WO2020059370A1 - Bearing structure and turbocharger - Google Patents

Bearing structure and turbocharger Download PDF

Info

Publication number
WO2020059370A1
WO2020059370A1 PCT/JP2019/031893 JP2019031893W WO2020059370A1 WO 2020059370 A1 WO2020059370 A1 WO 2020059370A1 JP 2019031893 W JP2019031893 W JP 2019031893W WO 2020059370 A1 WO2020059370 A1 WO 2020059370A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
hole
semi
floating
main body
Prior art date
Application number
PCT/JP2019/031893
Other languages
French (fr)
Japanese (ja)
Inventor
祐一 大東
朗弘 上田
真一 金田
寛 采浦
久之 本井
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2020059370A1 publication Critical patent/WO2020059370A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/14Lubrication of pumps; Safety measures therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • F16C23/04Sliding-contact bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/02Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings

Definitions

  • the present disclosure relates to a bearing structure and a supercharger.
  • This application claims the benefit of priority based on Japanese Patent Application No. 2018-174644 filed on September 19, 2018, the contents of which are incorporated herein by reference.
  • a semi-floating bearing may be used for the supercharger, as described in Patent Document 1, for example.
  • One end of the pin is attached to the housing.
  • the other end of the pin is inserted through the outer peripheral surface of the semi-floating bearing. The movement of the shaft in the semi-floating bearing in the axial direction and the rotation direction is restricted by the pin.
  • Semi-floating bearings receive thrust loads. Therefore, depending on the operating conditions of the engine, the surface pressure acting on the contact portion between the semi-floating bearing and the pin may increase.
  • An object of the present disclosure is to provide a bearing structure and a supercharger capable of suppressing an increase in surface pressure in a portion that restricts axial movement of a semi-floating bearing.
  • a bearing structure includes a semi-floating bearing housed in a bearing hole, a projecting portion projecting from an outer peripheral surface of the semi-floating bearing, and extending in a circumferential direction, An inner peripheral groove is provided in the hole, extends in the circumferential direction, and has a protruding portion.
  • the regulating portion includes a regulating portion facing the protruding portion in the circumferential direction.
  • It may be provided with an oil supply passage opening to the inner peripheral groove.
  • the semi-floating bearing may include two radial bearing surfaces formed on the inner peripheral surface thereof, and the protrusion may be such that the position of the semi-floating bearing in the central axis direction of the semi-floating bearing is between the two radial bearing surfaces.
  • a thrust bearing surface formed on the end surface of the semi-floating bearing may be provided.
  • the bearing hole includes a first bearing hole and a second bearing hole, and an insertion member having the first bearing hole formed therein, a second bearing hole, and a large inner diameter having an inner diameter larger than the second bearing hole and through which the insertion member is inserted.
  • a hole and a stepped surface extending from the inner peripheral surface of the second bearing hole to the inner peripheral surface of the large-diameter hole and separated from the end of the insertion member in the central axis direction of the semi-floating bearing are formed.
  • a housing, and an inner peripheral groove may be formed between the insertion member and the step surface.
  • the protruding part may be provided with a through hole that penetrates in the central axis direction of the semi-floating bearing and through which the restricting part is inserted.
  • a supercharger includes the above bearing structure.
  • FIG. 1 is a schematic sectional view of the supercharger.
  • FIG. 2 is a diagram in which a dashed line portion of FIG. 1 is extracted.
  • FIG. 3 is a diagram for explaining a semi-floating bearing.
  • FIG. 4 is a diagram for explaining the insertion member.
  • FIG. 5 is a schematic sectional view of a supercharger according to a modification.
  • FIG. 6 is a diagram in which a dashed line portion of FIG. 5 is extracted.
  • FIG. 7 is a diagram illustrating an insertion member according to a modification.
  • FIG. 1 is a schematic sectional view of the supercharger C.
  • the direction of arrow L shown in FIG. 1 will be described as the left side of the turbocharger C. 1 will be described as the right side of the supercharger C.
  • the supercharger C includes a supercharger main body 1.
  • the supercharger main body 1 includes a bearing housing 2 (housing).
  • the turbine housing 4 is connected to the left side of the bearing housing 2 by a fastening mechanism 3.
  • a compressor housing 6 is connected to the right side of the bearing housing 2 by a fastening bolt 5.
  • a projection 2a is provided on the outer peripheral surface of the bearing housing 2 near the turbine housing 4.
  • the projection 2a projects in the radial direction of the bearing housing 2.
  • a protrusion 4a is provided on the outer peripheral surface of the turbine housing 4 near the bearing housing 2.
  • the projection 4a projects in the radial direction of the turbine housing 4.
  • the projections 2a, 4a are band-fastened by the fastening mechanism 3.
  • the fastening mechanism 3 is configured by, for example, a G coupling.
  • a bearing hole 2b is formed in the bearing housing 2.
  • the bearing hole 2b penetrates the turbocharger C in the left-right direction.
  • the semi-floating bearing 7 is provided in the bearing hole 2b.
  • the shaft 8 is rotatably supported by the semi-floating bearing 7.
  • a turbine impeller 9 is provided at the left end of the shaft 8.
  • the turbine impeller 9 is rotatably housed in the turbine housing 4.
  • a compressor impeller 10 is provided at the right end of the shaft 8.
  • the compressor impeller 10 is rotatably accommodated in the compressor housing 6.
  • An intake port 11 is formed in the compressor housing 6.
  • the intake port 11 opens to the right of the turbocharger C.
  • the intake port 11 is connected to an air cleaner (not shown).
  • the diffuser flow path 12 is formed by the facing surfaces of the bearing housing 2 and the compressor housing 6.
  • the diffuser channel 12 pressurizes air.
  • the diffuser flow path 12 is formed in a ring shape from the radial inside to the outside of the shaft 8. The inside of the diffuser channel 12 in the radial direction communicates with the intake port 11.
  • a compressor scroll flow path 13 is provided in the compressor housing 6.
  • the compressor scroll channel 13 is annular.
  • the compressor scroll passage 13 is located, for example, radially outside the shaft 8 from the diffuser passage 12.
  • the compressor scroll passage 13 communicates with an intake port of an engine (not shown).
  • the compressor scroll channel 13 also communicates with the diffuser channel 12.
  • a discharge port 14 is formed in the turbine housing 4.
  • the discharge port 14 opens to the left of the supercharger C.
  • the discharge port 14 is connected to an exhaust gas purification device (not shown).
  • the turbine housing 4 is provided with a channel 15 and a turbine scroll channel 16.
  • the turbine scroll channel 16 is annular.
  • the turbine scroll flow path 16 is located outside the flow path 15 in the radial direction of the turbine impeller 9.
  • the turbine scroll passage 16 communicates with a gas inlet (not shown). Exhaust gas discharged from an exhaust manifold of the engine is guided to the gas inlet.
  • the turbine scroll flow path 16 also communicates with the flow path 15 described above.
  • the exhaust gas guided from the gas inlet to the turbine scroll flow path 16 is guided to the discharge port 14 via the flow path 15 and the turbine impeller 9. The exhaust gas rotates the turbine impeller 9 during the flow.
  • FIG. 2 is a diagram in which a dashed line portion of FIG. 1 is extracted.
  • a bearing structure S is provided inside the bearing housing 2.
  • the bearing structure S includes an oil supply passage 2c formed in the bearing housing 2.
  • the lubricating oil flows into the bearing hole 2b from outside the bearing housing 2 through the oil supply passage 2c.
  • the lubricating oil is supplied to the semi-floating bearing 7 provided in the bearing hole 2b.
  • the semi-floating bearing 7 has an annular main body 7a.
  • the shaft 8 is inserted inside the main body 7a.
  • Two radial bearing surfaces 7b and 7c are formed on the inner peripheral surface of the main body 7a.
  • the radial bearing surfaces 7b and 7c are separated from each other in the axial direction of the shaft 8 (the central axis direction of the main body 7a of the semi-floating bearing 7; hereinafter, simply referred to as the axial direction).
  • ⁇ ⁇ Damper surfaces 7e and 7f are formed on both ends in the axial direction of the outer peripheral surface of the main body 7a.
  • the diameters of the damper surfaces 7e and 7f are larger than other portions of the main body 7a.
  • a gap is formed between the damper surfaces 7e, 7f and the inner peripheral surface of the bearing hole 2b. The vibration of the shaft 8 is suppressed by the oil film pressure of the lubricating oil supplied to the gap from the oil supply passage 2c.
  • an oil draining member 21 is attached on the shaft 8, on the right side of the main body 7 a in FIG. 2 (on the side of the compressor impeller 10).
  • the oil draining member 21 is an annular member.
  • the oil draining member 21 scatters the lubricating oil radially outward.
  • the oil draining member 21 suppresses the leakage of the lubricating oil to the compressor impeller 10 side.
  • the shaft 8 is provided with a large diameter portion 8a.
  • the outer diameter of the large diameter portion 8a is larger than the inner diameter of the radial bearing surface 7b.
  • the large diameter portion 8a is located on the left side (on the turbine impeller 9 side) in FIG. 2 with respect to the main body portion 7a.
  • the large diameter portion 8a faces the main body 7a in the axial direction.
  • the main body portion 7a is sandwiched in the axial direction by the oil draining member 21 and the large diameter portion 8a.
  • Lubricating oil is supplied to the gap between the main body 7a and the oil draining member 21 and the gap between the main body 7a and the large diameter portion 8a.
  • the shaft 8 moves in the axial direction, the oil draining member 21 or the large diameter portion 8a is supported by the oil film pressure between the oil draining member 21 and the main body 7a.
  • the axial end faces are the thrust bearing faces 7g and 7h.
  • the thrust bearing surfaces 7g and 7h face the large diameter portion 8a and the oil drain member 21.
  • the thrust bearing surfaces 7g and 7h receive a thrust load.
  • FIG. 3 is a diagram for explaining the semi-floating bearing 7.
  • 3 is a diagram in which the semi-floating bearing 7 is extracted from FIG.
  • the lower right diagram of FIG. 3 is a view as viewed from the arrow III of the left diagram of FIG. 3 is a top view of the semi-floating bearing 7.
  • FIG. 1 is a diagram for explaining the semi-floating bearing 7.
  • the main body 7a of the semi-floating bearing 7 is provided with a protrusion 7i.
  • the protrusion 7i is continuous with the outer peripheral surface of the main body 7a.
  • the protrusion 7i protrudes in the radial direction of the shaft 8 from the outer peripheral surface of the main body 7a.
  • the protrusion 7i is formed integrally with the main body 7a.
  • the protruding portion 7i formed of a different member from the main body 7a may be attached to the main body 7a.
  • the protrusion 7i has an axial position between the two radial bearing surfaces 7b and 7c. That is, the protruding portion 7i is formed on the outer peripheral surface between the two radial bearing surfaces 7b and 7c in the main body 7a.
  • the protrusion 7i extends in the circumferential direction of the main body 7a.
  • One end and the other end of the protrusion 7i in the circumferential direction are separated from each other.
  • One end and the other end in the circumferential direction of the protruding portion 7i face in the circumferential direction.
  • a cutout 7j is formed on the upper side of the protrusion 7i in the lower right view of FIG.
  • the notch 7j is formed between one end and the other end of the protrusion 7i in the circumferential direction.
  • the notch 7j extends from the outer peripheral end of the protruding portion 7i to the outer peripheral surface of the main body 7a, for example, in the vertical direction in the lower right diagram of FIG.
  • the oil hole 7d opens at a position facing the notch 7j.
  • the oil hole 7d is located between one end and the other end of the protrusion 7i in the circumferential direction.
  • a through-hole 7k is provided in the protrusion 7i.
  • the through hole 7k is located on the opposite side of the notch 7j across the main body 7a.
  • the through hole 7k passes through the protrusion 7i in the axial direction.
  • FIG. 4 is a view for explaining the insertion member 22.
  • 4 is a diagram in which the insertion member 22 is extracted from FIG.
  • the right view of FIG. 4 is a view taken in the direction of the arrow IV in the left view of FIG.
  • the insertion member 22 has an annular main body 22a.
  • a flange portion 22b is formed on the right side of the main body 22a in the left view of FIG.
  • the outer diameter of the flange 22b is larger than that of the main body 22a.
  • a notch 22c is formed on the lower side of the flange 22b in the right view of FIG.
  • the insertion member 22, the first bearing hole 2b 1 is provided.
  • the first bearing hole 2b 1 penetrates the main body 22a and the flange portion 22b in the axial direction.
  • the first inner peripheral surface of the bearing hole 2b 1, groove 22d is formed.
  • the inner diameter of the groove 22d is greater than the first inner diameter of the bearing hole 2b 1.
  • the notch 22c is cut out of the groove 22d, so that the groove 22d opens outside the flange 22b.
  • the thrust bearing surface 7h and the end face of the oil draining member 21 are located in the groove 22d.
  • the bearing hole 2 b includes a first bearing hole 2 b 1 formed in the insertion member 22 and a second bearing hole 2 b 2 formed in the bearing housing 2.
  • the first bearing hole 2b 1 and the second bearing hole 2b 2 an inner diameter equal approximately.
  • the first bearing hole 2b 1 and the second bearing hole 2b 2 spaced apart in the axial direction.
  • the first bearing hole 2b 1 and the second bearing hole 2b 2 the central axis is coincident.
  • the bearing housing 2 a second bearing hole 2b 2, a large inner diameter hole 2d is provided.
  • Large internal diameter bore 2d is continuous axially oil thrower member 21 side with respect to the second bearing hole 2b 2.
  • Large inner diameter hole 2d is larger inner diameter than the second bearing hole 2b 2.
  • the inner diameter difference between the large inner diameter hole 2d and the second bearing hole 2b 2, stepped surface 2e is formed. Step surface 2e extends from the second inner circumferential surface of the bearing hole 2b 2, the radial direction of the inner peripheral surface to the shaft 8 of the large inner diameter hole 2d.
  • the press-fitting part 22a 1 is formed.
  • the outer diameter of the press fit portion 22a 1 is slightly larger than the inner diameter of the large inner diameter hole 2d.
  • the insertion member 22 is inserted into the large-diameter hole 2d and assembled to the bearing housing 2.
  • Press-fitting portion 22a 1 is press-fitted into the large inner diameter hole 2d.
  • the flange 22b extends to the radial outside of the shaft 8 from the large bore 2d.
  • the flange portion 22b abuts (abuts) on the wall surface 2f of the bearing housing 2.
  • the wall surface 2f is a surface of the large-diameter hole 2d where the end on the oil draining member 21 side is open.
  • the axial position of the insertion member 22 is determined by the contact of the flange portion 22b with the wall surface 2f.
  • the flange portion 22b has a function of positioning the insertion member 22.
  • the end 22e of the main body 22a on the side of the step surface 2e is separated from the bottom surface (step surface 2e) of the large bore 2d in the axial direction toward the oil drain member 21 side.
  • a gap is formed between the end 22e and the step surface 2e.
  • the gap between the end 22e and the step surface 2e forms an inner peripheral groove 2g.
  • the inner peripheral groove 2g is formed on the inner peripheral surface of the bearing hole 2b.
  • Oil supply passage 2c includes a large-diameter passage 2c 1 and a small-diameter passage 2c 2.
  • Large-diameter passage 2c 1 and a small-diameter passage 2c 2 is a hole provided in the bearing housing 2.
  • the inner diameter of the small-diameter passage 2c 2 is smaller than the inner diameter of the large-diameter passage 2c 1.
  • the large-diameter passage 2 c 1 opens to the outside of the bearing housing 2.
  • the bottom surface of the large-diameter passage 2c 1 to the large inner diameter hole 2d, spaced apart in the radial direction of the shaft 8.
  • the large-diameter passage 2c 1, between the large inner diameter hole 2d, the partition wall portion 2i is formed.
  • the partition 2i is a part of the bearing housing 2.
  • the partition 2i extends in the axial direction.
  • the partition 2i extends circumferentially along the large-diameter hole 2d.
  • Diameter passage 2c 2 of the bottom surface of the large-diameter passage 2c 1, for example from the central portion, extending to the inner circumferential grooves 2g.
  • the small-diameter passage 2c 2, the inner circumferential groove 2g is communicated with the large-diameter passage 2c 1.
  • Diameter passage 2c 2 faces the partition wall portion 2i.
  • large-diameter passage 2c 1 penetrates the bearing housing 2 to a large inner diameter hole 2d. Insertion member 22 is exposed to the large-diameter passage 2c 1. Lubricating oil from the large-diameter passage 2c 1, the outer peripheral surface of the main body 22a of the insertion member 22, in the gap between the large inner diameter hole 2d, directly arrives.
  • the bearing housing 2 is provided with a positioning hole 2h.
  • the positioning hole 2h extends in the axial direction.
  • the positioning hole 2h opens at a lower portion in FIG. 2 of the step surface 2e.
  • the semi-floating bearing 7 is assembled to the bearing housing 2 before the insertion member 22.
  • Semi-floating bearing 7 is inserted from the oil thrower member 21 side to the second bearing hole 2b 2.
  • the outer diameter of the protrusion 7i of the semi-floating bearing 7 is smaller than the inner diameter of the large inner diameter hole 2d.
  • the protruding portion 7i is inserted up to the step surface 2e side of the large inner diameter hole 2d.
  • the circumferential position of the main body 7a is adjusted such that the through hole 7k faces the positioning hole 2h.
  • the regulating pin 23 (regulating part) is inserted into the through hole 7k and the positioning hole 2h.
  • the restriction pin 23 faces the inner peripheral surface of the through hole 7k in the circumferential direction of the main body 7a. That is, the regulating pin 23 faces the protruding portion 7i in the circumferential direction of the main body 7a.
  • the insertion member 22 is inserted into the large-diameter hole 2d.
  • part of the oil thrower member 21 side than the projecting portion 7i is inserted through the first bearing hole 2b 1.
  • the protrusion 7i is located between the insertion member 22 and the step surface 2e. That is, the projection 7i is inserted into the inner peripheral groove 2g formed between the bearing housing 2 and the insertion member 22.
  • the protrusion 7i (main body 7a) is restricted from moving in the axial direction.
  • the gap between the step surface 2e and the end 22e of the insertion member 22 is larger than the axial thickness of the protrusion 7i.
  • the semi-floating bearing 7 can move slightly in the axial direction. Therefore, the vibration can be absorbed by the damper surfaces 7e and 7f.
  • the thrust bearing surfaces 7g and 7h receive a thrust load.
  • the axial movement of the main body 7a in the semi-floating bearing 7 is restricted by the protrusion 7i.
  • FIG. 5 is a schematic sectional view of a supercharger Ca of a modified example.
  • FIG. 6 is a diagram in which a dashed line portion of FIG. 5 is extracted.
  • the thrust bearing surfaces 7g and 7h are formed on the semi-floating bearing 7 has been described.
  • thrust bearings 30 and 31 are provided separately from the semi-floating bearing 7.
  • the thrust collar 32 has a mounting hole 32a.
  • the shaft 8 is inserted into the mounting hole 32a.
  • the thrust collar 32 is attached to the compressor impeller 10 side of the semi-floating bearing 7 of the shaft 8.
  • the thrust bearings 30 and 31 are arranged one by one on both sides in the axial direction with respect to the thrust collar 32.
  • the thrust bearings 30, 31 receive a thrust load.
  • the thrust bearing 30 has an insertion hole 30a.
  • the insertion hole 30a penetrates the thrust bearing 30 in the axial direction.
  • the thrust bearing 31 has an insertion hole 31a.
  • the insertion hole 31a penetrates the thrust bearing 31 in the axial direction.
  • the shaft 8 is inserted into the insertion holes 30a and 31a. The shaft 8 and the thrust bearings 30 and 31 rotate relative to each other.
  • the main body 42 a of the insertion member 42 is inserted into the large-diameter hole 2 d of the bearing housing 2.
  • the flange 42b of the insertion member 42 contacts the wall surface 2f of the bearing housing 2.
  • the end of the wall surface 2f on the compressor impeller 10 side of the large inner diameter hole 2d is opened.
  • the flange 42b is sandwiched between the wall surface 2f and the thrust bearing 31.
  • FIG. 7 is a diagram for explaining the insertion member 42 in the modified example. 7 is a diagram in which the insertion member 42 is extracted from FIG. The right view of FIG. 7 is a view on arrow VII of the left view of FIG. As shown in FIG. 7, the main body 42a, similarly to the insertion member 22, the first bearing hole 2b 1 is provided.
  • the first of the bearing hole 2b 1, the flange portion 42b side has a diameter-enlarged portion 42f.
  • the inner diameter of the enlarged diameter portion 42f is larger than the inner diameter of the main body 42a (left side in the left diagram of FIG. 7).
  • the notch 42c is formed in the flange 42b.
  • the notch 42c also cuts off a part of the main body 42a in addition to the flange 42b.
  • the cutout portion 42c extends to the enlarged diameter portion 42f.
  • the thrust collar 32 and the thrust bearing 30 are housed in the enlarged diameter portion 42f of the insertion member 42.
  • the thrust bearing surface 30b of the thrust bearing 30 and the thrust bearing surface 31b of the thrust bearing 31 communicate with the notch 42c.
  • Lubricating oil to the thrust bearing 30, 31 has lubricated is discharged from the first bearing hole 2b 1 through the notch 42c.
  • the oil pressure on the thrust bearings 30 and 31 side is higher than the oil pressure on the side (turbine side) opposite to the thrust bearings 30 and 31. This is because the flow path of the lubricating oil is narrow at the lubricated portions of the thrust bearings 30 and 31.
  • the movement in the axial direction is restricted by the protrusion 7i.
  • the pressure receiving area receiving the thrust load is larger than that of the pin, and an increase in the surface pressure is suppressed.
  • the case where the oil supply passage 2c is opened in the inner peripheral groove 2g has been described.
  • lubricating oil is supplied between the protruding portion 7i and the inner wall surface of the inner peripheral groove 2g.
  • the impact caused by the collision between the protrusion 7i and the inner wall surface of the inner peripheral groove 2g is reduced.
  • the oil supply passage 2c may not be opened in the inner circumferential groove 2g.
  • the axial position of the protruding portion 7i is between the two radial bearing surfaces 7b and 7c.
  • the axial position of the protruding portion 7i may be closer to the turbine impeller 9 than the radial bearing surface 7b, or may be closer to the compressor impeller 10 than the radial bearing surface 7c.
  • the case where the insertion members 22 and 42 that are separate from the bearing housing 2 are provided has been described.
  • the work of housing the semi-floating bearing 7 in the bearing hole 2b becomes easy.
  • the insertion members 22 and 42 may not be provided.
  • the through-hole 7k is formed in the protruding portion 7i.
  • the case has been described in which the restriction pin 23 is inserted into the through hole 7k to restrict the movement of the protrusion 7i in the rotation direction.
  • the through hole 7k and the restricting pin 23 are not essential components.
  • the inner peripheral surface of the large-diameter hole 2d may be formed in an elliptical or oval shape.
  • the outer peripheral surface of the protruding portion 7i is formed in accordance with the inner peripheral surface of the large inner diameter hole 2d. In this way, the movement of the protrusion 7i in the rotation direction may be restricted.
  • the inner peripheral surface of the large inner diameter hole 2d facing the outer peripheral surface of the protruding portion 7i in the circumferential direction of the main body portion 7a functions as a regulating portion.
  • a cylindrical member may be interposed between the large inner diameter hole 2d and the protruding portion 7i.
  • the outer peripheral surface of the tubular member may be circular.
  • the inner peripheral surface of the tubular member may be elliptical or oval.
  • the outer peripheral surface of the protrusion 7i may be formed in accordance with the inner peripheral surface of the cylindrical member.
  • the inner peripheral surface of the cylindrical member that opposes the outer peripheral surface of the protruding portion 7i in the circumferential direction of the main body portion 7a functions as a regulating portion. In this case, the cost required for processing the bearing housing 2 can be reduced.
  • the through-hole 7k and the restriction pin 23 may extend in the radial direction of the shaft 8.
  • a key groove extending in the radial direction of the shaft 8 is provided on both the bearing housing 2 side and the insertion members 22 and 42 side. The key member is inserted across both key grooves.
  • the regulating pin 23 may be formed integrally with the insertion members 22 and 42.
  • the insertion members 22, 42 are axially positioned by the flange portions 22b, 42b has been described.
  • the positioning of the insertion members 22 and 42 in the axial direction may be performed by the restriction pins 23 and the end portions 22 e of the insertion members 22 and 42.
  • the ends 22 e of the insertion members 22 and 42 abut on the restriction pins 23.
  • the axial position of the insertion members 22 and 42 is determined.
  • the present disclosure can be used for a bearing structure and a supercharger.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

A bearing structure S according to the present invention comprises: a semi-floating bearing 7 accommodated in a bearing hole 2b; a projection 7i that projects from an outer circumferential surface of the semi-floating bearing 7 and extends in the circumferential direction; an inner circumferential groove 2g that extends in the circumferential direction on an inner circumferential surface of the bearing hole 2b, and in which the projection 7i is positioned; and a regulating pin 23 that faces the projection 7i in the circumferential direction.

Description

軸受構造、および、過給機Bearing structure and supercharger
 本開示は、軸受構造、および、過給機に関する。本出願は2018年9月19日に提出された日本特許出願第2018-174644号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。 The present disclosure relates to a bearing structure and a supercharger. This application claims the benefit of priority based on Japanese Patent Application No. 2018-174644 filed on September 19, 2018, the contents of which are incorporated herein by reference.
 過給機には、例えば、特許文献1に記載のように、セミフローティング軸受が用いられることがある。ハウジングには、ピンの一端が取り付けられる。ピンの他端は、セミフローティング軸受の外周面に挿通される。ピンによって、セミフローティング軸受におけるシャフトの軸方向および回転方向の移動が規制される。 セ ミ A semi-floating bearing may be used for the supercharger, as described in Patent Document 1, for example. One end of the pin is attached to the housing. The other end of the pin is inserted through the outer peripheral surface of the semi-floating bearing. The movement of the shaft in the semi-floating bearing in the axial direction and the rotation direction is restricted by the pin.
特開2014-15854号公報JP 2014-15854 A
 セミフローティング軸受は、スラスト荷重を受ける。そのため、エンジンの運転条件によっては、セミフローティング軸受と上記のピンとの当接部分に作用する面圧が高くなる可能性がある。 Semi-floating bearings receive thrust loads. Therefore, depending on the operating conditions of the engine, the surface pressure acting on the contact portion between the semi-floating bearing and the pin may increase.
 本開示の目的は、セミフローティング軸受の軸方向の移動を規制する部位において、面圧の増加を抑制することが可能な軸受構造、および、過給機を提供することである。 目的 An object of the present disclosure is to provide a bearing structure and a supercharger capable of suppressing an increase in surface pressure in a portion that restricts axial movement of a semi-floating bearing.
 上記課題を解決するために、本開示の一態様に係る軸受構造は、軸受孔に収容されたセミフローティング軸受と、セミフローティング軸受の外周面から突出し、周方向に延在する突出部と、軸受孔内に設けられ、周方向に延在し、突出部が位置する内周溝と、突出部に対し、周方向に対向する規制部と、を備える。 In order to solve the above problem, a bearing structure according to an embodiment of the present disclosure includes a semi-floating bearing housed in a bearing hole, a projecting portion projecting from an outer peripheral surface of the semi-floating bearing, and extending in a circumferential direction, An inner peripheral groove is provided in the hole, extends in the circumferential direction, and has a protruding portion. The regulating portion includes a regulating portion facing the protruding portion in the circumferential direction.
 内周溝に開口する給油通路を備えてもよい。 油 It may be provided with an oil supply passage opening to the inner peripheral groove.
 セミフローティング軸受の内周面に形成された2つのラジアル軸受面を備え、突出部は、セミフローティング軸受の中心軸方向の位置が、2つのラジアル軸受面の間であってもよい。 備 え The semi-floating bearing may include two radial bearing surfaces formed on the inner peripheral surface thereof, and the protrusion may be such that the position of the semi-floating bearing in the central axis direction of the semi-floating bearing is between the two radial bearing surfaces.
 セミフローティング軸受の端面に形成されたスラスト軸受面を備えてもよい。 ス ラ A thrust bearing surface formed on the end surface of the semi-floating bearing may be provided.
 軸受孔は、第1軸受孔および第2軸受孔を含み、第1軸受孔が形成された挿通部材と、第2軸受孔と、第2軸受孔より内径が大きく挿通部材が挿通される大内径孔と、第2軸受孔の内周面から大内径孔の内周面まで延在し、挿通部材の端部に対してセミフローティング軸受の中心軸方向に離隔する段差面と、が形成されたハウジングと、を備え、挿通部材と段差面との間に内周溝が形成されてもよい。 The bearing hole includes a first bearing hole and a second bearing hole, and an insertion member having the first bearing hole formed therein, a second bearing hole, and a large inner diameter having an inner diameter larger than the second bearing hole and through which the insertion member is inserted. A hole and a stepped surface extending from the inner peripheral surface of the second bearing hole to the inner peripheral surface of the large-diameter hole and separated from the end of the insertion member in the central axis direction of the semi-floating bearing are formed. And a housing, and an inner peripheral groove may be formed between the insertion member and the step surface.
 突出部は、セミフローティング軸受の中心軸方向に貫通し、規制部が挿通される貫通孔を備えてもよい。 The protruding part may be provided with a through hole that penetrates in the central axis direction of the semi-floating bearing and through which the restricting part is inserted.
 上記課題を解決するために、本開示の一態様に係る過給機は、上記軸受構造を備える。 た め In order to solve the above problem, a supercharger according to an embodiment of the present disclosure includes the above bearing structure.
 本開示によれば、セミフローティング軸受の軸方向の移動を規制する部位において、面圧の増加を抑制することが可能となる。 According to the present disclosure, it is possible to suppress an increase in surface pressure in a portion that restricts the movement of the semi-floating bearing in the axial direction.
図1は、過給機の概略断面図である。FIG. 1 is a schematic sectional view of the supercharger. 図2は、図1の一点鎖線部分を抽出した図である。FIG. 2 is a diagram in which a dashed line portion of FIG. 1 is extracted. 図3は、セミフローティング軸受を説明するための図である。FIG. 3 is a diagram for explaining a semi-floating bearing. 図4は、挿通部材を説明するための図である。FIG. 4 is a diagram for explaining the insertion member. 図5は、変形例の過給機の概略断面図である。FIG. 5 is a schematic sectional view of a supercharger according to a modification. 図6は、図5の一点鎖線部分を抽出した図である。FIG. 6 is a diagram in which a dashed line portion of FIG. 5 is extracted. 図7は、変形例における挿通部材を説明するための図である。FIG. 7 is a diagram illustrating an insertion member according to a modification.
 以下に添付図面を参照しながら、本開示の一実施形態について詳細に説明する。実施形態に示す寸法、材料、その他具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略する。また本開示に直接関係のない要素は図示を省略する。 Hereinafter, an embodiment of the present disclosure will be described in detail with reference to the accompanying drawings. The dimensions, materials, other specific numerical values, and the like shown in the embodiments are merely examples for facilitating understanding, and do not limit the present disclosure unless otherwise specified. In the specification and the drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description will be omitted. Elements not directly related to the present disclosure are not shown.
 図1は、過給機Cの概略断面図である。以下では、図1に示す矢印L方向を過給機Cの左側として説明する。図1に示す矢印R方向を過給機Cの右側として説明する。図1に示すように、過給機Cは、過給機本体1を備えて構成される。過給機本体1は、ベアリングハウジング2(ハウジング)を備える。ベアリングハウジング2の左側には、締結機構3によってタービンハウジング4が連結される。ベアリングハウジング2の右側には、締結ボルト5によってコンプレッサハウジング6が連結される。 FIG. 1 is a schematic sectional view of the supercharger C. Hereinafter, the direction of arrow L shown in FIG. 1 will be described as the left side of the turbocharger C. 1 will be described as the right side of the supercharger C. As shown in FIG. 1, the supercharger C includes a supercharger main body 1. The supercharger main body 1 includes a bearing housing 2 (housing). The turbine housing 4 is connected to the left side of the bearing housing 2 by a fastening mechanism 3. A compressor housing 6 is connected to the right side of the bearing housing 2 by a fastening bolt 5.
 ベアリングハウジング2のタービンハウジング4近傍の外周面には、突起2aが設けられている。突起2aは、ベアリングハウジング2の径方向に突出する。タービンハウジング4のベアリングハウジング2近傍の外周面には、突起4aが設けられている。突起4aは、タービンハウジング4の径方向に突出する。突起2a、4aは、締結機構3によってバンド締結される。締結機構3は、例えば、Gカップリングで構成される。 突起 A projection 2a is provided on the outer peripheral surface of the bearing housing 2 near the turbine housing 4. The projection 2a projects in the radial direction of the bearing housing 2. A protrusion 4a is provided on the outer peripheral surface of the turbine housing 4 near the bearing housing 2. The projection 4a projects in the radial direction of the turbine housing 4. The projections 2a, 4a are band-fastened by the fastening mechanism 3. The fastening mechanism 3 is configured by, for example, a G coupling.
 ベアリングハウジング2には、軸受孔2bが形成される。軸受孔2bは、過給機Cの左右方向に貫通する。軸受孔2bには、セミフローティング軸受7が設けられる。セミフローティング軸受7によって、シャフト8が回転自在に軸支されている。シャフト8の左端部には、タービンインペラ9が設けられる。タービンインペラ9は、タービンハウジング4内に回転自在に収容される。シャフト8の右端部には、コンプレッサインペラ10が設けられる。コンプレッサインペラ10は、コンプレッサハウジング6内に回転自在に収容される。 軸 受 A bearing hole 2b is formed in the bearing housing 2. The bearing hole 2b penetrates the turbocharger C in the left-right direction. The semi-floating bearing 7 is provided in the bearing hole 2b. The shaft 8 is rotatably supported by the semi-floating bearing 7. At the left end of the shaft 8, a turbine impeller 9 is provided. The turbine impeller 9 is rotatably housed in the turbine housing 4. A compressor impeller 10 is provided at the right end of the shaft 8. The compressor impeller 10 is rotatably accommodated in the compressor housing 6.
 コンプレッサハウジング6には、吸気口11が形成される。吸気口11は、過給機Cの右側に開口する。吸気口11は、不図示のエアクリーナに接続される。締結ボルト5によってベアリングハウジング2とコンプレッサハウジング6が連結された状態では、ベアリングハウジング2とコンプレッサハウジング6との対向面によって、ディフューザ流路12が形成される。ディフューザ流路12は、空気を昇圧する。ディフューザ流路12は、シャフト8の径方向内側から外側に向けて環状に形成される。ディフューザ流路12は、径方向内側が吸気口11に連通している。 吸 気 An intake port 11 is formed in the compressor housing 6. The intake port 11 opens to the right of the turbocharger C. The intake port 11 is connected to an air cleaner (not shown). When the bearing housing 2 and the compressor housing 6 are connected by the fastening bolts 5, the diffuser flow path 12 is formed by the facing surfaces of the bearing housing 2 and the compressor housing 6. The diffuser channel 12 pressurizes air. The diffuser flow path 12 is formed in a ring shape from the radial inside to the outside of the shaft 8. The inside of the diffuser channel 12 in the radial direction communicates with the intake port 11.
 コンプレッサハウジング6には、コンプレッサスクロール流路13が設けられている。コンプレッサスクロール流路13は環状である。コンプレッサスクロール流路13は、例えば、ディフューザ流路12よりもシャフト8の径方向外側に位置する。コンプレッサスクロール流路13は、不図示のエンジンの吸気口と連通する。コンプレッサスクロール流路13は、ディフューザ流路12にも連通している。コンプレッサインペラ10が回転すると、吸気口11からコンプレッサハウジング6内に空気が吸気される。吸気された空気は、コンプレッサインペラ10の翼間を流通する過程において、遠心力の作用により増速される。増速された空気は、ディフューザ流路12およびコンプレッサスクロール流路13で昇圧される。昇圧された空気は、エンジンの吸気口に導かれる。 コ ン プ レ ッ サ A compressor scroll flow path 13 is provided in the compressor housing 6. The compressor scroll channel 13 is annular. The compressor scroll passage 13 is located, for example, radially outside the shaft 8 from the diffuser passage 12. The compressor scroll passage 13 communicates with an intake port of an engine (not shown). The compressor scroll channel 13 also communicates with the diffuser channel 12. When the compressor impeller 10 rotates, air is drawn into the compressor housing 6 from the intake port 11. The intake air is accelerated by the action of centrifugal force in the process of flowing between the blades of the compressor impeller 10. The speed-up air is pressurized in the diffuser channel 12 and the compressor scroll channel 13. The pressurized air is led to the intake port of the engine.
 タービンハウジング4には、吐出口14が形成される。吐出口14は、過給機Cの左側に開口する。吐出口14は、不図示の排気ガス浄化装置に接続される。タービンハウジング4には、流路15およびタービンスクロール流路16が設けられている。タービンスクロール流路16は環状である。タービンスクロール流路16は、流路15よりもタービンインペラ9の径方向外側に位置する。タービンスクロール流路16は、不図示のガス流入口と連通する。ガス流入口には、エンジンの排気マニホールドから排出される排気ガスが導かれる。タービンスクロール流路16は、上記の流路15にも連通している。ガス流入口からタービンスクロール流路16に導かれた排気ガスは、流路15およびタービンインペラ9を介して吐出口14に導かれる。排気ガスは、流通過程においてタービンインペラ9を回転させる。 吐出 A discharge port 14 is formed in the turbine housing 4. The discharge port 14 opens to the left of the supercharger C. The discharge port 14 is connected to an exhaust gas purification device (not shown). The turbine housing 4 is provided with a channel 15 and a turbine scroll channel 16. The turbine scroll channel 16 is annular. The turbine scroll flow path 16 is located outside the flow path 15 in the radial direction of the turbine impeller 9. The turbine scroll passage 16 communicates with a gas inlet (not shown). Exhaust gas discharged from an exhaust manifold of the engine is guided to the gas inlet. The turbine scroll flow path 16 also communicates with the flow path 15 described above. The exhaust gas guided from the gas inlet to the turbine scroll flow path 16 is guided to the discharge port 14 via the flow path 15 and the turbine impeller 9. The exhaust gas rotates the turbine impeller 9 during the flow.
 タービンインペラ9の回転力は、シャフト8を介してコンプレッサインペラ10に伝達される。上記のとおりに、空気は、コンプレッサインペラ10の回転力によって昇圧されて、エンジンの吸気口に導かれる。 回 転 The rotational force of the turbine impeller 9 is transmitted to the compressor impeller 10 via the shaft 8. As described above, the air is pressurized by the rotational force of the compressor impeller 10 and guided to the intake port of the engine.
 図2は、図1の一点鎖線部分を抽出した図である。図2に示すように、ベアリングハウジング2の内部には、軸受構造Sが設けられる。軸受構造Sは、ベアリングハウジング2に形成された給油通路2cを備える。潤滑油は、給油通路2cを通って、ベアリングハウジング2の外部から軸受孔2bに流入する。こうして、潤滑油は、軸受孔2bに設けられたセミフローティング軸受7に供給される。 FIG. 2 is a diagram in which a dashed line portion of FIG. 1 is extracted. As shown in FIG. 2, a bearing structure S is provided inside the bearing housing 2. The bearing structure S includes an oil supply passage 2c formed in the bearing housing 2. The lubricating oil flows into the bearing hole 2b from outside the bearing housing 2 through the oil supply passage 2c. Thus, the lubricating oil is supplied to the semi-floating bearing 7 provided in the bearing hole 2b.
 セミフローティング軸受7は、環状の本体部7aを有する。本体部7aの内部にシャフト8が挿通される。本体部7aの内周面には、2つのラジアル軸受面7b、7cが形成される。ラジアル軸受面7b、7cは、シャフト8の軸方向(セミフローティング軸受7の本体部7aの中心軸方向。以下、単に軸方向と称す)に離隔する。 The semi-floating bearing 7 has an annular main body 7a. The shaft 8 is inserted inside the main body 7a. Two radial bearing surfaces 7b and 7c are formed on the inner peripheral surface of the main body 7a. The radial bearing surfaces 7b and 7c are separated from each other in the axial direction of the shaft 8 (the central axis direction of the main body 7a of the semi-floating bearing 7; hereinafter, simply referred to as the axial direction).
 軸受孔2bに供給された潤滑油の一部は、油孔7dを通って、本体部7aの内周面に流入する。油孔7dは、本体部7aを内周面から外周面まで貫通する。油孔7dは、本体部7aのうち、ラジアル軸受面7bとラジアル軸受面7cとの間に設けられる。油孔7dは、軸受孔2bに形成される給油通路2cの開口に対向する。潤滑油は、シャフト8とラジアル軸受面7b、7cとの間隙に供給される。シャフト8は、間隙に供給された潤滑油の油膜圧力によって軸支される。 一部 Part of the lubricating oil supplied to the bearing hole 2b flows into the inner peripheral surface of the main body 7a through the oil hole 7d. The oil hole 7d penetrates the main body 7a from the inner peripheral surface to the outer peripheral surface. The oil hole 7d is provided between the radial bearing surface 7b and the radial bearing surface 7c in the main body 7a. The oil hole 7d faces the opening of the oil supply passage 2c formed in the bearing hole 2b. Lubricating oil is supplied to the gap between the shaft 8 and the radial bearing surfaces 7b, 7c. The shaft 8 is supported by the oil film pressure of the lubricating oil supplied to the gap.
 本体部7aの外周面のうち、軸方向の両端側には、ダンパ面7e、7fが形成される。ダンパ面7e、7fは、本体部7aの他の部位よりも径が大きい。ダンパ面7e、7fと、軸受孔2bの内周面との間には、間隙が形成される。給油通路2cから間隙に供給された潤滑油の油膜圧力によって、シャフト8の振動が抑制される。 ダ ン Damper surfaces 7e and 7f are formed on both ends in the axial direction of the outer peripheral surface of the main body 7a. The diameters of the damper surfaces 7e and 7f are larger than other portions of the main body 7a. A gap is formed between the damper surfaces 7e, 7f and the inner peripheral surface of the bearing hole 2b. The vibration of the shaft 8 is suppressed by the oil film pressure of the lubricating oil supplied to the gap from the oil supply passage 2c.
 また、シャフト8のうち、本体部7aよりも、図2中、右側(コンプレッサインペラ10側)には、油切り部材21が取り付けられる。油切り部材21は、環状部材である。油切り部材21は、潤滑油を径方向外側に飛散させる。こうして、油切り部材21は、コンプレッサインペラ10側への潤滑油の漏出を抑制する。 油 Further, on the shaft 8, on the right side of the main body 7 a in FIG. 2 (on the side of the compressor impeller 10), an oil draining member 21 is attached. The oil draining member 21 is an annular member. The oil draining member 21 scatters the lubricating oil radially outward. Thus, the oil draining member 21 suppresses the leakage of the lubricating oil to the compressor impeller 10 side.
 また、シャフト8には、大径部8aが設けられる。大径部8aの外径は、ラジアル軸受面7bの内径よりも大きい。大径部8aは、本体部7aに対して、図2中、左側(タービンインペラ9側)に位置する。大径部8aは、本体部7aに対して軸方向に対向する。 大 The shaft 8 is provided with a large diameter portion 8a. The outer diameter of the large diameter portion 8a is larger than the inner diameter of the radial bearing surface 7b. The large diameter portion 8a is located on the left side (on the turbine impeller 9 side) in FIG. 2 with respect to the main body portion 7a. The large diameter portion 8a faces the main body 7a in the axial direction.
 このように、本体部7aは、油切り部材21および大径部8aによって、軸方向に挟まれる。本体部7aと油切り部材21との間隙、および、本体部7aと大径部8aとの間隙には、それぞれ、潤滑油が供給される。シャフト8が軸方向に移動すると、油切り部材21または大径部8aが、本体部7aとの間の油膜圧力によって支持される。 Thus, the main body portion 7a is sandwiched in the axial direction by the oil draining member 21 and the large diameter portion 8a. Lubricating oil is supplied to the gap between the main body 7a and the oil draining member 21 and the gap between the main body 7a and the large diameter portion 8a. When the shaft 8 moves in the axial direction, the oil draining member 21 or the large diameter portion 8a is supported by the oil film pressure between the oil draining member 21 and the main body 7a.
 すなわち、セミフローティング軸受7のうち、軸方向の端面は、スラスト軸受面7g、7hとなっている。スラスト軸受面7g、7hは、大径部8aおよび油切り部材21に対向する。スラスト軸受面7g、7hは、スラスト荷重を受ける。 That is, of the semi-floating bearing 7, the axial end faces are the thrust bearing faces 7g and 7h. The thrust bearing surfaces 7g and 7h face the large diameter portion 8a and the oil drain member 21. The thrust bearing surfaces 7g and 7h receive a thrust load.
 図3は、セミフローティング軸受7を説明するための図である。図3の左図は、図2からセミフローティング軸受7を抽出した図である。図3の右下図は、図3の左図のIII矢視図である。図3の右上図は、セミフローティング軸受7の上面図である。 FIG. 3 is a diagram for explaining the semi-floating bearing 7. 3 is a diagram in which the semi-floating bearing 7 is extracted from FIG. The lower right diagram of FIG. 3 is a view as viewed from the arrow III of the left diagram of FIG. 3 is a top view of the semi-floating bearing 7. FIG.
 図3に示すように、セミフローティング軸受7の本体部7aには、突出部7iが設けられている。突出部7iは、本体部7aの外周面に連続する。突出部7iは、本体部7aの外周面からシャフト8の径方向に突出する。突出部7iは、本体部7aと一体形成されている。ただし、本体部7aと別部材で構成された突出部7iが、本体部7aに取り付けられてもよい。 突出 As shown in FIG. 3, the main body 7a of the semi-floating bearing 7 is provided with a protrusion 7i. The protrusion 7i is continuous with the outer peripheral surface of the main body 7a. The protrusion 7i protrudes in the radial direction of the shaft 8 from the outer peripheral surface of the main body 7a. The protrusion 7i is formed integrally with the main body 7a. However, the protruding portion 7i formed of a different member from the main body 7a may be attached to the main body 7a.
 図3の左図に示すように、突出部7iは、軸方向の位置が、2つのラジアル軸受面7b、7cの間である。すなわち、突出部7iは、本体部7aのうち、2つのラジアル軸受面7b、7cの間の外周面に形成されている。 突出 As shown in the left diagram of FIG. 3, the protrusion 7i has an axial position between the two radial bearing surfaces 7b and 7c. That is, the protruding portion 7i is formed on the outer peripheral surface between the two radial bearing surfaces 7b and 7c in the main body 7a.
 図3の右下図に示すように、突出部7iは、本体部7aの周方向に延在する。突出部7iは、周方向の一端と他端とが離隔している。突出部7iの周方向の一端と他端とは、周方向に対向する。突出部7iのうち、図3の右下図における上側には、切欠部7jが形成されている。切欠部7jは、突出部7iの周方向の一端と他端の間に形成される。切欠部7jは、例えば、図3の右下図における上下方向に、突出部7iの外周端から本体部7aの外周面まで延在する。油孔7dは、切欠部7jに対向する位置に開口する。油孔7dは、突出部7iの周方向の一端と他端との間に位置する。 突出 As shown in the lower right diagram of FIG. 3, the protrusion 7i extends in the circumferential direction of the main body 7a. One end and the other end of the protrusion 7i in the circumferential direction are separated from each other. One end and the other end in the circumferential direction of the protruding portion 7i face in the circumferential direction. A cutout 7j is formed on the upper side of the protrusion 7i in the lower right view of FIG. The notch 7j is formed between one end and the other end of the protrusion 7i in the circumferential direction. The notch 7j extends from the outer peripheral end of the protruding portion 7i to the outer peripheral surface of the main body 7a, for example, in the vertical direction in the lower right diagram of FIG. The oil hole 7d opens at a position facing the notch 7j. The oil hole 7d is located between one end and the other end of the protrusion 7i in the circumferential direction.
 突出部7iには、貫通孔7kが設けられる。貫通孔7kは、本体部7aを挟んで切欠部7jと反対側に位置する。貫通孔7kは、突出部7iを軸方向に貫通している。 貫通 A through-hole 7k is provided in the protrusion 7i. The through hole 7k is located on the opposite side of the notch 7j across the main body 7a. The through hole 7k passes through the protrusion 7i in the axial direction.
 図4は、挿通部材22を説明するための図である。図4の左図は、図2から挿通部材22を抽出した図である。図4の右図は、図4の左図のIV矢視図である。図4に示すように、挿通部材22は、環状の本体22aを有する。本体22aよりも、図4の左図における右側には、鍔部22bが形成される。鍔部22bは、本体22aよりも外径が大きい。 FIG. 4 is a view for explaining the insertion member 22. 4 is a diagram in which the insertion member 22 is extracted from FIG. The right view of FIG. 4 is a view taken in the direction of the arrow IV in the left view of FIG. As shown in FIG. 4, the insertion member 22 has an annular main body 22a. A flange portion 22b is formed on the right side of the main body 22a in the left view of FIG. The outer diameter of the flange 22b is larger than that of the main body 22a.
 鍔部22bのうち、図4の右図における下側には、切欠部22cが形成される。挿通部材22には、第1軸受孔2bが設けられる。第1軸受孔2bは、本体22aおよび鍔部22bを軸方向に貫通する。 A notch 22c is formed on the lower side of the flange 22b in the right view of FIG. The insertion member 22, the first bearing hole 2b 1 is provided. The first bearing hole 2b 1 penetrates the main body 22a and the flange portion 22b in the axial direction.
 第1軸受孔2bの内周面には、溝部22dが形成されている。溝部22dの内径は、第1軸受孔2bの内径よりも大きい。溝部22dのうち、切欠部22c側が切り欠かれることで、溝部22dは、鍔部22bの外部に開口する。スラスト軸受面7hおよび油切り部材21の端面が、溝部22d内に位置する。油切り部材21から遠心力によって潤滑油が飛散すると、潤滑油は、切欠部22cから下方に排出される。 The first inner peripheral surface of the bearing hole 2b 1, groove 22d is formed. The inner diameter of the groove 22d is greater than the first inner diameter of the bearing hole 2b 1. The notch 22c is cut out of the groove 22d, so that the groove 22d opens outside the flange 22b. The thrust bearing surface 7h and the end face of the oil draining member 21 are located in the groove 22d. When the lubricating oil is scattered from the oil draining member 21 by centrifugal force, the lubricating oil is discharged downward from the notch 22c.
 図2に戻って、ベアリングハウジング2には、挿通部材22が組み付けられる。軸受孔2bは、挿通部材22に形成された第1軸受孔2bと、ベアリングハウジング2に形成された第2軸受孔2bによって構成される。第1軸受孔2bと第2軸受孔2bとは、内径が大凡等しい。第1軸受孔2bと第2軸受孔2bとは、軸方向に離隔する。第1軸受孔2bと第2軸受孔2bとは、中心軸が一致している。 Returning to FIG. 2, the insertion member 22 is assembled to the bearing housing 2. The bearing hole 2 b includes a first bearing hole 2 b 1 formed in the insertion member 22 and a second bearing hole 2 b 2 formed in the bearing housing 2. The first bearing hole 2b 1 and the second bearing hole 2b 2, an inner diameter equal approximately. The first bearing hole 2b 1 and the second bearing hole 2b 2, spaced apart in the axial direction. The first bearing hole 2b 1 and the second bearing hole 2b 2, the central axis is coincident.
 すなわち、ベアリングハウジング2には、第2軸受孔2bと、大内径孔2dが設けられる。大内径孔2dは、第2軸受孔2bに対して油切り部材21側に軸方向に連続する。大内径孔2dは、第2軸受孔2bよりも内径が大きい。大内径孔2dと第2軸受孔2bとの内径差によって、段差面2eが形成される。段差面2eは、第2軸受孔2bの内周面から、大内径孔2dの内周面までシャフト8の径方向に延在する。 That is, the bearing housing 2, a second bearing hole 2b 2, a large inner diameter hole 2d is provided. Large internal diameter bore 2d is continuous axially oil thrower member 21 side with respect to the second bearing hole 2b 2. Large inner diameter hole 2d is larger inner diameter than the second bearing hole 2b 2. The inner diameter difference between the large inner diameter hole 2d and the second bearing hole 2b 2, stepped surface 2e is formed. Step surface 2e extends from the second inner circumferential surface of the bearing hole 2b 2, the radial direction of the inner peripheral surface to the shaft 8 of the large inner diameter hole 2d.
 挿通部材22の本体22aのうち、鍔部22b側(後述する壁面2f側、油切り部材21側)には、圧入部22aが形成される。挿通部材22がベアリングハウジング2に組み付けられる前の状態では、圧入部22aの外径は、大内径孔2dの内径よりも僅かに大きい。挿通部材22は、大内径孔2dに挿通されてベアリングハウジング2に組み付けられる。圧入部22aは、大内径孔2dに圧入される。鍔部22bは、大内径孔2dよりもシャフト8の径方向外側まで延在する。鍔部22bは、ベアリングハウジング2の壁面2fに当接する(突き当てられる)。壁面2fは、大内径孔2dのうち、油切り部材21側の端部が開口する面である。 Of the body 22a of the insertion member 22, the flange portion 22b side (described later wall 2f side, oil thrower member 21 side), the press-fitting part 22a 1 is formed. In a state before the insertion member 22 is assembled to the bearing housing 2, the outer diameter of the press fit portion 22a 1 is slightly larger than the inner diameter of the large inner diameter hole 2d. The insertion member 22 is inserted into the large-diameter hole 2d and assembled to the bearing housing 2. Press-fitting portion 22a 1 is press-fitted into the large inner diameter hole 2d. The flange 22b extends to the radial outside of the shaft 8 from the large bore 2d. The flange portion 22b abuts (abuts) on the wall surface 2f of the bearing housing 2. The wall surface 2f is a surface of the large-diameter hole 2d where the end on the oil draining member 21 side is open.
 鍔部22bが壁面2fに当接することで、挿通部材22の軸方向の位置が決められる。鍔部22bは、挿通部材22の位置決めの機能を有する。 (4) The axial position of the insertion member 22 is determined by the contact of the flange portion 22b with the wall surface 2f. The flange portion 22b has a function of positioning the insertion member 22.
 本体22aのうち、段差面2e側の端部22eは、大内径孔2dの底面(段差面2e)から軸方向に油切り部材21側に離隔する。端部22eと段差面2eとの間には、隙間が形成される。端部22eと段差面2eとの間の隙間は、内周溝2gを構成する。内周溝2gは、軸受孔2bの内周面に形成される。 端 The end 22e of the main body 22a on the side of the step surface 2e is separated from the bottom surface (step surface 2e) of the large bore 2d in the axial direction toward the oil drain member 21 side. A gap is formed between the end 22e and the step surface 2e. The gap between the end 22e and the step surface 2e forms an inner peripheral groove 2g. The inner peripheral groove 2g is formed on the inner peripheral surface of the bearing hole 2b.
 内周溝2gは、シャフト8(本体部7a)の周方向に延在する。給油通路2cは、大径通路2cと小径通路2cとを有する。大径通路2cと小径通路2cは、ベアリングハウジング2に設けられた孔である。小径通路2cの内径は、大径通路2cの内径よりも小さい。大径通路2cは、ベアリングハウジング2の外部に開口する。大径通路2cの底面は、大内径孔2dに対して、シャフト8の径方向に離隔する。すなわち、大径通路2cと、大内径孔2dとの間には、隔壁部2iが形成される。隔壁部2iは、ベアリングハウジング2の一部である。隔壁部2iは、軸方向に延在する。隔壁部2iは、大内径孔2dに沿って周方向に延在する。 The inner circumferential groove 2g extends in the circumferential direction of the shaft 8 (the main body 7a). Oil supply passage 2c includes a large-diameter passage 2c 1 and a small-diameter passage 2c 2. Large-diameter passage 2c 1 and a small-diameter passage 2c 2 is a hole provided in the bearing housing 2. The inner diameter of the small-diameter passage 2c 2 is smaller than the inner diameter of the large-diameter passage 2c 1. The large-diameter passage 2 c 1 opens to the outside of the bearing housing 2. The bottom surface of the large-diameter passage 2c 1, to the large inner diameter hole 2d, spaced apart in the radial direction of the shaft 8. That is, the large-diameter passage 2c 1, between the large inner diameter hole 2d, the partition wall portion 2i is formed. The partition 2i is a part of the bearing housing 2. The partition 2i extends in the axial direction. The partition 2i extends circumferentially along the large-diameter hole 2d.
 小径通路2cは、大径通路2cの底面のうち、例えば中央部から、内周溝2gまで延在する。小径通路2cによって、大径通路2cと内周溝2gが連通する。小径通路2cは、内周溝2gのうち、図2中、上側の位置に開口する。小径通路2cは、隔壁部2iに面する。 Diameter passage 2c 2, of the bottom surface of the large-diameter passage 2c 1, for example from the central portion, extending to the inner circumferential grooves 2g. The small-diameter passage 2c 2, the inner circumferential groove 2g is communicated with the large-diameter passage 2c 1. Diameter passage 2c 2, of the inner peripheral groove 2g, in FIG. 2, open in the upper position. Diameter passage 2c 2 faces the partition wall portion 2i.
 ここでは、隔壁部2iが設けられる場合について説明した。ただし、隔壁部2iが設けられなくてもよい。この場合、大径通路2cは、ベアリングハウジング2を大内径孔2dまで貫通する。挿通部材22は、大径通路2cに露出する。潤滑油は、大径通路2cから、挿通部材22の本体22aの外周面と、大内径孔2dとの隙間に、直接、到達する。 Here, the case where the partition 2i is provided has been described. However, the partition 2i may not be provided. In this case, large-diameter passage 2c 1 penetrates the bearing housing 2 to a large inner diameter hole 2d. Insertion member 22 is exposed to the large-diameter passage 2c 1. Lubricating oil from the large-diameter passage 2c 1, the outer peripheral surface of the main body 22a of the insertion member 22, in the gap between the large inner diameter hole 2d, directly arrives.
 一方、隔壁部2iが設けられる場合、隔壁部2iによって、所謂ラビリンス構造が形成される。大径通路2cの潤滑油は、小径通路2cを通ってから、挿通部材22の本体22aの外周面と、大内径孔2dとの隙間に到達する。そのため、軸受孔2bを通らずに、給油通路2cから油切り部材21側に漏出する潤滑油の油量が抑制される。 On the other hand, when the partition 2i is provided, a so-called labyrinth structure is formed by the partition 2i. The lubricating oil of the large-diameter passage 2c 1 from through the small diameter passage 2c 2, the outer peripheral surface of the main body 22a of the insertion member 22, reaches the gap between the large inner diameter hole 2d. Therefore, the amount of lubricating oil leaking from the oil supply passage 2c to the oil draining member 21 side without passing through the bearing hole 2b is suppressed.
 ベアリングハウジング2には、位置決穴2hが設けられている。位置決穴2hは、軸方向に延在する。位置決穴2hは、段差面2eうち、図2中、下側の部位に開口する。 The bearing housing 2 is provided with a positioning hole 2h. The positioning hole 2h extends in the axial direction. The positioning hole 2h opens at a lower portion in FIG. 2 of the step surface 2e.
 セミフローティング軸受7は、挿通部材22の前に、ベアリングハウジング2に組み付けられる。セミフローティング軸受7は、油切り部材21側から第2軸受孔2bに挿通される。セミフローティング軸受7の突出部7iの外径は、大内径孔2dの内径よりも小さい。突出部7iは、大内径孔2dの段差面2e側まで挿通される。 The semi-floating bearing 7 is assembled to the bearing housing 2 before the insertion member 22. Semi-floating bearing 7 is inserted from the oil thrower member 21 side to the second bearing hole 2b 2. The outer diameter of the protrusion 7i of the semi-floating bearing 7 is smaller than the inner diameter of the large inner diameter hole 2d. The protruding portion 7i is inserted up to the step surface 2e side of the large inner diameter hole 2d.
 このとき、貫通孔7kが位置決穴2hに対向するように、本体部7aの周方向の位置が調整される。貫通孔7kおよび位置決穴2hに、規制ピン23(規制部)が挿通される。規制ピン23は、貫通孔7kの内周面に対し、本体部7aの周方向に対向する。すなわち、規制ピン23は、突出部7iに対し、本体部7aの周方向に対向する。こうして、突出部7i(本体部7a)におけるシャフト8の回転方向(本体部7aの周方向)の移動が規制される。 At this time, the circumferential position of the main body 7a is adjusted such that the through hole 7k faces the positioning hole 2h. The regulating pin 23 (regulating part) is inserted into the through hole 7k and the positioning hole 2h. The restriction pin 23 faces the inner peripheral surface of the through hole 7k in the circumferential direction of the main body 7a. That is, the regulating pin 23 faces the protruding portion 7i in the circumferential direction of the main body 7a. Thus, the movement of the protruding portion 7i (the main body 7a) in the rotation direction of the shaft 8 (the circumferential direction of the main body 7a) is restricted.
 その後、挿通部材22は、大内径孔2dに挿通される。セミフローティング軸受7の本体部7aのうち、突出部7iより油切り部材21側の部位は、第1軸受孔2bに挿通される。 Thereafter, the insertion member 22 is inserted into the large-diameter hole 2d. Among the main portion 7a of the semi-floating bearing 7, part of the oil thrower member 21 side than the projecting portion 7i is inserted through the first bearing hole 2b 1.
 突出部7iは、挿通部材22と段差面2eとの間に位置する。すなわち、ベアリングハウジング2と挿通部材22との間に形成された内周溝2gに、突出部7iが挿入された状態となる。突出部7i(本体部7a)は、軸方向の移動が規制される。ただし、段差面2eと挿通部材22の端部22eとの隙間は、突出部7iの軸方向の厚さよりも大きい。セミフローティング軸受7は、軸方向に僅かに移動できる。そのため、ダンパ面7e、7fによって振動が吸収可能となる。 The protrusion 7i is located between the insertion member 22 and the step surface 2e. That is, the projection 7i is inserted into the inner peripheral groove 2g formed between the bearing housing 2 and the insertion member 22. The protrusion 7i (main body 7a) is restricted from moving in the axial direction. However, the gap between the step surface 2e and the end 22e of the insertion member 22 is larger than the axial thickness of the protrusion 7i. The semi-floating bearing 7 can move slightly in the axial direction. Therefore, the vibration can be absorbed by the damper surfaces 7e and 7f.
 上記のように、スラスト軸受面7g、7hは、スラスト荷重を受ける。セミフローティング軸受7における本体部7aの軸方向の移動は、突出部7iによって規制される。 As described above, the thrust bearing surfaces 7g and 7h receive a thrust load. The axial movement of the main body 7a in the semi-floating bearing 7 is restricted by the protrusion 7i.
 例えば、セミフローティング軸受にピンなどを径方向に挿通して、セミフローティング軸受の軸方向の移動を規制する場合がある。この場合、セミフローティング軸受とピンとの当接部分に作用する面圧が高くなってしまう。本実施形態では、突出部7iによって、軸方向の移動が規制される。ピンに比べてスラスト荷重を受ける受圧面積が大きくなり、面圧の増加が抑制される。 For example, there are cases where a pin or the like is inserted in the semi-floating bearing in the radial direction to restrict the axial movement of the semi-floating bearing. In this case, the surface pressure acting on the contact portion between the semi-floating bearing and the pin increases. In the present embodiment, the movement in the axial direction is restricted by the protrusion 7i. The pressure receiving area receiving the thrust load is larger than that of the pin, and an increase in the surface pressure is suppressed.
 図5は、変形例の過給機Caの概略断面図である。図6は、図5の一点鎖線部分を抽出した図である。上述した実施形態では、セミフローティング軸受7にスラスト軸受面7g、7hが形成される場合について説明した。変形例においては、図6に示すように、セミフローティング軸受7とは別体に、スラスト軸受30、31が設けられる。 FIG. 5 is a schematic sectional view of a supercharger Ca of a modified example. FIG. 6 is a diagram in which a dashed line portion of FIG. 5 is extracted. In the embodiment described above, the case where the thrust bearing surfaces 7g and 7h are formed on the semi-floating bearing 7 has been described. In the modified example, as shown in FIG. 6, thrust bearings 30 and 31 are provided separately from the semi-floating bearing 7.
 スラストカラー32は、取付孔32aを有する。取付孔32aには、シャフト8が挿通される。スラストカラー32は、シャフト8のうち、セミフローティング軸受7よりコンプレッサインペラ10側に取り付けられる。 The thrust collar 32 has a mounting hole 32a. The shaft 8 is inserted into the mounting hole 32a. The thrust collar 32 is attached to the compressor impeller 10 side of the semi-floating bearing 7 of the shaft 8.
 スラスト軸受30、31は、スラストカラー32に対し、軸方向の両側に1つずつ配される。スラスト軸受30、31は、スラスト荷重を受ける。スラスト軸受30は、挿通孔30aを有する。挿通孔30aは、スラスト軸受30を軸方向に貫通する。スラスト軸受31は、挿通孔31aを有する。挿通孔31aは、スラスト軸受31を軸方向に貫通する。挿通孔30a、31aに、シャフト8が挿通される。シャフト8とスラスト軸受30、31は相対回転する。 The thrust bearings 30 and 31 are arranged one by one on both sides in the axial direction with respect to the thrust collar 32. The thrust bearings 30, 31 receive a thrust load. The thrust bearing 30 has an insertion hole 30a. The insertion hole 30a penetrates the thrust bearing 30 in the axial direction. The thrust bearing 31 has an insertion hole 31a. The insertion hole 31a penetrates the thrust bearing 31 in the axial direction. The shaft 8 is inserted into the insertion holes 30a and 31a. The shaft 8 and the thrust bearings 30 and 31 rotate relative to each other.
 挿通部材42の本体42aは、ベアリングハウジング2の大内径孔2dに挿通される。挿通部材42の鍔部42bは、ベアリングハウジング2の壁面2fに当接する。壁面2fは、大内径孔2dのうち、コンプレッサインペラ10側の端部が開口する。鍔部42bは、壁面2fとスラスト軸受31との間に挟まれる。 本体 The main body 42 a of the insertion member 42 is inserted into the large-diameter hole 2 d of the bearing housing 2. The flange 42b of the insertion member 42 contacts the wall surface 2f of the bearing housing 2. The end of the wall surface 2f on the compressor impeller 10 side of the large inner diameter hole 2d is opened. The flange 42b is sandwiched between the wall surface 2f and the thrust bearing 31.
 図7は、変形例における挿通部材42を説明するための図である。図7の左図は、図6から挿通部材42を抽出した図である。図7の右図は、図7の左図のVII矢視図である。図7に示すように、本体42aには、挿通部材22と同様、第1軸受孔2bが設けられている。 FIG. 7 is a diagram for explaining the insertion member 42 in the modified example. 7 is a diagram in which the insertion member 42 is extracted from FIG. The right view of FIG. 7 is a view on arrow VII of the left view of FIG. As shown in FIG. 7, the main body 42a, similarly to the insertion member 22, the first bearing hole 2b 1 is provided.
 第1軸受孔2bのうち、鍔部42b側(図7の左図における右側)は、拡径部42fとなっている。拡径部42fの内径は、本体42a側(図7の左図における左側)の内径よりも拡径される。切欠部42cは、鍔部42bに形成される。切欠部42cは、鍔部42bの他に、本体42aの一部も切り欠く。切欠部42cは、拡径部42fまで延在している。 The first of the bearing hole 2b 1, the flange portion 42b side (right side in the left diagram of FIG. 7) has a diameter-enlarged portion 42f. The inner diameter of the enlarged diameter portion 42f is larger than the inner diameter of the main body 42a (left side in the left diagram of FIG. 7). The notch 42c is formed in the flange 42b. The notch 42c also cuts off a part of the main body 42a in addition to the flange 42b. The cutout portion 42c extends to the enlarged diameter portion 42f.
 図6に戻って、スラストカラー32およびスラスト軸受30は、挿通部材42の拡径部42fに収容される。スラスト軸受30のスラスト軸受面30bおよびスラスト軸受31のスラスト軸受面31bは、切欠部42cに連通する。スラスト軸受30、31を潤滑した潤滑油は、切欠部42cを介して第1軸受孔2bから排出される。 Returning to FIG. 6, the thrust collar 32 and the thrust bearing 30 are housed in the enlarged diameter portion 42f of the insertion member 42. The thrust bearing surface 30b of the thrust bearing 30 and the thrust bearing surface 31b of the thrust bearing 31 communicate with the notch 42c. Lubricating oil to the thrust bearing 30, 31 has lubricated is discharged from the first bearing hole 2b 1 through the notch 42c.
 突出部7iのうち、スラスト軸受30、31側の油圧は、スラスト軸受30、31と反対側(タービン側)の油圧よりも高くなる。これは、スラスト軸受30、31の潤滑部分で潤滑油の流路が狭くなっているためである。 油 圧 Of the protruding portion 7i, the oil pressure on the thrust bearings 30 and 31 side is higher than the oil pressure on the side (turbine side) opposite to the thrust bearings 30 and 31. This is because the flow path of the lubricating oil is narrow at the lubricated portions of the thrust bearings 30 and 31.
 その結果、突出部7iには、図6中、左側に向かうスラスト荷重が作用する。セミフローティング軸受の軸方向の移動をピンなどで規制すると、セミフローティング軸受とピンの当接部分に作用する面圧が高くなる。 (6) As a result, a thrust load directed to the left side in FIG. When the movement of the semi-floating bearing in the axial direction is restricted by a pin or the like, the surface pressure acting on the contact portion between the semi-floating bearing and the pin increases.
 変形例では、上述した実施形態と同様、突出部7iによって、軸方向の移動を規制する。ピンに比べてスラスト荷重を受ける受圧面積が大きくなり、面圧の増加が抑制される。 In the modification, similarly to the above-described embodiment, the movement in the axial direction is restricted by the protrusion 7i. The pressure receiving area receiving the thrust load is larger than that of the pin, and an increase in the surface pressure is suppressed.
 以上、添付図面を参照しながら本開示の一実施形態について説明したが、本開示は上記の実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。 Although an embodiment of the present disclosure has been described with reference to the accompanying drawings, it is needless to say that the present disclosure is not limited to the above embodiment. It will be apparent to those skilled in the art that various changes or modifications can be made within the scope of the appended claims, and those modifications naturally belong to the technical scope of the present disclosure. Is done.
 例えば、上述した実施形態および変形例では、内周溝2gに給油通路2cが開口している場合について説明した。この場合、スラスト荷重が生じたときに、突出部7iと内周溝2gの内壁面との間に潤滑油が供給される。突出部7iと内周溝2gの内壁面との衝突による衝撃が緩和される。ただし、内周溝2gに給油通路2cが開口せずともよい。 For example, in the above-described embodiment and modified examples, the case where the oil supply passage 2c is opened in the inner peripheral groove 2g has been described. In this case, when a thrust load occurs, lubricating oil is supplied between the protruding portion 7i and the inner wall surface of the inner peripheral groove 2g. The impact caused by the collision between the protrusion 7i and the inner wall surface of the inner peripheral groove 2g is reduced. However, the oil supply passage 2c may not be opened in the inner circumferential groove 2g.
 また、上述した実施形態および変形例では、突出部7iにおける軸方向の位置は、2つのラジアル軸受面7b、7cの間である場合について説明した。この場合、セミフローティング軸受7が、例えば、図2、図6中、時計回りや反時計回りに揺動したとき、突出部7iに作用する荷重を低減することが可能となる。ただし、突出部7iにおける軸方向の位置は、ラジアル軸受面7bよりタービンインペラ9側であってもよいし、ラジアル軸受面7cよりコンプレッサインペラ10側であってもよい。 In the above-described embodiment and the modification, the case where the axial position of the protruding portion 7i is between the two radial bearing surfaces 7b and 7c has been described. In this case, when the semi-floating bearing 7 swings clockwise or counterclockwise in FIGS. 2 and 6, for example, it is possible to reduce the load acting on the protrusion 7i. However, the axial position of the protruding portion 7i may be closer to the turbine impeller 9 than the radial bearing surface 7b, or may be closer to the compressor impeller 10 than the radial bearing surface 7c.
 また、上述した実施形態および変形例では、ベアリングハウジング2と別体の挿通部材22、42が設けられる場合について説明した。この場合、セミフローティング軸受7を軸受孔2bに収容する作業が容易となる。ただし、突出部7iを内周溝2gに挿入することができれば、挿通部材22、42は設けずともよい。 In addition, in the above-described embodiment and modified examples, the case where the insertion members 22 and 42 that are separate from the bearing housing 2 are provided has been described. In this case, the work of housing the semi-floating bearing 7 in the bearing hole 2b becomes easy. However, as long as the protrusion 7i can be inserted into the inner peripheral groove 2g, the insertion members 22 and 42 may not be provided.
 また、上述した実施形態および変形例では、突出部7iに貫通孔7kが形成される。規制ピン23は、貫通孔7kに挿通されて突出部7iの回転方向の移動を規制する場合について説明した。しかし、突出部7iに対し、本体部7aの周方向に対向する規制部が設けられれば、貫通孔7kおよび規制ピン23は、必須の構成ではない。 で は In the above-described embodiment and modifications, the through-hole 7k is formed in the protruding portion 7i. The case has been described in which the restriction pin 23 is inserted into the through hole 7k to restrict the movement of the protrusion 7i in the rotation direction. However, if a restricting portion facing the protruding portion 7i in the circumferential direction of the main body portion 7a is provided, the through hole 7k and the restricting pin 23 are not essential components.
 例えば、大内径孔2dの内周面を楕円やオーバル状に形成してもよい。この場合、突出部7iの外周面は、大内径孔2dの内周面に合わせて形成される。こうして、突出部7iの回転方向の移動が規制されてもよい。この場合、突出部7iの外周面に対し、本体部7aの周方向に対向する大内径孔2dの内周面が、規制部として機能する。また、大内径孔2dと突出部7iとの間に、筒部材が挟まれてもよい。筒部材の外周面は円形状であってもよい。筒部材の内周面は楕円やオーバル状であってもよい。突出部7iの外周面は、筒部材の内周面に合わせて形成されてもよい。この場合、突出部7iの外周面に対し、本体部7aの周方向に対向する筒部材の内周面が、規制部として機能する。この場合、ベアリングハウジング2の加工に要するコストを低減することが可能となる。 For example, the inner peripheral surface of the large-diameter hole 2d may be formed in an elliptical or oval shape. In this case, the outer peripheral surface of the protruding portion 7i is formed in accordance with the inner peripheral surface of the large inner diameter hole 2d. In this way, the movement of the protrusion 7i in the rotation direction may be restricted. In this case, the inner peripheral surface of the large inner diameter hole 2d facing the outer peripheral surface of the protruding portion 7i in the circumferential direction of the main body portion 7a functions as a regulating portion. Further, a cylindrical member may be interposed between the large inner diameter hole 2d and the protruding portion 7i. The outer peripheral surface of the tubular member may be circular. The inner peripheral surface of the tubular member may be elliptical or oval. The outer peripheral surface of the protrusion 7i may be formed in accordance with the inner peripheral surface of the cylindrical member. In this case, the inner peripheral surface of the cylindrical member that opposes the outer peripheral surface of the protruding portion 7i in the circumferential direction of the main body portion 7a functions as a regulating portion. In this case, the cost required for processing the bearing housing 2 can be reduced.
 また、上述した実施形態および変形例では、貫通孔7kおよび規制ピン23は、軸方向に延在する場合について説明した。ただし、貫通孔7kおよび規制ピン23は、シャフト8の径方向に延在してもよい。この場合、例えば、ベアリングハウジング2側と挿通部材22、42側の双方に、シャフト8の径方向に延在するキー溝が設けられる。キー部材は、両キー溝に跨って挿入される。 In addition, in the above-described embodiment and the modification, the case where the through-hole 7k and the restriction pin 23 extend in the axial direction has been described. However, the through-hole 7k and the restriction pin 23 may extend in the radial direction of the shaft 8. In this case, for example, a key groove extending in the radial direction of the shaft 8 is provided on both the bearing housing 2 side and the insertion members 22 and 42 side. The key member is inserted across both key grooves.
 また、上述した実施形態および変形例では、規制ピン23は、挿通部材22、42と別体に設けられる場合について説明した。ただし、規制ピン23は、挿通部材22、42と一体形成されてもよい。 In addition, in the above-described embodiment and the modification, the case where the regulating pin 23 is provided separately from the insertion members 22 and 42 has been described. However, the regulating pin 23 may be formed integrally with the insertion members 22 and 42.
 また、上述した実施形態および変形例では、鍔部22b、42bによって、挿通部材22、42の軸方向の位置決めが行われる場合について説明した。ただし、規制ピン23および挿通部材22、42の端部22eによって、挿通部材22、42の軸方向の位置決めが行われてもよい。この場合、例えば、規制ピン23に挿通部材22、42の端部22eが当接する。こうして、挿通部材22、42の軸方向の位置が定まる。 In addition, in the above-described embodiment and the modified example, the case where the insertion members 22, 42 are axially positioned by the flange portions 22b, 42b has been described. However, the positioning of the insertion members 22 and 42 in the axial direction may be performed by the restriction pins 23 and the end portions 22 e of the insertion members 22 and 42. In this case, for example, the ends 22 e of the insertion members 22 and 42 abut on the restriction pins 23. Thus, the axial position of the insertion members 22 and 42 is determined.
 本開示は、軸受構造、および、過給機に利用することができる。 The present disclosure can be used for a bearing structure and a supercharger.
2:ベアリングハウジング(ハウジング) 2b:軸受孔 2b:第1軸受孔 2b:第2軸受孔 2c:給油通路 2d:大内径孔 2e:段差面 2g:内周溝 7:セミフローティング軸受 7b:ラジアル軸受面 7c:ラジアル軸受面 7g:スラスト軸受面 7h:スラスト軸受面 7i:突出部 7k:貫通孔 8:シャフト 22:挿通部材 22e:端部 23:規制ピン(規制部) 30:スラスト軸受 31:スラスト軸受 42:挿通部材 C:過給機 Ca:過給機 S:軸受構造 2: Bearing housing (housing) 2b: Bearing hole 2b 1 : First bearing hole 2b 2 : Second bearing hole 2c: Oil supply passage 2d: Large inner diameter hole 2e: Step surface 2g: Inner circumferential groove 7: Semi-floating bearing 7b: Radial bearing surface 7c: Radial bearing surface 7g: Thrust bearing surface 7h: Thrust bearing surface 7i: Projection 7k: Through hole 8: Shaft 22: Insertion member 22e: End 23: Regulator pin (Regulator) 30: Thrust bearing 31 : Thrust bearing 42: Penetration member C: Supercharger Ca: Supercharger S: Bearing structure

Claims (7)

  1.  軸受孔に収容されたセミフローティング軸受と、
     前記セミフローティング軸受の外周面から突出し、周方向に延在する突出部と、
     前記軸受孔内に設けられ、前記周方向に延在し、前記突出部が位置する内周溝と、
     前記突出部に対し、前記周方向に対向する規制部と、
    を備える軸受構造。
    Semi-floating bearings housed in bearing holes,
    A projecting portion that projects from the outer peripheral surface of the semi-floating bearing and extends in the circumferential direction;
    An inner circumferential groove provided in the bearing hole, extending in the circumferential direction, and where the protrusion is located;
    A restricting portion opposed to the projecting portion in the circumferential direction;
    Bearing structure comprising:
  2.  前記内周溝に開口する給油通路を備える請求項1に記載の軸受構造。 The bearing structure according to claim 1, further comprising an oil supply passage opening to the inner peripheral groove.
  3.  前記セミフローティング軸受の内周面に形成された2つのラジアル軸受面を備え、
     前記突出部は、前記セミフローティング軸受の中心軸方向の位置が、前記2つのラジアル軸受面の間である請求項1または2に記載の軸受構造。
    Comprising two radial bearing surfaces formed on the inner peripheral surface of the semi-floating bearing,
    3. The bearing structure according to claim 1, wherein a position of the protrusion in a central axis direction of the semi-floating bearing is between the two radial bearing surfaces. 4.
  4.  前記セミフローティング軸受の端面に形成されたスラスト軸受面を備える請求項1から3のいずれか1項に記載の軸受構造。 The bearing structure according to any one of claims 1 to 3, further comprising a thrust bearing surface formed on an end surface of the semi-floating bearing.
  5.  前記軸受孔は、第1軸受孔および第2軸受孔を含み、
     前記第1軸受孔が形成された挿通部材と、
     前記第2軸受孔と、前記第2軸受孔より内径が大きく前記挿通部材が挿通される大内径孔と、前記第2軸受孔の内周面から前記大内径孔の内周面まで延在し、前記挿通部材の端部に対して前記セミフローティング軸受の中心軸方向に離隔する段差面と、が形成されたハウジングと、
    を備え、
     前記挿通部材と前記段差面との間に前記内周溝が形成される請求項1から4のいずれか1項に記載の軸受構造。
    The bearing hole includes a first bearing hole and a second bearing hole,
    An insertion member in which the first bearing hole is formed,
    The second bearing hole, a large-diameter hole having an inner diameter larger than the second bearing hole and through which the insertion member is inserted, and extending from an inner peripheral surface of the second bearing hole to an inner peripheral surface of the large-diameter hole. A housing formed with a step surface which is separated from an end of the insertion member in a central axis direction of the semi-floating bearing,
    With
    The bearing structure according to claim 1, wherein the inner peripheral groove is formed between the insertion member and the step surface.
  6.  前記突出部は、前記セミフローティング軸受の中心軸方向に貫通し、前記規制部が挿通される貫通孔を備える請求項1から5のいずれか1項に記載の軸受構造。 6. The bearing structure according to claim 1, wherein the protruding portion includes a through hole that penetrates in a central axis direction of the semi-floating bearing and through which the restricting portion is inserted.
  7.  請求項1から6のいずれか1項に記載の前記軸受構造を備える過給機。 A supercharger comprising the bearing structure according to any one of claims 1 to 6.
PCT/JP2019/031893 2018-09-19 2019-08-13 Bearing structure and turbocharger WO2020059370A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-174644 2018-09-19
JP2018174644 2018-09-19

Publications (1)

Publication Number Publication Date
WO2020059370A1 true WO2020059370A1 (en) 2020-03-26

Family

ID=69886933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031893 WO2020059370A1 (en) 2018-09-19 2019-08-13 Bearing structure and turbocharger

Country Status (1)

Country Link
WO (1) WO2020059370A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54168456U (en) * 1978-05-17 1979-11-28
JPS5515380U (en) * 1978-07-19 1980-01-31
US5593232A (en) * 1995-11-22 1997-01-14 Dresser-Rand Company Integral pivot pad bushing seal bearing
JP2010138757A (en) * 2008-12-10 2010-06-24 Toyota Motor Corp Turbocharger
WO2018061671A1 (en) * 2016-09-29 2018-04-05 株式会社Ihi Bearing structure and supercharger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54168456U (en) * 1978-05-17 1979-11-28
JPS5515380U (en) * 1978-07-19 1980-01-31
US5593232A (en) * 1995-11-22 1997-01-14 Dresser-Rand Company Integral pivot pad bushing seal bearing
JP2010138757A (en) * 2008-12-10 2010-06-24 Toyota Motor Corp Turbocharger
WO2018061671A1 (en) * 2016-09-29 2018-04-05 株式会社Ihi Bearing structure and supercharger

Similar Documents

Publication Publication Date Title
WO2015128978A1 (en) Floating bush bearing device, and turbocharger provided with said bearing device
JP6642586B2 (en) Bearing structure and supercharger
JP6516008B2 (en) Bearing structure and supercharger
US10557377B2 (en) Turbocharger
JP2016525183A (en) Turbocharger purge seal with axisymmetric supply cavities
WO2017069025A1 (en) Bearing structure and supercharger
US10443439B2 (en) Bearing structure and turbocharger
JP6601499B2 (en) Bearing structure and turbocharger
WO2020021908A1 (en) Bearing structure and turbocharger
JP2017207044A (en) Bearing mechanism for turbocharger
WO2019155797A1 (en) Bearing structure
JP6593516B2 (en) Bearing structure and turbocharger
CN109923292B (en) Bearing structure and supercharger
JPH09264151A (en) Oil leak preventing mechanism for turbo charger
WO2020059370A1 (en) Bearing structure and turbocharger
US20190107052A1 (en) Turbocharger
JP4386563B2 (en) Turbocharger bearing device
WO2021192420A1 (en) Supercharger
WO2019156014A1 (en) Supercharger
WO2022118606A1 (en) Bearing structure and supercharger
JP2016113937A (en) Bearing mechanism for turbocharger
WO2020017136A1 (en) Supercharger
JP2020051393A (en) Bearing structure of exhaust turbo supercharger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP