WO2020059299A1 - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
WO2020059299A1
WO2020059299A1 PCT/JP2019/029352 JP2019029352W WO2020059299A1 WO 2020059299 A1 WO2020059299 A1 WO 2020059299A1 JP 2019029352 W JP2019029352 W JP 2019029352W WO 2020059299 A1 WO2020059299 A1 WO 2020059299A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
metal
batteries
end plate
battery module
Prior art date
Application number
PCT/JP2019/029352
Other languages
French (fr)
Japanese (ja)
Inventor
信雄 岩月
幸司 田鍬
絵里 小平
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2020059299A1 publication Critical patent/WO2020059299A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module.
  • a battery module in which a plurality of batteries are electrically connected is known as a power source that requires a high output voltage, such as for a vehicle.
  • a battery module is bridged between a battery stack having a plurality of stacked batteries, a pair of end plates arranged at both ends of the battery stack in the battery stacking direction, and a pair of end plates.
  • a bind bar for restraining the plurality of batteries in the stacking direction.
  • Patent Literature 1 discloses a battery module in which a rubber elastic member is provided between a battery located at an end in a stacking direction and an end plate. In this battery module, when the battery expands, the elastic member is compressed and deformed, thereby allowing the battery to expand. Thereby, the load on the end plate and the bind bar can be reduced, and the plurality of batteries can be stably restrained.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a technique for achieving both stable restraint of a battery and maintenance of capacity in a battery module.
  • the battery module includes a battery stack having a plurality of stacked batteries, a pair of end plates formed of a first metal, and disposed at both ends of the battery stack in the battery stacking direction, and a pair of end plates.
  • a restraining member that engages and restrains the plurality of batteries, a buffering member that is interposed between the end plate and the batteries and at least partially includes a second metal having a Young's modulus smaller than the first metal; Is provided.
  • FIG. 2 is an exploded perspective view of the battery module according to the embodiment.
  • FIG. 2A is a schematic view of the cushioning member viewed from the stacking direction of the battery.
  • FIG. 2B is a cross-sectional view along the line AA in FIG.
  • FIG. 3A is a schematic view of the end plate viewed from the stacking direction of the battery.
  • FIG. 3B is a cross-sectional view taken along line BB of FIG. 3A.
  • FIG. 4A is a schematic diagram when the end plate, the buffer member, and the battery in a state where they are assembled to each other are viewed from the stacking direction of the batteries.
  • FIG. 4B is a cross-sectional view taken along line CC in FIG. 4A.
  • FIG. 9 is a cross-sectional view schematically illustrating a part of the battery module according to the second embodiment.
  • FIG. 1 is an exploded perspective view of the battery module according to the embodiment.
  • the cushioning member 8 is schematically illustrated.
  • the battery module 1 includes a battery stack 2, a pair of end plates 4, a restraining member 6, and a buffer member 8.
  • the battery stack 2 includes a plurality of batteries 10 and a separator 12.
  • Each battery 10 is a rechargeable secondary battery such as a lithium ion battery, a nickel-hydrogen battery, and a nickel-cadmium battery.
  • the battery 10 is a so-called prismatic battery, and has a flat rectangular parallelepiped outer can 14. A substantially rectangular opening (not shown) is provided on one surface of the outer can 14, and an electrode body, an electrolyte, and the like are stored in the outer can 14 through the opening.
  • a sealing plate 16 for sealing the outer can 14 is provided at the opening of the outer can 14.
  • the sealing plate 16 is provided with a positive output terminal 18 near one end in the longitudinal direction and a negative output terminal 18 near the other end.
  • Each of the pair of output terminals 18 is electrically connected to a positive electrode plate and a negative electrode plate constituting an electrode body.
  • the positive output terminal 18 is referred to as a positive terminal 18a
  • the negative output terminal 18 is referred to as a negative terminal 18b.
  • the positive terminal 18a and the negative terminal 18b are collectively referred to as the output terminal 18.
  • the outer can 14, the sealing plate 16, and the output terminal 18 are conductors, and are made of, for example, metal.
  • the sealing plate 16 and the opening of the outer can 14 are joined by welding or the like.
  • Each output terminal 18 is inserted into a through hole (not shown) formed in the sealing plate 16.
  • An insulating sealing member (not shown) is interposed between each output terminal 18 and each through hole.
  • the surface of the outer can 14 on which the sealing plate 16 is provided is defined as the upper surface of the battery 10, and the surface facing the upper surface of the outer can 14 is defined as the bottom surface of the battery 10.
  • Battery 10 also has two main surfaces connecting the top and bottom surfaces. This main surface is the surface having the largest area among the six surfaces of the battery 10. The main surface is a long side surface connected to the long sides of the top surface and the bottom surface. The remaining two surfaces except the upper surface, the bottom surface, and the two main surfaces are side surfaces of the battery 10. This side is a short side connected to the short sides of the top and bottom surfaces.
  • the upper surface of the battery 10 is the upper surface of the battery stack 2
  • the bottom surface of the battery 10 is the bottom surface of the battery stack 2
  • the short side surface of the battery 10 is the battery The side surface of the laminate 2.
  • the upper surface of the battery stack 2 is vertically upward
  • the bottom surface of the battery stack 2 is vertically lower.
  • a valve portion 20 is provided on the sealing plate 16 between the pair of output terminals 18.
  • the valve section 20 is also called a safety valve, and is a mechanism for discharging gas generated inside the battery 10.
  • the valve portion 20 is configured to open when the internal pressure of the outer can 14 rises to a predetermined value or more, and to discharge the gas inside.
  • the valve portion 20 is composed of, for example, a thin portion provided on a part of the sealing plate 16 and having a smaller thickness than other portions, and a linear groove formed on the surface of the thin portion. In this configuration, when the internal pressure of the outer can 14 increases, the thin portion is torn from the groove to open the valve.
  • the valve section 20 of each battery 10 is connected to an exhaust duct (not shown), and gas inside the battery is exhausted from the valve section 20 to an exhaust duct.
  • the plurality of batteries 10 are stacked at predetermined intervals such that the main surfaces of adjacent batteries 10 face each other.
  • stacking means arranging a plurality of members in any one direction. Therefore, stacking the batteries 10 includes arranging a plurality of batteries 10 horizontally.
  • Each battery 10 is arranged so that the output terminals 18 face the same direction. In the present embodiment, for convenience, each battery 10 is arranged such that the output terminal 18 faces upward in the vertical direction.
  • Two adjacent batteries 10 are stacked such that the positive electrode terminal 18a of one battery 10 and the negative electrode terminal 18b of the other battery 10 are adjacent to each other.
  • the positive terminal 18a and the negative terminal 18b are electrically connected via a bus bar (not shown).
  • output terminals 18 of the same polarity in a plurality of adjacent batteries 10 may be connected in parallel with a bus bar to form a battery block, and the battery blocks may be connected in series.
  • the separator 12 is also called an insulating spacer, and is made of, for example, an insulating resin.
  • the resin forming the separator 12 include thermoplastic resins such as polypropylene (PP), polybutylene terephthalate (PBT), polycarbonate (PC), and Noryl (registered trademark) resin (modified PPE).
  • the separator 12 includes a plurality of first insulating members 12a and a pair of second insulating members 12b.
  • Each first insulating member 12a is disposed between two adjacent batteries 10 to electrically insulate the two batteries 10 from each other.
  • Each second insulating member 12b extends in the stacking direction X of the battery 10 and contacts the side surface of each battery 10. Thereby, each battery 10 and the restraint member 6 are electrically insulated. If necessary, a bus bar (not shown) and the restraining member 6 may be electrically insulated from each other by the second insulating member 12b.
  • a plurality of ribs 12c arranged in the stacking direction X of the battery 10 are provided on a surface of the second insulating member 12b facing the battery 10 side.
  • the spacing between adjacent ribs 12c corresponds to the dimension between the main surfaces of battery 10.
  • the battery stack 2 is sandwiched between a pair of end plates 4.
  • the pair of end plates 4 are arranged at both ends of the battery stack 2 in the stacking direction X of the battery 10.
  • the pair of end plates 4 are arranged so as to be adjacent to the batteries 10 located at both ends in the stacking direction X via the first insulating member 12a.
  • Each end plate 4 is made of a metal plate made of a first metal. Examples of the first metal include at least one selected from the group consisting of iron, stainless steel, and aluminum.
  • the restraining member 6 is also called a bind bar, and is a long member that is long in the stacking direction X of the battery 10.
  • a pair of restraining members 6 are arranged in a direction Y orthogonal to the stacking direction X of the battery 10, that is, a direction in which the positive electrode terminal 18a, the valve portion 20, and the negative electrode terminal 18b are arranged.
  • the battery stack 2 and the pair of end plates 4 are arranged between the pair of restraining members 6.
  • Each restraining member 6 has a rectangular flat portion 6 a parallel to the side surface of the battery 10, and an eave portion 6 b protruding from the upper side and lower side of the flat portion 6 a toward the battery 10.
  • the plurality of batteries 10 are restrained in the stacking direction X by the pair of end plates 4 being engaged with the flat portions 6a of each restraining member 6.
  • a contact plate 22 is fixed to the surface of the flat portion 6a facing each end plate 4 by welding or the like.
  • the contact plate 22 is a member that is long in the direction Z in which the top surface and the bottom surface of the battery 10 are aligned, and has a groove 22 a on a surface facing the end plate 4.
  • a through hole 22b is provided to reach the surface of the contact plate 22 that is in contact with the plane portion 6a.
  • three through holes 22b are arranged in the groove 22a at predetermined intervals in the direction Z.
  • the through-hole 7 is provided in the plane portion 6 a at a position corresponding to the through-hole 22 b of the contact plate 22.
  • the end plate 4 has a protruding portion 4a long in the direction Z on a surface facing the flat portion 6a.
  • the shape of the protrusion 4a corresponds to the shape of the groove 22a.
  • the protrusion 4a is provided with a fastening hole 4b at a position corresponding to the through hole 22b of the contact plate 22.
  • the restricting member 6 and the end plate 4 are connected by fitting the convex portion 4a into the groove portion 22a. With the protrusion 4a fitted into the groove 22a, the through hole 7 of the restraining member 6, the through hole 22b of the contact plate 22, and the fastening hole 4b of the end plate 4 overlap.
  • the fastening member 24 such as a screw is inserted, whereby the end plate 4 and the restraining member 6 are fixed.
  • the fixing portions 26 are arranged.
  • the battery module 1 is fixed to a fixing target such as a battery pack housing or a vehicle body by a fixing unit 26.
  • the fixing portion 26 has a through hole 26a into which a fastening member (not shown) is inserted.
  • the object to be fixed has a fastening hole (not shown), and the fastening hole and the through-hole 26a are overlapped with each other, and the fastening member is inserted therethrough, whereby the battery module 1 is fixed to the object to be fixed.
  • the fixing portion 26 may be fixed to the fixing target by another method such as welding.
  • the cushioning member 8 is a member that presses the battery 10 in the stacking direction X while appropriately allowing the battery 10 to expand.
  • the shape and arrangement of the cushioning member 8 will be described in detail with reference to FIGS. 2 (A) to 4 (B).
  • FIG. 2A is a schematic view of the cushioning member viewed from the stacking direction of the battery.
  • FIG. 3A is a cross-sectional view along the line AA in FIG.
  • FIG. 3A is a schematic view of the end plate viewed from the stacking direction of the battery.
  • FIG. 3B is a cross-sectional view taken along line BB of FIG. 3A.
  • FIG. 4A is a schematic diagram when the end plate, the buffer member, and the battery in a state where they are assembled to each other are viewed from the stacking direction of the batteries.
  • FIG. 4B is a cross-sectional view taken along line CC in FIG. 4A.
  • FIG. 4A a state in which the battery 10 is seen through is illustrated, and the illustration of the separator 12 is omitted.
  • 4B illustration of the internal structure of the battery 10 is omitted.
  • the buffer member 8 is interposed between the end plate 4 and the battery 10.
  • the buffer member 8 comes into contact with the battery 10 via the first insulating member 12a of the separator 12.
  • the buffer member 8 is at least partially made of a second metal having a Young's modulus smaller than the first metal forming the end plate 4.
  • the Young's modulus of the second metal is naturally larger than the Young's modulus of a resin such as rubber.
  • the type of the second metal is selected so that the force applied by the expansion of the battery 10 does not exceed the proof stress of the second metal.
  • the second metal include at least one selected from the group consisting of magnesium and a magnesium alloy.
  • the second metal has a Young's modulus of 40 to 50 GPa and a proof stress of 150 to 300 MPa.
  • the first metal has a Young's modulus of 60 to 220 GPa.
  • the cushioning member 8 of the present embodiment has a plurality of fragments 28 and a support plate 30.
  • Each fragment 28 has a rectangular parallelepiped shape or a quadrangular prism shape, and is made of a second metal.
  • the support plate 30 is a plate-like member that supports the plurality of fragments 28.
  • the support plate 30 may be made of the same first metal as the end plate 4, or may be made of the same second metal as the fragment 28. Further, the support plate 30 may be made of a metal different from the first metal and the second metal.
  • the fragments 28 are arranged in a matrix on the main surface of the support plate 30.
  • Each of the fragment portions 28 has one arbitrary surface joined to the main surface of the support plate 30.
  • the support plate 30 is made of the second metal, the plurality of fragments 28 and the support plate 30 may be integrally formed. It is desirable that the projecting heights of the respective fragments 28 from the main surface of the support plate 30 are uniform.
  • the support plate 30 is disposed so as to extend in parallel with the main surface 4c of the end plate 4. That is, the support plate 30 extends parallel to the YZ plane orthogonal to the stacking direction X of the battery 10. Therefore, the plurality of fragments 28 are arranged in parallel with the main surface 4c of the end plate 4.
  • the end plate 4 has a concave portion 32 facing the battery 10 on the main surface 4c facing the battery 10. That is, the end plate 4 is assembled to the battery stack 2 such that the opening of the concave portion 32 faces the battery 10 side.
  • the concave portion 32 is arranged approximately at the center of the main surface 4c when viewed from the stacking direction X of the battery 10.
  • the shape of the opening of the recess 32 is similar to the contour of the support plate 30 as viewed in the stacking direction X.
  • the cushioning member 8 is arranged in the recess 32 such that the support plate 30 faces the bottom side of the recess 32 and the plurality of fragments 28 face the battery 10 side.
  • the depth of the recess 32 is equal to the dimension of the cushioning member 8 in the direction in which the fragment 28 and the support plate 30 are arranged. For this reason, in a state where the cushioning member 8 is disposed in the concave portion 32, the surface of each fragment portion 28 facing the battery 10 and the main surface 4c of the end plate 4 facing the battery 10 are disposed on the same plane. Is done. Therefore, in a state where the end plate 4 is assembled to the battery stack 2, each fragment portion 28 and the main surface 4 c of the end plate 4 are in contact with the battery 10 via the first insulating member 12 a.
  • the depth of the recess 32 is such that the surface of each fragment 28 facing the battery 10 is larger than the main surface 4c of the end plate 4 facing the battery 10 in a state where the cushioning member 8 is disposed in the recess 32. , May be configured to protrude outward. In the case of this configuration, it is preferable that the projecting amount of each fragment portion 28 is designed so that the load applied to each fragment portion 28 does not exceed the proof stress limit of the second metal.
  • the concave portion 32 of the end plate 4 is disposed so as to overlap the center 10C of the battery 10 when viewed from the stacking direction X of the battery 10. Therefore, the buffer member 8 is arranged so as to overlap the center 10 ⁇ / b> C of the battery 10 when viewed from the stacking direction X of the battery 10.
  • the center 10C of the battery 10 is, for example, the geometric center of the contour shape of the battery 10 viewed from the stacking direction X or the geometric center of gravity.
  • the battery module 1 includes the battery stack 2 having the plurality of stacked batteries 10 and the first metal, and includes the battery stack 2 in the stacking direction X of the battery 10. , A pair of end plates 4 disposed at both ends, a restraining member that engages the pair of end plates 4 and restrains the plurality of batteries 10, and is interposed between the end plates 4 and the batteries 10 and at least partially And a buffer member 8 made of a second metal having a smaller Young's modulus than the first metal.
  • the battery 10 When the battery 10 expands due to charging or the like, the battery 10 is greatly deformed in the stacking direction X as compared with the directions Y and Z. As a result, a force in the stacking direction X is applied to the end plate 4 and the buffer member 8.
  • a force in the stacking direction X is applied to the end plate 4 and the buffer member 8.
  • the cushioning member 8 of the present embodiment has, at least in part, a portion made of a second metal having a smaller Young's modulus than the first metal forming the end plate 4. Therefore, when the battery 10 expands, the cushioning member 8 is preferentially elastically deformed. Thereby, the stress generated in the end plate 4 and the restraint member 6 due to the expansion of the battery 10 can be reduced, and the restrained state of the plurality of batteries 10 can be stably maintained.
  • the second metal has a higher Young's modulus than a resin such as rubber
  • the expansion of the battery 10 can be suppressed as compared with the resin.
  • the amount of displacement of the battery 10 in the stacking direction X can be reduced.
  • the displacement of the battery 10 is suppressed to 1 mm or less, more preferably 0.4 mm or less. Therefore, a decrease in the water level of the electrolytic solution due to an increase in the battery capacity can be suppressed, and as a result, a decrease in the capacity of each battery 10 can be suppressed.
  • the buffering member 8 balances the function of allowing the battery 10 to expand by elastic deformation when the battery 10 reaches EOL and the amount of expansion of the battery 10 significantly increases, and the function of suppressing the expansion of each battery 10. Demonstrate well.
  • the present embodiment it is possible to achieve both stable restraint of battery 10 and maintenance of capacity in battery module 1. Further, since the dimensional change of the battery 10 is allowed by the buffer member 8, the rigidity required for the end plate 4 and the restraining member 6 can be reduced. Therefore, it is possible to avoid an increase in the size, weight, and cost of the battery module 1 due to securing the rigidity of the end plate 4 and the restraining member 6.
  • the cushioning member 8 of the present embodiment has a plurality of fragments 28 made of the second metal.
  • the plurality of fragments 28 are arranged in parallel to the main surface 4c of the end plate 4. Therefore, the battery 10 is pressed down by the plurality of fragments 28.
  • the portion made of the second metal in the cushioning member 8 into a plurality of pieces, that is, by forming a plurality of pieces 28, the portion can be more easily elastically deformed. Therefore, the load on the end plate 4 and the restraint member 6 due to the expansion of the battery 10 can be reduced more reliably. Further, it is possible to reduce the possibility that the force applied to the buffer member 8 due to the expansion of the battery 10 exceeds the proof stress of the second metal.
  • the buffer member 8 has a support plate 30 that supports the plurality of fragments 28. Accordingly, it is possible to prevent the assembly of the battery module 1 from becoming complicated due to the provision of the plurality of fragments 28.
  • the end plate 4 has a concave portion 32 on the main surface 4c facing the battery 10 side. And the buffer member 8 is arrange
  • the buffer member 8 is disposed so as to overlap the center 10C of the battery 10 when viewed from the stacking direction X of the battery 10.
  • the displacement of the center 10C of the battery 10 in the stacking direction X is larger than that of other portions. Therefore, by arranging the buffer member 8 so as to overlap the center 10 ⁇ / b> C, the load on the end plate 4 and the restraint member 6 due to the expansion of the battery 10 can be reduced more reliably.
  • FIG. 5 is a cross-sectional view schematically illustrating a part of the battery module according to the second embodiment. In FIG. 5, illustration of the internal structure of the restraining member 6 and the battery 10 is omitted.
  • the battery module 1 includes the battery stack 2, the pair of end plates 4, the restraining member 6, and the buffer member 8, as in the first embodiment.
  • the buffer member 8 is interposed between the end plate 4 and the battery 10.
  • the buffer member 8 has a plurality of fragment portions 28 and a support plate 30. Each fragment 28 is made of a second metal and is arranged on the main surface of the support plate 30.
  • the support plate 30 is disposed closer to the battery 10 than the plurality of fragments 28 in a state where the cushioning member 8 is assembled to the end plate 4. That is, the support plate 30 is interposed between the plurality of fragments 28 and the battery 10. The tips of the plurality of fragments 28 abut the bottom surface of the recess 32. Therefore, in the first embodiment, the cushioning member 8 contacts the battery 10 at a plurality of points, but in the present embodiment, the cushioning member 8 contacts the battery 10 on the surface. Accordingly, the possibility that the battery 10 is pressed against the cushioning member 8 to cause irregularities in the outer can 14 can be reduced. As a result, a decrease in the power generation performance of the battery 10 can be suppressed.
  • the buffer member 8 may be provided only on one end plate 4.
  • the buffer member 8 may be joined to the end plate 4.
  • the buffer member 8 may include only the plurality of fragments 28, and the plurality of fragments 28 may be directly joined to the end plate 4.
  • the portion made of the second metal in the buffer member 8 may be a single flat plate.
  • the buffer member 8 may be entirely made of a second metal.
  • the number of batteries 10 included in the battery stack 2 is not particularly limited.
  • the structure of each part of the battery module 1, including the shape of the separator 12 and the fastening structure between the end plate 4 and the restraining member 6, can be appropriately changed.
  • ⁇ 1 ⁇ battery module ⁇ 2 ⁇ battery stack, ⁇ 4 ⁇ end plate, ⁇ 4c ⁇ main surface, ⁇ 6 ⁇ restraint member, ⁇ 8 ⁇ buffer member, ⁇ 10 ⁇ battery, ⁇ 10C ⁇ center, ⁇ 28 ⁇ fragment, ⁇ 30 ⁇ support plate, ⁇ 32 ⁇ recess.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

In order to bind batteries in a battery module stably and maintain capacity, this battery module 1 is provided with: a battery stack 2 provided with a plurality of stacked batteries 10; a pair of end plates (4) which are formed from a first metal, and which are disposed at both ends of the battery stack (2) in the stacking direction (X) of the batteries (10); a binding member (6) which engages with the pair of end plates (4) and binds the plurality of batteries (10); and buffer members (8) which are disposed between the end plates (4) and the batteries (10), and which are at least partially formed from a second metal having a smaller Young's modulus than the first metal.

Description

電池モジュールBattery module
 本発明は、電池モジュールに関する。 The present invention relates to a battery module.
 例えば車両用等の、高い出力電圧が要求される電源として、複数個の電池が電気的に接続された電池モジュールが知られている。一般にこのような電池モジュールは、積層された複数の電池を有する電池積層体と、電池の積層方向における電池積層体の両端に配置される一対のエンドプレートと、一対のエンドプレート間に掛け渡されて、複数の電池を積層方向に拘束するバインドバーとを備えている。 電池 A battery module in which a plurality of batteries are electrically connected is known as a power source that requires a high output voltage, such as for a vehicle. Generally, such a battery module is bridged between a battery stack having a plurality of stacked batteries, a pair of end plates arranged at both ends of the battery stack in the battery stacking direction, and a pair of end plates. And a bind bar for restraining the plurality of batteries in the stacking direction.
 電池は、使用にともなって膨張する場合がある。各電池が膨張すると、電池モジュールは電池の積層方向に大きく膨張する。これにより、エンドプレートやバインドバーに負荷がかかるため、電池の拘束状態が不安定になり得る。これに対し特許文献1には、積層方向の端部に位置する電池とエンドプレートとの間に、ゴム製の弾性部材を設けた電池モジュールが開示されている。この電池モジュールでは、電池が膨張した際に弾性部材が圧縮変形することによって、電池の膨張が許容される。これにより、エンドプレートやバインドバーにかかる負荷を軽減することができ、複数の電池を安定的に拘束することができる。 Batteries may swell with use. When each battery expands, the battery module greatly expands in the battery stacking direction. As a result, a load is applied to the end plate and the bind bar, and the restrained state of the battery may become unstable. On the other hand, Patent Literature 1 discloses a battery module in which a rubber elastic member is provided between a battery located at an end in a stacking direction and an end plate. In this battery module, when the battery expands, the elastic member is compressed and deformed, thereby allowing the battery to expand. Thereby, the load on the end plate and the bind bar can be reduced, and the plurality of batteries can be stably restrained.
特開2017-50200号公報JP 2017-50200 A
 近年、電池モジュールのさらなる高容量化が求められており、この要求を満たすために電池の高容量化が進んでいる。電池が高容量化すると、電池の膨張量が増大し得る。特に、電池の寿命末期(End of Life:EOL)では、電池の膨張量が著しく増大し得る。上述した電池モジュールのように、電池とエンドプレートとの間にゴムを介在させた構造では、ゴムによって電池の膨張が許容されるが故に、電池が過度に膨張するおそれがあった。電池が膨張すると、当然のことながら電池内部の容積が大きくなる。電池内部の容積が大きくなると、電解液の水位が下がって電極体と電解液との接触面積が低下し得る。電極体と電解液との接触面積が低下すると、電池の容量低下や内部抵抗の上昇等、さまざまな問題が生じ得る。このため、電池が過度に膨張すると、各電池の容量ひいては電池モジュールの容量が低下し得る。 In recent years, there has been a demand for higher capacity battery modules, and to meet this demand, higher capacity batteries have been developed. As the capacity of the battery increases, the amount of expansion of the battery may increase. In particular, at the end of life of the battery (End of Life: EOL), the amount of expansion of the battery may increase significantly. In the structure in which rubber is interposed between the battery and the end plate as in the above-described battery module, the battery may expand excessively because the rubber allows the battery to expand. When the battery expands, the volume inside the battery naturally increases. When the volume inside the battery increases, the water level of the electrolytic solution decreases, and the contact area between the electrode body and the electrolytic solution may decrease. When the contact area between the electrode body and the electrolytic solution decreases, various problems such as a decrease in battery capacity and an increase in internal resistance may occur. For this reason, if the batteries expand excessively, the capacity of each battery, and thus the capacity of the battery module, may decrease.
 本発明はこうした状況に鑑みてなされたものであり、その目的は、電池モジュールにおける電池の安定的な拘束と容量の維持との両立を図るための技術を提供することにある。 The present invention has been made in view of such a situation, and an object of the present invention is to provide a technique for achieving both stable restraint of a battery and maintenance of capacity in a battery module.
 本発明のある態様は、電池モジュールである。この電池モジュールは、積層された複数の電池を有する電池積層体と、第1金属で構成され、電池の積層方向における電池積層体の両端に配置される一対のエンドプレートと、一対のエンドプレートと係合して複数の電池を拘束する拘束部材と、エンドプレートと電池との間に介在し、少なくとも一部が、第1金属よりもヤング率の小さい第2金属で構成される緩衝部材と、を備える。 あ る One embodiment of the present invention relates to a battery module. The battery module includes a battery stack having a plurality of stacked batteries, a pair of end plates formed of a first metal, and disposed at both ends of the battery stack in the battery stacking direction, and a pair of end plates. A restraining member that engages and restrains the plurality of batteries, a buffering member that is interposed between the end plate and the batteries and at least partially includes a second metal having a Young's modulus smaller than the first metal; Is provided.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。 Note that any combination of the above-described components and any conversion of the expression of the present invention between a method, an apparatus, a system, and the like are also effective as embodiments of the present invention.
 本発明によれば、電池モジュールにおける電池の安定的な拘束と容量の維持との両立を図ることができる。 According to the present invention, it is possible to achieve both stable restraint of the battery and maintenance of the capacity in the battery module.
実施の形態に係る電池モジュールの分解斜視図である。FIG. 2 is an exploded perspective view of the battery module according to the embodiment. 図2(A)は、電池の積層方向から見た緩衝部材の模式図である。図2(B)は、図2(A)におけるA-A線に沿った断面図である。FIG. 2A is a schematic view of the cushioning member viewed from the stacking direction of the battery. FIG. 2B is a cross-sectional view along the line AA in FIG. 図3(A)は、電池の積層方向から見たエンドプレートの模式図である。図3(B)は、図3(A)のB-B線に沿った断面図である。FIG. 3A is a schematic view of the end plate viewed from the stacking direction of the battery. FIG. 3B is a cross-sectional view taken along line BB of FIG. 3A. 図4(A)は、互いに組み付けられた状態にあるエンドプレート、緩衝部材および電池を電池の積層方向から見たときの模式図である。図4(B)は、図4(A)におけるC-C線に沿った断面図である。FIG. 4A is a schematic diagram when the end plate, the buffer member, and the battery in a state where they are assembled to each other are viewed from the stacking direction of the batteries. FIG. 4B is a cross-sectional view taken along line CC in FIG. 4A. 実施の形態2に係る電池モジュールの一部分を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically illustrating a part of the battery module according to the second embodiment.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、特に言及がない限りこの用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The embodiments are illustrative and do not limit the invention, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention. The same or equivalent components, members, and processes shown in each drawing are denoted by the same reference numerals, and the repeated description will be omitted as appropriate. Further, the scale and shape of each part shown in each figure are set for convenience in order to facilitate the description, and are not to be construed as being limited unless otherwise noted. In addition, when terms such as “first” and “second” are used in the present specification or claims, the terms do not indicate any order or importance unless otherwise specified, and a certain configuration may be used. It is for distinguishing from the other configuration. In each of the drawings, some of the members that are not important for describing the embodiments are omitted.
 図1は、実施の形態に係る電池モジュールの分解斜視図である。なお、図1では、緩衝部材8を模式的に図示している。電池モジュール1は、電池積層体2と、一対のエンドプレート4と、拘束部材6と、緩衝部材8と、を備える。 FIG. 1 is an exploded perspective view of the battery module according to the embodiment. In FIG. 1, the cushioning member 8 is schematically illustrated. The battery module 1 includes a battery stack 2, a pair of end plates 4, a restraining member 6, and a buffer member 8.
 電池積層体2は、複数の電池10と、セパレータ12と、を有する。各電池10は、例えば、リチウムイオン電池、ニッケル-水素電池、ニッケル-カドミウム電池等の充電可能な二次電池である。電池10は、いわゆる角形電池であり、扁平な直方体形状の外装缶14を有する。外装缶14の一面には図示しない略長方形状の開口が設けられ、この開口を介して外装缶14に電極体や電解液等が収容される。外装缶14の開口には、外装缶14を封止する封口板16が設けられる。 The battery stack 2 includes a plurality of batteries 10 and a separator 12. Each battery 10 is a rechargeable secondary battery such as a lithium ion battery, a nickel-hydrogen battery, and a nickel-cadmium battery. The battery 10 is a so-called prismatic battery, and has a flat rectangular parallelepiped outer can 14. A substantially rectangular opening (not shown) is provided on one surface of the outer can 14, and an electrode body, an electrolyte, and the like are stored in the outer can 14 through the opening. At the opening of the outer can 14, a sealing plate 16 for sealing the outer can 14 is provided.
 封口板16には、長手方向の一端寄りに正極の出力端子18が設けられ、他端寄りに負極の出力端子18が設けられる。一対の出力端子18はそれぞれ、電極体を構成する正極板、負極板と電気的に接続される。以下では適宜、正極の出力端子18を正極端子18aと称し、負極の出力端子18を負極端子18bと称する。また、出力端子18の極性を区別する必要がない場合、正極端子18aと負極端子18bとをまとめて出力端子18と称する。外装缶14、封口板16および出力端子18は導電体であり、例えば金属製である。封口板16と外装缶14の開口とは、溶接等により接合される。各出力端子18は、封口板16に形成された図示しない貫通孔に挿通される。各出力端子18と各貫通孔との間には、絶縁性の図示しないシール部材が介在する。 正極 The sealing plate 16 is provided with a positive output terminal 18 near one end in the longitudinal direction and a negative output terminal 18 near the other end. Each of the pair of output terminals 18 is electrically connected to a positive electrode plate and a negative electrode plate constituting an electrode body. Hereinafter, the positive output terminal 18 is referred to as a positive terminal 18a, and the negative output terminal 18 is referred to as a negative terminal 18b. When it is not necessary to distinguish the polarity of the output terminal 18, the positive terminal 18a and the negative terminal 18b are collectively referred to as the output terminal 18. The outer can 14, the sealing plate 16, and the output terminal 18 are conductors, and are made of, for example, metal. The sealing plate 16 and the opening of the outer can 14 are joined by welding or the like. Each output terminal 18 is inserted into a through hole (not shown) formed in the sealing plate 16. An insulating sealing member (not shown) is interposed between each output terminal 18 and each through hole.
 本実施の形態では、説明の便宜上、外装缶14の封口板16が設けられる側の面を電池10の上面、外装缶14の上面に背向する面を電池10の底面とする。また、電池10は、上面および底面をつなぐ2つの主表面を有する。この主表面は、電池10が有する6つの面のうち面積の最も大きい面である。また、主表面は、上面および底面の長辺に接続される長側面である。上面、底面および2つの主表面を除いた残り2つの面は、電池10の側面とする。この側面は、上面および底面の短辺に接続される短側面である。また、電池積層体2において、電池10の上面側の面を電池積層体2の上面とし、電池10の底面側の面を電池積層体2の底面とし、電池10の短側面側の面を電池積層体2の側面とする。また、電池積層体2の上面側を鉛直方向上方とし、電池積層体2の底面側を鉛直方向下方とする。これらの方向および位置は、便宜上規定したものである。したがって、例えば、本発明において上面と規定された部分は、底面と規定された部分よりも必ず上方に位置することを意味するものではない。 In the present embodiment, for convenience of explanation, the surface of the outer can 14 on which the sealing plate 16 is provided is defined as the upper surface of the battery 10, and the surface facing the upper surface of the outer can 14 is defined as the bottom surface of the battery 10. Battery 10 also has two main surfaces connecting the top and bottom surfaces. This main surface is the surface having the largest area among the six surfaces of the battery 10. The main surface is a long side surface connected to the long sides of the top surface and the bottom surface. The remaining two surfaces except the upper surface, the bottom surface, and the two main surfaces are side surfaces of the battery 10. This side is a short side connected to the short sides of the top and bottom surfaces. In the battery stack 2, the upper surface of the battery 10 is the upper surface of the battery stack 2, the bottom surface of the battery 10 is the bottom surface of the battery stack 2, and the short side surface of the battery 10 is the battery The side surface of the laminate 2. In addition, the upper surface of the battery stack 2 is vertically upward, and the bottom surface of the battery stack 2 is vertically lower. These directions and positions are defined for convenience. Therefore, for example, in the present invention, the portion defined as the upper surface does not necessarily mean that it is located above the portion defined as the bottom surface.
 封口板16には、一対の出力端子18の間に弁部20が設けられる。弁部20は、安全弁とも呼ばれ、電池10の内部で発生するガスを放出するための機構である。弁部20は、外装缶14の内圧が所定値以上に上昇した際に開弁して、内部のガスを放出できるように構成される。弁部20は、例えば、封口板16の一部に設けられる、他部よりも厚さが薄い薄肉部と、この薄肉部の表面に形成される線状の溝とで構成される。この構成では、外装缶14の内圧が上昇すると、溝を起点に薄肉部が裂けることで開弁される。各電池10の弁部20は、図示しない排気ダクトに接続され、電池内部のガスは弁部20から排気ダクトに排出される。 弁 A valve portion 20 is provided on the sealing plate 16 between the pair of output terminals 18. The valve section 20 is also called a safety valve, and is a mechanism for discharging gas generated inside the battery 10. The valve portion 20 is configured to open when the internal pressure of the outer can 14 rises to a predetermined value or more, and to discharge the gas inside. The valve portion 20 is composed of, for example, a thin portion provided on a part of the sealing plate 16 and having a smaller thickness than other portions, and a linear groove formed on the surface of the thin portion. In this configuration, when the internal pressure of the outer can 14 increases, the thin portion is torn from the groove to open the valve. The valve section 20 of each battery 10 is connected to an exhaust duct (not shown), and gas inside the battery is exhausted from the valve section 20 to an exhaust duct.
 複数の電池10は、隣り合う電池10の主表面同士が対向するようにして所定の間隔で積層される。なお、「積層」は、任意の1方向に複数の部材を並べることを意味する。したがって、電池10の積層には、複数の電池10を水平に並べることも含まれる。また、各電池10は、出力端子18が同じ方向を向くように配置される。本実施の形態では便宜上、各電池10は、出力端子18が鉛直方向上方を向くように配置される。隣接する2つの電池10は、一方の電池10の正極端子18aと他方の電池10の負極端子18bとが隣り合うように積層される。正極端子18aと負極端子18bとは、図示しないバスバーを介して電気的に接続される。なお、隣接する複数個の電池10における同極性の出力端子18どうしをバスバーで並列接続して電池ブロックを形成し、電池ブロックどうしを直列接続してもよい。 (4) The plurality of batteries 10 are stacked at predetermined intervals such that the main surfaces of adjacent batteries 10 face each other. Note that “stacking” means arranging a plurality of members in any one direction. Therefore, stacking the batteries 10 includes arranging a plurality of batteries 10 horizontally. Each battery 10 is arranged so that the output terminals 18 face the same direction. In the present embodiment, for convenience, each battery 10 is arranged such that the output terminal 18 faces upward in the vertical direction. Two adjacent batteries 10 are stacked such that the positive electrode terminal 18a of one battery 10 and the negative electrode terminal 18b of the other battery 10 are adjacent to each other. The positive terminal 18a and the negative terminal 18b are electrically connected via a bus bar (not shown). Note that output terminals 18 of the same polarity in a plurality of adjacent batteries 10 may be connected in parallel with a bus bar to form a battery block, and the battery blocks may be connected in series.
 セパレータ12は、絶縁スペーサとも呼ばれ、例えば絶縁性を有する樹脂からなる。セパレータ12を構成する樹脂としては、ポリプロピレン(PP)、ポリブチレンテレフタレート(PBT)、ポリカーボネート(PC)、ノリル(登録商標)樹脂(変性PPE)等の熱可塑性樹脂が例示される。 The separator 12 is also called an insulating spacer, and is made of, for example, an insulating resin. Examples of the resin forming the separator 12 include thermoplastic resins such as polypropylene (PP), polybutylene terephthalate (PBT), polycarbonate (PC), and Noryl (registered trademark) resin (modified PPE).
 セパレータ12は、複数の第1絶縁部材12aと、一対の第2絶縁部材12bと、を有する。各第1絶縁部材12aは、隣接する2つの電池10の間に配置されて当該2つの電池10間を電気的に絶縁する。各第2絶縁部材12bは、電池10の積層方向Xに延びて各電池10の側面に当接する。これにより、各電池10と拘束部材6とが電気的に絶縁される。なお、必要に応じて、第2絶縁部材12bにより、図示しないバスバーと拘束部材6とが電気的に絶縁されるように構成してもよい。 The separator 12 includes a plurality of first insulating members 12a and a pair of second insulating members 12b. Each first insulating member 12a is disposed between two adjacent batteries 10 to electrically insulate the two batteries 10 from each other. Each second insulating member 12b extends in the stacking direction X of the battery 10 and contacts the side surface of each battery 10. Thereby, each battery 10 and the restraint member 6 are electrically insulated. If necessary, a bus bar (not shown) and the restraining member 6 may be electrically insulated from each other by the second insulating member 12b.
 第2絶縁部材12bの電池10側を向く面には、電池10の積層方向Xに並ぶ複数のリブ12cが設けられている。隣り合うリブ12cの間隔は、電池10の主表面間の寸法に対応する。第2絶縁部材12bが各電池10の側面に嵌め合わされると、複数のリブ12cが各電池10の底面を押圧する。これにより、各電池10の方向Zにおける位置決めがなされる。 面 A plurality of ribs 12c arranged in the stacking direction X of the battery 10 are provided on a surface of the second insulating member 12b facing the battery 10 side. The spacing between adjacent ribs 12c corresponds to the dimension between the main surfaces of battery 10. When the second insulating member 12b is fitted on the side surface of each battery 10, the plurality of ribs 12c press the bottom surface of each battery 10. Thereby, the positioning of each battery 10 in the direction Z is performed.
 電池積層体2は、一対のエンドプレート4で挟まれる。一対のエンドプレート4は、電池10の積層方向Xにおける電池積層体2の両端に配置される。一対のエンドプレート4は、積層方向Xにおける両端に位置する電池10と、第1絶縁部材12aを介して隣り合うように配置される。各エンドプレート4は、第1金属で構成される金属板からなる。第1金属としては、鉄、ステンレス鋼およびアルミニウムからなる群から選択される少なくとも1種が例示される。エンドプレート4と電池10との間に第1絶縁部材12aが配置されることで、両者が絶縁される。 The battery stack 2 is sandwiched between a pair of end plates 4. The pair of end plates 4 are arranged at both ends of the battery stack 2 in the stacking direction X of the battery 10. The pair of end plates 4 are arranged so as to be adjacent to the batteries 10 located at both ends in the stacking direction X via the first insulating member 12a. Each end plate 4 is made of a metal plate made of a first metal. Examples of the first metal include at least one selected from the group consisting of iron, stainless steel, and aluminum. By arranging the first insulating member 12a between the end plate 4 and the battery 10, both are insulated.
 拘束部材6は、バインドバーとも呼ばれ、電池10の積層方向Xに長い長尺状の部材である。本実施の形態では、電池10の積層方向Xと直交する方向Y、つまり正極端子18a、弁部20および負極端子18bが並ぶ方向に、一対の拘束部材6が配列される。一対の拘束部材6の間には、電池積層体2および一対のエンドプレート4が配置される。各拘束部材6は、電池10の側面に平行な矩形状の平面部6aと、平面部6aの上辺および下辺から電池10側に突出する庇部6bと、を有する。 The restraining member 6 is also called a bind bar, and is a long member that is long in the stacking direction X of the battery 10. In the present embodiment, a pair of restraining members 6 are arranged in a direction Y orthogonal to the stacking direction X of the battery 10, that is, a direction in which the positive electrode terminal 18a, the valve portion 20, and the negative electrode terminal 18b are arranged. The battery stack 2 and the pair of end plates 4 are arranged between the pair of restraining members 6. Each restraining member 6 has a rectangular flat portion 6 a parallel to the side surface of the battery 10, and an eave portion 6 b protruding from the upper side and lower side of the flat portion 6 a toward the battery 10.
 各拘束部材6の平面部6aに一対のエンドプレート4が係合することで、複数の電池10が積層方向Xに拘束される。平面部6aにおける各エンドプレート4と対向する表面には、コンタクトプレート22が溶接等により固定されている。コンタクトプレート22は、電池10の上面と底面が並ぶ方向Zに長い部材であり、エンドプレート4と対向する面に溝部22aを有する。溝部22aの底面には、コンタクトプレート22における平面部6aに接する面まで至る貫通孔22bが設けられている。本実施の形態では、3つの貫通孔22bが方向Zに所定の間隔をあけて、溝部22a内に配置されている。 電池 The plurality of batteries 10 are restrained in the stacking direction X by the pair of end plates 4 being engaged with the flat portions 6a of each restraining member 6. A contact plate 22 is fixed to the surface of the flat portion 6a facing each end plate 4 by welding or the like. The contact plate 22 is a member that is long in the direction Z in which the top surface and the bottom surface of the battery 10 are aligned, and has a groove 22 a on a surface facing the end plate 4. In the bottom surface of the groove portion 22a, a through hole 22b is provided to reach the surface of the contact plate 22 that is in contact with the plane portion 6a. In the present embodiment, three through holes 22b are arranged in the groove 22a at predetermined intervals in the direction Z.
 平面部6aには、コンタクトプレート22の貫通孔22bに対応する位置に、貫通孔7が設けられている。また、エンドプレート4は、平面部6aと対向する面に、方向Zに長い凸部4aを有する。凸部4aの形状は、溝部22aの形状に対応する。凸部4aには、コンタクトプレート22の貫通孔22bに対応する位置に、締結孔4bが設けられている。 貫通 The through-hole 7 is provided in the plane portion 6 a at a position corresponding to the through-hole 22 b of the contact plate 22. The end plate 4 has a protruding portion 4a long in the direction Z on a surface facing the flat portion 6a. The shape of the protrusion 4a corresponds to the shape of the groove 22a. The protrusion 4a is provided with a fastening hole 4b at a position corresponding to the through hole 22b of the contact plate 22.
 凸部4aが溝部22aに嵌め込まれることで、拘束部材6とエンドプレート4とが連結される。凸部4aが溝部22aに嵌め込まれた状態で、拘束部材6の貫通孔7、コンタクトプレート22の貫通孔22bおよびエンドプレート4の締結孔4bが重なり合う。ここに、ねじ等の締結部材24が挿通されることで、エンドプレート4と拘束部材6とが固定される。 拘束 The restricting member 6 and the end plate 4 are connected by fitting the convex portion 4a into the groove portion 22a. With the protrusion 4a fitted into the groove 22a, the through hole 7 of the restraining member 6, the through hole 22b of the contact plate 22, and the fastening hole 4b of the end plate 4 overlap. Here, the fastening member 24 such as a screw is inserted, whereby the end plate 4 and the restraining member 6 are fixed.
 電池10の膨張によって積層方向Xにおける電池積層体2の寸法が大きくなると、凸部4aには剪断方向の力がかかる。また、拘束部材6には、両端が引っ張られる方向の力がかかる。これにより、電池積層体2の寸法の増大、ひいては電池10の膨張を押さえ込むことができる。一般に金属は、曲げ強さよりも引っ張り強さのほうが強い。 (4) When the size of the battery stack 2 in the stacking direction X increases due to the expansion of the battery 10, a force in the shearing direction is applied to the protrusion 4a. Further, a force is applied to the restraining member 6 in a direction in which both ends are pulled. Thereby, the increase in the size of the battery stack 2 and the expansion of the battery 10 can be suppressed. In general, metals have higher tensile strength than bending strength.
 積層方向Xにおける拘束部材6の両端部には、固定部26が配置される。電池モジュール1は、固定部26によって電池パックの筐体や車体などの固定対象に固定される。固定部26は、図示しない締結部材が挿通される貫通孔26aを有する。固定対象は図示しない締結孔を有し、この締結孔と貫通孔26aとが重ね合わされ、ここに締結部材が挿通されることで、電池モジュール1が固定対象に固定される。なお、固定部26は、溶接等の他の方法によって固定対象に固定されてもよい。 固定 At both ends of the restraining member 6 in the stacking direction X, the fixing portions 26 are arranged. The battery module 1 is fixed to a fixing target such as a battery pack housing or a vehicle body by a fixing unit 26. The fixing portion 26 has a through hole 26a into which a fastening member (not shown) is inserted. The object to be fixed has a fastening hole (not shown), and the fastening hole and the through-hole 26a are overlapped with each other, and the fastening member is inserted therethrough, whereby the battery module 1 is fixed to the object to be fixed. Note that the fixing portion 26 may be fixed to the fixing target by another method such as welding.
 緩衝部材8は、電池10の膨張を適度に許容しながら電池10を積層方向Xに押さえ付ける部材である。以下、緩衝部材8の形状および配置について、図2(A)~図4(B)を参照しながら詳細に説明する。 The cushioning member 8 is a member that presses the battery 10 in the stacking direction X while appropriately allowing the battery 10 to expand. Hereinafter, the shape and arrangement of the cushioning member 8 will be described in detail with reference to FIGS. 2 (A) to 4 (B).
 図2(A)は、電池の積層方向から見た緩衝部材の模式図である。図2(B)は、図2
(A)におけるA-A線に沿った断面図である。図3(A)は、電池の積層方向から見たエンドプレートの模式図である。図3(B)は、図3(A)のB-B線に沿った断面図である。図4(A)は、互いに組み付けられた状態にあるエンドプレート、緩衝部材および電池を電池の積層方向から見たときの模式図である。図4(B)は、図4(A)におけるC-C線に沿った断面図である。なお、図4(A)では、電池10を透視した状態を図示し、セパレータ12の図示を省略している。また、図4(B)では、電池10の内部構造の図示を省略している。
FIG. 2A is a schematic view of the cushioning member viewed from the stacking direction of the battery. FIG.
FIG. 3A is a cross-sectional view along the line AA in FIG. FIG. 3A is a schematic view of the end plate viewed from the stacking direction of the battery. FIG. 3B is a cross-sectional view taken along line BB of FIG. 3A. FIG. 4A is a schematic diagram when the end plate, the buffer member, and the battery in a state where they are assembled to each other are viewed from the stacking direction of the batteries. FIG. 4B is a cross-sectional view taken along line CC in FIG. 4A. In FIG. 4A, a state in which the battery 10 is seen through is illustrated, and the illustration of the separator 12 is omitted. 4B, illustration of the internal structure of the battery 10 is omitted.
 緩衝部材8は、エンドプレート4と電池10との間に介在する。緩衝部材8は、セパレータ12の第1絶縁部材12aを介して電池10に当接する。緩衝部材8は、少なくとも一部が、エンドプレート4を構成する第1金属よりもヤング率の小さい第2金属で構成される。なお、当然のことながら第2金属のヤング率は、ゴム等の樹脂のヤング率よりは大きい。また、第2金属は、電池10の膨張によって印加される力が第2金属の耐力を超えないように、その種類が選択される。第2金属としては、マグネシウムおよびマグネシウム合金からなる群から選択される少なくとも1種が例示される。一例として、第2金属のヤング率は40~50GPaであり、耐力は150~300MPaである。また、第1金属のヤング率は60~220GPaである。 The buffer member 8 is interposed between the end plate 4 and the battery 10. The buffer member 8 comes into contact with the battery 10 via the first insulating member 12a of the separator 12. The buffer member 8 is at least partially made of a second metal having a Young's modulus smaller than the first metal forming the end plate 4. The Young's modulus of the second metal is naturally larger than the Young's modulus of a resin such as rubber. The type of the second metal is selected so that the force applied by the expansion of the battery 10 does not exceed the proof stress of the second metal. Examples of the second metal include at least one selected from the group consisting of magnesium and a magnesium alloy. As an example, the second metal has a Young's modulus of 40 to 50 GPa and a proof stress of 150 to 300 MPa. The first metal has a Young's modulus of 60 to 220 GPa.
 本実施の形態の緩衝部材8は、複数の断片部28と、支持プレート30と、を有する。各断片部28は、直方体形状あるいは四角柱状であり、第2金属で構成される。支持プレート30は、複数の断片部28を支持する板状部材である。支持プレート30は、エンドプレート4と同じ第1金属で構成されてもよいし、断片部28と同じ第2金属で構成されてもよい。また、支持プレート30は、第1金属および第2金属とは異なる金属で構成されてもよい。 緩衝 The cushioning member 8 of the present embodiment has a plurality of fragments 28 and a support plate 30. Each fragment 28 has a rectangular parallelepiped shape or a quadrangular prism shape, and is made of a second metal. The support plate 30 is a plate-like member that supports the plurality of fragments 28. The support plate 30 may be made of the same first metal as the end plate 4, or may be made of the same second metal as the fragment 28. Further, the support plate 30 may be made of a metal different from the first metal and the second metal.
 各断片部28は、支持プレート30の主表面にマトリクス状に配置される。各断片部28は、任意の一面が支持プレート30の主表面に接合される。支持プレート30が第2金属で構成される場合には、複数の断片部28と支持プレート30とは一体成形されたものであってもよい。支持プレート30の主表面からの各断片部28の突出高さは、揃っていることが望ましい。 断 片 The fragments 28 are arranged in a matrix on the main surface of the support plate 30. Each of the fragment portions 28 has one arbitrary surface joined to the main surface of the support plate 30. When the support plate 30 is made of the second metal, the plurality of fragments 28 and the support plate 30 may be integrally formed. It is desirable that the projecting heights of the respective fragments 28 from the main surface of the support plate 30 are uniform.
 支持プレート30は、エンドプレート4の主表面4cに対して平行に拡がるように配置される。つまり、支持プレート30は、電池10の積層方向Xと直交するYZ平面に対して平行に拡がる。したがって、複数の断片部28は、エンドプレート4の主表面4cに対して平行に配列される。 The support plate 30 is disposed so as to extend in parallel with the main surface 4c of the end plate 4. That is, the support plate 30 extends parallel to the YZ plane orthogonal to the stacking direction X of the battery 10. Therefore, the plurality of fragments 28 are arranged in parallel with the main surface 4c of the end plate 4.
 エンドプレート4は、電池10側を向く主表面4cに、電池10側を向く凹部32を有する。つまり、エンドプレート4は、凹部32の開口が電池10側を向くようにして、電池積層体2に組み付けられる。凹部32は、電池10の積層方向Xから見て、主表面4cのおおよそ中央に配置される。また、凹部32の開口形状は、積層方向Xから見た支持プレート30の輪郭と相似形状である。緩衝部材8は、支持プレート30が凹部32の底面側を向き、複数の断片部28が電池10側を向くように姿勢が定められて、凹部32内に配置される。 The end plate 4 has a concave portion 32 facing the battery 10 on the main surface 4c facing the battery 10. That is, the end plate 4 is assembled to the battery stack 2 such that the opening of the concave portion 32 faces the battery 10 side. The concave portion 32 is arranged approximately at the center of the main surface 4c when viewed from the stacking direction X of the battery 10. The shape of the opening of the recess 32 is similar to the contour of the support plate 30 as viewed in the stacking direction X. The cushioning member 8 is arranged in the recess 32 such that the support plate 30 faces the bottom side of the recess 32 and the plurality of fragments 28 face the battery 10 side.
 凹部32の深さは、断片部28と支持プレート30とが並ぶ方向における緩衝部材8の寸法と同等である。このため、緩衝部材8が凹部32内に配置された状態で、各断片部28の電池10側を向く面と、エンドプレート4の電池10側を向く主表面4cとは、同一平面内に配置される。したがって、エンドプレート4が電池積層体2に組み付けられた状態で、各断片部28とエンドプレート4の主表面4cとが、第1絶縁部材12aを介して電池10に接する。なお、凹部32の深さは、緩衝部材8が凹部32内に配置された状態で、各断片部28の電池10側を向く面が、エンドプレート4の電池10側を向く主表面4cよりも、外側に突出するように構成してもよい。この構成の場合、各断片部28の突出量は、各断片部28にかかる負荷が第2金属の耐力限界を超えない程度となるように設計されることが好ましい。 深 The depth of the recess 32 is equal to the dimension of the cushioning member 8 in the direction in which the fragment 28 and the support plate 30 are arranged. For this reason, in a state where the cushioning member 8 is disposed in the concave portion 32, the surface of each fragment portion 28 facing the battery 10 and the main surface 4c of the end plate 4 facing the battery 10 are disposed on the same plane. Is done. Therefore, in a state where the end plate 4 is assembled to the battery stack 2, each fragment portion 28 and the main surface 4 c of the end plate 4 are in contact with the battery 10 via the first insulating member 12 a. The depth of the recess 32 is such that the surface of each fragment 28 facing the battery 10 is larger than the main surface 4c of the end plate 4 facing the battery 10 in a state where the cushioning member 8 is disposed in the recess 32. , May be configured to protrude outward. In the case of this configuration, it is preferable that the projecting amount of each fragment portion 28 is designed so that the load applied to each fragment portion 28 does not exceed the proof stress limit of the second metal.
 また、エンドプレート4の凹部32は、電池10の積層方向Xから見て、電池10の中心10Cと重なるように配置される。したがって、緩衝部材8は、電池10の積層方向Xから見て、電池10の中心10Cと重なるように配置される。電池10の中心10Cは例えば、積層方向Xから見た電池10の輪郭形状の幾何中心、あるいは幾何学的重心である。 {Circle around (4)} The concave portion 32 of the end plate 4 is disposed so as to overlap the center 10C of the battery 10 when viewed from the stacking direction X of the battery 10. Therefore, the buffer member 8 is arranged so as to overlap the center 10 </ b> C of the battery 10 when viewed from the stacking direction X of the battery 10. The center 10C of the battery 10 is, for example, the geometric center of the contour shape of the battery 10 viewed from the stacking direction X or the geometric center of gravity.
 以上説明したように、本実施の形態に係る電池モジュール1は、積層された複数の電池10を有する電池積層体2と、第1金属で構成され、電池10の積層方向Xにおける電池積層体2の両端に配置される一対のエンドプレート4と、一対のエンドプレート4と係合して複数の電池10を拘束する拘束部材と、エンドプレート4と電池10との間に介在し、少なくとも一部が、第1金属よりもヤング率の小さい第2金属で構成される緩衝部材8と、を備える。 As described above, the battery module 1 according to the present embodiment includes the battery stack 2 having the plurality of stacked batteries 10 and the first metal, and includes the battery stack 2 in the stacking direction X of the battery 10. , A pair of end plates 4 disposed at both ends, a restraining member that engages the pair of end plates 4 and restrains the plurality of batteries 10, and is interposed between the end plates 4 and the batteries 10 and at least partially And a buffer member 8 made of a second metal having a smaller Young's modulus than the first metal.
 充電等により電池10が膨張した場合、電池10は方向Yおよび方向Zに比べて積層方向Xに大きく変形する。これにより、エンドプレート4および緩衝部材8には、積層方向Xの力がかかる。また、一対のエンドプレート4に力がかかることで、拘束部材6には積層方向Xに引っ張られる方向の力がかかる。これに対し、本実施の形態の緩衝部材8は、少なくとも一部に、エンドプレート4を構成する第1金属よりもヤング率の小さい第2金属で構成される部分を有する。このため、電池10が膨張すると、緩衝部材8が優先的に弾性変形する。これにより、電池10の膨張によってエンドプレート4や拘束部材6に生じる応力を緩和することができ、複数の電池10が拘束された状態を安定的に維持することができる。 When the battery 10 expands due to charging or the like, the battery 10 is greatly deformed in the stacking direction X as compared with the directions Y and Z. As a result, a force in the stacking direction X is applied to the end plate 4 and the buffer member 8. When a force is applied to the pair of end plates 4, a force is applied to the restraining member 6 in a direction in which the restraining member 6 is pulled in the stacking direction X. On the other hand, the cushioning member 8 of the present embodiment has, at least in part, a portion made of a second metal having a smaller Young's modulus than the first metal forming the end plate 4. Therefore, when the battery 10 expands, the cushioning member 8 is preferentially elastically deformed. Thereby, the stress generated in the end plate 4 and the restraint member 6 due to the expansion of the battery 10 can be reduced, and the restrained state of the plurality of batteries 10 can be stably maintained.
 一方で、第2金属はゴム等の樹脂に比べてヤング率が大きいため、樹脂に比べて電池10の膨張を押さえ込むことができる。これにより、電池10の積層方向Xにおける変位量を低減することができる。例えば、電池10の変位量は1mm以下、より好ましくは0.4mm以下に抑えられる。よって、電池容積の増大にともなう電解液の水位の低下を抑制することができ、その結果、各電池10の容量の低下を抑制することができる。特に、緩衝部材8は、電池10がEOLに至って電池10の膨張量が著しく増大した場合に、弾性変形して電池10の膨張を許容する機能と、各電池10の膨張を押さえ込む機能とをバランスよく発揮する。 On the other hand, since the second metal has a higher Young's modulus than a resin such as rubber, the expansion of the battery 10 can be suppressed as compared with the resin. Thereby, the amount of displacement of the battery 10 in the stacking direction X can be reduced. For example, the displacement of the battery 10 is suppressed to 1 mm or less, more preferably 0.4 mm or less. Therefore, a decrease in the water level of the electrolytic solution due to an increase in the battery capacity can be suppressed, and as a result, a decrease in the capacity of each battery 10 can be suppressed. In particular, the buffering member 8 balances the function of allowing the battery 10 to expand by elastic deformation when the battery 10 reaches EOL and the amount of expansion of the battery 10 significantly increases, and the function of suppressing the expansion of each battery 10. Demonstrate well.
 したがって、本実施の形態によれば、電池モジュール1における電池10の安定的な拘束と容量の維持との両立を図ることができる。また、緩衝部材8によって電池10の寸法変化を許容しているため、エンドプレート4や拘束部材6に要求される剛性を下げることができる。よって、エンドプレート4や拘束部材6の剛性確保にともなう電池モジュール1の大型化、重量増加およびコスト増加を回避することができる。 Therefore, according to the present embodiment, it is possible to achieve both stable restraint of battery 10 and maintenance of capacity in battery module 1. Further, since the dimensional change of the battery 10 is allowed by the buffer member 8, the rigidity required for the end plate 4 and the restraining member 6 can be reduced. Therefore, it is possible to avoid an increase in the size, weight, and cost of the battery module 1 due to securing the rigidity of the end plate 4 and the restraining member 6.
 また、本実施の形態の緩衝部材8は、第2金属で構成される複数の断片部28を有する。複数の断片部28は、エンドプレート4の主表面4cに対して平行に配列される。したがって、電池10は、複数の断片部28で押さえ付けられる。このように、緩衝部材8において第2金属で構成される部分を複数に分割する、つまり複数の断片部28とすることで、当該部分をより弾性変形しやすくすることができる。よって、電池10の膨張によってエンドプレート4や拘束部材6にかかる負荷を、より確実に軽減することができる。また、電池10の膨張によって緩衝部材8にかかる力が第2金属の耐力を超える可能性を低減することができる。 緩衝 The cushioning member 8 of the present embodiment has a plurality of fragments 28 made of the second metal. The plurality of fragments 28 are arranged in parallel to the main surface 4c of the end plate 4. Therefore, the battery 10 is pressed down by the plurality of fragments 28. As described above, by dividing the portion made of the second metal in the cushioning member 8 into a plurality of pieces, that is, by forming a plurality of pieces 28, the portion can be more easily elastically deformed. Therefore, the load on the end plate 4 and the restraint member 6 due to the expansion of the battery 10 can be reduced more reliably. Further, it is possible to reduce the possibility that the force applied to the buffer member 8 due to the expansion of the battery 10 exceeds the proof stress of the second metal.
 また、緩衝部材8は、複数の断片部28を支持する支持プレート30を有する。これにより、複数の断片部28を設けることで電池モジュール1の組み立てが複雑になることを回避することができる。また、エンドプレート4は、電池10側を向く主表面4cに凹部32を有する。そして、緩衝部材8は、凹部32内に配置される。これにより、緩衝部材8の位置決めを簡単に行うことができる。また、緩衝部材8を設けることによる電池モジュール1の大型化を抑制することができる。 緩衝 The buffer member 8 has a support plate 30 that supports the plurality of fragments 28. Accordingly, it is possible to prevent the assembly of the battery module 1 from becoming complicated due to the provision of the plurality of fragments 28. The end plate 4 has a concave portion 32 on the main surface 4c facing the battery 10 side. And the buffer member 8 is arrange | positioned in the recessed part 32. FIG. Thereby, the positioning of the buffer member 8 can be easily performed. Further, the provision of the buffer member 8 can suppress an increase in the size of the battery module 1.
 また、緩衝部材8は、電池10の積層方向Xから見て、電池10の中心10Cと重なるように配置される。電池10が膨張した場合、電池10の中心10Cは、他の部位に比べて積層方向Xへの変位量が大きい。したがって、緩衝部材8を中心10Cと重なるように配置することで、電池10の膨張によってエンドプレート4や拘束部材6にかかる負荷を、より確実に軽減することができる。 The buffer member 8 is disposed so as to overlap the center 10C of the battery 10 when viewed from the stacking direction X of the battery 10. When the battery 10 expands, the displacement of the center 10C of the battery 10 in the stacking direction X is larger than that of other portions. Therefore, by arranging the buffer member 8 so as to overlap the center 10 </ b> C, the load on the end plate 4 and the restraint member 6 due to the expansion of the battery 10 can be reduced more reliably.
(実施の形態2)
 実施の形態2に係る電池モジュールは、緩衝部材の設置姿勢が異なる点を除き、実施の形態1と共通の構成を有する。以下、本実施の形態に係る電池モジュールについて実施の形態1と異なる構成を中心に説明し、共通する構成については簡単に説明するか、あるいは説明を省略する。図5は、実施の形態2に係る電池モジュールの一部分を模式的に示す断面図である。なお、図5では、拘束部材6および電池10の内部構造の図示を省略している。
(Embodiment 2)
The battery module according to the second embodiment has the same configuration as that of the first embodiment except that the installation position of the buffer member is different. Hereinafter, the battery module according to the present embodiment will be described focusing on a configuration different from that of the first embodiment, and a common configuration will be briefly described or description thereof will be omitted. FIG. 5 is a cross-sectional view schematically illustrating a part of the battery module according to the second embodiment. In FIG. 5, illustration of the internal structure of the restraining member 6 and the battery 10 is omitted.
 本実施の形態に係る電池モジュール1は、実施の形態1と同様に、電池積層体2と、一対のエンドプレート4と、拘束部材6と、緩衝部材8と、を備える。緩衝部材8は、エンドプレート4と電池10との間に介在する。緩衝部材8は、複数の断片部28と、支持プレート30と、を有する。各断片部28は、第2金属で構成され、支持プレート30の主表面上に配列される。 The battery module 1 according to the present embodiment includes the battery stack 2, the pair of end plates 4, the restraining member 6, and the buffer member 8, as in the first embodiment. The buffer member 8 is interposed between the end plate 4 and the battery 10. The buffer member 8 has a plurality of fragment portions 28 and a support plate 30. Each fragment 28 is made of a second metal and is arranged on the main surface of the support plate 30.
 本実施の形態では、緩衝部材8がエンドプレート4に組み付けられた状態で、支持プレート30は複数の断片部28よりも電池10側に配置される。つまり、複数の断片部28と電池10との間に、支持プレート30が介在する。複数の断片部28は、先端が凹部32の底面に当接する。したがって、実施の形態1では緩衝部材8が複数の点で電池10に接するが、本実施の形態では緩衝部材8が面で電池10に接する。これにより、電池10が緩衝部材8に押し付けられることで、外装缶14に凹凸が生じる可能性を低減することができる。これにより、電池10の発電性能の低下を抑制することができる。 In the present embodiment, the support plate 30 is disposed closer to the battery 10 than the plurality of fragments 28 in a state where the cushioning member 8 is assembled to the end plate 4. That is, the support plate 30 is interposed between the plurality of fragments 28 and the battery 10. The tips of the plurality of fragments 28 abut the bottom surface of the recess 32. Therefore, in the first embodiment, the cushioning member 8 contacts the battery 10 at a plurality of points, but in the present embodiment, the cushioning member 8 contacts the battery 10 on the surface. Accordingly, the possibility that the battery 10 is pressed against the cushioning member 8 to cause irregularities in the outer can 14 can be reduced. As a result, a decrease in the power generation performance of the battery 10 can be suppressed.
 以上、本発明の実施の形態について詳細に説明した。前述した実施の形態は、本発明を実施するにあたっての具体例を示したものにすぎない。実施の形態の内容は、本発明の技術的範囲を限定するものではなく、請求の範囲に規定された発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。設計変更が加えられた新たな実施の形態は、組み合わされる実施の形態および変形それぞれの効果をあわせもつ。前述の実施の形態では、このような設計変更が可能な内容に関して、「本実施の形態の」、「本実施の形態では」等の表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。以上の構成要素の任意の組み合わせも、本発明の態様として有効である。図面の断面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。 The embodiments of the present invention have been described above in detail. The above-described embodiments are merely specific examples for implementing the present invention. The contents of the embodiments do not limit the technical scope of the present invention, and many design changes such as component changes, additions, and deletions are made without departing from the spirit of the invention defined in the claims. Is possible. The new embodiment with the design change has the effects of the combined embodiment and modification. In the above-described embodiment, such contents that can be changed in design are emphasized with notations such as “of the present embodiment” and “in the present embodiment”. The design change is allowed even for the contents without the. Any combination of the above components is also effective as an aspect of the present invention. The hatching attached to the cross section of the drawing does not limit the material to which hatching is applied.
 緩衝部材8は、一方のエンドプレート4のみに設けられてもよい。緩衝部材8は、エンドプレート4に接合されてもよい。例えば、緩衝部材8は複数の断片部28のみからなり、エンドプレート4に複数の断片部28が直に接合されてもよい。緩衝部材8において第2金属で構成される部分は、一枚の平板であってもよい。緩衝部材8は、全体が第2金属で構成されてもよい。電池積層体2が備える電池10の数は、特に限定されない。セパレータ12の形状やエンドプレート4と拘束部材6との締結構造などを含む、電池モジュール1の各部の構造は、適宜変更することができる。 The buffer member 8 may be provided only on one end plate 4. The buffer member 8 may be joined to the end plate 4. For example, the buffer member 8 may include only the plurality of fragments 28, and the plurality of fragments 28 may be directly joined to the end plate 4. The portion made of the second metal in the buffer member 8 may be a single flat plate. The buffer member 8 may be entirely made of a second metal. The number of batteries 10 included in the battery stack 2 is not particularly limited. The structure of each part of the battery module 1, including the shape of the separator 12 and the fastening structure between the end plate 4 and the restraining member 6, can be appropriately changed.
 1 電池モジュール、 2 電池積層体、 4 エンドプレート、 4c 主表面、 6 拘束部材、 8 緩衝部材、 10 電池、 10C 中心、 28 断片部、 30 支持プレート、 32 凹部。 {1} battery module, {2} battery stack, {4} end plate, {4c} main surface, {6} restraint member, {8} buffer member, {10} battery, {10C} center, {28} fragment, {30} support plate, {32} recess.

Claims (6)

  1.  積層された複数の電池を有する電池積層体と、
     第1金属で構成され、前記電池の積層方向における前記電池積層体の両端に配置される一対のエンドプレートと、
     前記一対のエンドプレートと係合して前記複数の電池を拘束する拘束部材と、
     前記エンドプレートと前記電池との間に介在し、少なくとも一部が、前記第1金属よりもヤング率の小さい第2金属で構成される緩衝部材と、を備えることを特徴とする電池モジュール。
    A battery stack having a plurality of stacked batteries,
    A pair of end plates formed of a first metal and disposed at both ends of the battery stack in the stacking direction of the battery;
    A restraining member that engages with the pair of end plates and restrains the plurality of batteries;
    A battery module, comprising: a buffer member interposed between the end plate and the battery, at least a portion of which is made of a second metal having a lower Young's modulus than the first metal.
  2.  前記緩衝部材は、前記第2金属で構成される複数の断片部を有し、
     前記複数の断片部は、前記エンドプレートの主表面に対して平行に配列される請求項1に記載の電池モジュール。
    The buffer member has a plurality of fragments formed of the second metal,
    The battery module according to claim 1, wherein the plurality of fragments are arranged in parallel with a main surface of the end plate.
  3.  前記緩衝部材は、前記複数の断片部を支持する支持プレートを有する請求項2に記載の電池モジュール。 The battery module according to claim 2, wherein the cushioning member has a support plate that supports the plurality of fragments.
  4.  前記支持プレートは、前記複数の断片部よりも前記電池側に配置される請求項3に記載の電池モジュール。 The battery module according to claim 3, wherein the support plate is disposed closer to the battery than the plurality of fragments.
  5.  前記エンドプレートは、前記電池側を向く主表面に凹部を有し、
     前記緩衝部材は、前記凹部内に配置される請求項1乃至4のいずれか1項に記載の電池モジュール。
    The end plate has a concave portion on a main surface facing the battery side,
    The battery module according to claim 1, wherein the buffer member is disposed in the recess.
  6.  前記緩衝部材は、前記電池の積層方向から見て、前記電池の中心と重なるように配置される請求項1乃至5のいずれか1項に記載の電池モジュール。 6. The battery module according to claim 1, wherein the buffer member is disposed so as to overlap a center of the battery when viewed from a direction in which the batteries are stacked. 7.
PCT/JP2019/029352 2018-09-19 2019-07-26 Battery module WO2020059299A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018175026A JP2021193639A (en) 2018-09-19 2018-09-19 Battery module
JP2018-175026 2018-09-19

Publications (1)

Publication Number Publication Date
WO2020059299A1 true WO2020059299A1 (en) 2020-03-26

Family

ID=69888717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029352 WO2020059299A1 (en) 2018-09-19 2019-07-26 Battery module

Country Status (2)

Country Link
JP (1) JP2021193639A (en)
WO (1) WO2020059299A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014517995A (en) * 2011-05-27 2014-07-24 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト In particular, an energy storage module comprising a plurality of prismatic storage cells, a method of manufacturing the energy storage module, and a method of manufacturing an end plate of the energy storage module
CN206250254U (en) * 2016-12-27 2017-06-13 宁德时代新能源科技股份有限公司 Battery modules end board assembly and battery modules
JP2017152338A (en) * 2016-02-26 2017-08-31 株式会社豊田自動織機 Battery module
WO2018159275A1 (en) * 2017-03-01 2018-09-07 パナソニックIpマネジメント株式会社 Battery module
CN207967108U (en) * 2018-03-09 2018-10-12 宁德时代新能源科技股份有限公司 Battery modules end plate and battery modules

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014517995A (en) * 2011-05-27 2014-07-24 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト In particular, an energy storage module comprising a plurality of prismatic storage cells, a method of manufacturing the energy storage module, and a method of manufacturing an end plate of the energy storage module
JP2017152338A (en) * 2016-02-26 2017-08-31 株式会社豊田自動織機 Battery module
CN206250254U (en) * 2016-12-27 2017-06-13 宁德时代新能源科技股份有限公司 Battery modules end board assembly and battery modules
WO2018159275A1 (en) * 2017-03-01 2018-09-07 パナソニックIpマネジメント株式会社 Battery module
CN207967108U (en) * 2018-03-09 2018-10-12 宁德时代新能源科技股份有限公司 Battery modules end plate and battery modules

Also Published As

Publication number Publication date
JP2021193639A (en) 2021-12-23

Similar Documents

Publication Publication Date Title
US9786965B2 (en) Power source device
WO2019142645A1 (en) Power storage device
US9660230B2 (en) Battery pack having end plates
JP5490406B2 (en) Power supply for vehicle
US10497911B2 (en) Battery module, battery pack including battery module, and automobile including battery pack
EP3285310B1 (en) Assembled battery
US11742511B2 (en) Linked battery module and linked battery pack
JP2010040295A (en) Battery device
US20150171389A1 (en) Battery pack
US20200388801A1 (en) Battery module
JP2018506828A (en) Battery compression blocker and battery module including the same
CN110731023A (en) Bus bar and battery laminate
JP7307069B2 (en) Fixing structure of battery module
EP2450979B1 (en) Battery module
US20210328310A1 (en) Electricity storage device and electricity storage module
JP6520156B2 (en) Power storage device and power storage device module
CN110998908B (en) Restraint member and battery module
WO2020059299A1 (en) Battery module
US20220285773A1 (en) Buffer member and power storage module
WO2020235279A1 (en) Bus bar plate
WO2021106516A1 (en) Power storage module
US11563254B2 (en) Battery module and battery pack
JP2019087446A (en) Battery pack
US20220294069A1 (en) Buffer member and electrical storage module
KR20170047084A (en) Battery Protecting Structure And Battery Module Comprising The Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP