) —O—, —NR 15 —C (= O) —, —C (= O) —NR 15 —, —NR 15 —, or —C (= O When substituted with-)-, it is most preferably substituted with -O-, and a repeating unit is a so-called ethyleneoxy substituted with -O- every 2 carbon atoms, and both terminals of Ga are -CH 2- It is preferred that
 Gaとしては、(i)「炭素数1~18、好ましくは炭素数3~18の2価の鎖状の脂肪族炭化水素基、および、炭素数3~18の2価の鎖状の脂肪族炭化水素基に含まれる-CH-の少なくとも一つが、-O-、-S-、-O-C(=O)-、-C(=O)-O-、または、-C(=O)-に置換された基、のいずれかの有機基であり、-O-または-S-がそれぞれ2以上隣接して介在する場合を除くこと」が好ましく、(ii)「炭素数3~18の2価の鎖状の脂肪族炭化水素基であること」がより好ましく、(iii)「炭素数3~18のアルキレン基」がさらに好ましく、(iv)「炭素数4~16の無置換のアルキレン基」がさらにより好ましく、(v)「炭素数5~14の無置換のアルキレン基」がさらにより好ましく、(vi)「炭素数6~12の無置換のアルキレン基」がさらにより好ましく、(vii)「炭素数6~10の無置換のアルキレン基」が特に好ましく、「n-ヘキシレン基、n-オクチレン基、n-デシレン基」が最も好ましい。 Examples of Ga include (i) “a divalent linear aliphatic hydrocarbon group having 1 to 18 carbon atoms, preferably 3 to 18 carbon atoms, and a divalent linear aliphatic hydrocarbon group having 3 to 18 carbon atoms. At least one of —CH 2 — contained in the hydrocarbon group is —O—, —S—, —OC (= O) —, —C (= O) —O—, or —C (= O Or (ii) a group substituted with -O- or -S-, each of which is adjacent to two or more of them. " (Iii) an alkylene group having 3 to 18 carbon atoms, and (iv) an unsubstituted aliphatic hydrocarbon group having 4 to 16 carbon atoms. An alkylene group ”is still more preferable, and (v) an“ unsubstituted alkylene group having 5 to 14 carbon atoms ”is still more preferable, vi) “an unsubstituted alkylene group having 6 to 12 carbon atoms” is even more preferable, and (vii) an “unsubstituted alkylene group having 6 to 10 carbon atoms” is particularly preferable, and “n-hexylene group, n-octylene group” , N-decylene group "is most preferred.
〔Gb〕
 Gbは、置換基を有していてもよい炭素数1~20の有機基であり、好ましくは、置換基を有していてもよい炭素数3~20の有機基である。
 Gbは、より好ましくは、(i)置換基を有していてもよい炭素数1~20の脂肪族炭化水素基、および、(ii)置換基を有していてもよい炭素数3~20の脂肪族炭化水素基に含まれる-CH-の少なくとも一つが、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR15-C(=O)-、-C(=O)-NR15-、-NR15-、または、-C(=O)-に置換された基、のいずれかの有機基である。ただし、-O-または-S-がそれぞれ2以上隣接して介在する場合を除く。
 ここで、R15は、水素原子、または、炭素数1~6のアルキル基を表す。これらの中でも、水素原子、または、メチル基が好ましい。
 また、Gbの前記有機基が有する置換基としては、水酸基;メチル基、エチル基、プロピル基等の炭素数1~5のアルキル基;メトキシ基、エトキシ基、プロポキシ基等の炭素数1~5のアルコキシ基;シアノ基;フッ素原子、塩素原子等のハロゲン原子;-O-C(=O)-CRg=CH等の重合性基;などが挙げられる。ここで、Rgは、水素原子、メチル基、または塩素原子を表す。
 ここで、Gbに関し、前記「脂肪族炭化水素基」は、鎖状の脂肪族炭化水素基であることが好ましく、アルキル基、アルキニル基、またはアルケニル基、であることがより好ましい。そして、前記「脂肪族炭化水素基」は、炭素数2~20の脂肪族炭化水素基であることが好ましく、炭素数2~18の鎖状の脂肪族炭化水素基であることが好ましく、炭素数2~18のアルキル基(例えば、n-ヘキシル基)、アルキニル基(例えば、2-ブチニル基)、またはアルケニル基(例えば、1-ブテニル基)であることがより好ましい。
[Gb]
Gb is an organic group having 1 to 20 carbon atoms which may have a substituent, and preferably an organic group having 3 to 20 carbon atoms which may have a substituent.
Gb is more preferably (i) an aliphatic hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and (ii) 3 to 20 carbon atoms optionally having a substituent. At least one of —CH 2 — contained in the aliphatic hydrocarbon group of the formula (1) is —O—, —S—, —OC (= O) —, —C (= O) —O—, —OC. A group substituted by (= O) —O—, —NR 15 —C (= O) —, —C (= O) —NR 15 —, —NR 15 —, or —C (= O) —, Any of the organic groups However, this excludes the case where two or more of -O- or -S- are adjacent to each other.
Here, R 15 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Among them, a hydrogen atom or a methyl group is preferable.
Examples of the substituent of the organic group represented by Gb include a hydroxyl group; an alkyl group having 1 to 5 carbon atoms such as a methyl group, an ethyl group and a propyl group; A cyano group; a halogen atom such as a fluorine atom and a chlorine atom; and a polymerizable group such as —OC (= O) —CRgCHCH 2 . Here, Rg represents a hydrogen atom, a methyl group, or a chlorine atom.
Here, regarding Gb, the “aliphatic hydrocarbon group” is preferably a chain-like aliphatic hydrocarbon group, and more preferably an alkyl group, an alkynyl group, or an alkenyl group. The “aliphatic hydrocarbon group” is preferably an aliphatic hydrocarbon group having 2 to 20 carbon atoms, and is preferably a linear aliphatic hydrocarbon group having 2 to 18 carbon atoms. More preferably, it is an alkyl group (eg, an n-hexyl group), an alkynyl group (eg, a 2-butynyl group), or an alkenyl group (eg, a 1-butenyl group) of Formulas 2 to 18.
 Gbの炭素数は、炭素数4~16が好ましく、炭素数4~14が更に好ましく、炭素数4~12が特に好ましく、炭素数4~10が最も好ましい。 The carbon number of Gb is preferably 4 to 16 carbon atoms, more preferably 4 to 14 carbon atoms, particularly preferably 4 to 12 carbon atoms, and most preferably 4 to 10 carbon atoms.
 Gbの構造としては、炭素数4~16の無置換の、アルキル基、アルキニル基、またはアルケニル基が好ましく、炭素数4~14の無置換の、アルキル基、アルキニル基、またはアルケニル基がより好ましく、炭素数4~12の無置換の、アルキル基、アルキニル基、またはアルケニル基がさらに好ましく、炭素数4~10の無置換の、アルキル基、アルキニル基、またはアルケニル基が特に好ましく、炭素数4~10の無置換のアルキル基がさらに特に好ましく、n-ヘキシル基が最も好ましい。 The structure of Gb is preferably an unsubstituted alkyl group, alkynyl group or alkenyl group having 4 to 16 carbon atoms, more preferably an unsubstituted alkyl group, alkynyl group or alkenyl group having 4 to 14 carbon atoms. And more preferably an unsubstituted alkyl group, alkynyl group or alkenyl group having 4 to 12 carbon atoms, particularly preferably an unsubstituted alkyl group, alkynyl group or alkenyl group having 4 to 10 carbon atoms. More particularly preferred are up to 10 unsubstituted alkyl groups, most preferably n-hexyl groups.
 なお、Gbの炭素数が3以上の場合、Gbの片末端(Nとの結合側)は-CH-であること(Gbの片末端が置換されていないこと)が好ましい。また、「(ii)炭素数3~20の脂肪族炭化水素基に含まれる-CH-の少なくとも一つが、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR15-C(=O)-、-C(=O)-NR15-、-NR15-、または、-C(=O)-に置換された基」において、-O-および-S-は、脂肪族炭化水素基中の連続した-CH-を置換しない(すなわち、-O-O-および-S-S-の構造を形成しない)ことが好ましく(つまり、-O-または-S-がそれぞれ2以上隣接して介在する場合を除くことが好ましく)、-C(=O)-は、脂肪族炭化水素基中の連続した-CH-を置換しない(すなわち、-C(=O)-C(=O)-の構造を形成しない)ことが好ましい。
 炭素数3~20の脂肪族炭化水素基に含まれる-CH-の少なくとも一つが、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR15-C(=O)-、-C(=O)-NR15-、-NR15-、または、-C(=O)-に置換される場合、-O-で置換されることが最も好ましく、炭素数2ごとに-O-に置換される、いわゆるエチレンオキシを繰り返し単位とし、Gbの片末端(Nとの結合側)は-CH-であることが好ましい。
When Gb has 3 or more carbon atoms, it is preferable that one terminal of Gb (on the bonding side to N) is —CH 2 — (one terminal of Gb is not substituted). Further, “(ii) at least one of —CH 2 — contained in an aliphatic hydrocarbon group having 3 to 20 carbon atoms is represented by —O—, —S—, —OC (= O) —, —C ( = O) —O—, —OC (= O) —O—, —NR 15 —C (= O) —, —C (= O) —NR 15 —, —NR 15 —, or —C In the "(O) -substituted group", -O- and -S- do not substitute a continuous -CH 2 -in the aliphatic hydrocarbon group (that is, -OO- and -S- It is preferable that the compound does not form an S- structure (that is, it is preferable to exclude the case where two or more —O— or —S— are present adjacent to each other), and —C (= O) — It is preferable not to replace the continuous —CH 2 — in the hydrogen group (that is, does not form a —C (= O) —C (= O) — structure).
At least one of —CH 2 — contained in the aliphatic hydrocarbon group having 3 to 20 carbon atoms is —O—, —S—, —OC (= O) —, —C (= O) —O— , -O-C (= O) -O -, - NR 15 -C (= O) -, - C (= O) -NR 15 -, - NR 15 -, or, -C (= O) - in When substituted, it is most preferably substituted with -O-, and a repeating unit is a so-called ethyleneoxy substituted with -O- every 2 carbon atoms, and one terminal of Gb (the bond side to N) is —CH 2 — is preferred.
 Gbとしては、(i)「置換基を有していてもよい炭素数1~18、好ましくは炭素数3~18の鎖状の脂肪族炭化水素基、および、置換基を有していてもよい炭素数3~18の鎖状の脂肪族炭化水素基に含まれる-CH-の少なくとも一つが、-O-、-S-、-O-C(=O)-、-C(=O)-O-、または、-C(=O)-に置換された基、のいずれかの有機基であり、-O-または-S-がそれぞれ2以上隣接して介在する場合を除くこと」が好ましく、(ii)「置換基を有していてもよい炭素数3~18の鎖状の脂肪族炭化水素基であること」がより好ましく、(iii)「置換基を有していてもよい炭素数3~18の、アルキル基、アルキニル基、またはアルケニル基」がさらに好ましく、(iv)「炭素数4~16の無置換の、アルキル基、アルキニル基、またはアルケニル基」がさらにより好ましく、(v)「炭素数4~14の無置換の、アルキル基、アルキニル基、またはアルケニル基」がさらにより好ましく、(vi)「炭素数4~12の無置換の、アルキル基、アルキニル基、またはアルケニル基」がさらにより好ましく、(vii)「炭素数4~10の無置換の、アルキル基、アルキニル基、またはアルケニル基」が特に好ましく、炭素数4~10の無置換のアルキル基がさらに特に好ましく、(viii)「n-ヘキシル基」が最も好ましい。 Examples of Gb include (i) “a linear aliphatic hydrocarbon group having 1 to 18 carbon atoms, preferably 3 to 18 carbon atoms which may have a substituent, At least one of —CH 2 — contained in the chain aliphatic hydrocarbon group having a good carbon number of 3 to 18 is —O—, —S—, —OC (= O) —, —C (= O ) Is an organic group of either —O— or a group substituted with —C (= O) —, except that two or more —O— or —S— are adjacent to each other. (Ii) "It is preferably a linear aliphatic hydrocarbon group having 3 to 18 carbon atoms which may have a substituent", and (iii) "It may have a substituent. An alkyl group, an alkynyl group, or an alkenyl group having a good carbon number of 3 to 18 "is more preferable; (Vi) Unsubstituted alkyl, alkynyl or alkenyl groups having 4 to 14 carbon atoms are even more preferable, and (vi) unsubstituted alkyl, alkynyl or alkenyl groups having 4 to 14 carbon atoms are more preferable; Even more preferred are "unsubstituted alkyl, alkynyl or alkenyl groups having 4 to 12 carbon atoms", and (vii) "unsubstituted alkyl, alkynyl or alkenyl groups having 4 to 10 carbon atoms" Is particularly preferable, and an unsubstituted alkyl group having 4 to 10 carbon atoms is more preferable, and (viii) an "n-hexyl group" is most preferable.
[Q]
 式(IV-1)~(IV-4)中、Qは、水素原子、または、置換基を有していてもよい炭素数1~6のアルキル基を表す。置換基を有していてもよい炭素数1~6のアルキル基の炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基、およびイソプロピル基等が挙げられ、置換基としては、フェニル基およびナフタレン基等の、炭素数6~12の芳香族炭化水素基が挙げられる。
[Q]
In the formulas (IV-1) to (IV-4), Q represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent. Examples of the alkyl group having 1 to 6 carbon atoms of the alkyl group having 1 to 6 carbon atoms which may have a substituent include a methyl group, an ethyl group, a propyl group, and an isopropyl group. And aromatic hydrocarbon groups having 6 to 12 carbon atoms such as phenyl and naphthalene groups.
[R~RIV
 式(IV-1)~(IV-4)中、R~RIVは、それぞれ独立して、水素原子;フッ素原子、塩素原子等のハロゲン原子;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;シアノ基;ニトロ基;トリフルオロメチル基、ペンタフルオロエチル基等の少なくとも1つの水素原子がハロゲン原子で置換された炭素数1~6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;-OCF;-C(=O)-O-R;または、-O-C(=O)-Rを表し、Rは、前記と同じ意味を表し、その好適例も前記と同じである。
 これらの中でも、(i)R~RIVの全てが水素原子であること、または、(ii)R~RIVのうちの少なくとも一つが置換基を有していてもよい炭素数1~6のアルコキシ基であり、且つ、残りが水素原子であること、が好ましい。
[R I to R IV ]
In the formulas (IV-1) to (IV-4), R I to R IV each independently represent a hydrogen atom; a halogen atom such as a fluorine atom and a chlorine atom; a carbon atom such as a methyl group, an ethyl group and a propyl group. A cyano group; a nitro group; an alkyl group having 1 to 6 carbon atoms in which at least one hydrogen atom such as a trifluoromethyl group and a pentafluoroethyl group is substituted by a halogen atom; a methoxy group, an ethoxy group group, an alkoxy group having 1 to 6 carbon atoms such as an isopropoxy group; -OCF 3; -C (= O ) -O-R a; or represents -O-C (= O) -R a, R a Has the same meaning as described above, and preferred examples thereof are also the same as described above.
Among them, (i) all of R I to R IV are hydrogen atoms, or (ii) at least one of R I to R IV has 1 to 1 carbon atoms which may have a substituent. Preferably, it is an alkoxy group of No. 6 and the remainder is a hydrogen atom.
 R~RIVは、すべて同一であっても、相異なっていてもよく、環を構成する少なくとも1つのC-R~C-RIVは、窒素原子に置き換えられていてもよい。
 C-R~C-RIVのうちの少なくとも1つが窒素原子に置き換えられた基の具体例を下記に示す。但し、C-R~C-RIVのうちの少なくとも1つが窒素原子に置き換えられた基はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000031
〔各式中、R~RIVは、前記と同じ意味を表し、その好適例も前記と同じである。〕
R I to R IV may be the same or different, and at least one of C R I to C R IV constituting the ring may be replaced by a nitrogen atom.
Specific examples of the group in which at least one of CR I to CR IV is replaced by a nitrogen atom are shown below. However, the group in which at least one of CR I to CR IV is replaced by a nitrogen atom is not limited to these.
Figure JPOXMLDOC01-appb-C000031
[In each formula, R I to R IV represent the same meaning as described above, and preferred examples thereof are also the same as described above. ]
〔R、p、p1、p2〕
 式(IV-1)~(IV-4)中、Rは、ハロゲン原子、メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;シアノ基;ニトロ基;トリフルオロメチル基、ペンタフルオロエチル基等の少なくとも1つの水素原子がハロゲン原子で置換された炭素数1~6のアルキル基;メトキシ基、エトキシ基、プロポキシ基等の炭素数1~6のアルコキシ基;-OCF;-C(=O)-O-R;または-O-C(=O)-Rを表し、Rは、前記と同じ意味を表し、その好適例も前記と同じである。
 Rとしては、溶解性向上の観点から、フッ素原子、塩素原子等のハロゲン原子;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;シアノ基;ニトロ基;トリフルオロメチル基、ペンタフルオロエチル基等の少なくとも1つの水素原子がハロゲン原子で置換された炭素数1~6のアルキル基、メトキシ基、エトキシ基、プロポキシ基等の炭素数1~6のアルコキシ基、が好ましい。なお、Rが複数の場合は、複数のRは互いに同一でも異なっていてもよい。さらに、式(IV-1)~(IV-4)中、pは0~3の整数を表し、p1は0~4の整数を表し、p2は0または1を表し、p、p1およびp2のいずれも0であることが好ましい。
[R 0 , p, p1, p2]
In formulas (IV-1) to (IV-4), R 0 is an alkyl group having 1 to 6 carbon atoms such as a halogen atom, a methyl group, an ethyl group, and a propyl group; a cyano group; a nitro group; , at least one alkyl group of hydrogen atoms and 1 carbon atoms which is substituted with a halogen atom 6, such as pentafluoroethyl group; methoxy group, an ethoxy group, an alkoxy group having 1 to 6 carbon atoms such as a propoxy group, -OCF 3 ; -C (= O) -O- R a; represents or -O-C (= O) -R a, R a are as defined above, the preferred examples are also the same as above.
As R 0 , a halogen atom such as a fluorine atom and a chlorine atom; an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group and a propyl group; a cyano group; a nitro group; And an alkyl group having 1 to 6 carbon atoms, in which at least one hydrogen atom is substituted with a halogen atom, such as a pentafluoroethyl group or a pentafluoroethyl group, or an alkoxy group having 1 to 6 carbon atoms, such as a methoxy group, an ethoxy group, or a propoxy group. . In the case R 0 is plural, a plurality of R 0 is may be the same or different from each other. Further, in the formulas (IV-1) to (IV-4), p represents an integer of 0 to 3, p1 represents an integer of 0 to 4, p2 represents 0 or 1, and p, p1 and p2 represent Both are preferably 0.
<<Y、Y>>
 式(III)中、YおよびYは、それぞれ独立して、化学的な単結合、-O-、-O-CH-、-CH-O-、-O-CH-CH、-CH-CH-O-、-C(=O)-O-、-O-C(=O)-、-O-C(=O)-O-、-C(=O)-S-、-S-C(=O)-、-NR13-C(=O)-、-C(=O)-NR13-、-CF-O-、-O-CF-、-CH-CH-、-CF-CF-、-O-CH-CH-O-、-CH=CH-C(=O)-O-、-O-C(=O)-CH=CH-、-CH-C(=O)-O-、-O-C(=O)-CH-、-CH-O-C(=O)-、-C(=O)-O-CH-、-CH-CH-C(=O)-O-、-O-C(=O)-CH-CH-、-CH-CH-O-C(=O)-、-C(=O)-O-CH-CH-、-CH=CH-、-N=CH-、-CH=N-、-N=C(CH)-、-C(CH)=N-、-N=N-、または、-C≡C-を表す。ここで、R13は、水素原子または炭素数1~6のアルキル基を表す。
 これらの中でも、YおよびYは、それぞれ独立して、化学的な単結合、-O-、-O-C(=O)-、-C(=O)-O-、または、-O-C(=O)-O-であることが好ましい。
<< Y 3, Y 4 >>
In the formula (III), Y 3 and Y 4 are each independently a chemical single bond, —O—, —O—CH 2 —, —CH 2 —O—, —O—CH 2 —CH 2 , -CH 2 -CH 2 -O-, -C (= O) -O-, -OC (= O)-, -OC (= O) -O-, -C (= O)- S -, - S-C ( = O) -, - NR 13 -C (= O) -, - C (= O) -NR 13 -, - CF 2 -O -, - O-CF 2 -, - CH 2 —CH 2 —, —CF 2 —CF 2 —, —O—CH 2 —CH 2 —O—, —CH = CH—C (= O) —O—, —OC— (O) — CH = CH-, -CH 2 -C (= O) -O-, -OC (= O) -CH 2- , -CH 2 -OC (= O)-, -C (= O) —O—CH 2 —, —CH 2 —CH 2 —C (= O) —O—, —OC (= O ) -CH 2 -CH 2 -, - CH 2 -CH 2 -O-C (= O) -, - C (= O) -O-CH 2 -CH 2 -, - CH = CH -, - N = CH-, -CH = N-, -N = C (CH 3 )-, -C (CH 3 ) = N-, -N = N-, or -C≡C-. Here, R 13 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
Among these, Y 3 and Y 4 are each independently a chemical single bond, —O—, —OC (= O) —, —C (= O) —O—, or —O It is preferably —C (= O) —O—.
<<A23、A24>>
 式(III)中、A23およびA24は、それぞれ独立して、それぞれ独立して、前記Aと同じ意味を表し、その好適例も前記Aと同じである。
<< A 23, A 24 >>
In Formula (III), A 23 and A 24 each independently and independently represent the same meaning as A 2, and preferred examples thereof are also the same as A 2 .
<<B21、B22、Y21、Y22、L21、L22、R31、R32、d1、d2、e1、e2>>
 式(III)中、B21、B22、Y21、Y22、L21、L22、R31、R32、d1、d2、e1、e2は、前記と同じ意味を表し、その好適例も前記と同じである。
<< B 21, B 22, Y 21, Y 22, L 21, L 22, R 31, R 32, d1, d2, e1, e2 >>
In the formula (III), B 21 , B 22 , Y 21 , Y 22 , L 21 , L 22 , R 31 , R 32 , d 1, d 2, e 1 and e 2 have the same meanings as described above, and preferred examples thereof are also included. Same as above.
 また、重合性化合物(III)は、特に限定されるものではないが、Arを中心とした対称構造を有する(即ち、YとY、A23とA24、B21とB22、Y21とY22、L21とL22、R31とR32、d1とd2、e1とe2が、それぞれ同一である(Arを中心として対称である))ことが好ましい。 In addition, the polymerizable compound (III) has a symmetrical structure around Ar, although not particularly limited (that is, Y 3 and Y 4 , A 23 and A 24 , B 21 and B 22 , Y It is preferable that 21 and Y 22 , L 21 and L 22 , R 31 and R 32 , d 1 and d 2, e 1 and e 2 are the same (symmetric with respect to Ar).
 ここで、重合性化合物(III)は、下記式(V-1)および(V-2)のいずれかで示される重合性化合物であることが好ましく、下記式(V-1)であることがより好ましい。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
(式(V-1)および(V-2)中、R、Q、R~RIV、R、Y、Y、A23、A24、B21、B22、Y21、Y22、L21、L22、R31、R32、d1、d2、e1、e2、p、p1およびp2は前記と同じ意味を表し、その好適例も前記と同じである。
Here, the polymerizable compound (III) is preferably a polymerizable compound represented by any of the following formulas (V-1) and (V-2), and is preferably the following formula (V-1) More preferred.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
(In the formulas (V-1) and (V-2), R, Q, R I to R IV , R 0 , Y 3 , Y 4 , A 23 , A 24 , B 21 , B 22 , Y 21 , Y 22 , L 21 , L 22 , R 31 , R 32 , d1, d2, e1, e2, p, p1 and p2 have the same meaning as described above, and preferred examples thereof are also the same as described above.
 ここで、上記式(V-1)で示される重合性化合物としては、下記式(iii-1)で示される重合性化合物(iii-1)であることが好ましく、下記式(iii-2)で示される重合性化合物(iii-2)であることがより好ましく、下記式(1)および(2)のいずれかであることが特に好ましい。
Figure JPOXMLDOC01-appb-C000034
(式(iii-1)中、R、Q、R~RIV、R、Y、Y、A23、A24、B21、B22、Y21、Y22、L21、L22、R31、R32、d1、d2、e1、e2およびpは前記と同じ意味を表し、その好適例も前記と同じである。)
Figure JPOXMLDOC01-appb-C000035
(式(iii-2)中、R~RIV、Q、およびRは前記と同じ意味を表し、その好適例も前記と同じである。kおよびlは、それぞれ独立して、1~18の整数を表す。)
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Here, the polymerizable compound represented by the formula (V-1) is preferably a polymerizable compound (iii-1) represented by the following formula (iii-1), and is preferably a compound represented by the following formula (iii-2): And more preferably a polymerizable compound (iii-2) represented by the following formula (1) or (2).
Figure JPOXMLDOC01-appb-C000034
(In the formula (iii-1), R, Q, R I to R IV , R 0 , Y 3 , Y 4 , A 23 , A 24 , B 21 , B 22 , Y 21 , Y 22 , L 21 , L 22 , R 31 , R 32 , d 1, d 2, e 1, e 2 and p have the same meaning as described above, and preferred examples thereof are also the same as described above.)
Figure JPOXMLDOC01-appb-C000035
(In the formula (iii-2), R I to R IV , Q and R have the same meanings as described above, and preferred examples thereof are also the same as described above. K and l are each independently 1 to 18 Represents an integer.)
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
 上述した重合性化合物(III)は、既知の合成反応を組み合わせて合成することができる。即ち、様々な文献(例えば、国際公開第2012/141245号、国際公開第2012/147904号、国際公開第2014/010325号、国際公開第2013/046781号、国際公開第2014/061709号、国際公開第2014/126113号、国際公開第2015/064698号、国際公開第2015-140302号、国際公開第2015/129654号、国際公開第2015/141784号、国際公開第2016/159193号、国際公開第2012/169424号、国際公開第2012/176679号、国際公開第2015/122385号、特開2016-190818号、国際公開第2017/150622号等に記載の方法を参照して合成できる。 重合 The above-mentioned polymerizable compound (III) can be synthesized by combining known synthesis reactions. That is, various documents (for example, WO2012 / 141245, WO2012 / 147904, WO2014 / 010325, WO2013 / 0466781, WO2014 / 061709, WO WO 2014/126113, WO 2015/064698, WO 2015-140302, WO 2015/129654, WO 2015/141784, WO 2016/159193, WO 2012 / 169424, WO2012 / 176679, WO2015 / 122385, JP-A-2016-190818, WO2017 / 150622, and the like.
 例えば、本発明の中間体の製造方法により製造された中間体に含有される化合物(I)と、式(AA)で表されるベンズアルデヒド化合物(AA)とを反応させることにより、下記式(AB)で表される化合物(AB)を得て、その後、化合物(AB)と下記式(AC)で表される化合物(AC)とを反応させることにより、上記重合性化合物(iii-1)(Qが水素原子であり、pが0であるもの)を得ることができる。
 なお、反応条件等の詳細については、国際公開2014/010325号報、国際公開2015/064698号報、国際公開2015/141784号報を参照して設定することができる。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
(式(I)、式(AB)、式(AC)および式(iii-1)中、R、Y、B、L、A、FG、d、e、Y、Y、A23、A24、B21、B22、Y21、Y22、L21、L22、R31、R32、d1、d2、e1、e2、R、およびR~RIVは前記と同じ意味を表し、その好適例も前記と同じである。)
For example, by reacting the compound (I) contained in the intermediate produced by the production method of the intermediate of the present invention with the benzaldehyde compound (AA) represented by the formula (AA), the following formula (AB) Is obtained, and then the compound (AB) is reacted with a compound (AC) represented by the following formula (AC) to obtain the polymerizable compound (iii-1) ( Q is a hydrogen atom and p is 0).
The details of the reaction conditions and the like can be set with reference to International Publication No. WO 2014/010325, International Publication No. 2015/064698, and International Publication No. 2015/141784.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
(In the formula (I), the formula (AB), the formula (AC) and the formula (iii-1), R 3 , Y 2 , B 2 , L 2 , A 2 , FG 2 , d, e, Y 3 , Y 4 , A 23 , A 24 , B 21 , B 22 , Y 21 , Y 22 , L 21 , L 22 , R 31 , R 32 , d 1, d 2, e 1, e 2, R, and R I to R IV are as described above. And the preferred examples are also the same as above.)
<重合性組成物>
 上記重合性組成物は、少なくとも重合性化合物(III)と、重合開始剤とを含有する。
 なお、上記重合性組成物は、後述するように、高分子、光学フィルム、光学異方体の製造原料として有用である。そして、上記重合性組成物によれば、膜厚の面内均一性に優れ、光学特性の面内均一性が改善された光学フィルム等を良好に製造することができる。
<Polymerizable composition>
The polymerizable composition contains at least a polymerizable compound (III) and a polymerization initiator.
The polymerizable composition is useful as a raw material for producing a polymer, an optical film, and an optically anisotropic material, as described later. According to the polymerizable composition, an optical film or the like having excellent in-plane uniformity of film thickness and improved in-plane uniformity of optical characteristics can be favorably produced.
 ここで、重合開始剤は、重合性組成物に含まれている重合性化合物(III)の重合反応をより効率的に行う観点から配合される。
 そして、用いる重合開始剤としては、ラジカル重合開始剤、アニオン重合開始剤、カチオン重合開始剤等が挙げられる。
Here, the polymerization initiator is blended from the viewpoint of more efficiently performing the polymerization reaction of the polymerizable compound (III) contained in the polymerizable composition.
Examples of the polymerization initiator used include a radical polymerization initiator, an anionic polymerization initiator, and a cationic polymerization initiator.
 ラジカル重合開始剤としては、加熱することにより、重合性化合物の重合を開始し得る活性種が発生する化合物である熱ラジカル発生剤;や、可視光線、紫外線(i線など)、遠紫外線、電子線、X線等の露光光の露光により、重合性化合物の重合を開始しえる活性種が発生する化合物である光ラジカル発生剤;のいずれも使用可能であるが、光ラジカル発生剤を使用するのが好適である。 Examples of the radical polymerization initiator include a thermal radical generator, which is a compound that generates an active species capable of initiating polymerization of a polymerizable compound when heated; A photo-radical generator, which is a compound that generates an active species capable of initiating polymerization of a polymerizable compound by exposure to exposure light such as X-rays and X-rays; Is preferred.
 光ラジカル発生剤としては、アセトフェノン系化合物、ビイミダゾール系化合物、トリアジン系化合物、O-アシルオキシム系化合物、オニウム塩系化合物、ベンゾイン系化合物、ベンゾフェノン系化合物、α-ジケトン系化合物、多核キノン系化合物、キサントン系化合物、ジアゾ系化合物、イミドスルホナート系化合物等を挙げることができる。これらの化合物は、露光によって活性ラジカルまたは活性酸、あるいは活性ラジカルと活性酸の両方を発生する成分である。光ラジカル発生剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。 Examples of the photo-radical generator include acetophenone compounds, biimidazole compounds, triazine compounds, O-acyl oxime compounds, onium salt compounds, benzoin compounds, benzophenone compounds, α-diketone compounds, and polynuclear quinone compounds. , A xanthone-based compound, a diazo-based compound, and an imidosulfonate-based compound. These compounds are components that generate active radicals or active acids or both active radicals and active acids upon exposure. The photoradical generator can be used alone or in combination of two or more.
 アセトフェノン系化合物の具体例としては、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、1-ヒドロキシシクロヘキシル・フェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-〔4-(フェニルチオ)フェニル〕-オクタン-1,2-ジオン2-(O-ベンゾイルオキシム)等を挙げることができる。 Specific examples of the acetophenone-based compound include 2-hydroxy-2-methyl-1-phenylpropan-1-one and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1- [4- (phenylthio) phenyl] -octane-1,2-dione 2- (O-benzoyloxime) and the like.
 ビイミダゾール系化合物の具体例としては、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2-ブロモフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-ブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール等を挙げることができる。 Specific examples of the biimidazole compound include 2,2′-bis (2-chlorophenyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) -1,2′-biimidazole, , 2'-Bis (2-bromophenyl) -4,4 ', 5,5'-tetrakis (4-ethoxycarbonylphenyl) -1,2'-biimidazole, 2,2'-bis (2-chlorophenyl) -4,4 ', 5,5'-Tetraphenyl-1,2'-biimidazole, 2,2'-bis (2,4-dichlorophenyl) -4,4', 5,5'-tetraphenyl-1 , 2'-biimidazole, 2,2'-bis (2,4,6-trichlorophenyl) -4,4 ', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'- Bis (2-bromophenyl) -4,4 ' 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis (2,4-dibromophenyl) -4,4 ', 5,5'-tetraphenyl-1,2'-bi Examples thereof include imidazole and 2,2'-bis (2,4,6-tribromophenyl) -4,4 ', 5,5'-tetraphenyl-1,2'-biimidazole.
 なお、光重合開始剤(光ラジカル発生剤)としてビイミダゾール系化合物を用いる場合、水素供与体を併用することが、感度をさらに改良することができる点で好ましい。
 ここで、「水素供与体」とは、露光によりビイミダゾール系化合物から発生したラジカルに対して、水素原子を供与することができる化合物を意味する。水素供与体としては、下記で定義するメルカプタン系化合物、アミン系化合物等が好ましい。
When a biimidazole-based compound is used as the photopolymerization initiator (photoradical generator), it is preferable to use a hydrogen donor together in that the sensitivity can be further improved.
Here, “hydrogen donor” means a compound capable of donating a hydrogen atom to a radical generated from a biimidazole-based compound upon exposure. As the hydrogen donor, a mercaptan compound, an amine compound and the like defined below are preferable.
 メルカプタン系化合物の具体例としては、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾイミダゾール、2,5-ジメルカプト-1,3,4-チアジアゾール、2-メルカプト-2,5-ジメチルアミノピリジン等を挙げることができる。アミン系化合物としては、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-ジエチルアミノアセトフェノン、4-ジメチルアミノプロピオフェノン、エチル-4-ジメチルアミノベンゾエート、4-ジメチルアミノ安息香酸、4-ジメチルアミノベンゾニトリル等を挙げることができる。 Specific examples of the mercaptan-based compound include 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, 2-mercaptobenzimidazole, 2,5-dimercapto-1,3,4-thiadiazole, 2-mercapto-2,5-dimethyl Aminopyridine and the like can be mentioned. Examples of the amine compound include 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4-diethylaminoacetophenone, 4-dimethylaminopropiophenone, ethyl-4-dimethylaminobenzoate, Examples thereof include 4-dimethylaminobenzoic acid and 4-dimethylaminobenzonitrile.
 トリアジン系化合物の具体例としては、2,4,6-トリス(トリクロロメチル)-s-トリアジン、2-メチル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-〔2-(5-メチルフラン-2-イル)エテニル〕-4,6-ビス(トリクロロメチル)-s-トリアジン、2-〔2-(フラン-2-イル)エテニル〕-4,6-ビス(トリクロロメチル)-s-トリアジン、2-〔2-(4-ジエチルアミノ-2-メチルフェニル)エテニル〕-4,6-ビス(トリクロロメチル)-s-トリアジン、2-〔2-(3,4-ジメトキシフェニル)エテニル〕-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-n-ブトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン等のハロメチル基を有するトリアジン系化合物を挙げることができる。 Specific examples of the triazine-based compound include 2,4,6-tris (trichloromethyl) -s-triazine, 2-methyl-4,6-bis (trichloromethyl) -s-triazine, 2- [2- (5 -Methylfuran-2-yl) ethenyl] -4,6-bis (trichloromethyl) -s-triazine, 2- [2- (furan-2-yl) ethenyl] -4,6-bis (trichloromethyl)- s-Triazine, 2- [2- (4-diethylamino-2-methylphenyl) ethenyl] -4,6-bis (trichloromethyl) -s-triazine, 2- [2- (3,4-dimethoxyphenyl) ethenyl -4,6-bis (trichloromethyl) -s-triazine, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4-ethoxys) Triazine compounds having a halomethyl group such as (lyl) -4,6-bis (trichloromethyl) -s-triazine and 2- (4-n-butoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine Can be mentioned.
 O-アシルオキシム系化合物の具体例としては、1-〔4-(フェニルチオ)フェニル〕-ヘプタン-1,2-ジオン2-(O-ベンゾイルオキシム)、1-〔4-(フェニルチオ)フェニル〕-オクタン-1,2-ジオン2-(O-ベンゾイルオキシム)、1-〔4-(ベンゾイル)フェニル〕-オクタン-1,2-ジオン2-(O-ベンゾイルオキシム)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-エタノン1-(O-アセチルオキシム)、1-[9-エチル-6-(3-メチルベンゾイル)-9H-カルバゾール-3-イル]-エタノン1-(O-アセチルオキシム)、1-(9-エチル-6-ベンゾイル-9H-カルバゾール-3-イル)-エタノン1-(O-アセチルオキシム)、エタノン-1-[9-エチル-6-(2-メチル-4-テトラヒドロフラニルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-4-テトラヒドロピラニルベンゾイル)-9H-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-5-テトラヒドロフラニルベンゾイル)-9H-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-5-テトラヒドロピラニルベンゾイル)-9H-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-{2-メチル-4-(2,2-ジメチル-1,3-ジオキソラニル)ベンゾイル}-9H-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-[9-エチル-6-(2-メチル-4-テトラヒドロフラニルメトキシベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-4-テトラヒドロピラニルメトキシベンゾイル)-9H-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-5-テトラヒドロフラニルメトキシベンゾイル)-9H-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-5-テトラヒドロピラニルメトキシベンゾイル)-9H-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-{2-メチル-4-(2,2-ジメチル-1,3-ジオキソラニル)メトキシベンゾイル}-9H-カルバゾール-3-イル〕-1-(O-アセチルオキシム)等を挙げることができる。 Specific examples of the O-acyl oxime compound include 1- [4- (phenylthio) phenyl] -heptane-1,2-dione 2- (O-benzoyloxime) and 1- [4- (phenylthio) phenyl]- Octane-1,2-dione 2- (O-benzoyloxime), 1- [4- (benzoyl) phenyl] -octane-1,2-dione 2- (O-benzoyloxime), 1- [9-ethyl- 6- (2-Methylbenzoyl) -9H-carbazol-3-yl] -ethanone 1- (O-acetyloxime), 1- [9-ethyl-6- (3-methylbenzoyl) -9H-carbazole-3- Yl] -ethanone 1- (O-acetyloxime), 1- (9-ethyl-6-benzoyl-9H-carbazol-3-yl) -ethanone 1- (O-acetyloxime), Tanone-1- [9-ethyl-6- (2-methyl-4-tetrahydrofuranylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime), ethanone-1- [9-ethyl- 6- (2-methyl-4-tetrahydropyranylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime), ethanone-1- [9-ethyl-6- (2-methyl-5) -Tetrahydrofuranylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime), ethanone-1- [9-ethyl-6- (2-methyl-5-tetrahydropyranylbenzoyl) -9H- Carbazol-3-yl] -1- (O-acetyloxime), ethanone-1- [9-ethyl-6- {2-methyl-4- (2,2-dimethyl-1,3-dio) Solanyl) benzoyl {-9H-carbazol-3-yl] -1- (O-acetyloxime), ethanone-1- [9-ethyl-6- (2-methyl-4-tetrahydrofuranylmethoxybenzoyl) -9H-carbazole -3-yl] -1- (O-acetyloxime), ethanone-1- [9-ethyl-6- (2-methyl-4-tetrahydropyranylmethoxybenzoyl) -9H-carbazol-3-yl] -1 -(O-acetyloxime), ethanone-1- [9-ethyl-6- (2-methyl-5-tetrahydrofuranylmethoxybenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime), Ethanone-1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) Ethanone-1- [9-ethyl-6- (2-methyl-5-tetrahydropyranylmethoxybenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime), ethanone-1- [9 -Ethyl-6- {2-methyl-4- (2,2-dimethyl-1,3-dioxolanyl) methoxybenzoyl} -9H-carbazol-3-yl] -1- (O-acetyloxime) and the like. Can be.
 また、光ラジカル発生剤として、市販品をそのまま用いることもできる。具体例としては、BASF社製の、商品名:Irgacure907、商品名:Irgacure184、商品名:Irgacure369、商品名:Irgacure651、商品名:Irgacure819、商品名:Irgacure907、および、商品名:IrgacureOXE02、並びに、ADEKA社製の、商品名:アデカアークルズN1919T等が挙げられる。 市 販 As the photoradical generator, a commercially available product can be used as it is. As specific examples, trade names: Irgacure 907, trade name: Irgacure 184, trade name: Irgacure 369, trade name: Irgacure 651, trade name: Irgacure 819, trade names: Irgacure 907, and trade names: Irgacure OAKEXAE02, manufactured by BASF Trade name: ADEKA ARKULS N1919T or the like.
 前記アニオン重合開始剤としては、アルキルリチウム化合物;ビフェニル、ナフタレン、ピレン等の、モノリチウム塩またはモノナトリウム塩;ジリチウム塩やトリリチウム塩等の多官能性開始剤;等が挙げられる。 Examples of the anionic polymerization initiator include alkyl lithium compounds; monolithium salts or monosodium salts such as biphenyl, naphthalene and pyrene; and polyfunctional initiators such as dilithium salts and trilithium salts.
 また、前記カチオン重合開始剤としては、硫酸、リン酸、過塩素酸、トリフルオロメタンスルホン酸等のプロトン酸;三フッ化ホウ素、塩化アルミニウム、四塩化チタン、四塩化スズのようなルイス酸;芳香族オニウム塩または芳香族オニウム塩と、還元剤との併用系;が挙げられる。 Examples of the cationic polymerization initiator include protonic acids such as sulfuric acid, phosphoric acid, perchloric acid, and trifluoromethanesulfonic acid; Lewis acids such as boron trifluoride, aluminum chloride, titanium tetrachloride, and tin tetrachloride; A combination system of an aromatic onium salt or an aromatic onium salt and a reducing agent.
 これらの重合開始剤は1種単独で、または2種以上を組み合わせて用いることができる。 These polymerization initiators can be used alone or in combination of two or more.
 なお、上記重合性組成物において、重合開始剤の配合割合は、重合性組成物に含まれる重合性化合物100質量部に対し、通常、0.1~30質量部、好ましくは0.5~10質量部である。 In the polymerizable composition, the mixing ratio of the polymerization initiator is usually 0.1 to 30 parts by mass, preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the polymerizable compound contained in the polymerizable composition. Parts by weight.
 また、上記重合性組成物には、表面張力を調整するために、界面活性剤を配合するのが好ましい。当該界面活性剤としては、特に限定はないが、通常、ノニオン系界面活性剤が好ましい。当該ノニオン系界面活性剤としては、市販品を用いればよく、例えば、含フッ素基、親水性基、および親油性基含有オリゴマーであるノニオン系界面活性剤、例えば、AGCセイミケミカル社製のサーフロンシリーズ(S242、S243、S386、S611、S651など)、DIC社製のメガファックシリーズ(F251、F554、F556、F562、RS-75、RS-76-Eなど)、ネオス社製のフタージェントシリーズ(FTX601AD、FTX602A、FTX601ADH2、FTX650Aなど)等が挙げられる。また、これらの界面活性剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ここで、上記重合性組成物において、界面活性剤の配合割合は、重合性組成物に含まれる重合性化合物100質量部に対し、通常、0.01~10質量部、好ましくは0.01~2質量部である。
Further, it is preferable to add a surfactant to the polymerizable composition in order to adjust the surface tension. The surfactant is not particularly limited, but is preferably a nonionic surfactant. As the nonionic surfactant, a commercially available product may be used. For example, a nonionic surfactant which is an oligomer containing a fluorine-containing group, a hydrophilic group, and a lipophilic group, such as Surflon manufactured by AGC Seimi Chemical Co., Ltd. Series (S242, S243, S386, S611, S651, etc.), DIC MegaFac series (F251, F554, F556, F562, RS-75, RS-76-E, etc.), Neos's Fuertgent series ( FTX601AD, FTX602A, FTX601ADH2, FTX650A, etc.). In addition, one of these surfactants may be used alone, or two or more thereof may be used in combination at an arbitrary ratio.
Here, in the polymerizable composition, the mixing ratio of the surfactant is usually 0.01 to 10 parts by mass, preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the polymerizable compound contained in the polymerizable composition. 2 parts by mass.
 更に、上記重合性組成物には、重合性化合物、重合開始剤、界面活性剤の他、他の成分が更に含まれていてもよい。他の成分としては、金属、金属錯体、染料、顔料、蛍光材料、燐光材料、レベリング剤、チキソ剤、ゲル化剤、多糖類、紫外線吸収剤、赤外線吸収剤、抗酸化剤、イオン交換樹脂、酸化チタン等の金属酸化物等が挙げられる。
 また、他の成分としては、他の共重合可能な単量体も挙げられる。具体的には、特に限定されるものではなく、例えば、4-(2-メタクリロイルオキシエチルオキシ)安息香酸-4’-メトキシフェニル、4-(6-メタクリロイルオキシヘキシルオキシ)安息香酸ビフェニル、4-(2-アクリロイルオキシエチルオキシ)安息香酸-4’-シアノビフェニル、4-(2-メタクリロリルオキシエチルオキシ)安息香酸-4’-シアノビフェニル、4-(2-メタクリロリルオキシエチルオキシ)安息香酸-3’,4’-ジフルオロフェニル、4-(2-メタクリロイルオキシエチルオキシ)安息香酸ナフチル、4-アクリロイルオキシ-4’-デシルビフェニル、4-アクリロイルオキシ-4’-シアノビフェニル、4-(2-アクリロイルオキシエチルオキシ)-4’-シアノビフェニル、4-(2-メタクリロイルオキシエチルオキシ)-4’-メトキシビフェニル、4-(2-メタクリロイルオキシエチルオキシ)-4’-(4’’-フルオロベンジルオキシ)-ビフェニル、4-アクリロイルオキシ-4’-プロピルシクロヘキシルフェニル、4-メタクリロイル-4’-ブチルビシクロヘキシル、4-アクリロイル-4’-アミルトラン、4-アクリロイル-4’-(3,4-ジフルオロフェニル)ビシクロヘキシル、4-(2-アクリロイルオキシエチル)安息香酸(4-アミルフェニル)、4-(2-アクリロイルオキシエチル)安息香酸(4-(4’-プロピルシクロヘキシル)フェニル)、商品名「LC-242」(BASF社製)、トランス-1,4-ビス[4-[6-(アクリロイルオキシ)ヘキシルオキシ]フェニル]シクロヘキサンジカルボキシレート、並びに、特開2007-002208号公報、特開2009-173893号公報、特開2009-274984号公報、特開2010-030979号公報、特開2010-031223号公報、特開2011-006360号公報および特開2010-24438号公報、国際公開第2012/141245号、国際公開第2012/147904号、国際公開第2012/169424号、国際公開第2012/76679号、国際公開第2013/180217号、国際公開第2014/010325号、国際公開第2014/061709号、国際公開第2014/065176号、国際公開第2014/126113号、国際公開第2015/025793号、国際公開第2015/064698号、国際公開第2015/122384号、国際公開第2015/122385号に開示されている化合物等の共重合可能な単量体が挙げられる。
 これらの他の成分の配合割合は、重合性組成物に含まれる重合性化合物100質量部に対し、通常、0.005~50質量部である。
Further, the polymerizable composition may further contain other components in addition to the polymerizable compound, the polymerization initiator, and the surfactant. Other components include metals, metal complexes, dyes, pigments, fluorescent materials, phosphorescent materials, leveling agents, thixotropic agents, gelling agents, polysaccharides, ultraviolet absorbers, infrared absorbers, antioxidants, ion exchange resins, Metal oxides such as titanium oxide are exemplified.
Other components include other copolymerizable monomers. Specific examples thereof include, but are not particularly limited to, for example, 4'-methoxyphenyl 4- (2-methacryloyloxyethyloxy) benzoate, biphenyl 4- (6-methacryloyloxyhexyloxy) benzoate, (2-acryloyloxyethyloxy) -4'-cyanobiphenyl benzoate, 4- (2-methacrylolyloxyethyloxy) -4'-cyanobiphenyl benzoate, 4- (2-methacrylolyloxyethyloxy) 3 ', 4'-difluorophenyl benzoate, naphthyl 4- (2-methacryloyloxyethyloxy) benzoate, 4-acryloyloxy-4'-decylbiphenyl, 4-acryloyloxy-4'-cyanobiphenyl, 4- (2-acryloyloxyethyloxy) -4′-cyanobiphenyl, 4- (2-methacrylic Yloxyethyloxy) -4′-methoxybiphenyl, 4- (2-methacryloyloxyethyloxy) -4 ′-(4 ″ -fluorobenzyloxy) -biphenyl, 4-acryloyloxy-4′-propylcyclohexylphenyl, 4-methacryloyl-4'-butylbicyclohexyl, 4-acryloyl-4'-amyltran, 4-acryloyl-4 '-(3,4-difluorophenyl) bicyclohexyl, 4- (2-acryloyloxyethyl) benzoic acid ( 4-amylphenyl), 4- (2-acryloyloxyethyl) benzoic acid (4- (4′-propylcyclohexyl) phenyl), trade name “LC-242” (manufactured by BASF), trans-1,4-bis [4- [6- (acryloyloxy) hexyloxy] phenyl] cyclohexanedical Boxylate, and JP-A-2007-002208, JP-A-2009-173893, JP-A-2009-274984, JP-A-2010-030979, JP-A-2010-031223, JP-A-2011-006360 JP-A-2010-24438, WO2012 / 141245, WO2012 / 147904, WO2012 / 169424, WO2012 / 76679, WO2013 / 180217, WO 2014/010325, WO 2014/061709, WO 2014/065176, WO 2014/126113, WO 2015/025793, WO 2015/064698, WO No. No. 015/122384, copolymerizable monomers such as compounds disclosed in WO 2015/122385 and the like.
The mixing ratio of these other components is usually 0.005 to 50 parts by mass based on 100 parts by mass of the polymerizable compound contained in the polymerizable composition.
 上記重合性組成物は、通常、重合性化合物、重合開始剤、および、所望により配合される他の成分等の所定量を、適当な有機溶媒に混合・溶解させることにより、調製することができる。 The polymerizable composition can be usually prepared by mixing and dissolving a predetermined amount of a polymerizable compound, a polymerization initiator, and other components to be added as required in a suitable organic solvent. .
 重合性組成物の調製に用いる有機溶媒としては、シクロペンタノン、シクロヘキサノン、メチルエチルケトン等のケトン類;酢酸ブチル、酢酸アミル等の酢酸エステル類;クロロホルム、ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素類;1,4-ジオキサン、シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン等のエーテル類;等が挙げられる。 Examples of the organic solvent used for preparing the polymerizable composition include ketones such as cyclopentanone, cyclohexanone, and methyl ethyl ketone; acetates such as butyl acetate and amyl acetate; halogenated hydrocarbons such as chloroform, dichloromethane, and dichloroethane; , 4-dioxane, cyclopentyl methyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxolan and the like; and the like.
<高分子>
 高分子は、上述した重合性化合物(III)または上述した重合性組成物を重合して得られるものである。
 ここで、「重合」とは、通常の重合反応のほか、架橋反応を含む広い意味での化学反応を意味するものとする。
 そして、高分子は、通常、重合性化合物(III)に由来する単量体単位を有している。
<Polymer>
The polymer is obtained by polymerizing the above-mentioned polymerizable compound (III) or the above-mentioned polymerizable composition.
Here, “polymerization” means a chemical reaction in a broad sense including a cross-linking reaction in addition to a normal polymerization reaction.
The polymer usually has a monomer unit derived from the polymerizable compound (III).
 なお、高分子は、上述した重合性化合物(III)、または、上述した重合性組成物を用いて調製しているので、光学フィルム等の構成材料として良好に用いることができる。 Since the polymer is prepared using the above-mentioned polymerizable compound (III) or the above-mentioned polymerizable composition, it can be used favorably as a constituent material of an optical film or the like.
 また、高分子は、特に限定されることなく、フィルム状、粉体状、粉体が集合した層状などの用途に応じた任意の形状にして使用することができる。
 具体的には、高分子のフィルムは、後述する光学フィルムおよび光学異方体の構成材料として良好に用いることができ、高分子の粉は、塗料、偽造防止物品、セキュリティ物品等に利用することができ、高分子の粉よりなる層は、光学異方体の構成材料として良好に用いることができる。
Further, the polymer is not particularly limited, and can be used in an arbitrary shape according to the use such as a film, a powder, and a layer in which the powder is aggregated.
Specifically, a polymer film can be favorably used as a constituent material of an optical film and an optically anisotropic material described later, and a polymer powder is used for a paint, an anti-counterfeit article, a security article, and the like. The layer made of the polymer powder can be favorably used as a constituent material of the optically anisotropic body.
 そして、高分子は、具体的には、(α)適当な有機溶媒の存在下、上述した重合性化合物(III)、または、上述した重合性組成物の重合反応を行った後、目的とする高分子を単離し、得られる高分子を適当な有機溶媒に溶解して溶液を調製し、この溶液を適当な基板上に塗工して得られた塗膜を乾燥後、所望により加熱することにより得る方法、(β)上述した重合性化合物(III)、または、上述した重合性組成物を有機溶媒に溶解し、この溶液を、公知の塗工法により基板上に塗布した後、脱溶媒し、次いで加熱または活性エネルギー線を照射することにより重合反応を行う方法等により好適に製造することができる。なお、上述した重合性化合物(III)を単独で重合してもよい。 The polymer is specifically (α) subjected to the polymerization reaction of the above-mentioned polymerizable compound (III) or the above-mentioned polymerizable composition in the presence of an appropriate organic solvent, and Isolating the polymer, dissolving the obtained polymer in a suitable organic solvent to prepare a solution, applying the solution on a suitable substrate, drying the obtained coating film, and optionally heating. (Β) dissolving the above-mentioned polymerizable compound (III) or the above-mentioned polymerizable composition in an organic solvent, applying this solution on a substrate by a known coating method, and then removing the solvent. Then, it can be suitably produced by a method of performing a polymerization reaction by heating or irradiating with an active energy ray. In addition, you may polymerize the said polymerizable compound (III) independently.
 前記(α)の方法において重合反応に用いる有機溶媒としては、不活性なものであれば、特に制限されない。例えば、トルエン、キシレン、メシチレン等の芳香族炭化水素;シクロヘキサノン、シクロペンタノン、メチルエチルケトン等のケトン類;酢酸ブチル、酢酸アミル等の酢酸エステル類;クロロホルム、ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素類;シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン等のエーテル類;等が挙げられる。
 これらの中でも、取り扱い性に優れる観点から、沸点が60~250℃のものが好ましく、60~150℃のものがより好ましい。
The organic solvent used in the polymerization reaction in the method (α) is not particularly limited as long as it is inert. For example, aromatic hydrocarbons such as toluene, xylene and mesitylene; ketones such as cyclohexanone, cyclopentanone and methyl ethyl ketone; acetates such as butyl acetate and amyl acetate; halogenated hydrocarbons such as chloroform, dichloromethane and dichloroethane; Ethers such as cyclopentyl methyl ether, tetrahydrofuran, and tetrahydropyran; and the like.
Among them, those having a boiling point of 60 to 250 ° C are preferable, and those having a boiling point of 60 to 150 ° C are more preferable from the viewpoint of excellent handling properties.
 また、前記(α)の方法において、単離した高分子を溶解するための有機溶媒、および、前記(β)の方法で用いる有機溶媒としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤;酢酸ブチル、酢酸アミル等のエステル系溶剤;ジクロロメタン、クロロホルム、ジクロロエタン等のハロゲン化炭化水素系溶剤;テトラヒドロフラン、テトラヒドロピラン、1,2-ジメトキシエタン、1,4-ジオキサン、シクロペンチルメチルエーテル、1,3-ジオキソラン等のエーテル系溶剤;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン、N-メチルピロリドン(N-メチル-2-ピロリドン)等の非プロトン性極性溶剤;等が挙げられる。これらの中でも、取り扱いが容易な点から、溶媒の沸点が60~200℃のものが好ましい。これらの溶剤は単独でも用いてもよく、2種以上を組み合わせて用いてもよい。 In the method (α), the organic solvent for dissolving the isolated polymer and the organic solvent used in the method (β) include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, Ketone solvents such as cyclohexanone; ester solvents such as butyl acetate and amyl acetate; halogenated hydrocarbon solvents such as dichloromethane, chloroform and dichloroethane; tetrahydrofuran, tetrahydropyran, 1,2-dimethoxyethane, 1,4-dioxane, Ether solvents such as cyclopentyl methyl ether and 1,3-dioxolane; N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, γ-butyrolactone, N-methylpyrrolidone (N-methyl-2-pyrrolidone) and the like Non-proton Polar solvent; and the like. Among them, those having a boiling point of 60 to 200 ° C. are preferable from the viewpoint of easy handling. These solvents may be used alone or in combination of two or more.
 前記(α)および(β)の方法において用いる基板としては、有機、無機を問わず、公知慣用の材質のものを使用することができる。例えば、有機材料としては、ポリシクロオレフィン〔例えば、ゼオネックス、ゼオノア(登録商標;日本ゼオン社製)、アートン(登録商標;JSR社製)、および、アペル(登録商標;三井化学社製)〕、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド、ポリアミド、ポリメタクリル酸メチル、ポリスチレン、ポリ塩化ビニル、ポリテトラフルオロエチレン、セルロース、三酢酸セルロース、ポリエーテルスルホン等が挙げられ、無機材料としては、シリコン、ガラス、方解石等が挙げられる。
 また、用いる基板は、単層のものであっても、積層体であってもよい。
 基板としては、有機材料からなる基板が好ましく、有機材料をフィルム状にした樹脂フィルムが更に好ましい。
 なお、基板としては、後述する光学異方体の作製に用いられる基板等も挙げられる。
As the substrate used in the methods (α) and (β), a substrate of a known and commonly used material can be used irrespective of organic or inorganic. For example, as an organic material, polycycloolefin [for example, ZEONEX, ZEONOR (registered trademark; manufactured by Nippon Zeon), ARTON (registered trademark; manufactured by JSR), and Apel (registered trademark; manufactured by Mitsui Chemicals, Inc.)], Polyethylene terephthalate, polycarbonate, polyimide, polyamide, polymethyl methacrylate, polystyrene, polyvinyl chloride, polytetrafluoroethylene, cellulose, cellulose triacetate, polyether sulfone, etc., and inorganic materials such as silicon, glass, calcite, etc. Is mentioned.
The substrate to be used may be a single layer or a laminate.
As the substrate, a substrate made of an organic material is preferable, and a resin film in which the organic material is formed into a film is more preferable.
Note that examples of the substrate include a substrate used for producing an optically anisotropic body described later.
 また、(α)の方法において高分子の溶液を基板に塗布する方法、および、(β)の方法において重合反応用の溶液を基板に塗布する方法としては、公知の方法を用いることができる。具体的には、例えば、カーテンコーティング法、押し出しコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法、スライドコーティング法、印刷コーティング法、グラビアコーティング法、ダイコーティング法、キャップコーティング法等を用いることができる。 As the method of applying the polymer solution to the substrate in the method (α) and the method of applying the polymerization reaction solution to the substrate in the method (β), known methods can be used. Specifically, for example, curtain coating, extrusion coating, roll coating, spin coating, dip coating, bar coating, spray coating, slide coating, print coating, gravure coating, die coating , A cap coating method or the like can be used.
 更に、前記(α)および(β)の方法における乾燥または脱溶媒の方法としては、自然乾燥、加熱乾燥、減圧乾燥、減圧加熱乾燥等を用いることができる。
 乾燥温度は、溶媒を脱溶媒することができれば、特に制限はないが、下限温度に関しては、一定の温度を安定的に得られるという観点から、50℃以上であることが好ましく、70℃以上であることがより好ましい。
 乾燥温度の上限温度に関しては、基板に悪影響を与えない範囲という観点から、200℃以下であることが好ましく、195℃以下であることがより好ましい。
Further, as the drying or desolvating method in the methods (α) and (β), natural drying, heat drying, reduced pressure drying, reduced pressure heat drying, and the like can be used.
The drying temperature is not particularly limited as long as the solvent can be removed, but the lower limit temperature is preferably 50 ° C or higher, and more preferably 70 ° C or higher, from the viewpoint that a constant temperature can be stably obtained. More preferably, there is.
The upper limit of the drying temperature is preferably 200 ° C. or lower, more preferably 195 ° C. or lower, from the viewpoint of not adversely affecting the substrate.
 また、上述した重合性化合物(III)または上述した重合性組成物を重合させる方法としては、活性エネルギー線を照射する方法や熱重合法等が挙げられるが、加熱を必要とせず、室温で反応が進行することから活性エネルギー線を照射する方法が好ましい。なかでも、操作が簡便なことから、紫外線等の光を照射する方法が好ましい。
 紫外線等の光を照射する温度は、液晶相を維持できる温度であれば、特に制限はないが、下限温度に関しては、光重合を安定的に進行させることができるという観点から、15℃以上であることが好ましく、20℃以上であることがより好ましい。
 紫外線等の光を照射する温度の上限温度に関しては、基板に悪影響を与えない範囲という観点から、200℃以下であることが好ましく、195℃以下であることがより好ましい。
Examples of the method of polymerizing the above-mentioned polymerizable compound (III) or the above-mentioned polymerizable composition include a method of irradiating with active energy rays and a thermal polymerization method. The method of irradiating with an active energy ray is preferable because of the progress of the process. Above all, a method of irradiating light such as ultraviolet light is preferable because of easy operation.
The temperature at which light such as ultraviolet light is irradiated is not particularly limited as long as the liquid crystal phase can be maintained. Preferably, the temperature is 20 ° C. or higher.
The upper limit of the temperature at which light such as ultraviolet rays is irradiated is preferably 200 ° C. or lower, more preferably 195 ° C. or lower, from the viewpoint of not adversely affecting the substrate.
 ここで、光の照射時の温度は、100℃以下とすることが好ましい。光照射強度は、通常、1W/m~10kW/mの範囲、好ましくは5W/m~2kW/mの範囲である。紫外線の照射量は、好ましくは0.1mJ/cm以上、より好ましくは0.5mJ/cm以上であり、好ましくは5000mJ/cm以下、より好ましくは4000mJ/cm以下である。 Here, the temperature at the time of light irradiation is preferably 100 ° C. or less. The light irradiation intensity is usually in the range of 1 W / m 2 to 10 kW / m 2 , preferably in the range of 5 W / m 2 to 2 kW / m 2 . The dose of ultraviolet rays is preferably 0.1 mJ / cm 2 or more, more preferably 0.5 mJ / cm 2 or more, preferably 5000 mJ / cm 2 or less, more preferably 4000 mJ / cm 2 or less.
 上述のようにして得られた高分子は、基板から転写して使用することも、基板から剥離して単体で使用することも、基板から剥離せずにそのまま光学フィルム等の構成材料等として使用することもできる。
 また、基板から剥離した高分子は、既知の方法で粉砕して粉体状にしてから使用することもできる。
The polymer obtained as described above can be transferred from the substrate and used, or can be peeled off from the substrate and used alone, or can be used as it is as a constituent material of an optical film without peeling off the substrate You can also.
Further, the polymer peeled from the substrate can be used after being pulverized by a known method into powder.
 以上のようにして得られる高分子の数平均分子量は、好ましくは500~500,000、更に好ましくは5,000~300,000である。該数平均分子量がかかる範囲にあれば、高い硬度が得られ、取り扱い性にも優れるため望ましい。高分子の数平均分子量は、単分散のポリスチレンを標準試料とし、テトラヒドロフランを溶離液としてゲルパーミエーションクロマトグラフィー(GPC)により測定することができる。 The number average molecular weight of the polymer obtained as described above is preferably 500 to 500,000, more preferably 5,000 to 300,000. When the number average molecular weight is in such a range, high hardness is obtained and handleability is excellent, which is desirable. The number average molecular weight of the polymer can be measured by gel permeation chromatography (GPC) using monodispersed polystyrene as a standard sample and tetrahydrofuran as an eluent.
 そして、高分子によれば、膜厚の面内均一性に優れ、光学特性の面内均一性が改善された光学フィルム等を得ることができる。 According to the polymer, an optical film having excellent in-plane uniformity of film thickness and improved in-plane uniformity of optical characteristics can be obtained.
<光学フィルム>
 光学フィルムは、高分子および/又は重合性化合物を用いて形成され、光学的な機能を有する層を含む。光学的な機能とは、単なる透過、反射、屈折、複屈折などを意味する。そして、光学フィルムは、高分子を光学的な機能を有する層の主たる構成材料とする光学フィルムであるか、或いは、光学的な機能を有する層が重合性化合物を含有する光学フィルムでありうる。好ましくは、高分子を構成材料とする光学フィルムは、光学的な機能を有する層の全構成成分を100質量%とした場合に高分子の占有割合が50質量%超である。また、好ましくは、重合性化合物を含む光学フィルムは、光学的な機能を有する層の全構成成分を100質量%とした場合に、重合性化合物を0.01質量%以上含有する。
<Optical film>
The optical film is formed using a polymer and / or a polymerizable compound, and includes a layer having an optical function. The optical function simply means transmission, reflection, refraction, birefringence, and the like. The optical film may be an optical film using a polymer as a main constituent material of the layer having an optical function, or an optical film in which the layer having an optical function contains a polymerizable compound. Preferably, in the optical film using a polymer as a constituent material, the occupation ratio of the polymer is more than 50% by mass when all components of the layer having an optical function are 100% by mass. Preferably, the optical film containing the polymerizable compound contains the polymerizable compound in an amount of 0.01% by mass or more when all the components of the layer having an optical function are 100% by mass.
 ここで、光学フィルムは、配向膜を有していてもよい配向基板上に形成されたままの形態(配向基板/(配向膜)/光学フィルム)、配向基板とは異なる透明基板フィルム等に光学フィルムを転写した形態(透明基板フィルム/光学フィルム)、または、光学フィルムに自己支持性がある場合には光学フィルム単層形態(光学フィルム)のいずれの形態であってもよい。
 なお、配向膜および配向基板としては、後述する光学異方体と同じ基板および配向膜を用いることができる。
Here, the optical film is in the form as it is formed on the alignment substrate (orientation substrate / (alignment film) / optical film) which may have an alignment film, and is formed on a transparent substrate film different from the alignment substrate. It may be in the form of a transferred film (transparent substrate film / optical film) or, if the optical film has self-supporting properties, in the form of an optical film single layer (optical film).
In addition, as the alignment film and the alignment substrate, the same substrate and alignment film as an optical anisotropic body described later can be used.
 そして、光学フィルムは、(A)重合性化合物を含む溶液、または、重合性組成物の溶液を配向基板上に塗布し、得られた塗膜を乾燥し、熱処理(液晶の配向)、並びに、光照射および/または加熱処理(重合)を行う方法や、(B)重合性化合物、または重合性組成物を重合して得られる液晶性高分子の溶液を配向基板上に塗布し、任意に得られた塗膜を乾燥する方法や、(C)重合性化合物および樹脂を含む溶液を配向基板上に塗布し、得られた塗膜を乾燥する方法により製造することができる。 Then, the optical film is obtained by applying a solution containing a polymerizable compound (A) or a solution of the polymerizable composition on an alignment substrate, drying the obtained coating film, and performing heat treatment (alignment of liquid crystal), and A method of performing light irradiation and / or heat treatment (polymerization), or (B) a solution of a liquid crystalline polymer obtained by polymerizing a polymerizable compound or a polymerizable composition is applied on an alignment substrate, and optionally obtained. It can be produced by a method of drying the obtained coating film, or a method of applying a solution containing the polymerizable compound and the resin (C) on an alignment substrate and drying the obtained coating film.
 光学フィルムは、光学異方体、液晶表示素子用配向膜、カラーフィルター、ローパスフィルター、光偏光プリズム、各種光フィルター等に用いることができる。 The optical film can be used for an optical anisotropic body, an alignment film for a liquid crystal display element, a color filter, a low-pass filter, a light polarizing prism, various optical filters, and the like.
 なお、光学フィルムは、Mueller Matrix Polarimeter Axoscanで測定した波長400nm~800nmにおける位相差から求められる。下記α値およびβ値が所定の範囲内にあることが好ましい。具体的には、α値は、0.70~0.99であることが好ましく、0.75~0.90であることがより好ましい。また、β値は、1.00~1.25であることが好ましく、1.01~1.20であることがより好ましい。
α=(450nmにおける位相差)/(550nmにおける位相差)
β=(650nmにおける位相差)/(550nmにおける位相差)
The optical film is determined from the phase difference at a wavelength of 400 nm to 800 nm measured with a Mueller Matrix Polarimeter Axoscan. It is preferable that the following α value and β value are within a predetermined range. Specifically, the α value is preferably from 0.70 to 0.99, more preferably from 0.75 to 0.90. Further, the β value is preferably from 1.00 to 1.25, and more preferably from 1.01 to 1.20.
α = (Phase difference at 450 nm) / (Phase difference at 550 nm)
β = (phase difference at 650 nm) / (phase difference at 550 nm)
<光学異方体>
 光学異方体は、高分子を構成材料とする層を有する。
 光学異方体は、例えば、基板上に配向膜を形成し、該配向膜上に、さらに、高分子からなる層(液晶層)を形成することによって、得ることができる。なお、光学異方体は、基板上に高分子からなる層(液晶層)を直接形成したものであってもよいし、高分子からなる層(液晶層)のみからなるものであってもよい。
 なお、高分子からなる層は、フィルム状の高分子からなるものであってもよいし、粉体状の高分子の集合体であってもよい。
<Optical anisotropic body>
The optically anisotropic body has a layer containing a polymer as a constituent material.
The optically anisotropic body can be obtained, for example, by forming an alignment film on a substrate and further forming a polymer layer (liquid crystal layer) on the alignment film. Note that the optically anisotropic body may be a layer in which a polymer layer (liquid crystal layer) is directly formed on a substrate, or may be a layer only of a polymer layer (liquid crystal layer). .
The polymer layer may be a film-like polymer or may be a powdery polymer aggregate.
 ここで、配向膜は、重合性化合物を面内で一方向に配向規制するために基板の表面に形成される。
 配向膜は、ポリイミド、ポリビニルアルコール、ポリエステル、ポリアリレート、ポリアミドイミド、ポリエーテルイミド等のポリマーを含有する溶液(配向膜用組成物)を基板上に膜状に塗布し、乾燥させ、そして一方向にラビング処理等することで、得ることができる。
 配向膜の厚さは0.001~5μmであることが好ましく、0.001~1.0μmであることがさらに好ましい。
Here, the alignment film is formed on the surface of the substrate in order to regulate the alignment of the polymerizable compound in one direction within the plane.
For the alignment film, a solution (composition for alignment film) containing a polymer such as polyimide, polyvinyl alcohol, polyester, polyarylate, polyamide imide, or polyether imide is applied on a substrate in a film form, dried, and dried in one direction. Rubbing treatment or the like.
The thickness of the alignment film is preferably from 0.001 to 5 μm, more preferably from 0.001 to 1.0 μm.
 ラビング処理の方法は、特に制限されないが、例えばナイロン等の合成繊維、木綿等の天然繊維からなる布やフェルトを巻き付けたロールで一定方向に配向膜を擦る方法が挙げられる。ラビング処理した時に発生する微粉末(異物)を除去して配向膜の表面を清浄な状態とするために、ラビング処理後に配向膜をイソプロピルアルコール等によって洗浄することが好ましい。
 また、ラビング処理する方法以外に、配向膜の表面に偏光紫外線を照射する方法によっても、面内で一方向に配向規制する機能を持たせることができる。
The method of the rubbing treatment is not particularly limited, and examples thereof include a method of rubbing the alignment film in a certain direction with a roll made of synthetic fiber such as nylon or natural fiber such as cotton, or a roll around which felt is wound. After the rubbing treatment, the alignment film is preferably washed with isopropyl alcohol or the like in order to remove the fine powder (foreign matter) generated during the rubbing treatment and to keep the surface of the alignment film clean.
In addition to the rubbing method, a method of irradiating polarized ultraviolet light to the surface of the alignment film can also have a function of regulating the alignment in one direction in the plane.
 配向膜を形成する基板としては、ガラス基板、合成樹脂フィルムからなる基板等が挙げられる。前記合成樹脂としては、アクリル樹脂、ポリカーボネート樹脂、ポリエーテルスルホン樹脂、ポリエチレンテレフタレート樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリスルホン樹脂、ポリアリレート樹脂、ポリエチレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、二酢酸セルロース、三酢酸セルロース、および、脂環式オレフィンポリマーなどの熱可塑性樹脂が挙げられる。 基板 Examples of the substrate on which the alignment film is formed include a glass substrate and a substrate made of a synthetic resin film. As the synthetic resin, acrylic resin, polycarbonate resin, polyether sulfone resin, polyethylene terephthalate resin, polyimide resin, polymethyl methacrylate resin, polysulfone resin, polyarylate resin, polyethylene resin, polystyrene resin, polyvinyl chloride resin, cellulose diacetate , Cellulose triacetate, and thermoplastic resins such as alicyclic olefin polymers.
 脂環式オレフィンポリマーとしては、特開平05-310845号公報、米国特許第5179171号明細書に記載されている環状オレフィンランダム多元共重合体、特開平05-97978号公報、米国特許第5202388号明細書に記載されている水素添加重合体、特開平11-124429号公報(国際公開99/20676号)に記載されている熱可塑性ジシクロペンタジエン系開環重合体およびその水素添加物等が挙げられる。 Examples of the alicyclic olefin polymer include cyclic olefin random multi-component copolymers described in JP-A-05-310845 and US Pat. No. 5,179,171, JP-A 05-97978, and US Pat. No. 5,202,388. A hydrogenated polymer described in JP-A-11-124429 (International Publication No. WO 99/20676), and a hydrogenated product of the thermoplastic dicyclopentadiene-based ring-opened polymer described in JP-A-11-124429. .
 配向膜上に高分子からなる液晶層を形成する方法としては、前記高分子の項で記載したのと同じ方法(前記(α)および(β))が挙げられる。
 得られる液晶層の厚みは、特に制限はないが、通常1~10μmである。
As a method for forming a liquid crystal layer made of a polymer on the alignment film, the same method (the above (α) and (β)) as described in the section of the polymer can be used.
The thickness of the obtained liquid crystal layer is not particularly limited, but is usually 1 to 10 μm.
 なお、光学異方体の一種としては、特に限定されることなく、位相差板、視野角拡大板等が挙げられる。 In addition, as a kind of optical anisotropic body, there is no particular limitation, and a retardation plate, a viewing angle widening plate, and the like can be given.
 なお、光学異方体は、Mueller Matrix Polarimeter Axoscanで測定した波長400nm~800nmにおける位相差から求められる。下記α値およびβ値が所定の範囲内にあることが好ましい。具体的には、α値は、0.70~0.99であることが好ましく、0.75~0.90であることがより好ましい。また、β値は、1.00~1.25であることが好ましく、1.01~1.25であることがより好ましい。
α=(450nmにおける位相差)/(550nmにおける位相差)
β=(650nmにおける位相差)/(550nmにおける位相差)
The optically anisotropic body is obtained from a phase difference at a wavelength of 400 nm to 800 nm measured by a Mueller Matrix Polarimeter Axoscan. It is preferable that the following α value and β value are within a predetermined range. Specifically, the α value is preferably from 0.70 to 0.99, more preferably from 0.75 to 0.90. Further, the β value is preferably from 1.00 to 1.25, and more preferably from 1.01 to 1.25.
α = (Phase difference at 450 nm) / (Phase difference at 550 nm)
β = (phase difference at 650 nm) / (phase difference at 550 nm)
<偏光板等>
 偏光板は、光学異方体および偏光フィルムを含むものである。
 偏光板の具体例としては、偏光フィルム上に、直接またはその他の層(ガラス板等)を介して、光学異方体が積層されてなるものが挙げられる。
<Polarizing plate, etc.>
The polarizing plate includes an optically anisotropic body and a polarizing film.
Specific examples of the polarizing plate include those obtained by laminating an optically anisotropic body on a polarizing film directly or via another layer (such as a glass plate).
 偏光フィルムの製造方法は特に限定されない。PVA系の偏光フィルムを製造する方法としては、PVA系フィルムにヨウ素イオンを吸着させた後に一軸に延伸する方法、PVA系フィルムを一軸に延伸した後にヨウ素イオンを吸着させる方法、PVA系フィルムへのヨウ素イオン吸着と一軸延伸とを同時に行う方法、PVA系フィルムを二色性染料で染色した後に一軸に延伸する方法、PVA系フィルムを一軸に延伸した後に二色性染料で染色する方法、PVA系フィルムへの二色性染料での染色と一軸延伸とを同時に行う方法が挙げられる。また、ポリエン系の偏光フィルムを製造する方法としては、PVA系フィルムを一軸に延伸した後に脱水触媒存在下で加熱・脱水する方法、ポリ塩化ビニル系フィルムを一軸に延伸した後に脱塩酸触媒存在下で加熱・脱水する方法などの公知の方法が挙げられる。 方法 The method for producing the polarizing film is not particularly limited. As a method of producing a PVA-based polarizing film, a method of uniaxially stretching after adsorbing iodine ions to the PVA-based film, a method of adsorbing iodine ions after uniaxially stretching the PVA-based film, A method of simultaneously performing iodine ion adsorption and uniaxial stretching, a method of uniaxially stretching a PVA-based film after dyeing it with a dichroic dye, a method of uniaxially stretching a PVA-based film and then dyeing it with a dichroic dye, PVA-based A method of simultaneously dyeing a film with a dichroic dye and uniaxially stretching the film is exemplified. In addition, as a method for producing a polyene-based polarizing film, a method in which a PVA-based film is uniaxially stretched and then heated and dehydrated in the presence of a dehydration catalyst, and a method in which a polyvinyl chloride-based film is uniaxially stretched and then subjected to a dehydrochlorination catalyst And a known method such as a method of heating and dewatering.
 偏光板においては、偏光フィルムと光学異方体とが、接着剤(粘着剤を含む)からなる接着層を介して接していてもよい。接着層の平均厚みは、通常0.01μm~30μm、好ましくは0.1μm~15μmである。前記接着層は、JIS K7113による引張破壊強度が40MPa以下となる層であることが好ましい。 に お い て In the polarizing plate, the polarizing film and the optically anisotropic body may be in contact with each other via an adhesive layer made of an adhesive (including an adhesive). The average thickness of the adhesive layer is usually 0.01 μm to 30 μm, preferably 0.1 μm to 15 μm. The adhesive layer is preferably a layer having a tensile breaking strength of 40 MPa or less according to JIS K7113.
 接着層を構成する接着剤としては、アクリル接着剤、ウレタン接着剤、ポリエステル接着剤、ポリビニルアルコール接着剤、ポリオレフィ系接着剤、変性ポリオレフィン接着剤、ポリビニルアルキルエーテル接着剤、ゴム接着剤、塩化ビニル・酢酸ビニル接着剤、スチレン・ブタジエン・スチレン共重合体(SBS共重合体)接着剤、その水素添加物(SEBS共重合体)接着剤、エチレン・酢酸ビニル共重合体およびエチレン-スチレン共重合体などのエチレン接着剤、並びに、エチレン・メタクリル酸メチル共重合体、エチレン・アクリル酸メチル共重合体、エチレン・メタクリル酸エチル共重合体およびエチレン・アクリル酸エチル共重合体などのアクリル酸エステル接着剤などが挙げられる。 Examples of the adhesive constituting the adhesive layer include an acrylic adhesive, a urethane adhesive, a polyester adhesive, a polyvinyl alcohol adhesive, a polyolefin adhesive, a modified polyolefin adhesive, a polyvinyl alkyl ether adhesive, a rubber adhesive, and vinyl chloride. Vinyl acetate adhesive, styrene / butadiene / styrene copolymer (SBS copolymer) adhesive, hydrogenated product (SEBS copolymer) adhesive, ethylene / vinyl acetate copolymer, ethylene-styrene copolymer, etc. Ethylene adhesives, and acrylate ester adhesives such as ethylene-methyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl methacrylate copolymer and ethylene-ethyl acrylate copolymer, etc. Is mentioned.
 偏光板は、光学異方体を用いていることから、逆波長分散性を有しながら、光学特性の面内均一性に優れるものである。 Since the polarizing plate uses an optically anisotropic body, it has excellent in-plane uniformity of optical characteristics while having reverse wavelength dispersion.
 また、偏光板を用いることにより、パネルを備える表示装置、反射防止フィルムを好適に製造することができる。前記パネルとしては、液晶パネル、有機エレクトロルミネッセンスパネルが挙げられる。前記表示装置としては、偏光板と液晶パネルとを備えるフラットパネル表示装置、液晶パネルと有機エレクトロルミネッセンスパネルとを備える有機エレクトロルミネッセンス表示装置が挙げられる。 表示 Further, by using a polarizing plate, a display device having a panel and an antireflection film can be suitably manufactured. Examples of the panel include a liquid crystal panel and an organic electroluminescence panel. Examples of the display device include a flat panel display device including a polarizing plate and a liquid crystal panel, and an organic electroluminescence display device including a liquid crystal panel and an organic electroluminescence panel.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the following description, “%” and “parts” representing amounts are based on mass unless otherwise specified.
(実施例1:化合物1の合成)
 後述するステップ1およびステップ2を経て、下記構造式で示される化合物1を得た。
Figure JPOXMLDOC01-appb-C000040
Example 1 Synthesis of Compound 1
Through Step 1 and Step 2 described below, Compound 1 represented by the following structural formula was obtained.
Figure JPOXMLDOC01-appb-C000040
<ステップ1:化合物Aの合成>
 まず、下記構造式で示される化合物Aを、国際公開第2017/150622号報に記載の方法で合成した(ステップ1)。
Figure JPOXMLDOC01-appb-C000041
<Step 1: Synthesis of compound A>
First, a compound A represented by the following structural formula was synthesized by the method described in WO 2017/150622 (Step 1).
Figure JPOXMLDOC01-appb-C000041
<ステップ2:化合物1の合成>
 次に、温度計を備えた3口反応器に、窒素気流中、トランス-1,4-シクロヘキサンジカルボン酸ジクロライド83.05g(0.397mol)と、シクロペンチルメチルエーテル(CPME)830gとを加えた。そこへ、先のステップ1で合成した化合物A:100g(0.378mol)を加え、反応器を氷浴に浸して反応液内温を0℃とした。次いで、トリエチルアミン(EtN)40.2g(0.397mol)を、反応液内温を10℃以下に保持しながら、20分間かけてゆっくり滴下した。滴下終了後、そのまま10℃以下で1時間さらに撹拌した。得られた反応液に、水250gを加えて50℃にて2時間撹拌を行った。分液して水層を抜き出した後、新たに水250gを加えて50℃にて2時間撹拌を行った。この操作を合計で3回実施した。この段階の有機層(溶液(X))中の化合物1の濃度を高速液体クロマトグラフにて定量したところ、10.57質量%であった。反応式を下記に示す。なお、この段階の有機層中には、下記構造式で示される化合物Xが44.9g含まれていた。
<Step 2: Synthesis of compound 1>
Next, in a nitrogen stream, 83.05 g (0.397 mol) of trans-1,4-cyclohexanedicarboxylic acid dichloride and 830 g of cyclopentyl methyl ether (CPME) were added to a three-necked reactor equipped with a thermometer. Thereto, 100 g (0.378 mol) of the compound A synthesized in the previous step 1 was added, and the reactor was immersed in an ice bath to adjust the internal temperature of the reaction solution to 0 ° C. Next, 40.2 g (0.397 mol) of triethylamine (Et 3 N) was slowly dropped over 20 minutes while maintaining the reaction solution internal temperature at 10 ° C. or lower. After completion of the dropwise addition, the mixture was further stirred at 10 ° C. or lower for 1 hour. 250 g of water was added to the obtained reaction solution, and the mixture was stirred at 50 ° C. for 2 hours. After liquid separation and extraction of the aqueous layer, 250 g of water was newly added, and the mixture was stirred at 50 ° C. for 2 hours. This operation was performed three times in total. The concentration of Compound 1 in the organic layer (solution (X)) at this stage was determined by high performance liquid chromatography to be 10.57% by mass. The reaction formula is shown below. Note that the organic layer at this stage contained 44.9 g of the compound X represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 さらに、得られた有機層に、メタノール200gを加えて、徐々に冷却して0℃にて1時間ゆっくり撹拌することで固体を析出させた。析出した固体をろ過により除去してろ液を得た。ろ過器の中のろ過物を別途準備した0℃に冷却したメタノール100gで洗浄して、この洗浄により得られた洗浄液と先のろ液とを一緒にした。この洗浄液と一緒にしたろ液をさらに、濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH5.5)416gを用いて40℃にて30分間撹拌して洗浄した。洗浄後、分液して水層を抜き出した後、新たに濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH5.5)416gを加えて40℃にて30分間撹拌を行った。この操作を合計で5回実施し、分液し、水層を抜き出して得た有機層(油層)に、ノルマルヘキサン1200gを加えて、徐々に0℃に冷却することで固体を析出させ、析出した固体をろ取した。ろ過物をノルマルヘキサンで洗浄した後、真空乾燥させて、中間体としての白色固体(化合物1と化合物Xとの混合物Y)98.55gを得た。得た白色固体(化合物1と化合物Xとの混合物Y)を高速液体クロマトグラフにて定量したところ、白色固体(化合物1と化合物Xとの混合物Y)に対する化合物1の含量は、92.6質量%であった。化合物1の収率は、化合物A基準で、57.64モル%であった。 (4) Further, 200 g of methanol was added to the obtained organic layer, and the mixture was gradually cooled and slowly stirred at 0 ° C. for 1 hour to precipitate a solid. The precipitated solid was removed by filtration to obtain a filtrate. The filtrate in the filter was washed with 100 g of methanol separately prepared and cooled to 0 ° C., and the washing solution obtained by this washing was combined with the previous filtrate. The filtrate combined with this washing solution was further washed with 416 g of a buffer solution (pH 5.5) consisting of acetic acid and sodium acetate having a concentration of 1 mol / liter by stirring at 40 ° C. for 30 minutes. After washing, liquid separation was carried out, and the aqueous layer was extracted. Then, 416 g of a buffer solution (pH 5.5) consisting of acetic acid and sodium acetate having a concentration of 1 mol / liter was newly added, and the mixture was stirred at 40 ° C. for 30 minutes. This operation was performed 5 times in total, liquids were separated, the aqueous layer was extracted, and 1200 g of normal hexane was added to the organic layer (oil layer), which was gradually cooled to 0 ° C. to precipitate a solid. The solid thus obtained was collected by filtration. The filtrate was washed with normal hexane and then dried under vacuum to obtain 98.55 g of a white solid (mixture Y of compound 1 and compound X) as an intermediate. When the obtained white solid (mixture Y of compound 1 and compound X) was quantified by high performance liquid chromatography, the content of compound 1 relative to the white solid (mixture Y of compound 1 and compound X) was 92.6 mass. %Met. The yield of compound 1 was 57.64 mol% based on compound A.
(実施例2:化合物1の合成)
 温度計を備えた3口反応器に、窒素気流中、トランス-1,4-シクロヘキサンジカルボン酸ジクロライド83.05g(0.397mol)と、シクロペンチルメチルエーテル(CPME)830gとを加えた。そこへ、前記実施例1のステップ1で合成した化合物A:100g(0.378mol)を加え、反応器を氷浴に浸して反応液内温を0℃とした。次いで、トリエチルアミン(EtN)40.2g(0.397mol)を、反応液内温を10℃以下に保持しながら、20分間かけてゆっくり滴下した。滴下終了後、そのまま10℃以下で1時間さらに撹拌した。得られた反応液に、水250gを加えて50℃にて2時間撹拌を行った。分液して水層を抜き出した後、新たに水250gを加えて50℃にて2時間撹拌を行った。この操作を合計で3回実施した。有機層をさらに、濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH5.5)416gを用いて40℃にて30分間撹拌して洗浄した。洗浄後、分液して水層を抜き出した後、新たに濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH5.5)416gを加えて40℃にて30分間撹拌を行った。この操作を合計で5回実施した。この段階の有機層(溶液(X))中の化合物1の濃度を高速液体クロマトグラフにて定量したところ、10.58質量%であった。なお、この段階の有機層中には、上記構造式で示される化合物Xが44.8g含まれていた。
(Example 2: Synthesis of compound 1)
In a nitrogen stream, 83.05 g (0.397 mol) of trans-1,4-cyclohexanedicarboxylic acid dichloride and 830 g of cyclopentyl methyl ether (CPME) were added to a three-necked reactor equipped with a thermometer. Thereto, 100 g (0.378 mol) of the compound A synthesized in Step 1 of Example 1 was added, and the reactor was immersed in an ice bath to adjust the internal temperature of the reaction solution to 0 ° C. Next, 40.2 g (0.397 mol) of triethylamine (Et 3 N) was slowly dropped over 20 minutes while maintaining the reaction solution internal temperature at 10 ° C. or lower. After completion of the dropwise addition, the mixture was further stirred at 10 ° C. or lower for 1 hour. 250 g of water was added to the obtained reaction solution, and the mixture was stirred at 50 ° C. for 2 hours. After liquid separation and extraction of the aqueous layer, 250 g of water was newly added, and the mixture was stirred at 50 ° C. for 2 hours. This operation was performed three times in total. The organic layer was further washed by stirring at 40 ° C. for 30 minutes using 416 g of a buffer solution (pH 5.5) composed of acetic acid and sodium acetate at a concentration of 1 mol / liter. After washing, liquid separation was performed, and the aqueous layer was extracted. Then, 416 g of a buffer solution (pH 5.5) composed of acetic acid and sodium acetate having a concentration of 1 mol / liter was newly added, and the mixture was stirred at 40 ° C. for 30 minutes. This operation was performed five times in total. The concentration of Compound 1 in the organic layer (solution (X)) at this stage was determined by high performance liquid chromatography to be 10.58% by mass. Note that the organic layer at this stage contained 44.8 g of the compound X represented by the above structural formula.
 さらに、得られた有機層に、メタノール200gを加えて、徐々に冷却して0℃にて1時間ゆっくり撹拌することで固体を析出させた。析出した固体をろ過により除去してろ液を得た。ろ過器の中のろ過物を別途準備した0℃に冷却したメタノール100gで洗浄して、この洗浄により得られた洗浄液と先のろ液とを一緒にした。5℃にて、この洗浄液と一緒にしたろ液に水250gを加えて、30分間撹拌して洗浄した。洗浄後、分液して水層を抜き出した後、新たに水250gを加えて30分間撹拌して洗浄し、分液し、水層を抜き出して得た有機層(油層)に、ノルマルヘキサン1200gを加えて、徐々に0℃に冷却することで固体を析出させ、析出した固体をろ取した。ろ過物をノルマルヘキサンで洗浄した後、真空乾燥させて、中間体としての白色固体(化合物1と化合物Xとの混合物Y)98.88gを得た。得た白色固体(化合物1と化合物Xとの混合物Y)を高速液体クロマトグラフにて定量したところ、白色固体(化合物1と化合物Xとの混合物Y)に対する化合物1の含量は、91.8質量%であった。化合物1の収率は、化合物A基準で、57.33モル%であった。 (4) Further, 200 g of methanol was added to the obtained organic layer, and the mixture was gradually cooled and slowly stirred at 0 ° C. for 1 hour to precipitate a solid. The precipitated solid was removed by filtration to obtain a filtrate. The filtrate in the filter was washed with 100 g of methanol separately prepared and cooled to 0 ° C., and the washing solution obtained by this washing was combined with the previous filtrate. At 5 ° C., 250 g of water was added to the filtrate combined with the washing solution, and the mixture was stirred for 30 minutes and washed. After washing, liquid separation was performed to extract an aqueous layer. Then, 250 g of fresh water was added, and the mixture was stirred for 30 minutes, washed, separated, and 1200 g of normal hexane was added to an organic layer (oil layer) obtained by extracting the aqueous layer. Was added, and the mixture was gradually cooled to 0 ° C. to precipitate a solid, and the precipitated solid was collected by filtration. The filtrate was washed with normal hexane and then dried under vacuum to obtain 98.88 g of a white solid (mixture Y of compound 1 and compound X) as an intermediate. When the obtained white solid (mixture Y of compound 1 and compound X) was quantified by high performance liquid chromatography, the content of compound 1 relative to the white solid (mixture Y of compound 1 and compound X) was 91.8 mass. %Met. The yield of compound 1 was 57.33 mol% based on compound A.
(実施例3:化合物1の合成)
 温度計を備えた3口反応器に、窒素気流中、トランス-1,4-シクロヘキサンジカルボン酸ジクロライド83.05g(0.397mol)と、シクロペンチルメチルエーテル(CPME)830gとを加えた。そこへ、前記実施例1のステップ1で合成した化合物A:100g(0.378mol)を加え、反応器を氷浴に浸して反応液内温を0℃とした。次いで、トリエチルアミン(EtN)40.2g(0.397mol)を、反応液内温を10℃以下に保持しながら、20分間かけてゆっくり滴下した。滴下終了後、そのまま10℃以下で1時間さらに撹拌した。得られた反応液に、水250gを加えて50℃にて2時間撹拌を行った。分液して水層を抜き出した後、新たに水250gを加えて50℃にて2時間撹拌を行った。この操作を合計で3回実施した。この段階の有機層(溶液(X))中の化合物1の濃度を高速液体クロマトグラフにて定量したところ、10.59質量%であった。なお、この段階の有機層中には、上記構造式で示される化合物Xが45.0g含まれていた。
(Example 3: Synthesis of compound 1)
In a nitrogen stream, 83.05 g (0.397 mol) of trans-1,4-cyclohexanedicarboxylic acid dichloride and 830 g of cyclopentyl methyl ether (CPME) were added to a three-necked reactor equipped with a thermometer. Thereto, 100 g (0.378 mol) of the compound A synthesized in Step 1 of Example 1 was added, and the reactor was immersed in an ice bath to adjust the internal temperature of the reaction solution to 0 ° C. Next, 40.2 g (0.397 mol) of triethylamine (Et 3 N) was slowly dropped over 20 minutes while maintaining the reaction solution internal temperature at 10 ° C. or lower. After completion of the dropwise addition, the mixture was further stirred at 10 ° C. or lower for 1 hour. 250 g of water was added to the obtained reaction solution, and the mixture was stirred at 50 ° C. for 2 hours. After liquid separation and extraction of the aqueous layer, 250 g of water was newly added, and the mixture was stirred at 50 ° C. for 2 hours. This operation was performed three times in total. The concentration of Compound 1 in the organic layer (solution (X)) at this stage was determined by high performance liquid chromatography to be 10.59% by mass. The organic layer at this stage contained 45.0 g of the compound X represented by the above structural formula.
 さらに、得られた有機層に、メタノール50gを加えて、徐々に冷却して0℃にて1時間ゆっくり撹拌することで固体を析出させた。析出した固体をろ過により除去してろ液を得た。ろ過器の中のろ過物を別途準備した0℃に冷却したメタノール100gで洗浄して、この洗浄により得られた洗浄液と先のろ液とを一緒にした。この洗浄液と一緒にしたろ液をさらに、濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH5.5)416gを用いて40℃にて30分間撹拌して洗浄した。洗浄後、分液して水層を抜き出した後、新たに濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH5.5)416gを加えて40℃にて30分間撹拌を行った。この操作を合計で5回実施し、分液し、水層を抜き出して得た有機層(油層)に、ノルマルヘキサン1200gを加えて、徐々に0℃に冷却することで固体を析出させ、析出した固体をろ取した。ろ過物をノルマルヘキサンで洗浄した後、真空乾燥させて、中間体としての白色固体(化合物1と化合物Xとの混合物Y)99.22gを得た。得た白色固体(化合物1と化合物Xとの混合物Y)を高速液体クロマトグラフにて定量したところ、白色固体(化合物1と化合物Xとの混合物Y)に対する化合物1の含量は、92.5質量%であった。化合物1の収率は、化合物A基準で、57.97モル%であった。 (5) Further, 50 g of methanol was added to the obtained organic layer, and the mixture was gradually cooled and slowly stirred at 0 ° C. for 1 hour to precipitate a solid. The precipitated solid was removed by filtration to obtain a filtrate. The filtrate in the filter was washed with 100 g of methanol separately prepared and cooled to 0 ° C., and the washing solution obtained by this washing was combined with the previous filtrate. The filtrate combined with this washing solution was further washed with 416 g of a buffer solution (pH 5.5) consisting of acetic acid and sodium acetate having a concentration of 1 mol / liter by stirring at 40 ° C. for 30 minutes. After washing, liquid separation was carried out, and the aqueous layer was extracted. Then, 416 g of a buffer solution (pH 5.5) consisting of acetic acid and sodium acetate having a concentration of 1 mol / liter was newly added, and the mixture was stirred at 40 ° C. for 30 minutes. This operation was performed 5 times in total, liquids were separated, the aqueous layer was extracted, and 1200 g of normal hexane was added to the organic layer (oil layer), which was gradually cooled to 0 ° C. to precipitate a solid. The solid thus obtained was collected by filtration. The filtrate was washed with normal hexane and then dried under vacuum to obtain 99.22 g of a white solid (mixture Y of compound 1 and compound X) as an intermediate. When the obtained white solid (mixture Y of compound 1 and compound X) was quantified by high performance liquid chromatography, the content of compound 1 relative to the white solid (mixture Y of compound 1 and compound X) was 92.5 mass%. %Met. The yield of Compound 1 was 57.97 mol% based on Compound A.
(実施例4:化合物1の合成)
 温度計を備えた3口反応器に、窒素気流中、トランス-1,4-シクロヘキサンジカルボン酸ジクロライド83.05g(0.397mol)と、シクロペンチルメチルエーテル(CPME)830gとを加えた。そこへ、前記実施例1のステップ1で合成した化合物A:100g(0.378mol)を加え、反応器を氷浴に浸して反応液内温を0℃とした。次いで、トリエチルアミン(EtN)40.2g(0.397mol)を、反応液内温を10℃以下に保持しながら、20分間かけてゆっくり滴下した。滴下終了後、そのまま10℃以下で1時間さらに撹拌した。得られた反応液に、水250gを加えて50℃にて2時間撹拌を行った。分液して水層を抜き出した後、新たに水250gを加えて50℃にて2時間撹拌を行った。この操作を合計で3回実施した。有機層をさらに、濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH5.5)416gを用いて40℃にて30分間撹拌して洗浄した。洗浄後、分液して水層を抜き出した後、新たに濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH5.5)416gを加えて40℃にて30分間撹拌を行った。この操作を合計で5回実施した。この段階の有機層(溶液(X))中の化合物1の濃度を高速液体クロマトグラフにて定量したところ、10.59質量%であった。なお、この段階の有機層中には、上記構造式で示される化合物Xが44.5g含まれていた。
(Example 4: Synthesis of compound 1)
In a nitrogen stream, 83.05 g (0.397 mol) of trans-1,4-cyclohexanedicarboxylic acid dichloride and 830 g of cyclopentyl methyl ether (CPME) were added to a three-necked reactor equipped with a thermometer. Thereto, 100 g (0.378 mol) of the compound A synthesized in Step 1 of Example 1 was added, and the reactor was immersed in an ice bath to adjust the internal temperature of the reaction solution to 0 ° C. Next, 40.2 g (0.397 mol) of triethylamine (Et 3 N) was slowly dropped over 20 minutes while maintaining the reaction solution internal temperature at 10 ° C. or lower. After completion of the dropwise addition, the mixture was further stirred at 10 ° C. or lower for 1 hour. 250 g of water was added to the obtained reaction solution, and the mixture was stirred at 50 ° C. for 2 hours. After liquid separation and extraction of the aqueous layer, 250 g of water was newly added, and the mixture was stirred at 50 ° C. for 2 hours. This operation was performed three times in total. The organic layer was further washed by stirring at 40 ° C. for 30 minutes using 416 g of a buffer solution (pH 5.5) composed of acetic acid and sodium acetate at a concentration of 1 mol / liter. After washing, liquid separation was performed, and the aqueous layer was extracted. Then, 416 g of a buffer solution (pH 5.5) composed of acetic acid and sodium acetate having a concentration of 1 mol / liter was newly added, and the mixture was stirred at 40 ° C. for 30 minutes. This operation was performed five times in total. The concentration of Compound 1 in the organic layer (solution (X)) at this stage was determined by high performance liquid chromatography to be 10.59% by mass. In addition, 44.5 g of the compound X represented by the above structural formula was contained in the organic layer at this stage.
 さらに、得られた有機層に、メタノール50gを加えて、徐々に冷却して0℃にて1時間ゆっくり撹拌することで固体を析出させた。析出した固体をろ過により除去してろ液を得た。ろ過器の中のろ過物を別途準備した0℃に冷却したメタノール100gで洗浄して、この洗浄により得られた洗浄液と先のろ液とを一緒にした。5℃にて、この洗浄液と一緒にしたろ液に水250gを加えて、30分間撹拌して洗浄した。洗浄後、分液して水層を抜き出した後、新たに水250gを加えて30分間撹拌して洗浄し、分液し、水層を抜き出して得た有機層(油層)に、ノルマルヘキサン1200gを加えて、徐々に0℃に冷却することで固体を析出させ、析出した固体をろ取した。ろ過物をノルマルヘキサンで洗浄した後、真空乾燥させて、中間体としての白色固体(化合物1と化合物Xとの混合物Y)99.88gを得た。得た白色固体(化合物1と化合物Xとの混合物Y)を高速液体クロマトグラフにて定量したところ、白色固体(化合物1と化合物Xとの混合物Y)に対する化合物1の含量は、92.5質量%であった。化合物1の収率は、化合物A基準で、58.35モル%であった。 (5) Further, 50 g of methanol was added to the obtained organic layer, and the mixture was gradually cooled and slowly stirred at 0 ° C. for 1 hour to precipitate a solid. The precipitated solid was removed by filtration to obtain a filtrate. The filtrate in the filter was washed with 100 g of methanol separately prepared and cooled to 0 ° C., and the washing solution obtained by this washing was combined with the previous filtrate. At 5 ° C., 250 g of water was added to the filtrate combined with the washing solution, and the mixture was stirred for 30 minutes and washed. After washing, liquid separation was performed to extract an aqueous layer. Then, 250 g of fresh water was added, and the mixture was stirred for 30 minutes, washed, separated, and 1200 g of normal hexane was added to an organic layer (oil layer) obtained by extracting the aqueous layer. Was added, and the mixture was gradually cooled to 0 ° C. to precipitate a solid, and the precipitated solid was collected by filtration. The filtrate was washed with normal hexane and then dried under vacuum to obtain 99.88 g of a white solid (mixture Y of compound 1 and compound X) as an intermediate. When the obtained white solid (mixture Y of compound 1 and compound X) was quantified by high performance liquid chromatography, the content of compound 1 relative to the white solid (mixture Y of compound 1 and compound X) was 92.5 mass%. %Met. The yield of compound 1 was 58.35 mol% based on compound A.
(実施例5:化合物1の合成)
 温度計を備えた3口反応器に、窒素気流中、トランス-1,4-シクロヘキサンジカルボン酸ジクロライド83.05g(0.397mol)と、シクロペンチルメチルエーテル(CPME)830gとを加えた。そこへ、前記実施例1のステップ1で合成した化合物A:100g(0.378mol)を加え、反応器を氷浴に浸して反応液内温を0℃とした。次いで、トリエチルアミン(EtN)40.2g(0.397mol)を、反応液内温を10℃以下に保持しながら、20分間かけてゆっくり滴下した。滴下終了後、そのまま10℃以下で1時間さらに撹拌した。得られた反応液に、水250gを加えて50℃にて2時間撹拌を行った。分液して水層を抜き出した後、新たに水250gを加えて50℃にて2時間撹拌を行った。この操作を合計で3回実施した。この段階の有機層(溶液(X))中の化合物1の濃度を高速液体クロマトグラフにて定量したところ、10.56質量%であった。なお、この段階の有機層中には、上記構造式で示される化合物Xが44.2g含まれていた。
(Example 5: Synthesis of compound 1)
In a nitrogen stream, 83.05 g (0.397 mol) of trans-1,4-cyclohexanedicarboxylic acid dichloride and 830 g of cyclopentyl methyl ether (CPME) were added to a three-necked reactor equipped with a thermometer. Thereto, 100 g (0.378 mol) of the compound A synthesized in Step 1 of Example 1 was added, and the reactor was immersed in an ice bath to adjust the internal temperature of the reaction solution to 0 ° C. Next, 40.2 g (0.397 mol) of triethylamine (Et 3 N) was slowly dropped over 20 minutes while maintaining the reaction solution internal temperature at 10 ° C. or lower. After completion of the dropwise addition, the mixture was further stirred at 10 ° C. or lower for 1 hour. 250 g of water was added to the obtained reaction solution, and the mixture was stirred at 50 ° C. for 2 hours. After liquid separation and extraction of the aqueous layer, 250 g of water was newly added, and the mixture was stirred at 50 ° C. for 2 hours. This operation was performed three times in total. The concentration of Compound 1 in the organic layer (solution (X)) at this stage was determined by high performance liquid chromatography to be 10.56% by mass. In addition, 44.2 g of the compound X represented by the above structural formula was contained in the organic layer at this stage.
 さらに、得られた有機層に、メタノール300gを加えて、徐々に冷却して0℃にて1時間ゆっくり撹拌することで固体を析出させた。析出した固体をろ過により除去してろ液を得た。ろ過器の中のろ過物を別途準備した0℃に冷却したメタノール100gで洗浄して、この洗浄により得られた洗浄液と先のろ液とを一緒にした。この洗浄液と一緒にしたろ液をさらに、濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH5.5)416gを用いて40℃にて30分間撹拌して洗浄した。洗浄後、分液して水層を抜き出した後、新たに濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH5.5)416gを加えて40℃にて30分間撹拌を行った。この操作を合計で5回実施し、分液し、水層を抜き出して得た有機層(油層)に、ノルマルヘキサン1200gを加えて、徐々に0℃に冷却することで固体を析出させ、析出した固体をろ取した。ろ過物をノルマルヘキサンで洗浄した後、真空乾燥させて、中間体としての白色固体(化合物1と化合物Xとの混合物Y)100.1gを得た。得た白色固体(化合物1と化合物Xとの混合物Y)を高速液体クロマトグラフにて定量したところ、白色固体(化合物1と化合物Xとの混合物Y)に対する化合物1の含量は、91.8質量%であった。化合物1の収率は、化合物A基準で、58.04モル%であった。 (4) Further, 300 g of methanol was added to the obtained organic layer, and the mixture was gradually cooled and slowly stirred at 0 ° C. for 1 hour to precipitate a solid. The precipitated solid was removed by filtration to obtain a filtrate. The filtrate in the filter was washed with 100 g of methanol separately prepared and cooled to 0 ° C., and the washing solution obtained by this washing was combined with the previous filtrate. The filtrate combined with this washing solution was further washed with 416 g of a buffer solution (pH 5.5) consisting of acetic acid and sodium acetate having a concentration of 1 mol / liter by stirring at 40 ° C. for 30 minutes. After washing, liquid separation was carried out, and the aqueous layer was extracted. Then, 416 g of a buffer solution (pH 5.5) consisting of acetic acid and sodium acetate having a concentration of 1 mol / liter was newly added, and the mixture was stirred at 40 ° C. for 30 minutes. This operation was performed 5 times in total, liquids were separated, the aqueous layer was extracted, and 1200 g of normal hexane was added to the organic layer (oil layer), which was gradually cooled to 0 ° C. to precipitate a solid. The solid thus obtained was collected by filtration. The filtrate was washed with normal hexane and then dried under vacuum to obtain 100.1 g of a white solid (mixture Y of compound 1 and compound X) as an intermediate. When the obtained white solid (mixture Y of compound 1 and compound X) was quantified by high performance liquid chromatography, the content of compound 1 relative to the white solid (mixture Y of compound 1 and compound X) was 91.8 mass. %Met. The yield of compound 1 was 58.04 mol% based on compound A.
(実施例6:化合物1の合成)
 温度計を備えた3口反応器に、窒素気流中、トランス-1,4-シクロヘキサンジカルボン酸ジクロライド83.05g(0.397mol)と、シクロペンチルメチルエーテル(CPME)830gとを加えた。そこへ、前記実施例1のステップ1で合成した化合物A:100g(0.378mol)を加え、反応器を氷浴に浸して反応液内温を0℃とした。次いで、トリエチルアミン(EtN)40.2g(0.397mol)を、反応液内温を10℃以下に保持しながら、20分間かけてゆっくり滴下した。滴下終了後、そのまま10℃以下で1時間さらに撹拌した。得られた反応液に、水250gを加えて50℃にて2時間撹拌を行った。分液して水層を抜き出した後、新たに水250gを加えて50℃にて2時間撹拌を行った。この操作を合計で3回実施した。有機層をさらに、濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH5.5)416gを用いて40℃にて30分間撹拌して洗浄した。洗浄後、分液して水層を抜き出した後、新たに濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH5.5)416gを加えて40℃にて30分間撹拌を行った。この操作を合計で5回実施した。この段階の有機層(溶液(X))中の化合物1の濃度を高速液体クロマトグラフにて定量したところ、10.57質量%であった。なお、この段階の有機層中には、上記構造式で示される化合物Xが45.2g含まれていた。
(Example 6: Synthesis of compound 1)
In a nitrogen stream, 83.05 g (0.397 mol) of trans-1,4-cyclohexanedicarboxylic acid dichloride and 830 g of cyclopentyl methyl ether (CPME) were added to a three-necked reactor equipped with a thermometer. Thereto, 100 g (0.378 mol) of the compound A synthesized in Step 1 of Example 1 was added, and the reactor was immersed in an ice bath to adjust the internal temperature of the reaction solution to 0 ° C. Next, 40.2 g (0.397 mol) of triethylamine (Et 3 N) was slowly dropped over 20 minutes while maintaining the reaction solution internal temperature at 10 ° C. or lower. After completion of the dropwise addition, the mixture was further stirred at 10 ° C. or lower for 1 hour. 250 g of water was added to the obtained reaction solution, and the mixture was stirred at 50 ° C. for 2 hours. After liquid separation and extraction of the aqueous layer, 250 g of water was newly added, and the mixture was stirred at 50 ° C. for 2 hours. This operation was performed three times in total. The organic layer was further washed by stirring at 40 ° C. for 30 minutes using 416 g of a buffer solution (pH 5.5) composed of acetic acid and sodium acetate at a concentration of 1 mol / liter. After washing, liquid separation was performed, and the aqueous layer was extracted. Then, 416 g of a buffer solution (pH 5.5) composed of acetic acid and sodium acetate having a concentration of 1 mol / liter was newly added, and the mixture was stirred at 40 ° C. for 30 minutes. This operation was performed five times in total. The concentration of Compound 1 in the organic layer (solution (X)) at this stage was determined by high performance liquid chromatography to be 10.57% by mass. Note that the organic layer at this stage contained 45.2 g of the compound X represented by the above structural formula.
 さらに、得られた有機層に、メタノール300gを加えて、徐々に冷却して0℃にて1時間ゆっくり撹拌することで固体を析出させた。析出した固体をろ過により除去してろ液を得た。ろ過器の中のろ過物を別途準備した0℃に冷却したメタノール100gで洗浄して、この洗浄により得られた洗浄液と先のろ液とを一緒にした。5℃にて、この洗浄液と一緒にしたろ液に水250gを加えて、30分間撹拌して洗浄した。洗浄後、分液して水層を抜き出した後、新たに水250gを加えて30分間撹拌して洗浄し、分液し、水層を抜き出して得た有機層(油層)に、ノルマルヘキサン1200gを加えて、徐々に0℃に冷却することで固体を析出させ、析出した固体をろ取した。ろ過物をノルマルヘキサンで洗浄した後、真空乾燥させて、中間体としての白色固体(化合物1と化合物Xとの混合物Y)98.9gを得た。得た白色固体(化合物1と化合物Xとの混合物Y)を高速液体クロマトグラフにて定量したところ、白色固体(化合物1と化合物Xとの混合物Y)に対する化合物1の含量は、89.8質量%であった。化合物1の収率は、化合物A基準で、56.09モル%であった。 (4) Further, 300 g of methanol was added to the obtained organic layer, and the mixture was gradually cooled and slowly stirred at 0 ° C. for 1 hour to precipitate a solid. The precipitated solid was removed by filtration to obtain a filtrate. The filtrate in the filter was washed with 100 g of methanol separately prepared and cooled to 0 ° C., and the washing solution obtained by this washing was combined with the previous filtrate. At 5 ° C., 250 g of water was added to the filtrate combined with the washing solution, and the mixture was stirred for 30 minutes and washed. After washing, liquid separation was performed to extract an aqueous layer. Then, 250 g of fresh water was added, and the mixture was stirred for 30 minutes, washed, separated, and 1200 g of normal hexane was added to an organic layer (oil layer) obtained by extracting the aqueous layer. Was added, and the mixture was gradually cooled to 0 ° C. to precipitate a solid, and the precipitated solid was collected by filtration. The filtrate was washed with normal hexane and then dried under vacuum to obtain 98.9 g of a white solid (mixture Y of compound 1 and compound X) as an intermediate. When the obtained white solid (mixture Y of compound 1 and compound X) was quantified by high performance liquid chromatography, the content of compound 1 relative to the white solid (mixture Y of compound 1 and compound X) was 89.8 mass%. %Met. The yield of compound 1 was 56.09 mol% based on compound A.
(比較例1:化合物1の合成)
 温度計を備えた3口反応器に、窒素気流中、トランス-1,4-シクロヘキサンジカルボン酸ジクロライド83.05g(0.397mol)と、シクロペンチルメチルエーテル(CPME)830gとを加えた。そこへ、前記実施例1のステップ1で合成した化合物A:100g(0.378mol)を加え、反応器を氷浴に浸して反応液内温を0℃とした。次いで、トリエチルアミン(EtN)40.2g(0.397mol)を、反応液内温を10℃以下に保持しながら、20分間かけてゆっくり滴下した。滴下終了後、そのまま10℃以下で1時間さらに撹拌した。得られた反応液に、水250gを加えて50℃にて2時間撹拌を行った。分液して水層を抜き出した後、新たに水250gを加えて50℃にて2時間撹拌を行った。この操作を合計で3回実施した。この段階の有機層(溶液(X))中の化合物1の濃度を高速液体クロマトグラフにて定量したところ、10.59質量%であった。なお、この段階の有機層中には、上記構造式で示される化合物Xが44.3g含まれていた。
(Comparative Example 1: Synthesis of Compound 1)
In a nitrogen stream, 83.05 g (0.397 mol) of trans-1,4-cyclohexanedicarboxylic acid dichloride and 830 g of cyclopentyl methyl ether (CPME) were added to a three-necked reactor equipped with a thermometer. Thereto, 100 g (0.378 mol) of the compound A synthesized in Step 1 of Example 1 was added, and the reactor was immersed in an ice bath to adjust the internal temperature of the reaction solution to 0 ° C. Next, 40.2 g (0.397 mol) of triethylamine (Et 3 N) was slowly dropped over 20 minutes while maintaining the reaction solution internal temperature at 10 ° C. or lower. After completion of the dropwise addition, the mixture was further stirred at 10 ° C. or lower for 1 hour. 250 g of water was added to the obtained reaction solution, and the mixture was stirred at 50 ° C. for 2 hours. After liquid separation and extraction of the aqueous layer, 250 g of water was newly added, and the mixture was stirred at 50 ° C. for 2 hours. This operation was performed three times in total. The concentration of Compound 1 in the organic layer (solution (X)) at this stage was determined by high performance liquid chromatography to be 10.59% by mass. In addition, 44.3 g of the compound X represented by the above structural formula was contained in the organic layer at this stage.
 さらに、得られた有機層を徐々に冷却して0℃にて1時間ゆっくり撹拌することで固体を析出させた。析出した固体をろ過により除去してろ液を得た。ろ過器の中のろ過物を別途準備した0℃に冷却したCPME100gで洗浄して、この洗浄により得られた洗浄液と先のろ液とを一緒にした。この洗浄液と一緒にしたろ液をさらに、濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH5.5)416gを用いて40℃にて30分間撹拌して洗浄した。洗浄後、分液して水層を抜き出した後、新たに濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH5.5)416gを加えて40℃にて30分間撹拌を行った。この操作を合計で5回実施し、分液し、水層を抜き出して得た有機層(油層)に、ノルマルヘキサン1200gを加えて、徐々に0℃に冷却することで固体を析出させ、析出した固体をろ取した。ろ過物をノルマルヘキサンで洗浄した後、真空乾燥させて、中間体としての白色固体(化合物1と化合物Xとの混合物Y)を73.8g得た。得た白色固体(化合物1と化合物Xとの混合物Y)を高速液体クロマトグラフにて定量したところ、白色固体(化合物1と化合物Xとの混合物Y)に対する化合物1の含量は、91.5質量%であった。化合物1の収率は、化合物A基準で、42.65モル%であった。 Furthermore, the obtained organic layer was gradually cooled, and slowly stirred at 0 ° C. for 1 hour to precipitate a solid. The precipitated solid was removed by filtration to obtain a filtrate. The filtrate in the filter was washed with 100 g of separately prepared CPME cooled to 0 ° C., and the washing solution obtained by this washing and the previous filtrate were combined. The filtrate combined with this washing solution was further washed with 416 g of a buffer solution (pH 5.5) consisting of acetic acid and sodium acetate having a concentration of 1 mol / liter by stirring at 40 ° C. for 30 minutes. After washing, liquid separation was carried out, and the aqueous layer was extracted. Then, 416 g of a buffer solution (pH 5.5) consisting of acetic acid and sodium acetate having a concentration of 1 mol / liter was newly added, and the mixture was stirred at 40 ° C. for 30 minutes. This operation was performed 5 times in total, liquids were separated, the aqueous layer was extracted, and 1200 g of normal hexane was added to the organic layer (oil layer), which was gradually cooled to 0 ° C. to precipitate a solid. The solid thus obtained was collected by filtration. The filtrate was washed with normal hexane and then dried under vacuum to obtain 73.8 g of a white solid (mixture Y of compound 1 and compound X) as an intermediate. When the obtained white solid (mixture Y of compound 1 and compound X) was quantified by high performance liquid chromatography, the content of compound 1 relative to the white solid (mixture Y of compound 1 and compound X) was 91.5 mass%. %Met. The yield of compound 1 was 42.65 mol% based on compound A.
(比較例2:化合物1の合成)
 温度計を備えた3口反応器に、窒素気流中、トランス-1,4-シクロヘキサンジカルボン酸ジクロライド83.05g(0.397mol)と、シクロペンチルメチルエーテル(CPME)830gとを加えた。そこへ、前記実施例1のステップ1で合成した化合物A:100g(0.378mol)を加え、反応器を氷浴に浸して反応液内温を0℃とした。次いで、トリエチルアミン(EtN)40.2g(0.397mol)を、反応液内温を10℃以下に保持しながら、20分間かけてゆっくり滴下した。滴下終了後、そのまま10℃以下で1時間さらに撹拌した。得られた反応液に、水250gを加えて50℃にて2時間撹拌を行った。分液して水層を抜き出した後、新たに水250gを加えて50℃にて2時間撹拌を行った。この操作を合計で3回実施した。有機層をさらに、濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH5.5)416gを用いて40℃にて30分間撹拌して洗浄した。洗浄後、分液して水層を抜き出した後、新たに濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH5.5)416gを加えて40℃にて30分間撹拌を行った。この操作を合計で5回実施した。この段階の有機層(溶液(X))中の化合物1の濃度を高速液体クロマトグラフにて定量したところ、10.57質量%であった。なお、この段階の有機層中には、上記構造式で示される化合物Xが44.8g含まれていた。
(Comparative Example 2: Synthesis of Compound 1)
In a nitrogen stream, 83.05 g (0.397 mol) of trans-1,4-cyclohexanedicarboxylic acid dichloride and 830 g of cyclopentyl methyl ether (CPME) were added to a three-necked reactor equipped with a thermometer. Thereto, 100 g (0.378 mol) of the compound A synthesized in Step 1 of Example 1 was added, and the reactor was immersed in an ice bath to adjust the internal temperature of the reaction solution to 0 ° C. Next, 40.2 g (0.397 mol) of triethylamine (Et 3 N) was slowly dropped over 20 minutes while maintaining the reaction solution internal temperature at 10 ° C. or lower. After completion of the dropwise addition, the mixture was further stirred at 10 ° C. or lower for 1 hour. 250 g of water was added to the obtained reaction solution, and the mixture was stirred at 50 ° C. for 2 hours. After liquid separation and extraction of the aqueous layer, 250 g of water was newly added, and the mixture was stirred at 50 ° C. for 2 hours. This operation was performed three times in total. The organic layer was further washed by stirring at 40 ° C. for 30 minutes using 416 g of a buffer solution (pH 5.5) composed of acetic acid and sodium acetate at a concentration of 1 mol / liter. After washing, liquid separation was performed, and the aqueous layer was extracted. Then, 416 g of a buffer solution (pH 5.5) composed of acetic acid and sodium acetate having a concentration of 1 mol / liter was newly added, and the mixture was stirred at 40 ° C. for 30 minutes. This operation was performed five times in total. The concentration of Compound 1 in the organic layer (solution (X)) at this stage was determined by high performance liquid chromatography to be 10.57% by mass. Note that the organic layer at this stage contained 44.8 g of the compound X represented by the above structural formula.
 さらに、得られた有機層を徐々に冷却して0℃にて1時間ゆっくり撹拌することで固体を析出させた。析出した固体をろ過により除去してろ液を得た。ろ過器の中のろ過物を別途準備した0℃に冷却したCPME100gで洗浄して、この洗浄により得られた洗浄液と先のろ液と一緒にした。この洗浄液と一緒にしたろ液を分液し、水層を抜き出して得た有機層(油層)に、ノルマルヘキサン1200gを加えて、徐々に0℃に冷却することで固体を析出させ、析出した固体をろ取した。ろ過物をノルマルヘキサンで洗浄した後、真空乾燥させて、中間体としての白色固体(化合物1と化合物Xとの混合物Y)74.7gを得た。得た白色固体(化合物1と化合物Xとの混合物Y)を高速液体クロマトグラフにて定量したところ、白色固体(化合物1と化合物Xとの混合物Y)に対する化合物1の含量は、91.1質量%であった。化合物1の収率は、化合物A基準で、42.98モル%であった。 Furthermore, the obtained organic layer was gradually cooled, and slowly stirred at 0 ° C. for 1 hour to precipitate a solid. The precipitated solid was removed by filtration to obtain a filtrate. The filtrate in the filter was washed with 100 g of separately prepared CPME cooled to 0 ° C., and the washing solution obtained by this washing was combined with the previous filtrate. The filtrate combined with the washing liquid was separated, and the organic layer (oil layer) obtained by extracting the aqueous layer was added with 1200 g of normal hexane and gradually cooled to 0 ° C. to precipitate a solid. The solid was collected by filtration. The filtrate was washed with normal hexane and then dried under vacuum to obtain 74.7 g of a white solid (mixture Y of compound 1 and compound X) as an intermediate. When the obtained white solid (mixture Y of compound 1 and compound X) was quantified by high performance liquid chromatography, the content of compound 1 relative to the white solid (mixture Y of compound 1 and compound X) was 91.1 mass. %Met. The yield of compound 1 was 42.98 mol% based on compound A.
(比較例3:化合物1の合成)
 温度計を備えた3口反応器に、窒素気流中、トランス-1,4-シクロヘキサンジカルボン酸ジクロライド83.05g(0.397mol)と、シクロペンチルメチルエーテル(CPME)830gとを加えた。そこへ、前記実施例1のステップ1で合成した化合物A:100g(0.378mol)を加え、反応器を氷浴に浸して反応液内温を0℃とした。次いで、トリエチルアミン(EtN)40.2g(0.397mol)を、反応液内温を10℃以下に保持しながら、20分間かけてゆっくり滴下した。滴下終了後、そのまま10℃以下で1時間さらに撹拌した。得られた反応液に、水250gを加えて50℃にて2時間撹拌を行った。分液して水層を抜き出した後、新たに水250gを加えて50℃にて2時間撹拌を行った。この操作を合計で3回実施した。この段階の有機層(溶液(X))中の化合物1の濃度を高速液体クロマトグラフにて定量したところ、10.55質量%であった。なお、この段階の有機層中には、上記構造式で示される化合物Xが44.6g含まれていた。
(Comparative Example 3: Synthesis of Compound 1)
In a nitrogen stream, 83.05 g (0.397 mol) of trans-1,4-cyclohexanedicarboxylic acid dichloride and 830 g of cyclopentyl methyl ether (CPME) were added to a three-necked reactor equipped with a thermometer. Thereto, 100 g (0.378 mol) of the compound A synthesized in Step 1 of Example 1 was added, and the reactor was immersed in an ice bath to adjust the internal temperature of the reaction solution to 0 ° C. Next, 40.2 g (0.397 mol) of triethylamine (Et 3 N) was slowly dropped over 20 minutes while maintaining the reaction solution internal temperature at 10 ° C. or lower. After completion of the dropwise addition, the mixture was further stirred at 10 ° C. or lower for 1 hour. 250 g of water was added to the obtained reaction solution, and the mixture was stirred at 50 ° C. for 2 hours. After liquid separation and extraction of the aqueous layer, 250 g of water was newly added, and the mixture was stirred at 50 ° C. for 2 hours. This operation was performed three times in total. The concentration of Compound 1 in the organic layer (solution (X)) at this stage was determined by high performance liquid chromatography to be 10.55% by mass. Note that the organic layer at this stage contained 44.6 g of the compound X represented by the above structural formula.
 さらに、得られた有機層に、メタノール550gを加えて、徐々に冷却して0℃にて1時間ゆっくり撹拌することで固体を析出させた。析出した固体をろ過により除去してろ液を得た。ろ過器の中のろ過物を別途準備した0℃に冷却したメタノール100gで洗浄して、この洗浄により得られた洗浄液と先のろ液と一緒にした。この際のろ過性は総じて非常に悪かった。この洗浄液と一緒にしたろ液をさらに、濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH5.5)416gを用いて40℃にて30分間撹拌して洗浄した。洗浄後、分液して水層を抜き出した後、新たに濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH5.5)416gを加えて40℃にて30分間撹拌を行った。この操作を合計で5回実施し、分液し、水層を抜き出して得た有機層(油層)に、ノルマルヘキサン1200gを加えて、徐々に0℃に冷却することで固体を析出させ、析出した固体をろ取した。ろ過物をノルマルヘキサンで洗浄した後、真空乾燥させて、中間体としての白色固体(化合物1と化合物Xとの混合物Y)を82.3g得た。得た白色固体(化合物1と化合物Xとの混合物Y)を高速液体クロマトグラフにて定量したところ、白色固体(化合物1と化合物Xとの混合物Y)に対する化合物1の含量は、85.5質量%であった。化合物1の収率は、化合物A基準で、44.44モル%であった。 Further, 550 g of methanol was added to the obtained organic layer, and the mixture was gradually cooled and slowly stirred at 0 ° C. for 1 hour to precipitate a solid. The precipitated solid was removed by filtration to obtain a filtrate. The filtrate in the filter was washed with 100 g of methanol, which was separately prepared and cooled to 0 ° C., and the washing solution obtained by this washing was combined with the previous filtrate. The filterability at this time was generally very poor. The filtrate combined with this washing solution was further washed with 416 g of a buffer solution (pH 5.5) consisting of acetic acid and sodium acetate having a concentration of 1 mol / liter by stirring at 40 ° C. for 30 minutes. After washing, liquid separation was carried out, and the aqueous layer was extracted. Then, 416 g of a buffer solution (pH 5.5) consisting of acetic acid and sodium acetate having a concentration of 1 mol / liter was newly added, and the mixture was stirred at 40 ° C. for 30 minutes. This operation was performed 5 times in total, liquids were separated, the aqueous layer was extracted, and 1200 g of normal hexane was added to the organic layer (oil layer), which was gradually cooled to 0 ° C. to precipitate a solid. The solid thus obtained was collected by filtration. The filtrate was washed with normal hexane and then dried under vacuum to obtain 82.3 g of a white solid (mixture Y of compound 1 and compound X) as an intermediate. When the obtained white solid (mixture Y of compound 1 and compound X) was quantified by high performance liquid chromatography, the content of compound 1 relative to the white solid (mixture Y of compound 1 and compound X) was 85.5 mass%. %Met. The yield of compound 1 was 44.44 mol% based on compound A.
(比較例4:化合物1の合成)
 温度計を備えた3口反応器に、窒素気流中、トランス-1,4-シクロヘキサンジカルボン酸ジクロライド83.05g(0.397mol)と、シクロペンチルメチルエーテル(CPME)830gとを加えた。そこへ、前記実施例1のステップ1で合成した化合物A:100g(0.378mol)を加え、反応器を氷浴に浸して反応液内温を0℃とした。次いで、トリエチルアミン(EtN)40.2g(0.397mol)を、反応液内温を10℃以下に保持しながら、20分間かけてゆっくり滴下した。滴下終了後、全容を25℃に戻して1時間さらに撹拌した。得られた反応液に、水250gを加えて50℃にて2時間撹拌を行った。分液して水層を抜き出した後、新たに水250gを加えて50℃にて2時間撹拌を行った。この操作を合計で3回実施した。有機層をさらに、濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH5.5)416gを用いて40℃にて30分間撹拌して洗浄した。洗浄後、分液して水層を抜き出した後、新たに濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH5.5)416gを加えて40℃にて30分間撹拌を行った。この操作を合計で5回実施した。この段階の有機層(溶液(X))中の化合物1の濃度を高速液体クロマトグラフにて定量したところ、10.58質量%であった。なお、この段階の有機層中には、上記構造式で示される化合物Xが44.4g含まれていた。
(Comparative Example 4: Synthesis of Compound 1)
In a nitrogen stream, 83.05 g (0.397 mol) of trans-1,4-cyclohexanedicarboxylic acid dichloride and 830 g of cyclopentyl methyl ether (CPME) were added to a three-necked reactor equipped with a thermometer. Thereto, 100 g (0.378 mol) of the compound A synthesized in Step 1 of Example 1 was added, and the reactor was immersed in an ice bath to adjust the internal temperature of the reaction solution to 0 ° C. Next, 40.2 g (0.397 mol) of triethylamine (Et 3 N) was slowly dropped over 20 minutes while maintaining the reaction solution internal temperature at 10 ° C. or lower. After the completion of the dropwise addition, the whole volume was returned to 25 ° C., and further stirred for 1 hour. 250 g of water was added to the obtained reaction solution, and the mixture was stirred at 50 ° C. for 2 hours. After liquid separation and extraction of the aqueous layer, 250 g of water was newly added, and the mixture was stirred at 50 ° C. for 2 hours. This operation was performed three times in total. The organic layer was further washed by stirring at 40 ° C. for 30 minutes using 416 g of a buffer solution (pH 5.5) composed of acetic acid and sodium acetate at a concentration of 1 mol / liter. After washing, liquid separation was performed, and the aqueous layer was extracted. Then, 416 g of a buffer solution (pH 5.5) composed of acetic acid and sodium acetate having a concentration of 1 mol / liter was newly added, and the mixture was stirred at 40 ° C. for 30 minutes. This operation was performed five times in total. The concentration of Compound 1 in the organic layer (solution (X)) at this stage was determined by high performance liquid chromatography to be 10.58% by mass. The organic layer at this stage contained 44.4 g of the compound X represented by the above structural formula.
 さらに、得られた有機層に、メタノール550gを加えて、徐々に冷却して0℃にて1時間ゆっくり撹拌することで固体を析出させた。析出した固体をろ過により除去してろ液を得た。ろ過器の中のろ過物を別途準備した0℃に冷却したメタノール100gで洗浄して、この洗浄により得られた洗浄液と先のろ液と一緒にした。この際のろ過性は総じて非常に悪かった。5℃にて、この洗浄液と一緒にしたろ液に水250gを加えて、30分間撹拌して洗浄した。洗浄後、分液して水層を抜き出した後、新たに水250gを加えて30分間撹拌して洗浄し、分液し、水層を抜き出して得た有機層(油層)に、ノルマルヘキサン1200gを加えて、徐々に0℃に冷却することで固体を析出させ、析出した固体をろ取した。ろ過物をノルマルヘキサンで洗浄した後、真空乾燥させて、中間体としての白色固体(化合物1と化合物Xとの混合物Y)82.2gを得た。得た白色固体(化合物1と化合物Xとの混合物Y)を高速液体クロマトグラフにて定量したところ、白色固体(化合物1と化合物Xとの混合物Y)に対する化合物1の含量は、85.3質量%であった。化合物1の収率は、化合物A基準で、44.29モル%であった。 Further, 550 g of methanol was added to the obtained organic layer, and the mixture was gradually cooled and slowly stirred at 0 ° C. for 1 hour to precipitate a solid. The precipitated solid was removed by filtration to obtain a filtrate. The filtrate in the filter was washed with 100 g of methanol, which was separately prepared and cooled to 0 ° C., and the washing solution obtained by this washing was combined with the previous filtrate. The filterability at this time was generally very poor. At 5 ° C., 250 g of water was added to the filtrate combined with the washing solution, and the mixture was stirred for 30 minutes and washed. After washing, liquid separation was performed to extract an aqueous layer. Then, 250 g of fresh water was added, and the mixture was stirred for 30 minutes, washed, separated, and 1200 g of normal hexane was added to an organic layer (oil layer) obtained by extracting the aqueous layer. Was added, and the mixture was gradually cooled to 0 ° C. to precipitate a solid, and the precipitated solid was collected by filtration. The filtrate was washed with normal hexane and then dried under vacuum to obtain 82.2 g of a white solid (mixture Y of compound 1 and compound X) as an intermediate. When the obtained white solid (mixture Y of compound 1 and compound X) was quantified by high performance liquid chromatography, the content of compound 1 relative to the white solid (mixture Y of compound 1 and compound X) was 85.3 mass. %Met. The yield of compound 1 was 44.29 mol% based on compound A.
(比較例5:国際公開2011/068138号の比較例1)
Figure JPOXMLDOC01-appb-C000044
 trans-1,4-シクロヘキサンジカルボン酸24.68gおよびトルエンを混合した。得られた溶液に、二塩化オキサリル74.91gおよびN,N-ジメチルホルムアミド0.5mLを加えた。得られた溶液を、窒素雰囲気下で攪拌し、反応させた。得られた反応混合物を減圧濃縮して、トルエンおよび未反応の二塩化オキサリルを除去した。得られた溶液とクロロホルムとを混合し、trans-1,4-シクロヘキサンジカルボン酸ジクロリドを含む溶液を得た。
 上記式(A-IV)で示される化合物12gおよびクロロホルムを混合した。得られた溶液と、ピリジン12.6gとを、氷冷下、先に得たtrans-1,4-シクロヘキサンジカルボン酸ジクロリドを含む溶液に滴下した。得られた混合物を窒素雰囲気下で攪拌した。沈殿を濾過により除去し、得られた濾液を減圧濃縮した。濃縮液を水/メタノール溶液(体積比=1/1)に滴下した。生成した沈殿を粉砕した後、濾過した。沈殿を純水で洗浄した。沈殿を濾過し、真空乾燥した。得られた粉末を粉砕した後、ヘプタンを加えた。得られた混合物を攪拌した後、沈殿を取り出した。沈殿をトルエンと混合し、不溶分を濾過により除去した。濾液を減圧濃縮し、得られた濃縮液にヘプタンを加えた。沈殿を濾過により取り出し、真空乾燥し、上記式(6-a)で示される化合物(化合物(I))を含む粉末(中間体)7.8gを得た。上記式(6-a)で示される化合物の収率は、上記式(A-IV)で示される化合物基準で、40.00モル%であった。得られた粉末に対する上記式(6-a)で示される化合物の含量(純度)は70.0質量%であった。
(Comparative Example 5: Comparative Example 1 of International Publication No. 2011/068138)
Figure JPOXMLDOC01-appb-C000044
24.68 g of trans-1,4-cyclohexanedicarboxylic acid and toluene were mixed. To the resulting solution, 74.91 g of oxalyl dichloride and 0.5 mL of N, N-dimethylformamide were added. The resulting solution was stirred and reacted under a nitrogen atmosphere. The obtained reaction mixture was concentrated under reduced pressure to remove toluene and unreacted oxalyl dichloride. The obtained solution and chloroform were mixed to obtain a solution containing trans-1,4-cyclohexanedicarboxylic acid dichloride.
12 g of the compound represented by the above formula (A-IV) and chloroform were mixed. The obtained solution and 12.6 g of pyridine were added dropwise to the previously obtained solution containing trans-1,4-cyclohexanedicarboxylic acid dichloride under ice cooling. The resulting mixture was stirred under a nitrogen atmosphere. The precipitate was removed by filtration, and the obtained filtrate was concentrated under reduced pressure. The concentrate was dropped into a water / methanol solution (volume ratio = 1/1). The resulting precipitate was pulverized and filtered. The precipitate was washed with pure water. The precipitate was filtered and dried under vacuum. After pulverizing the obtained powder, heptane was added. After stirring the obtained mixture, the precipitate was taken out. The precipitate was mixed with toluene, and the insoluble matter was removed by filtration. The filtrate was concentrated under reduced pressure, and heptane was added to the obtained concentrate. The precipitate was taken out by filtration and dried under vacuum to obtain 7.8 g of a powder (intermediate) containing the compound represented by the above formula (6-a) (compound (I)). The yield of the compound represented by the above formula (6-a) was 40.00 mol% based on the compound represented by the above formula (A-IV). The content (purity) of the compound represented by the above formula (6-a) with respect to the obtained powder was 70.0% by mass.
(比較例6:国際公開2011/068138号の比較例2)
 trans-1,4-シクロヘキサンジカルボン酸24.68g、二塩化オキサリル74.91gおよびN,N-ジメチルホルムアミド0.5mLを混合した。窒素雰囲気下で、得られた溶液を攪拌し反応させた。得られた反応混合物を減圧濃縮し、トルエンおよび未反応の二塩化オキサリルを除去した。得られた溶液とクロロホルムとを混合し、trans-1,4-シクロヘキサンジカルボン酸ジクロリドを含む溶液を得た。
 上記式(6-a)で示される化合物12gおよびクロロホルムを混合した。得られた溶液と、ピリジン12.6gとを、氷冷下、先に得たtrans-1,4-シクロヘキサンジカルボン酸ジクロリドを含む溶液に滴下した。得られた溶液を、窒素雰囲気下で攪拌した。沈殿を濾過により除去し、濾液を減圧濃縮した。濃縮液を水に滴下し、生成した沈殿を粉砕した後、濾過した。沈殿を純水と混合し、濾過した。沈殿を真空乾燥した。得られた粉末を粉砕した後、水/メタノール溶液(体積比=1/1)に加えた。沈殿を粉砕した後、濾過した。沈殿にヘプタンを加え、得られた混合物を攪拌して不溶分を濾過により取り出した。不溶分をトルエンと混合した後、濾過した。得られた濾液を減圧濃縮し、得られた濃縮液にヘプタンを加えた。沈殿を濾過により取り出し、真空乾燥して、上記式(6-a)で示される化合物(化合物(I))を含む粉末(中間体)2.1gを得た。上記式(6-a)で示される化合物の収率は、上記式(A-IV)で示される化合物基準で、12.00モル%であった。得られた粉末に対する上記式(6-a)で示される化合物の含量(純度)は85.0質量%であった。
(Comparative Example 6: Comparative Example 2 of International Publication No. 2011/068138)
24.68 g of trans-1,4-cyclohexanedicarboxylic acid, 74.91 g of oxalyl dichloride and 0.5 mL of N, N-dimethylformamide were mixed. The resulting solution was stirred and reacted under a nitrogen atmosphere. The obtained reaction mixture was concentrated under reduced pressure to remove toluene and unreacted oxalyl dichloride. The obtained solution and chloroform were mixed to obtain a solution containing trans-1,4-cyclohexanedicarboxylic acid dichloride.
12 g of the compound represented by the above formula (6-a) and chloroform were mixed. The obtained solution and 12.6 g of pyridine were added dropwise to the previously obtained solution containing trans-1,4-cyclohexanedicarboxylic acid dichloride under ice cooling. The resulting solution was stirred under a nitrogen atmosphere. The precipitate was removed by filtration, and the filtrate was concentrated under reduced pressure. The concentrate was dropped into water, and the resulting precipitate was pulverized and then filtered. The precipitate was mixed with pure water and filtered. The precipitate was dried under vacuum. After the obtained powder was pulverized, it was added to a water / methanol solution (volume ratio = 1/1). The precipitate was ground and then filtered. Heptane was added to the precipitate, the resulting mixture was stirred, and insolubles were removed by filtration. After the insoluble matter was mixed with toluene, the mixture was filtered. The obtained filtrate was concentrated under reduced pressure, and heptane was added to the obtained concentrate. The precipitate was taken out by filtration and dried under vacuum to obtain 2.1 g of a powder (intermediate) containing the compound represented by the above formula (6-a) (compound (I)). The yield of the compound represented by the above formula (6-a) was 12.00 mol% based on the compound represented by the above formula (A-IV). The content (purity) of the compound represented by the above formula (6-a) with respect to the obtained powder was 85.0% by mass.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
(実施例7:重合性化合物1の合成)
Figure JPOXMLDOC01-appb-C000046
(Example 7: Synthesis of polymerizable compound 1)
Figure JPOXMLDOC01-appb-C000046
<ステップ1:化合物Bの合成>
Figure JPOXMLDOC01-appb-C000047
 温度計を備えた3口反応器に、窒素気流中、2-ヒドラジノベンゾチアゾール100g(0.605mol)をN,N-ジメチルホルムアミド750gに加え、次いで、1-ブロモヘキサン119.9g(0.726mol)を加えた。この溶液にリン酸三カリウム192.72g(0.908mol)を加え、全容を100℃で3時間攪拌した。反応終了後、反応液を60℃まで冷却し、降温した反応液にトルエン750gおよび水750gを加えた後、60℃を維持して、15分間撹拌した。反応液を静置すると、三層に分離した。下層の二層を抜き出した。得られたトルエン層に10質量%の塩化ナトリウム水溶液430gを加えて60℃を維持して、15分間撹拌した。分液し、水層を抜き出して得られたトルエン層(有機層)を減圧下にて濃縮を行い、トルエン560gを抜き出した。濃縮後のトルエン層(有機層)を60℃に昇温し、水500gを加えて、強撹拌しながら徐々に冷却した。0℃に到達した後、そのままの温度で1時間強撹拌した。このスラリー溶液をろ過した。得られた湿固体を5℃以下に冷却した水/メタノール=1/4(質量比)の混合溶媒500gを用いてかけ洗いして洗浄した。得られた湿固体を真空乾燥機で減圧乾燥させることで、化合物Bを白色固体として132.8g得た。収率は88モル%であった。化合物Bの構造はH-NMRで同定した。H-NMRスペクトルデータを下記に示す。
<Step 1: Synthesis of compound B>
Figure JPOXMLDOC01-appb-C000047
In a three-necked reactor equipped with a thermometer, 100 g (0.605 mol) of 2-hydrazinobenzothiazole was added to 750 g of N, N-dimethylformamide in a nitrogen stream, and then 119.9 g (0.1 g) of 1-bromohexane. 726 mol). To this solution, 192.72 g (0.908 mol) of tripotassium phosphate was added, and the whole volume was stirred at 100 ° C. for 3 hours. After the completion of the reaction, the reaction solution was cooled to 60 ° C., and 750 g of toluene and 750 g of water were added to the cooled reaction solution, and the mixture was stirred at 60 ° C. for 15 minutes. When the reaction solution was allowed to stand, it was separated into three layers. Two lower layers were extracted. To the obtained toluene layer, 430 g of a 10% by mass aqueous sodium chloride solution was added, and the mixture was stirred at 60 ° C. for 15 minutes. The liquid layer was separated, the aqueous layer was extracted, and the toluene layer (organic layer) obtained was concentrated under reduced pressure to extract 560 g of toluene. The temperature of the toluene layer (organic layer) after concentration was raised to 60 ° C., 500 g of water was added, and the mixture was gradually cooled with vigorous stirring. After reaching 0 ° C., the mixture was vigorously stirred at the same temperature for 1 hour. This slurry solution was filtered. The obtained wet solid was washed by splashing it with 500 g of a mixed solvent of water / methanol = 1/4 (mass ratio) cooled to 5 ° C. or lower. The obtained wet solid was dried under reduced pressure using a vacuum drier to obtain 132.8 g of Compound B as a white solid. The yield was 88 mol%. The structure of Compound B was identified by 1 H-NMR. The 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz,CDCl,TMS,δppm):7.60(dd、1H、J=1.0,8.0Hz)、7.53(dd,1H,J=1.0,8.0Hz)、7.27(ddd,1H,J=1.0,8.0,8.0Hz)、7.06(ddd,1H,J=1.0,8.0,8.0Hz)、4.22(s,2H)、3.74(t,2H,J=7.5Hz)、1.69-1.76(m,2H)、1.29-1.42(m,6H)、0.89(t,3H,J=7.0Hz)。 1 H-NMR (500 MHz, CDCl 3 , TMS, δ ppm): 7.60 (dd, 1 H, J = 1.0, 8.0 Hz), 7.53 (dd, 1 H, J = 1.0, 8. 0 Hz), 7.27 (ddd, 1H, J = 1.0, 8.0, 8.0 Hz), 7.06 (ddd, 1H, J = 1.0, 8.0, 8.0 Hz), 4 .22 (s, 2H), 3.74 (t, 2H, J = 7.5 Hz), 1.69-1.76 (m, 2H), 1.29-1.42 (m, 6H), 0 .89 (t, 3H, J = 7.0 Hz).
<ステップ2:重合性化合物1の合成>
 温度計を備えた3口反応器に、窒素気流中、前記実施例1で合成した中間体としての白色固体(化合物1と化合物Xとの混合物Y):10.80g(化合物1の純量として10.00g(23.90mmol))、クロロホルム100g、およびジメチルホルムアミド(DMF)3.49gを加えて、10℃以下に冷却した。そこへ、塩化チオニル3.27g(27.48mmol)を反応温度が10℃以下になるように制御して滴下した。滴下終了後、反応液を25℃に戻して1時間撹拌した。反応終了後、エバポレーターにて反応液の量が4分の1になるまで濃縮した。その後、クロロホルム25gを加えて、化合物1の酸クロライドのクロロホルム溶液を得た。別途、温度計を備えた3口反応器において、窒素気流中、2,5-ジヒドロキシベンズアルデヒド1.50g(10.86mmol)、および塩基としての2,6-ルチジン6.98g(65.17mmol)を、50gのクロロホルムに溶解させ、得られた溶液を10℃以下まで冷却した。この溶液に、先に合成した化合物1の酸クロライドのクロロホルム溶液の全量を、反応液内温を10℃以下に保持しながらゆっくりと滴下した。滴下終了後、反応液を10℃以下に保持しながら、さらに1時間反応を行った。その後さらに、1.0規定の塩酸水溶液40gを加えて、10℃以下で30分撹拌して反応を行った。反応終了後、さらに、10℃以下のまま、得られた反応液に、前記ステップ1で合成した化合物B:3.52g(14.12mmol)を加えた。その後、反応液を40℃に昇温して4時間反応を行った。反応終了後、反応液を25℃まで冷却し、分液操作を行った。得られた有機層にロカヘルプ#479(三井金属鉱業社製)0.50gを加え、30分間撹拌した後、ロカヘルプ#479をろ別した。次いで、得られた反応液から、総質量約80%をエバポレーターにて抜き出して濃縮した。この溶液にTHF20gを加えた後、1時間攪拌した。次いで、この溶液にノルマルヘキサン80gを滴下した後、0℃まで冷却して結晶を析出させた。その後、析出した結晶をろ過によりろ取した。得られた結晶にTHF108g、ロカヘルプ#479:1.8g、および2,6-ジ-t-ブチル-4-メチルフェノール100mgを加えて30分間撹拌した後、ロカヘルプ#479をろ別した。次いで、得られた反応液から、エバポレーターにてTHF36gを留去した。得られた溶液にメタノール117gを滴下した後、0℃まで冷却して結晶を析出させた。その後、析出した結晶をろ過によりろ取した。ろ過物をメタノールで洗浄後、真空乾燥させて、重合性化合物1を11.7g得た。単離収率は92.0モル%(2,5-ジヒドロキシベンズアルデヒド基準)であった。重合性化合物1の構造はH-NMRで同定した。H-NMRスペクトルデータを下記に示す。
<Step 2: Synthesis of polymerizable compound 1>
In a three-necked reactor equipped with a thermometer, in a nitrogen stream, 10.80 g of a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 1 (as a pure amount of compound 1) 10.00 g (23.90 mmol)), 100 g of chloroform and 3.49 g of dimethylformamide (DMF) were added, and the mixture was cooled to 10 ° C or lower. To the solution, 3.27 g (27.48 mmol) of thionyl chloride was added dropwise while controlling the reaction temperature to 10 ° C. or lower. After completion of the dropwise addition, the reaction solution was returned to 25 ° C and stirred for 1 hour. After the completion of the reaction, the reaction solution was concentrated by an evaporator until the amount of the reaction solution became 1/4. Thereafter, 25 g of chloroform was added to obtain a chloroform solution of the acid chloride of Compound 1. Separately, in a three-necked reactor equipped with a thermometer, 1.50 g (10.86 mmol) of 2,5-dihydroxybenzaldehyde and 6.98 g (65.17 mmol) of 2,6-lutidine as a base were placed in a nitrogen stream. And 50 g of chloroform, and the resulting solution was cooled to 10 ° C. or lower. To this solution, the whole amount of the chloroform solution of the acid chloride of Compound 1 synthesized previously was slowly added dropwise while maintaining the reaction solution internal temperature at 10 ° C. or lower. After completion of the dropwise addition, the reaction was further performed for 1 hour while maintaining the reaction solution at 10 ° C. or lower. Thereafter, 40 g of a 1.0 N aqueous hydrochloric acid solution was further added, and the mixture was stirred at 10 ° C. or lower for 30 minutes to perform a reaction. After the completion of the reaction, 3.52 g (14.12 mmol) of the compound B synthesized in Step 1 was added to the obtained reaction solution while keeping the temperature at 10 ° C. or lower. Thereafter, the reaction solution was heated to 40 ° C. and reacted for 4 hours. After the completion of the reaction, the reaction solution was cooled to 25 ° C., and a liquid separation operation was performed. To the obtained organic layer, 0.50 g of LocaHelp # 479 (manufactured by Mitsui Mining & Smelting Co., Ltd.) was added, and after stirring for 30 minutes, LocaHelp # 479 was filtered off. Next, a total mass of about 80% was extracted from the obtained reaction solution with an evaporator and concentrated. After adding 20 g of THF to this solution, the mixture was stirred for 1 hour. Next, 80 g of normal hexane was dropped into this solution, and then cooled to 0 ° C. to precipitate crystals. Thereafter, the precipitated crystals were collected by filtration. To the obtained crystals were added 108 g of THF, 1.8 g of LocaHelp # 479, and 100 mg of 2,6-di-t-butyl-4-methylphenol, and the mixture was stirred for 30 minutes. Then, LokaHelp # 479 was filtered off. Next, 36 g of THF was distilled off from the obtained reaction solution using an evaporator. After 117 g of methanol was added dropwise to the resulting solution, the solution was cooled to 0 ° C. to precipitate crystals. Thereafter, the precipitated crystals were collected by filtration. The filtrate was washed with methanol and dried under vacuum to obtain 11.7 g of polymerizable compound 1. The isolation yield was 92.0 mol% (based on 2,5-dihydroxybenzaldehyde). The structure of the polymerizable compound 1 was identified by 1 H-NMR. The 1 H-NMR spectrum data is shown below.
 H-NMR(400MHz,CDCl,TMS,δppm):7.75(d,1H,J=2.5Hz)、7.67-7.70(m,3H)、7.34(ddd,1H、J=1.0Hz,7.0Hz,7.5Hz)、7.17(ddd,1H,J=1.0Hz,7.5Hz,7.5Hz)、7.12(d,1H,J=9.0Hz)、7.10(dd,1H,J=2.5Hz,9.0Hz)、6.99(d,2H,J=9.0Hz)、6.98(d,2H,J=9.0Hz)、6.88(d,4H,J=9.0Hz)、6.40(dd,2H,J=1.5Hz,17.0Hz)、6.13(dd,2H,J=10.5Hz,17.5Hz)、5.82(dd,2H、J=1.5Hz,10.5Hz)、4.30(t,2H,J=8.0Hz)、4.18(t,4H,J=6.5Hz)、3.95(t,4H,J=6.5Hz)、2.58-2.70(m,4H)、2.31-2.35(m,8H)、1.66-1.82(m,18H)、1.31-1.54(m,14H)、0.90(t,3H,J=7.0Hz)。 1 H-NMR (400 MHz, CDCl 3 , TMS, δ ppm): 7.75 (d, 1H, J = 2.5 Hz), 7.67-7.70 (m, 3H), 7.34 (ddd, 1H) , J = 1.0 Hz, 7.0 Hz, 7.5 Hz), 7.17 (ddd, 1H, J = 1.0 Hz, 7.5 Hz, 7.5 Hz), 7.12 (d, 1H, J = 9) 0.0 Hz), 7.10 (dd, 1H, J = 2.5 Hz, 9.0 Hz), 6.99 (d, 2H, J = 9.0 Hz), 6.98 (d, 2H, J = 9. 0 Hz), 6.88 (d, 4H, J = 9.0 Hz), 6.40 (dd, 2H, J = 1.5 Hz, 17.0 Hz), 6.13 (dd, 2H, J = 10.5 Hz) , 17.5 Hz), 5.82 (dd, 2H, J = 1.5 Hz, 10.5 Hz), 4.30 (t, 2H, J = 8.0 Hz) 4.18 (t, 4H, J = 6.5 Hz), 3.95 (t, 4H, J = 6.5 Hz), 2.58-2.70 (m, 4H), 2.31-2. 35 (m, 8H), 1.66-1.82 (m, 18H), 1.31-1.54 (m, 14H), 0.90 (t, 3H, J = 7.0 Hz).
(実施例8:重合性化合物1の合成)
 前記実施例7において、ステップ2で、前記実施例1で合成した中間体としての白色固体(化合物1と化合物Xとの混合物Y):10.80g(化合物1の純量として10.00g(23.90mmol))を用いる代わりに、前記実施例2で合成した中間体としての白色固体(化合物1と化合物Xとの混合物Y):10.89g(化合物1の純量として10.00g(23.90mmol))を用いたこと以外は、実施例7と同様に、重合性化合物1の合成をおこなった。その結果、重合性化合物1を11.6g得た。重合性化合物1の単離収率は、2,5-ジヒドロキシベンズアルデヒド基準で、91.3モル%であった。
(Example 8: Synthesis of polymerizable compound 1)
In Example 7, in Step 2, a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 1 was 10.80 g (10.00 g (23% in pure amount of compound 1). .90 mmol)) instead of using: 10.89 g of a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 2 (10.00 g (23. A polymerizable compound 1 was synthesized in the same manner as in Example 7, except that 90 mmol)) was used. As a result, 11.6 g of the polymerizable compound 1 was obtained. The isolation yield of the polymerizable compound 1 was 91.3 mol% based on 2,5-dihydroxybenzaldehyde.
(実施例9:重合性化合物1の合成)
 前記実施例7において、ステップ2で、前記実施例1で合成した中間体としての白色固体(化合物1と化合物Xとの混合物Y):10.80g(化合物1の純量として10.00g(23.90mmol))を用いる代わりに、前記実施例3で合成した中間体としての白色固体(化合物1と化合物Xとの混合物Y):10.81g(化合物1の純量として10.00g(23.90mmol))を用いたこと以外は、実施例7と同様に、重合性化合物1の合成をおこなった。その結果、重合性化合物1を11.7g得た。重合性化合物1の単離収率は、2,5-ジヒドロキシベンズアルデヒド基準で、92.0モル%であった。
(Example 9: Synthesis of polymerizable compound 1)
In Example 7, in Step 2, a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 1 was 10.80 g (10.00 g (23% in pure amount of compound 1). .90 mmol)) instead of using: 10.81 g of a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 3 (10.00 g (23. A polymerizable compound 1 was synthesized in the same manner as in Example 7, except that 90 mmol)) was used. As a result, 11.7 g of polymerizable compound 1 was obtained. The isolation yield of the polymerizable compound 1 was 92.0 mol% based on 2,5-dihydroxybenzaldehyde.
(実施例10:重合性化合物1の合成)
 前記実施例7において、ステップ2で、前記実施例1で合成した中間体としての白色固体(化合物1と化合物Xとの混合物Y):10.80g(化合物1の純量として10.00g(23.90mmol))を用いる代わりに、前記実施例4で合成した中間体としての白色固体(化合物1と化合物Xとの混合物Y):10.81g(化合物1の純量として10.00g(23.90mmol))を用いたこと以外は、実施例7と同様に、重合性化合物1の合成をおこなった。その結果、重合性化合物1を11.8g得た。重合性化合物1の単離収率は、2,5-ジヒドロキシベンズアルデヒド基準で、92.8モル%であった。
(Example 10: Synthesis of polymerizable compound 1)
In Example 7, in Step 2, a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 1 was 10.80 g (10.00 g (23% in pure amount of compound 1). Instead of using (.90 mmol)), a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 4: 10.81 g (10.00 g (23. A polymerizable compound 1 was synthesized in the same manner as in Example 7, except that 90 mmol)) was used. As a result, 11.8 g of the polymerizable compound 1 was obtained. The isolation yield of the polymerizable compound 1 was 92.8 mol% based on 2,5-dihydroxybenzaldehyde.
(実施例11:重合性化合物1の合成)
 前記実施例7において、ステップ2で、前記実施例1で合成した中間体としての白色固体(化合物1と化合物Xとの混合物Y):10.80g(化合物1の純量として10.00g(23.90mmol))を用いる代わりに、前記実施例5で合成した中間体としての白色固体(化合物1と化合物Xとの混合物Y):10.89g(化合物1の純量として10.00g(23.90mmol))を用いたこと以外は、実施例7と同様に、重合性化合物1の合成をおこなった。その結果、重合性化合物1を11.5g得た。重合性化合物1の単離収率は、2,5-ジヒドロキシベンズアルデヒド基準で、90.5モル%であった。
(Example 11: Synthesis of polymerizable compound 1)
In Example 7, in Step 2, a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 1 was 10.80 g (10.00 g (23% in pure amount of compound 1). .90 mmol)), instead of using: 10.89 g of a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 5 (10.00 g (23. A polymerizable compound 1 was synthesized in the same manner as in Example 7, except that 90 mmol)) was used. As a result, 11.5 g of polymerizable compound 1 was obtained. The isolation yield of the polymerizable compound 1 was 90.5 mol% based on 2,5-dihydroxybenzaldehyde.
(実施例12:重合性化合物1の合成)
 前記実施例7において、ステップ2で、前記実施例1で合成した中間体としての白色固体(化合物1と化合物Xとの混合物Y):10.80g(化合物1の純量として10.00g(23.90mmol))を用いる代わりに、前記実施例6で合成した中間体としての白色固体(化合物1と化合物Xとの混合物Y):11.14g(化合物1の純量として10.00g(23.90mmol))を用いたこと以外は、実施例7と同様に、重合性化合物1の合成をおこなった。その結果、重合性化合物1を11.6g得た。重合性化合物1の単離収率は、2,5-ジヒドロキシベンズアルデヒド基準で、91.3モル%であった。
(Example 12: Synthesis of polymerizable compound 1)
In Example 7, in Step 2, a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 1 was 10.80 g (10.00 g (23% in pure amount of compound 1). .90 mmol)), 11.14 g of a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 6 (10.00 g of pure compound 1 (23.90 mmol)). A polymerizable compound 1 was synthesized in the same manner as in Example 7, except that 90 mmol)) was used. As a result, 11.6 g of the polymerizable compound 1 was obtained. The isolation yield of the polymerizable compound 1 was 91.3 mol% based on 2,5-dihydroxybenzaldehyde.
(実施例13:重合性化合物2の合成)
Figure JPOXMLDOC01-appb-C000048
(Example 13: Synthesis of polymerizable compound 2)
Figure JPOXMLDOC01-appb-C000048
<ステップ1:化合物Cの合成>
Figure JPOXMLDOC01-appb-C000049
 温度計を備えた3口反応器に、窒素気流中、1-ナフチル酢酸500.5g(2.69mol)およびトルエン1049gを投入した。さらに、6-クロロ-1-ヘキサノール349.5g(2.56mol)、パラトルエンスルホン酸1水和物48.6g(0.26mol)を加えて、溶液を調製した。ディーンスターク装置を用いて、調製した溶液を加熱し、生成する水を反応系外に排出しながら共沸脱水(内温約95℃)を2時間行った。反応終了後、25℃まで冷却した反応液に、5.8質量%の重曹水742gを加えて、分液して洗浄した。洗浄後、水層を抜き出して得られた有機層を、さらに水500gで洗浄した。洗浄後、水層を抜き出して得られた有機層にろ過助剤(商品名:ロカヘルプ#479、三井金属鉱業社製)7gを加え、室温下にて30分間撹拌し、ろ過を行い、ろ過助剤を除去した。有機層からロータリーエバポレーターにて溶媒を留去して、化合物Cを含む淡茶色オイルを755g得た。高速液体クロマトグラフによる定量により、この化合物Cを含む淡茶色オイルには化合物Cが93.0質量%含まれていることが分かった。この淡茶色オイルの精製は行わず、そのまま次の反応(ステップ2:化合物Dの合成)に用いた。
<Step 1: Synthesis of compound C>
Figure JPOXMLDOC01-appb-C000049
In a nitrogen gas stream, 500.5 g (2.69 mol) of 1-naphthylacetic acid and 1049 g of toluene were charged into a three-necked reactor equipped with a thermometer. Further, 349.5 g (2.56 mol) of 6-chloro-1-hexanol and 48.6 g (0.26 mol) of paratoluenesulfonic acid monohydrate were added to prepare a solution. Using a Dean-Stark apparatus, the prepared solution was heated, and azeotropic dehydration (internal temperature: about 95 ° C.) was performed for 2 hours while discharging generated water out of the reaction system. After the reaction was completed, 742 g of a 5.8% by mass aqueous sodium bicarbonate solution was added to the reaction solution cooled to 25 ° C., and the mixture was separated and washed. After washing, the organic layer obtained by extracting the aqueous layer was further washed with 500 g of water. After washing, 7 g of a filter aid (trade name: RocaHelp # 479, manufactured by Mitsui Mining & Smelting Co., Ltd.) was added to the organic layer obtained by extracting the aqueous layer, and the mixture was stirred at room temperature for 30 minutes, filtered, and filtered. The agent was removed. The solvent was distilled off from the organic layer using a rotary evaporator to obtain 755 g of a light brown oil containing Compound C. Determination by high performance liquid chromatography revealed that the light brown oil containing Compound C contained 93.0% by mass of Compound C. This light brown oil was not purified and used as it was in the next reaction (Step 2: synthesis of compound D).
<ステップ2:化合物Dの合成>
Figure JPOXMLDOC01-appb-C000050
 温度計を備えた3口反応器に、窒素気流中、前記ステップ1で合成した化合物Cを含む淡茶色オイル59.52g(化合物C正味の量として、55.35g(0.182mol))およびN-メチル-2-ピロリドン235gを投入し、均一な溶液とした。その均一な溶液に、2-ヒドラジノベンゾチアゾール25.0g(0.151mol)を加えた。次いで、リン酸三カリウム48.18g(0.227mol)を加え、全容を100℃で3時間攪拌した。反応終了後、反応液を60℃まで冷却し、降温した反応液に酢酸エチル312.5gを加えた後、60℃を維持して、ろ過を行った。ろ液である有機層を0.5規定のクエン酸水溶液250gにゆっくり滴下して、内温60℃で30分間撹拌した後、水層を抜き出した。さらに、有機層に9.1質量%の塩化ナトリウム水溶液275gを加え、内温60℃で30分間撹拌した後、30分間静置して水層を抜き出した。次いで、有機層に4.76質量%の炭酸水素ナトリウム水溶液262.5gを加え、内温60℃で30分間撹拌した後、30分間静置して水層を抜き出した。さらに、有機層に水250gを加え、内温60℃で30分間撹拌した後、30分間静置して水層を抜き出した。得られた有機層を徐々に0℃まで冷却して、0℃にて30分間撹拌した。生じた固体をろ過によって取得した。その後、取得した固体に酢酸エチル150gを加えて、60℃まで昇温して均一溶液として、30分間撹拌した。その後、酢酸エチル溶液を徐々に0℃まで冷却して、0℃にて1時間撹拌した。生じた固体をろ過によって取得して、減圧乾燥させることで、化合物Dを白色固体として36.9g得た。化合物Dの収率は56.4モル%であった。化合物Dの構造はH-NMRで同定した。H-NMRスペクトルデータを下記に示す。
<Step 2: Synthesis of compound D>
Figure JPOXMLDOC01-appb-C000050
In a three-necked reactor equipped with a thermometer, in a nitrogen stream, 59.52 g (55.35 g (0.182 mol) as a net amount of compound C) of the light brown oil containing compound C synthesized in the above step 1 and N 235 g of -methyl-2-pyrrolidone was charged to obtain a uniform solution. 25.0 g (0.151 mol) of 2-hydrazinobenzothiazole was added to the homogeneous solution. Next, 48.18 g (0.227 mol) of tripotassium phosphate was added, and the whole volume was stirred at 100 ° C. for 3 hours. After completion of the reaction, the reaction solution was cooled to 60 ° C., and after adding 312.5 g of ethyl acetate to the cooled reaction solution, filtration was performed while maintaining the temperature at 60 ° C. The organic layer, which was the filtrate, was slowly dropped into 250 g of a 0.5 N aqueous citric acid solution, stirred at an internal temperature of 60 ° C. for 30 minutes, and then the aqueous layer was extracted. Further, 275 g of a 9.1 mass% aqueous sodium chloride solution was added to the organic layer, and the mixture was stirred at an internal temperature of 60 ° C. for 30 minutes, and then allowed to stand for 30 minutes to extract an aqueous layer. Next, 262.5 g of a 4.76% by mass aqueous sodium hydrogen carbonate solution was added to the organic layer, and the mixture was stirred at an internal temperature of 60 ° C. for 30 minutes, and then left standing for 30 minutes to extract an aqueous layer. Further, 250 g of water was added to the organic layer, and the mixture was stirred at an internal temperature of 60 ° C. for 30 minutes, and then left standing for 30 minutes to extract an aqueous layer. The obtained organic layer was gradually cooled to 0 ° C and stirred at 0 ° C for 30 minutes. The resulting solid was obtained by filtration. Thereafter, 150 g of ethyl acetate was added to the obtained solid, and the mixture was heated to 60 ° C. to form a homogeneous solution and stirred for 30 minutes. Thereafter, the ethyl acetate solution was gradually cooled to 0 ° C and stirred at 0 ° C for 1 hour. The resulting solid was obtained by filtration and dried under reduced pressure to obtain 36.9 g of Compound D as a white solid. The yield of compound D was 56.4 mol%. The structure of compound D was identified by 1 H-NMR. The 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz,CDCl,TMS,δppm):8.00(d,1H,J=8.5Hz)、7.85(dd,1H、J=1.0Hz、8.0Hz)、7.78(dd,1H,J=1.5Hz,7.5Hz)、7.60(dd,1H,J=1.0Hz,7.5Hz)、7.54-7.51(m,2H)、7.49-7.40(m,3H)、7.28(ddd,1H,J=1.0Hz,7.5Hz,7.5Hz)、7.07(ddd,1H,J=1.0Hz,7.5Hz,7.5Hz)、4.16(br,2H)、4.08(t,2H,J=6.5Hz)、4.06(s,2H)、3.66(t,2H,J=7.0Hz)、1.63-1.54(m,4H)、1.32-1.22(m,4H)。 1 H-NMR (500 MHz, CDCl 3 , TMS, δ ppm): 8.00 (d, 1 H, J = 8.5 Hz), 7.85 (dd, 1 H, J = 1.0 Hz, 8.0 Hz), 7 .78 (dd, 1H, J = 1.5 Hz, 7.5 Hz), 7.60 (dd, 1H, J = 1.0 Hz, 7.5 Hz), 7.54-7.51 (m, 2H), 7.49-7.40 (m, 3H), 7.28 (ddd, 1H, J = 1.0 Hz, 7.5 Hz, 7.5 Hz), 7.07 (ddd, 1H, J = 1.0 Hz, 7.5 Hz, 7.5 Hz), 4.16 (br, 2H), 4.08 (t, 2H, J = 6.5 Hz), 4.06 (s, 2H), 3.66 (t, 2H, J = 7.0 Hz), 1.63-1.54 (m, 4H), 1.32-1.22 (m, 4H).
<ステップ3:重合性化合物2の合成>
 温度計を備えた3口反応器に、窒素気流中、前記実施例3で合成した中間体としての白色固体(化合物1と化合物Xとの混合物Y):32.43g(化合物1の純量として30.00g(71.7mmol))、クロロホルム300g、およびN,N-ジメチルホルムアミド(DMF)10.5g(143.4mmol)を加えて、10℃以下に冷却した。そこへ、塩化チオニル9.81g(82.44mmol)を反応温度が10℃以下になるように制御して滴下した。滴下終了後、反応液を25℃に戻して1時間撹拌した。反応終了後、エバポレーターにてクロロホルム225gを抜き出して濃縮して、クロロホルム溶液として化合物1の酸クロライドを合成した。別途、温度計を備えた3口反応器内で、窒素気流中、2,5-ジヒドロキシベンズアルデヒド4.5g(32.58mmol)、および塩基としてのトリエチルアミン19.78g(195.5mmol)を、150gのクロロホルムに溶解させ、得られた溶液を10℃以下まで冷却した。この溶液に、先に合成した化合物1の酸クロライドのクロロホルム溶液の全量を、反応液内温を10℃以下に保持しながらゆっくりと滴下した。滴下終了後、さらに、全容を5~10℃で1時間撹拌して反応を行った。反応終了後、10℃以下に保持しながら、反応液に、1.0規定の塩酸水溶液120gを加えて、10℃以下で30分撹拌して反応を行った。反応終了後、さらに、10℃以下のまま、得られた反応液に、前記ステップ2で合成した化合物D:18.38g(42.4mmol)と、2,6-ジターシャリーブチル-パラ-クレゾール0.3gとを加えた。その後、反応液を40℃に昇温して4時間反応を行った。
 反応終了後、水層を抜き出して、有機層を得た。得られた有機層に蒸留水105gを投入して、有機層を40℃にて30分撹拌して洗浄した。水層を抜き出して得た有機層を25℃に冷却して、ロカヘルプ#479を1.5g加えて30分撹拌した。その後、1gのロカヘルプ#479を敷いた桐山ロートでろ過を行い、ロカヘルプ#479を除去した。ロカヘルプ#479を除去して得られた有機層からロータリーエバポレータにてクロロホルムを180g抜き出して、濃縮を行った。濃縮して得られた有機層にヘキサン210gを1時間かけて加えて固体を析出させ、ろ過により淡黄色固体を得た。得られた淡黄色固体を25℃にてテトラヒドロフラン120gに溶解させて、ロカヘルプ#479を1.5g加えて30分間撹拌した。その後、1gのロカヘルプ#479を敷いた桐山ロートでろ過を行い、ロカヘルプ#479を除去した。ロカヘルプ#479を除去して得られた有機層に15℃にて165gのメタノールをゆっくりと滴下して、固体を析出させ、ろ過を行い、固体を得た。得られた固体を真空乾燥機にて乾燥して、重合性化合物2を淡黄色固体として、40.2g得た。重合性化合物2の収率は、2,5-ジヒドロキシベンズアルデヒド基準で、91.0モル%であった。重合性化合物2の構造はH-NMRで同定した。H-NMRスペクトルデータを下記に示す。
<Step 3: Synthesis of polymerizable compound 2>
In a three-necked reactor equipped with a thermometer, in a nitrogen stream, a white solid as an intermediate synthesized in Example 3 (mixture Y of compound 1 and compound X): 32.43 g (as a pure amount of compound 1) 30.00 g (71.7 mmol)), 300 g of chloroform and 10.5 g (143.4 mmol) of N, N-dimethylformamide (DMF) were added, and the mixture was cooled to 10 ° C. or lower. Thereto, 9.81 g (82.44 mmol) of thionyl chloride was added dropwise while controlling the reaction temperature to 10 ° C. or lower. After completion of the dropwise addition, the reaction solution was returned to 25 ° C and stirred for 1 hour. After completion of the reaction, 225 g of chloroform was extracted with an evaporator and concentrated, and the acid chloride of Compound 1 was synthesized as a chloroform solution. Separately, in a three-necked reactor equipped with a thermometer, 4.5 g (32.58 mmol) of 2,5-dihydroxybenzaldehyde and 19.78 g (195.5 mmol) of triethylamine as a base were added to 150 g of nitrogen in a nitrogen stream. It was dissolved in chloroform, and the obtained solution was cooled to 10 ° C or lower. To this solution, the whole amount of the chloroform solution of the acid chloride of Compound 1 synthesized previously was slowly added dropwise while maintaining the reaction solution internal temperature at 10 ° C. or lower. After completion of the dropwise addition, the whole volume was further stirred at 5 to 10 ° C. for 1 hour to carry out a reaction. After completion of the reaction, while maintaining the temperature at 10 ° C. or lower, 120 g of a 1.0 N aqueous hydrochloric acid solution was added to the reaction solution, and the reaction was stirred at 10 ° C. or lower for 30 minutes. After the completion of the reaction, 18.38 g (42.4 mmol) of the compound D synthesized in Step 2 and 2,6-di-tert-butyl-para-cresol 0 were added to the resulting reaction solution at 10 ° C. or lower. .3 g were added. Thereafter, the reaction solution was heated to 40 ° C. and reacted for 4 hours.
After completion of the reaction, the aqueous layer was extracted to obtain an organic layer. 105 g of distilled water was added to the obtained organic layer, and the organic layer was washed by stirring at 40 ° C. for 30 minutes. The organic layer obtained by extracting the aqueous layer was cooled to 25 ° C., 1.5 g of LocaHelp # 479 was added, and the mixture was stirred for 30 minutes. Thereafter, filtration was performed with a Kiriyama funnel covered with 1 g of LocaHelp # 479 to remove LocaHelp # 479. 180 g of chloroform was extracted with a rotary evaporator from the organic layer obtained by removing LocaHelp # 479, and concentrated. 210 g of hexane was added to the organic layer obtained by concentration over 1 hour to precipitate a solid, and a pale yellow solid was obtained by filtration. The obtained pale yellow solid was dissolved in 120 g of tetrahydrofuran at 25 ° C., 1.5 g of LocaHelp # 479 was added, and the mixture was stirred for 30 minutes. Thereafter, filtration was performed with a Kiriyama funnel covered with 1 g of LocaHelp # 479 to remove LocaHelp # 479. 165 g of methanol was slowly dropped at 15 ° C. to the organic layer obtained by removing LocaHelp # 479 to precipitate a solid, which was filtered to obtain a solid. The obtained solid was dried with a vacuum drier to obtain 40.2 g of the polymerizable compound 2 as a pale yellow solid. The yield of the polymerizable compound 2 was 91.0 mol% based on 2,5-dihydroxybenzaldehyde. The structure of the polymerizable compound 2 was identified by 1 H-NMR. The 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz,CDCl,TMS,δppm):7.97(dd,1H,J=0.5Hz,8.5Hz)、7.80(ddd,1H,J=0.5Hz,0.5Hz,8.0Hz)、7.73-7.76(m,2H)、7.67-7.71(m,2H)、7.61(s,1H)、7.49(ddd,1H,J=1.0Hz,6.5Hz,8.5Hz)、7.42(ddd,1H,J=1.5Hz,7.0Hz,7.0Hz)、7.33-7.39(m,3H)、7.18(ddd,1H,J=1.0Hz,7.5Hz,8.0Hz)、7.10-7.14(m,2H)、6.95-7.01(m,4H)、6.85-6.90(m,4H)、6.405(dd,1H,J=1.5Hz,17.5Hz)、6.402(dd,1H,J=1.5Hz,17.5Hz)、6.127(dd,1H,J=10.5Hz,17.5Hz)、6.124(dd,1H,J=10.5Hz,17.5Hz)、5.822(dd,1H,J=1.5Hz,10.5Hz)、5.819(dd,1H,J=1.5Hz,10.5Hz)、4.16-4.22(m,6H)、4.08(t,2H,J=6.5Hz)、4.03(s,2H)、3.95(t,2H,J=6.5Hz)、3.93(t,2H,J=6.5Hz)、2.56-2.67(m,4H)、2.28-2.36(m,8H)、1.59-1.83(m,20H)、1.42-1.56(m,8H)、1.24-1.36(m,4H)。 1 H-NMR (500 MHz, CDCl 3 , TMS, δ ppm): 7.97 (dd, 1 H, J = 0.5 Hz, 8.5 Hz), 7.80 (ddd, 1 H, J = 0.5 Hz, 0. 5Hz, 8.0Hz), 7.73-7.76 (m, 2H), 7.67-7.71 (m, 2H), 7.61 (s, 1H), 7.49 (ddd, 1H, J = 1.0 Hz, 6.5 Hz, 8.5 Hz), 7.42 (ddd, 1H, J = 1.5 Hz, 7.0 Hz, 7.0 Hz), 7.33-7.39 (m, 3H) , 7.18 (ddd, 1H, J = 1.0 Hz, 7.5 Hz, 8.0 Hz), 7.10-7.14 (m, 2H), 6.95-7.01 (m, 4H), 6.85-6.90 (m, 4H), 6.405 (dd, 1H, J = 1.5 Hz, 17.5 Hz), 6.402 (dd, H, J = 1.5 Hz, 17.5 Hz), 6.127 (dd, 1H, J = 10.5 Hz, 17.5 Hz), 6.124 (dd, 1H, J = 10.5 Hz, 17.5 Hz) 5.822 (dd, 1H, J = 1.5 Hz, 10.5 Hz), 5.819 (dd, 1H, J = 1.5 Hz, 10.5 Hz), 4.16-4.22 (m, 6H) ), 4.08 (t, 2H, J = 6.5 Hz), 4.03 (s, 2H), 3.95 (t, 2H, J = 6.5 Hz), 3.93 (t, 2H, J) = 6.5 Hz), 2.56-2.67 (m, 4H), 2.28-2.36 (m, 8H), 1.59-1.83 (m, 20H), 1.42-1 .56 (m, 8H), 1.24-1.36 (m, 4H).
(実施例14:重合性化合物2の合成)
 前記実施例13において、ステップ3で、前記実施例3で合成した中間体としての白色固体(化合物1と化合物Xとの混合物Y):32.43g(化合物1の純量として30.00g(71.7mmol)を用いる代わりに、前記実施例4で合成した中間体としての白色固体(化合物1と化合物Xとの混合物Y):32.43g(化合物1の純量として30.00g(71.7mmol))を用いたこと以外は、実施例13と同様に、重合性化合物2の合成を行った。その結果、重合性化合物2を40.6g得た。重合性化合物2の単離収率は、2,5-ジヒドロキシベンズアルデヒド基準で、92.1モル%であった。
(Example 14: Synthesis of polymerizable compound 2)
In Example 13, in Step 3, a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 3: 32.43 g (30.00 g (71 in pure amount of compound 1) Instead of using 0.7 mmol), a white solid (mixture Y of compound 1 and compound X) as an intermediate synthesized in Example 4: 32.43 g (30.00 g (71.7 mmol as a pure amount of compound 1) )), Except that polymerizable compound 2 was synthesized in the same manner as in Example 13. As a result, 40.6 g of polymerizable compound 2 was obtained. Was 92.1 mol% based on 2,5-dihydroxybenzaldehyde.
 実施例7~14の結果から、本発明の製造方法により得られた、化合物(I)が高濃度で含まれている中間体は、重合性化合物の製造に好適に使用することができることが分かった。 From the results of Examples 7 to 14, it was found that the intermediate containing Compound (I) at a high concentration obtained by the production method of the present invention can be suitably used for producing a polymerizable compound. Was.
 本発明によれば、化合物(I)を高濃度で含有する中間体を効率的に製造することが可能な中間体の製造方法が提供される。
 
According to the present invention, there is provided a method for producing an intermediate, which can efficiently produce an intermediate containing compound (I) at a high concentration.

Claims (7)

  1.  下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    〔式(I)中、AおよびBは、それぞれ独立して、置換基を有していてもよい環状脂肪族基、または、置換基を有していてもよい芳香族基を表し、
     YおよびLは、それぞれ独立して、化学的な単結合、-O-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-NR21-C(=O)-、-C(=O)-NR22-、-O-C(=O)-O-、-NR23-C(=O)-O-、-O-C(=O)-NR24-、または、-NR25-C(=O)-NR26-を表し、R21~R26は、それぞれ独立して、水素原子または炭素数1~6のアルキル基を表し、
     Rは、水素原子、メチル基または塩素原子を表し、
     FGは、水酸基、カルボキシル基またはアミノ基を表し、
     dは1~20の整数を表し、
     eは1または2である。〕で示される化合物(I)を含む中間体の製造方法であって、
    (i)前記化合物(I)と、
     下記式(II):
    Figure JPOXMLDOC01-appb-C000002
    〔式(II)中、A21、B21およびB22は、それぞれ独立して、置換基を有していてもよい環状脂肪族基、または、置換基を有していてもよい芳香族基を表し、
     Y21、Y22、L21およびL22は、それぞれ独立して、化学的な単結合、-O-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-NR21-C(=O)-、-C(=O)-NR22-、-O-C(=O)-O-、-NR23-C(=O)-O-、-O-C(=O)-NR24-、または、-NR25-C(=O)-NR26-を表し、R21~R26は、それぞれ独立して、水素原子または炭素数1~6のアルキル基を表し、
     R31およびR32は、それぞれ独立して、水素原子、メチル基または塩素原子を表し、
     d1およびd2は、それぞれ独立して、1~20の整数を表し、
     e1およびe2は、それぞれ独立して、1または2である。〕で示される化合物(II)とを含有する溶液(X)を得る工程(α)、並びに、
    (ii)前記溶液(X)にプロトン性溶媒を添加して前記化合物(II)を析出させて、前記析出した化合物(II)を除去して、前記化合物(I)を86質量%以上含有する中間体を得る工程(β)を含む、中間体の製造方法。
    The following formula (I):
    Figure JPOXMLDOC01-appb-C000001
    [In formula (I), A 2 and B 2 each independently represent a cyclic aliphatic group which may have a substituent, or an aromatic group which may have a substituent;
    Y 2 and L 2 are each independently a chemical single bond, —O—, —C (= O) —, —C (= O) —O—, —OC (= O) —, —NR 21 —C (= O) —, —C (= O) —NR 22 —, —OC (= O) —O—, —NR 23 —C (= O) —O—, —O— Represents C (= O) —NR 24 — or —NR 25 —C (= O) —NR 26 —, wherein R 21 to R 26 are each independently a hydrogen atom or an alkyl having 1 to 6 carbon atoms. Represents a group,
    R 3 represents a hydrogen atom, a methyl group or a chlorine atom,
    FG 2 represents a hydroxyl group, a carboxyl group or an amino group,
    d represents an integer of 1 to 20,
    e is 1 or 2. A method for producing an intermediate comprising a compound (I) represented by the formula:
    (I) the compound (I);
    The following formula (II):
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (II), A 21 , B 21 and B 22 each independently represent a cyclic aliphatic group which may have a substituent, or an aromatic group which may have a substituent. Represents
    Y 21 , Y 22 , L 21 and L 22 are each independently a chemical single bond, —O—, —C (= O) —, —C (= O) —O—, —OC. (= O) -, - NR 21 -C (= O) -, - C (= O) -NR 22 -, - O-C (= O) -O -, - NR 23 -C (= O) - O—, —OC (= O) —NR 24 — or —NR 25 —C (= O) —NR 26 —, wherein R 21 to R 26 each independently represent a hydrogen atom or a carbon atom. Represents an alkyl group of Formulas 1 to 6,
    R 31 and R 32 each independently represent a hydrogen atom, a methyl group or a chlorine atom;
    d1 and d2 each independently represent an integer of 1 to 20,
    e1 and e2 are each independently 1 or 2. A) obtaining a solution (X) containing the compound (II) represented by the formula:
    (Ii) A protic solvent is added to the solution (X) to precipitate the compound (II), and the precipitated compound (II) is removed to contain the compound (I) at 86% by mass or more. A method for producing an intermediate, comprising a step (β) of obtaining an intermediate.
  2.  前記溶液(X)中における前記化合物(I)の濃度が8.0質量%以上である、請求項1に記載の中間体の製造方法。 The method for producing an intermediate according to claim 1, wherein the concentration of the compound (I) in the solution (X) is 8.0% by mass or more.
  3.  前記化合物(I)が下記式(I-1)で示される化合物(I-1)である、請求項1または2に記載の中間体の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    〔式(I-1)中、R、dは、前記と同じ意味を表す。〕
    3. The method for producing an intermediate according to claim 1, wherein the compound (I) is a compound (I-1) represented by the following formula (I-1).
    Figure JPOXMLDOC01-appb-C000003
    [In the formula (I-1), R 3 and d represent the same meaning as described above. ]
  4.  前記化合物(II)が下記式(II-1)で示される化合物(II-1)である、請求項1~3の何れかに記載の中間体の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    〔式(II-1)中、R、dは、前記と同じ意味を表す。〕
    4. The method for producing an intermediate according to claim 1, wherein the compound (II) is a compound (II-1) represented by the following formula (II-1).
    Figure JPOXMLDOC01-appb-C000004
    [In the formula (II-1), R 3 and d represent the same meaning as described above. ]
  5.  前記溶液(X)が有機溶媒をさらに含み、該有機溶媒が水非混和性有機溶媒である、請求項1~4の何れかに記載の中間体の製造方法。 (5) The method for producing an intermediate according to any one of (1) to (4), wherein the solution (X) further contains an organic solvent, and the organic solvent is a water-immiscible organic solvent.
  6.  前記水非混和性有機溶媒は、ヒルデブランドの溶解度パラメーターが14.0MPa1/2以上22.0MPa1/2以下である、請求項5に記載の中間体の製造方法。 The method for producing an intermediate according to claim 5, wherein the water-immiscible organic solvent has a Hildebrand solubility parameter of 14.0 MPa 1/2 or more and 22.0 MPa 1/2 or less.
  7.  前記プロトン性溶媒がアルコールである、請求項1~6の何れかに記載の中間体の製造方法。 方法 The method for producing an intermediate according to any one of claims 1 to 6, wherein the protic solvent is an alcohol.
PCT/JP2019/035933 2018-09-19 2019-09-12 Intermediate production method WO2020059634A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980059201.XA CN112689622A (en) 2018-09-19 2019-09-12 Process for producing intermediate
JP2020548438A JP7327408B2 (en) 2018-09-19 2019-09-12 Method for producing intermediates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018175079 2018-09-19
JP2018-175079 2018-09-19

Publications (1)

Publication Number Publication Date
WO2020059634A1 true WO2020059634A1 (en) 2020-03-26

Family

ID=69888494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035933 WO2020059634A1 (en) 2018-09-19 2019-09-12 Intermediate production method

Country Status (3)

Country Link
JP (1) JP7327408B2 (en)
CN (1) CN112689622A (en)
WO (1) WO2020059634A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123558A (en) * 2020-02-05 2021-08-30 日本ゼオン株式会社 Method for Producing Cyclohexanedicarboxylic Acid Monoester

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116657A1 (en) * 2008-03-18 2009-09-24 住友化学株式会社 Method for producing cycloalkanedicarboxylic acid monoester
WO2011068138A1 (en) * 2009-12-01 2011-06-09 住友化学株式会社 Process for preparation of cycloalkanedicarboxylic acid monoesters
WO2016159193A1 (en) * 2015-03-31 2016-10-06 日本ゼオン株式会社 Mixture of polymerizable compound and method for producing same
JP2016183132A (en) * 2015-03-26 2016-10-20 日本ゼオン株式会社 Method for producing cyclohexanedicarboxylic acid monoester compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116657A1 (en) * 2008-03-18 2009-09-24 住友化学株式会社 Method for producing cycloalkanedicarboxylic acid monoester
WO2011068138A1 (en) * 2009-12-01 2011-06-09 住友化学株式会社 Process for preparation of cycloalkanedicarboxylic acid monoesters
JP2016183132A (en) * 2015-03-26 2016-10-20 日本ゼオン株式会社 Method for producing cyclohexanedicarboxylic acid monoester compound
WO2016159193A1 (en) * 2015-03-31 2016-10-06 日本ゼオン株式会社 Mixture of polymerizable compound and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123558A (en) * 2020-02-05 2021-08-30 日本ゼオン株式会社 Method for Producing Cyclohexanedicarboxylic Acid Monoester

Also Published As

Publication number Publication date
JPWO2020059634A1 (en) 2021-08-30
JP7327408B2 (en) 2023-08-16
CN112689622A (en) 2021-04-20

Similar Documents

Publication Publication Date Title
JP6544400B2 (en) Method of producing compound
KR101939572B1 (en) Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body
JP6206481B2 (en) Polymerizable compound, polymerizable composition, polymer, and optical anisotropic body
JP6055569B1 (en) Polymerizable compound, mixture, polymerizable liquid crystal composition, polymer, optical film, optical anisotropic body, polarizing plate, flat panel display device, organic electroluminescence display device, and antireflection film
JP7067486B2 (en) Polymerizable compounds, polymerizable liquid crystal mixtures, polymers, optical films, optical variants, polarizing plates, display devices, antireflection films, and compounds.
JP7151699B2 (en) Polymerizable compound and method for producing the same, polymerizable composition, polymer, optical film, optical anisotropic body, polarizing plate, display device, antireflection film, and compound and method for using the same
JP7310601B2 (en) Polymerizable compounds, polymerizable liquid crystal mixtures, polymers, optical films, optical anisotropic bodies, polarizing plates, display devices, antireflection films, and compounds
JP7551275B2 (en) MIXTURE, POLYMER, OPTICAL FILM, OPTICAL ANISOTROPHOTOBODY, POLARIZING PLATE, DISPLAY DEVICE, ANTI-REFLECTION FILM, AND METHOD FOR PRODUCING MIXTURE
KR20190066007A (en) A polymer, an optical film, an optically anisotropic material, a polarizing plate, a flat panel display device, an organic electroluminescence display device and an antireflection film, and a method of using a polymerizable compound
JP7327408B2 (en) Method for producing intermediates
JP7528685B2 (en) Polymerizable compound, polymerizable composition, polymer, optical film, optically anisotropic body, polarizing plate, display device, and antireflection film
JP6369594B2 (en) Compound, polymerizable compound, mixture, polymerizable liquid crystal composition, polymer, optical film, optical anisotropic body, polarizing plate, flat panel display device, organic electroluminescence display device and antireflection film
KR20190078591A (en) Polymerizable compound, polymerizable composition, polymer, optical film, optically anisotropic, polarizer, flat panel display, organic electroluminescence display, antireflection film, and compound
JP7484709B2 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, polymer, optical film, optically anisotropic body, polarizing plate, display device, and antireflection film
JP2021161143A (en) Polymerizable compound, polymerizable mixture, polymerizable composition, polymer, optical film, optical anisotropic body, polarizing plate, display device, antireflection film, compound, and mixture
JP2017206490A (en) Mixture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548438

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862206

Country of ref document: EP

Kind code of ref document: A1