WO2020059439A1 - Element detection method, element detection device, and computer program - Google Patents

Element detection method, element detection device, and computer program Download PDF

Info

Publication number
WO2020059439A1
WO2020059439A1 PCT/JP2019/033419 JP2019033419W WO2020059439A1 WO 2020059439 A1 WO2020059439 A1 WO 2020059439A1 JP 2019033419 W JP2019033419 W JP 2019033419W WO 2020059439 A1 WO2020059439 A1 WO 2020059439A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
spectrum
element detection
small
points
Prior art date
Application number
PCT/JP2019/033419
Other languages
French (fr)
Japanese (ja)
Inventor
隆司 小松原
淳一 青山
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to JP2020548211A priority Critical patent/JP7263379B2/en
Publication of WO2020059439A1 publication Critical patent/WO2020059439A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion

Definitions

  • the present invention relates to an element detection method, an element detection device, and a computer program for scanning a sample with radiation, detecting radiation generated from the sample, and detecting elements based on the detection result of the radiation.
  • Irradiate the sample with radiation detect the radiation generated from the sample, and detect the elements contained in the sample.
  • a fluorescent X-ray analysis that irradiates a sample with X-rays, detects fluorescent X-rays generated from the sample, and detects elements.
  • the sample is scanned with radiation, radiation generated from each point on the sample is detected, the element is detected based on the spectrum of the radiation, and the distribution of the element on the sample is obtained.
  • Patent Literature 1 discloses an example of an element detection method.
  • a combined spectrum is generated by adding or averaging the spectra of radiation generated from a plurality of points on the sample, and the element is detected based on the combined spectrum.
  • a peak caused by an element contained in only a part of the sample is relatively smaller in the synthesized spectrum than a peak caused by an element contained in the entire sample. For this reason, it is difficult to detect elements contained in only a part of the sample based on the synthesized spectrum.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an element detection method and an element detection method capable of easily detecting elements contained in only a small part of a sample.
  • An object is to provide a device and a computer program.
  • the element detection method performs scanning of a sample with radiation, detects radiation generated from a scanning region on the sample where the scanning is performed, and generates radiation from each of a plurality of points included in the scanning region.
  • the element detection method for generating a spectrum of the obtained radiation and detecting an element contained in the sample a spectrum distribution in which the spectrum is associated with each of the plurality of points is generated, and the spectrum distribution is equal to or smaller than the width of the scanning region.
  • a sample is scanned with radiation, and a spectral distribution is generated in which the spectrum of the radiation is associated with each of a plurality of points included in a scan area on the sample.
  • One or more small regions are extracted from the scanning region, a combined spectrum is generated by combining spectra associated with points included in each small region, and an element is detected based on the combined spectrum.
  • the processing from the extraction of the small region to the detection of the element is repeated by changing the size of each small region. By the processing in the case where the size of the small region is large, elements widely distributed in the sample are detected. By the processing in the case where the size of the small region is small, an element contained in only a part of the sample is detected.
  • the elements detected in the element detection processing before changing the size of the small region are included in the sample, and the presence or absence of each element is determined. Is determined.
  • the element detected in the process before the change in the size of the small region is already detected, and a new element is detected. I do.
  • the number of undetected elements can be reduced, and the elements contained in the sample can be reliably detected.
  • each of the plurality of elements in the element detection processing, based on a position of a peak included in the synthesized spectrum generated for each small region, each of the plurality of elements may be included in a portion corresponding to each small region of the sample. Is calculated, and the presence or absence of each element is determined based on a comparison between the score and a predetermined threshold value, thereby detecting the elements contained in the sample.
  • a score indicating the probability of containing each element is calculated based on the position of the peak in the synthesized spectrum, and the element is detected based on a comparison between the score and the threshold.
  • the score is calculated by comparing the position of the peak in the synthesized spectrum with the position of the peak specific to the element, and it is determined that the sample contains an element that is highly likely to be contained in the sample to some extent.
  • the element detection method according to the present invention is characterized in that the threshold value is changed according to the number of spectra synthesized for generating the synthesized spectrum for each small region.
  • the threshold for element detection is changed according to the number of spectra synthesized to generate a synthesized spectrum for a small region. For example, the smaller the number of spectra to be combined, the smaller the threshold. As compared with the case where the threshold value is fixed, the number of erroneously detected elements is suppressed.
  • the element detection method in the element detection processing, it is determined that an element whose score exceeds the threshold is included in the sample, and the number of spectra synthesized to generate the synthesized spectrum is determined. It is characterized in that the threshold value is set to be smaller as is smaller.
  • the element detection method according to the present invention is characterized in that an element distribution is generated for each of the elements detected by the element detection processing.
  • the distribution of the detected element is generated. Element distribution can be obtained for elements contained in only a small part of the sample.
  • An element detection device includes a scanning unit that scans a sample with radiation, a radiation detection unit that detects radiation generated from a scan region on the sample where the scan is performed, and a scan unit that is included in the scan region.
  • the analysis unit includes the plurality of points.
  • a computer program causes a computer to detect an element contained in a sample based on a spectrum distribution in which a plurality of points on the sample are associated with a spectrum of radiation generated from each point.
  • the computer includes, from a region including the plurality of points on the sample, an extraction step of extracting one or more small regions having a size equal to or smaller than the size of the region;
  • the extraction step, the synthesis step, and the element detection step are repeated by changing the size of each small region. Characterized in that to execute a process including the to steps.
  • an element contained in a sample is detected based on a spectral distribution in which a plurality of points on a sample scanned with radiation are associated with a spectrum of radiation generated from each point.
  • One or more small regions are extracted from a region including a plurality of points on the sample, a combined spectrum is generated by combining spectra associated with the points included in each small region, and an element is detected based on the combined spectrum.
  • the processing from the extraction of the small region to the detection of the element is repeated by changing the size of each small region. By the processing in the case where the size of the small region is large, elements widely distributed in the sample are detected. By the processing in the case where the size of the small region is small, an element contained in only a part of the sample is detected.
  • the present invention has excellent effects such as detecting elements widely distributed in a sample and easily detecting elements contained in only a part of the sample.
  • FIG. 2 is a block diagram illustrating a configuration of an element detection device.
  • FIG. 3 is a block diagram illustrating an example of an internal configuration of an analysis unit.
  • 5 is a flowchart illustrating a procedure of a process executed by the element detection device according to the first embodiment.
  • FIG. 3 is a characteristic diagram illustrating an example of a spectrum of a fluorescent X-ray.
  • FIG. 9 is a characteristic diagram illustrating an example of a synthesized spectrum when the number of points on a sample included in a small region is large.
  • FIG. 7 is a characteristic diagram illustrating an example of a synthesized spectrum when the number of points on a sample included in a small region is small.
  • FIG. 1 is a block diagram illustrating a configuration of the element detection device 10.
  • the element detection device 10 is a fluorescent X-ray analyzer.
  • the element detection device 10 includes an irradiation unit 21 that irradiates X-rays, a sample table 23 on which the sample 4 is placed, and an X-ray detector 22 that detects X-rays.
  • the irradiation unit 21 is configured using, for example, an X-ray tube.
  • the irradiation unit 21 emits X-rays, and the emitted X-rays are irradiated on the sample 4 placed on the sample stage 23.
  • Fluorescent X-rays are generated from the sample 4 irradiated with the X-rays.
  • the X-ray detector 22 detects fluorescent X-rays generated from the sample 4.
  • the X-ray detector 22 corresponds to a radiation detector. In the drawing, the X-rays that the irradiation unit 21 irradiates the sample 4 are indicated by solid arrows, and the fluorescent X-rays are indicated by broken arrows.
  • the X-ray detector 22 outputs a signal proportional to the detected energy of the fluorescent X-ray. At least a part of the irradiation unit 21 and the X-ray detector 22 may be arranged in a container whose inside is decompressed.
  • the element detection device 10 may be configured to hold the sample 4 by a method other than the method of mounting the sample 4 on the sample table 23.
  • the signal processing unit 32 that processes the output signal is connected to the X-ray detector 22.
  • the signal processing unit 32 detects a signal value corresponding to the energy of the fluorescent X-ray detected by the X-ray detector 22 by detecting the peak of the pulse signal output by the X-ray detector 22.
  • the signal processing unit 32 is connected to the analysis unit 1.
  • the signal processing unit 32 outputs data indicating the detected signal value to the analysis unit 1.
  • the analysis unit 1 counts the signal of each value based on the data from the signal processing unit 32 and performs a process of generating a relationship between the energy of the fluorescent X-ray and the count number, that is, a spectrum of the fluorescent X-ray.
  • the signal processor 32 and the analyzer 1 correspond to a spectrum generator.
  • the analysis unit 1 detects an element contained in the sample 4 based on the spectrum. Note that the signal processing unit 32 may generate a fluorescent X-ray spectrum.
  • a drive unit 33 for moving the sample table 23 is connected to the sample table 23.
  • the drive unit 33 is configured using, for example, a stepping motor.
  • the drive unit 33 moves the sample table 23 in the horizontal plane direction.
  • the irradiation unit 21, the signal processing unit 32, the driving unit 33, and the analysis unit 1 are connected to the control unit 31.
  • the control unit 31 controls operations of the irradiation unit 21, the signal processing unit 32, the driving unit 33, and the analysis unit 1.
  • the control unit 31 may be configured to receive a user operation and control each unit of the element detection device 10 according to the received operation. Further, the control unit 31 and the analysis unit 1 may be configured by the same computer.
  • the control unit 31 causes the irradiation unit 21 to irradiate the sample 4 with X-rays, controls the operation of the driving unit 33, and moves the sample table 23 in the horizontal plane direction.
  • the sample 4 is moved by the movement of the sample table 23, and the position on the sample 4 where the X-ray is irradiated is sequentially changed.
  • the element detection device 10 scans the sample 4 with X-rays.
  • the irradiation unit 21, the driving unit 33, and the control unit 31 correspond to a scanning unit. An area on the sample 4 where scanning by X-rays is performed is defined as a scanning area.
  • X-rays are sequentially applied to respective points in the scan area on the sample 4.
  • fluorescent X-rays generated from points irradiated with X-rays on the sample 4 are sequentially detected by the X-ray detector 22.
  • the signal processing unit 32 sequentially performs signal processing, and the analysis unit 1 sequentially generates the spectrum of the fluorescent X-ray generated at each of a plurality of points in the scanning area.
  • FIG. 2 is a block diagram showing an example of the internal configuration of the analyzer 1.
  • the analysis unit 1 is a data processing device configured using a computer such as a personal computer.
  • the analysis unit 1 includes a CPU (Central Processing Unit) 11 for performing calculations, a RAM (Random Access Memory) 12 for storing temporary data generated with the calculations, and a drive for reading information from a recording medium 100 such as an optical disk.
  • a storage unit 13 and a nonvolatile storage unit 14 are provided.
  • the storage unit 14 is, for example, a hard disk.
  • the CPU 11 causes the drive unit 13 to read the computer program 141 from the recording medium 100 and causes the storage unit 14 to store the read computer program 141.
  • the CPU 11 loads the computer program 141 from the storage unit 14 to the RAM 12 as necessary, and executes processing necessary for the analysis unit 1 according to the loaded computer program 141.
  • the computer program 141 may be downloaded to the analysis unit 1 from an external server device (not shown) connected to the analysis unit 1 via a communication network (not shown) and stored in the storage unit 14. Further, the analyzing unit 1 may be configured not to receive the computer program 141 from the outside but to have a recording unit such as a ROM storing the computer program 141 therein.
  • the analysis unit 1 includes an input unit 15 such as a keyboard or a pointing device to which information such as various processing instructions is input by a user's operation, and a display unit 16 such as a liquid crystal display for displaying various information. It has.
  • the analysis unit 1 includes an interface unit 17 to which a control unit 31 and a signal processing unit 32 are connected.
  • the analysis unit 1 receives the data output from the signal processing unit 32 at the interface unit 17.
  • the analysis unit 1 stores data representing the spectrum of the generated fluorescent X-rays in the storage unit 14.
  • the control unit 31 generates information indicating the position of the point irradiated with the X-ray on the sample 4 based on the control signal for controlling the driving unit 33, and outputs the information to the analysis unit 1.
  • the analysis unit 1 receives the information output from the control unit 31 by the interface unit 17 and stores the information in the storage unit 14.
  • FIG. 3 is a flowchart illustrating a procedure of a process performed by the element detection device 10 according to the first embodiment.
  • the step is abbreviated as S.
  • the element detector 10 scans the sample 4 with X-rays (S101).
  • the X-ray detector 22 sequentially detects the fluorescent X-rays generated from each of the plurality of points irradiated with the X-ray on the sample 4,
  • the signal processing unit 32 performs the signal processing sequentially, and the analysis unit 1 Sequentially generate fluorescent X-ray spectra.
  • the analysis unit 1 stores the data of the spectrum of the fluorescent X-ray generated from each point and the information indicating the position of the point irradiated with the X-ray on the sample 4 in the storage unit 14.
  • the CPU 11 of the analysis unit 1 executes the following processing according to the computer program 141. Based on the data of the spectrum of the fluorescent X-rays stored in the storage unit 14 and the information indicating the positions of the points irradiated with the X-rays, the CPU 11 determines each point in the scanning area on the sample 4 and each point. A spectrum distribution in which the spectrum of the generated fluorescent X-ray is associated is generated (S102). The CPU 11 causes the storage unit 14 to store data representing the spectrum distribution.
  • the CPU 11 extracts one or more small areas from the scanning area composed of a plurality of points on the sample 4 irradiated with the X-ray (S103).
  • the small area is an area that is included in the scanning area and has a size equal to or smaller than the size of the scanning area.
  • the CPU 11 extracts a plurality of small areas by dividing the scanning area so that the small areas are arranged in a matrix. When the scanning area is divided, the small areas do not overlap, and one point on the sample 4 is not included in a plurality of small areas.
  • the CPU 11 classifies the information indicating the position of each point included in the scanning area for each small area. The spectrum associated with each point in the spectral distribution is also classified according to the position of the point.
  • each small area includes the same number of points. For example, if the scanning area includes 256 ⁇ 256 points and the scanning area is divided into four small areas, each small area includes 128 ⁇ 128 points and 128 ⁇ 128 points. A number of spectra are associated.
  • the process of S103 corresponds to an extraction process and an extraction step.
  • the CPU 11 generates a combined spectrum obtained by combining fluorescent X-ray spectra for each small area (S104).
  • S104 the CPU 11 generates a combined spectrum by adding or averaging a plurality of spectra associated with a plurality of points included in each small region. For example, when the scanning area includes 256 ⁇ 256 points and the scanning area is divided into four small areas, 128 ⁇ 128 numbers of spectra are added or averaged for each small area, and the combined spectrum is obtained. Is generated.
  • the process of S104 corresponds to a combining process and a combining step.
  • FIG. 4 is a characteristic diagram showing an example of the spectrum of the fluorescent X-ray.
  • the horizontal axis in the figure indicates the energy of the fluorescent X-ray, and the vertical axis indicates the count of the fluorescent X-ray.
  • the peak included in the spectrum is derived from any of the elements, and the energy of the peak is specific to the element. That is, the position of the peak derived from a certain element in the spectrum is known, and the element contained in the sample 4 can be detected based on the position of the peak contained in the spectrum.
  • the peak included in the actual spectrum may be displaced from its original position due to other peaks or noise overlap.
  • the storage unit 14 stores information indicating the position of the peak to be included in the spectrum for each of the plurality of elements.
  • the CPU 11 compares the position of the peak included in the synthesized spectrum with the position of the peak derived from each element indicated by the information stored in the storage unit 14, and quantifies the degree of coincidence of the peak position. Calculate the score. For example, the CPU 11 performs the calculation such that the score increases as the position of the peak in the spectrum is closer to the original position of the peak derived from a specific element. Further, the CPU 11 may perform the calculation such that the score increases as the size of the peak increases. The peak size is obtained from the peak area or the peak height. When using the magnitude of the peak, the CPU 11 calculates the score based on both the degree of coincidence of the peak position and the magnitude of the peak.
  • ⁇ Circle around (2) ⁇ There are a plurality of peaks derived from a specific element, and the CPU 11 may calculate the score from the degree of coincidence of the peak positions after weighting each of the plurality of peaks.
  • the peak of K ⁇ and the peak of K ⁇ of a certain element are used to increase the weight of the degree of coincidence of the peak position of K ⁇ .
  • the CPU 11 calculates the score by calculating (coincidence of K ⁇ peak position) ⁇ 0.8 + (coincidence of K ⁇ peak position) ⁇ 0.2.
  • the process of calculating the score of each element is performed for each small region.
  • the CPU 11 performs the calculation so that the score falls within a predetermined range such as 0 to 100.
  • the CPU 11 may perform the calculation using a conventional algorithm.
  • the analysis unit 1 may execute the process of S105 using artificial intelligence.
  • the CPU 11 compares the score of each element with a predetermined threshold value for each small region to determine the presence or absence of each element (S106). More specifically, when the score of a certain element is equal to or more than the threshold, the CPU 11 determines that the element is included in the sample 4.
  • the threshold value is stored in the storage unit 14 in advance or specified in the computer program 141. The CPU 11 makes a determination for all the small areas.
  • the CPU 11 determines whether the element determined to be included in the sample 4 includes a new element different from the elements already detected as the elements included in the sample 4 (S107). . The new element only needs to be determined to be included in the sample 4 in any one of the small regions.
  • the CPU 11 adds the new element determined to be contained in the sample 4 to the element detected as an element contained in the sample 4 (S108).
  • the processes in S105 to S108 correspond to an element detection process and an element detection step.
  • the CPU 11 may perform a process of determining that the element is included in the sample 4. Further, the CPU 11 calculates a score such that the lower the score is, the higher the probability that the element is included in the sample 4 is. If the score of a certain element is less than the threshold value, the CPU 11 determines that the element is included in the sample 4. A determination process may be performed.
  • the CPU 11 determines whether or not to end the processing for detecting the element (S109). In S109, the CPU 11 determines to end when a predetermined state is reached. For example, the CPU 11 determines whether the number of detected elements has reached a predetermined number, the number of repetitions of the processing of S103 to S110 described below has reached a predetermined number, the processing time has exceeded a predetermined upper limit, or When the number of points included in the small area is equal to or smaller than the predetermined lower limit, it is determined that the process is to be terminated.
  • the CPU 11 sets the size of the small area so that the size of the small area is reduced (S110), returns the processing to S103, and returns to S103.
  • the process of S110 is repeated.
  • the CPU 11 extracts a plurality of small areas from the scanning area with the small area being reduced in size. As the size of the small area is reduced, the number of small areas dividing the scanning area increases, and the number of points on the sample 4 included in the small area decreases. That is, each time the processing of S103 to S110 is repeated, the size of the small area becomes smaller, the number of points on the sample 4 included in the small area decreases, and the number of small areas increases.
  • the CPU 11 detects the element detected in one or more of the processing of S105 to S108 before reducing the size of the small area used in the processing of S105 to S108. Is detected in the sample 4 and the element is detected.
  • the CPU 11 If it is determined in S109 that the process is to be terminated (S109: YES), the CPU 11 generates an element distribution for each of the detected elements (S111), and terminates the process.
  • the CPU 11 calculates, for each element, the amount or concentration of the element present at each point based on the intensity of the peak included in the spectrum associated with each point in the scanning area.
  • An element distribution associated with the amount or concentration of The CPU 11 causes the storage unit 14 to store the data of the element distribution.
  • the CPU 11 may display an image representing the element distribution of each element on the display unit 16.
  • FIG. 5 is a characteristic diagram showing an example of a synthesized spectrum when the number of points on the sample 4 included in the small area is large.
  • FIG. 6 is a characteristic diagram showing an example of a synthesized spectrum when the number of points on the sample 4 included in the small region is small.
  • the horizontal axis shows the energy of fluorescent X-rays
  • the vertical axis shows the count number of fluorescent X-rays.
  • the composite spectrum shown in FIGS. 5 and 6 corresponds to an enlarged portion surrounded by a broken line in FIG.
  • the peak attributable to a specific element in the synthesized spectrum is relatively large.
  • the peak indicated by the arrow in FIG. 6 is a peak derived from an element existing only in a part of the scanning area. In FIG. 5, a peak corresponding to this peak cannot be confirmed.
  • the specific element When the specific element is not present in a very small part of the scanning area and is present in other parts, the specific element is caused when the number of points on the sample 4 included in the small area is large.
  • the peak is relatively large.
  • the peak attributable to the specific element is relatively small in the composite spectrum of the small region corresponding to the portion not including the specific element.
  • the peak indicated by the arrow in FIG. 5 is a peak derived from an element that is not present in a very small part of the scanning area but exists in another part. In FIG. 6, a peak corresponding to this peak cannot be confirmed.
  • an element that is widely distributed in the sample 4 can be detected by using a synthesized spectrum in a case where the number of points on the sample 4 included in the small region is large and the number of a plurality of spectra to be synthesized is large. it can.
  • FIG. 7 is a graph showing the number of undetected elements in an example in which an element was detected using a composite spectrum.
  • the horizontal axis indicates the number of points on the sample 4 included in the small area, and the vertical axis indicates the number of undetected elements.
  • FIG. 7 shows the result of determining the presence or absence of an element based on the score of each element, using a printed wiring board in which the contained elements are known as Sample 4.
  • the undetected number is the number of elements that were not detected despite being included in the sample 4.
  • the results when the threshold value is 80 are indicated by black circles, the results when the threshold value is 60 are indicated by triangle marks, and the results when the threshold value is 40 are indicated by white circles.
  • the threshold value When the threshold value is reduced, it is easy to determine that an element is present, so that the number of non-detections decreases. If the number of points on the sample 4 included in the small area is too small, the S / N ratio deteriorates, the number of peaks that can be discriminated decreases, and the number of non-detections increases.
  • FIG. 8 is a graph showing the number of erroneous detections in an example in which an element was detected using a composite spectrum.
  • the horizontal axis indicates the number of points on the sample 4 included in the small region, and the vertical axis indicates the number of erroneous detections of the element.
  • the number of erroneous detections is the number of elements determined to be contained in the sample 4 even though they are not contained in the sample 4. Similar to FIG. 7, the results when the threshold is set to 80 are indicated by black circles, the results when the threshold is set to 60 are indicated by triangles, and the results when the threshold is set to 40 are indicated by white circles. When the threshold value is reduced, it is easier to determine the presence of an element, and the number of erroneous detections increases. When the number of points on the sample 4 included in the small area is reduced, the number of false detections decreases.
  • the processes of S103 to S110 are repeated while the number of points included in each small area is reduced.
  • the number of points on the sample 4 included in the small area is large and the number of multiple spectra to be synthesized is large, the number of non-detections becomes small when a synthesized spectrum is used.
  • the element is detected using the synthesized spectrum when the number of points on the sample 4 included in the small region is large.
  • FIG. 9 is a graph showing the number of undetected elements in an example in which an element was detected by the element detection method according to the first embodiment.
  • the horizontal axis indicates the number of points on the sample 4 included in the small region in each of the processes of S105 to S108 while repeating the processes of S105 to S108, and the vertical axis indicates the number of undetected elements.
  • the element is detected using the synthesized spectrum when the number of points on the sample 4 included in the small area is large, and the number of points on the sample 4 included in the small area is small. When it is determined that there is a new element using the combined spectrum in that case, a new element is added to the detected element.
  • the number of undetected elements when detecting elements contained in the sample 4 can be reduced. Therefore, the elements contained in the sample 4 can be reliably detected.
  • an element that is widely distributed in the sample 4 is detected by using the synthesized spectrum in the case where the size of the small region is large. To detect elements contained locally. This makes it possible to easily detect elements contained in only a part of the sample 4.
  • the element distribution since the element distribution is generated for the detected element, the element distribution can be obtained for the element contained in only a part of the sample 4. For this reason, it is possible to examine the distribution of foreign substances contained in the sample 4.
  • FIG. 10 is a flowchart illustrating a procedure of a process performed by the element detection device 10 according to the second embodiment.
  • the element detection device 10 scans the sample 4 with X-rays (S201), and sequentially performs detection of fluorescent X-rays and generation of a fluorescent X-ray spectrum.
  • the CPU 11 of the analysis unit 1 executes the following processing according to the computer program 141.
  • the CPU 11 executes the same processing of S202 to S210 as S102 to S110 in the first embodiment.
  • the CPU 11 decreases the threshold value according to the reduction in the size of the small area (S211). For example, the CPU 11 decreases the threshold value as the area of the small area becomes smaller and the number of points on the sample 4 included in the small area becomes smaller. Specifically, for example, when the number of points in the small area is 256 ⁇ 256, 128 ⁇ 128, 64 ⁇ 64, 32 ⁇ 32,..., The CPU 11 sets the threshold to 80, 75, 70, 65, ... are set.
  • the relationship between the size of the small region or the number of points on the sample 4 included in the small region and the threshold may be stored in the storage unit 14 in advance, and the threshold is changed according to the reduction in the size of the small region.
  • Algorithm may be included in the computer program 141. The smaller the number of points on the sample 4 included in the small area, the smaller the number of spectra to be synthesized in S204. That is, the CPU 11 decreases the threshold value as the number of spectra to be synthesized in S204 decreases.
  • the CPU 11 After the processing of S211 is completed, the CPU 11 returns the processing to S203 and repeats the processing of S203 to S211. Each time the processing of S203 to S211 is repeated, the number of small areas dividing the scanning area increases, and the number of points on the sample 4 included in the small areas, the number of spectra to be synthesized in S204, and the threshold value decrease. In the second and subsequent S206, the CPU 11 compares the score of each element with the changed threshold.
  • the CPU 11 If it is determined in S209 that the processing is to be ended (S209: YES), the CPU 11 generates an element distribution for each of the detected elements (S212), and ends the processing.
  • the CPU 11 causes the storage unit 14 to store the data of the element distribution.
  • FIG. 11 is a graph showing the number of undetected elements in an example in which an element was detected by the element detection method according to Embodiments 1 and 2.
  • the horizontal axis indicates the number of points on the sample 4 included in the small area, and the vertical axis indicates the number of undetected elements.
  • FIG. 12 is a graph showing the number of erroneous detections in an example in which an element is detected by the element detection method according to the first and second embodiments.
  • the horizontal axis indicates the number of points on the sample 4 included in the small region, and the vertical axis indicates the number of erroneous detections of the element.
  • the results when the threshold is fixed to 80 are indicated by black circles
  • the results when the threshold is fixed to 60 are indicated by triangles
  • the results when the threshold is fixed to 40 are indicated by white circles. Is shown. Further, the results obtained by the element detection method according to the second embodiment are indicated by square marks.
  • the number of non-detections decreases more rapidly in accordance with the decrease in the number of points on the sample 4 included in the small area than in the case where the threshold is fixed.
  • the number of erroneous detections can be reduced as compared with the case where the threshold value is fixed to a small value. That is, in the second embodiment, by changing the threshold value according to the number of spectra to be synthesized, it is possible to reliably detect the elements contained in the sample 4 while further suppressing erroneous detection.
  • the second embodiment it is possible to easily detect elements contained in only a small part of the sample 4 while further suppressing erroneous detection. Further, in the second embodiment, the number of undetected points decreases rapidly according to the decrease in the number of points on the sample 4 included in the small area. Therefore, the number of points on the sample 4 included in the small area does not decrease too much. In both cases, the number of non-detections can be made sufficiently small. For this reason, the analysis unit 1 can terminate the processing of S203 to S211 at a stage where the size of the small area is not excessively reduced. Thereby, the element detection device 10 can reduce the time required for the processing. Further, by not excessively reducing the number of points on the sample 4 included in the small region, the element detection device 10 can further suppress erroneous detection.
  • a mode in which a plurality of small regions are extracted by dividing a scanning region so that the small regions are arranged in a matrix has been described. May be used to extract a small area.
  • the small area may have a shape other than a rectangle.
  • the plurality of small regions extracted from the scanning region may have different sizes, and the number of points on the sample 4 included may be different.
  • the analysis unit 1 may set a region including a point adjacent to a point where the intensity of the peak included in a certain ROI (region @ of @ interest) of the fluorescent X-ray spectrum has a certain intensity or higher as a small region.
  • the scanning region may have points that are not included in the extracted small region or points that are not used to generate a composite spectrum.
  • the processing from the extraction of the small area to the element detection is repeated while the area of the small area is reduced.
  • the analysis unit 1 increases the area of the small area.
  • the process may be repeated.
  • FIG. 13 is a flowchart illustrating a procedure of a process performed by the element detection device 10 according to the third embodiment.
  • the element detection device 10 detects an element contained in the sample 4 by the processing of S101 to S111 according to the first embodiment or the processing of S201 to S212 according to the second embodiment (S31).
  • the analysis unit 1 extracts a characteristic region included in the scanning region based on the detection result of the element (S32).
  • the characteristic region is a region that has a different composition from most other points among a plurality of points included in the scanning region.
  • a feature point is a point associated with a spectrum in which the intensity of a peak derived from an element contained in only a part of the sample 4 is equal to or more than a predetermined value, and a region where a plurality of feature points are collected is a feature region. It is. There may be a plurality of characteristic regions.
  • the analysis unit 1 generates a composite spectrum of the characteristic region (S33).
  • the analysis unit 1 generates a combined spectrum by adding or averaging the spectra associated with each feature point in the feature region.
  • the analysis unit 1 calculates the S / N ratio of the combined spectrum, and determines whether the magnitude of the S / N ratio is sufficient (S34). For example, in S34, when the S / N ratio is equal to or more than the predetermined value, the analysis unit 1 determines that the magnitude of the S / N ratio is sufficient.
  • the element detection device 10 irradiates the characteristic region on the sample 4 again with X-rays, detects fluorescent X-rays, and synthesizes the characteristic region. A re-measurement process for generating a spectrum again is performed (S35).
  • the analysis unit 1 classifies the composite spectrum of the characteristic region (S36). For example, the analysis unit 1 compares synthesized spectra of a plurality of characteristic regions, and classifies the synthesized spectra based on the similarity. The similarity is determined, for example, according to the magnitude of the difference between the spectra. It can be inferred that the characteristic regions in which the composite spectra are classified into the same type are regions composed of the same substance. In addition, for example, the analysis unit 1 compares a specific spectrum stored in the storage unit 14 in advance with the composite spectrum of the characteristic region, and classifies the composite spectrum based on the similarity with the specific spectrum. It can be inferred that the characteristic region in which the composite spectrum is classified into one similar to the spectrum caused by the specific substance is a region composed of the specific substance.
  • the analysis unit 1 detects an element present in the characteristic region based on the synthesized spectrum (S37).
  • the analysis unit 1 may calculate the abundance ratio of the element existing in the characteristic region.
  • the analysis unit 1 detects a substance constituting the characteristic region (S38). For example, the analysis unit 1 detects a substance constituting the characteristic region based on the classification result of the synthesized spectrum in S36 or the detection result of the element in S37.
  • the element detection device 10 ends the processing as described above.
  • the element detection device 10 detects a substance contained in a part of the scanning area. Thereby, the element detecting device 10 can detect the foreign matter contained in the sample 4. For example, when the filter after filtering the liquid is used as the sample 4, it is possible to detect the foreign matter on the filter, that is, the mixture in the liquid remaining on the filter at the time of filtration.
  • the element detection device 10 uses another method to extract the characteristic region. It may be in the form of extraction.
  • the element detection device 10 may detect an X-ray transmitted through the sample 4 to generate a transmitted X-ray image, and extract a characteristic region based on the transmitted X-ray image. It is possible to extract a characteristic region based on the distribution of shading included in the transmission X-ray image.
  • the energy dispersive type in which the fluorescent X-rays are separated by energy and detected is shown. May be used.
  • X-rays are irradiated on the sample 4 to detect the fluorescent X-rays generated from the sample 4.
  • the element detection apparatus 10 emits radiation other than X-rays.
  • X-rays generated from the sample 4 may be detected.
  • the element detection device 10 may be configured to irradiate the sample 4 with an electron beam and change the direction of the electron beam to scan the sample 4 with the electron beam.
  • the mode in which the X-ray generated from the sample 4 is detected has been described.
  • the element detecting device 10 may be configured to detect the radiation other than the X-ray generated from the sample 4. Good.
  • the element detecting device 10 may be configured to irradiate the sample 4 with an electron beam or a laser beam and detect a visible light or an infrared ray such as a secondary electron, a reflected electron, or a cathodoluminescence generated from the sample 4. .

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Provided are an element detection method, an element detection device, and a computer program that make it possible to easily detect an element included in a very small portion of a sample. The element detection method includes scanning a sample with radiation to detect radiation generated from a scanned region on the scanned sample, and generating the spectrum of radiation generated from each of a plurality of points included in the scanned region to detect elements included in the sample, wherein, with a spectral distribution being generated in which the spectrum is associated with each of the plurality of points, the following are performed: extraction processing for extracting, from the scanned region, at least one small region having a size not greater than the size of the scanned region; synthesis processing for generating a synthesized spectrum obtained by synthesizing the plurality of spectra associated with a plurality of points included in each small region; and element detection processing for detecting the elements included in the sample, on the basis of the synthesized spectrum generated for each small region. The extraction processing, the synthesis processing and the element detection processing are repeated by changing the size of the small regions.

Description

元素検出方法、元素検出装置、及びコンピュータプログラムElement detection method, element detection device, and computer program
 本発明は、試料を放射線で走査し、試料から発生した放射線を検出し、放射線の検出結果に基づいて元素の検出を行う元素検出方法、元素検出装置、及びコンピュータプログラムに関する。 The present invention relates to an element detection method, an element detection device, and a computer program for scanning a sample with radiation, detecting radiation generated from the sample, and detecting elements based on the detection result of the radiation.
 試料へ放射線を照射し、試料から発生した放射線を検出し、試料に含まれる元素を検出することができる。例えば、試料へX線を照射し、試料から発生した蛍光X線を検出し、元素の検出を行う蛍光X線分析がある。電子線等のX線以外の放射線を試料へ照射する方法もあり、試料から発生する可視光又は赤外光等のX線以外の放射線を検出する方法もある。更に、試料を放射線で走査し、試料上の各点から発生した放射線を検出し、放射線のスペクトルに基づいて元素を検出し、試料上の元素の分布を取得することが行われる。特許文献1には、元素検出方法の例が開示されている。 (4) Irradiate the sample with radiation, detect the radiation generated from the sample, and detect the elements contained in the sample. For example, there is a fluorescent X-ray analysis that irradiates a sample with X-rays, detects fluorescent X-rays generated from the sample, and detects elements. There is also a method of irradiating the sample with radiation other than X-rays such as an electron beam, and a method of detecting radiation other than X-rays such as visible light or infrared light generated from the sample. Further, the sample is scanned with radiation, radiation generated from each point on the sample is detected, the element is detected based on the spectrum of the radiation, and the distribution of the element on the sample is obtained. Patent Literature 1 discloses an example of an element detection method.
特表2009-544980号公報Japanese Patent Publication No. 2009-544980
 従来、試料上の元素の分布を取得する際には、試料上の複数の点から発生した放射線のスペクトルを加算又は平均した合成スペクトルを生成し、合成スペクトルに基づいて元素を検出している。しかしながら、試料のごく一部に含まれている元素に起因するピークは、試料の全体に含まれている元素に起因するピークに比べて、合成スペクトルの中で相対的に小さくなる。このため、試料のごく一部に含まれている元素については、合成スペクトルに基づいて検出することが困難である。 Conventionally, when acquiring the distribution of elements on a sample, a combined spectrum is generated by adding or averaging the spectra of radiation generated from a plurality of points on the sample, and the element is detected based on the combined spectrum. However, a peak caused by an element contained in only a part of the sample is relatively smaller in the synthesized spectrum than a peak caused by an element contained in the entire sample. For this reason, it is difficult to detect elements contained in only a part of the sample based on the synthesized spectrum.
 本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、試料のごく一部に含まれている元素についても容易に検出することができる元素検出方法、元素検出装置、及びコンピュータプログラムを提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an element detection method and an element detection method capable of easily detecting elements contained in only a small part of a sample. An object is to provide a device and a computer program.
 本発明に係る元素検出方法は、放射線による試料の走査を行い、前記走査が行われた前記試料上の走査領域から発生した放射線を検出し、前記走査領域に含まれる複数の点の夫々から発生した放射線のスペクトルを生成し、前記試料に含まれる元素の検出を行う元素検出方法において、前記複数の点の夫々に前記スペクトルを関連付けたスペクトル分布を生成し、前記走査領域の広さ以下の広さを有する1以上の数の小領域を前記走査領域から抽出する抽出処理と、各小領域に含まれる複数の点に関連付けられた複数のスペクトルを合成した合成スペクトルを生成する合成処理と、各小領域について生成した前記合成スペクトルに基づいて、前記試料に含まれる元素を検出する元素検出処理とを行い、各小領域の広さを変化させて、前記抽出処理、前記合成処理及び前記元素検出処理を繰り返すことを特徴とする。 The element detection method according to the present invention performs scanning of a sample with radiation, detects radiation generated from a scanning region on the sample where the scanning is performed, and generates radiation from each of a plurality of points included in the scanning region. In the element detection method for generating a spectrum of the obtained radiation and detecting an element contained in the sample, a spectrum distribution in which the spectrum is associated with each of the plurality of points is generated, and the spectrum distribution is equal to or smaller than the width of the scanning region. An extraction process of extracting one or more small regions having the following characteristics from the scanning region; a synthesis process of generating a synthesized spectrum obtained by synthesizing a plurality of spectra associated with a plurality of points included in each of the small regions; Performing element detection processing for detecting an element contained in the sample based on the synthesized spectrum generated for the small region, changing the size of each small region, and performing the extraction. Process, and repeating the synthesis process and the elemental detection processing.
 本発明においては、放射線で試料を走査し、試料上の走査領域に含まれる複数の点の夫々に放射線のスペクトルを関連付けたスペクトル分布を生成する。走査領域から1以上の小領域を抽出し、各小領域に含まれる点に関連付けられたスペクトルを合成した合成スペクトルを生成し、合成スペクトルに基づいて元素を検出する。各小領域の広さを変化させて、小領域の抽出から元素の検出までの処理を繰り返す。小領域の広さが大きい場合の処理により、試料中に広く分布する元素が検出される。小領域の広さが小さい場合の処理により、試料のごく一部に含まれている元素が検出される。 According to the present invention, a sample is scanned with radiation, and a spectral distribution is generated in which the spectrum of the radiation is associated with each of a plurality of points included in a scan area on the sample. One or more small regions are extracted from the scanning region, a combined spectrum is generated by combining spectra associated with points included in each small region, and an element is detected based on the combined spectrum. The processing from the extraction of the small region to the detection of the element is repeated by changing the size of each small region. By the processing in the case where the size of the small region is large, elements widely distributed in the sample are detected. By the processing in the case where the size of the small region is small, an element contained in only a part of the sample is detected.
 本発明に係る元素検出方法は、前記元素検出処理では、前記小領域の広さを変化させる前の前記元素検出処理で検出された元素は前記試料に含まれているものとして、各元素の有無を判定することを特徴とする。 In the element detection method according to the present invention, in the element detection processing, the elements detected in the element detection processing before changing the size of the small region are included in the sample, and the presence or absence of each element is determined. Is determined.
 本発明においては、各小領域の広さを変化させて処理を繰り返す際に、小領域の広さが変化する前の処理において検出された元素は既に検出されたものとして、新たな元素の検出を行う。これにより、元素の不検出数を減少させ、試料に含まれる元素を確実に検出することができる。 In the present invention, when the process is repeated while changing the size of each small region, the element detected in the process before the change in the size of the small region is already detected, and a new element is detected. I do. As a result, the number of undetected elements can be reduced, and the elements contained in the sample can be reliably detected.
 本発明に係る元素検出方法は、前記元素検出処理では、各小領域について生成した前記合成スペクトルに含まれるピークの位置に基づいて、前記試料の各小領域に対応する部分に複数の元素の夫々が含まれる確からしさを表す得点を計算し、前記得点と所定の閾値との比較に基づいて各元素の有無を判定することにより、前記試料に含まれる元素を検出することを特徴とする。 In the element detection method according to the present invention, in the element detection processing, based on a position of a peak included in the synthesized spectrum generated for each small region, each of the plurality of elements may be included in a portion corresponding to each small region of the sample. Is calculated, and the presence or absence of each element is determined based on a comparison between the score and a predetermined threshold value, thereby detecting the elements contained in the sample.
 本発明においては、合成スペクトル中のピークの位置に基づいて、夫々の元素が含まれる確からしさを表す得点を計算し、得点と閾値との比較に基づいて元素を検出する。合成スペクトル中のピークの位置と元素に固有のピークの位置との比較により得点が計算され、試料に含まれる確からしさがある程度高い元素が試料に含まれていると判定される。 In the present invention, a score indicating the probability of containing each element is calculated based on the position of the peak in the synthesized spectrum, and the element is detected based on a comparison between the score and the threshold. The score is calculated by comparing the position of the peak in the synthesized spectrum with the position of the peak specific to the element, and it is determined that the sample contains an element that is highly likely to be contained in the sample to some extent.
 本発明に係る元素検出方法は、各小領域について前記合成スペクトルを生成するために合成されるスペクトルの数に応じて前記閾値を変更することを特徴とする。 元素 The element detection method according to the present invention is characterized in that the threshold value is changed according to the number of spectra synthesized for generating the synthesized spectrum for each small region.
 本発明においては、小領域について合成スペクトルを生成するために合成されるスペクトルの数に応じて、元素検出のための閾値を変更する。例えば、合成されるスペクトルの数が小さくなるほど、閾値を小さくする。閾値を固定した場合に比べて、誤って検出される元素の数が抑制される。 In the present invention, the threshold for element detection is changed according to the number of spectra synthesized to generate a synthesized spectrum for a small region. For example, the smaller the number of spectra to be combined, the smaller the threshold. As compared with the case where the threshold value is fixed, the number of erroneously detected elements is suppressed.
 本発明に係る元素検出方法は、前記元素検出処理では、前記得点が前記閾値を超過する元素が前記試料に含まれていると判定し、前記合成スペクトルを生成するために合成されるスペクトルの数が小さいほど前記閾値を小さくすることを特徴とする。 In the element detection method according to the present invention, in the element detection processing, it is determined that an element whose score exceeds the threshold is included in the sample, and the number of spectra synthesized to generate the synthesized spectrum is determined. It is characterized in that the threshold value is set to be smaller as is smaller.
 本発明においては、元素についての得点が閾値を超過する場合にその元素を検出したとする。また、合成スペクトルを生成するために合成されるスペクトルの数が小さくなるほど、閾値を小さくする。閾値を固定した場合に比べて、誤って検出される元素の数が抑制される。 に お い て In the present invention, it is assumed that an element is detected when the score for the element exceeds a threshold. Also, the smaller the number of spectra to be combined to generate a combined spectrum, the smaller the threshold. As compared with the case where the threshold value is fixed, the number of erroneously detected elements is suppressed.
 本発明に係る元素検出方法は、前記元素検出処理により検出した元素の夫々について元素分布を生成することを特徴とする。 元素 The element detection method according to the present invention is characterized in that an element distribution is generated for each of the elements detected by the element detection processing.
 本発明においては、検出した元素の分布を生成する。試料のごく一部に含まれている元素についても元素分布が得られる。 に お い て In the present invention, the distribution of the detected element is generated. Element distribution can be obtained for elements contained in only a small part of the sample.
 本発明に係る元素検出装置は、放射線による試料の走査を行う走査部と、前記走査が行われた前記試料上の走査領域から発生した放射線を検出する放射線検出部と、前記走査領域に含まれる複数の点の夫々から発生した放射線のスペクトルを生成するスペクトル生成部と、前記試料に含まれる元素を検出するための処理を行う分析部とを備える元素検出装置において、前記分析部は、前記複数の点の夫々に前記スペクトルを関連付けたスペクトル分布を生成し、前記走査領域の広さ以下の広さを有する1以上の数の小領域を前記走査領域から抽出する抽出処理と、各小領域に含まれる複数の点に関連付けられた複数のスペクトルを合成した合成スペクトルを生成する合成処理と、各小領域について生成した前記合成スペクトルに基づいて、前記試料に含まれる元素を検出する元素検出処理とを行い、各小領域の広さを変化させて、前記抽出処理、前記合成処理及び前記元素検出処理を繰り返すことを特徴とする。 An element detection device according to the present invention includes a scanning unit that scans a sample with radiation, a radiation detection unit that detects radiation generated from a scan region on the sample where the scan is performed, and a scan unit that is included in the scan region. In an element detection device including a spectrum generation unit that generates a spectrum of radiation generated from each of a plurality of points and an analysis unit that performs a process for detecting an element included in the sample, the analysis unit includes the plurality of points. Generating a spectral distribution in which the spectrum is associated with each of the points, extracting one or more small regions having a size equal to or smaller than the size of the scanning region from the scanning region; A synthesis process for generating a synthesized spectrum obtained by synthesizing a plurality of spectra associated with a plurality of included points, based on the synthesized spectrum generated for each small region, Performed and element detection process for detecting the elements contained in the serial samples, by changing the size of each small area, the extraction process, and repeating the synthesis process and the elemental detection processing.
 本発明に係るコンピュータプログラムは、コンピュータに、試料上の複数の点の夫々に各点から発生した放射線のスペクトルが関連付けられたスペクトル分布に基づいて、前記試料に含まれる元素の検出を行わせるコンピュータプログラムにおいて、コンピュータに、前記試料上の前記複数の点が含まれる領域から、該領域の広さ以下の広さを有する1以上の数の小領域を抽出する抽出ステップと、各小領域に含まれる複数の点に関連付けられた複数のスペクトルを合成した合成スペクトルを生成する合成ステップと、各小領域について生成した前記合成スペクトルに基づいて、前記試料に含まれる元素を検出する元素検出ステップと、各小領域の広さを変化させて、前記抽出ステップ、前記合成ステップ及び前記元素検出ステップを繰り返すステップとを含む処理を実行させることを特徴とする。 A computer program according to the present invention causes a computer to detect an element contained in a sample based on a spectrum distribution in which a plurality of points on the sample are associated with a spectrum of radiation generated from each point. In the program, the computer includes, from a region including the plurality of points on the sample, an extraction step of extracting one or more small regions having a size equal to or smaller than the size of the region; A synthesis step of generating a synthesized spectrum obtained by synthesizing a plurality of spectra associated with a plurality of points, and an element detection step of detecting an element contained in the sample based on the synthesized spectrum generated for each small region, The extraction step, the synthesis step, and the element detection step are repeated by changing the size of each small region. Characterized in that to execute a process including the to steps.
 本発明においては、放射線で走査された試料上の複数の点の夫々に各点から発生した放射線のスペクトルを関連付けたスペクトル分布に基づいて、試料に含まれる元素を検出する。試料上の複数の点が含まれる領域から1以上の小領域を抽出し、各小領域に含まれる点に関連付けられたスペクトルを合成した合成スペクトルを生成し、合成スペクトルに基づいて元素を検出する。各小領域の広さを変化させて、小領域の抽出から元素の検出までの処理を繰り返す。小領域の広さが大きい場合の処理により、試料中に広く分布する元素が検出される。小領域の広さが小さい場合の処理により、試料のごく一部に含まれている元素が検出される。 According to the present invention, an element contained in a sample is detected based on a spectral distribution in which a plurality of points on a sample scanned with radiation are associated with a spectrum of radiation generated from each point. One or more small regions are extracted from a region including a plurality of points on the sample, a combined spectrum is generated by combining spectra associated with the points included in each small region, and an element is detected based on the combined spectrum. . The processing from the extraction of the small region to the detection of the element is repeated by changing the size of each small region. By the processing in the case where the size of the small region is large, elements widely distributed in the sample are detected. By the processing in the case where the size of the small region is small, an element contained in only a part of the sample is detected.
 試料中に広く分布する元素を検出するとともに、試料のごく一部に含まれている元素についても容易に検出することができる等、本発明は優れた効果を奏する。 (4) The present invention has excellent effects such as detecting elements widely distributed in a sample and easily detecting elements contained in only a part of the sample.
元素検出装置の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of an element detection device. 分析部の内部構成例を示すブロック図である。FIG. 3 is a block diagram illustrating an example of an internal configuration of an analysis unit. 実施形態1に係る元素検出装置が実行する処理の手順を示すフローチャートである。5 is a flowchart illustrating a procedure of a process executed by the element detection device according to the first embodiment. 蛍光X線のスペクトルの例を示す特性図である。FIG. 3 is a characteristic diagram illustrating an example of a spectrum of a fluorescent X-ray. 小領域に含まれる試料上の点の数が多い場合の合成スペクトルの例を示す特性図である。FIG. 9 is a characteristic diagram illustrating an example of a synthesized spectrum when the number of points on a sample included in a small region is large. 小領域に含まれる試料上の点の数が少ない場合の合成スペクトルの例を示す特性図である。FIG. 7 is a characteristic diagram illustrating an example of a synthesized spectrum when the number of points on a sample included in a small region is small. 合成スペクトルを用いて元素を検出した一例における不検出数を示すグラフである。It is a graph which shows the number of undetected in an example which detected an element using a synthetic spectrum. 合成スペクトルを用いて元素を検出した一例における誤検出数を示すグラフである。It is a graph which shows the number of false detections in an example which detected an element using a synthetic spectrum. 実施形態1に係る元素検出方法により元素を検出した一例における不検出数を示すグラフである。4 is a graph showing the number of undetected elements in an example in which an element is detected by the element detection method according to the first embodiment. 実施形態2に係る元素検出装置が実行する処理の手順を示すフローチャートである。9 is a flowchart illustrating a procedure of a process executed by the element detection device according to the second embodiment. 実施形態1及び2に係る元素検出方法により元素を検出した一例における不検出数を示すグラフである。4 is a graph showing the number of non-detections in an example in which an element is detected by the element detection method according to Embodiments 1 and 2. 実施形態1及び2に係る元素検出方法により元素を検出した一例における誤検出数を示すグラフである。5 is a graph showing the number of erroneous detections in an example in which an element is detected by the element detection method according to Embodiments 1 and 2. 実施形態3に係る元素検出装置が実行する処理の手順を示すフローチャートである。13 is a flowchart illustrating a procedure of a process executed by the element detection device according to the third embodiment.
 以下本発明をその実施の形態を示す図面に基づき具体的に説明する。
(実施形態1)
 図1は、元素検出装置10の構成を示すブロック図である。元素検出装置10は、蛍光X線分析装置である。元素検出装置10は、X線を照射する照射部21と、試料4が載置される試料台23と、X線を検出するX線検出器22とを備えている。照射部21は、例えばX線管を用いて構成されている。照射部21は、X線を放射し、放射されたX線は、試料台23に載置された試料4へ照射される。
Hereinafter, the present invention will be specifically described with reference to the drawings showing the embodiments.
(Embodiment 1)
FIG. 1 is a block diagram illustrating a configuration of the element detection device 10. The element detection device 10 is a fluorescent X-ray analyzer. The element detection device 10 includes an irradiation unit 21 that irradiates X-rays, a sample table 23 on which the sample 4 is placed, and an X-ray detector 22 that detects X-rays. The irradiation unit 21 is configured using, for example, an X-ray tube. The irradiation unit 21 emits X-rays, and the emitted X-rays are irradiated on the sample 4 placed on the sample stage 23.
 X線を照射された試料4からは、蛍光X線が発生する。X線検出器22は、試料4から発生した蛍光X線を検出する。X線検出器22は放射線検出部に対応する。図中には、照射部21が試料4へ照射するX線を実線矢印で示し、蛍光X線を破線矢印で示している。X線検出器22は、検出した蛍光X線のエネルギーに比例した信号を出力する。照射部21及びX線検出器22の少なくとも一部は、内部が減圧される容器内に配置されていてもよい。元素検出装置10は、試料台23に載置させる方法以外の方法で試料4を保持する形態であってもよい。 試 料 Fluorescent X-rays are generated from the sample 4 irradiated with the X-rays. The X-ray detector 22 detects fluorescent X-rays generated from the sample 4. The X-ray detector 22 corresponds to a radiation detector. In the drawing, the X-rays that the irradiation unit 21 irradiates the sample 4 are indicated by solid arrows, and the fluorescent X-rays are indicated by broken arrows. The X-ray detector 22 outputs a signal proportional to the detected energy of the fluorescent X-ray. At least a part of the irradiation unit 21 and the X-ray detector 22 may be arranged in a container whose inside is decompressed. The element detection device 10 may be configured to hold the sample 4 by a method other than the method of mounting the sample 4 on the sample table 23.
 X線検出器22には、出力した信号を処理する信号処理部32が接続されている。信号処理部32は、X線検出器22が出力したパルス信号の波高を検出することにより、X線検出器22が検出した蛍光X線のエネルギーに対応する信号値を検出する。信号処理部32は、分析部1に接続されている。信号処理部32は、検出した信号値を示すデータを分析部1へ出力する。分析部1は、信号処理部32からのデータに基づいて、各値の信号をカウントし、蛍光X線のエネルギーとカウント数との関係、即ち蛍光X線のスペクトルを生成する処理を行う。信号処理部32及び分析部1は、スペクトル生成部に対応する。また、分析部1は、スペクトルに基づいて、試料4に含まれる元素の検出を行う。なお、信号処理部32が蛍光X線のスペクトルを生成してもよい。 The signal processing unit 32 that processes the output signal is connected to the X-ray detector 22. The signal processing unit 32 detects a signal value corresponding to the energy of the fluorescent X-ray detected by the X-ray detector 22 by detecting the peak of the pulse signal output by the X-ray detector 22. The signal processing unit 32 is connected to the analysis unit 1. The signal processing unit 32 outputs data indicating the detected signal value to the analysis unit 1. The analysis unit 1 counts the signal of each value based on the data from the signal processing unit 32 and performs a process of generating a relationship between the energy of the fluorescent X-ray and the count number, that is, a spectrum of the fluorescent X-ray. The signal processor 32 and the analyzer 1 correspond to a spectrum generator. The analysis unit 1 detects an element contained in the sample 4 based on the spectrum. Note that the signal processing unit 32 may generate a fluorescent X-ray spectrum.
 試料台23には、試料台23を移動させる駆動部33が連結されている。駆動部33は、例えば、ステッピングモータを用いて構成されている。駆動部33は、試料台23を水平面方向に移動させる。 駆 動 A drive unit 33 for moving the sample table 23 is connected to the sample table 23. The drive unit 33 is configured using, for example, a stepping motor. The drive unit 33 moves the sample table 23 in the horizontal plane direction.
 照射部21、信号処理部32、駆動部33及び分析部1は、制御部31に接続されている。制御部31は、照射部21、信号処理部32、駆動部33及び分析部1の動作を制御する。制御部31は、使用者の操作を受け付け、受け付けた操作に応じて元素検出装置10の各部を制御する構成であってもよい。また、制御部31及び分析部1は同一のコンピュータで構成されていてもよい。 The irradiation unit 21, the signal processing unit 32, the driving unit 33, and the analysis unit 1 are connected to the control unit 31. The control unit 31 controls operations of the irradiation unit 21, the signal processing unit 32, the driving unit 33, and the analysis unit 1. The control unit 31 may be configured to receive a user operation and control each unit of the element detection device 10 according to the received operation. Further, the control unit 31 and the analysis unit 1 may be configured by the same computer.
 制御部31は、照射部21に試料4へX線を照射させ、駆動部33の動作を制御して、試料台23を水平面方向に移動させる。試料台23の移動によって試料4が移動し、試料4上のX線が照射される位置が順次変更される。このようにして、元素検出装置10は、X線で試料4を走査する。照射部21、駆動部33及び制御部31は、走査部に対応する。X線による走査が行われる試料4上の領域を走査領域とする。 The control unit 31 causes the irradiation unit 21 to irradiate the sample 4 with X-rays, controls the operation of the driving unit 33, and moves the sample table 23 in the horizontal plane direction. The sample 4 is moved by the movement of the sample table 23, and the position on the sample 4 where the X-ray is irradiated is sequentially changed. Thus, the element detection device 10 scans the sample 4 with X-rays. The irradiation unit 21, the driving unit 33, and the control unit 31 correspond to a scanning unit. An area on the sample 4 where scanning by X-rays is performed is defined as a scanning area.
 X線で試料4の走査を行うことにより、試料4上の走査領域内の夫々の点にX線が順次照射される。X線による走査に伴い、試料4上でX線を照射された点から発生した蛍光X線がX線検出器22で順次検出される。信号処理部32は、順次信号処理を行い、分析部1は、走査領域内の複数の点の夫々で発生した蛍光X線のスペクトルを順次生成する。 By scanning the sample 4 with X-rays, X-rays are sequentially applied to respective points in the scan area on the sample 4. With the X-ray scanning, fluorescent X-rays generated from points irradiated with X-rays on the sample 4 are sequentially detected by the X-ray detector 22. The signal processing unit 32 sequentially performs signal processing, and the analysis unit 1 sequentially generates the spectrum of the fluorescent X-ray generated at each of a plurality of points in the scanning area.
 図2は、分析部1の内部構成例を示すブロック図である。分析部1は、パーソナルコンピュータ等のコンピュータを用いて構成されたデータ処理装置である。分析部1は、演算を行うCPU(Central Processing Unit )11と、演算に伴って発生する一時的なデータを記憶するRAM(Random Access Memory)12と、光ディスク等の記録媒体100から情報を読み取るドライブ部13と、不揮発性の記憶部14とを備えている。記憶部14は例えばハードディスクである。CPU11は、記録媒体100からコンピュータプログラム141をドライブ部13に読み取らせ、読み取ったコンピュータプログラム141を記憶部14に記憶させる。CPU11は、必要に応じてコンピュータプログラム141を記憶部14からRAM12へロードし、ロードしたコンピュータプログラム141に従って分析部1に必要な処理を実行する。 FIG. 2 is a block diagram showing an example of the internal configuration of the analyzer 1. The analysis unit 1 is a data processing device configured using a computer such as a personal computer. The analysis unit 1 includes a CPU (Central Processing Unit) 11 for performing calculations, a RAM (Random Access Memory) 12 for storing temporary data generated with the calculations, and a drive for reading information from a recording medium 100 such as an optical disk. A storage unit 13 and a nonvolatile storage unit 14 are provided. The storage unit 14 is, for example, a hard disk. The CPU 11 causes the drive unit 13 to read the computer program 141 from the recording medium 100 and causes the storage unit 14 to store the read computer program 141. The CPU 11 loads the computer program 141 from the storage unit 14 to the RAM 12 as necessary, and executes processing necessary for the analysis unit 1 according to the loaded computer program 141.
 なお、コンピュータプログラム141は、図示しない通信ネットワークを介して分析部1に接続された図示しない外部のサーバ装置から分析部1へダウンロードされて記憶部14に記憶されてもよい。また分析部1は、外部からコンピュータプログラム141を受け付けるのではなく、コンピュータプログラム141を記録したROM等の記録手段を内部に備えた形態であってもよい。 Note that the computer program 141 may be downloaded to the analysis unit 1 from an external server device (not shown) connected to the analysis unit 1 via a communication network (not shown) and stored in the storage unit 14. Further, the analyzing unit 1 may be configured not to receive the computer program 141 from the outside but to have a recording unit such as a ROM storing the computer program 141 therein.
 また、分析部1は、使用者が操作することによる各種の処理指示等の情報が入力されるキーボード又はポインティングデバイス等の入力部15と、各種の情報を表示する液晶ディスプレイ等の表示部16とを備えている。また、分析部1は、制御部31及び信号処理部32が接続されたインタフェース部17を備えている。分析部1は、信号処理部32から出力されたデータをインタフェース部17で受け付ける。分析部1は、生成した蛍光X線のスペクトルを表すデータを記憶部14に記憶する。また、制御部31は、駆動部33を制御する制御信号に基づいて、試料4上でX線を照射された点の位置を示す情報を生成し、分析部1へ出力する。分析部1は、制御部31から出力された情報をインタフェース部17で受け付け、記憶部14に記憶する。 The analysis unit 1 includes an input unit 15 such as a keyboard or a pointing device to which information such as various processing instructions is input by a user's operation, and a display unit 16 such as a liquid crystal display for displaying various information. It has. The analysis unit 1 includes an interface unit 17 to which a control unit 31 and a signal processing unit 32 are connected. The analysis unit 1 receives the data output from the signal processing unit 32 at the interface unit 17. The analysis unit 1 stores data representing the spectrum of the generated fluorescent X-rays in the storage unit 14. Further, the control unit 31 generates information indicating the position of the point irradiated with the X-ray on the sample 4 based on the control signal for controlling the driving unit 33, and outputs the information to the analysis unit 1. The analysis unit 1 receives the information output from the control unit 31 by the interface unit 17 and stores the information in the storage unit 14.
 図3は、実施形態1に係る元素検出装置10が実行する処理の手順を示すフローチャートである。以下、ステップをSと略す。元素検出装置10は、X線で試料4の走査を行う(S101)。このとき、X線検出器22は、試料4上でX線を照射された複数の点の夫々から発生した蛍光X線を順次検出し、信号処理部32は順次信号処理を行い、分析部1は蛍光X線のスペクトルを順次生成する。分析部1は、各点から発生した蛍光X線のスペクトルのデータ、及び試料4上でX線を照射された点の位置を示す情報を記憶部14に記憶する。分析部1のCPU11は、以下の処理をコンピュータプログラム141に従って実行する。CPU11は、記憶部14に記憶した蛍光X線のスペクトルのデータ及びX線を照射された点の位置を示す情報に基づいて、試料4上の走査領域内の夫々の点と、夫々の点で発生した蛍光X線のスペクトルとを関連付けたスペクトル分布を生成する(S102)。CPU11は、スペクトル分布を表すデータを記憶部14に記憶させる。 FIG. 3 is a flowchart illustrating a procedure of a process performed by the element detection device 10 according to the first embodiment. Hereinafter, the step is abbreviated as S. The element detector 10 scans the sample 4 with X-rays (S101). At this time, the X-ray detector 22 sequentially detects the fluorescent X-rays generated from each of the plurality of points irradiated with the X-ray on the sample 4, the signal processing unit 32 performs the signal processing sequentially, and the analysis unit 1 Sequentially generate fluorescent X-ray spectra. The analysis unit 1 stores the data of the spectrum of the fluorescent X-ray generated from each point and the information indicating the position of the point irradiated with the X-ray on the sample 4 in the storage unit 14. The CPU 11 of the analysis unit 1 executes the following processing according to the computer program 141. Based on the data of the spectrum of the fluorescent X-rays stored in the storage unit 14 and the information indicating the positions of the points irradiated with the X-rays, the CPU 11 determines each point in the scanning area on the sample 4 and each point. A spectrum distribution in which the spectrum of the generated fluorescent X-ray is associated is generated (S102). The CPU 11 causes the storage unit 14 to store data representing the spectrum distribution.
 CPU11は、次に、X線を照射された試料4上の複数の点からなる走査領域から1以上の数の小領域を抽出する(S103)。小領域は、走査領域内に含まれており、走査領域の広さ以下の広さを有する領域である。例えば、CPU11は、小領域がマトリクス状に並ぶように走査領域を分割することにより、複数の小領域を抽出する。走査領域を分割する場合は、小領域は重なることは無く、試料4上の一つの点が複数の小領域に含まれることは無い。S103では、CPU11は、走査領域に含まれる各点の位置を示す情報を小領域別に分類する。スペクトル分布において各点に関連付けられたスペクトルも、点の位置に応じて分類される。また、CPU11は、各小領域に同じ数の点が含まれるように小領域の抽出を行う。例えば、走査領域に256×256の数の点が含まれ、走査領域が四つの小領域に分割される場合は、各小領域には128×128の数の点が含まれ、128×128の数のスペクトルが関連付けられている。S103の処理は、抽出処理及び抽出ステップに対応する。 Next, the CPU 11 extracts one or more small areas from the scanning area composed of a plurality of points on the sample 4 irradiated with the X-ray (S103). The small area is an area that is included in the scanning area and has a size equal to or smaller than the size of the scanning area. For example, the CPU 11 extracts a plurality of small areas by dividing the scanning area so that the small areas are arranged in a matrix. When the scanning area is divided, the small areas do not overlap, and one point on the sample 4 is not included in a plurality of small areas. In S103, the CPU 11 classifies the information indicating the position of each point included in the scanning area for each small area. The spectrum associated with each point in the spectral distribution is also classified according to the position of the point. Further, the CPU 11 extracts small areas so that each small area includes the same number of points. For example, if the scanning area includes 256 × 256 points and the scanning area is divided into four small areas, each small area includes 128 × 128 points and 128 × 128 points. A number of spectra are associated. The process of S103 corresponds to an extraction process and an extraction step.
 CPU11は、次に、小領域別に蛍光X線のスペクトルを合成した合成スペクトルを生成する(S104)。S104では、CPU11は、各小領域に含まれた複数の点に関連付けられた複数のスペクトルを加算又は平均することにより、合成スペクトルを生成する。例えば、走査領域に256×256の数の点が含まれ、走査領域が四つの小領域に分割される場合は、小領域毎に、128×128の数のスペクトルが加算又は平均され、合成スペクトルが生成される。S104の処理は、合成処理及び合成ステップに対応する。 Next, the CPU 11 generates a combined spectrum obtained by combining fluorescent X-ray spectra for each small area (S104). In S104, the CPU 11 generates a combined spectrum by adding or averaging a plurality of spectra associated with a plurality of points included in each small region. For example, when the scanning area includes 256 × 256 points and the scanning area is divided into four small areas, 128 × 128 numbers of spectra are added or averaged for each small area, and the combined spectrum is obtained. Is generated. The process of S104 corresponds to a combining process and a combining step.
 CPU11は、次に、各合成スペクトルに含まれるピークの位置に基づいて、試料4の各小領域に対応する部分に各元素が含まれる確からしさを表す得点を各元素について計算する(S105)。図4は、蛍光X線のスペクトルの例を示す特性図である。図中の横軸は蛍光X線のエネルギーを示し、縦軸は蛍光X線のカウント数を示す。スペクトルに含まれるピークはいずれかの元素に由来しており、ピークのエネルギーは元素に固有である。即ち、ある元素に由来するピークのスペクトルにおける位置は判明しており、スペクトルに含まれるピークの位置に基づいて、試料4に含まれる元素を検出することができる。実際のスペクトルに含まれるピークは、他のピーク又はノイズが重なる等の原因により、本来の位置から位置がずれることがある。 Next, the CPU 11 calculates a score indicating the probability that each element is included in a portion corresponding to each small region of the sample 4 for each element based on the position of the peak included in each synthesized spectrum (S105). FIG. 4 is a characteristic diagram showing an example of the spectrum of the fluorescent X-ray. The horizontal axis in the figure indicates the energy of the fluorescent X-ray, and the vertical axis indicates the count of the fluorescent X-ray. The peak included in the spectrum is derived from any of the elements, and the energy of the peak is specific to the element. That is, the position of the peak derived from a certain element in the spectrum is known, and the element contained in the sample 4 can be detected based on the position of the peak contained in the spectrum. The peak included in the actual spectrum may be displaced from its original position due to other peaks or noise overlap.
 記憶部14は、複数の元素の夫々について、スペクトルに含まれるべきピークの位置を示す情報を記憶している。S105では、CPU11は、合成スペクトルに含まれるピークの位置と、記憶部14に記憶している情報が示す各元素に由来するピークの位置とを比較し、ピークの位置の一致度を数値化した得点を計算する。例えば、CPU11は、特定の元素に由来するピークの本来の位置にスペクトル中のピークの位置が近いほど、得点が大きくなるように計算を行う。また、CPU11は、ピークの大きさが大きいほど得点が大きくなるように計算を行ってもよい。ピークの大きさは、ピークの面積又はピークの高さから得られる。ピークの大きさを用いる場合は、CPU11は、ピークの位置の一致度及びピークの大きさの両方に基づいて得点を計算する。 The storage unit 14 stores information indicating the position of the peak to be included in the spectrum for each of the plurality of elements. In S105, the CPU 11 compares the position of the peak included in the synthesized spectrum with the position of the peak derived from each element indicated by the information stored in the storage unit 14, and quantifies the degree of coincidence of the peak position. Calculate the score. For example, the CPU 11 performs the calculation such that the score increases as the position of the peak in the spectrum is closer to the original position of the peak derived from a specific element. Further, the CPU 11 may perform the calculation such that the score increases as the size of the peak increases. The peak size is obtained from the peak area or the peak height. When using the magnitude of the peak, the CPU 11 calculates the score based on both the degree of coincidence of the peak position and the magnitude of the peak.
 また、特定の元素に由来するピークは複数存在しており、CPU11は、複数のピークの夫々に重み付けを行った上でピークの位置の一致度から得点を計算してもよい。例えば、ある元素のKαのピークとKβのピークとを用い、Kαのピークの位置の一致度の重みづけを大きくする。具体的には、例えば、CPU11は、(Kαのピークの位置の一致度)×0.8+(Kβのピークの位置の一致度)×0.2の計算により、得点を計算する。 {Circle around (2)} There are a plurality of peaks derived from a specific element, and the CPU 11 may calculate the score from the degree of coincidence of the peak positions after weighting each of the plurality of peaks. For example, the peak of Kα and the peak of Kβ of a certain element are used to increase the weight of the degree of coincidence of the peak position of Kα. Specifically, for example, the CPU 11 calculates the score by calculating (coincidence of Kα peak position) × 0.8 + (coincidence of Kβ peak position) × 0.2.
 ある元素の得点が大きいほど、その元素が試料4に含まれる確からしさが高くなる。各元素の得点を計算する処理は小領域毎に行われる。CPU11は、得点が0~100等の所定の範囲内に収まるように計算を行う。S105では、CPU11は、従来のアルゴリズムを用いて計算をおこなってもよい。また、分析部1は、人工知能を利用してS105の処理を実行してもよい。 The higher the score of a certain element, the higher the probability that the element is included in the sample 4. The process of calculating the score of each element is performed for each small region. The CPU 11 performs the calculation so that the score falls within a predetermined range such as 0 to 100. In S105, the CPU 11 may perform the calculation using a conventional algorithm. In addition, the analysis unit 1 may execute the process of S105 using artificial intelligence.
 CPU11は、次に、各小領域について各元素の得点と所定の閾値とを比較し、各元素の有無を判定する(S106)。より詳しくは、CPU11は、ある元素の得点が閾値以上である場合に、その元素が試料4に含まれていると判定する。閾値は、予め記憶部14に記憶されているか、又はコンピュータプログラム141で規定されている。CPU11は、全ての小領域について判定を行う。CPU11は、次に、試料4に含まれていると判定した元素に、試料4に含まれる元素として既に検出されている元素とは別の新たな元素があるか否かを判定する(S107)。新たな元素は、いずれか一つの小領域について試料4に含まれていると判定されていればよい。 Next, the CPU 11 compares the score of each element with a predetermined threshold value for each small region to determine the presence or absence of each element (S106). More specifically, when the score of a certain element is equal to or more than the threshold, the CPU 11 determines that the element is included in the sample 4. The threshold value is stored in the storage unit 14 in advance or specified in the computer program 141. The CPU 11 makes a determination for all the small areas. Next, the CPU 11 determines whether the element determined to be included in the sample 4 includes a new element different from the elements already detected as the elements included in the sample 4 (S107). . The new element only needs to be determined to be included in the sample 4 in any one of the small regions.
 新たな元素がある場合に(S107:YES)、CPU11は、試料4に含まれる元素として検出されている元素に、試料4に含まれていると判定した新たな元素を追加する(S108)。このようにして、試料4に含まれている元素が検出される。S105~S108の処理は、元素検出処理及び元素検出ステップに相当する。なお、CPU11は、ある元素の得点が閾値を超過する場合に、その元素が試料4に含まれていると判定する処理を行ってもよい。また、CPU11は、得点が小さいほど元素が試料4に含まれる確からしさが高くなるような得点を計算し、ある元素の得点が閾値未満である場合にその元素が試料4に含まれていると判定する処理を行ってもよい。 If there is a new element (S107: YES), the CPU 11 adds the new element determined to be contained in the sample 4 to the element detected as an element contained in the sample 4 (S108). Thus, the elements contained in the sample 4 are detected. The processes in S105 to S108 correspond to an element detection process and an element detection step. When the score of a certain element exceeds the threshold, the CPU 11 may perform a process of determining that the element is included in the sample 4. Further, the CPU 11 calculates a score such that the lower the score is, the higher the probability that the element is included in the sample 4 is. If the score of a certain element is less than the threshold value, the CPU 11 determines that the element is included in the sample 4. A determination process may be performed.
 S108が終了した後、又はS107で新たな元素が無い場合(S107:NO)、CPU11は、元素を検出するための処理を終了するか否かを判定する(S109)。S109では、CPU11は、所定の状態になった場合に終了すると判定する。例えば、CPU11は、検出した元素の数が所定数に達した場合、後述するS103~S110の処理の繰り返し回数が所定回数に達した場合、処理時間が所定の上限以上になった場合、又は各小領域に含まれる点の数が所定の下限以下である場合に、終了すると判定する。 After S108 ends, or when there is no new element in S107 (S107: NO), the CPU 11 determines whether or not to end the processing for detecting the element (S109). In S109, the CPU 11 determines to end when a predetermined state is reached. For example, the CPU 11 determines whether the number of detected elements has reached a predetermined number, the number of repetitions of the processing of S103 to S110 described below has reached a predetermined number, the processing time has exceeded a predetermined upper limit, or When the number of points included in the small area is equal to or smaller than the predetermined lower limit, it is determined that the process is to be terminated.
 処理を終了すると判定しなかった場合は(S109:NO)、CPU11は、小領域の広さが縮小するように、小領域の広さを設定し(S110)、処理をS103へ戻し、S103~S110の処理を繰り返す。二回目以降のS103では、CPU11は、小領域の広さを小さくした状態で、走査領域から複数の数の小領域を抽出する。小領域の広さを小さくすることに応じて、走査領域を分割する小領域の数は増加し、小領域に含まれる試料4上の点の数は減少する。即ち、S103~S110の処理を繰り返す都度、小領域の広さは小さくなり、小領域に含まれる試料4上の点の数は減少し、小領域の数は増加する。 If it is not determined that the processing is to be ended (S109: NO), the CPU 11 sets the size of the small area so that the size of the small area is reduced (S110), returns the processing to S103, and returns to S103. The process of S110 is repeated. In the second and subsequent steps S103, the CPU 11 extracts a plurality of small areas from the scanning area with the small area being reduced in size. As the size of the small area is reduced, the number of small areas dividing the scanning area increases, and the number of points on the sample 4 included in the small area decreases. That is, each time the processing of S103 to S110 is repeated, the size of the small area becomes smaller, the number of points on the sample 4 included in the small area decreases, and the number of small areas increases.
 S103~S110の処理を繰り返す都度、小領域に含まれる試料4上の点の数が減少するので、S104で合成スペクトルを生成するために合成されるスペクトルの数が減少する。S104~S106の処理は小領域毎に行われるので、S103~S110の処理を繰り返す都度、S104~S106の処理に必要な時間は増加する。S107では、CPU11は、それまでのS103~S110の処理でまだ検出されていない元素が試料4に含まれていると判定された場合に、新たな元素があると判定する。このようにして、CPU11は、あるS105~S108の処理では、そのS105~S108の処理で用いる小領域の広さを小さくする前の一回又は複数回のS105~S108の処理で検出された元素については試料4に含まれているものとして、元素の検出を行う。 Each time the processing of S103 to S110 is repeated, the number of points on the sample 4 included in the small area decreases, so that the number of spectra synthesized to generate a synthesized spectrum in S104 decreases. Since the processing of S104 to S106 is performed for each small area, each time the processing of S103 to S110 is repeated, the time required for the processing of S104 to S106 increases. In S107, the CPU 11 determines that there is a new element when it is determined that the sample 4 contains an element that has not yet been detected in the processing of S103 to S110. As described above, in the processing of certain S105 to S108, the CPU 11 detects the element detected in one or more of the processing of S105 to S108 before reducing the size of the small area used in the processing of S105 to S108. Is detected in the sample 4 and the element is detected.
 S109で処理を終了すると判定した場合は(S109:YES)、CPU11は、検出した夫々の元素について元素分布を生成し(S111)、処理を終了する。S111では、CPU11は、夫々の元素について、走査領域内の各点に関連付けられたスペクトルに含まれるピークの強度に基づいて、各点に存在する元素の量又は濃度を計算し、各点と元素の量又は濃度とを関連付けた元素分布を生成する。CPU11は、元素分布のデータを記憶部14に記憶させる。CPU11は、各元素の元素分布を表す画像を表示部16に表示してもよい。 If it is determined in S109 that the process is to be terminated (S109: YES), the CPU 11 generates an element distribution for each of the detected elements (S111), and terminates the process. In S111, the CPU 11 calculates, for each element, the amount or concentration of the element present at each point based on the intensity of the peak included in the spectrum associated with each point in the scanning area. An element distribution associated with the amount or concentration of The CPU 11 causes the storage unit 14 to store the data of the element distribution. The CPU 11 may display an image representing the element distribution of each element on the display unit 16.
 図5は、小領域に含まれる試料4上の点の数が多い場合の合成スペクトルの例を示す特性図である。図6は、小領域に含まれる試料4上の点の数が少ない場合の合成スペクトルの例を示す特性図である。横軸は蛍光X線のエネルギーを示し、縦軸は蛍光X線のカウント数を示す。図5及び図6に示す合成スペクトルは、図4中の破線で囲まれた部分を拡大したものに相当する。小領域に含まれる試料4上の点の数が多い場合、加算又は平均するスペクトルの数が多いので、図5に示すように、S/N(シグナル/ノイズ)比が大きくなる。このため、元素を確実に検出することができる。 FIG. 5 is a characteristic diagram showing an example of a synthesized spectrum when the number of points on the sample 4 included in the small area is large. FIG. 6 is a characteristic diagram showing an example of a synthesized spectrum when the number of points on the sample 4 included in the small region is small. The horizontal axis shows the energy of fluorescent X-rays, and the vertical axis shows the count number of fluorescent X-rays. The composite spectrum shown in FIGS. 5 and 6 corresponds to an enlarged portion surrounded by a broken line in FIG. When the number of points on the sample 4 included in the small area is large, the number of spectra to be added or averaged is large, so that the S / N (signal / noise) ratio is increased as shown in FIG. Therefore, the element can be reliably detected.
 特定の元素が走査領域内のごく一部にのみ存在している場合、特定の元素に起因するピークが含まれるスペクトルよりも、特定の元素に起因するピークが含まれていないスペクトルの方が多い。小領域の広さが大きく、小領域に含まれる試料4上の点の数が多いときは、特定の元素に起因するピークは相対的に小さい。小領域の広さが小さく、小領域に含まれる試料4上の点の数が少ない場合は、合成すべき複数のスペクトルの数が少ない。特定の元素が存在する点が小領域に含まれているとき、複数のスペクトルの中に特定の元素に起因するピークを含むスペクトルの割合が大きい。このため、合成スペクトル中の特定の元素に起因するピークは相対的に大きい。図6中に矢印で指したピークは、走査領域内のごく一部にのみ存在している元素に由来するピークである。図5中には、このピークに相当するピークは確認できない。 When a specific element is present only in a small part of the scan area, there are more spectra without peaks due to the specific element than spectra containing peaks due to the specific element . When the size of the small region is large and the number of points on the sample 4 included in the small region is large, the peak caused by a specific element is relatively small. When the area of the small area is small and the number of points on the sample 4 included in the small area is small, the number of a plurality of spectra to be synthesized is small. When a point where a specific element exists is included in a small region, the ratio of a spectrum including a peak due to the specific element in a plurality of spectra is large. For this reason, the peak attributable to a specific element in the synthesized spectrum is relatively large. The peak indicated by the arrow in FIG. 6 is a peak derived from an element existing only in a part of the scanning area. In FIG. 5, a peak corresponding to this peak cannot be confirmed.
 特定の元素が走査領域内のごく一部には存在せず、他の部分には存在している場合、小領域に含まれる試料4上の点の数が多いときに特定の元素に起因するピークは相対的に大きい。小領域に含まれる試料4上の点の数が少ないとき、特定の元素を含んでいない部分に対応する小領域の合成スペクトルでは、特定の元素に起因するピークは相対的に小さい。図5中に矢印で指したピークは、走査領域内のごく一部には存在せず他の部分には存在している元素に由来するピークである。図6中には、このピークに相当するピークは確認できない。このように、試料4中に広く分布する元素は、小領域に含まれる試料4上の点の数が多く、合成すべき複数のスペクトルの数が多い場合の合成スペクトルを用いて検出することができる。試料4のごく一部のみに含まれる元素を検出するには、小領域に含まれる試料4上の点の数が少なく、合成すべき複数のスペクトルの数が少ない場合の合成スペクトルを用いる必要がある。 When the specific element is not present in a very small part of the scanning area and is present in other parts, the specific element is caused when the number of points on the sample 4 included in the small area is large. The peak is relatively large. When the number of points on the sample 4 included in the small region is small, the peak attributable to the specific element is relatively small in the composite spectrum of the small region corresponding to the portion not including the specific element. The peak indicated by the arrow in FIG. 5 is a peak derived from an element that is not present in a very small part of the scanning area but exists in another part. In FIG. 6, a peak corresponding to this peak cannot be confirmed. As described above, an element that is widely distributed in the sample 4 can be detected by using a synthesized spectrum in a case where the number of points on the sample 4 included in the small region is large and the number of a plurality of spectra to be synthesized is large. it can. In order to detect an element contained in only a small part of the sample 4, it is necessary to use a synthesized spectrum when the number of points on the sample 4 included in a small area is small and the number of a plurality of spectra to be synthesized is small. is there.
 図7は、合成スペクトルを用いて元素を検出した一例における不検出数を示すグラフである。横軸は小領域に含まれる試料4上の点の数を示し、縦軸は元素の不検出数を示す。図7には、含有している元素が判明しているプリント配線基板を試料4として、各元素の得点に基づいて元素の有無を判定した結果を示す。不検出数は、試料4に含まれているにも拘わらず検出できなかった元素の数である。閾値を80とした場合の結果を黒丸印で示し、閾値を60とした場合の結果を三角印で示し、閾値を40とした場合の結果を白丸印で示している。閾値を小さくした場合は、元素があることを判定し易くなるので、不検出数は減少する。小領域に含まれる試料4上の点の数を少なくし過ぎると、S/N比が悪化し、判別できるピークが減少し、不検出数が増加する。 FIG. 7 is a graph showing the number of undetected elements in an example in which an element was detected using a composite spectrum. The horizontal axis indicates the number of points on the sample 4 included in the small area, and the vertical axis indicates the number of undetected elements. FIG. 7 shows the result of determining the presence or absence of an element based on the score of each element, using a printed wiring board in which the contained elements are known as Sample 4. The undetected number is the number of elements that were not detected despite being included in the sample 4. The results when the threshold value is 80 are indicated by black circles, the results when the threshold value is 60 are indicated by triangle marks, and the results when the threshold value is 40 are indicated by white circles. When the threshold value is reduced, it is easy to determine that an element is present, so that the number of non-detections decreases. If the number of points on the sample 4 included in the small area is too small, the S / N ratio deteriorates, the number of peaks that can be discriminated decreases, and the number of non-detections increases.
 図8は、合成スペクトルを用いて元素を検出した一例における誤検出数を示すグラフである。横軸は小領域に含まれる試料4上の点の数を示し、縦軸は元素の誤検出数を示す。誤検出数は、試料4に含まれていないにも拘わらず試料4に含まれていると判定した元素の数である。図7と同様に、閾値を80とした場合の結果を黒丸印で示し、閾値を60とした場合の結果を三角印で示し、閾値を40とした場合の結果を白丸印で示している。閾値を小さくした場合は、元素があることを判定し易くなるので、誤検出数は増加する。小領域に含まれる試料4上の点の数を少なくすると、誤検出数は減少する。 FIG. 8 is a graph showing the number of erroneous detections in an example in which an element was detected using a composite spectrum. The horizontal axis indicates the number of points on the sample 4 included in the small region, and the vertical axis indicates the number of erroneous detections of the element. The number of erroneous detections is the number of elements determined to be contained in the sample 4 even though they are not contained in the sample 4. Similar to FIG. 7, the results when the threshold is set to 80 are indicated by black circles, the results when the threshold is set to 60 are indicated by triangles, and the results when the threshold is set to 40 are indicated by white circles. When the threshold value is reduced, it is easier to determine the presence of an element, and the number of erroneous detections increases. When the number of points on the sample 4 included in the small area is reduced, the number of false detections decreases.
 前述したように、実施形態1では、各小領域に含まれる点の数を減少させながら、S103~S110の処理を繰り返す。図7に示すように、小領域に含まれる試料4上の点の数が多く、合成すべき複数のスペクトルの数が多い場合の合成スペクトルを用いたときには不検出数が小さくなるので、実施形態1では、まず、小領域に含まれる試料4上の点の数が多い場合の合成スペクトルを用いて元素の検出を行う。 As described above, in the first embodiment, the processes of S103 to S110 are repeated while the number of points included in each small area is reduced. As shown in FIG. 7, when the number of points on the sample 4 included in the small area is large and the number of multiple spectra to be synthesized is large, the number of non-detections becomes small when a synthesized spectrum is used. In 1, first, the element is detected using the synthesized spectrum when the number of points on the sample 4 included in the small region is large.
 図9は、実施形態1に係る元素検出方法により元素を検出した一例における不検出数を示すグラフである。横軸は、S105~S108の処理を繰り返す中での夫々の一回のS105~S108の処理における小領域に含まれる試料4上の点の数を示し、縦軸は元素の不検出数を示す。前述したように、実施形態1では、小領域に含まれる試料4上の点の数が多い場合の合成スペクトルを用いて元素を検出し、小領域に含まれる試料4上の点の数が少ない場合の合成スペクトルを用いて新たな元素があると判定された場合に、検出された元素に新たな元素を追加する。即ち、小領域の広さが大きい場合の合成スペクトルを用いて検出された元素が、小領域の広さが小さい場合の合成スペクトルを用いて検出することができないときでも、既に検出された元素は検出された元素としておく。このため、図9に示すように、S103~S110の処理を繰り返す都度、検出された元素の数は減少することなく、不検出数は減少する。 FIG. 9 is a graph showing the number of undetected elements in an example in which an element was detected by the element detection method according to the first embodiment. The horizontal axis indicates the number of points on the sample 4 included in the small region in each of the processes of S105 to S108 while repeating the processes of S105 to S108, and the vertical axis indicates the number of undetected elements. . As described above, in the first embodiment, the element is detected using the synthesized spectrum when the number of points on the sample 4 included in the small area is large, and the number of points on the sample 4 included in the small area is small. When it is determined that there is a new element using the combined spectrum in that case, a new element is added to the detected element. That is, even when the element detected using the synthetic spectrum when the area of the small area is large cannot be detected using the synthetic spectrum when the area of the small area is small, the element already detected is It is set as the detected element. Therefore, as shown in FIG. 9, every time the processing of S103 to S110 is repeated, the number of detected elements decreases without decreasing the number of detected elements.
 以上のように、実施形態1により、試料4に含まれる元素を検出する際の不検出数を減少させることができる。従って、試料4に含まれる元素を確実に検出することができる。実施形態1では、小領域の広さが大きい場合の合成スペクトルを用いて、試料4中に広く分布する元素を検出し、小領域の広さが小さい場合の合成スペクトルを用いて、試料4中に局所的に含まれる元素を検出する。これにより、試料4のごく一部に含まれている元素についても容易に検出することができる。また、実施形態1では、検出した元素について元素分布を生成するので、試料4のごく一部に含まれている元素についても元素分布が得られる。このため、試料4に含まれる異物の分布を調べることが可能となる。 As described above, according to the first embodiment, the number of undetected elements when detecting elements contained in the sample 4 can be reduced. Therefore, the elements contained in the sample 4 can be reliably detected. In the first embodiment, an element that is widely distributed in the sample 4 is detected by using the synthesized spectrum in the case where the size of the small region is large. To detect elements contained locally. This makes it possible to easily detect elements contained in only a part of the sample 4. In the first embodiment, since the element distribution is generated for the detected element, the element distribution can be obtained for the element contained in only a part of the sample 4. For this reason, it is possible to examine the distribution of foreign substances contained in the sample 4.
(実施形態2)
 実施形態2に係る元素検出装置10は、元素について計算した得点と比較する閾値を変更する処理を行う。元素検出装置10の構成は実施形態1と同様である。図10は、実施形態2に係る元素検出装置10が実行する処理の手順を示すフローチャートである。元素検出装置10は、X線で試料4の走査を行い(S201)、蛍光X線の検出及び蛍光X線のスペクトルの生成を順次行う。分析部1のCPU11は、以下の処理をコンピュータプログラム141に従って実行する。
(Embodiment 2)
The element detection device 10 according to the second embodiment performs a process of changing a threshold value to be compared with a score calculated for an element. The configuration of the element detection device 10 is the same as that of the first embodiment. FIG. 10 is a flowchart illustrating a procedure of a process performed by the element detection device 10 according to the second embodiment. The element detection device 10 scans the sample 4 with X-rays (S201), and sequentially performs detection of fluorescent X-rays and generation of a fluorescent X-ray spectrum. The CPU 11 of the analysis unit 1 executes the following processing according to the computer program 141.
 CPU11は、実施形態1におけるS102~S110と同様のS202~S210の処理を実行する。CPU11は、次に、小領域の広さの縮小に応じて、閾値を減少させる(S211)。例えば、CPU11は、小領域の広さが小さくなり、小領域に含まれる試料4上の点の数が小さいほど、閾値を小さくする。具体的に、例えば、CPU11は、小領域内の点の数が256×256、128×128、64×64、32×32、…である場合に、閾値を、夫々に80、75、70、65、…と設定する。小領域の広さ又は小領域に含まれる試料4上の点の数と閾値との関係は記憶部14に予め記憶されていてもよく、小領域の広さの縮小に応じて閾値を変更するためのアルゴリズムがコンピュータプログラム141に含まれていてもよい。小領域に含まれる試料4上の点の数が小さいほど、S204で合成すべきスペクトルの数が減少する。即ち、CPU11は、S204で合成すべきスペクトルの数が減少するほど、閾値を小さくする。 (4) The CPU 11 executes the same processing of S202 to S210 as S102 to S110 in the first embodiment. Next, the CPU 11 decreases the threshold value according to the reduction in the size of the small area (S211). For example, the CPU 11 decreases the threshold value as the area of the small area becomes smaller and the number of points on the sample 4 included in the small area becomes smaller. Specifically, for example, when the number of points in the small area is 256 × 256, 128 × 128, 64 × 64, 32 × 32,..., The CPU 11 sets the threshold to 80, 75, 70, 65, ... are set. The relationship between the size of the small region or the number of points on the sample 4 included in the small region and the threshold may be stored in the storage unit 14 in advance, and the threshold is changed according to the reduction in the size of the small region. Algorithm may be included in the computer program 141. The smaller the number of points on the sample 4 included in the small area, the smaller the number of spectra to be synthesized in S204. That is, the CPU 11 decreases the threshold value as the number of spectra to be synthesized in S204 decreases.
 S211の処理が終了した後は、CPU11は、処理をS203へ戻し、S203~S211の処理を繰り返す。S203~S211の処理を繰り返す都度、走査領域を分割する小領域の数は増加し、小領域に含まれる試料4上の点の数、S204で合成すべきスペクトルの数、及び閾値は減少する。二回目以降のS206では、CPU11は、各元素の得点と変更した閾値とを比較する。 After the processing of S211 is completed, the CPU 11 returns the processing to S203 and repeats the processing of S203 to S211. Each time the processing of S203 to S211 is repeated, the number of small areas dividing the scanning area increases, and the number of points on the sample 4 included in the small areas, the number of spectra to be synthesized in S204, and the threshold value decrease. In the second and subsequent S206, the CPU 11 compares the score of each element with the changed threshold.
 S209で処理を終了すると判定した場合は(S209:YES)、CPU11は、検出した夫々の元素について元素分布を生成し(S212)、処理を終了する。CPU11は、元素分布のデータを記憶部14に記憶させる。 If it is determined in S209 that the processing is to be ended (S209: YES), the CPU 11 generates an element distribution for each of the detected elements (S212), and ends the processing. The CPU 11 causes the storage unit 14 to store the data of the element distribution.
 図11は、実施形態1及び2に係る元素検出方法により元素を検出した一例における不検出数を示すグラフである。横軸は小領域に含まれる試料4上の点の数を示し、縦軸は元素の不検出数を示す。図12は、実施形態1及び2に係る元素検出方法により元素を検出した一例における誤検出数を示すグラフである。横軸は小領域に含まれる試料4上の点の数を示し、縦軸は元素の誤検出数を示す。図11及び図12では、閾値を80に固定した場合の結果を黒丸印で示し、閾値を60に固定した場合の結果を三角印で示し、閾値を40に固定した場合の結果を白丸印で示している。更に、実施形態2に係る元素検出方法による結果を四角印で示している。 FIG. 11 is a graph showing the number of undetected elements in an example in which an element was detected by the element detection method according to Embodiments 1 and 2. The horizontal axis indicates the number of points on the sample 4 included in the small area, and the vertical axis indicates the number of undetected elements. FIG. 12 is a graph showing the number of erroneous detections in an example in which an element is detected by the element detection method according to the first and second embodiments. The horizontal axis indicates the number of points on the sample 4 included in the small region, and the vertical axis indicates the number of erroneous detections of the element. 11 and 12, the results when the threshold is fixed to 80 are indicated by black circles, the results when the threshold is fixed to 60 are indicated by triangles, and the results when the threshold is fixed to 40 are indicated by white circles. Is shown. Further, the results obtained by the element detection method according to the second embodiment are indicated by square marks.
 図11に示すように、実施形態2では、閾値を固定した場合に比べて、小領域に含まれる試料4上の点の数の減少に応じた不検出数の減少が早い。図12に示すように、実施形態2では、閾値を小さい値に固定した場合に比べて、誤検出数を小さくすることができる。即ち、実施形態2では、合成すべきスペクトルの数に応じて閾値を変更することにより、誤検出をより抑制しながら、試料4に含まれる元素を確実に検出することができる。 As shown in FIG. 11, in the second embodiment, the number of non-detections decreases more rapidly in accordance with the decrease in the number of points on the sample 4 included in the small area than in the case where the threshold is fixed. As shown in FIG. 12, in the second embodiment, the number of erroneous detections can be reduced as compared with the case where the threshold value is fixed to a small value. That is, in the second embodiment, by changing the threshold value according to the number of spectra to be synthesized, it is possible to reliably detect the elements contained in the sample 4 while further suppressing erroneous detection.
 以上のように、実施形態2では、誤検出をより抑制しながら、試料4のごく一部に含まれている元素についても容易に検出することができる。また、実施形態2では、小領域に含まれる試料4上の点の数の減少に応じた不検出数の減少が早いので、小領域に含まれる試料4上の点の数を減少させ過ぎずとも、不検出数を十分に小さくすることができる。このため、分析部1は、小領域の広さを小さくさせ過ぎない段階で、S203~S211の処理を終了させることができる。これにより、元素検出装置10は処理に必要な時間を短縮することができる。また、小領域に含まれる試料4上の点の数を減少させ過ぎないことによって、元素検出装置10は誤検出をより抑制することができる。 As described above, in the second embodiment, it is possible to easily detect elements contained in only a small part of the sample 4 while further suppressing erroneous detection. Further, in the second embodiment, the number of undetected points decreases rapidly according to the decrease in the number of points on the sample 4 included in the small area. Therefore, the number of points on the sample 4 included in the small area does not decrease too much. In both cases, the number of non-detections can be made sufficiently small. For this reason, the analysis unit 1 can terminate the processing of S203 to S211 at a stage where the size of the small area is not excessively reduced. Thereby, the element detection device 10 can reduce the time required for the processing. Further, by not excessively reducing the number of points on the sample 4 included in the small region, the element detection device 10 can further suppress erroneous detection.
 なお、以上の実施形態1及び2においては、小領域がマトリクス状に並ぶように走査領域を分割することにより、複数の小領域を抽出する形態を示したが、分析部1は、その他の方法で小領域を抽出してもよい。例えば、小領域は矩形以外の形状を有していてもよい。走査領域から抽出される複数の小領域は、異なる広さを有していてもよく、含まれる試料4上の点の数は異なっていてもよい。例えば、分析部1は、蛍光X線のスペクトルのあるROI(region of interest)に含まれるピークの強度がある強度以上になっている点に隣接する点が含まれる領域を小領域としてもよい。走査領域には、抽出される小領域に含まれない点、又は合成スペクトルを生成するために利用されない点があってもよい。 In Embodiments 1 and 2 described above, a mode in which a plurality of small regions are extracted by dividing a scanning region so that the small regions are arranged in a matrix has been described. May be used to extract a small area. For example, the small area may have a shape other than a rectangle. The plurality of small regions extracted from the scanning region may have different sizes, and the number of points on the sample 4 included may be different. For example, the analysis unit 1 may set a region including a point adjacent to a point where the intensity of the peak included in a certain ROI (region @ of @ interest) of the fluorescent X-ray spectrum has a certain intensity or higher as a small region. The scanning region may have points that are not included in the extracted small region or points that are not used to generate a composite spectrum.
 また、実施形態1及び2においては、小領域の広さを小さくしながら小領域の抽出から元素検出までの処理を繰り返す形態を示したが、分析部1は、小領域の広さを大きくしながら処理を繰り返してもよい。この場合、分析部1は、小領域の広さの拡大、及びS204で合成すべきスペクトルの数の増加に応じて、閾値を増加させることが望ましい。 In the first and second embodiments, the processing from the extraction of the small area to the element detection is repeated while the area of the small area is reduced. However, the analysis unit 1 increases the area of the small area. The process may be repeated. In this case, it is desirable that the analysis unit 1 increases the threshold value in accordance with the expansion of the size of the small region and the increase in the number of spectra to be synthesized in S204.
(実施形態3)
 実施形態3に係る元素検出装置10は、試料4の一部に含まれる物質を検出する処理を行う。元素検出装置10の構成は実施形態1と同様である。図13は、実施形態3に係る元素検出装置10が実行する処理の手順を示すフローチャートである。元素検出装置10は、実施形態1に係るS101~S111の処理、又は実施形態2に係るS201~S212の処理によって、試料4に含まれている元素を検出する(S31)。分析部1は、元素の検出結果に基づいて、走査領域に含まれる特徴領域を抽出する(S32)。特徴領域は、走査領域に含まれる複数の点の内、他の大部分の点と組成が異なる点からなる領域である。例えば、試料4のごく一部に含まれている元素に由来するピークの強度が所定値以上になるスペクトルが関連付けられている点が特徴点であり、複数の特徴点が集まった領域が特徴領域である。特徴領域は複数存在することがある。
(Embodiment 3)
The element detection device 10 according to the third embodiment performs a process of detecting a substance contained in a part of the sample 4. The configuration of the element detection device 10 is the same as that of the first embodiment. FIG. 13 is a flowchart illustrating a procedure of a process performed by the element detection device 10 according to the third embodiment. The element detection device 10 detects an element contained in the sample 4 by the processing of S101 to S111 according to the first embodiment or the processing of S201 to S212 according to the second embodiment (S31). The analysis unit 1 extracts a characteristic region included in the scanning region based on the detection result of the element (S32). The characteristic region is a region that has a different composition from most other points among a plurality of points included in the scanning region. For example, a feature point is a point associated with a spectrum in which the intensity of a peak derived from an element contained in only a part of the sample 4 is equal to or more than a predetermined value, and a region where a plurality of feature points are collected is a feature region. It is. There may be a plurality of characteristic regions.
 分析部1は、次に、特徴領域の合成スペクトルを生成する(S33)。S33では、分析部1は、特徴領域内の各特徴点に関連付けられたスペクトルを加算又は平均することにより、合成スペクトルを生成する。分析部1は、次に、合成スペクトルのS/N比を計算し、S/N比の大きさは十分であるか否かを判定する(S34)。例えば、S34では、分析部1は、S/N比が所定値以上である場合に、S/N比の大きさが十分であると判定する。S/N比の大きさは十分ではない場合に(S34:NO)、元素検出装置10は、試料4上の特徴領域に再度X線を照射し、蛍光X線を検出し、特徴領域の合成スペクトルを再度生成する再測定の処理を行う(S35)。 Next, the analysis unit 1 generates a composite spectrum of the characteristic region (S33). In S33, the analysis unit 1 generates a combined spectrum by adding or averaging the spectra associated with each feature point in the feature region. Next, the analysis unit 1 calculates the S / N ratio of the combined spectrum, and determines whether the magnitude of the S / N ratio is sufficient (S34). For example, in S34, when the S / N ratio is equal to or more than the predetermined value, the analysis unit 1 determines that the magnitude of the S / N ratio is sufficient. If the magnitude of the S / N ratio is not sufficient (S34: NO), the element detection device 10 irradiates the characteristic region on the sample 4 again with X-rays, detects fluorescent X-rays, and synthesizes the characteristic region. A re-measurement process for generating a spectrum again is performed (S35).
 S35が終了した後、又はS34でS/N比の大きさが十分である場合(S34:YES)、分析部1は、特徴領域の合成スペクトルを分類する(S36)。例えば、分析部1は、複数の特徴領域の合成スペクトルを比較し、類似度に基づいて合成スペクトルを分類する。類似度は、例えば、スペクトル間の差分の大きさに応じて決定される。合成スペクトルが同じ種類に分類された特徴領域は、同じ物質からなる領域であるとの推測が可能である。また、例えば、分析部1は、予め記憶部14に記憶してある特定のスペクトルと特徴領域の合成スペクトルとを比較し、特定のスペクトルとの類似度に基づいて合成スペクトルを分類する。特定の物質に起因するスペクトルに類似するものに合成スペクトルが分類された特徴領域は、特定の物質からなる領域であるとの推測が可能である。 後 After S35 ends, or when the magnitude of the S / N ratio is sufficient in S34 (S34: YES), the analysis unit 1 classifies the composite spectrum of the characteristic region (S36). For example, the analysis unit 1 compares synthesized spectra of a plurality of characteristic regions, and classifies the synthesized spectra based on the similarity. The similarity is determined, for example, according to the magnitude of the difference between the spectra. It can be inferred that the characteristic regions in which the composite spectra are classified into the same type are regions composed of the same substance. In addition, for example, the analysis unit 1 compares a specific spectrum stored in the storage unit 14 in advance with the composite spectrum of the characteristic region, and classifies the composite spectrum based on the similarity with the specific spectrum. It can be inferred that the characteristic region in which the composite spectrum is classified into one similar to the spectrum caused by the specific substance is a region composed of the specific substance.
 分析部1は、次に、合成スペクトルに基づいて、特徴領域に存在する元素を検出する(S37)。S37では、分析部1は、特徴領域に存在する元素の存在比を計算してもよい。分析部1は、次に、特徴領域を構成する物質を検出する(S38)。例えば、分析部1は、S36での合成スペクトルの分類結果、又はS37の元素の検出結果に基づいて、特徴領域を構成する物質を検出する。元素検出装置10は、以上で処理を終了する。 Next, the analysis unit 1 detects an element present in the characteristic region based on the synthesized spectrum (S37). In S37, the analysis unit 1 may calculate the abundance ratio of the element existing in the characteristic region. Next, the analysis unit 1 detects a substance constituting the characteristic region (S38). For example, the analysis unit 1 detects a substance constituting the characteristic region based on the classification result of the synthesized spectrum in S36 or the detection result of the element in S37. The element detection device 10 ends the processing as described above.
 以上のように、実施形態3では、元素検出装置10は、走査領域の一部に含まれる物質を検出する。これにより、元素検出装置10は、試料4に含まれる異物を検出することができる。例えば、液体をろ過した後のフィルタを試料4とした場合は、フィルタ上の異物、即ち、ろ過時にフィルタ上に残留した液体中の混合物を検出することが可能となる。 As described above, in the third embodiment, the element detection device 10 detects a substance contained in a part of the scanning area. Thereby, the element detecting device 10 can detect the foreign matter contained in the sample 4. For example, when the filter after filtering the liquid is used as the sample 4, it is possible to detect the foreign matter on the filter, that is, the mixture in the liquid remaining on the filter at the time of filtration.
 本実施形態においては、実施形態1又は2に係る元素検出方法と同様の方法を利用して特徴領域を抽出する例を示したが、元素検出装置10は、その他の方法を用いて特徴領域を抽出する形態であってもよい。例えば、元素検出装置10は、試料4を透過したX線を検出して透過X線像を生成し、透過X線像に基づいて特徴領域を抽出してもよい。透過X線像に含まれる濃淡の分布に基づいて、特徴領域の抽出が可能である。 In the present embodiment, an example in which the characteristic region is extracted by using the same method as the element detection method according to the first or second embodiment has been described. However, the element detection device 10 uses another method to extract the characteristic region. It may be in the form of extraction. For example, the element detection device 10 may detect an X-ray transmitted through the sample 4 to generate a transmitted X-ray image, and extract a characteristic region based on the transmitted X-ray image. It is possible to extract a characteristic region based on the distribution of shading included in the transmission X-ray image.
 また、実施形態1~3においては、蛍光X線をエネルギー別に分離して検出するエネルギー分散型の形態を示したが、元素検出装置10は、X線を波長別に分離して検出する波長分散型の形態であってもよい。また、実施形態1~3においては、X線を試料4へ照射し、試料4から発生した蛍光X線を検出する形態を示したが、元素検出装置10は、X線以外の放射線を試料4へ照射し、試料4から発生するX線を検出する形態であってもよい。例えば、元素検出装置10は、電子線を試料4へ照射し、電子線の方向を変更することによって電子線で試料4を走査する形態であってもよい。また、実施形態1~3においては、試料4から発生するX線を検出する形態を示したが、元素検出装置10は、試料4から発生するX線以外の放射線を検出する形態であってもよい。例えば、元素検出装置10は、電子線又はレーザー光を試料4へ照射し、試料4から発生する二次電子、反射電子、又はカソードルミネッセンス等の可視光線若しくは赤外線を検出する形態であってもよい。 In the first to third embodiments, the energy dispersive type in which the fluorescent X-rays are separated by energy and detected is shown. May be used. In the first to third embodiments, X-rays are irradiated on the sample 4 to detect the fluorescent X-rays generated from the sample 4. However, the element detection apparatus 10 emits radiation other than X-rays. , And X-rays generated from the sample 4 may be detected. For example, the element detection device 10 may be configured to irradiate the sample 4 with an electron beam and change the direction of the electron beam to scan the sample 4 with the electron beam. Further, in the first to third embodiments, the mode in which the X-ray generated from the sample 4 is detected has been described. However, the element detecting device 10 may be configured to detect the radiation other than the X-ray generated from the sample 4. Good. For example, the element detecting device 10 may be configured to irradiate the sample 4 with an electron beam or a laser beam and detect a visible light or an infrared ray such as a secondary electron, a reflected electron, or a cathodoluminescence generated from the sample 4. .
 本発明は上述した実施の形態の内容に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。即ち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態も本発明の技術的範囲に含まれる。 The present invention is not limited to the contents of the above-described embodiment, and various modifications can be made within the scope of the claims. That is, embodiments obtained by combining technical means appropriately changed within the scope of the claims are also included in the technical scope of the present invention.
 1 分析部
 10 元素検出装置
 11 CPU
 14 記憶部
 141 コンピュータプログラム
 21 照射部
 22 X線検出器
 23 試料台
 31 制御部
 32 信号処理部
 33 駆動部
 4 試料 
DESCRIPTION OF SYMBOLS 1 Analysis part 10 Element detection apparatus 11 CPU
DESCRIPTION OF SYMBOLS 14 Storage part 141 Computer program 21 Irradiation part 22 X-ray detector 23 Sample table 31 Control part 32 Signal processing part 33 Drive part 4 Sample

Claims (8)

  1.  放射線による試料の走査を行い、前記走査が行われた前記試料上の走査領域から発生した放射線を検出し、前記走査領域に含まれる複数の点の夫々から発生した放射線のスペクトルを生成し、前記試料に含まれる元素の検出を行う元素検出方法において、
     前記複数の点の夫々に前記スペクトルを関連付けたスペクトル分布を生成し、
     前記走査領域の広さ以下の広さを有する1以上の数の小領域を前記走査領域から抽出する抽出処理と、
     各小領域に含まれる複数の点に関連付けられた複数のスペクトルを合成した合成スペクトルを生成する合成処理と、
     各小領域について生成した前記合成スペクトルに基づいて、前記試料に含まれる元素を検出する元素検出処理とを行い、
     各小領域の広さを変化させて、前記抽出処理、前記合成処理及び前記元素検出処理を繰り返すこと
     を特徴とする元素検出方法。
    Scan the sample with radiation, detect the radiation generated from the scan area on the sample where the scan was performed, generate a spectrum of radiation generated from each of a plurality of points included in the scan area, In an element detection method for detecting an element contained in a sample,
    Generate a spectral distribution associated with the spectrum to each of the plurality of points,
    An extraction process of extracting one or more small areas having a size equal to or smaller than the size of the scanning area from the scanning area;
    A synthesis process of generating a synthesized spectrum obtained by synthesizing a plurality of spectra associated with a plurality of points included in each small region;
    Based on the synthesized spectrum generated for each small region, performing an element detection process to detect elements contained in the sample,
    An element detection method, wherein the extraction processing, the synthesis processing, and the element detection processing are repeated while changing the size of each small region.
  2.  前記元素検出処理では、前記小領域の広さを変化させる前の前記元素検出処理で検出された元素は前記試料に含まれているものとして、各元素の有無を判定すること
     を特徴とする請求項1に記載の元素検出方法。
    In the element detection processing, the presence or absence of each element is determined assuming that the element detected in the element detection processing before changing the size of the small region is included in the sample. Item 1. The element detection method according to Item 1.
  3.  前記元素検出処理では、
     各小領域について生成した前記合成スペクトルに含まれるピークの位置に基づいて、前記試料の各小領域に対応する部分に複数の元素の夫々が含まれる確からしさを表す得点を計算し、
     前記得点と所定の閾値との比較に基づいて各元素の有無を判定することにより、前記試料に含まれる元素を検出すること
     を特徴とする請求項1又は2に記載の元素検出方法。
    In the element detection processing,
    Based on the position of the peak included in the synthesized spectrum generated for each small region, calculate a score representing the likelihood that each of the plurality of elements is included in the portion corresponding to each small region of the sample,
    The element detection method according to claim 1 or 2, wherein an element contained in the sample is detected by determining the presence or absence of each element based on a comparison between the score and a predetermined threshold.
  4.  各小領域について前記合成スペクトルを生成するために合成されるスペクトルの数に応じて前記閾値を変更すること
     を特徴とする請求項3に記載の元素検出方法。
    The element detection method according to claim 3, wherein the threshold value is changed according to the number of spectra synthesized for generating the synthesized spectrum for each small region.
  5.  前記元素検出処理では、前記得点が前記閾値を超過する元素が前記試料に含まれていると判定し、
     前記合成スペクトルを生成するために合成されるスペクトルの数が小さいほど前記閾値を小さくすること
     を特徴とする請求項4に記載の元素検出方法。
    In the element detection process, it is determined that the element containing the score exceeds the threshold is included in the sample,
    The element detection method according to claim 4, wherein the threshold value is reduced as the number of spectra synthesized to generate the synthesized spectrum decreases.
  6.  前記元素検出処理により検出した元素の夫々について元素分布を生成すること
     を特徴とする請求項1乃至5のいずれか一つに記載の元素検出方法。
    The element detection method according to claim 1, wherein an element distribution is generated for each of the elements detected by the element detection processing.
  7.  放射線による試料の走査を行う走査部と、前記走査が行われた前記試料上の走査領域から発生した放射線を検出する放射線検出部と、前記走査領域に含まれる複数の点の夫々から発生した放射線のスペクトルを生成するスペクトル生成部と、前記試料に含まれる元素を検出するための処理を行う分析部とを備える元素検出装置において、
     前記分析部は、
     前記複数の点の夫々に前記スペクトルを関連付けたスペクトル分布を生成し、
     前記走査領域の広さ以下の広さを有する1以上の数の小領域を前記走査領域から抽出する抽出処理と、
     各小領域に含まれる複数の点に関連付けられた複数のスペクトルを合成した合成スペクトルを生成する合成処理と、
     各小領域について生成した前記合成スペクトルに基づいて、前記試料に含まれる元素を検出する元素検出処理とを行い、
     各小領域の広さを変化させて、前記抽出処理、前記合成処理及び前記元素検出処理を繰り返すこと
     を特徴とする元素検出装置。
    A scanning unit that scans the sample with radiation, a radiation detection unit that detects radiation generated from a scan area on the sample on which the scan is performed, and radiation generated from each of a plurality of points included in the scan area In an element detection device including a spectrum generation unit that generates a spectrum of, and an analysis unit that performs a process for detecting an element contained in the sample,
    The analysis unit includes:
    Generate a spectral distribution associated with the spectrum to each of the plurality of points,
    An extraction process of extracting one or more small areas having a size equal to or smaller than the size of the scanning area from the scanning area;
    A synthesis process of generating a synthesized spectrum obtained by synthesizing a plurality of spectra associated with a plurality of points included in each small region;
    Based on the synthesized spectrum generated for each small region, performing an element detection process to detect elements contained in the sample,
    An element detection device, wherein the extraction processing, the synthesis processing, and the element detection processing are repeated by changing the size of each small region.
  8.  コンピュータに、試料上の複数の点の夫々に各点から発生した放射線のスペクトルが関連付けられたスペクトル分布に基づいて、前記試料に含まれる元素の検出を行わせるコンピュータプログラムにおいて、
     コンピュータに、
     前記試料上の前記複数の点が含まれる領域から、該領域の広さ以下の広さを有する1以上の数の小領域を抽出する抽出ステップと、
     各小領域に含まれる複数の点に関連付けられた複数のスペクトルを合成した合成スペクトルを生成する合成ステップと、
     各小領域について生成した前記合成スペクトルに基づいて、前記試料に含まれる元素を検出する元素検出ステップと、
     各小領域の広さを変化させて、前記抽出ステップ、前記合成ステップ及び前記元素検出ステップを繰り返すステップと
     を含む処理を実行させることを特徴とするコンピュータプログラム。 
    A computer program for causing a computer to perform detection of an element contained in the sample based on a spectral distribution associated with a spectrum of radiation generated from each point on each of a plurality of points on the sample,
    On the computer,
    An extraction step of extracting, from a region including the plurality of points on the sample, at least one small region having a size equal to or smaller than the size of the region,
    A synthesis step of generating a synthesized spectrum obtained by synthesizing a plurality of spectra associated with a plurality of points included in each small region,
    Based on the synthesized spectrum generated for each small region, an element detection step of detecting an element contained in the sample,
    A computer program for causing a computer to execute a process including changing the size of each small region and repeating the extraction step, the synthesis step, and the element detection step.
PCT/JP2019/033419 2018-09-19 2019-08-27 Element detection method, element detection device, and computer program WO2020059439A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020548211A JP7263379B2 (en) 2018-09-19 2019-08-27 Element detection method, element detection device, and computer program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-175235 2018-09-19
JP2018175235 2018-09-19

Publications (1)

Publication Number Publication Date
WO2020059439A1 true WO2020059439A1 (en) 2020-03-26

Family

ID=69887250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033419 WO2020059439A1 (en) 2018-09-19 2019-08-27 Element detection method, element detection device, and computer program

Country Status (2)

Country Link
JP (1) JP7263379B2 (en)
WO (1) WO2020059439A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155089A (en) * 1998-11-20 2000-06-06 Murata Mfg Co Ltd Dispersibility evaluating method
JP2006119108A (en) * 2004-09-24 2006-05-11 Fujitsu Ltd Analytical apparatus and testing method
US20170115241A1 (en) * 2015-10-21 2017-04-27 Trustees Of Princeton University Transition edge sensor for x-ray fluorescence (tes-xrf) for high resolution material identification

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046768A (en) * 1998-07-28 2000-02-18 Jeol Ltd X-ray analyzer
JP2009250867A (en) * 2008-04-09 2009-10-29 Jeol Ltd X-ray analyzer with energy dispersive x-ray spectrometer
JP5849882B2 (en) 2011-09-27 2016-02-03 株式会社デンソー Semiconductor device provided with vertical semiconductor element
JP6010547B2 (en) * 2011-12-09 2016-10-19 株式会社堀場製作所 X-ray analyzer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155089A (en) * 1998-11-20 2000-06-06 Murata Mfg Co Ltd Dispersibility evaluating method
JP2006119108A (en) * 2004-09-24 2006-05-11 Fujitsu Ltd Analytical apparatus and testing method
US20170115241A1 (en) * 2015-10-21 2017-04-27 Trustees Of Princeton University Transition edge sensor for x-ray fluorescence (tes-xrf) for high resolution material identification

Also Published As

Publication number Publication date
JP7263379B2 (en) 2023-04-24
JPWO2020059439A1 (en) 2021-08-30

Similar Documents

Publication Publication Date Title
EP1729505B1 (en) Method for extracting radiation area from image data and image data processing apparatus
KR101399505B1 (en) Frame accumulation scanning method for energy dispersive x-ray fluorescence spectrometer
US20080181458A1 (en) Light intensity measurement method and light intensity measurement system
JP2015219217A (en) Phase analysis device, phase analysis method, and surface analysis device
US9234831B2 (en) Particle analysis instrument and computer program
JP4767721B2 (en) Image processing method for digital medical examination images
JP2024086781A (en) Surface analysis instrument
US11543368B2 (en) X-ray based evaluation of a status of a structure of a substrate
WO2020059439A1 (en) Element detection method, element detection device, and computer program
EP2790016B1 (en) X-ray analysis device
US11674913B2 (en) Sample analysis apparatus and method
Sasanpour et al. Determination of probabilistic distribution function of background and defect optical densities for X-ray radiography images of a steel plate
EP4123299A1 (en) Analyzer apparatus and method of image processing
JP6949034B2 (en) Signal analyzer, signal analysis method, computer program, measuring device and measuring method
US20230011964A1 (en) Method for operating a particle beam microscope, particle beam microscope and computer program product
JP2020038108A (en) Element distribution unevenness assessment method and charged-particle beam apparatus
US11965841B2 (en) Surface analyzer
US20240110880A1 (en) Dynamic Data Driven Detector Tuning for Improved Investigation of Samples in Charged Particle Systems
JP2003229084A (en) Surface analyzer
JPH07113617B2 (en) Quantitative analysis method by sample surface scanning type analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548211

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863822

Country of ref document: EP

Kind code of ref document: A1