WO2020059562A1 - Resin composition, prepreg using same, film with resin, metal foil with resin, metal-clad laminated board, and wiring board - Google Patents

Resin composition, prepreg using same, film with resin, metal foil with resin, metal-clad laminated board, and wiring board Download PDF

Info

Publication number
WO2020059562A1
WO2020059562A1 PCT/JP2019/035392 JP2019035392W WO2020059562A1 WO 2020059562 A1 WO2020059562 A1 WO 2020059562A1 JP 2019035392 W JP2019035392 W JP 2019035392W WO 2020059562 A1 WO2020059562 A1 WO 2020059562A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
group
compound
resin
polyphenylene ether
Prior art date
Application number
PCT/JP2019/035392
Other languages
French (fr)
Japanese (ja)
Inventor
裕輝 井ノ上
阿部 智之
達也 有沢
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980048204.3A priority Critical patent/CN112469750A/en
Priority to JP2020548351A priority patent/JPWO2020059562A1/en
Publication of WO2020059562A1 publication Critical patent/WO2020059562A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a resin composition, and a prepreg, a film with a resin, a metal foil with a resin, a metal-clad laminate, and a wiring board using the same.
  • the substrate material for forming the base material of the printed wiring board used in various electronic devices must have a low dielectric constant and a low dielectric loss tangent.
  • a resin composition containing a terminal-modified polyphenylene ether (PPE) compound has been used as a material having excellent electrical properties (for example, Patent Documents 1 and 2). It has also been reported that wiring boards made of a resin composition containing a PPE compound have excellent transmission characteristics.
  • PPE polyphenylene ether
  • the cured product when used as a molding material such as a substrate material, it is required that the cured product not only has excellent low dielectric properties but also has a high glass transition temperature (Tg) and has heat resistance and adhesion.
  • Tg glass transition temperature
  • the present invention has been made in view of such circumstances, and provides a resin composition having low dielectric properties (low dielectric constant and dielectric loss tangent), high Tg, and insulation reliability in a cured product of the resin composition.
  • the purpose is to do.
  • Another object of the present invention is to provide a prepreg, a film with a resin, a metal foil with a resin, a metal-clad laminate, and a wiring board using the resin composition.
  • JP 2011-68713 A JP-T-2004-511580
  • a resin composition according to one embodiment of the present invention includes a polyphenylene ether compound having a group represented by the following formula (1) at a molecular terminal, a crosslinking agent having a carbon-carbon unsaturated double bond in a molecule, or the polyphenylene compound.
  • the polyphenylene ether compound contains at least one of a crosslinking agent that reacts with the ether compound and cures, and the amount of chloride ions in the polyphenylene ether compound is 250 ppm or less.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 2 represents an alkylene group having 1 to 10 carbon atoms.
  • a resin composition having low dielectric properties, high Tg, and excellent insulation reliability in a cured product of the resin composition can be provided. Further, according to the present invention, a prepreg, a film with a resin, a metal foil with a resin, a metal-clad laminate, and a wiring board having excellent performance can be provided by using the resin composition.
  • FIG. 1 is a schematic sectional view showing the configuration of a prepreg according to one embodiment of the present invention.
  • FIG. 2 is a schematic sectional view showing the configuration of the metal-clad laminate according to one embodiment of the present invention.
  • FIG. 3 is a schematic sectional view showing the configuration of the wiring board according to one embodiment of the present invention.
  • FIG. 4 is a schematic sectional view showing the configuration of the metal foil with resin according to one embodiment of the present invention.
  • FIG. 5 is a schematic sectional view showing the configuration of the resin film according to one embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing a distance (space) S between two adjacent wirings (conductor circuits) (L) on a substrate having a conductor circuit pattern according to one embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a comb-shaped pattern for evaluating insulation reliability in the example.
  • the resin composition according to the embodiment of the present invention comprises a polyphenylene ether compound having a group represented by the following formula (1) at a molecular terminal, a cross-linking agent having a carbon-carbon unsaturated double bond in the molecule, or the polyphenylene ether.
  • the polyphenylene ether compound contains at least one of a crosslinking agent that reacts with the ether compound and cures, and the amount of chloride ions in the polyphenylene ether compound is 250 ppm or less.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 2 represents an alkylene group having 1 to 10 carbon atoms.
  • the polyphenylene ether compound used in the present embodiment is a polyphenylene ether compound having a group represented by the above formula (1) at the molecular terminal and having a chloride (Cl ⁇ ) ion content of 250 ppm or less.
  • a polyphenylene ether compound having a group represented by the above formula (1) at the molecular terminal and having a chloride (Cl ⁇ ) ion content of 250 ppm or less.
  • occurrence of ion migration can be suppressed, and excellent insulation reliability can be obtained.
  • the polyphenylene ether compound of the present embodiment can react with a crosslinking agent described later without using a reaction initiator, it is not affected by the reaction initiator. Therefore, it is considered that the resin composition of the present embodiment can obtain higher glass transition temperature (Tg) and adhesion while maintaining excellent insulation reliability, low dielectric constant and dielectric loss tangent.
  • heat resistance (such as solder heat resistance) can be one of the factors for further improving.
  • a material having a high Tg in the cured product also has an advantage that the coefficient of thermal expansion of the material in a higher temperature range becomes a small value. In general, at a temperature exceeding the glass transition temperature, the thermal expansion sharply increases. That is, when the glass transition temperature is low, the coefficient of thermal expansion increases in a high temperature region exceeding the glass transition temperature.
  • connection reliability deteriorates.
  • the amount of Cl - ion (hereinafter also simply referred to as Cl ion) in the polyphenylene ether compound is not particularly limited as long as it is 250 ppm or less, but is more preferably 200 ppm or less.
  • the amount of Cl ions in the polyphenylene ether compound is preferably 5 ppm or more from the viewpoint of cost. More preferably, it is 10 ppm or more, more preferably 15 ppm or more, and still more preferably 30 ppm or more.
  • the amount of Cl ions in the polyphenylene ether compound can be measured by the method described in Examples below.
  • the polyphenylene ether compound of the present embodiment includes bromide ion (Br ⁇ ), nitrate ion (NO 3 ⁇ ), sulfate ion (SO 4 ⁇ ), and nitrite ion (NO 2 ⁇ ). ), Phosphate ions (PO 4 3 ⁇ ), sodium ions (Na + ), and ammonium ions (NH 4 + ) in some cases.
  • bromide ion bromide ion
  • NO 3 ⁇ nitrate ion
  • SO 4 ⁇ sulfate ion
  • nitrite ion NO 2 ⁇
  • Phosphate ions PO 4 3 ⁇
  • sodium ions Na +
  • ammonium ions NH 4 +
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms is not particularly limited as long as it is an alkyl group having 1 to 10 carbon atoms, and may be linear or branched. Specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, etc. Is mentioned. Among them, a hydrogen atom is preferable.
  • R 2 represents an alkylene group having 1 to 10 carbon atoms.
  • the alkylene group having 1 to 10 carbon atoms is not particularly limited as long as it is an alkylene group having 1 to 10 carbon atoms, and includes a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, and an octylene group.
  • a nonylene group, and a decylene group is preferable.
  • the group represented by the formula (1) is not particularly limited, but is at least one ethenylbenzyl group selected from a p-ethenylbenzyl group, an m-ethenylbenzyl group, and an o-ethenylbenzyl group ( (Vinyl benzyl group). Furthermore, it is preferable to have at least two kinds selected from a p-ethenylbenzyl group, an m-ethenylbenzyl group and an o-ethenylbenzyl group.
  • the resin composition of the present embodiment preferably contains a polyphenylene ether compound having a structure represented by the following formula (2) as the polyphenylene ether compound from the viewpoint of more reliably obtaining the above-described effects. .
  • R 3 to R 10 are each independent. That is, R 3 to R 10 may be the same group or different groups.
  • R 3 to R 10 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Among them, a hydrogen atom and an alkyl group are preferable.
  • the alkyl group is not particularly limited, but is preferably, for example, an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms. Specific examples include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
  • the alkenyl group is not particularly limited, but is preferably, for example, an alkenyl group having 2 to 18 carbon atoms, more preferably an alkenyl group having 2 to 10 carbon atoms. Specific examples include a vinyl group, an allyl group, and a 3-butenyl group.
  • the alkynyl group is not particularly limited, but is preferably, for example, an alkynyl group having 2 to 18 carbon atoms, more preferably an alkynyl group having 2 to 10 carbon atoms. Specific examples include an ethynyl group and a prop-2-yn-1-yl group (propargyl group).
  • the alkylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkyl group.
  • an alkylcarbonyl group having 2 to 18 carbon atoms is preferable, and an alkylcarbonyl group having 2 to 10 carbon atoms is more preferable.
  • Specific examples include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a hexanoyl group, an octanoyl group, and a cyclohexylcarbonyl group.
  • the alkenylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkenyl group.
  • an alkenylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkenylcarbonyl group having 3 to 10 carbon atoms is more preferable.
  • Specific examples include an acryloyl group, a methacryloyl group, and a crotonoyl group.
  • the alkynylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkynyl group.
  • an alkynylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkynylcarbonyl group having 3 to 10 carbon atoms is more preferable.
  • a propioloyl group and the like can be mentioned.
  • A is a structure represented by the following formula (3)
  • B is a structure represented by the following formula (4):
  • the repeating units m and n each represent an integer of 0 to 20.
  • R 11 to R 18 are each independent. That is, R 11 to R 18 may be the same group or different groups. In the present embodiment, R 11 to R 18 are a hydrogen atom or an alkyl group.
  • Y is a linear, branched or cyclic hydrocarbon having 20 or less carbon atoms. More specifically, it is a structure represented by the following formula (5):
  • R 19 and R 20 each independently represent a hydrogen atom or an alkyl group.
  • the alkyl group include a methyl group.
  • examples of the group represented by the formula (5) include a methylene group, a methylmethylene group, and a dimethylmethylene group.
  • the weight average molecular weight (Mw) of the polyphenylene ether compound is not particularly limited, but is, for example, preferably from 1,000 to 5,000, and more preferably from 1,000 to 4,000.
  • the weight average molecular weight may be a value measured by a general molecular weight measuring method, and specifically, a value measured using gel permeation chromatography (GPC) and the like can be mentioned.
  • GPC gel permeation chromatography
  • the polyphenylene ether compound has a repeating unit (m, n) in the molecule, these repeating units have such a numerical value that the weight average molecular weight of the polyphenylene ether compound falls within such a range. Is preferred.
  • the polyphenylene ether skeleton has excellent low-dielectric properties and has not only excellent heat resistance of the cured product but also excellent moldability. Become. This is thought to be due to the following. If the weight average molecular weight is in the above-mentioned range as compared with ordinary polyphenylene ether, the cured product has a relatively low molecular weight, and thus the cured product tends to have reduced heat resistance. In this regard, since the polyphenylene ether compound according to the present embodiment has a structure represented by the above formula (1) at the terminal, it is considered that a compound having high reactivity and sufficiently high heat resistance of a cured product can be obtained.
  • the weight average molecular weight of the polyphenylene ether compound is within such a range, it has a higher molecular weight than styrene or divinylbenzene, but has a relatively low molecular weight than general polyphenylene ether. It is thought that it is also excellent. Therefore, it is considered that by using such a polyphenylene ether compound, not only the cured product having excellent heat resistance but also excellent moldability can be obtained.
  • the average number (the number of terminal functional groups) of the X substituents at the molecular terminal per one molecule of the modified polyphenylene ether is not particularly limited. Specifically, the number is preferably 1 to 5, more preferably 1 to 3. If the number of the terminal functional groups is too small, the cured product tends to be insufficient in heat resistance. Further, when the number of terminal functional groups is too large, the reactivity becomes too high, and for example, problems such as a decrease in storage stability of the resin composition and a decrease in fluidity of the resin composition may occur. .
  • the number of terminal functional groups of the polyphenylene ether compound includes a numerical value indicating the average value of the substituents per molecule of all the polyphenylene ether compounds present in 1 mol of the polyphenylene ether compound.
  • the number of terminal functional groups can be measured, for example, by measuring the number of hydroxyl groups remaining in the obtained polyphenylene ether compound and calculating a decrease from the number of hydroxyl groups of the polyphenylene ether before modification. The decrease from the number of hydroxyl groups of the polyphenylene ether before modification is the number of terminal functional groups.
  • the method for measuring the number of hydroxyl groups remaining in the polyphenylene ether compound is to add a quaternary ammonium salt (tetraethylammonium hydroxide) associated with a hydroxyl group to a solution of the polyphenylene ether compound and measure the UV absorbance of the mixed solution. Can be sought.
  • a quaternary ammonium salt tetraethylammonium hydroxide
  • the intrinsic viscosity of the polyphenylene ether compound used in the present embodiment is not particularly limited. Specifically, the concentration may be 0.03 to 0.12 dl / g, preferably 0.04 to 0.11 dl / g, and more preferably 0.06 to 0.095 dl / g. . If the intrinsic viscosity is too low, the molecular weight tends to be low, and it tends to be difficult to obtain low dielectric properties such as a low dielectric constant and a low dielectric loss tangent. On the other hand, if the intrinsic viscosity is too high, the viscosity is high, sufficient fluidity cannot be obtained, and the moldability of the cured product tends to decrease. Therefore, when the intrinsic viscosity of the polyphenylene ether compound is within the above range, excellent heat resistance and moldability of the cured product can be realized.
  • the intrinsic viscosity here is an intrinsic viscosity measured in methylene chloride at 25 ° C. More specifically, for example, a 0.18 g / 45 ml methylene chloride solution (liquid temperature 25 ° C.) is measured using a viscometer. And the like.
  • a viscometer for example, AVS500 ⁇ Visco ⁇ System manufactured by Schott and the like can be mentioned.
  • the resin composition of the present embodiment may include a thermosetting resin other than the polyphenylene ether compound as described above.
  • thermosetting resins that can be used include an epoxy resin, a phenol resin, an amine resin, an unsaturated polyester resin, a thermosetting polyimide resin, and a maleimide compound.
  • the maleimide compound may be a modified maleimide compound, and specific examples include a maleimide compound in which at least a part of the molecule is modified with a silicone compound, a maleimide compound modified with an amine compound, and the like.
  • the method for synthesizing a polyphenylene ether compound preferably used in the present embodiment is a method for synthesizing a modified polyphenylene ether compound in which the terminal is modified with the substituent X as described above and the chloride ion content of the obtained compound is 250 ppm or less.
  • the method is not particularly limited as long as it can be performed. Specifically, for example, a method of reacting a compound in which a substituent X and a halogen atom are bonded to polyphenylene ether and the like can be mentioned.
  • the position of the group having a carbon-carbon unsaturated double bond may be any of p (para), m (meta), and o (ortho). More specifically, the compound in which the substituent X is bonded to a halogen atom used in the above synthesis method is, for example, p-chloromethylstyrene, m-chloromethylstyrene, o-chloromethylstyrene and the like. One of these compounds may be used alone, or two or three of them may be used in combination.
  • the ratio of use is not particularly limited.
  • the proportion (mass ratio, the same applies hereinafter) of p-chloromethyl styrene: m-chloromethyl styrene is preferably about 5-95: 95-5. .
  • the ratio of p-chloromethylstyrene: o-chloromethylstyrene is preferably about 5 to 95:95 to 5;
  • the ratio of m-chloromethylstyrene: o-chloromethylstyrene is preferably about 5-95: 95-5.
  • p-chloromethylstyrene When two or more of p-chloromethylstyrene, m-chloromethylstyrene and o-chloromethylstyrene are used in combination, it is preferable to use p-chloromethylsulene as at least one of them. More preferably, p-chloromethylstyrene is used in an amount of at least 40% by weight, more preferably at least 50% by weight, and even more preferably at least 60% by weight, based on the total amount of chloromethylstyrene used. Is more preferred.
  • a polyphenylene ether compound having a group represented by the formula (1) is synthesized by using two or more kinds selected from p-chloromethylstyrene, m-chloromethylstyrene, and o-chloromethylstyrene in combination
  • the formula (1) in the polyphenylene ether compound contains an ethenylbenzyl group in which R 1 is a hydrogen atom and R 2 is an alkylene group having 1 carbon atom
  • R 1 is a hydrogen atom
  • R 2 is an alkylene group having 1 carbon atom
  • a substituent represented by the formula (1) after synthesis The ratio of the p-ethenylbenzyl group, the m-ethenylbenzyl group, and the o-ethenylbenzyl group in the polyphenylene ether compound having the formula (1) is represented by the ratio of each average number.
  • the average of each group in the polyphenylene ether compound having a group represented by the formula (1) after synthesis is used.
  • the ratio of the average number of each group in the polyphenylene ether compound represented by the above formula (1) is p-ethenylbenzyl group: o-ethenyl
  • the benzyl group is preferably about 5 to 95:95 to 5.
  • p-ethenyl in the polyphenylene ether compound having a group represented by the above formula (1) after synthesis is used.
  • the polyphenylene ether compound having the group represented by the formula (1) contains two or more of p-ethenylbenzyl group, m-ethenylbenzyl group and o-ethenylbenzyl group, p-ethenylbenzyl More preferably, the ratio of the p-ethenylbenzyl group to the total number of ethenylbenzyl groups contained in the polyphenylene ether compound having the group represented by the formula (1) is 40% or more. It is more preferably at least 50%, and even more preferably at least 60%.
  • the raw material polyphenylene ether is not particularly limited as long as it can finally synthesize a predetermined modified polyphenylene ether.
  • a polyphenylene ether such as polyphenylene ether or poly (2,6-dimethyl-1,4-phenylene oxide) comprising 2,6-dimethylphenol and at least one of bifunctional phenol and trifunctional phenol is used. And the like as a main component.
  • the bifunctional phenol is a phenol compound having two phenolic hydroxyl groups in a molecule, for example, tetramethylbisphenol A and the like.
  • the trifunctional phenol is a phenol compound having three phenolic hydroxyl groups in a molecule.
  • a method for synthesizing a polyphenylene ether compound for example, in the case of a polyphenylene ether compound represented by the above formula (2), specifically, the above-described polyphenylene ether is bonded to a substituent X and a halogen atom. The obtained compound (compound having a substituent X) is dissolved in a solvent and stirred. By doing so, the polyphenylene ether reacts with the compound having the substituent X to obtain the modified polyphenylene ether of the present embodiment represented by the above formula (2).
  • this reaction is performed in the presence of an alkali metal hydroxide.
  • the alkali metal hydroxide functions as a dehydrohalogenating agent, specifically, a dehydrochlorinating agent. That is, the alkali metal hydroxide removes the hydrogen halide from the phenol group of the polyphenylene ether and the compound having the substituent X, thereby replacing the hydrogen atom of the phenol group of the polyphenylene ether with a hydrogen atom. It is believed that group X is attached to the oxygen atom of the phenol group.
  • Alkali metal hydroxide is not particularly limited as long as it can function as a dehalogenating agent, and examples thereof include sodium hydroxide.
  • the alkali metal hydroxide is usually used in the form of an aqueous solution, and specifically, is used as an aqueous sodium hydroxide solution.
  • reaction conditions such as the reaction time and the reaction temperature vary depending on the compound having the substituent X and the like, and are not particularly limited as long as the above-mentioned reaction proceeds suitably.
  • the reaction temperature is preferably from room temperature to 100 ° C., more preferably from 30 to 100 ° C.
  • reaction time is preferably 0.5 to 20 hours, more preferably 0.5 to 10 hours.
  • the solvent used in the reaction is not particularly limited as long as it can dissolve the polyphenylene ether and the compound having the substituent X, and does not inhibit the reaction between the polyphenylene ether and the compound having the substituent X.
  • Specific examples include toluene.
  • the above reaction is preferably carried out in the presence of not only an alkali metal hydroxide but also a phase transfer catalyst. That is, the above reaction is preferably performed in the presence of an alkali metal hydroxide and a phase transfer catalyst. By doing so, it is considered that the above reaction proceeds more suitably. This is thought to be due to the following.
  • the phase transfer catalyst has a function of incorporating an alkali metal hydroxide, and is soluble in both a polar solvent phase such as water and a non-polar solvent phase such as an organic solvent. This is considered to be due to the fact that the catalyst is capable of transporting.
  • the aqueous solution of sodium hydroxide is used for the reaction. It is considered that even when the solvent is dropped, the solvent and the aqueous solution of sodium hydroxide are separated, and the sodium hydroxide is hardly transferred to the solvent. In that case, it is considered that the aqueous sodium hydroxide solution added as the alkali metal hydroxide hardly contributes to the promotion of the reaction.
  • phase transfer catalyst is not particularly limited, and examples thereof include quaternary ammonium salts such as tetra-n-butylammonium bromide.
  • the chloride ion content of the obtained polyphenylene ether compound can be reduced to 250 ppm or less.
  • the cross-linking agent used in the present embodiment is not particularly limited as long as it is a cross-linking agent having a carbon-carbon unsaturated double bond in the molecule or a cross-linking agent which reacts with the polyphenylene ether compound to be cured.
  • the crosslinking agent of the present embodiment is a compound having a carbon-carbon unsaturated double bond in the molecule or having at least one functional group in the molecule that contributes to the reaction with the polyphenylene ether compound. , And can efficiently react with the polyphenylene ether compound. Therefore, it is considered that the resin composition of the present embodiment can secure high Tg and adhesion.
  • the cross-linking agent that can be used in the present embodiment is an average number of carbon-carbon unsaturated bonds (number of terminal double bonds) per one molecule of the cross-linking agent, or a functional group that contributes to the reaction with the compound (A).
  • the average number (number of functional groups) per molecule of the crosslinking type curing agent differs depending on the weight average molecular weight of the crosslinking agent and the like.
  • the number of terminal double bonds and the number of functional groups are, for example, preferably from 1 to 20, more preferably from 2 to 18. If the number of terminal double bonds or the number of functional groups is too small, the cured product tends to have insufficient heat resistance.
  • the reactivity of the crosslinking agent becomes too high. For this reason, for example, problems such as a decrease in the storage stability of the resin composition and a decrease in the fluidity of the resin composition may occur, and the moldability of the obtained cured product may be reduced.
  • the number of terminal double bonds and the number of functional groups of the crosslinking agent are preferably 1 to 4 when the weight-average molecular weight of the crosslinking agent is less than 500 (for example, 100 or more and less than 500). Further, the number of terminal double bonds and the number of functional groups of the crosslinking agent are preferably 3 to 20 when the weight average molecular weight of the crosslinking agent is 500 or more (for example, 500 or more and 5000 or less). In each case, if the number of terminal double bonds or the number of functional groups is less than the lower limit of the above range, the reactivity of the crosslinking agent decreases, the crosslinking density of the cured product of the resin composition decreases, and the heat resistance and There is a possibility that Tg cannot be sufficiently improved. On the other hand, when the number of terminal double bonds or the number of functional groups is larger than the upper limit of the above range, the resin composition may be easily gelled.
  • the number of terminal double bonds and the number of functional groups here can be found from the standard value of the product of the crosslinking agent used.
  • the number of terminal double bonds and the number of functional groups specifically, for example, the average value of the number of double bonds and the number of functional groups per molecule of all the cross-linking agents present in 1 mol of the cross-linking agent is shown. And the like.
  • a compound having two or more carbon-carbon double bonds in a molecule is preferable.
  • crosslinking is more preferably formed by the curing reaction, and the heat resistance of the cured product of the resin composition used in the present embodiment can be further increased.
  • styrene derivative examples include bromostyrene and dibromostyrene.
  • the compound having an acryloyl group in the molecule is an acrylate compound.
  • the acrylate compound include a monofunctional acrylate compound having one acryloyl group in the molecule and a polyfunctional acrylate compound having two or more acryloyl groups in the molecule.
  • the monofunctional acrylate compound include methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate.
  • Examples of the polyfunctional acrylate compound include tricyclodecane dimethanol diacrylate.
  • the compound having a methacryloyl group in the molecule is a methacrylate compound.
  • the methacrylate compound include a monofunctional methacrylate compound having one methacryloyl group in the molecule and a polyfunctional methacrylate compound having two or more methacryloyl groups in the molecule.
  • the monofunctional methacrylate compound include methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate.
  • Examples of the polyfunctional methacrylate compound include tricyclodecane dimethanol dimethacrylate.
  • the compound having a vinyl group in the molecule is a vinyl compound.
  • the vinyl compound include a monofunctional vinyl compound having one vinyl group in the molecule (monovinyl compound) and a polyfunctional vinyl compound having two or more vinyl groups in the molecule.
  • the polyfunctional vinyl compound include a polyfunctional aromatic vinyl compound, a polyfunctional aliphatic vinyl compound, a polymer or a copolymer containing a structure derived from the polyfunctional aromatic vinyl compound, and a structure derived from the polyfunctional aliphatic vinyl compound. Examples thereof include polymers or copolymers containing divinylbenzene, divinylbenzene copolymer, polybutadiene, and butadiene copolymer.
  • the compound having an allyl group in the molecule is an allyl compound.
  • the allyl compound include a monofunctional allyl compound having one allyl group in the molecule and a polyfunctional allyl compound having two or more allyl groups in the molecule.
  • the polyfunctional allyl compound include diallyl phthalate (DAP).
  • the compound having a maleimide group in the molecule is a maleimide compound.
  • the maleimide compound include a monofunctional maleimide compound having one maleimide group in a molecule and a polyfunctional maleimide compound having two or more maleimide groups in a molecule.
  • the maleimide compound is a modified maleimide compound in which a part of the molecule is modified with an amine compound, a modified maleimide compound in which a part of the molecule is modified with a silicone compound, and a part of the molecule is an amine compound or a silicone compound.
  • a modified maleimide compound modified with the above is a modified maleimide compound modified with the above.
  • the compound having an acenaphthylene structure in the molecule is an acenaphthylene compound.
  • examples of the acenaphthylene compound include acenaphthylene, alkylacenaphthylenes, halogenated acenaphthylenes, and phenylacenaphthylenes.
  • alkyl acenaphthylenes examples include 1-methylacenaphthylene, 3-methylacenaphthylene, 4-methylacenaphthylene, 5-methylacenaphthylene, 1-ethylacenaphthylene, and 3-ethylacena Phthalene, 4-ethylacenaphthylene, 5-ethylacenaphthylene and the like.
  • halogenated acenaphthylenes examples include 1-chloroacenaphthylene, 3-chloroacenaphthylene, 4-chloroacenaphthylene, 5-chloroacenaphthylene, 1-bromoacenaphthylene, and 3-bromoacenaphthylene Len, 4-bromoacenaphthylene, 5-bromoacenaphthylene and the like.
  • phenylacenaphthylene examples include 1-phenylacenaphthylene, 3-phenylacenaphthylene, 4-phenylacenaphthylene, 5-phenylacenaphthylene and the like.
  • the acenaphthylene compound may be a monofunctional acenaphthylene compound having one acenaphthylene structure in the molecule, or a polyfunctional acenaphthylene compound having two or more acenaphthylene structures in the molecule, as described above. .
  • the compound having an isocyanurate group in the molecule is an isocyanurate compound.
  • the isocyanurate compound include a compound further having an alkenyl group in the molecule (alkenyl isocyanurate compound), and examples thereof include trialkenyl isocyanurate compounds such as triallyl isocyanurate (TAIC).
  • crosslinking agent examples include, among the above, a polyfunctional acrylate compound having two or more acryloyl groups in the molecule, a polyfunctional methacrylate compound having two or more methacryloyl groups in the molecule, and two vinyl groups in the molecule.
  • cross-linking agent the above-mentioned cross-linking agents may be used alone or in combination of two or more.
  • crosslinking agent a compound having two or more carbon-carbon unsaturated bonds in a molecule and a compound having one carbon-carbon unsaturated bond in a molecule may be used in combination.
  • the content of the polyphenylene ether compound is preferably 30 to 90 parts by mass, and more preferably 50 to 90 parts by mass based on 100 parts by mass of the total of the polyphenylene ether compound and the crosslinking agent. Is more preferable.
  • the content of the crosslinking agent is preferably 10 to 70 parts by mass, more preferably 10 to 50 parts by mass, based on 100 parts by mass of the total of the polyphenylene ether compound and the crosslinking agent. That is, the content ratio of the polyphenylene ether compound to the crosslinking agent is preferably from 90:10 to 30:70 by mass, and more preferably from 90:10 to 50:50.
  • the respective contents of the polyphenylene ether and the crosslinking agent satisfy the above ratio, the curing reaction between the modified polyphenylene ether and the crosslinking agent proceeds suitably. Therefore, the resin composition becomes more excellent in heat resistance and flame retardancy of the crosslinked product.
  • the resin composition according to the present embodiment is not particularly limited as long as it contains the polyphenylene ether compound and the crosslinking agent, but may further contain other components.
  • the resin composition according to the present embodiment may further contain a filler.
  • the filler include, but are not particularly limited to, those added to the cured product of the resin composition to enhance heat resistance and flame retardancy.
  • heat resistance, flame retardancy, and the like can be further increased.
  • Specific examples of the filler include silica such as spherical silica, metal oxides such as alumina, titanium oxide and mica, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, talc, aluminum borate, and sulfuric acid. Barium, calcium carbonate, and the like.
  • silica, mica, and talc are preferable, and spherical silica is more preferable.
  • one kind of the filler may be used alone, or two or more kinds may be used in combination.
  • the filler may be used as it is, or may be one that has been surface-treated with a silane coupling agent of an epoxy silane type, a vinyl silane type, a methacryl silane type, or an amino silane type.
  • the silane coupling agent may be added by an integral blend method instead of a method of preliminarily surface-treating the filler.
  • the content is preferably 10 to 200 parts by mass, and more preferably 30 to 150 parts by mass with respect to 100 parts by mass of the total of the polyphenylene ether compound and the crosslinking agent. More preferred.
  • the resin composition of the present embodiment may contain a flame retardant.
  • the flame retardant include a halogen-based flame retardant such as a bromine-based flame retardant and a phosphorus-based flame retardant.
  • a halogen-based flame retardant such as a bromine-based flame retardant and a phosphorus-based flame retardant.
  • Specific examples of the halogen-based flame retardants include, for example, brominated flame retardants such as pentabromodiphenyl ether, octabromodiphenyl ether, decabromodiphenyl ether, tetrabromobisphenol A, hexabromocyclododecane, and chlorinated flame retardants such as chlorinated paraffin. And the like.
  • the phosphorus-based flame retardant include, for example, condensed phosphates, phosphates such as cyclic phosphates, phosphazene compounds such as cyclic phosphazene compounds, metal phosphinates such as aluminum dialkylphosphinates, and the like.
  • examples include phosphinate-based flame retardants, melamine-based flame retardants such as melamine phosphate and melamine polyphosphate, and phosphine oxide compounds having a diphenylphosphine oxide group.
  • each exemplified flame retardant may be used alone, or two or more flame retardants may be used in combination.
  • the content is preferably from 10 to 40 parts by mass, and more preferably from 15 to 30 parts by mass, based on 100 parts by mass of the total of the polyphenylene ether compound and the crosslinking agent. More preferred.
  • the resin composition according to the present embodiment may contain various additives in addition to the above.
  • additives include antifoaming agents such as silicone-based antifoaming agents and acrylate-based antifoaming agents, heat stabilizers, antistatic agents, ultraviolet absorbers, dyes and pigments, lubricants, and dispersants such as wetting dispersants. Agents and the like.
  • FIG. 1 is a schematic sectional view showing an example of the prepreg 1 according to the embodiment of the present invention.
  • the prepreg 1 includes the resin composition or a semi-cured product 2 of the resin composition and a fibrous base material 3 as shown in FIG.
  • Examples of the prepreg 1 include a resin composition or a semi-cured product 2 in which a fibrous base material 3 is present. That is, the prepreg 1 includes the resin composition or the semi-cured product thereof, and the fibrous base material 3 existing in the resin composition or the semi-cured product 2 thereof.
  • the amount of Cl ions in the resin composition or the semi-cured product of the resin composition in the prepreg of the present embodiment, the resin-attached film and the resin-attached metal foil described below is preferably about 0 ppm to 40 ppm. From the viewpoint of cost, the content is more preferably 1 ppm to 40 ppm, further preferably 2 ppm to 40 ppm.
  • the amount of Cl ions in the resin composition or the semi-cured product of the resin composition can be measured by a method described in Examples described later.
  • bromide ion (Br ⁇ ) nitrate ion is contained in the prepreg of the present embodiment, the resin composition or the semi-cured product of the resin composition in the resin-added film and the resin-added metal foil described below.
  • ionic impurities such as (Ca 2+ ) are also contained.
  • ionic impurities are not particularly limited, but are preferably as low as possible.
  • bromide ion (Br ⁇ ) nitrate ion (NO 3 ⁇ ), sulfate ion (SO 3 ⁇ ) 4 ⁇ ), nitrite ion (NO 2 ⁇ ), phosphate ion (PO 4 3 ⁇ ), sodium ion (Na + ), ammonium ion (NH 4 + ), and calcium ion (Ca 2+ ) are 30 ppm or less, respectively.
  • the present invention includes a polyphenylene ether compound having a group represented by the following formula (1) at a molecular terminal, and a crosslinking agent having a carbon-carbon unsaturated double bond in the molecule;
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 2 represents an alkylene group having 1 to 10 carbon atoms.
  • the “semi-cured material” is a resin composition in which the resin composition has been cured halfway so that it can be further cured. That is, the semi-cured product is a semi-cured resin composition (B-staged). For example, when heated, the viscosity of the resin composition first decreases gradually, and thereafter, the curing starts, and the viscosity gradually increases. In such a case, the semi-cured state includes a state after the viscosity starts to increase and before complete curing.
  • the prepreg obtained by using the resin composition according to the present embodiment may include a semi-cured product of the resin composition as described above, or may include the resin composition that is not cured. It may be provided with itself. That is, a prepreg including a semi-cured product of the resin composition (the B-stage resin composition) and a fibrous base material may be used, or the resin composition before curing (the A-stage resin composition) ) And a prepreg comprising a fibrous base material. Specifically, for example, a resin composition in which a fibrous base material exists in the resin composition may be used. In addition, the resin composition or the semi-cured product thereof may be obtained by drying or heating and drying the resin composition.
  • a resin varnish-like resin composition 2 is impregnated into a fibrous base material 3 and then dried. Method.
  • the fibrous base material used in producing the prepreg include, for example, glass cloth, aramid cloth, polyester cloth, LCP (liquid crystal polymer) nonwoven cloth, glass nonwoven cloth, aramid nonwoven cloth, polyester nonwoven cloth, pulp paper, And linter paper.
  • a glass cloth is used, a laminate having excellent mechanical strength can be obtained, and particularly, a flattened glass cloth is preferable.
  • the glass cloth used in the present embodiment is not particularly limited, and examples thereof include E glass, S glass, NE glass, low dielectric glass cloth such as Q glass and L glass.
  • the flattening treatment can be performed by continuously pressing the glass cloth with an appropriate pressure with a press roll to compress the yarn flatly.
  • a thickness of 0.01 to 0.3 mm can be generally used.
  • the impregnation of the fibrous base material 3 with the resin varnish (resin composition 2) is performed by dipping and coating. This impregnation can be repeated a plurality of times as necessary. At this time, it is also possible to repeat the impregnation using a plurality of resin varnishes having different compositions and concentrations to finally adjust the composition (content ratio) and the desired resin amount to the desired values.
  • the fibrous base material 3 impregnated with the resin varnish (resin composition 2) is heated under desired heating conditions, for example, at 80 ° C. or more and 180 ° C. or less for 1 minute or more and 10 minutes or less.
  • desired heating conditions for example, at 80 ° C. or more and 180 ° C. or less for 1 minute or more and 10 minutes or less.
  • the solvent is volatilized from the varnish to reduce or remove the solvent, and the prepreg 1 before curing (A stage) or semi-cured state (B stage) is obtained.
  • the resin-attached metal foil 31 of the present embodiment has a configuration in which the resin layer 32 containing the above-described resin composition or a semi-cured product of the resin composition and the metal foil 13 are laminated.
  • the resin-attached metal foil of the present embodiment may be a resin-attached metal foil including the resin layer containing the resin composition before curing (the A-stage resin composition) and a metal foil, It may be a resin-attached metal foil including a resin layer containing a semi-cured product of the resin composition (the B-stage resin composition) and a metal foil.
  • a method of manufacturing such a resin-attached metal foil 31 for example, a method of applying the resin varnish-like resin composition as described above to the surface of the metal foil 13 such as a copper foil, followed by drying.
  • the coating method include a bar coater, a comma coater, a die coater, a roll coater, and a gravure coater.
  • a metal foil used for a metal-clad laminate, a wiring board, or the like can be used without limitation, and examples thereof include a copper foil and an aluminum foil.
  • the resin-attached film 41 of the present embodiment has a resin layer 42 containing the above-described resin composition or a semi-cured product of the resin composition, and a film supporting substrate 43 laminated thereon.
  • the resin-attached film of the present embodiment may be a resin-attached film including the resin composition before curing (the A-stage resin composition) and a film supporting substrate, or may be a resin-attached film.
  • a resin-attached film comprising a semi-cured product of the above (B-stage resin composition) and a film supporting substrate.
  • the solvent is volatilized from the varnish to reduce the solvent.
  • a resin-coated film before curing (A stage) or in a semi-cured state (B stage) can be obtained.
  • the film supporting substrate examples include electrical insulating films such as polyimide films, PET (polyethylene terephthalate) films, polyester films, polyparabanic acid films, polyetheretherketone films, polyphenylene sulfide films, aramid films, polycarbonate films, and polyarylate films. And the like.
  • the resin composition or the semi-cured product thereof may be obtained by drying or heating and drying the resin composition, as in the case of the prepreg described above.
  • the thickness and the like of the metal foil 13 and the film support base 43 can be appropriately set according to a desired purpose.
  • a metal foil 13 having a thickness of about 0.2 to 70 ⁇ m can be used.
  • a copper foil with a carrier provided with a release layer and a carrier may be used to improve the handleability.
  • the application of the resin varnish to the metal foil 13 and the film support base 43 is performed by coating or the like, but this can be repeated a plurality of times as necessary. Further, at this time, it is also possible to repeatedly apply by using a plurality of resin varnishes having different compositions and concentrations to finally adjust the composition (content ratio) and the amount of the resin to the desired values.
  • the drying or heating and drying conditions in the method for producing the resin-attached metal foil 31 and the resin film 41 are not particularly limited, but after applying the resin varnish-like resin composition to the metal foil 13 or the film supporting base material 43, By heating at 80 to 170 ° C. for about 1 to 10 minutes to evaporate the solvent from the varnish and reduce or remove the solvent, a pre-curing (A stage) or semi-curing state (B stage) The resin-coated metal foil 31 and the resin film 41 are obtained.
  • the resin-attached metal foil 31 and the resin film 41 may be provided with a cover film or the like as necessary.
  • the provision of the cover film can prevent foreign substances from being mixed.
  • the cover film is not particularly limited as long as it can be peeled off without damaging the form of the resin composition.
  • a polyolefin film, a polyester film, a TPX film, and a release agent Films formed by providing layers, and paper or the like obtained by laminating these films on a paper substrate can be used.
  • the metal-clad laminate 11 of the present embodiment includes an insulating layer 12 containing a cured product of the above-described resin composition or a cured product of the above-described prepreg, and a metal foil 13. I do.
  • the metal foil 13 used in the metal-clad laminate 11 the same metal foil 13 as described above can be used.
  • the metal-clad laminate 13 of this embodiment can also be produced using the above-mentioned resin-attached metal foil 31 or resin film 41.
  • the prepreg 1, the resin-coated metal foil 31 or the resin film 41 may be used as one sheet or By laminating a plurality of sheets, further stacking a metal foil 13 such as a copper foil on both upper and lower surfaces or one surface thereof, forming the laminate by heating and pressing, and forming a double-sided metal foil-clad or single-sided metal foil-clad laminate. It can be produced.
  • the heating and pressing conditions can be appropriately set depending on the thickness of the laminate to be manufactured, the type of the resin composition, and the like. For example, the temperature is 170 to 220 ° C., the pressure is 1.5 to 5.0 MPa, and the time is 60. It can be up to 150 minutes.
  • the metal-clad laminate 11 may be produced by forming a film-shaped resin composition on the metal foil 13 without using the prepreg 1 or the like, and applying heat and pressure.
  • the wiring board 21 of the present embodiment includes the insulating layer 12 including the cured product of the above-described resin composition or the cured product of the above-described prepreg, and the wiring 14.
  • the resin composition of the present embodiment is preferably used as a material for an interlayer insulating layer of a wiring board. Although not particularly limited, for example, it is preferably used as a material of an interlayer insulating layer of a multilayer wiring board having 10 or more circuit layers, and more preferably 15 or more layers.
  • the interlayer insulating layer As a material of the interlayer insulating layer, it is preferable to use a plurality of insulating layers made of the resin composition of the present embodiment. Although not particularly limited, for example, it is preferable to use 10 or more layers. As a result, in the multilayer wiring board, the density of the conductive circuit patterns can be further increased, and the lower dielectric properties of the plurality of interlayer insulating layers, the insulation reliability between the conductive circuit patterns, and the insulating property between the interlayer circuits can be improved. It can be improved. Further, effects such as an increase in signal transmission speed in the multilayer wiring board and a reduction in signal transmission loss can be obtained.
  • a circuit is formed by etching the metal foil 13 on the surface of the metal-clad laminate 13 obtained above to form a circuit (wiring).
  • a wiring board 21 provided with a conductor pattern (wiring 14) as a circuit can be obtained.
  • a method of forming a circuit in addition to the method described above, for example, a circuit formation by a semi-additive method (SAP: Semi @ Additive @ Process) or a modified semi-additive method (MSAP: Modified @ Semi @ Additive @ Process) may be mentioned.
  • the distance between circuits means a distance (space) S between two adjacent wirings (conductor circuits) (L), as shown in FIG.
  • the distance between the circuits does not need to be all 150 ⁇ m or less, and it is sufficient that at least a part has a distance between the circuits of 150 ⁇ m or less.
  • the conductor circuit pattern in the substrate can be further increased in density, and The substrate can be made smaller.
  • the density of the conductor circuit pattern can be further increased.
  • a part of the signal line of the conductor circuit pattern can be shortened, so that transmission loss can be further reduced and high-speed transmission can be performed.
  • the resin composition of the present embodiment can exhibit the above-described effects (insulation reliability). For example, insulation reliability can be exhibited even when the distance between the conductor circuits is 150 ⁇ m or less, or 100 ⁇ m or less, 75 ⁇ m or less, and even 50 ⁇ m or less. Therefore, it is considered that the resin composition of the present embodiment is suitably used for a wiring (circuit) substrate having a small distance between wirings. Still further, in a wiring board, in a multilayer wiring board having a conductive through hole or / and a conductive via, between adjacent conductive through holes formed in an insulating layer and / or between conductive vias. Excellent insulation reliability is obtained.
  • the prepreg, film with resin, and metal foil with resin obtained by using the resin composition of the present embodiment have low dielectric properties, high Tg, insulation reliability, and the like in the cured product.
  • Useful for The metal-clad laminates and wiring boards containing them also have low dielectric properties, high Tg, and excellent insulation reliability.
  • a resin composition according to one embodiment of the present invention includes a polyphenylene ether compound having a group represented by the following formula (1) at a molecular terminal, a crosslinking agent having a carbon-carbon unsaturated double bond in a molecule, or the polyphenylene compound.
  • the polyphenylene ether compound contains at least one of a crosslinking agent that reacts with the ether compound and cures, and the amount of chloride ions in the polyphenylene ether compound is 250 ppm or less.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 2 represents an alkylene group having 1 to 10 carbon atoms.
  • a resin composition according to another embodiment of the present invention comprises a polyphenylene ether compound having a group represented by the following formula (1) at a molecular terminal, a crosslinking agent having a carbon-carbon unsaturated double bond in a molecule, Including at least one of a crosslinking agent that reacts with the polyphenylene ether compound and cures,
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 2 represents an alkylene group having 1 to 10 carbon atoms.
  • the resin composition or the semi-cured resin composition has a chloride ion content of 40 ppm or less.
  • the crosslinking agent may be a trialkenyl isocyanurate compound, a polyfunctional acrylate compound having two or more acryl groups in the molecule, a polyfunctional methacrylate compound having two or more methacryl groups in the molecule, or a vinyl compound having two or more vinyl groups in the molecule. It is preferable to include at least one selected from the group consisting of a polyfunctional vinyl compound having at least one compound, an allyl compound, a maleimide compound, and an acenaphthylene compound.
  • crosslinking is more preferably formed by the curing reaction, and there is an advantage that the heat resistance of the cured product of the resin composition used in the present embodiment can be further increased.
  • the polyphenylene ether compound has a structure represented by the following formula (2).
  • R 3 to R 10 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Is a group represented by the formula (1).
  • a and B are structures represented by the following formulas (3) and (4), respectively:
  • Y is a structure represented by the following formula (5):
  • R 19 and R 20 each independently represent a hydrogen atom or an alkyl group.
  • the resin composition is for a wiring board provided with a conductor circuit pattern in which the distance between conductor circuits is at least partially 100 ⁇ m or less. In such an application, it is considered that the effect of the present invention is more exhibited.
  • ⁇ ⁇ A prepreg according to still another aspect of the present invention includes the above resin composition or a semi-cured product of the resin composition and a fibrous base material.
  • a resin-attached film according to still another aspect of the present invention is characterized by having a resin film containing the above-described resin composition or a semi-cured product of the resin composition, and a support film.
  • a resin-attached metal foil includes a resin layer containing the above-described resin composition or a semi-cured product of the resin composition, and a metal foil.
  • a metal-clad laminate according to still another aspect of the present invention is characterized by having an insulating layer containing a cured product of the above resin composition or a cured product of the above prepreg, and a metal foil.
  • a wiring board according to still another aspect of the present invention is characterized by having an insulating layer containing a cured product of the above-described resin composition or a cured product of the above-described prepreg, and wiring.
  • a prepreg, a film with a resin, a metal foil with a resin, a metal-clad laminate, and a wiring which can obtain a substrate having low dielectric properties and high Tg and further having excellent insulation reliability, can be obtained.
  • a substrate or the like can be obtained.
  • ⁇ A component polyphenylene ether compound> -Modified PPE-1: Bifunctional vinylbenzyl-modified PPE (Mw: 1900)
  • Modified PPE-1 Bifunctional vinylbenzyl-modified PPE (Mw: 1900)
  • modified polyphenylene ether 1 modified polyphenylene ether 1 (modified PPE-1). Specifically, first, a polyphenylene ether (SA90, manufactured by SABIC Innovative Plastics Co., Ltd .; 0.083 dl / g, number of terminal hydroxyl groups: 1.9, weight molecular weight Mw: 1700) 200 g, 30 g of a mixture of p-chloromethylstyrene and m-chloromethylstyrene in a mass ratio of 50:50, tetra-n as a phase transfer catalyst 1.227 g of -butylammonium bromide and 400 g of toluene were charged and stirred.
  • SA90 manufactured by SABIC Innovative Plastics Co., Ltd .
  • the obtained solid was analyzed by 1 H-NMR (400 MHz, CDCl 3 , TMS). As a result of NMR measurement, a peak derived from a vinylbenzyl group was confirmed at 5 to 7 ppm. Thus, it was confirmed that the obtained solid was a modified polyphenylene ether having a group represented by the formula (1) at a molecular terminal. Specifically, it was confirmed that the polyphenylene ether was vinylbenzylated.
  • TEAH tetraethylammonium hydroxide
  • Residual OH amount ( ⁇ mol / g) [(25 ⁇ Abs) / ( ⁇ ⁇ OPL ⁇ X)] ⁇ 106
  • indicates the extinction coefficient, which is 4700 L / mol ⁇ cm.
  • OPL is the cell optical path length, which is 1 cm.
  • the calculated residual OH content (the number of terminal hydroxyl groups) of the modified polyphenylene ether was almost zero, indicating that the hydroxyl groups of the polyphenylene ether before modification were substantially modified. From this, it was found that the decrease from the number of terminal hydroxyl groups of the polyphenylene ether before modification was the number of terminal hydroxyl groups of the polyphenylene ether before modification. That is, it was found that the number of terminal hydroxyl groups of the polyphenylene ether before modification was the number of terminal functional groups of the modified polyphenylene ether. That is, the number of terminal functional groups was two.
  • the amount of impurity ions in the modified polyphenylene ether compound was determined by adding 15 g of pure water to 0.75 g of the sample (obtained modified PPE-1), extracting the mixture at 125 ° C. for 20 hours, and then performing ion chromatography (using model “ICS1500”). "Thermo Fisher Co., separation column: IonPac AS 22, eluent: 4.5mmol / L Na 2 CO 3 /1.4mmol/L NaHCO 3, eluent flow rate was measured by 1.5 mL / min).
  • the amount of various impurity ions in the modified PPE-1 was 1912 ppm of Cl ⁇ ions in terms of solid content.
  • ions other than Cl ⁇ ions Br ⁇ ions are less than 2 ppm, NO 3 ⁇ ions are 10 ppm, SO 4 ⁇ ions are 2 ppm, NO 2 ⁇ ions are less than 2 ppm, PO 4 3 ⁇ ions are less than 2 ppm, and Na + The ions were less than 2 ppm and the NH 4 + ions were 12 ppm.
  • -Modified PPE-2 Bifunctional vinylbenzyl-modified PPE (Mw: 1900)
  • a modified PPE-2 was obtained in the same manner as the modified PPE-1, except that this was repeated.
  • the amounts of various impurity ions in the obtained modified PPE-2 were measured in the same manner as in the modified PPE-1.
  • Cl ⁇ ion was 42 ppm
  • Br ⁇ ion was less than 2 ppm
  • NO 3 ⁇ ion was 29 ppm in terms of solid content.
  • SO 4 - ion was less than 2 ppm
  • NO 2 - ion was less than 2 ppm
  • PO 4 3- ion was less than 2 ppm
  • Na + ion was less than 2 ppm
  • NH 4 + ion was 27 ppm.
  • the amount of various impurity ions in the obtained modified PPE-3 was measured in the same manner as in the modified PPE-1, and as a result, Cl - ion was 42 ppm, Br - ion was 2 ppm, NO 3 - ion was 41 ppm, and SO 4 - ions were less than 2 ppm, NO 2 - ions were less than 2 ppm, PO 4 3- ions were less than 2 ppm, Na ions + were 8 ppm, and NH 4 + ions were 20 ppm.
  • -Modified PPE-4 Bifunctional vinylbenzyl-modified PPE (Mw: 1900) Instead of a mixture of p-chloromethylstyrene and m-chloromethylstyrene at a mass ratio of 50:50 in the modified PPE synthesis process, o-chloromethylstyrene, p-chloromethylstyrene, m-chloromethylstyrene and Using a mixture having a mass ratio of 20:10:70 and adding methanol to form a precipitate in the liquid in the flask, that is, a step of reprecipitating the product contained in the reaction solution in the flask A modified PPE-4 was obtained in the same manner as the modified PPE-1, except that the step of removing the precipitate by filtration was repeated three times (three sets).
  • the amount of various impurity ions in the obtained modified PPE-4 was measured in the same manner as in the modified PPE-1, and as a result, Cl - ion was 31 ppm in terms of solid content.
  • the other ions are less than 2 ppm of Br - ion, less than 2 ppm of NO 3 - ion, less than 2 ppm of SO 4 - ion, less than 2 ppm of NO 2 - ion, less than 2 ppm of PO 4 3- ion, and less than 2 ppm of Na + ion. 8 ppm and 10 ppm of NH 4 + ions.
  • SA-9000 bifunctional methacrylate-modified PPE (Mw: 1700, manufactured by SABIC, Cl ion amount: less than 2 ppm)
  • OPE-2St 2200 PPE modified with vinyl vinyl terminal (Mw: about 3600, manufactured by Mitsubishi Gas Chemical Company, Inc., Cl ion amount: 1350 ppm)
  • TAIC triallyl isocyanurate, (Nippon Kasei Co., Ltd.)
  • DVB810 divinylbenzene (Nippon Steel & Sumikin Chemical Co., Ltd.)
  • DCP dicyclopentadiene type methacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • Preparation of prepreg ⁇ Prepreg I
  • the resin varnish of each Example and Comparative Example was impregnated in a glass cloth (L2116 type, manufactured by Asahi Kasei Corporation), and then heated and dried at 130 ° C. for about 3 minutes to obtain a prepreg.
  • the content of the resin composition (resin content) with respect to the weight of the prepreg was adjusted to be about 56% by mass.
  • Prepreg II The resin varnish of each Example and Comparative Example was impregnated into a glass cloth (L1078 type, manufactured by Asahi Kasei Corporation), and then heated and dried at 130 ° C. for about 2 minutes to obtain a prepreg. At that time, the content of the resin composition (resin content) with respect to the weight of the prepreg was adjusted to be about 70% by mass.
  • ⁇ Laminated plate II Two sheets of the prepreg-II are stacked, and a copper foil (FV-WS, manufactured by Furukawa Electric Co., Ltd.) having a thickness of 18 ⁇ m is arranged on both sides of the prepreg-II to form a pressure-receiving body.
  • the temperature is 210 ° C.
  • the pressure is 30 kgf / cm. Heating and pressing were performed for 90 minutes under the conditions of 2 to obtain a copper-clad laminate-II 'having a thickness of about 0.18 mm and a copper foil bonded to both sides.
  • the obtained laminated plate-II ′ is exposed to a circuit pattern including a portion having a conductor circuit width of 100 ⁇ m using a dry film, and copper is etched with a copper chloride aqueous solution.
  • the conductor circuit pattern includes a circuit pattern in which a conductor circuit 51 is formed in an inner layer such that L (conductor circuit width) / S (distance between conductor circuits): 100 ⁇ m / 100 ⁇ m as shown in FIG.
  • a comb-shaped pattern (number of lines: 15; line overlapping portion: 65 mm) for evaluating insulation reliability was obtained.
  • the prepreg-II was placed on both sides of the obtained laminate-II ′′, and FV-WS copper foil having a thickness of 18 ⁇ m was placed on both outer sides thereof.
  • the temperature was 210 ° C. and the pressure was 30 kgf under vacuum conditions. / Cm 2 for 90 minutes to obtain a laminate II having a distance between conductor circuits of 100 ⁇ m.
  • Glass transition temperature (Tg) The outer copper foil of the copper-clad laminate I was entirely etched, and the glass transition point (Tg) of the obtained sample was measured using a differential scanning calorimeter (DSC). The measurement was performed by a method based on IPC-TM-650 2.4.25.
  • Example 1-2 and Comparative Example 1 the amount of Cl ions in the prepreg was also measured. Specifically, the resin component of the prepreg I was sieved (100 mesh under, 200 mesh up) to prepare 0.75 g. After adding it to 15 g of pure water and extracting at 125 ° C. for 20 hours, ion chromatography (used model “ICS1500” manufactured by Thermo Fisher, separation column: Ionpac AS22, eluent: 4.5 mmol / L Na 2 CO 3) /1.4 mmol / L NaHCO 3 , eluent flow rate: 1.5 mL / min) to measure the amounts of various impurity ions.
  • the limit of the amount of impurity ions that can be detected using the above-described ion chromatography apparatus is up to 2 ppm, and the amount of impurity ions having a lower detection amount is less than 2 ppm.
  • the amount of each impurity ion in Example 1 was 7 ppm for Cl ⁇ ions.
  • Cl ⁇ ions Br - ions are less than 2 ppm
  • NO 3 - ions are 17 ppm
  • SO 4 - ions are 3 ppm
  • NO 2 - ions are less than 2 ppm
  • PO 4 3- ions are less than 2 ppm
  • Na is less than 2 ppm.
  • + Ions were less than 2 ppm
  • NH 4 + ions were 10 ppm
  • Ca ions were 5 ppm.
  • Cl ⁇ ion was 29 ppm.
  • Br - ions are less than 2 ppm
  • NO 3 - ions are 7 ppm
  • SO 4 - ions are 2 ppm
  • NO 2 - ions are less than 2 ppm
  • PO 4 3- ions are less than 2 ppm
  • Na is less than 2 ppm.
  • + Ions were less than 2 ppm
  • NH 4 + ions were 9 ppm
  • Ca 2+ ions were 5 ppm.
  • Cl ⁇ ion was 4 ppm.
  • Br ⁇ ions are less than 2 ppm
  • NO 3 ⁇ ions are 7 ppm
  • SO 4 ⁇ ions are 7 ppm
  • NO 2 ⁇ ions are less than 2 ppm
  • PO 4 3 ⁇ ions are less than 2 ppm
  • Na is less than 2 ppm.
  • + Ion was 4 ppm
  • NH 4 + ion was 7 ppm
  • Ca 2+ ion was 6 ppm.
  • Comparative Examples 1 and 3 in which a polyphenylene ether compound having a large amount of Cl ions was used, sufficient insulation reliability could not be obtained.
  • Comparative Example 2 using a polyphenylene ether compound having no group represented by the above formula (1) at the molecular end, the result was inferior to Tg.
  • the present invention has wide industrial applicability in the technical field related to electronic materials and various devices using the same.

Abstract

An aspect of the present invention relates to a resin composition characterized by including: a polyphenylene ether compound having a group represented by formula (1) at the end of the molecule; and at least one from among a crosslinking agent having a carbon-carbon unsaturated double bond in the molecule or a crosslinking agent that reacts with the polyphenylene ether compound and performs curing, wherein the amount of chloride ions in the polyphenylene ether compound is 250 ppm or less. [In formula (1), R1 represents a hydrogen atom or an alkyl group having 1-10 carbon atoms, and R2 represents an alkylene group having 1-10 carbon atoms.]

Description

樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板Resin composition, prepreg using the same, film with resin, metal foil with resin, metal-clad laminate, and wiring board
 本発明は、樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板に関する。 The present invention relates to a resin composition, and a prepreg, a film with a resin, a metal foil with a resin, a metal-clad laminate, and a wiring board using the same.
 近年、各種電子機器は、情報処理量の増大に伴い、搭載される半導体デバイスの高集積化、配線の高密度化、及び多層化等の実装技術が急速に進展している。各種電子機器において用いられるプリント配線板の基材を構成するための基板材料には、信号の伝送速度を高め、信号伝送時の損失を低減させるために、誘電率及び誘電正接が低いことが求められる。 In recent years, with the increase in the amount of information processing of various electronic devices, mounting technologies such as high integration of semiconductor devices to be mounted, high density of wiring, and multi-layering are rapidly progressing. In order to increase the signal transmission speed and reduce the loss during signal transmission, the substrate material for forming the base material of the printed wiring board used in various electronic devices must have a low dielectric constant and a low dielectric loss tangent. Can be
 このような要求に対し、末端変性をしたポリフェニレンエーテル(PPE)化合物を含む樹脂組成物が、電気特性に優れている材料として使用されている(例えば、特許文献1および2)。PPE化合物を含有する樹脂組成物で構成された配線板などでは、優れた伝送特性を有することも報告されている。 に 対 し Responding to such a demand, a resin composition containing a terminal-modified polyphenylene ether (PPE) compound has been used as a material having excellent electrical properties (for example, Patent Documents 1 and 2). It has also been reported that wiring boards made of a resin composition containing a PPE compound have excellent transmission characteristics.
 一方、基板材料等の成形材料として利用する際には、低誘電特性に優れるだけでなく、その硬化物が高いガラス転移温度(Tg)を有することや、耐熱性や密着性を有することも求められる。 On the other hand, when used as a molding material such as a substrate material, it is required that the cured product not only has excellent low dielectric properties but also has a high glass transition temperature (Tg) and has heat resistance and adhesion. Can be
 しかしながら、上記特許文献1記載の樹脂組成物では、低誘電特性を得ることはできると考えられるが、本発明者らの研究によって末端変性(ジビニルベンジル化変性)を行う際に使用される塩素イオン残渣の影響で、前記樹脂組成物を用いてプリント配線板を作成すると、十分な絶縁信頼性が確保できない場合があることがわかってきた。特に、導体回路間の距離が小さい導体回路パターンが設けられた配線板において、この影響が顕著であった。 However, although it is considered that the resin composition described in Patent Document 1 can obtain low dielectric properties, chloride ions used in performing terminal modification (divinylbenzylation modification) according to the study of the present inventors have been proposed. It has been found that when a printed wiring board is prepared using the resin composition, sufficient insulation reliability may not be ensured due to the influence of the residue. In particular, this effect was remarkable on a wiring board provided with a conductor circuit pattern having a small distance between conductor circuits.
 一方で、上記特許文献2で使用されている変性PPEのみでは反応性に劣るため、Tgが低下するという問題がある。それを解決するために反応開始剤が必要となるが、その開始剤の影響によって電気特性(低誘電特性および伝送特性)が劣化するという難点がある。 On the other hand, only the modified PPE used in Patent Document 2 described above has a poor reactivity and thus has a problem that Tg is lowered. To solve this, a reaction initiator is required, but there is a drawback that the electrical properties (low dielectric properties and transmission properties) are degraded by the influence of the initiator.
 本発明は、かかる事情に鑑みてなされたものであって、樹脂組成物の硬化物における低誘電特性(低い誘電率及び誘電正接)、高Tg、及び絶縁信頼性を兼ね備えた樹脂組成物を提供することを目的とする。また、前記樹脂組成物を用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線基板を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a resin composition having low dielectric properties (low dielectric constant and dielectric loss tangent), high Tg, and insulation reliability in a cured product of the resin composition. The purpose is to do. Another object of the present invention is to provide a prepreg, a film with a resin, a metal foil with a resin, a metal-clad laminate, and a wiring board using the resin composition.
特開2011-68713号公報JP 2011-68713 A 特表2004-511580号公報JP-T-2004-511580
 本発明の一態様に係る樹脂組成物は、分子末端に下記式(1)で表される基を有するポリフェニレンエーテル化合物と、炭素-炭素不飽和二重結合を分子中に有する架橋剤若しくは前記ポリフェニレンエーテル化合物と反応して硬化させる架橋剤のうち少なくともいずれか一つとを、含み、前記ポリフェニレンエーテル化合物における塩化物イオン量が、250ppm以下であることを特徴とする。 A resin composition according to one embodiment of the present invention includes a polyphenylene ether compound having a group represented by the following formula (1) at a molecular terminal, a crosslinking agent having a carbon-carbon unsaturated double bond in a molecule, or the polyphenylene compound. The polyphenylene ether compound contains at least one of a crosslinking agent that reacts with the ether compound and cures, and the amount of chloride ions in the polyphenylene ether compound is 250 ppm or less.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[式(1)中、Rは、水素原子、又は炭素数1~10のアルキル基を示し、Rは、炭素数1~10のアルキレン基を示す。] [In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 2 represents an alkylene group having 1 to 10 carbon atoms. ]
 本発明によれば、樹脂組成物の硬化物における低誘電特性、高Tg、及び優れた絶縁信頼性を兼ね備えた樹脂組成物を提供できる。さらに本発明によれば、前記樹脂組成物を用いることにより、優れた性能を有するプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線基板を提供できる。 According to the present invention, a resin composition having low dielectric properties, high Tg, and excellent insulation reliability in a cured product of the resin composition can be provided. Further, according to the present invention, a prepreg, a film with a resin, a metal foil with a resin, a metal-clad laminate, and a wiring board having excellent performance can be provided by using the resin composition.
図1は、本発明の一実施形態に係るプリプレグの構成を示す概略断面図である。FIG. 1 is a schematic sectional view showing the configuration of a prepreg according to one embodiment of the present invention. 図2は、本発明の一実施形態に係る金属張積層板の構成を示す概略断面図である。FIG. 2 is a schematic sectional view showing the configuration of the metal-clad laminate according to one embodiment of the present invention. 図3は、本発明の一実施形態に係る配線基板の構成を示す概略断面図である。FIG. 3 is a schematic sectional view showing the configuration of the wiring board according to one embodiment of the present invention. 図4は、本発明の一実施形態に係る樹脂付き金属箔の構成を示す概略断面図である。FIG. 4 is a schematic sectional view showing the configuration of the metal foil with resin according to one embodiment of the present invention. 図5は、本発明の一実施形態に係る樹脂フィルムの構成を示す概略断面図である。FIG. 5 is a schematic sectional view showing the configuration of the resin film according to one embodiment of the present invention. 図6は、本発明の一実施形態に係る導体回路パターンを有する基板における、隣り合う二つの配線(導体回路)(L)の間の距離(スペース)Sを示す概略図である。FIG. 6 is a schematic diagram showing a distance (space) S between two adjacent wirings (conductor circuits) (L) on a substrate having a conductor circuit pattern according to one embodiment of the present invention. 図7は、実施例における、絶縁信頼性評価用の櫛形型パターンを示す概略図である。FIG. 7 is a schematic diagram showing a comb-shaped pattern for evaluating insulation reliability in the example.
 本発明の実施形態に係る樹脂組成物は、分子末端に下記式(1)で表される基を有するポリフェニレンエーテル化合物と、炭素-炭素不飽和二重結合を分子中に有する架橋剤若しくは前記ポリフェニレンエーテル化合物と反応して硬化させる架橋剤のうち少なくともいずれか一つとを、含み、前記ポリフェニレンエーテル化合物における塩化物イオン量が、250ppm以下であることを特徴とする。 The resin composition according to the embodiment of the present invention comprises a polyphenylene ether compound having a group represented by the following formula (1) at a molecular terminal, a cross-linking agent having a carbon-carbon unsaturated double bond in the molecule, or the polyphenylene ether. The polyphenylene ether compound contains at least one of a crosslinking agent that reacts with the ether compound and cures, and the amount of chloride ions in the polyphenylene ether compound is 250 ppm or less.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[式(1)中、Rは、水素原子、又は炭素数1~10のアルキル基を示し、Rは、炭素数1~10のアルキレン基を示す。]
 以下、本実施形態に係る樹脂組成物の各成分について、具体的に説明する。
[In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 2 represents an alkylene group having 1 to 10 carbon atoms. ]
Hereinafter, each component of the resin composition according to the present embodiment will be specifically described.
 (ポリフェニレンエーテル化合物)
 本実施形態で使用するポリフェニレンエーテル化合物は、分子末端に上記式(1)で表される基を有し、かつ、塩化物(Cl)イオン量が250ppm以下であるポリフェニレンエーテル化合物であれば、特に限定されない。このようなポリフェニレンエーテル化合物を使用することによって、イオンマイグレーションの発生を抑制することができ、優れた絶縁信頼性を得ることができる。また、本実施形態のポリフェニレンエーテル化合物は、反応開始剤を使用することなく後述する架橋剤と反応できるため、反応開始剤による影響を受けることがない。よって、本実施形態の樹脂組成物は、優れた絶縁信頼性及び低い誘電率や誘電正接を維持しつつ、より高いガラス転移温度(Tg)や密着性を得ることができると考えられる。
(Polyphenylene ether compound)
The polyphenylene ether compound used in the present embodiment is a polyphenylene ether compound having a group represented by the above formula (1) at the molecular terminal and having a chloride (Cl ) ion content of 250 ppm or less. There is no particular limitation. By using such a polyphenylene ether compound, occurrence of ion migration can be suppressed, and excellent insulation reliability can be obtained. Further, since the polyphenylene ether compound of the present embodiment can react with a crosslinking agent described later without using a reaction initiator, it is not affected by the reaction initiator. Therefore, it is considered that the resin composition of the present embodiment can obtain higher glass transition temperature (Tg) and adhesion while maintaining excellent insulation reliability, low dielectric constant and dielectric loss tangent.
 材料特性として、硬化物のTgが高い材料では、耐熱性(半田耐熱性等)が、より向上する要因の1つとなり得る。また、硬化物においてTgが高い材料であることは、より高温領域での材料の熱膨張率が小さい値になるという利点もある。一般にガラス転移温度を越える温度では、急激に熱膨張が大きくなるためである。つまりガラス転移温度が低いと、そのガラス転移温度を越える高温領域では、熱膨張率が大きくなる。ガラス転移温度が低いと、より高温領域での熱膨張が大きくなり、配線基板における、例えば、層間接続信頼性(スルーホールのバレルクラック発生等)が悪くなり、プリント板として機能しない恐れがある。これは基板内の樹脂組成物の硬化物からなる絶縁層と、金属からなるスルーホールとの材質間で、高温での熱膨張率の差が大きくなるため、金属からなるスルーホールの壁面にクラックが生じ、接続信頼性が悪くなるためと考えられる。 と し て As a material property, in a material having a high Tg of a cured product, heat resistance (such as solder heat resistance) can be one of the factors for further improving. Further, a material having a high Tg in the cured product also has an advantage that the coefficient of thermal expansion of the material in a higher temperature range becomes a small value. In general, at a temperature exceeding the glass transition temperature, the thermal expansion sharply increases. That is, when the glass transition temperature is low, the coefficient of thermal expansion increases in a high temperature region exceeding the glass transition temperature. When the glass transition temperature is low, thermal expansion in a higher temperature region becomes large, for example, the reliability of interlayer connection (barrel crack generation of a through hole, etc.) in a wiring board is deteriorated, and the wiring board may not function as a printed board. This is because the difference in the coefficient of thermal expansion at high temperature between the material of the insulating layer made of the cured resin composition in the substrate and the material of the through hole made of metal increases, so that cracks are formed on the wall surface of the metal through hole. It is considered that connection reliability deteriorates.
 ポリフェニレンエーテル化合物中のClイオン(以下、単にClイオンとも称す)量は、250ppm以下であれば特に限定はされないが200ppm以下であることがより好ましい。前記Clイオン量は少なければ少ない方がよいが、ポリフェニレンエーテル化合物の分子末端を上記式(1)で表す基で変性させる際に不可避的にある程度混入してしまうため、前記Clイオン量を低減するためにはコストがかかってしまうおそれがある。よって、ポリフェニレンエーテル化合物中のClイオン量は5ppm以上であることが、コスト面からすると好ましい。より好ましくは、10ppm以上、より好ましくは15ppm以上、さらに好ましくは30ppm以上である。 The amount of Cl - ion (hereinafter also simply referred to as Cl ion) in the polyphenylene ether compound is not particularly limited as long as it is 250 ppm or less, but is more preferably 200 ppm or less. The smaller the amount of Cl ions, the better. However, when the molecular terminal of the polyphenylene ether compound is modified with the group represented by the formula (1), the terminal is inevitably mixed to some extent. For this reason, there is a possibility that the cost will increase. Therefore, the amount of Cl ions in the polyphenylene ether compound is preferably 5 ppm or more from the viewpoint of cost. More preferably, it is 10 ppm or more, more preferably 15 ppm or more, and still more preferably 30 ppm or more.
 なお、ポリフェニレンエーテル化合物中のClイオン量は、後述する実施例に記載の方法等で測定することができる。 The amount of Cl ions in the polyphenylene ether compound can be measured by the method described in Examples below.
 さらに、本実施形態のポリフェニレンエーテル化合物には、上述のClイオン以外にも、臭化物イオン(Br)、硝酸イオン(NO )、硫酸イオン(SO )、亜硝酸イオン(NO )、リン酸イオン(PO 3-)、ナトリウムイオン(Na)、アンモニウムイオン(NH )等のイオン性不純物も含まれている場合もある。これらの不純物は、特に限定されないが、できる限り低濃度が好ましく、これらのイオン性不純物を含む場合、臭化物イオン(Br)、硝酸イオン(NO )、硫酸イオン(SO )、亜硝酸イオン(NO )、リン酸イオン(PO 3-)、ナトリウムイオン(Na)、アンモニウムイオン(NH )が、各50ppm以下であることが好ましい。 Furthermore, in addition to the above-mentioned Cl ion, the polyphenylene ether compound of the present embodiment includes bromide ion (Br ), nitrate ion (NO 3 ), sulfate ion (SO 4 ), and nitrite ion (NO 2 −). ), Phosphate ions (PO 4 3− ), sodium ions (Na + ), and ammonium ions (NH 4 + ) in some cases. These impurities are not particularly limited, but are preferably as low as possible. When these impurities are contained, bromide ion (Br ), nitrate ion (NO 3 ), sulfate ion (SO 4 ), suboxide It is preferable that nitrate ion (NO 2 ), phosphate ion (PO 4 3− ), sodium ion (Na + ), and ammonium ion (NH 4 + ) are each 50 ppm or less.
 前記式(1)中、Rは、水素原子、又は、炭素数1~10のアルキル基を示す。炭素数1~10のアルキル基は、炭素数1~10のアルキル基であれば特に限定されず、直鎖状であっても、分岐鎖状であってもよい。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、及びヘキシル基等が挙げられる。この中でも、水素原子が好ましい。 In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. The alkyl group having 1 to 10 carbon atoms is not particularly limited as long as it is an alkyl group having 1 to 10 carbon atoms, and may be linear or branched. Specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, etc. Is mentioned. Among them, a hydrogen atom is preferable.
 また、前記式(1)中、Rは、炭素数1~10のアルキレン基を示す。炭素数1~10のアルキレン基は、炭素数1~10のアルキレン基であれば特に限定はなく、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、及びデシレン基等が挙げられる。この中でも、メチレン基が好ましい。 In the formula (1), R 2 represents an alkylene group having 1 to 10 carbon atoms. The alkylene group having 1 to 10 carbon atoms is not particularly limited as long as it is an alkylene group having 1 to 10 carbon atoms, and includes a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, and an octylene group. , A nonylene group, and a decylene group. Among them, a methylene group is preferable.
 前記式(1)で表される基は、特に限定されないが、p-エテニルベンジル基、m-エテニルベンジル基、o-エテニルベンジル基から選択される少なくとも1種のエテニルベンジル基(ビニルベンジル基)を有することが好ましい。さらには、p-エテニルベンジル基、m-エテニルベンジル基、o-エテニルベンジル基から選択される少なくとも2種以上有することが好ましい。 The group represented by the formula (1) is not particularly limited, but is at least one ethenylbenzyl group selected from a p-ethenylbenzyl group, an m-ethenylbenzyl group, and an o-ethenylbenzyl group ( (Vinyl benzyl group). Furthermore, it is preferable to have at least two kinds selected from a p-ethenylbenzyl group, an m-ethenylbenzyl group and an o-ethenylbenzyl group.
 特に、本実施形態の樹脂組成物は、上述した効果をより確実に得るという観点から、ポリフェニレンエーテル化合物として、下記式(2)で表される構造を有するポリフェニレンエーテル化合物を含んでいることが好ましい。 In particular, the resin composition of the present embodiment preferably contains a polyphenylene ether compound having a structure represented by the following formula (2) as the polyphenylene ether compound from the viewpoint of more reliably obtaining the above-described effects. .
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(2)中において、R~R10は、それぞれ独立している。すなわち、R~R10は、それぞれ同一の基であっても、異なる基であってもよい。また、R~R10は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。 In the above formula (2), R 3 to R 10 are each independent. That is, R 3 to R 10 may be the same group or different groups. R 3 to R 10 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Among them, a hydrogen atom and an alkyl group are preferable.
 R~R10について、上記で挙げられた各官能基としては、具体的には、以下のようなものが挙げられる。 With respect to R 3 to R 10 , specific examples of the functional groups listed above include the following.
 アルキル基は、特に限定されないが、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。 The alkyl group is not particularly limited, but is preferably, for example, an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms. Specific examples include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
 また、アルケニル基は、特に限定されないが、例えば、炭素数2~18のアルケニル基が好ましく、炭素数2~10のアルケニル基がより好ましい。具体的には、例えば、ビニル基、アリル基、及び3-ブテニル基等が挙げられる。 The alkenyl group is not particularly limited, but is preferably, for example, an alkenyl group having 2 to 18 carbon atoms, more preferably an alkenyl group having 2 to 10 carbon atoms. Specific examples include a vinyl group, an allyl group, and a 3-butenyl group.
 また、アルキニル基は、特に限定されないが、例えば、炭素数2~18のアルキニル基が好ましく、炭素数2~10のアルキニル基がより好ましい。具体的には、例えば、エチニル基、及びプロパ-2-イン-1-イル基(プロパルギル基)等が挙げられる。 The alkynyl group is not particularly limited, but is preferably, for example, an alkynyl group having 2 to 18 carbon atoms, more preferably an alkynyl group having 2 to 10 carbon atoms. Specific examples include an ethynyl group and a prop-2-yn-1-yl group (propargyl group).
 また、アルキルカルボニル基は、アルキル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数2~18のアルキルカルボニル基が好ましく、炭素数2~10のアルキルカルボニル基がより好ましい。具体的には、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、及びシクロヘキシルカルボニル基等が挙げられる。 The alkylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkyl group. For example, an alkylcarbonyl group having 2 to 18 carbon atoms is preferable, and an alkylcarbonyl group having 2 to 10 carbon atoms is more preferable. . Specific examples include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a hexanoyl group, an octanoyl group, and a cyclohexylcarbonyl group.
 また、アルケニルカルボニル基は、アルケニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルケニルカルボニル基が好ましく、炭素数3~10のアルケニルカルボニル基がより好ましい。具体的には、例えば、アクリロイル基、メタクリロイル基、及びクロトノイル基等が挙げられる。 The alkenylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkenyl group. For example, an alkenylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkenylcarbonyl group having 3 to 10 carbon atoms is more preferable. . Specific examples include an acryloyl group, a methacryloyl group, and a crotonoyl group.
 また、アルキニルカルボニル基は、アルキニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルキニルカルボニル基が好ましく、炭素数3~10のアルキニルカルボニル基がより好ましい。具体的には、例えば、プロピオロイル基等が挙げられる。 The alkynylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkynyl group. For example, an alkynylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkynylcarbonyl group having 3 to 10 carbon atoms is more preferable. . Specifically, for example, a propioloyl group and the like can be mentioned.
 また、上記式(2)中、Aは下記式(3)で、Bは下記式(4)でそれぞれ示される構造である: In the above formula (2), A is a structure represented by the following formula (3), and B is a structure represented by the following formula (4):
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(3)および(4)において、繰り返し単位であるmおよびnはそれぞれ0~20の整数を示す。 に お い て In the formulas (3) and (4), the repeating units m and n each represent an integer of 0 to 20.
 R11~R18は、それぞれ独立している。すなわち、R11~R18は、それぞれ同一の基であっても、異なる基であってもよい。また、本実施形態において、R11~R18は水素原子又はアルキル基である。 R 11 to R 18 are each independent. That is, R 11 to R 18 may be the same group or different groups. In the present embodiment, R 11 to R 18 are a hydrogen atom or an alkyl group.
 さらに、上記式(2)において、Yは、炭素数20以下の直鎖状、分岐状もしくは環状の炭化水素が挙げられる。より具体的には、下記式(5)で表される構造である: Further, in the above formula (2), Y is a linear, branched or cyclic hydrocarbon having 20 or less carbon atoms. More specifically, it is a structure represented by the following formula (5):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(5)中、R19及びR20は、それぞれ独立して、水素原子またはアルキル基を示す。前記アルキル基としては、例えば、メチル基等が挙げられる。また、式(5)で表される基としては、例えば、メチレン基、メチルメチレン基、及びジメチルメチレン基等が挙げられる。 In the formula (5), R 19 and R 20 each independently represent a hydrogen atom or an alkyl group. Examples of the alkyl group include a methyl group. Examples of the group represented by the formula (5) include a methylene group, a methylmethylene group, and a dimethylmethylene group.
 本実施形態において、ポリフェニレンエーテル化合物の重量平均分子量(Mw)は特に限定されないが、例えば、1000~5000であることが好ましく、1000~4000であることがより好ましい。なお、ここで、重量平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。また、ポリフェニレンエーテル化合物が、繰り返し単位(m、n)を分子中に有している場合、これらの繰り返し単位は、ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内になるような数値であることが好ましい。 In the present embodiment, the weight average molecular weight (Mw) of the polyphenylene ether compound is not particularly limited, but is, for example, preferably from 1,000 to 5,000, and more preferably from 1,000 to 4,000. Here, the weight average molecular weight may be a value measured by a general molecular weight measuring method, and specifically, a value measured using gel permeation chromatography (GPC) and the like can be mentioned. When the polyphenylene ether compound has a repeating unit (m, n) in the molecule, these repeating units have such a numerical value that the weight average molecular weight of the polyphenylene ether compound falls within such a range. Is preferred.
 ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内であると、ポリフェニレンエーテル骨格の有する優れた低誘電特性を有し、硬化物の耐熱性により優れるだけではなく、成形性にも優れたものとなる。このことは、以下のことによると考えられる。通常のポリフェニレンエーテルと比べると、重量平均分子量が上述したような範囲内であれば、比較的低分子量のものであるので、硬化物の耐熱性が低下する傾向がある。この点、本実施形態に係るポリフェニレンエーテル化合物は、末端に上記式(1)で示される構造を有するので、高い反応性を有し、硬化物の耐熱性が充分に高いものが得られると考えられる。また、ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内であると、スチレンやジビニルベンゼンと比較すると高分子量であるが、一般的なポリフェニレンエーテルよりは比較的低分子量のものであるので、成形性にも優れると考えられる。よって、このようなポリフェニレンエーテル化合物を用いることにより、硬化物の耐熱性により優れるだけではなく、成形性にも優れたものが得られると考えられる。 When the weight average molecular weight of the polyphenylene ether compound is within such a range, the polyphenylene ether skeleton has excellent low-dielectric properties and has not only excellent heat resistance of the cured product but also excellent moldability. Become. This is thought to be due to the following. If the weight average molecular weight is in the above-mentioned range as compared with ordinary polyphenylene ether, the cured product has a relatively low molecular weight, and thus the cured product tends to have reduced heat resistance. In this regard, since the polyphenylene ether compound according to the present embodiment has a structure represented by the above formula (1) at the terminal, it is considered that a compound having high reactivity and sufficiently high heat resistance of a cured product can be obtained. Can be Also, when the weight average molecular weight of the polyphenylene ether compound is within such a range, it has a higher molecular weight than styrene or divinylbenzene, but has a relatively low molecular weight than general polyphenylene ether. It is thought that it is also excellent. Therefore, it is considered that by using such a polyphenylene ether compound, not only the cured product having excellent heat resistance but also excellent moldability can be obtained.
 また、本実施形態で用いるポリフェニレンエーテル化合物における、変性ポリフェニレンエーテル1分子当たりの、分子末端に有する、前記X置換基の平均個数(末端官能基数)は、特に限定されない。具体的には、1~5個であることが好ましく、1~3個であることがより好ましい。この末端官能基数が少なすぎると、硬化物の耐熱性としては充分なものが得られにくい傾向がある。また、末端官能基数が多すぎると、反応性が高くなりすぎ、例えば、樹脂組成物の保存性が低下したり、樹脂組成物の流動性が低下してしまう等の不具合が発生するおそれがある。すなわち、このような変性ポリフェニレンエーテルを用いると、流動性不足等により、例えば、多層成形時にボイドが発生する等の成形不良が発生し、信頼性の高いプリント配線板が得られにくいという成形性の問題が生じるおそれがあった。 平均 In the polyphenylene ether compound used in the present embodiment, the average number (the number of terminal functional groups) of the X substituents at the molecular terminal per one molecule of the modified polyphenylene ether is not particularly limited. Specifically, the number is preferably 1 to 5, more preferably 1 to 3. If the number of the terminal functional groups is too small, the cured product tends to be insufficient in heat resistance. Further, when the number of terminal functional groups is too large, the reactivity becomes too high, and for example, problems such as a decrease in storage stability of the resin composition and a decrease in fluidity of the resin composition may occur. . That is, when such a modified polyphenylene ether is used, due to lack of fluidity or the like, for example, molding defects such as generation of voids during multilayer molding occur, and it is difficult to obtain a highly reliable printed wiring board. A problem could occur.
 なお、ポリフェニレンエーテル化合物の末端官能基数は、ポリフェニレンエーテル化合物1モル中に存在する全てのポリフェニレンエーテル化合物の1分子あたりの、前記置換基の平均値を表した数値等が挙げられる。この末端官能基数は、例えば、得られたポリフェニレンエーテル化合物に残存する水酸基数を測定して、変性前のポリフェニレンエーテルの水酸基数からの減少分を算出することによって、測定することができる。この変性前のポリフェニレンエーテルの水酸基数からの減少分が、末端官能基数である。そして、ポリフェニレンエーテル化合物に残存する水酸基数の測定方法は、ポリフェニレンエーテル化合物の溶液に、水酸基と会合する4級アンモニウム塩(テトラエチルアンモニウムヒドロキシド)を添加し、その混合溶液のUV吸光度を測定することによって、求めることができる。 The number of terminal functional groups of the polyphenylene ether compound includes a numerical value indicating the average value of the substituents per molecule of all the polyphenylene ether compounds present in 1 mol of the polyphenylene ether compound. The number of terminal functional groups can be measured, for example, by measuring the number of hydroxyl groups remaining in the obtained polyphenylene ether compound and calculating a decrease from the number of hydroxyl groups of the polyphenylene ether before modification. The decrease from the number of hydroxyl groups of the polyphenylene ether before modification is the number of terminal functional groups. The method for measuring the number of hydroxyl groups remaining in the polyphenylene ether compound is to add a quaternary ammonium salt (tetraethylammonium hydroxide) associated with a hydroxyl group to a solution of the polyphenylene ether compound and measure the UV absorbance of the mixed solution. Can be sought.
 また、本実施形態において用いられるポリフェニレンエーテル化合物の固有粘度は、特に限定されない。具体的には、0.03~0.12dl/gであればよいが、0.04~0.11dl/gであることが好ましく、0.06~0.095dl/gであることがより好ましい。この固有粘度が低すぎると、分子量が低い傾向があり、低誘電率や低誘電正接等の低誘電性が得られにくい傾向がある。また、固有粘度が高すぎると、粘度が高く、充分な流動性が得られず、硬化物の成形性が低下する傾向がある。よって、ポリフェニレンエーテル化合物の固有粘度が上記範囲内であれば、優れた、硬化物の耐熱性及び成形性を実現できる。 固有 Further, the intrinsic viscosity of the polyphenylene ether compound used in the present embodiment is not particularly limited. Specifically, the concentration may be 0.03 to 0.12 dl / g, preferably 0.04 to 0.11 dl / g, and more preferably 0.06 to 0.095 dl / g. . If the intrinsic viscosity is too low, the molecular weight tends to be low, and it tends to be difficult to obtain low dielectric properties such as a low dielectric constant and a low dielectric loss tangent. On the other hand, if the intrinsic viscosity is too high, the viscosity is high, sufficient fluidity cannot be obtained, and the moldability of the cured product tends to decrease. Therefore, when the intrinsic viscosity of the polyphenylene ether compound is within the above range, excellent heat resistance and moldability of the cured product can be realized.
 なお、ここでの固有粘度は、25℃の塩化メチレン中で測定した固有粘度であり、より具体的には、例えば、0.18g/45mlの塩化メチレン溶液(液温25℃)を、粘度計で測定した値等である。この粘度計としては、例えば、Schott社製のAVS500 Visco System等が挙げられる。 Note that the intrinsic viscosity here is an intrinsic viscosity measured in methylene chloride at 25 ° C. More specifically, for example, a 0.18 g / 45 ml methylene chloride solution (liquid temperature 25 ° C.) is measured using a viscometer. And the like. As the viscometer, for example, AVS500 {Visco} System manufactured by Schott and the like can be mentioned.
 なお、本実施形態の樹脂組成物には、上述したような、ポリフェニレンエーテル化合物以外の熱硬化性樹脂を含めてもよい。例えば、エポキシ樹脂、フェノール樹脂、アミン樹脂、不飽和ポリエステル樹脂、熱硬化性ポリイミド樹脂、マレイミド化合物等が使用可能なその他の熱硬化性樹脂として挙げられる。前記マレイミド化合物は変性マレイミド化合物であってもよく、具体的には、例えば、分子中の少なくとも一部がシリコーン化合物で変性されたマレイミド化合物やアミン化合物で変性されたマレイミド化合物等が挙げられる。 Note that the resin composition of the present embodiment may include a thermosetting resin other than the polyphenylene ether compound as described above. For example, other thermosetting resins that can be used include an epoxy resin, a phenol resin, an amine resin, an unsaturated polyester resin, a thermosetting polyimide resin, and a maleimide compound. The maleimide compound may be a modified maleimide compound, and specific examples include a maleimide compound in which at least a part of the molecule is modified with a silicone compound, a maleimide compound modified with an amine compound, and the like.
 また、本実施形態において好ましく用いられるポリフェニレンエーテル化合物の合成方法は、上述したような置換基Xにより末端変性され、かつ、得られる化合物の塩化物イオン量が250ppm以下である変性ポリフェニレンエーテル化合物を合成できる方法であれば、特に限定されない。具体的には、例えば、ポリフェニレンエーテルに、置換基Xとハロゲン原子とが結合された化合物を反応させる方法等が挙げられる。 The method for synthesizing a polyphenylene ether compound preferably used in the present embodiment is a method for synthesizing a modified polyphenylene ether compound in which the terminal is modified with the substituent X as described above and the chloride ion content of the obtained compound is 250 ppm or less. The method is not particularly limited as long as it can be performed. Specifically, for example, a method of reacting a compound in which a substituent X and a halogen atom are bonded to polyphenylene ether and the like can be mentioned.
 前記式(1)で示される置換基Xにおいて、炭素-炭素不飽和二重結合を有する基の位置は、p(パラ)、m(メタ)、o(オルト)のいずれであってもよい。より具体的には、前記合成方法において使用する、置換基Xとハロゲン原子とが結合された化合物は、例えば、p-クロロメチルスチレン、m-クロロメチルスチレン、o-クロロメチルスチレン等であってもよく、これらの化合物のうち一つを単独で使用してもよいが、2種~3種併用して使用することもできる。p-クロロメチルスチレン、m-クロロメチルスチレン、o-クロロメチルスチレンから2種以上併用して使用する場合、その使用割合(質量比)は特に限定されないが、使用例を挙げると、p-クロロメチルスチレンおよびm-クロロメチルスチレンを併用する場合、その使用割合(質量比、以下同じ)は、p-クロロメチルスチレン:m-クロロメチルスチレン=5~95:95~5程度であることが好ましい。また、p-クロロメチルスチレンおよびo-クロロメチルスチレンを併用する場合、その使用割合は、p-クロロメチルスチレン:o-クロロメチルスチレン=5~95:95~5程度であることが好ましく、m-クロロメチルスチレンとo-クロロメチルスチレンを使用する場合、その使用割合は、m-クロロメチルスチレン:o-クロロメチルスチレン=5~95:95~5程度であることが好ましい。さらに、3つを併用する場合、その使用割合は、p-クロロメチルスチレン:m-クロロメチルスチレン:o-クロロメチルスチレン=20~90:40~5:40~5程度であることが好ましい。 に お い て In the substituent X represented by the formula (1), the position of the group having a carbon-carbon unsaturated double bond may be any of p (para), m (meta), and o (ortho). More specifically, the compound in which the substituent X is bonded to a halogen atom used in the above synthesis method is, for example, p-chloromethylstyrene, m-chloromethylstyrene, o-chloromethylstyrene and the like. One of these compounds may be used alone, or two or three of them may be used in combination. When two or more kinds of p-chloromethylstyrene, m-chloromethylstyrene, and o-chloromethylstyrene are used in combination, the ratio of use (mass ratio) is not particularly limited. When methyl styrene and m-chloromethyl styrene are used in combination, the proportion (mass ratio, the same applies hereinafter) of p-chloromethyl styrene: m-chloromethyl styrene is preferably about 5-95: 95-5. . When p-chloromethylstyrene and o-chloromethylstyrene are used in combination, the ratio of p-chloromethylstyrene: o-chloromethylstyrene is preferably about 5 to 95:95 to 5; When -chloromethylstyrene and o-chloromethylstyrene are used, the ratio of m-chloromethylstyrene: o-chloromethylstyrene is preferably about 5-95: 95-5. Further, when three are used in combination, it is preferable that the use ratio is about p-chloromethylstyrene: m-chloromethylstyrene: o-chloromethylstyrene = 20 to 90:40 to 5:40 to 5.
 また、p-クロロメチルスチレン、m-クロロメチルスチレン、o-クロロメチルスチレンのうち2種以上併用して使用する場合は、p-クロロメチルスレンを少なくともその一つとして使用することが好ましい。さらには、p-クロロメチルスチレンを、使用されるクロロメチルスチレン全量に対して、40重量%以上で使用することが好ましく、更には50重量%以上、又さらには60重量%以上で使用することがより好ましい。 (4) When two or more of p-chloromethylstyrene, m-chloromethylstyrene and o-chloromethylstyrene are used in combination, it is preferable to use p-chloromethylsulene as at least one of them. More preferably, p-chloromethylstyrene is used in an amount of at least 40% by weight, more preferably at least 50% by weight, and even more preferably at least 60% by weight, based on the total amount of chloromethylstyrene used. Is more preferred.
 さらに、p-クロロメチルスチレン、m-クロロメチルスチレン、o-クロロメチルスチレンから選ばれる2種以上併用して式(1)で示される基を有するポリフェニレンエーテル化合物を合成する場合であって、当該ポリフェニレンエーテル化合物における式(1)が、Rが水素原子で、Rが炭素数1のアルキレン基であるようなエテニルベンジル基を含む場合、合成後の式(1)で示される置換基を有するポリフェニレンエーテル化合物における、p-エテニルベンジル基、m-エテニルベンジル基、o-エテニルベンジル基の比率はそれぞれの平均個数の割合で示される。 Further, a case where a polyphenylene ether compound having a group represented by the formula (1) is synthesized by using two or more kinds selected from p-chloromethylstyrene, m-chloromethylstyrene, and o-chloromethylstyrene in combination, When the formula (1) in the polyphenylene ether compound contains an ethenylbenzyl group in which R 1 is a hydrogen atom and R 2 is an alkylene group having 1 carbon atom, a substituent represented by the formula (1) after synthesis The ratio of the p-ethenylbenzyl group, the m-ethenylbenzyl group, and the o-ethenylbenzyl group in the polyphenylene ether compound having the formula (1) is represented by the ratio of each average number.
 具体的には、2種併用の場合、p-クロロメチルスチレンおよびm-クロロメチルスチレンを併用する際は、合成後の前記式(1)で示される基を有するポリフェニレンエーテル化合物における各基の平均個数の割合(平均個数比、以下同じ)は、p-エテニルベンジル基:m-エテニルベンジル基=5~95:95~5程度であることが好ましい。また、p-クロロメチルスチレンおよびo-クロロメチルスチレンを併用する場合、前記式(1)で示されるポリフェニレンエーテル化合物における各基の平均個数の割合は、p-エテニルベンジル基:o-エテニルベンジル基=5~95:95~5程度であることが好ましく、m-クロロメチルスチレンとo-クロロメチルスチレンを使用する場合、各基の平均個数の割合は、m-エテニルベンジル基:o-エテニルベンジル基=5~95:95~5程度であることが好ましい。さらに、p-クロロメチルスチレン、m-クロロメチルスチレン、o-クロロメチルスチレンの3つを併用する際は、合成後の前記式(1)で示される基を有するポリフェニレンエーテル化合物におけるp-エテニルベンジル基、m-エテニルベンジル基、o-エテニルベンジル基の平均個数の割合比は、p-エテニルベンジル基:m-エテニルベンジル基:o-エテニルベンジル基=20~90:40~5:40~5程度であることが好ましい。また前記式(1)で示される基を有するポリフェニレンエーテル化合物が、p-エテニルベンジル基、m-エテニルベンジル基、o-エテニルベンジル基のうち2種以上含む場合、p-エテニルベンジル基を含むことがより好ましく、さらには、前記式(1)で示される基を有するポリフェニレンエーテル化合物に含まれるエテニルベンジル基全数に対してp-エテニルベンジル基の割合が、40%以上が好ましく、更には50%以上、又さらには60%以上がより好ましい。 Specifically, when two kinds are used in combination, when p-chloromethylstyrene and m-chloromethylstyrene are used in combination, the average of each group in the polyphenylene ether compound having a group represented by the formula (1) after synthesis is used. The number ratio (average number ratio, hereinafter the same) is preferably about p-ethenylbenzyl group: m-ethenylbenzyl group = 5 to 95:95 to 5 or so. When p-chloromethylstyrene and o-chloromethylstyrene are used in combination, the ratio of the average number of each group in the polyphenylene ether compound represented by the above formula (1) is p-ethenylbenzyl group: o-ethenyl The benzyl group is preferably about 5 to 95:95 to 5. When m-chloromethylstyrene and o-chloromethylstyrene are used, the ratio of the average number of each group is m-ethenylbenzyl group: o -Ethenyl benzyl group = 5 to 95: preferably about 95 to 5. Further, when three of p-chloromethylstyrene, m-chloromethylstyrene, and o-chloromethylstyrene are used in combination, p-ethenyl in the polyphenylene ether compound having a group represented by the above formula (1) after synthesis is used. The ratio of the average number of benzyl groups, m-ethenylbenzyl groups and o-ethenylbenzyl groups is as follows: p-ethenylbenzyl group: m-ethenylbenzyl group: o-ethenylbenzyl group = 20 to 90:40 55: It is preferable to be about 40 ~ 5. When the polyphenylene ether compound having the group represented by the formula (1) contains two or more of p-ethenylbenzyl group, m-ethenylbenzyl group and o-ethenylbenzyl group, p-ethenylbenzyl More preferably, the ratio of the p-ethenylbenzyl group to the total number of ethenylbenzyl groups contained in the polyphenylene ether compound having the group represented by the formula (1) is 40% or more. It is more preferably at least 50%, and even more preferably at least 60%.
 原料であるポリフェニレンエーテルは、最終的に、所定の変性ポリフェニレンエーテルを合成することができるものであれば、特に限定されない。具体的には、2,6-ジメチルフェノールと2官能フェノール及び3官能フェノールの少なくともいずれか一方とからなるポリフェニレンエーテルやポリ(2,6-ジメチル-1,4-フェニレンオキサイド)等のポリフェニレンエーテルを主成分とするもの等が挙げられる。また、2官能フェノールとは、フェノール性水酸基を分子中に2個有するフェノール化合物であり、例えば、テトラメチルビスフェノールA等が挙げられる。また、3官能フェノールとは、フェノール性水酸基を分子中に3個有するフェノール化合物である。 ポ リ The raw material polyphenylene ether is not particularly limited as long as it can finally synthesize a predetermined modified polyphenylene ether. Specifically, a polyphenylene ether such as polyphenylene ether or poly (2,6-dimethyl-1,4-phenylene oxide) comprising 2,6-dimethylphenol and at least one of bifunctional phenol and trifunctional phenol is used. And the like as a main component. Further, the bifunctional phenol is a phenol compound having two phenolic hydroxyl groups in a molecule, for example, tetramethylbisphenol A and the like. The trifunctional phenol is a phenol compound having three phenolic hydroxyl groups in a molecule.
 ポリフェニレンエーテル化合物の合成方法の一例として、例えば、上記式(2)で示されるようなポリフェニレンエーテル化合物の場合、具体的には、上記のようなポリフェニレンエーテルと、置換基Xとハロゲン原子とが結合された化合物(置換基Xを有する化合物)とを溶媒に溶解させ、攪拌する。そうすることによって、ポリフェニレンエーテルと、置換基Xを有する化合物とが反応し、本実施形態の上記式(2)で示される変性ポリフェニレンエーテルが得られる。 As an example of a method for synthesizing a polyphenylene ether compound, for example, in the case of a polyphenylene ether compound represented by the above formula (2), specifically, the above-described polyphenylene ether is bonded to a substituent X and a halogen atom. The obtained compound (compound having a substituent X) is dissolved in a solvent and stirred. By doing so, the polyphenylene ether reacts with the compound having the substituent X to obtain the modified polyphenylene ether of the present embodiment represented by the above formula (2).
 また、この反応の際、アルカリ金属水酸化物の存在下で行うことが好ましい。そうすることによって、この反応が好適に進行すると考えられる。このことは、アルカリ金属水酸化物が、脱ハロゲン化水素剤、具体的には、脱塩酸剤として機能するためと考えられる。すなわち、アルカリ金属水酸化物が、ポリフェニレンエーテルのフェノール基と置換基Xを有する化合物とから、ハロゲン化水素を脱離させ、そうすることによって、ポリフェニレンエーテルのフェノール基の水素原子の代わりに、置換基Xが、フェノール基の酸素原子に結合すると考えられる。 It is preferable that this reaction is performed in the presence of an alkali metal hydroxide. By doing so, it is believed that this reaction proceeds favorably. This is presumably because the alkali metal hydroxide functions as a dehydrohalogenating agent, specifically, a dehydrochlorinating agent. That is, the alkali metal hydroxide removes the hydrogen halide from the phenol group of the polyphenylene ether and the compound having the substituent X, thereby replacing the hydrogen atom of the phenol group of the polyphenylene ether with a hydrogen atom. It is believed that group X is attached to the oxygen atom of the phenol group.
 また、アルカリ金属水酸化物は、脱ハロゲン化剤として働きうるものであれば、特に限定されないが、例えば、水酸化ナトリウム等が挙げられる。また、アルカリ金属水酸化物は、通常、水溶液の状態で用いられ、具体的には、水酸化ナトリウム水溶液として用いられる。 ア ル カ リ Alkali metal hydroxide is not particularly limited as long as it can function as a dehalogenating agent, and examples thereof include sodium hydroxide. The alkali metal hydroxide is usually used in the form of an aqueous solution, and specifically, is used as an aqueous sodium hydroxide solution.
 また、反応時間や反応温度等の反応条件は、置換基Xを有する化合物等によっても異なり、上記のような反応が好適に進行する条件であれば、特に限定されない。具体的には、反応温度は、室温~100℃であることが好ましく、30~100℃であることがより好ましい。また、反応時間は、0.5~20時間であることが好ましく、0.5~10時間であることがより好ましい。 The reaction conditions such as the reaction time and the reaction temperature vary depending on the compound having the substituent X and the like, and are not particularly limited as long as the above-mentioned reaction proceeds suitably. Specifically, the reaction temperature is preferably from room temperature to 100 ° C., more preferably from 30 to 100 ° C. Further, the reaction time is preferably 0.5 to 20 hours, more preferably 0.5 to 10 hours.
 また、反応時に用いる溶媒は、ポリフェニレンエーテルと、置換基Xを有する化合物とを溶解させることができ、ポリフェニレンエーテルと、置換基Xを有する化合物との反応を阻害しないものであれば、特に限定されない。具体的には、トルエン等が挙げられる。 The solvent used in the reaction is not particularly limited as long as it can dissolve the polyphenylene ether and the compound having the substituent X, and does not inhibit the reaction between the polyphenylene ether and the compound having the substituent X. . Specific examples include toluene.
 また、上記の反応は、アルカリ金属水酸化物だけではなく、相間移動触媒も存在した状態で反応させることが好ましい。すなわち、上記の反応は、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させることが好ましい。そうすることによって、上記反応がより好適に進行すると考えられる。このことは、以下のことによると考えられる。相間移動触媒は、アルカリ金属水酸化物を取り込む機能を有し、水のような極性溶剤の相と、有機溶剤のような非極性溶剤の相との両方の相に可溶で、これらの相間を移動することができる触媒であることによると考えられる。具体的には、アルカリ金属水酸化物として、水酸化ナトリウム水溶液を用い、溶媒として、水に相溶しない、トルエン等の有機溶剤を用いた場合、水酸化ナトリウム水溶液を、反応に供されている溶媒に滴下しても、溶媒と水酸化ナトリウム水溶液とが分離し、水酸化ナトリウムが、溶媒に移行しにくいと考えられる。そうなると、アルカリ金属水酸化物として添加した水酸化ナトリウム水溶液が、反応促進に寄与しにくくなると考えられる。これに対して、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させると、アルカリ金属水酸化物が相間移動触媒に取り込まれた状態で、溶媒に移行し、水酸化ナトリウム水溶液が、反応促進に寄与しやすくなると考えられる。このため、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させると、上記反応がより好適に進行すると考えられる。 In addition, the above reaction is preferably carried out in the presence of not only an alkali metal hydroxide but also a phase transfer catalyst. That is, the above reaction is preferably performed in the presence of an alkali metal hydroxide and a phase transfer catalyst. By doing so, it is considered that the above reaction proceeds more suitably. This is thought to be due to the following. The phase transfer catalyst has a function of incorporating an alkali metal hydroxide, and is soluble in both a polar solvent phase such as water and a non-polar solvent phase such as an organic solvent. This is considered to be due to the fact that the catalyst is capable of transporting. Specifically, when an aqueous solution of sodium hydroxide is used as the alkali metal hydroxide and an organic solvent such as toluene that is incompatible with water is used as the solvent, the aqueous solution of sodium hydroxide is used for the reaction. It is considered that even when the solvent is dropped, the solvent and the aqueous solution of sodium hydroxide are separated, and the sodium hydroxide is hardly transferred to the solvent. In that case, it is considered that the aqueous sodium hydroxide solution added as the alkali metal hydroxide hardly contributes to the promotion of the reaction. On the other hand, when the reaction is performed in the presence of the alkali metal hydroxide and the phase transfer catalyst, the alkali metal hydroxide is transferred to the solvent with the alkali metal hydroxide being taken into the phase transfer catalyst, and the aqueous sodium hydroxide solution reacts. It is thought that it will be easier to contribute to promotion. Therefore, when the reaction is performed in the presence of the alkali metal hydroxide and the phase transfer catalyst, it is considered that the above reaction proceeds more suitably.
 また、相間移動触媒は、特に限定されないが、例えば、テトラ-n-ブチルアンモニウムブロマイド等の第4級アンモニウム塩等が挙げられる。 The phase transfer catalyst is not particularly limited, and examples thereof include quaternary ammonium salts such as tetra-n-butylammonium bromide.
 そして、反応が終わった後、反応液にメタノール等のアルコールを投入して生成物を再沈殿させて、この沈殿物を濾過によって取り出す。それを洗浄するという工程を、数回(好ましくは、2回以上)繰り返すことによって、得られるポリフェニレンエーテル化合物の塩化物イオン量が250ppm以下にすることができる。 After the reaction is completed, alcohol such as methanol is added to the reaction solution to reprecipitate the product, and the precipitate is taken out by filtration. By repeating the washing step several times (preferably two or more times), the chloride ion content of the obtained polyphenylene ether compound can be reduced to 250 ppm or less.
 (架橋剤)
 次に、本実施形態において用いられ、架橋剤について説明する。本実施形態で用いられる架橋剤は、炭素-炭素不飽和二重結合を分子中に有する架橋剤若しくは前記ポリフェニレンエーテル化合物と反応して硬化させる架橋剤であれば、特に限定はない。
(Crosslinking agent)
Next, the crosslinking agent used in the present embodiment will be described. The cross-linking agent used in the present embodiment is not particularly limited as long as it is a cross-linking agent having a carbon-carbon unsaturated double bond in the molecule or a cross-linking agent which reacts with the polyphenylene ether compound to be cured.
 本実施形態の架橋剤は、炭素-炭素不飽和二重結合を分子中に有するか、あるいは、前記ポリフェニレンエーテル化合物との反応に寄与する官能基を分子中に少なくとも一つ以上有する化合物であるため、前記ポリフェニレンエーテル化合物と効率よく反応することができる。よって、本実施形態の樹脂組成物は高いTgや密着性を確保することができると考えられる。 The crosslinking agent of the present embodiment is a compound having a carbon-carbon unsaturated double bond in the molecule or having at least one functional group in the molecule that contributes to the reaction with the polyphenylene ether compound. , And can efficiently react with the polyphenylene ether compound. Therefore, it is considered that the resin composition of the present embodiment can secure high Tg and adhesion.
 本実施形態で使用できる架橋剤は、架橋剤1分子当たりの、炭素-炭素不飽和結合の平均個数(末端二重結合数)、若しくは、前記化合物(A)との反応に寄与する官能基の、架橋型硬化剤1分子当たりの平均個数(官能基数)は、架橋剤の重量平均分子量等によって異なる。末端二重結合数や官能基数としては、例えば、1~20個であることが好ましく、2~18個であることがより好ましい。この末端二重結合数や官能基数が少なすぎると、硬化物の耐熱性が充分になりにくい傾向がある。また、末端二重結合数や官能基数が多すぎると、架橋剤の反応性が高くなりすぎる。そのため、例えば、樹脂組成物の保存性が低下したり、樹脂組成物の流動性が低下してしまう等の不具合が発生し、得られた硬化物の成形性が低下するおそれがある。 The cross-linking agent that can be used in the present embodiment is an average number of carbon-carbon unsaturated bonds (number of terminal double bonds) per one molecule of the cross-linking agent, or a functional group that contributes to the reaction with the compound (A). The average number (number of functional groups) per molecule of the crosslinking type curing agent differs depending on the weight average molecular weight of the crosslinking agent and the like. The number of terminal double bonds and the number of functional groups are, for example, preferably from 1 to 20, more preferably from 2 to 18. If the number of terminal double bonds or the number of functional groups is too small, the cured product tends to have insufficient heat resistance. If the number of terminal double bonds or the number of functional groups is too large, the reactivity of the crosslinking agent becomes too high. For this reason, for example, problems such as a decrease in the storage stability of the resin composition and a decrease in the fluidity of the resin composition may occur, and the moldability of the obtained cured product may be reduced.
 また、架橋剤の末端二重結合数や官能基数は、架橋剤の重量平均分子量が500未満(例えば、100以上、500未満)の場合、1~4個であることが好ましい。また、架橋剤の末端二重結合数や官能基数は、架橋剤の重量平均分子量が500以上(例えば、500以上、5000以下)の場合、3~20個であることが好ましい。それぞれの場合で、末端二重結合数や官能基数が、上記範囲の下限値より少ないと、架橋剤の反応性が低下して、樹脂組成物の硬化物の架橋密度が低下し、耐熱性やTgを充分に向上させることができなくなるおそれがある。一方、末端二重結合数や官能基数が、上記範囲の上限値より多いと、樹脂組成物がゲル化しやすくなるおそれがある。 The number of terminal double bonds and the number of functional groups of the crosslinking agent are preferably 1 to 4 when the weight-average molecular weight of the crosslinking agent is less than 500 (for example, 100 or more and less than 500). Further, the number of terminal double bonds and the number of functional groups of the crosslinking agent are preferably 3 to 20 when the weight average molecular weight of the crosslinking agent is 500 or more (for example, 500 or more and 5000 or less). In each case, if the number of terminal double bonds or the number of functional groups is less than the lower limit of the above range, the reactivity of the crosslinking agent decreases, the crosslinking density of the cured product of the resin composition decreases, and the heat resistance and There is a possibility that Tg cannot be sufficiently improved. On the other hand, when the number of terminal double bonds or the number of functional groups is larger than the upper limit of the above range, the resin composition may be easily gelled.
 なお、ここでの末端二重結合数や官能基数は、使用する架橋剤の製品の規格値からわかる。ここでの末端二重結合数や官能基数としては、具体的には、例えば、架橋剤1モル中に存在する全ての架橋剤の1分子あたりの二重結合数や官能基数の平均値を表した数値等が挙げられる。 The number of terminal double bonds and the number of functional groups here can be found from the standard value of the product of the crosslinking agent used. As the number of terminal double bonds and the number of functional groups, specifically, for example, the average value of the number of double bonds and the number of functional groups per molecule of all the cross-linking agents present in 1 mol of the cross-linking agent is shown. And the like.
 具体的な架橋剤としては、炭素-炭素二重結合を分子中に2個以上有する化合物が好ましく、例えば、例えば、スチレン、スチレン共重合体、スチレン誘導体、分子中にアクリロイル基を有する化合物、分子中にメタクリロイル基を有する化合物、分子中にビニル基を有する化合物、分子中にアリル基を有する化合物、分子中にマレイミド基を有する化合物、分子中にアセナフチレン構造を有する化合物、及び分子中にイソシアヌレート基を有するイソシアヌレート化合物等が挙げられる。これらを用いると、硬化反応により架橋がより好適に形成されると考えられ、本実施形態で用いられる樹脂組成物の硬化物の耐熱性をより高めることができる。 As a specific crosslinking agent, a compound having two or more carbon-carbon double bonds in a molecule is preferable. For example, styrene, a styrene copolymer, a styrene derivative, a compound having an acryloyl group in a molecule, a molecule A compound having a methacryloyl group in the compound, a compound having a vinyl group in the molecule, a compound having an allyl group in the molecule, a compound having a maleimide group in the molecule, a compound having an acenaphthylene structure in the molecule, and an isocyanurate in the molecule And an isocyanurate compound having a group. When these are used, it is considered that crosslinking is more preferably formed by the curing reaction, and the heat resistance of the cured product of the resin composition used in the present embodiment can be further increased.
 前記スチレン誘導体としては、例えば、ブロモスチレン及びジブロモスチレン等が挙げられる。 Examples of the styrene derivative include bromostyrene and dibromostyrene.
 前記分子中にアクリロイル基を有する化合物は、アクリレート化合物である。前記アクリレート化合物としては、分子中にアクリロイル基を1個有する単官能アクリレート化合物、及び分子中にアクリロイル基を2個以上有する多官能アクリレート化合物が挙げられる。前記単官能アクリレート化合物としては、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、及びブチルアクリレート等が挙げられる。前記多官能アクリレート化合物としては、例えば、トリシクロデカンジメタノールジアクリレート等が挙げられる。 化合物 The compound having an acryloyl group in the molecule is an acrylate compound. Examples of the acrylate compound include a monofunctional acrylate compound having one acryloyl group in the molecule and a polyfunctional acrylate compound having two or more acryloyl groups in the molecule. Examples of the monofunctional acrylate compound include methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate. Examples of the polyfunctional acrylate compound include tricyclodecane dimethanol diacrylate.
 前記分子中にメタクリロイル基を有する化合物は、メタクリレート化合物である。前記メタクリレート化合物としては、分子中にメタクリロイル基を1個有する単官能メタクリレート化合物、及び分子中にメタクリロイル基を2個以上有する多官能メタクリレート化合物が挙げられる。前記単官能メタクリレート化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、及びブチルメタクリレート等が挙げられる。前記多官能メタクリレート化合物としては、例えば、トリシクロデカンジメタノールジメタクリレート等が挙げられる。 化合物 The compound having a methacryloyl group in the molecule is a methacrylate compound. Examples of the methacrylate compound include a monofunctional methacrylate compound having one methacryloyl group in the molecule and a polyfunctional methacrylate compound having two or more methacryloyl groups in the molecule. Examples of the monofunctional methacrylate compound include methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate. Examples of the polyfunctional methacrylate compound include tricyclodecane dimethanol dimethacrylate.
 前記分子中にビニル基を有する化合物は、ビニル化合物である。前記ビニル化合物としては、分子中にビニル基を1個有する単官能ビニル化合物(モノビニル化合物)、及び分子中にビニル基を2個以上有する多官能ビニル化合物が挙げられる。前記多官能ビニル化合物としては、多官能芳香族ビニル化合物、多官能脂肪族ビニル化合物、多官能芳香族ビニル化合物由来の構造を含む重合体又は共重合体、多官能脂肪族ビニル化合物由来の構造を含む重合体又は共重合体があげられ、例えば、ジビニルベンゼン、ジビニルベンゼン共重合体、ポリブタジエン、ブタジエン共重合体等が挙げられる。 化合物 The compound having a vinyl group in the molecule is a vinyl compound. Examples of the vinyl compound include a monofunctional vinyl compound having one vinyl group in the molecule (monovinyl compound) and a polyfunctional vinyl compound having two or more vinyl groups in the molecule. Examples of the polyfunctional vinyl compound include a polyfunctional aromatic vinyl compound, a polyfunctional aliphatic vinyl compound, a polymer or a copolymer containing a structure derived from the polyfunctional aromatic vinyl compound, and a structure derived from the polyfunctional aliphatic vinyl compound. Examples thereof include polymers or copolymers containing divinylbenzene, divinylbenzene copolymer, polybutadiene, and butadiene copolymer.
 前記分子中にアリル基を有する化合物が、アリル化合物である。前記アリル化合物としては、分子中にアリル基を1個有する単官能アリル化合物、及び分子中にアリル基を2個以上有する多官能アリル化合物が挙げられる。前記多官能アリル化合物としては、例えば、ジアリルフタレート(DAP)等が挙げられる。 化合物 The compound having an allyl group in the molecule is an allyl compound. Examples of the allyl compound include a monofunctional allyl compound having one allyl group in the molecule and a polyfunctional allyl compound having two or more allyl groups in the molecule. Examples of the polyfunctional allyl compound include diallyl phthalate (DAP).
 前記分子中にマレイミド基を有する化合物は、マレイミド化合物である。前記マレイミド化合物としては、分子中にマレイミド基を1個有する単官能マレイミド化合物、及び分子中にマレイミド基を2個以上有する多官能マレイミド化合物が挙げられる。また前記マレイミド化合物は、分子中の一部がアミン化合物で変性された変性マレイミド化合物、分子中の一部がシリコーン化合物で変性された変性マレイミド化合物、及び分子中の一部がアミン化合物及びシリコーン化合物で変性された変性マレイミド化合物等でもよい。 化合物 The compound having a maleimide group in the molecule is a maleimide compound. Examples of the maleimide compound include a monofunctional maleimide compound having one maleimide group in a molecule and a polyfunctional maleimide compound having two or more maleimide groups in a molecule. Further, the maleimide compound is a modified maleimide compound in which a part of the molecule is modified with an amine compound, a modified maleimide compound in which a part of the molecule is modified with a silicone compound, and a part of the molecule is an amine compound or a silicone compound. And a modified maleimide compound modified with the above.
 前記分子中にアセナフチレン構造を有する化合物は、アセナフチレン化合物である。前記アセナフチレン化合物としては、例えば、アセナフチレン、アルキルアセナフチレン類、ハロゲン化アセナフチレン類、及びフェニルアセナフチレン類等が挙げられる。前記アルキルアセナフチレン類としては、例えば、1-メチルアセナフチレン、3-メチルアセナフチレン、4-メチルアセナフチレン、5-メチルアセナフチレン、1-エチルアセナフチレン、3-エチルアセナフチレン、4-エチルアセナフチレン、5-エチルアセナフチレン等が挙げられる。前記ハロゲン化アセナフチレン類としては、例えば、1-クロロアセナフチレン、3-クロロアセナフチレン、4-クロロアセナフチレン、5-クロロアセナフチレン、1-ブロモアセナフチレン、3-ブロモアセナフチレン、4-ブロモアセナフチレン、5-ブロモアセナフチレン等が挙げられる。前記フェニルアセナフチレン類としては、例えば、1-フェニルアセナフチレン、3-フェニルアセナフチレン、4-フェニルアセナフチレン、5-フェニルアセナフチレン等が挙げられる。前記アセナフチレン化合物としては、前記のような、分子中にアセナフチレン構造を1個有する単官能アセナフチレン化合物であってもよいし、分子中にアセナフチレン構造を2個以上有する多官能アセナフチレン化合物であってもよい。 化合物 The compound having an acenaphthylene structure in the molecule is an acenaphthylene compound. Examples of the acenaphthylene compound include acenaphthylene, alkylacenaphthylenes, halogenated acenaphthylenes, and phenylacenaphthylenes. Examples of the alkyl acenaphthylenes include 1-methylacenaphthylene, 3-methylacenaphthylene, 4-methylacenaphthylene, 5-methylacenaphthylene, 1-ethylacenaphthylene, and 3-ethylacena Phthalene, 4-ethylacenaphthylene, 5-ethylacenaphthylene and the like. Examples of the halogenated acenaphthylenes include 1-chloroacenaphthylene, 3-chloroacenaphthylene, 4-chloroacenaphthylene, 5-chloroacenaphthylene, 1-bromoacenaphthylene, and 3-bromoacenaphthylene Len, 4-bromoacenaphthylene, 5-bromoacenaphthylene and the like. Examples of the phenylacenaphthylene include 1-phenylacenaphthylene, 3-phenylacenaphthylene, 4-phenylacenaphthylene, 5-phenylacenaphthylene and the like. The acenaphthylene compound may be a monofunctional acenaphthylene compound having one acenaphthylene structure in the molecule, or a polyfunctional acenaphthylene compound having two or more acenaphthylene structures in the molecule, as described above. .
 前記分子中にイソシアヌレート基を有する化合物が、イソシアヌレート化合物である。前記イソシアヌレート化合物としては、分子中にアルケニル基をさらに有する化合物(アルケニルイソシアヌレート化合物)等が挙げられ、例えば、トリアリルイソシアヌレート(TAIC)等のトリアルケニルイソシアヌレート化合物等が挙げられる。 化合物 The compound having an isocyanurate group in the molecule is an isocyanurate compound. Examples of the isocyanurate compound include a compound further having an alkenyl group in the molecule (alkenyl isocyanurate compound), and examples thereof include trialkenyl isocyanurate compounds such as triallyl isocyanurate (TAIC).
 前記架橋剤は、上記の中でも、例えば、分子中にアクリロイル基を2個以上有する多官能アクリレート化合物、分子中にメタクリロイル基を2個以上有する多官能メタアクリレート化合物、分子中にビニル基を2個以上有する多官能ビニル化合物、スチレン誘導体、分子中にアリル基を有するアリル化合物、分子中にマレイミド基を有するマレイミド化合物、分子中にアセナフチレン構造を有するアセナフチレン化合物、及び分子中にイソシアヌレート基を有するイソシアヌレート化合物が好ましい。 Examples of the crosslinking agent include, among the above, a polyfunctional acrylate compound having two or more acryloyl groups in the molecule, a polyfunctional methacrylate compound having two or more methacryloyl groups in the molecule, and two vinyl groups in the molecule. Polyfunctional vinyl compound having the above, a styrene derivative, an allyl compound having an allyl group in the molecule, a maleimide compound having a maleimide group in the molecule, an acenaphthylene compound having an acenaphthylene structure in the molecule, and an isocyanate having an isocyanurate group in the molecule Nurate compounds are preferred.
 前記架橋剤は、上記架橋剤を単独で用いてもよいし、2種以上組み合わせて用いてもよい。また、架橋剤としては、炭素-炭素不飽和結合を分子中に2個以上有する化合物と、炭素-炭素不飽和結合を分子中に1個有する化合物とを併用してもよい。 As the cross-linking agent, the above-mentioned cross-linking agents may be used alone or in combination of two or more. As the crosslinking agent, a compound having two or more carbon-carbon unsaturated bonds in a molecule and a compound having one carbon-carbon unsaturated bond in a molecule may be used in combination.
 (含有量・含有比)
 本実施形態の樹脂組成物において、前記ポリフェニレンエーテル化合物の含有量が、ポリフェニレンエーテル化合物と架橋剤との合計100質量部に対して、30~90質量部であることが好ましく、50~90質量部であることがより好ましい。また、前記架橋剤の含有量が、ポリフェニレンエーテル化合物と架橋剤との合計100質量部に対して、10~70質量部であることが好ましく、10~50質量部であることがより好ましい。すなわち、ポリフェニレンエーテル化合物と架橋剤との含有比が、質量比で90:10~30:70であることが好ましく、90:10~50:50であることが好ましい。ポリフェニレンエーテル及び架橋剤の各含有量が、上記比を満たすような含有量であれば、変性ポリフェニレンエーテルと架橋剤との硬化反応が好適に進行する。そのため、架橋物の耐熱性及び難燃性により優れた樹脂組成物になる。
(Content / content ratio)
In the resin composition of the present embodiment, the content of the polyphenylene ether compound is preferably 30 to 90 parts by mass, and more preferably 50 to 90 parts by mass based on 100 parts by mass of the total of the polyphenylene ether compound and the crosslinking agent. Is more preferable. Further, the content of the crosslinking agent is preferably 10 to 70 parts by mass, more preferably 10 to 50 parts by mass, based on 100 parts by mass of the total of the polyphenylene ether compound and the crosslinking agent. That is, the content ratio of the polyphenylene ether compound to the crosslinking agent is preferably from 90:10 to 30:70 by mass, and more preferably from 90:10 to 50:50. If the respective contents of the polyphenylene ether and the crosslinking agent satisfy the above ratio, the curing reaction between the modified polyphenylene ether and the crosslinking agent proceeds suitably. Therefore, the resin composition becomes more excellent in heat resistance and flame retardancy of the crosslinked product.
 (その他の成分)
 また、本実施形態に係る樹脂組成物は、前記ポリフェニレンエーテル化合物と前記架橋剤とを含むものであれば特に限定はされないが、他の成分をさらに含んでいてもよい。
(Other components)
The resin composition according to the present embodiment is not particularly limited as long as it contains the polyphenylene ether compound and the crosslinking agent, but may further contain other components.
 例えば、本実施形態に係る樹脂組成物は、さらに充填材を含有してもよい。充填材としては、樹脂組成物の硬化物の、耐熱性や難燃性を高めるために添加するもの等が挙げられ、特に限定されない。また、充填材を含有させることによって、耐熱性や難燃性等をさらに高めることができる。充填材としては、具体的には、球状シリカ等のシリカ、アルミナ、酸化チタン、及びマイカ等の金属酸化物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、タルク、ホウ酸アルミニウム、硫酸バリウム、及び炭酸カルシウム等が挙げられる。また、充填材としては、この中でも、シリカ、マイカ、及びタルクが好ましく、球状シリカがより好ましい。また、充填材は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、充填材としては、そのまま用いてもよいが、エポキシシランタイプ、ビニルシランタイプ、メタクリルシランタイプ、又はアミノシランタイプのシランカップリング剤で表面処理したものを用いてもよい。このシランカップリング剤としては、充填材に予め表面処理する方法でなく、インテグラルブレンド法で添加して用いてもよい。 For example, the resin composition according to the present embodiment may further contain a filler. Examples of the filler include, but are not particularly limited to, those added to the cured product of the resin composition to enhance heat resistance and flame retardancy. In addition, by including a filler, heat resistance, flame retardancy, and the like can be further increased. Specific examples of the filler include silica such as spherical silica, metal oxides such as alumina, titanium oxide and mica, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, talc, aluminum borate, and sulfuric acid. Barium, calcium carbonate, and the like. As the filler, silica, mica, and talc are preferable, and spherical silica is more preferable. Further, one kind of the filler may be used alone, or two or more kinds may be used in combination. The filler may be used as it is, or may be one that has been surface-treated with a silane coupling agent of an epoxy silane type, a vinyl silane type, a methacryl silane type, or an amino silane type. The silane coupling agent may be added by an integral blend method instead of a method of preliminarily surface-treating the filler.
 また、充填材を含有する場合、その含有量は前記ポリフェニレンエーテル化合物と前記架橋剤の合計100質量部に対して、10~200質量部であることが好ましく、30~150質量部であることがさらに好ましい。 When a filler is contained, the content is preferably 10 to 200 parts by mass, and more preferably 30 to 150 parts by mass with respect to 100 parts by mass of the total of the polyphenylene ether compound and the crosslinking agent. More preferred.
 さらに本実施形態の樹脂組成物には難燃剤が含まれていてもよく、難燃剤としては、例えば、臭素系難燃剤等のハロゲン系難燃剤やリン系難燃剤等が挙げられる。ハロゲン系難燃剤の具体例としては、例えば、ペンタブロモジフェニルエーテル、オクタブロモジフェニルエーテル、デカブロモジフェニルエーテル、テトラブロモビスフェノールA、ヘキサブロモシクロドデカン等の臭素系難燃剤や、塩素化パラフィン等の塩素系難燃剤等が挙げられる。また、リン系難燃剤の具体例としては、例えば、縮合リン酸エステル、環状リン酸エステル等のリン酸エステル、環状ホスファゼン化合物等のホスファゼン化合物、ジアルキルホスフィン酸アルミニウム塩等のホスフィン酸金属塩等のホスフィン酸塩系難燃剤、リン酸メラミン、及びポリリン酸メラミン等のメラミン系難燃剤、ジフェニルホスフィンオキサイド基を有するホスフィンオキサイド化合物等が挙げられる。難燃剤としては、例示した各難燃剤を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Furthermore, the resin composition of the present embodiment may contain a flame retardant. Examples of the flame retardant include a halogen-based flame retardant such as a bromine-based flame retardant and a phosphorus-based flame retardant. Specific examples of the halogen-based flame retardants include, for example, brominated flame retardants such as pentabromodiphenyl ether, octabromodiphenyl ether, decabromodiphenyl ether, tetrabromobisphenol A, hexabromocyclododecane, and chlorinated flame retardants such as chlorinated paraffin. And the like. Specific examples of the phosphorus-based flame retardant include, for example, condensed phosphates, phosphates such as cyclic phosphates, phosphazene compounds such as cyclic phosphazene compounds, metal phosphinates such as aluminum dialkylphosphinates, and the like. Examples include phosphinate-based flame retardants, melamine-based flame retardants such as melamine phosphate and melamine polyphosphate, and phosphine oxide compounds having a diphenylphosphine oxide group. As the flame retardant, each exemplified flame retardant may be used alone, or two or more flame retardants may be used in combination.
 難燃剤を含有する場合、その含有量は、前記ポリフェニレンエーテル化合物と前記架橋剤の合計100質量部に対して、10~40質量部であることが好ましく、15~30質質量部であることがさらに好ましい。 When a flame retardant is contained, the content is preferably from 10 to 40 parts by mass, and more preferably from 15 to 30 parts by mass, based on 100 parts by mass of the total of the polyphenylene ether compound and the crosslinking agent. More preferred.
 さらに、本実施形態に係る樹脂組成物には、上記以外にも各種添加剤を含有してもよい。添加剤としては、例えば、シリコーン系消泡剤及びアクリル酸エステル系消泡剤等の消泡剤、熱安定剤、帯電防止剤、紫外線吸収剤、染料や顔料、滑剤、湿潤分散剤等の分散剤等が挙げられる。 Furthermore, the resin composition according to the present embodiment may contain various additives in addition to the above. Examples of additives include antifoaming agents such as silicone-based antifoaming agents and acrylate-based antifoaming agents, heat stabilizers, antistatic agents, ultraviolet absorbers, dyes and pigments, lubricants, and dispersants such as wetting dispersants. Agents and the like.
 (プリプレグ、樹脂付きフィルム、金属張積層板、配線板、及び樹脂付き金属箔)
 次に、本実施形態の樹脂組成物を用いたプリプレグ、金属張積層板、配線板、及び樹脂付き金属箔について説明する。なお、以下で説明する図面における各符号は、1 プリプレグ、2 樹脂組成物又は樹脂組成物の半硬化物、3 繊維質基材、11 金属張積層板、12 絶縁層、13 金属箔、14 配線、21 配線基板、31 樹脂付き金属箔、32および42 樹脂層、41 樹脂付きフィルム、43 支持フィルムをそれぞれ意味する。
(Prepreg, film with resin, metal-clad laminate, wiring board, and metal foil with resin)
Next, a prepreg, a metal-clad laminate, a wiring board, and a resin-attached metal foil using the resin composition of the present embodiment will be described. Reference numerals in the drawings described below denote 1 prepreg, 2 semi-cured resin composition or resin composition, 3 fibrous base material, 11 metal-clad laminate, 12 insulating layer, 13 metal foil, 14 wiring , 21 wiring board, 31 metal foil with resin, 32 and 42 resin layer, 41 film with resin, 43 support film, respectively.
 図1は、本発明の実施形態に係るプリプレグ1の一例を示す概略断面図である。 FIG. 1 is a schematic sectional view showing an example of the prepreg 1 according to the embodiment of the present invention.
 本実施形態に係るプリプレグ1は、図1に示すように、前記樹脂組成物又は前記樹脂組成物の半硬化物2と、繊維質基材3とを備える。このプリプレグ1としては、前記樹脂組成物又はその半硬化物2の中に繊維質基材3が存在するものが挙げられる。すなわち、このプリプレグ1は、前記樹脂組成物又はその半硬化物と、前記樹脂組成物又はその半硬化物2の中に存在する繊維質基材3とを備える。 プ リ The prepreg 1 according to the present embodiment includes the resin composition or a semi-cured product 2 of the resin composition and a fibrous base material 3 as shown in FIG. Examples of the prepreg 1 include a resin composition or a semi-cured product 2 in which a fibrous base material 3 is present. That is, the prepreg 1 includes the resin composition or the semi-cured product thereof, and the fibrous base material 3 existing in the resin composition or the semi-cured product 2 thereof.
 本実施形態のプリプレグや後述する樹脂付フィルムおよび樹脂付金属箔中における樹脂組成物または樹脂組成物の半硬化物中のClイオン量は、0ppm~40ppm程度であることが好ましい。コストの観点からは、1ppm~40ppmであることがより好ましく、2ppm~40ppmであることがさらに好ましい。前記樹脂組成物または樹脂組成物の半硬化物中のClイオン量は、後述の実施例に記載の方法で測定することができる。 Cl The amount of Cl ions in the resin composition or the semi-cured product of the resin composition in the prepreg of the present embodiment, the resin-attached film and the resin-attached metal foil described below is preferably about 0 ppm to 40 ppm. From the viewpoint of cost, the content is more preferably 1 ppm to 40 ppm, further preferably 2 ppm to 40 ppm. The amount of Cl ions in the resin composition or the semi-cured product of the resin composition can be measured by a method described in Examples described later.
 さらに、本実施形態のプリプレグや後述する樹脂付フィルムおよび樹脂付金属箔中における樹脂組成物または樹脂組成物の半硬化物には、上述のClイオン以外にも、臭化物イオン(Br)硝酸イオン(NO )、硫酸イオン(SO )、亜硝酸イオン(NO )、リン酸イオン(PO 3-)、ナトリウムイオン(Na)、アンモニウムイオン(NH )、カルシウムイオン(Ca2+)等のイオン性不純物も含まれている場合もある。これらのイオン性不純物は、特に限定されないが、できる限り低濃度であることが好ましく、例えば、イオン性不純物を含有する場合、臭化物イオン(Br)硝酸イオン(NO )、硫酸イオン(SO )、亜硝酸イオン(NO )、リン酸イオン(PO 3-)、ナトリウムイオン(Na)、アンモニウムイオン(NH )、カルシウムイオン(Ca2+)が、各30ppm以下であることが好ましい。 Furthermore, in addition to the above-mentioned Cl ion, bromide ion (Br ) nitrate ion is contained in the prepreg of the present embodiment, the resin composition or the semi-cured product of the resin composition in the resin-added film and the resin-added metal foil described below. (NO 3 ), sulfate ion (SO 4 ), nitrite ion (NO 2 ), phosphate ion (PO 4 3− ), sodium ion (Na + ), ammonium ion (NH 4 + ), calcium ion In some cases, ionic impurities such as (Ca 2+ ) are also contained. These ionic impurities are not particularly limited, but are preferably as low as possible. For example, when ionic impurities are contained, bromide ion (Br ) nitrate ion (NO 3 ), sulfate ion (SO 3 ) 4 ), nitrite ion (NO 2 ), phosphate ion (PO 4 3− ), sodium ion (Na + ), ammonium ion (NH 4 + ), and calcium ion (Ca 2+ ) are 30 ppm or less, respectively. Preferably, there is.
 したがって、本発明には、分子末端に下記式(1)で表される基を有するポリフェニレンエーテル化合物と、炭素-炭素不飽和二重結合を分子中に有する架橋剤とを、含むこと、並びに、 Accordingly, the present invention includes a polyphenylene ether compound having a group represented by the following formula (1) at a molecular terminal, and a crosslinking agent having a carbon-carbon unsaturated double bond in the molecule;
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[式(1)中、Rは、水素原子、又は炭素数1~10のアルキル基を示し、Rは、炭素数1~10のアルキレン基を示す。]
 樹脂組成物または樹脂組成物の半硬化物における塩化物イオン量が、40ppm以下であることを特徴とする、樹脂組成物をも包含される。
[In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 2 represents an alkylene group having 1 to 10 carbon atoms. ]
A resin composition characterized in that the amount of chloride ions in the resin composition or the semi-cured product of the resin composition is 40 ppm or less.
 なお、本実施形態において、「半硬化物」とは、樹脂組成物を、さらに硬化しうる程度に途中まで硬化された状態のものである。すなわち、半硬化物は、樹脂組成物を半硬化した状態の(Bステージ化された)ものである。例えば、樹脂組成物は、加熱すると、最初、粘度が徐々に低下し、その後、硬化が開始し、粘度が徐々に上昇する。このような場合、半硬化としては、粘度が上昇し始めてから、完全に硬化する前の間の状態等が挙げられる。 In the present embodiment, the “semi-cured material” is a resin composition in which the resin composition has been cured halfway so that it can be further cured. That is, the semi-cured product is a semi-cured resin composition (B-staged). For example, when heated, the viscosity of the resin composition first decreases gradually, and thereafter, the curing starts, and the viscosity gradually increases. In such a case, the semi-cured state includes a state after the viscosity starts to increase and before complete curing.
 本実施形態に係る樹脂組成物を用いて得られるプリプレグとしては、上記のような、前記樹脂組成物の半硬化物を備えるものであってもよいし、また、硬化させていない前記樹脂組成物そのものを備えるものであってもよい。すなわち、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)と、繊維質基材とを備えるプリプレグであってもよいし、硬化前の前記樹脂組成物(Aステージの前記樹脂組成物)と、繊維質基材とを備えるプリプレグであってもよい。具体的には、例えば、前記樹脂組成物の中に繊維質基材が存在するもの等が挙げられる。なお、樹脂組成物またはその半硬化物は、前記樹脂組成物を乾燥または加熱乾燥したものであってもよい。 The prepreg obtained by using the resin composition according to the present embodiment may include a semi-cured product of the resin composition as described above, or may include the resin composition that is not cured. It may be provided with itself. That is, a prepreg including a semi-cured product of the resin composition (the B-stage resin composition) and a fibrous base material may be used, or the resin composition before curing (the A-stage resin composition) ) And a prepreg comprising a fibrous base material. Specifically, for example, a resin composition in which a fibrous base material exists in the resin composition may be used. In addition, the resin composition or the semi-cured product thereof may be obtained by drying or heating and drying the resin composition.
 本実施形態のワニス状の樹脂組成物を用いて本実施形態のプリプレグ1を製造する方法としては、例えば、樹脂ワニス状の樹脂組成物2を繊維質基材3に含浸させた後、乾燥する方法が挙げられる。 As a method for producing the prepreg 1 of the present embodiment using the varnish-like resin composition of the present embodiment, for example, a resin varnish-like resin composition 2 is impregnated into a fibrous base material 3 and then dried. Method.
 プリプレグを製造する際に用いられる繊維質基材としては、具体的には、例えば、ガラスクロス、アラミドクロス、ポリエステルクロス、LCP(液晶ポリマー)不織布、ガラス不織布、アラミド不織布、ポリエステル不織布、パルプ紙、及びリンター紙等が挙げられる。なお、ガラスクロスを用いると、機械強度が優れた積層板が得られ、特に偏平処理加工したガラスクロスが好ましい。本実施形態で使用するガラスクロスとしては特に限定はされないが、例えば、Eガラス、Sガラス、NEガラス、QガラスやLガラスなどの低誘電率ガラスクロス等が挙げられる。偏平処理加工としては、具体的には、例えば、ガラスクロスを適宜の圧力でプレスロールにて連続的に加圧してヤーンを偏平に圧縮することにより行うことができる。なお、繊維質基材の厚みとしては、例えば、0.01~0.3mmのものを一般的に使用できる。 Specific examples of the fibrous base material used in producing the prepreg include, for example, glass cloth, aramid cloth, polyester cloth, LCP (liquid crystal polymer) nonwoven cloth, glass nonwoven cloth, aramid nonwoven cloth, polyester nonwoven cloth, pulp paper, And linter paper. When a glass cloth is used, a laminate having excellent mechanical strength can be obtained, and particularly, a flattened glass cloth is preferable. The glass cloth used in the present embodiment is not particularly limited, and examples thereof include E glass, S glass, NE glass, low dielectric glass cloth such as Q glass and L glass. Specifically, for example, the flattening treatment can be performed by continuously pressing the glass cloth with an appropriate pressure with a press roll to compress the yarn flatly. As the thickness of the fibrous base material, for example, a thickness of 0.01 to 0.3 mm can be generally used.
 樹脂ワニス(樹脂組成物2)の繊維質基材3への含浸は、浸漬及び塗布等によって行われる。この含浸は、必要に応じて複数回繰り返すことも可能である。また、この際、組成や濃度の異なる複数の樹脂ワニスを用いて含浸を繰り返し、最終的に希望とする組成(含有比)及び樹脂量に調整することも可能である。 繊 維 The impregnation of the fibrous base material 3 with the resin varnish (resin composition 2) is performed by dipping and coating. This impregnation can be repeated a plurality of times as necessary. At this time, it is also possible to repeat the impregnation using a plurality of resin varnishes having different compositions and concentrations to finally adjust the composition (content ratio) and the desired resin amount to the desired values.
 樹脂ワニス(樹脂組成物2)が含浸された繊維質基材3を、所望の加熱条件、例えば、80℃以上、180℃以下で1分間以上、10分間以下で加熱する。加熱によって、ワニスから溶媒を揮発させ、溶媒を減少又は除去させて、硬化前(Aステージ)又は半硬化状態(Bステージ)のプリプレグ1が得られる。 (4) The fibrous base material 3 impregnated with the resin varnish (resin composition 2) is heated under desired heating conditions, for example, at 80 ° C. or more and 180 ° C. or less for 1 minute or more and 10 minutes or less. By heating, the solvent is volatilized from the varnish to reduce or remove the solvent, and the prepreg 1 before curing (A stage) or semi-cured state (B stage) is obtained.
 また、図4に示すように、本実施形態の樹脂付金属箔31は、上述した樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層32と金属箔13とが積層されている構成を有する。すなわち、本実施形態の樹脂付金属箔は、硬化前の前記樹脂組成物(Aステージの前記樹脂組成物)を含む樹脂層と、金属箔とを備える樹脂付金属箔であってもよいし、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)を含む樹脂層と、金属箔とを備える樹脂付金属箔であってもであってもよい。 As shown in FIG. 4, the resin-attached metal foil 31 of the present embodiment has a configuration in which the resin layer 32 containing the above-described resin composition or a semi-cured product of the resin composition and the metal foil 13 are laminated. Having. That is, the resin-attached metal foil of the present embodiment may be a resin-attached metal foil including the resin layer containing the resin composition before curing (the A-stage resin composition) and a metal foil, It may be a resin-attached metal foil including a resin layer containing a semi-cured product of the resin composition (the B-stage resin composition) and a metal foil.
 そのような樹脂付金属箔31を製造する方法としては、例えば、上述したような樹脂ワニス状の樹脂組成物を銅箔などの金属箔13の表面に塗布した後、乾燥する方法が挙げられる。前記塗布方法としては、バーコーター、コンマコーターやダイコーター、ロールコーター、グラビアコータ等が挙げられる。 方法 As a method of manufacturing such a resin-attached metal foil 31, for example, a method of applying the resin varnish-like resin composition as described above to the surface of the metal foil 13 such as a copper foil, followed by drying. Examples of the coating method include a bar coater, a comma coater, a die coater, a roll coater, and a gravure coater.
 前記金属箔13としては、金属張積層板や配線基板等で使用される金属箔を限定なく用いることができ、例えば、銅箔及びアルミニウム箔等が挙げられる。 、 As the metal foil 13, a metal foil used for a metal-clad laminate, a wiring board, or the like can be used without limitation, and examples thereof include a copper foil and an aluminum foil.
 さらに、図5に示すように、本実施形態の樹脂付きフィルム41は、上述した樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層42とフィルム支持基材43とが積層されている構成を有する。すなわち、本実施形態の樹脂付フィルムは、硬化前の前記樹脂組成物(Aステージの前記樹脂組成物)と、フィルム支持基材とを備える樹脂付フィルムであってもよいし、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)と、フィルム支持基材とを備える樹脂付フィルムであってもであってもよい。 Further, as shown in FIG. 5, the resin-attached film 41 of the present embodiment has a resin layer 42 containing the above-described resin composition or a semi-cured product of the resin composition, and a film supporting substrate 43 laminated thereon. Having a configuration. That is, the resin-attached film of the present embodiment may be a resin-attached film including the resin composition before curing (the A-stage resin composition) and a film supporting substrate, or may be a resin-attached film. And a resin-attached film comprising a semi-cured product of the above (B-stage resin composition) and a film supporting substrate.
 そのような樹脂付きフィルム41を製造する方法としては、例えば、上述したような樹脂ワニス状の樹脂組成物をフィルム支持基材43表面に塗布した後、ワニスから溶媒を揮発させて、溶媒を減少させる、又は溶媒を除去させることにより、硬化前(Aステージ)又は半硬化状態(Bステージ)の樹脂付フィルムを得ることができる。 As a method for manufacturing such a resin-attached film 41, for example, after applying the resin varnish-like resin composition as described above to the surface of the film supporting base material 43, the solvent is volatilized from the varnish to reduce the solvent. By causing the solvent or removing the solvent, a resin-coated film before curing (A stage) or in a semi-cured state (B stage) can be obtained.
 前記フィルム支持基材としては、ポリイミドフィルム、PET(ポリエチレンテレフタレート)フィルム、ポリエステルフィルム、ポリパラバン酸フィルム、ポリエーテルエーテルケトンフィルム、ポリフェニレンスルフィドフィルム、アラミドフィルム、ポリカーボネートフィルム、ポリアリレートフィルム等の電気絶縁性フィルム等が挙げられる。 Examples of the film supporting substrate include electrical insulating films such as polyimide films, PET (polyethylene terephthalate) films, polyester films, polyparabanic acid films, polyetheretherketone films, polyphenylene sulfide films, aramid films, polycarbonate films, and polyarylate films. And the like.
 なお、本実施形態の樹脂付フィルム及び樹脂付金属箔においても、上述したプリプレグと同様、樹脂組成物またはその半硬化物は、前記樹脂組成物を乾燥または加熱乾燥したものであってもよい。 In the resin-attached film and the resin-attached metal foil of the present embodiment, the resin composition or the semi-cured product thereof may be obtained by drying or heating and drying the resin composition, as in the case of the prepreg described above.
 上記金属箔13やフィルム支持基材43の厚み等は、所望の目的に応じて、適宜設定することができる。例えば、金属箔13としては、0.2~70μm程度のものを使用できる。金属箔の厚さが例えば10μm以下となる場合などは、ハンドリング性向上のために剥離層及びキャリアを備えたキャリア付銅箔であってもよい。樹脂ワニスの金属箔13やフィルム支持基材43への適用は、塗布等によって行われるが、それは必要に応じて複数回繰り返すことも可能である。また、この際、組成や濃度の異なる複数の樹脂ワニスを用いて塗布を繰り返し、最終的に希望とする組成(含有比)及び樹脂量に調整することも可能である。 厚 み The thickness and the like of the metal foil 13 and the film support base 43 can be appropriately set according to a desired purpose. For example, a metal foil 13 having a thickness of about 0.2 to 70 μm can be used. When the thickness of the metal foil is, for example, 10 μm or less, a copper foil with a carrier provided with a release layer and a carrier may be used to improve the handleability. The application of the resin varnish to the metal foil 13 and the film support base 43 is performed by coating or the like, but this can be repeated a plurality of times as necessary. Further, at this time, it is also possible to repeatedly apply by using a plurality of resin varnishes having different compositions and concentrations to finally adjust the composition (content ratio) and the amount of the resin to the desired values.
 樹脂付金属箔31や樹脂フィルム41の製造方法における乾燥もしくは加熱乾燥条件について、特に限定はされないが、樹脂ワニス状の樹脂組成物を上記金属箔13やフィルム支持基材43に塗布した後、所望の加熱条件、例えば、80~170℃で1~10分間程度加熱して、ワニスから溶媒を揮発させて、溶媒を減少又は除去させることにより、硬化前(Aステージ)又は半硬化状態(Bステージ)の樹脂付金属箔31や樹脂フィルム41が得られる。 The drying or heating and drying conditions in the method for producing the resin-attached metal foil 31 and the resin film 41 are not particularly limited, but after applying the resin varnish-like resin composition to the metal foil 13 or the film supporting base material 43, By heating at 80 to 170 ° C. for about 1 to 10 minutes to evaporate the solvent from the varnish and reduce or remove the solvent, a pre-curing (A stage) or semi-curing state (B stage) The resin-coated metal foil 31 and the resin film 41 are obtained.
 樹脂付金属箔31や樹脂フィルム41は、必要に応じて、カバーフィルム等を備えてもよい。カバーフィルムを備えることにより異物の混入等を防ぐことができる。カバーフィルムとしては樹脂組成物の形態を損なうことなく剥離することができるものであれば特に限定されるものではないが、例えば、ポリオレフィンフィルム、ポリエステルフィルム、TPXフィルム、またこれらのフィルムに離型剤層を設けて形成されたフィルム、さらにはこれらのフィルムを紙基材上にラミネートした紙等を用いることができる。 金属 The resin-attached metal foil 31 and the resin film 41 may be provided with a cover film or the like as necessary. The provision of the cover film can prevent foreign substances from being mixed. The cover film is not particularly limited as long as it can be peeled off without damaging the form of the resin composition. For example, a polyolefin film, a polyester film, a TPX film, and a release agent Films formed by providing layers, and paper or the like obtained by laminating these films on a paper substrate can be used.
 図2に示すように、本実施形態の金属張積層板11は、上述の樹脂組成物の硬化物または上述のプリプレグの硬化物を含む絶縁層12と、金属箔13とを有することを特徴とする。なお、金属張積層板11で使用する金属箔13としては、上述した金属箔13と同様ものを使用することができる。 As shown in FIG. 2, the metal-clad laminate 11 of the present embodiment includes an insulating layer 12 containing a cured product of the above-described resin composition or a cured product of the above-described prepreg, and a metal foil 13. I do. In addition, as the metal foil 13 used in the metal-clad laminate 11, the same metal foil 13 as described above can be used.
 また、本実施形態の金属張積層板13は、上述の樹脂付金属箔31や樹脂フィルム41を用いて作成することもできる。 金属 Moreover, the metal-clad laminate 13 of this embodiment can also be produced using the above-mentioned resin-attached metal foil 31 or resin film 41.
 上記のようにして得られたプリプレグ1、樹脂付金属箔31や樹脂フィルム41を用いて金属張積層板を作製する方法としては、プリプレグ1、樹脂付金属箔31や樹脂フィルム41を一枚または複数枚重ね、さらにその上下の両面又は片面に銅箔等の金属箔13を重ね、これを加熱加圧成形して積層一体化することによって、両面金属箔張り又は片面金属箔張りの積層体を作製することができるものである。加熱加圧条件は、製造する積層板の厚みや樹脂組成物の種類等により適宜設定することができるが、例えば、温度を170~220℃、圧力を1.5~5.0MPa、時間を60~150分間とすることができる。 As a method of manufacturing a metal-clad laminate using the prepreg 1, the resin-coated metal foil 31 or the resin film 41 obtained as described above, the prepreg 1, the resin-coated metal foil 31 or the resin film 41 may be used as one sheet or By laminating a plurality of sheets, further stacking a metal foil 13 such as a copper foil on both upper and lower surfaces or one surface thereof, forming the laminate by heating and pressing, and forming a double-sided metal foil-clad or single-sided metal foil-clad laminate. It can be produced. The heating and pressing conditions can be appropriately set depending on the thickness of the laminate to be manufactured, the type of the resin composition, and the like. For example, the temperature is 170 to 220 ° C., the pressure is 1.5 to 5.0 MPa, and the time is 60. It can be up to 150 minutes.
 また、金属張積層板11は、プリプレグ1等を用いずに、フィルム状の樹脂組成物を金属箔13の上に形成し、加熱加圧することにより作製されてもよい。 金属 Moreover, the metal-clad laminate 11 may be produced by forming a film-shaped resin composition on the metal foil 13 without using the prepreg 1 or the like, and applying heat and pressure.
 そして、図3に示すように、本実施形態の配線基板21は、上述の樹脂組成物の硬化物又は上述のプリプレグの硬化物を含む絶縁層12と、配線14とを有する。 Then, as shown in FIG. 3, the wiring board 21 of the present embodiment includes the insulating layer 12 including the cured product of the above-described resin composition or the cured product of the above-described prepreg, and the wiring 14.
 本実施形態の樹脂組成物は、配線基板の層間絶縁層の材料として使用されることが好ましい。特に限定はされないが、例えば、回路層を10層以上、更には15層以上有する多層配線板の層間絶縁層の材料に使用されることが好ましい。 樹脂 The resin composition of the present embodiment is preferably used as a material for an interlayer insulating layer of a wiring board. Although not particularly limited, for example, it is preferably used as a material of an interlayer insulating layer of a multilayer wiring board having 10 or more circuit layers, and more preferably 15 or more layers.
 また、上記の層間絶縁層の材料としては、本実施形態の樹脂組成物からなる絶縁層を復数層使用することが好ましい。特に限定はされないが、例えば、10層以上で使用することが好ましい。これにより、多層配線板において、導体回路パターンをより高密度化でき、複数の層間絶縁層でのより低い誘電特性と、導体回路パターン間での絶縁信頼性、層間回路間での絶縁性をより向上できると考えられる。更には、多層配線基板における信号の伝送速度を高め、信号伝送時の損失を低減できる等の効果も得られる。 復 As a material of the interlayer insulating layer, it is preferable to use a plurality of insulating layers made of the resin composition of the present embodiment. Although not particularly limited, for example, it is preferable to use 10 or more layers. As a result, in the multilayer wiring board, the density of the conductive circuit patterns can be further increased, and the lower dielectric properties of the plurality of interlayer insulating layers, the insulation reliability between the conductive circuit patterns, and the insulating property between the interlayer circuits can be improved. It can be improved. Further, effects such as an increase in signal transmission speed in the multilayer wiring board and a reduction in signal transmission loss can be obtained.
 そのような配線基板21の製造方法としては、例えば、上記で得られた金属張積層体13の表面の金属箔13をエッチング加工等して回路(配線)形成をすることによって、積層体の表面に回路として導体パターン(配線14)を設けた配線基板21を得ることができる。回路形成する方法としては、上記記載の方法以外に、例えば、セミアディティブ法(SAP:Semi Additive Process)やモディファイドセミアディティブ法(MSAP:Modified Semi Additive Process)による回路形成等が挙げられる。 As a method for manufacturing such a wiring board 21, for example, a circuit (wiring) is formed by etching the metal foil 13 on the surface of the metal-clad laminate 13 obtained above to form a circuit (wiring). A wiring board 21 provided with a conductor pattern (wiring 14) as a circuit can be obtained. As a method of forming a circuit, in addition to the method described above, for example, a circuit formation by a semi-additive method (SAP: Semi @ Additive @ Process) or a modified semi-additive method (MSAP: Modified @ Semi @ Additive @ Process) may be mentioned.
 本実施形態の樹脂組成物を用いれば、上述したような回路が形成された配線基板であって、回路間の距離が150μm以下であるような導体回路パターンを有する基板においても優れた絶縁信頼性を確保することができる。ここで回路間の距離とは、図6に示すように、隣り合う二つの配線(導体回路)(L)の間の距離(スペース)Sを意味する。また、本実施形態の配線基板においては、回路間の距離がすべて150μm以下である必要はなく、少なくとも一部に回路間距離が150μm以下となっている個所があればよい。 By using the resin composition of the present embodiment, excellent insulation reliability can be obtained even on a wiring board on which a circuit as described above is formed, and a substrate having a conductive circuit pattern in which the distance between circuits is 150 μm or less. Can be secured. Here, the distance between circuits means a distance (space) S between two adjacent wirings (conductor circuits) (L), as shown in FIG. Further, in the wiring board of the present embodiment, the distance between the circuits does not need to be all 150 μm or less, and it is sufficient that at least a part has a distance between the circuits of 150 μm or less.
 このように基板内に回路間の距離を150μm以下となる箇所を少なくとも一部を含む導体回路パターンを有する基板にすることで、より基板内の導体回路パターンを高密度にすることができ、配線基板を小さくできる。また導体回路幅が、150μm以下の導体回路パターンを含むことで更に、導体回路パターンを高密度化できる。更にまた、導体回路パターンの一部の信号線を短くでき、より伝送損失の低く、更には高速な伝送が可能となる。 By providing a substrate having a conductor circuit pattern including at least a portion where the distance between circuits is 150 μm or less in the substrate in this way, the conductor circuit pattern in the substrate can be further increased in density, and The substrate can be made smaller. In addition, by including a conductor circuit pattern having a conductor circuit width of 150 μm or less, the density of the conductor circuit pattern can be further increased. Furthermore, a part of the signal line of the conductor circuit pattern can be shortened, so that transmission loss can be further reduced and high-speed transmission can be performed.
 本実施形態の樹脂組成物を用いることにより、この回路距離がより小さい場合でも、本実施形態の樹脂組成物は上記効果(絶縁性信頼性)を発揮することができる。例えば、導体回路間の距離が150μm以下、あるいは100μm以下や75μm以下、さらには50μm以下であっても絶縁信頼性を示すことができる。よって、本実施形態の樹脂組成物は、配線間の距離が細かい配線(回路)基板に好適に用いられると考えられる。また更に、配線基板において、導電性のスルーホール又は/及び導電性のビアを備える多層配線基板においては、絶縁層に形成される隣り合う導電性のスルーホール間又は/及び導電性のビア間でも優れた絶縁信頼性が得られる。 に よ り By using the resin composition of the present embodiment, even when the circuit distance is small, the resin composition of the present embodiment can exhibit the above-described effects (insulation reliability). For example, insulation reliability can be exhibited even when the distance between the conductor circuits is 150 μm or less, or 100 μm or less, 75 μm or less, and even 50 μm or less. Therefore, it is considered that the resin composition of the present embodiment is suitably used for a wiring (circuit) substrate having a small distance between wirings. Still further, in a wiring board, in a multilayer wiring board having a conductive through hole or / and a conductive via, between adjacent conductive through holes formed in an insulating layer and / or between conductive vias. Excellent insulation reliability is obtained.
 本実施形態の樹脂組成物を用いて得られるプリプレグ、樹脂付きフィルム、樹脂付き金属箔は、その硬化物における低誘電特性、高Tg、絶縁信頼性等を兼ね備えているため、産業利用上、非常に有用である。また、それらを含む金属張積層板及び配線基板もまた、低誘電特性、高Tg、及び優れた絶縁信頼性を備える。 The prepreg, film with resin, and metal foil with resin obtained by using the resin composition of the present embodiment have low dielectric properties, high Tg, insulation reliability, and the like in the cured product. Useful for The metal-clad laminates and wiring boards containing them also have low dielectric properties, high Tg, and excellent insulation reliability.
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various aspects of the technology as described above, and the main technologies are summarized below.
 本発明の一態様に係る樹脂組成物は、分子末端に下記式(1)で表される基を有するポリフェニレンエーテル化合物と、炭素-炭素不飽和二重結合を分子中に有する架橋剤若しくは前記ポリフェニレンエーテル化合物と反応して硬化させる架橋剤のうち少なくともいずれか一つとを、含み、前記ポリフェニレンエーテル化合物における塩化物イオン量が、250ppm以下であることを特徴とする。 A resin composition according to one embodiment of the present invention includes a polyphenylene ether compound having a group represented by the following formula (1) at a molecular terminal, a crosslinking agent having a carbon-carbon unsaturated double bond in a molecule, or the polyphenylene compound. The polyphenylene ether compound contains at least one of a crosslinking agent that reacts with the ether compound and cures, and the amount of chloride ions in the polyphenylene ether compound is 250 ppm or less.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[式(1)中、Rは、水素原子、又は炭素数1~10のアルキル基を示し、Rは、炭素数1~10のアルキレン基を示す。]
 このような構成によれば、硬化物における低誘電特性、高Tg、及び優れた絶縁信頼性を兼ね備えた樹脂組成物を提供できる。
[In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 2 represents an alkylene group having 1 to 10 carbon atoms. ]
According to such a configuration, a resin composition having low dielectric properties, high Tg, and excellent insulation reliability in a cured product can be provided.
 本発明の別の実施態様に係る樹脂組成物は、分子末端に下記式(1)で表される基を有するポリフェニレンエーテル化合物と、炭素-炭素不飽和二重結合を分子中に有する架橋剤若しくは前記ポリフェニレンエーテル化合物と反応して硬化させる架橋剤のうち少なくともいずれか一つとを含むこと、 A resin composition according to another embodiment of the present invention comprises a polyphenylene ether compound having a group represented by the following formula (1) at a molecular terminal, a crosslinking agent having a carbon-carbon unsaturated double bond in a molecule, Including at least one of a crosslinking agent that reacts with the polyphenylene ether compound and cures,
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[式(1)中、Rは、水素原子、又は炭素数1~10のアルキル基を示し、Rは、炭素数1~10のアルキレン基を示す。]、並びに、
 樹脂組成物または樹脂組成物の半硬化物における塩化物イオン量が、40ppm以下であることを特徴とする。
[In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 2 represents an alkylene group having 1 to 10 carbon atoms. ], And
The resin composition or the semi-cured resin composition has a chloride ion content of 40 ppm or less.
 このような構成によっても、硬化物における低誘電特性、高Tg、及び優れた絶縁信頼性を兼ね備えた樹脂組成物を提供できる。 も Even with such a configuration, it is possible to provide a resin composition having low dielectric properties, high Tg, and excellent insulation reliability in a cured product.
 また、前記架橋剤が、トリアルケニルイソシアヌレート化合物、分子中にアクリル基を2個以上有する多官能アクリレート化合物、分子中にメタクリル基を2個以上有する多官能メタクリレート化合物、分子中にビニル基を2個以上有する多官能ビニル化合物、アリル化合物、マレイミド化合物及びアセナフチレン化合物からなる群から選ばれる少なくとも1種を含むことが好ましい。 The crosslinking agent may be a trialkenyl isocyanurate compound, a polyfunctional acrylate compound having two or more acryl groups in the molecule, a polyfunctional methacrylate compound having two or more methacryl groups in the molecule, or a vinyl compound having two or more vinyl groups in the molecule. It is preferable to include at least one selected from the group consisting of a polyfunctional vinyl compound having at least one compound, an allyl compound, a maleimide compound, and an acenaphthylene compound.
 それにより、硬化反応により架橋がより好適に形成されると考えられ、本実施形態で用いられる樹脂組成物の硬化物の耐熱性をより高めることができるという利点がある。 Thereby, it is considered that crosslinking is more preferably formed by the curing reaction, and there is an advantage that the heat resistance of the cured product of the resin composition used in the present embodiment can be further increased.
 さらに、前記ポリフェニレンエーテル化合物が、下記式(2)で示される構造を有することが好ましい。 Furthermore, it is preferable that the polyphenylene ether compound has a structure represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式(2)中、R~R10は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。Xは前記式(1)で示される基である。) (In the formula (2), R 3 to R 10 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Is a group represented by the formula (1).)
 また、式(2)中、AおよびBはそれぞれ下記式(3)及び(4)で示される構造である: 中 In the formula (2), A and B are structures represented by the following formulas (3) and (4), respectively:
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 (式(3)および(4)中、mおよびnはそれぞれ0~20の整数を示す。R11~R14及びR15~R18は、それぞれ独立して、水素原子又はアルキル基を示す。)
 さらに、式(2)中、Yは下記式(5)で示される構造である:
(In the formulas (3) and (4), m and n each represent an integer of 0 to 20. R 11 to R 14 and R 15 to R 18 each independently represent a hydrogen atom or an alkyl group. )
Further, in the formula (2), Y is a structure represented by the following formula (5):
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 (式(5)中、R19及びR20は、それぞれ独立して、水素原子またはアルキル基を示す。) (In the formula (5), R 19 and R 20 each independently represent a hydrogen atom or an alkyl group.)
 そのような構成により、上述したような効果をより確実に得ることができると考えられる。 効果 With such a configuration, it is considered that the above-described effects can be obtained more reliably.
 また、前記樹脂組成物が、導体回路間の距離が少なくとも一部で100μm以下である導体回路パターンが設けられた配線板用であることが好ましい。そのような用途において、本発明の効果がより発揮されると考えられる。 樹脂 Further, it is preferable that the resin composition is for a wiring board provided with a conductor circuit pattern in which the distance between conductor circuits is at least partially 100 μm or less. In such an application, it is considered that the effect of the present invention is more exhibited.
 本発明のさらなる他の一態様に係るプリプレグは、上述の樹脂組成物又は前記樹脂組成物の半硬化物と繊維質基材とを有することを特徴とする。 プ リ A prepreg according to still another aspect of the present invention includes the above resin composition or a semi-cured product of the resin composition and a fibrous base material.
 本発明のさらなる他の一態様に係る樹脂付きフィルムは、上述の樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層と支持フィルムとを有することを特徴とする。 樹脂 A resin-attached film according to still another aspect of the present invention is characterized by having a resin film containing the above-described resin composition or a semi-cured product of the resin composition, and a support film.
 本発明のさらなる他の一態様に係る樹脂付き金属箔は、上述の樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層と金属箔とを有することを特徴とする。 樹脂 A resin-attached metal foil according to still another aspect of the present invention includes a resin layer containing the above-described resin composition or a semi-cured product of the resin composition, and a metal foil.
 本発明のさらなる他の一態様に係る金属張積層板は、上述の樹脂組成物の硬化物又は上述のプリプレグの硬化物を含む絶縁層と、金属箔とを有することを特徴とする。 金属 A metal-clad laminate according to still another aspect of the present invention is characterized by having an insulating layer containing a cured product of the above resin composition or a cured product of the above prepreg, and a metal foil.
 また、本発明のさらなる他の一態様に係る配線基板は、上述の樹脂組成物の硬化物又は上述のプリプレグの硬化物を含む絶縁層と、配線とを有することを特徴とする。 配線 Further, a wiring board according to still another aspect of the present invention is characterized by having an insulating layer containing a cured product of the above-described resin composition or a cured product of the above-described prepreg, and wiring.
 上述のような構成によれば、低誘電特性と高Tgを有し、さらに優れた絶縁信頼性を有する基板を得ることができるプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、配線基板等を得ることができる。 According to the configuration described above, a prepreg, a film with a resin, a metal foil with a resin, a metal-clad laminate, and a wiring, which can obtain a substrate having low dielectric properties and high Tg and further having excellent insulation reliability, can be obtained. A substrate or the like can be obtained.
 以下に、実施例により本発明を更に具体的に説明するが、本発明の範囲はこれらに限定されるものではない。 The present invention will be described more specifically with reference to the following examples, but the scope of the present invention is not limited thereto.
 まず、本実施例において、樹脂組成物を調製する際に用いる成分について説明する。 First, in this example, components used when preparing a resin composition will be described.
 <A成分:ポリフェニレンエーテル化合物>
 ・変性PPE-1:2官能ビニルベンジル変性PPE(Mw:1900)
 まず、変性ポリフェニレンエーテル(変性PPE-1)を合成した。なお、ポリフェニレンエーテル1分子当たりの、分子末端のフェノール性水酸基の平均個数を、末端水酸基数と示す。
<A component: polyphenylene ether compound>
-Modified PPE-1: Bifunctional vinylbenzyl-modified PPE (Mw: 1900)
First, a modified polyphenylene ether (modified PPE-1) was synthesized. The average number of phenolic hydroxyl groups at the molecular terminals per molecule of polyphenylene ether is indicated as the number of terminal hydroxyl groups.
 ポリフェニレンエーテルと、クロロメチルスチレンとを反応させて変性ポリフェニレンエーテル1(変性PPE―1)を得た。具体的には、まず、温度調節器、攪拌装置、冷却設備、及び滴下ロートを備えた1リットルの3つ口フラスコに、ポリフェニレンエーテル(SABICイノベーティブプラスチックス社製のSA90、固有粘度(IV)0.083dl/g、末端水酸基数1.9個、重量分子量Mw1700)200g、p-クロロメチルスチレンとm-クロロメチルスチレンとの質量比が50:50の混合物30g、相間移動触媒として、テトラ-n-ブチルアンモニウムブロマイド1.227g、及びトルエン400gを仕込み、攪拌した。そして、ポリフェニレンエーテル、クロロメチルスチレン、及びテトラ-n-ブチルアンモニウムブロマイドが、トルエンに溶解するまで攪拌した。その際、徐々に加熱し、最終的に液温が75℃になるまで加熱した。そして、その溶液に、アルカリ金属水酸化物として、水酸化ナトリウム水溶液(水酸化ナトリウム20g/水20g)を20分間かけて、滴下した。その後、さらに、75℃で4時間攪拌した。次に、10質量%の塩酸でフラスコの内容物を中和した後、多量のメタノールを投入した。そうすることによって、フラスコ内の液体に沈殿物を生じさせた。すなわち、フラスコ内の反応液に含まれる生成物を再沈させた。そして、この沈殿物をろ過によって取り出し、メタノールと水との質量比が80:20の混合液で3回洗浄した後、減圧下、80℃で3時間乾燥させた。 (Iv) Polyphenylene ether was reacted with chloromethylstyrene to obtain modified polyphenylene ether 1 (modified PPE-1). Specifically, first, a polyphenylene ether (SA90, manufactured by SABIC Innovative Plastics Co., Ltd .; 0.083 dl / g, number of terminal hydroxyl groups: 1.9, weight molecular weight Mw: 1700) 200 g, 30 g of a mixture of p-chloromethylstyrene and m-chloromethylstyrene in a mass ratio of 50:50, tetra-n as a phase transfer catalyst 1.227 g of -butylammonium bromide and 400 g of toluene were charged and stirred. Then, the mixture was stirred until the polyphenylene ether, chloromethylstyrene, and tetra-n-butylammonium bromide were dissolved in toluene. At that time, the mixture was gradually heated and finally heated until the liquid temperature reached 75 ° C. Then, an aqueous solution of sodium hydroxide (20 g of sodium hydroxide / 20 g of water) as an alkali metal hydroxide was added dropwise to the solution over 20 minutes. Thereafter, the mixture was further stirred at 75 ° C. for 4 hours. Next, after neutralizing the contents of the flask with 10% by mass of hydrochloric acid, a large amount of methanol was added. Doing so caused a precipitate in the liquid in the flask. That is, the product contained in the reaction solution in the flask was reprecipitated. The precipitate was taken out by filtration, washed three times with a mixed solution of methanol and water at a mass ratio of 80:20, and dried under reduced pressure at 80 ° C. for 3 hours.
 得られた固体を、H-NMR(400MHz、CDCl、TMS)で分析した。NMRを測定した結果、5~7ppmにビニルベンジル基に由来するピークが確認された。これにより、得られた固体が、分子末端に、式(1)で表される基を有する変性ポリフェニレンエーテルであることが確認できた。具体的には、ビニルベンジル化されたポリフェニレンエーテルであることが確認できた。 The obtained solid was analyzed by 1 H-NMR (400 MHz, CDCl 3 , TMS). As a result of NMR measurement, a peak derived from a vinylbenzyl group was confirmed at 5 to 7 ppm. Thus, it was confirmed that the obtained solid was a modified polyphenylene ether having a group represented by the formula (1) at a molecular terminal. Specifically, it was confirmed that the polyphenylene ether was vinylbenzylated.
 また、変性ポリフェニレンエーテルの分子量分布を、GPCを用いて、測定した。そして、その得られた分子量分布から、重量平均分子量(Mw)を算出した結果、Mwは、1900であった。 (4) The molecular weight distribution of the modified polyphenylene ether was measured using GPC. The weight average molecular weight (Mw) was calculated from the obtained molecular weight distribution, and as a result, Mw was 1,900.
 また、変性ポリフェニレンエーテルの末端官能数を、以下のようにして測定した。 {Circle around (2)} The number of terminal functional groups of the modified polyphenylene ether was measured as follows.
 まず、変性ポリフェニレンエーテルを正確に秤量した。その際の重量を、X(mg)とする。そして、この秤量した変性ポリフェニレンエーテルを、25mLの塩化メチレンに溶解させ、その溶液に、10質量%のテトラエチルアンモニウムヒドロキシド(TEAH)のエタノール溶液(TEAH:エタノール(体積比)=15:85)を100μL添加した後、UV分光光度計(株式会社島津製作所製のUV-1600)を用いて、318nmの吸光度(Abs)を測定した。そして、その測定結果から、下記式を用いて、変性ポリフェニレンエーテルの末端水酸基数を算出した。 First, the modified polyphenylene ether was accurately weighed. The weight at that time is defined as X (mg). Then, the weighed modified polyphenylene ether was dissolved in 25 mL of methylene chloride, and an ethanol solution of 10% by mass of tetraethylammonium hydroxide (TEAH) (TEAH: ethanol (volume ratio) = 15: 85) was added to the solution. After adding 100 μL, the absorbance (Abs) at 318 nm was measured using a UV spectrophotometer (UV-1600 manufactured by Shimadzu Corporation). Then, from the measurement results, the number of terminal hydroxyl groups of the modified polyphenylene ether was calculated using the following equation.
 残存OH量(μmol/g)=[(25×Abs)/(ε×OPL×X)]×106
 ここで、εは、吸光係数を示し、4700L/mol・cmである。また、OPLは、セル光路長であり、1cmである。
Residual OH amount (μmol / g) = [(25 × Abs) / (ε × OPL × X)] × 106
Here, ε indicates the extinction coefficient, which is 4700 L / mol · cm. OPL is the cell optical path length, which is 1 cm.
 そして、その算出された変性ポリフェニレンエーテルの残存OH量(末端水酸基数)は、ほぼゼロであることから、変性前のポリフェニレンエーテルの水酸基が、ほぼ変性されていることがわかった。このことから、変性前のポリフェニレンエーテルの末端水酸基数からの減少分は、変性前のポリフェニレンエーテルの末端水酸基数であることがわかった。すなわち、変性前のポリフェニレンエーテルの末端水酸基数が、変性ポリフェニレンエーテルの末端官能基数であることがわかった。つまり、末端官能数が、2個であった。 The calculated residual OH content (the number of terminal hydroxyl groups) of the modified polyphenylene ether was almost zero, indicating that the hydroxyl groups of the polyphenylene ether before modification were substantially modified. From this, it was found that the decrease from the number of terminal hydroxyl groups of the polyphenylene ether before modification was the number of terminal hydroxyl groups of the polyphenylene ether before modification. That is, it was found that the number of terminal hydroxyl groups of the polyphenylene ether before modification was the number of terminal functional groups of the modified polyphenylene ether. That is, the number of terminal functional groups was two.
 また、変性ポリフェニレンエーテル化合物における不純物イオン量は、試料(得られた変性PPE-1)0.75gに純水15gを投入して、125℃で20時間抽出した後、イオンクロマトグラフィ(使用機種「ICS1500」Thermo Fisher社製、分離カラム:Ionpac AS22、溶離液:4.5mmol/L NaCO/1.4mmol/L NaHCO、溶離液流量:1.5mL/分)によって測定した。結果、変性PPE-1における各種不純物イオン量は、固形分換算でClイオンが1912ppmであった。またClイオン以外のその他のイオンとしてBrイオンが2ppm未満、NO イオンが10ppm、SO イオンが2ppm、NO イオンが2ppm未満、PO 3-イオンが2ppm未満、Naイオンが2ppm未満、NH イオンが12ppmであった。 The amount of impurity ions in the modified polyphenylene ether compound was determined by adding 15 g of pure water to 0.75 g of the sample (obtained modified PPE-1), extracting the mixture at 125 ° C. for 20 hours, and then performing ion chromatography (using model “ICS1500”). "Thermo Fisher Co., separation column: IonPac AS 22, eluent: 4.5mmol / L Na 2 CO 3 /1.4mmol/L NaHCO 3, eluent flow rate was measured by 1.5 mL / min). As a result, the amount of various impurity ions in the modified PPE-1 was 1912 ppm of Cl ions in terms of solid content. As other ions other than Cl ions, Br ions are less than 2 ppm, NO 3 ions are 10 ppm, SO 4 ions are 2 ppm, NO 2 ions are less than 2 ppm, PO 4 3− ions are less than 2 ppm, and Na + The ions were less than 2 ppm and the NH 4 + ions were 12 ppm.
 ・変性PPE-2:2官能ビニルベンジル変性PPE(Mw:1900)
 メタノールを投入して、フラスコ内の液体に沈殿物を生じさせる工程、すなわち、フラスコ内の反応液に含まれる生成物を再沈させる工程と、この沈殿物をろ過によって取り出す工程とを3回(3セット)繰り返した以外は、変性PPE-1と同様にして、変性PPE-2を得た。
-Modified PPE-2: Bifunctional vinylbenzyl-modified PPE (Mw: 1900)
The step of introducing methanol to form a precipitate in the liquid in the flask, that is, the step of reprecipitating the product contained in the reaction solution in the flask, and the step of removing the precipitate by filtration are performed three times ( 3 sets) A modified PPE-2 was obtained in the same manner as the modified PPE-1, except that this was repeated.
 得られた変性PPE-2中の各種不純物イオン量を、変性PPE-1と同様にして測定した結果、固形分換算でClイオンが42ppm、Brイオンが2ppm未満、NO イオンが29ppm、SO イオンが14ppm、NO イオンが2ppm未満、PO 3-イオンが2ppm未満、Naイオンが2ppm未満、NH イオンが27ppmであった。 The amounts of various impurity ions in the obtained modified PPE-2 were measured in the same manner as in the modified PPE-1. As a result, Cl ion was 42 ppm, Br ion was less than 2 ppm, and NO 3 ion was 29 ppm in terms of solid content. , SO 4 - ion was less than 2 ppm, NO 2 - ion was less than 2 ppm, PO 4 3- ion was less than 2 ppm, Na + ion was less than 2 ppm, and NH 4 + ion was 27 ppm.
 ・変性PPE-3:2官能ビニルベンジル変性PPE(Mw:1900)
 メタノールを投入して、フラスコ内の液体に沈殿物を生じさせる工程、すなわち、フラスコ内の反応液に含まれる生成物を再沈させる工程と、この沈殿物をろ過によって取り出す工程とを2回(2セット)繰り返した以外は、変性PPE-1と同様にして、変性PPE-3を得た。
-Modified PPE-3: Bifunctional vinylbenzyl-modified PPE (Mw: 1900)
The step of introducing methanol to form a precipitate in the liquid in the flask, that is, the step of reprecipitating the product contained in the reaction solution in the flask, and the step of removing the precipitate by filtration are performed twice ( Modified PPE-3 was obtained in the same manner as Modified PPE-1, except for repeating 2 sets).
 得られた変性PPE-3中の各種不純物イオン量を、変性PPE-1と同様にして測定した結果、固形分換算でClイオンが42ppm、Brイオンが2ppm、NO イオンが41ppm、SO イオンが2ppm未満、NO イオンが2ppm未満、PO 3-イオンが2ppm未満、Naイオンが8ppm、NH イオンが20ppmであった。 The amount of various impurity ions in the obtained modified PPE-3 was measured in the same manner as in the modified PPE-1, and as a result, Cl - ion was 42 ppm, Br - ion was 2 ppm, NO 3 - ion was 41 ppm, and SO 4 - ions were less than 2 ppm, NO 2 - ions were less than 2 ppm, PO 4 3- ions were less than 2 ppm, Na ions + were 8 ppm, and NH 4 + ions were 20 ppm.
 ・変性PPE-4:2官能ビニルベンジル変性PPE(Mw:1900)
 変性PPE合成工程の際にp-クロロメチルスチレンとm-クロロメチルスチレンとの質量比が50:50の混合物の代わりに、o-クロロメチルスチレンとp-クロロメチルスチレンとm-クロロメチルスチレンとの質量比が20:10:70の混合物を使用し、メタノールを投入して、フラスコ内の液体に沈殿物を生じさせる工程、すなわち、フラスコ内の反応液に含まれる生成物を再沈させる工程と、この沈殿物をろ過によって取り出す工程とを3回(3セット)繰り返した以外は、変性PPE-1と同様にして、変性PPE-4を得た。
-Modified PPE-4: Bifunctional vinylbenzyl-modified PPE (Mw: 1900)
Instead of a mixture of p-chloromethylstyrene and m-chloromethylstyrene at a mass ratio of 50:50 in the modified PPE synthesis process, o-chloromethylstyrene, p-chloromethylstyrene, m-chloromethylstyrene and Using a mixture having a mass ratio of 20:10:70 and adding methanol to form a precipitate in the liquid in the flask, that is, a step of reprecipitating the product contained in the reaction solution in the flask A modified PPE-4 was obtained in the same manner as the modified PPE-1, except that the step of removing the precipitate by filtration was repeated three times (three sets).
 得られた変性PPE-4中の各種不純物イオン量を、変性PPE-1と同様にして測定した結果、固形分換算でClイオンが31ppmであった。またその他のイオンは、Brイオンが2ppm未満、NO イオンが2ppm未満、SO イオンが2ppm未満、NO イオンが2ppm未満、PO 3-イオンが2ppm未満、Naイオンが8ppm、NH イオンが10ppmであった。 The amount of various impurity ions in the obtained modified PPE-4 was measured in the same manner as in the modified PPE-1, and as a result, Cl - ion was 31 ppm in terms of solid content. The other ions are less than 2 ppm of Br - ion, less than 2 ppm of NO 3 - ion, less than 2 ppm of SO 4 - ion, less than 2 ppm of NO 2 - ion, less than 2 ppm of PO 4 3- ion, and less than 2 ppm of Na + ion. 8 ppm and 10 ppm of NH 4 + ions.
・SA-9000:2官能メタクリレート変性PPE(Mw:1700、SABIC社製、Clイオン量:2ppm未満)
・OPE-2St 2200:末端ビニルベンジル変性PPE(Mw:約3600、三菱瓦斯化学株式会社製、Clイオン量:1350ppm)
SA-9000: bifunctional methacrylate-modified PPE (Mw: 1700, manufactured by SABIC, Cl ion amount: less than 2 ppm)
OPE-2St 2200: PPE modified with vinyl vinyl terminal (Mw: about 3600, manufactured by Mitsubishi Gas Chemical Company, Inc., Cl ion amount: 1350 ppm)
 <B成分:架橋剤>
・TAIC:トリアリルイソシアヌレート、(日本化成株式会社製)
・DVB810:ジビニルベンゼン(新日鉄住金化学株式会社)
・DCP:ジシクロペンタジエン型メタクリレート(新中村化学工業株式会社製)
<Component B: crosslinking agent>
・ TAIC: triallyl isocyanurate, (Nippon Kasei Co., Ltd.)
・ DVB810: divinylbenzene (Nippon Steel & Sumikin Chemical Co., Ltd.)
・ DCP: dicyclopentadiene type methacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
 <その他の成分>
 (無機充填材)
・SC2300-SVJ:メタクリルシラン表面処理球状シリカ(株式会社アドマテックス製)
 (難燃剤)
・SAYTEX8010:臭素系難燃剤(アルベマール日本株式会社製)
<Other ingredients>
(Inorganic filler)
・ SC2300-SVJ: Methacrylsilane surface-treated spherical silica (manufactured by Admatechs Co., Ltd.)
(Flame retardants)
・ SAYTEX8010: Brominated flame retardant (Albemarle Japan Co., Ltd.)
 <実施例1~5、比較例1~3>
 [調製方法]
 (樹脂ワニス)
 まず、各成分を表1に記載の配合割合(質量部)で、固形分濃度が約60質量%となるように、トルエンに添加し、混合させた。その混合物を、30℃で60分間攪拌することによって、ワニス状の樹脂組成物(ワニス)が得られた。
<Examples 1 to 5, Comparative Examples 1 to 3>
[Preparation method]
(Resin varnish)
First, each component was added to toluene and mixed at a mixing ratio (parts by mass) shown in Table 1 so that the solid content concentration was about 60% by mass. The mixture was stirred at 30 ° C. for 60 minutes to obtain a varnish-like resin composition (varnish).
 (プリプレグの作製)
・プリプレグI
 各実施例および比較例の樹脂ワニスをガラスクロス(旭化成株式会社製、♯L2116タイプ)に含浸させた後、130℃で約3分間加熱乾燥することによりプリプレグを得た。その際、プリプレグの重量に対する樹脂組成物の含有量(レジンコンテント)が約56質量%となるように調整した。
(Preparation of prepreg)
・ Prepreg I
The resin varnish of each Example and Comparative Example was impregnated in a glass cloth (L2116 type, manufactured by Asahi Kasei Corporation), and then heated and dried at 130 ° C. for about 3 minutes to obtain a prepreg. At that time, the content of the resin composition (resin content) with respect to the weight of the prepreg was adjusted to be about 56% by mass.
・プリプレグII
 各実施例および比較例の樹脂ワニスをガラスクロス(旭化成株式会社製、♯L1078タイプ)に含浸させた後、130℃で約2分間加熱乾燥することによりプリプレグを得た。その際、プリプレグの重量に対する樹脂組成物の含有量(レジンコンテント)が約70質量%となるように調整した。
・ Prepreg II
The resin varnish of each Example and Comparative Example was impregnated into a glass cloth (L1078 type, manufactured by Asahi Kasei Corporation), and then heated and dried at 130 ° C. for about 2 minutes to obtain a prepreg. At that time, the content of the resin composition (resin content) with respect to the weight of the prepreg was adjusted to be about 70% by mass.
 (銅張積層板の作製)
・銅張積層板I
 上記プリプレグの6枚を、その両側に厚さ12μmの銅箔(古河電気工業株式会社製GT-MP)を配置して被圧体とし、真空条件下、温度210℃、圧力30kgf/cmの条件で90分加熱・加圧して両面に銅箔が接着された、厚み約0.75mmの銅張積層板を得た。
(Production of copper-clad laminate)
・ Copper clad laminate I
Six prepregs each having copper foil (GT-MP manufactured by Furukawa Electric Co., Ltd.) placed on both sides of each of the six prepregs to form a pressure-receiving body under a vacuum condition at a temperature of 210 ° C. and a pressure of 30 kgf / cm 2 . The mixture was heated and pressed under the conditions for 90 minutes to obtain a copper-clad laminate having a thickness of about 0.75 mm and a copper foil bonded to both sides.
・積層板II
 上記プリプレグ-IIを2枚重ね、その両側に厚さ18μmの銅箔(古河電気工業株式会社製FV-WS)を配置して被圧体とし、真空条件下、温度210℃、圧力30kgf/cmの条件で90分加熱・加圧して両面に銅箔が接着された、厚み約0.18mmの銅張積層板-II’を得た。得られた積層板-II’を、ドライフィルムを用いて導体回路幅が100μmとなっている箇所を含む回路パターンとなるように露光を行い、塩化銅水溶液によって銅のエッチングをすることで導体回路を作成した積層板-II’’を得た。前記導体回路パターンとしては、内層に、図7に示すような、L(導体回路幅)/S(導体回路間の距離):100μm/100μmとなるように導体回路51を形成した回路パターンを含む絶縁信頼性評価用の櫛形型パターン(ライン本数:15本、ライン重なり部:65mm)を得た。得られた積層板-II’’に対して上記プリプレグ-IIを上下両側に配置、更にその外側両側に厚さ18μmのFV-WS銅箔を配置し、真空条件下、温度210℃、圧力30kgf/cmの条件で90分加熱・加圧して、導体回路間の距離が100μmの積層板IIを得た。
・ Laminated plate II
Two sheets of the prepreg-II are stacked, and a copper foil (FV-WS, manufactured by Furukawa Electric Co., Ltd.) having a thickness of 18 μm is arranged on both sides of the prepreg-II to form a pressure-receiving body. The temperature is 210 ° C., the pressure is 30 kgf / cm. Heating and pressing were performed for 90 minutes under the conditions of 2 to obtain a copper-clad laminate-II 'having a thickness of about 0.18 mm and a copper foil bonded to both sides. The obtained laminated plate-II ′ is exposed to a circuit pattern including a portion having a conductor circuit width of 100 μm using a dry film, and copper is etched with a copper chloride aqueous solution. To obtain a laminated plate-II ″. The conductor circuit pattern includes a circuit pattern in which a conductor circuit 51 is formed in an inner layer such that L (conductor circuit width) / S (distance between conductor circuits): 100 μm / 100 μm as shown in FIG. A comb-shaped pattern (number of lines: 15; line overlapping portion: 65 mm) for evaluating insulation reliability was obtained. The prepreg-II was placed on both sides of the obtained laminate-II ″, and FV-WS copper foil having a thickness of 18 μm was placed on both outer sides thereof. The temperature was 210 ° C. and the pressure was 30 kgf under vacuum conditions. / Cm 2 for 90 minutes to obtain a laminate II having a distance between conductor circuits of 100 μm.
 <評価試験>
 [誘電特性(比誘電率及び誘電正接)]
 1GHzにおける評価基板の比誘電率及び誘電正接を、マテリアル/インピーダンスアナライザー(ヒューレッド・パッカード社製のHP4291A及びHP16453A)を用いて測定した。評価基板には、上記銅張積層板Iから銅箔を除去した積層板を用いた。測定はPC-TM-650 2.5.5.9に基づいた方法にておこなった。
<Evaluation test>
[Dielectric properties (relative permittivity and dielectric loss tangent)]
The relative permittivity and the dielectric loss tangent of the evaluation board at 1 GHz were measured using a material / impedance analyzer (HP4291A and HP16453A manufactured by Hewlett-Packard Co.). As the evaluation board, a laminate obtained by removing the copper foil from the copper-clad laminate I was used. The measurement was performed by a method based on PC-TM-650 2.5.5.9.
 [ガラス転移温度(Tg)]
 上記銅張積層板Iの外層銅箔を全面エッチングし、得られたサンプルについて、示差走査熱量計(DSC)を用いてガラス転移点(Tg)を測定した。測定はIPC-TM-650 2.4.25に基づいた方法にておこなった。
[Glass transition temperature (Tg)]
The outer copper foil of the copper-clad laminate I was entirely etched, and the glass transition point (Tg) of the obtained sample was measured using a differential scanning calorimeter (DSC). The measurement was performed by a method based on IPC-TM-650 2.4.25.
 [絶縁信頼性]
 上記積層板IIを用いて、85℃、湿度85%の環境で、100Vの電圧を500時間印加し、1時間毎に抵抗値の連続測定を実施した。500時間印加しても抵抗値が一度も10^7Ω以下に抵抗劣化しなかったものを合格(○)、10^7Ω以下に抵抗劣化したものを不合格(×)と評価した。
[Insulation reliability]
Using the laminated plate II, a voltage of 100 V was applied for 500 hours in an environment of 85 ° C. and a humidity of 85%, and the resistance value was continuously measured every hour. A sample whose resistance value did not deteriorate to 10 ^ 7Ω or less even after 500 hours of application was evaluated as pass (合格), and a sample whose resistance deteriorated to 10 ^ 7Ω or less was rejected (×).
 以上の結果を以下の表1に示す。 The above results are shown in Table 1 below.
 [プリプレグ中の不純物イオン量]
 さらに、実施例1-2および比較例1については、プリプレグ中のClイオン量も測定した。具体的には、上記プリプレグIの樹脂分を篩い(100メッシュアンダー、200メッシュアップ)にかけ、0.75g準備した。それを15gの純水に加えて、125℃で20時間抽出後、イオンクロマトグラフィー(使用機種「ICS1500」Thermo Fisher社製、分離カラム:Ionpac AS22、溶離液:4.5mmol/L NaCO/ 1.4mmol/L NaHCO、溶離液流量:1.5mL/分)にかけて各種不純物イオン量を測定した。上記イオンクロマトグラフロィー機器を使用して、不純物イオン量の数値として検出できる限界は2ppmまでであり、それより検出量が小さい不純物イオンは、2ppm未満となる。
[Amount of impurity ions in prepreg]
Further, in Example 1-2 and Comparative Example 1, the amount of Cl ions in the prepreg was also measured. Specifically, the resin component of the prepreg I was sieved (100 mesh under, 200 mesh up) to prepare 0.75 g. After adding it to 15 g of pure water and extracting at 125 ° C. for 20 hours, ion chromatography (used model “ICS1500” manufactured by Thermo Fisher, separation column: Ionpac AS22, eluent: 4.5 mmol / L Na 2 CO 3) /1.4 mmol / L NaHCO 3 , eluent flow rate: 1.5 mL / min) to measure the amounts of various impurity ions. The limit of the amount of impurity ions that can be detected using the above-described ion chromatography apparatus is up to 2 ppm, and the amount of impurity ions having a lower detection amount is less than 2 ppm.
 その結果、それぞれの不純物イオン量は、実施例1ではClイオンが7ppmであった。またClイオン以外のその他のイオンとして、Brイオンが2ppm未満、NO イオンが17ppm、SO イオンが3ppm、NO イオンが2ppm未満、PO 3-イオンが2ppm未満、Naイオンが2ppm未満、NH イオンが10ppm、Caイオンが5ppmであった。 As a result, the amount of each impurity ion in Example 1 was 7 ppm for Cl ions. As other ions other than Cl - ions, Br - ions are less than 2 ppm, NO 3 - ions are 17 ppm, SO 4 - ions are 3 ppm, NO 2 - ions are less than 2 ppm, PO 4 3- ions are less than 2 ppm, Na is less than 2 ppm. + Ions were less than 2 ppm, NH 4 + ions were 10 ppm, and Ca ions were 5 ppm.
 実施例2では、Clイオンが29ppmであった。またClイオン以外のその他のイオンとして、Brイオンが2ppm未満、NO イオンが7ppm、SO イオンが2ppm、NO イオンが2ppm未満、PO 3-イオンが2ppm未満、Naイオンが2ppm未満、NH イオンが9ppm、Ca2+イオンが5ppmであった。 In Example 2, Cl ion was 29 ppm. As other ions other than Cl - ions, Br - ions are less than 2 ppm, NO 3 - ions are 7 ppm, SO 4 - ions are 2 ppm, NO 2 - ions are less than 2 ppm, PO 4 3- ions are less than 2 ppm, Na is less than 2 ppm. + Ions were less than 2 ppm, NH 4 + ions were 9 ppm, and Ca 2+ ions were 5 ppm.
 実施例6では、Clイオンが4ppmであった。またClイオン以外のその他のイオンとして、Brイオンが2ppm未満、NO イオンが7ppm、SO イオンが7ppm、NO イオンが2ppm未満、PO 3-イオンが2ppm未満、Naイオンが4ppm、NH イオンが7ppm、Ca2+イオンが6ppmであった。そして、比較例1ではClイオンが75ppm、Brイオンが2ppm未満、NO イオンが15ppm、SO イオンが2ppm未満、NOオンが2ppm未満、PO 3-イオンが2ppm未満、Naイオンが2ppm未満、NH イオンが7ppm、Ca2+イオンが2ppm未満であった。 In Example 6, Cl ion was 4 ppm. As other ions other than Cl ions, Br ions are less than 2 ppm, NO 3 ions are 7 ppm, SO 4 ions are 7 ppm, NO 2 ions are less than 2 ppm, PO 4 3− ions are less than 2 ppm, Na is less than 2 ppm. + Ion was 4 ppm, NH 4 + ion was 7 ppm, and Ca 2+ ion was 6 ppm. Then, in Comparative Example 1 Cl - ions 75 ppm, Br - ions is less than 2ppm, NO 3 - ions 15 ppm, SO 4 - ions is less than 2ppm, NO 2 ions is less than 2ppm, PO 4 3- ions 2ppm , Less than 2 ppm of Na + ion, less than 7 ppm of NH 4 + ion, and less than 2 ppm of Ca 2+ ion.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 (考察)
 表1に示す結果から明らかなように、本発明により、低誘電特性(Dk:3.3以下、Df:0.0015以下)及び高Tgに加えて、優れた絶縁信頼性を兼ね備えた樹脂組成物を提供できることが示された。
(Discussion)
As is clear from the results shown in Table 1, according to the present invention, a resin composition having excellent insulation reliability in addition to low dielectric properties (Dk: 3.3 or less, Df: 0.0015 or less) and high Tg. It was shown that things could be provided.
 それに対し、Clイオン量が多いポリフェニレンエーテル化合物を使用した比較例1および3では、十分な絶縁信頼性を得ることができなかった。また、分子末端に上記式(1)で表される基を有していないポリフェニレンエーテル化合物を用いた比較例2では、Tgに劣る結果となった。 On the other hand, in Comparative Examples 1 and 3, in which a polyphenylene ether compound having a large amount of Cl ions was used, sufficient insulation reliability could not be obtained. In Comparative Example 2 using a polyphenylene ether compound having no group represented by the above formula (1) at the molecular end, the result was inferior to Tg.
 この出願は、2018年9月19日に出願された日本国特許出願特願2018-174980を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2018-174980 filed on Sep. 19, 2018, the contents of which are included in the present application.
 本発明を表現するために、前述において具体例や図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been described above appropriately and sufficiently through the embodiments with reference to specific examples and drawings. However, those skilled in the art may modify and / or improve the above-described embodiments. It should be recognized that is easy to do. Therefore, unless a modification or improvement performed by a person skilled in the art is at a level that departs from the scope of the claims set forth in the claims, the modification or the improvement shall not cover the scope of the claims. Is interpreted as being included in
 本発明は、電子材料やそれを用いた各種デバイスに関する技術分野において、広範な産業上の利用可能性を有する。 The present invention has wide industrial applicability in the technical field related to electronic materials and various devices using the same.

Claims (10)

  1.  分子末端に下記式(1)で表される基を有するポリフェニレンエーテル化合物と、
     炭素-炭素不飽和二重結合を分子中に有する架橋剤若しくは前記ポリフェニレンエーテル化合物と反応して硬化させる架橋剤のうち少なくともいずれか一つとを、含み、
    前記ポリフェニレンエーテル化合物における塩化物イオン量が、250ppm以下であることを特徴とする、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Rは、水素原子、又は炭素数1~10のアルキル基を示し、Rは、炭素数1~10のアルキレン基を示す。]
    A polyphenylene ether compound having a group represented by the following formula (1) at a molecular terminal:
    A cross-linking agent having a carbon-carbon unsaturated double bond in the molecule or at least one of a cross-linking agent which is cured by reacting with the polyphenylene ether compound,
    A resin composition, wherein the amount of chloride ions in the polyphenylene ether compound is 250 ppm or less.
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 2 represents an alkylene group having 1 to 10 carbon atoms. ]
  2.  分子末端に下記式(1)で表される基を有するポリフェニレンエーテル化合物と、
     炭素-炭素不飽和二重結合を分子中に有する架橋剤若しくは前記ポリフェニレンエーテル化合物と反応して硬化させる架橋剤のうち少なくともいずれか一つとを含むこと、
    Figure JPOXMLDOC01-appb-C000002
    [式(1)中、Rは、水素原子、又は炭素数1~10のアルキル基を示し、Rは、炭素数1~10のアルキレン基を示す。]、並びに、
     樹脂組成物または樹脂組成物の半硬化物における塩化物イオン量が、40ppm以下であることを特徴とする、樹脂組成物。
    A polyphenylene ether compound having a group represented by the following formula (1) at a molecular terminal:
    Including at least one of a cross-linking agent having a carbon-carbon unsaturated double bond in the molecule or a cross-linking agent which is cured by reacting with the polyphenylene ether compound;
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 2 represents an alkylene group having 1 to 10 carbon atoms. ], And
    The resin composition, wherein the amount of chloride ions in the resin composition or the semi-cured product of the resin composition is 40 ppm or less.
  3.  前記架橋剤が、トリアルケニルイソシアヌレート化合物、分子中にアクリル基を2個以上有する多官能アクリレート化合物、分子中にメタクリル基を2個以上有する多官能メタクリレート化合物、分子中にビニル基を2個以上有する多官能ビニル化合物、アリル化合物、マレイミド化合物及びアセナフチレン化合物からなる群から選ばれる少なくとも1種を含むことを特徴とする、請求項1または2に記載の樹脂組成物。 The crosslinking agent is a trialkenyl isocyanurate compound, a polyfunctional acrylate compound having two or more acryl groups in a molecule, a polyfunctional methacrylate compound having two or more methacryl groups in a molecule, two or more vinyl groups in a molecule. The resin composition according to claim 1, further comprising at least one selected from the group consisting of a polyfunctional vinyl compound, an allyl compound, a maleimide compound, and an acenaphthylene compound.
  4.  前記ポリフェニレンエーテル化合物が、下記式(2)で示される構造を有する、請求項1~3のいずれかに記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(2)中、R~R10は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。Xは前記式(1)で示される基である。)
     また、式(2)中、AおよびBはそれぞれ下記式(3)及び(4)で示される構造である:
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
     (式(3)および(4)中、mおよびnはそれぞれ0~20の整数を示す。R11~R14及びR15~R18は、それぞれ独立して、水素原子又はアルキル基を示す。)
     さらに、式(2)中、Yは下記式(5)で示される構造である:
    Figure JPOXMLDOC01-appb-C000006
     (式(5)中、R19及びR20は、それぞれ独立して、水素原子またはアルキル基を示す。)
    4. The resin composition according to claim 1, wherein the polyphenylene ether compound has a structure represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (2), R 3 to R 10 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Is a group represented by the formula (1).)
    In the formula (2), A and B are structures represented by the following formulas (3) and (4), respectively:
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    (In the formulas (3) and (4), m and n each represent an integer of 0 to 20. R 11 to R 14 and R 15 to R 18 each independently represent a hydrogen atom or an alkyl group. )
    Further, in the formula (2), Y is a structure represented by the following formula (5):
    Figure JPOXMLDOC01-appb-C000006
    (In the formula (5), R 19 and R 20 each independently represent a hydrogen atom or an alkyl group.)
  5.  導体回路間の距離が少なくとも一部で150μm以下である導体回路パターンが設けられた配線板用である、請求項1~4のいずれかに記載の樹脂組成物。 (5) The resin composition according to any one of (1) to (4), which is used for a wiring board provided with a conductor circuit pattern in which the distance between conductor circuits is at least partially 150 μm or less.
  6.  請求項1~4のいずれかに記載の樹脂組成物又は前記樹脂組成物の半硬化物と繊維質基材とを有するプリプレグ。 A prepreg comprising the resin composition according to any one of claims 1 to 4, or a semi-cured product of the resin composition, and a fibrous base material.
  7.  請求項1~4のいずれかに記載の樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層と、支持フィルムとを有する樹脂付きフィルム。 A film with a resin, comprising: a resin layer containing the resin composition according to claim 1 or a semi-cured product of the resin composition; and a support film.
  8.  請求項1~4のいずれかに記載の樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層と、金属箔とを有する、樹脂付き金属箔。 (5) A resin-attached metal foil, comprising: a resin layer containing the resin composition according to claim 1 or a semi-cured product of the resin composition; and a metal foil.
  9.  請求項1~4のいずれかに記載の樹脂組成物の硬化物又は前記請求項6に記載のプリプレグの硬化物を含む絶縁層と、金属箔とを有する、金属張積層板。 [4] A metal-clad laminate having an insulating layer containing a cured product of the resin composition according to any one of claims 1 to 4 or a cured product of the prepreg according to claim 6, and a metal foil.
  10.  請求項1~5のいずれかに記載の樹脂組成物の硬化物又は前記請求項6に記載のプリプレグの硬化物を含む絶縁層と、配線とを有する、配線基板。 (4) A wiring substrate, comprising: an insulating layer containing the cured product of the resin composition according to any one of claims 1 to 5 or the cured product of the prepreg according to claim 6; and a wiring.
PCT/JP2019/035392 2018-09-19 2019-09-09 Resin composition, prepreg using same, film with resin, metal foil with resin, metal-clad laminated board, and wiring board WO2020059562A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980048204.3A CN112469750A (en) 2018-09-19 2019-09-09 Resin composition, prepreg using same, resin-containing film, resin-containing metal foil, metal-clad laminate, and wiring board
JP2020548351A JPWO2020059562A1 (en) 2018-09-19 2019-09-09 Resin composition, and prepreg using it, film with resin, metal foil with resin, metal-clad laminate and wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018174980 2018-09-19
JP2018-174980 2018-09-19

Publications (1)

Publication Number Publication Date
WO2020059562A1 true WO2020059562A1 (en) 2020-03-26

Family

ID=69887428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035392 WO2020059562A1 (en) 2018-09-19 2019-09-09 Resin composition, prepreg using same, film with resin, metal foil with resin, metal-clad laminated board, and wiring board

Country Status (4)

Country Link
JP (1) JPWO2020059562A1 (en)
CN (1) CN112469750A (en)
TW (1) TW202022017A (en)
WO (1) WO2020059562A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009977A1 (en) * 2020-07-10 2022-01-13 Agc株式会社 Resin composition, prepreg, resin-equipped metal foil, resin-equipped film, metal-clad laminated sheet, wiring substrate, and method for producing modified poly(phenylene ether)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024167A (en) * 2007-06-18 2009-02-05 Mitsubishi Gas Chem Co Inc Process for producing vinyl compound
JP2009096953A (en) * 2007-10-19 2009-05-07 Dai Ichi Kogyo Seiyaku Co Ltd Method for manufacturing vinylbenzylated poly(phenylene ether) compound
JP2014189781A (en) * 2013-03-28 2014-10-06 Dai Ichi Kogyo Seiyaku Co Ltd Method for manufacturing vinylbenzylated polyphenylene ether compound
JP2016113543A (en) * 2014-12-16 2016-06-23 パナソニックIpマネジメント株式会社 Polyphenylene ether resin composition, prepreg, metal-clad laminate and printed wiring board
JP2017025228A (en) * 2015-07-24 2017-02-02 三菱瓦斯化学株式会社 Prepreg
WO2018074278A1 (en) * 2016-10-17 2018-04-26 パナソニックIpマネジメント株式会社 Resin composition, method for producing resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
WO2019208471A1 (en) * 2018-04-27 2019-10-31 パナソニックIpマネジメント株式会社 Resin composition, prepreg, resin-added film, resin-added metal foil, metal-clad layered plate, and wiring plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024167A (en) * 2007-06-18 2009-02-05 Mitsubishi Gas Chem Co Inc Process for producing vinyl compound
JP2009096953A (en) * 2007-10-19 2009-05-07 Dai Ichi Kogyo Seiyaku Co Ltd Method for manufacturing vinylbenzylated poly(phenylene ether) compound
JP2014189781A (en) * 2013-03-28 2014-10-06 Dai Ichi Kogyo Seiyaku Co Ltd Method for manufacturing vinylbenzylated polyphenylene ether compound
JP2016113543A (en) * 2014-12-16 2016-06-23 パナソニックIpマネジメント株式会社 Polyphenylene ether resin composition, prepreg, metal-clad laminate and printed wiring board
JP2017025228A (en) * 2015-07-24 2017-02-02 三菱瓦斯化学株式会社 Prepreg
WO2018074278A1 (en) * 2016-10-17 2018-04-26 パナソニックIpマネジメント株式会社 Resin composition, method for producing resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
WO2019208471A1 (en) * 2018-04-27 2019-10-31 パナソニックIpマネジメント株式会社 Resin composition, prepreg, resin-added film, resin-added metal foil, metal-clad layered plate, and wiring plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009977A1 (en) * 2020-07-10 2022-01-13 Agc株式会社 Resin composition, prepreg, resin-equipped metal foil, resin-equipped film, metal-clad laminated sheet, wiring substrate, and method for producing modified poly(phenylene ether)

Also Published As

Publication number Publication date
CN112469750A (en) 2021-03-09
JPWO2020059562A1 (en) 2021-09-16
TW202022017A (en) 2020-06-16

Similar Documents

Publication Publication Date Title
JP6906171B2 (en) Polyphenylene ether resin composition, prepreg, metal-clad laminate and printed wiring board
EP3715393B1 (en) Resin composition, prepreg, resin-including film, resin-including metal foil, metal-clad laminate, and wiring board
JP7316572B2 (en) Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board using the same
JP7203386B2 (en) Polyphenylene ether resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board using the same
CN110869403B (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-foil-clad laminate, and wiring board
US20220363798A1 (en) Resin composition, prepreg, resin-attached film, resin-attached metal foil, metal-cladded laminate sheet, and wiring board
US11945910B2 (en) Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
US11905409B2 (en) Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
WO2020203320A1 (en) Resin composition, prepreg obtained using same, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board
US20220159830A1 (en) Prepreg, metal-clad laminate, and wiring board
WO2020059562A1 (en) Resin composition, prepreg using same, film with resin, metal foil with resin, metal-clad laminated board, and wiring board
WO2021060046A1 (en) Resin composition, prepreg obtained using same, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board
WO2021010432A1 (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
JP7281650B2 (en) Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board using the same
JP6994660B2 (en) Metal-clad laminate and printed wiring board
WO2020026694A1 (en) Resin composition, and prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring substrate using same
JP2021152107A (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548351

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862746

Country of ref document: EP

Kind code of ref document: A1