WO2020059146A1 - User terminal and wireless communication method - Google Patents

User terminal and wireless communication method Download PDF

Info

Publication number
WO2020059146A1
WO2020059146A1 PCT/JP2018/035207 JP2018035207W WO2020059146A1 WO 2020059146 A1 WO2020059146 A1 WO 2020059146A1 JP 2018035207 W JP2018035207 W JP 2018035207W WO 2020059146 A1 WO2020059146 A1 WO 2020059146A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
information
resource
transmission
measurement
Prior art date
Application number
PCT/JP2018/035207
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 松村
聡 永田
ジン ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2018/035207 priority Critical patent/WO2020059146A1/en
Priority to JP2020547603A priority patent/JP7315573B2/en
Publication of WO2020059146A1 publication Critical patent/WO2020059146A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP@Rel.10-14 LTE-Advanced
  • LTE Long Term Evolution
  • 5G + fifth generation mobile communication system
  • NR New Radio
  • 3GPP Rel. 15 or later A successor system to LTE (for example, 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), 3GPP Rel. 15 or later) is also being studied.
  • a user terminal In the existing LTE system (LTE Rel. 8-14), a user terminal (UE: User ⁇ Equipment) measures a predetermined reference signal and transmits channel state information (CSI: Channel ⁇ State ⁇ Information) to the base station.
  • UE User ⁇ Equipment
  • CSI Channel ⁇ State ⁇ Information
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • a plurality of transmission / reception points TRP: Transmission / Reception @ Point
  • multi-TRP multi-TRP
  • panels multi-panel
  • CSI types are required to be reported for dynamic scheduling.
  • the type of information to be reported, the size, and the like may be different depending on the CSI type.
  • the UE may not be able to transmit CSI reports of different CSI types based on RSs from different TRPs (or panels) at appropriate timing, and communication throughput may be reduced.
  • a user terminal a receiving unit that receives channel state information (CSI: Channel State Information) report setting information, and controls a plurality of CSI type CSI reports based on the CSI report setting information. And a control unit.
  • CSI Channel State Information
  • CSI reports of a plurality of CSI types can be appropriately performed.
  • FIGS. 5A and 5B are diagrams showing an example of RRC parameters relating to the correspondence between CSI-RS and panels.
  • 6A and 6B are diagrams illustrating an example of the RRC information element related to the CSI report configuration that can configure a plurality of CSI sets.
  • FIG. 7 is a diagram illustrating a first example of an RRC information element related to CSI resource configuration in which a plurality of CSI sets can be configured.
  • FIG. 8 is a diagram illustrating a second example of the RRC information element related to the CSI resource setting in which a plurality of CSI sets can be set.
  • FIG. 9 is a diagram illustrating a third example of the RRC information element related to the CSI resource setting in which a plurality of CSI sets can be set.
  • FIGS. 10A and 10B are diagrams illustrating an example of settings for inter-TRP interference measurement.
  • FIG. 11 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 12 is a diagram illustrating an example of a configuration of a base station according to one embodiment.
  • FIG. 13 is a diagram illustrating an example of a configuration of a user terminal according to an embodiment.
  • FIG. 14 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
  • the UE measures a channel state using a predetermined reference signal (or a resource for the reference signal), and feeds back (reports) channel state information (CSI: Channel State Information) to the base station.
  • CSI Channel State Information
  • the UE includes a channel state information reference signal (CSI-RS: Channel State Information Reference Signal), a synchronization signal / broadcast channel (SS / PBCH: Synchronization Signal / Physical Broadcast Channel) block, a synchronization signal (SS: Synchronization Signal), and demodulation.
  • CSI-RS Channel State Information Reference Signal
  • SS / PBCH Synchronization Signal / Physical Broadcast Channel
  • SS Synchronization Signal
  • demodulation demodulation.
  • the channel state may be measured using a reference signal (DMRS: DeModulation Reference Signal) or the like.
  • the CSI-RS resource may include at least one of a non-zero power (NZP) CSI-RS resource, a zero power (ZP: Zero Power) CSI-RS resource, and a CSI-IM (Interference Measurement) resource.
  • NZP non-zero power
  • ZP Zero Power
  • CSI-IM Interference Measurement
  • SMR Signal Measurement Resource
  • the SMR may include, for example, NZP @ CSI-RS resources for channel measurement, SSB, and the like.
  • a resource for measuring an interference component for CSI may be referred to as an interference measurement resource (IMR: Signal Measurement Resource).
  • the IMR may include, for example, at least one of an NZP @ CSI-RS resource, an SSB, a ZP @ CSI-RS resource, and a CSI-IM resource for interference measurement.
  • the SS / PBCH block is a block including a synchronization signal (for example, a primary synchronization signal (PSS: Primary Synchronization Signal), a secondary synchronization signal (SSS: Secondary Synchronization Signal)) and a PBCH (and a corresponding DMRS).
  • a synchronization signal for example, a primary synchronization signal (PSS: Primary Synchronization Signal), a secondary synchronization signal (SSS: Secondary Synchronization Signal)
  • SSS Secondary Synchronization Signal
  • PBCH and a corresponding DMRS
  • the CSI includes a channel quality indicator (CQI: Channel Quality Indicator), a precoding matrix indicator (PMI: Precoding Matrix Indicator), a CSI-RS resource indicator (CRI: CSI-RS Resource Indicator), and an SS / PBCH block resource indicator (CRI-RS Resource Indicator).
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • CRI CSI-RS resource indicator
  • SS / PBCH block resource indicator CRI-RS Resource Indicator
  • SSBRI SS / PBCH Block Indicator
  • layer indicator LI: Layer Indicator
  • rank indicator RI: Rank Indicator
  • L1-RSRP reference signal reception power in layer 1 (Layer 1 Reference Signal Received ⁇ ⁇ ⁇ ⁇ Power)
  • L1- It may include at least one of RSRQ (Reference Signal Received Quality), L1-SINR (Signal to Interference Plus Noise Ratio), L1-SNR (Signal to Noise Ratio), and the like.
  • the CSI part 1 may include information having a relatively small number of bits (for example, RI).
  • the CSI part 2 may include information having a relatively large number of bits (for example, CQI), such as information determined based on the CSI part 1.
  • CSI may be classified into several CSI types.
  • the type of information to be reported, the size, and the like may be different depending on the CSI type.
  • a CSI type set for performing communication using a single beam also referred to as a type 1 (type @ I) @CSI, a CSI for a single beam, etc.
  • a CSI set for performing communication using a multi-beam Type also referred to as type 2 (type II) CSI, multi-beam CSI, etc.
  • the usage application of the CSI type is not limited to this.
  • Measurement results (eg, CSI) reported for beam management may be referred to as beam measurements, beam measurements, beam measurement reports, and so on.
  • Periodic @ CSI Periodic @ CSI
  • A-CSI Aperiodic @ CSI
  • SP-CSI Semi-Persistent @ CSI
  • the UE may be notified of the CSI measurement setting information using higher layer signaling, physical layer signaling, or a combination thereof.
  • the upper layer signaling may be, for example, any one of RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, and the like, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the MAC signaling may be, for example, a MAC control element (MAC CE (Control Element)) or a MAC PDU (Protocol Data Unit).
  • the broadcast information includes, for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), minimum system information (RMSI: Remaining Minimum System Information), and other system information (OSI: Other). System @ Information).
  • the physical layer signaling may be, for example, downlink control information (DCI: Downlink Control Information).
  • DCI Downlink Control Information
  • the CSI measurement setting information may be set using, for example, the RRC information element “CSI-MeasConfig”.
  • the CSI measurement configuration information may include CSI resource configuration information (RRC information element “CSI-ResourceConfig”), CSI report configuration information (RRC information element “CSI-ReportConfig”), and the like.
  • FIGS. 1A and 1B are diagrams showing examples of RRC information elements related to CSI report settings and CSI resource settings.
  • an excerpt of a field (which may be called a parameter) included in the information element is shown.
  • 1A and 1B show the ASN. 1 (Abstract ⁇ Syntax ⁇ Notation ⁇ One) notation. Note that drawings relating to other RRC information elements (or RRC parameters) of the present disclosure are also described in a similar notation.
  • the CSI report configuration information (“CSI-ReportConfig”) includes channel measurement resource information (“resourcesForChannelMeasurement”). Further, the CSI report setting information may include NZP @ CSI-RS resource information for interference measurement (“nzp-CSI-RS-ResourcesForInterference”), CSI-IM resource information for interference measurement (“csi-IM-ResourcesForInterference”), and the like. Good. These resource information correspond to the ID (Identifier) (“CSI-ResourceConfigId”) of the CSI resource configuration information.
  • ID Identifier
  • the ID of the CSI resource setting information corresponding to each resource information (which may be referred to as a CSI resource setting ID) may have different values.
  • the CSI resource setting information (“CSI-ResourceConfig”) may include a CSI resource setting information ID, CSI-RS resource set list information (“csi-RS-ResourceSetList”), and the like.
  • the CSI-RS resource set list includes NZP @ CSI-RS and SSB information for measurement (“nzp-CSI-RS-SSB”), CSI-IM resource set list information (“csi-IM-ResourceSetList”). ,including.
  • the channel measurement resource may be used for calculating CQI, PMI, L1-RSRP, and the like, for example.
  • the interference measurement resource may be used for calculating L1-SINR, L1-SNR, L1-RSRQ, and other indexes related to interference.
  • each CSI-RS for channel measurement is based on the order of the CSI-RS resource and the CSI-IM resource in the corresponding resource set, and the CSI-IM resource from the resource point of view. May be associated.
  • Nzp-CSI-RS-SSB includes NZP @ CSI-RS resource set list information ("nzp-CSI-RS-ResourceSetList”) and SSB resource set list information for CSI measurement ("csi-SSB-ResourceSetList”). May be included. These list information respectively correspond to one or more NZP @ CSI-RS resource set IDs ("CSI-ResourceConfigId”) and CSI-SSB resource set IDs ("CSI-SSB-ResourceSetId”), and It may be used to identify resources.
  • CSI-ResourceConfigId CSI-RS resource set IDs
  • CSI-SSB-ResourceSetId CSI-SSB resource set IDs
  • FIGS. 2A and 2B are diagrams illustrating examples of RRC information elements related to the NZP CSI-RS resource set and the CSI-SSB resource set.
  • the NZP @ CSI-RS resource set information (“NZP-CSI-RS-ResourceSet”) includes an NZP @ CSI-RS resource set ID and one or more NZP @ CSI-RS resource IDs ("NZP-CSI-RS resource set").
  • CSI-RS-ResourceId CSI-RS-ResourceId .
  • the NZP @ CSI-RS resource information (“NZP-CSI-RS-Resource”) includes an NZP @ CSI-RS resource ID and a transmission setting instruction state (TCI state (Transmission Configuration Indication state)) ID (“TCI-stateId”). And may be included.
  • TCI state will be described later.
  • the CSI-SSB resource set information (“CSI-SSB-ResourceSet”) includes a CSI-SSB resource set ID and one or more SSB index information (“SSB-Index”).
  • the SSB index information is, for example, an integer of 0 or more and 63 or less, and may be used to identify the SSB in the SS burst.
  • NR In NR, it is considered to control a reception process (for example, at least one of reception, demapping, demodulation, and decoding) of at least one of a signal and a channel (expressed as a signal / channel) based on a TCI state. I have.
  • the TCI state is information on pseudo collocation (QCL: Quasi-Co-Location) of a channel or a signal, and may also be called a spatial reception parameter, spatial relation information (spatial relation information), or the like.
  • the TCI state may be set for the UE on a per channel or per signal basis.
  • the UE may determine at least one of a transmission beam (Tx beam) and a reception beam (Rx beam) of the channel based on the TCI state of the channel.
  • QCL is an index indicating a statistical property of a signal / channel. For example, if one signal / channel and another signal / channel are in a QCL relationship, doppler shift (doppler shift), doppler spread (doppler spread), average delay (average delay) between these different signals / channels. ), Delay spread (delay @ spread), and spatial parameter (Spatial @ parameter) (e.g., spatial reception parameter (Spatial @ Rx @ Parameter)) means that it can be assumed to be the same (QCL for at least one of these). May be.
  • the spatial reception parameter may correspond to a reception beam (for example, a reception analog beam) of the UE, and the beam may be specified based on the spatial QCL.
  • QCL (or at least one element of QCL) in the present disclosure may be read as sQCL (spatialpatQCL).
  • QCL types A plurality of types (QCL types) may be defined for the QCL.
  • QCL types AD QCL types with different parameters (or parameter sets) that can be assumed to be the same may be provided, and are described below.
  • QCL type A Doppler shift, Doppler spread, average delay and delay spread
  • QCL type B Doppler shift and Doppler spread
  • QCL type C Doppler shift and average delay
  • QCL type D spatial reception parameters.
  • the TCI state is determined, for example, between a target channel (or a reference signal (RS: Reference Signal) for the channel) and another signal (for example, another downlink reference signal (DL-RS: Downlink Reference Signal)). It may be information on QCL.
  • the TCI state may be set (instructed) by higher layer signaling, physical layer signaling, or a combination thereof.
  • the channels for which the TCI state is set are, for example, a downlink shared channel (PDSCH: Physical Downlink Control Channel), a downlink control channel (PDCCH: Physical Downlink Control Channel), an uplink shared channel (PUSCH: Physical Uplink Shared Channel), It may be at least one of an uplink control channel (PUCCH: Physical Uplink Control Channel).
  • PDSCH Physical Downlink Control Channel
  • PDCCH Physical Downlink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the RS that has a QCL relationship with the channel may be, for example, at least one of an SSB, a CSI-RS, and a reference signal for measurement (SRS: Sounding Reference Signal).
  • SRS Sounding Reference Signal
  • FIG. 3 is a diagram showing an example of the RRC information element related to the TCI state.
  • the TCI state information (“TCI-State”) may include a TCI state ID and one or more pieces of QCL information (“QCL-Info”).
  • the QCL information may include at least one of information on a DL-RS having a QCL relationship (RS-related information (“referenceSignal”)) and information indicating a QCL type (QCL type information (“qcl-Type”)).
  • the RS-related information may include information such as an RS index (for example, NZP @ CSI-RS resource ID, SSB index), a serving cell index, and a BWP (Bandwidth @ Part) index where the RS is located.
  • Multi TRP / Multi Panel In NR, it is considered that a plurality of transmission / reception points (TRP: Transmission / Reception Point) (multi-TRP) or a plurality of panels (multi-panel) perform non-coherent DL (for example, PDSCH) transmission.
  • TRP Transmission / Reception Point
  • multi-panel a plurality of panels
  • PDSCH non-coherent DL
  • FIGS. 4A-4D are diagrams illustrating examples of CSI feedback in a multi-TRP scenario.
  • TRP1 and TRP2 can each transmit to the UE using four beams.
  • the UE calculates the interference measurement result (for example, SINR) in which beam 1 from TRP1 is the signal component (S) and beam 5 from TRP2 is included in the interference component (I), and performs CSI feedback. May be.
  • SINR the interference measurement result
  • the UE calculates the interference measurement result (for example, SINR) in which beam 1 from TRP1 is the signal component (S) and beam 5 from TRP2 is included in the interference component (I), and performs CSI feedback. May be.
  • the UE may calculate the interference measurement result in which the beam 1 from TRP1 is the signal component (S) and the beam 6 from TRP2 is included in the interference component (I), and may feed back the CSI.
  • the UE may calculate the interference measurement result in which the beam 8 from the TRP 2 is the signal component (S) and the beam 2 from the TRP 1 is included in the interference component (I), and feed back the CSI.
  • the UE may calculate the interference measurement result in which the beam 8 from TRP2 is the signal component (S) and the beam 1 from TRP1 is included in the interference component (I), and may feed back the CSI.
  • the UE reports signal measurements (channel measurements) based on different beams from different TRPs (or panels), interference measurements based on different beams from adjacent TRPs (or panels), etc. in one CSI report Preferably it is possible.
  • the UE has a NZP @ CSI-RS resource for channel measurement and an NZP @ CSI-RS or CSI-IM resource for interference measurement configured for one CSI report. From the viewpoint of resources, it may be assumed that it is a QCL (corresponding to “QCL type D”) (resource-wise ⁇ QCLed ⁇ with ⁇ respect ⁇ to ⁇ 'QCL-TypeD').
  • QCL corresponding to “QCL type D”
  • the NR specifications so far only support CSI type CSI report settings based on RS from the same TRP (or panel). Therefore, if the conventional NR specifications are used, the UE cannot transmit CSI reports of different CSI types based on RSs from different TRPs (or panels) at an appropriate timing, and the communication throughput may be reduced.
  • the present inventors have conceived of a setting method for appropriately executing CSI reports of a plurality of CSI types for a plurality of TRPs (or panels).
  • TRP TRP
  • codeword reference signal resource
  • reference signal antenna port antenna port group
  • predetermined channel for example, PDSCH
  • beam panel (antenna panel)
  • panel panel
  • a plurality of antenna elements etc.
  • the reference signal may be, for example, a DMRS.
  • the TRP of a certain sentence may be replaced by a panel, and the TRP of another sentence may be replaced by a codeword.
  • the UE may include one or more CSI sets related to multiple TRPs in one CSI report configuration (RRC information element “CSI-reportConfig”). That is, each set (RS of each set) may correspond to a different TRP.
  • One CSI set may include one or more CSI types. Note that the CSI set may be read as a set of RSs for CSI measurement (or channel measurement or interference measurement).
  • Each RS to be measured may be associated with a TRP.
  • the CSI-RS transmitted using beam 1 of FIGS. 4A-4D is configured for the UE in association with TRP1
  • the CSI-RS transmitted using beam 8 is associated with the UE in association with TRP2. It may be set.
  • the signal components (S) of different TRPs can be suitably measured.
  • the UE may report one or more CSI types to the base station based on the settings of the multiple CSI sets.
  • a correspondence between an RS (eg, CSI-RS, SSB) and TRP for channel measurement or interference measurement may be set in the UE using higher layer signaling (eg, RRC signaling, MAC signaling).
  • higher layer signaling eg, RRC signaling, MAC signaling
  • the correspondence between CSI-RS and TRP may be set for each TCI state, may be set for each NZP CSI-RS, or may be set for each set of NZP CSI-RS.
  • the information on the correspondence between the CSI-RS and the TRP may be included in at least one of the following and set in the UE: -TCI state information ("TCI-State”) or QCL information ("QCL-Info"), NZP CSI-RS resource information (“NZP-CSI-RS-Resource”), -NZP CSI-RS resource set information (“NZP-CSI-RS-ResourceSet”).
  • the correspondence between SSB and TRP may be set for each SSB, or may be set for each set of SSB. That is, the correspondence between SSB and TRP may be set in the UE using at least one of the following: -SSB index information ("SSB-Index”), -CSI-SSB resource set information (“CSI-SSB-ResourceSet”).
  • SSB-Index -SSB index information
  • CSI-SSB-ResourceSet CSI-SSB resource set information
  • FIGS. 5A and 5B are diagrams showing examples of RRC parameters related to the correspondence between CSI-RS and TRP.
  • TRP is associated with a DMRS port group.
  • FIG. 5A shows an example in which information on the correspondence between CSI-RS and TRP is included in NZP CSI-RS resource information (“NZP-CSI-RS-Resource”).
  • FIG. 5A differs from the existing NZP @ CSI-RS resource information in FIG. 2A in that the information of the DMRS port group corresponding to this CSI-RS resource includes a DMRS port group ID (“DMRSPortGroup-ID”). .
  • DMRSPortGroup-ID DMRS port group ID
  • FIG. 5B shows an example in which information on the correspondence between CSI-RS and TRP is included in NZPSICSI-RS resource set information (“NZP-CSI-RS-ResourceSet”).
  • FIG. 5B includes the existing NZP @ CSI-RS resource set information of FIG. 2A in that a DMRS port group ID (“DMRSPortGroup-ID”) is included as information of the DMRS port group corresponding to the CSI-RS resource set. And different.
  • DMRSPortGroup-ID DMRS port group ID
  • an ID relating to at least one of a TRP, a codeword, an antenna port, a predetermined channel, a beam, and a panel may be included in any of the above RRC information elements.
  • the correspondence between the RS (for example, CSI-RS, SSB) and the TRP may be set by being included in an RRC information element or a parameter other than the above-described RRC information element.
  • a plurality of CSI sets each indicating an RS corresponding to the TRP may be configured in the UE using higher layer signaling (eg, RRC signaling, MAC signaling).
  • higher layer signaling eg, RRC signaling, MAC signaling.
  • multiple CSI sets may be configured according to at least one of the following: (1) Resource information for channel measurement (“resourcesForChannelMeasurement”), NZP CSI-RS resource information for interference measurement (“nzp-CSI-RS-ResourcesForInterference”), and CSI-IM resource information for interference measurement (“csi-IM-ResourcesForInterference”) )) (Or a set including at least one of them) is set a plurality of times in the CSI report configuration information (“CSI-ReportConfig”). (2) A plurality of CSI-RS resource set list information (“csi-RS-ResourceSetList”) (or a set including the information) is set in the CSI resource setting information (“CSI-ResourceConfig”).
  • At least one of (or the information of) NZP CSI-RS and SSB for measurement (“nzp-CSI-RS-SSB”) and CSI-IM resource set list information (“csi-IM-ResourceSetList”) are set in the CSI resource configuration information (“CSI-ResourceConfig”), (4) NZP CSI-RS resource set list information (“nzp-CSI-RS-ResourceSetList”), SSB resource set list information for CSI measurement (“csi-SSB-ResourceSetList”), and CSI-IM resource set list information At least one (or a set including at least one of these) is set in the CSI resource configuration information (“CSI-ResourceConfig”).
  • FIGS. 6A and 6B are diagrams illustrating an example of an RRC information element related to CSI report configuration in which a plurality of CSI sets can be configured.
  • FIG. 6A shows an example in which two sets of channel measurement resource information (“resourcesForChannelMeasurement”) are included in CSI report configuration information (“CSI-ReportConfig”).
  • FIG. 6A includes the second channel measurement resource information (“resourcesForChannelMeasurement-R16”) in addition to the first channel measurement resource information (“resourcesForChannelMeasurement”). Different from CSI report setting information.
  • the second channel measurement resource information also corresponds to the CSI resource setting ID.
  • “CSI-ResourceConfigId-r16” shown in the present example may be defined to have the same value range as “CSI-ResourceConfigId” or may be defined to have a different value range.
  • All RSs configured in one CSI resource configuration information (“CSI-ResourceConfig”) may be associated with the same panel.
  • the RS set in the CSI resource setting information corresponding to the first channel measurement resource information is different from the RS set in the CSI resource setting information corresponding to the second channel measurement resource information. May be related to
  • FIG. 6B shows two sets of channel measurement resource information (“resourcesForChannelMeasurement”) and interference measurement CSI-IM resource information (“csi-IM-ResourcesForInterference”) included in the CSI report configuration information (“CSI-ReportConfig”).
  • CSI-ReportConfig the second CSI-IM resource information for interference measurement
  • csi-IM-ResourcesForInterference-R16 the second CSI-IM resource information for interference measurement
  • csi-IM-ResourcesForInterference is different from the CSI report setting information in FIG. 6A.
  • All RSs configured in one CSI resource configuration information (“CSI-ResourceConfig”) may be associated with the same panel.
  • the RS or IM resource set in the CSI resource setting information corresponding to the first interference measurement CSI-IM resource information is the CSI resource setting corresponding to the second interference measurement CSI-IM resource information. It may relate to a different panel than the RS or IM resources set in the information.
  • RS or IM resources set in CSI resource setting information corresponding to parameters corresponding to the same 3GPP release may be associated with the same panel.
  • RS or IM resources set in CSI resource setting information corresponding to “resourcesForChannelMeasurement-R16” and “csi-IM-ResourcesForInterference-R16” may be associated with the same panel.
  • FIG. 7 is a diagram illustrating a first example of an RRC information element related to CSI resource configuration in which a plurality of CSI sets can be configured.
  • FIG. 7 illustrates an example in which two sets of CSI-RS resource set list information (“csi-RS-ResourceSetList”) are included in the CSI resource setting information (“CSI- @ ResourceConfig”).
  • FIG. 7 shows the second CSI-RS resource set list information (“csi-RS-ResourceSetList-R16”) in addition to the first CSI-RS resource set list information (“csi-RS-ResourceSetList”). Is different from the existing CSI resource setting information in FIG. 1B.
  • the second CSI-RS resource set list information may include the same fields, parameters, and the like as the first CSI-RS resource set list information.
  • the second CSI-RS resource set list information is 3GPP @ Rel. 16 (fields) or parameters defined (used).
  • All RSs set in one CSI-RS resource set list information (“csi-RS-ResourceSetList”) may be associated with the same panel.
  • the RS set in the first CSI-RS resource set list information may be associated with a different panel from the RS set in the second CSI-RS resource set list information.
  • FIG. 8 is a diagram illustrating a second example of the RRC information element related to the CSI resource setting in which a plurality of CSI sets can be set.
  • FIG. 8 shows that the CSI-RS resource set list information (“csi-RS-ResourceSetList”) included in the CSI resource configuration information (“CSI- @ ResourceConfig”) contains two sets of information of NZP @ CSI-RS and SSB (“nzp -CSI-RS-SSB ”) and CSI-IM resource set list information (" csi-IM-ResourceSetList ").
  • FIG. 8 shows the information of the NZP @ CSI-RS and SSB of the first set (“nzp-CSI-RS-SSB”) and the CSI-IM resource set list information (“csi-RS -IM-ResourceSetList "), NZP @ CSI-RS and SSB information of the second set (“ nzp-CSI-RS-SSB-r16 "), and CSI-IM resource set list information (“ csi-IM-ResourceSetList-16 ”), which is different from the existing CSI resource setting information in FIG. 1B.
  • the NZP @ CSI-RS and SSB information of the second set and the CSI-IM resource set list information are the same fields as the NZP @ CSI-RS and SSB information and the CSI-IM resource set list information of the first set, respectively. , Parameters, and the like.
  • the second set is 3GPP @ Rel. 16 (fields) or parameters defined (used).
  • All RSs (or IMs) set in one NZP @ CSI-RS and SSB information (“nzp-CSI-RS-SSB”) or CSI-IM resource set list information (“csi-IM-ResourceSetList”) May be associated with the same panel.
  • the RS (or IM) set in the first set of information may be associated with a different panel from the RS (or IM) set in the second set of information.
  • FIG. 9 is a diagram illustrating a third example of the RRC information element related to the CSI resource setting in which a plurality of CSI sets can be set.
  • FIG. 9 shows two sets of NZP @ CSI-RS resource set list information in NZP @ CSI-RS and SSB information (“nzp-CSI-RS-SSB") included in CSI resource configuration information ("CSI- @ ResourceConfig").
  • An example is shown that includes (“nzp-CSI-RS-ResourceSetList”) and SSB resource set list information (“csi-SSB-ResourceSetList”) for CSI measurement.
  • FIG. 9 shows NZP @ CSI-RS and SSB information in the first set of NZP @ CSI-RS resource set list information ("nzp-CSI-RS-ResourceSetList”) and SSB resource set list information for CSI measurement.
  • the second set of NZP @ CSI-RS resource set list information (“nzp-CSI-RS-ResourceSetList-r16") and SSB resource set list for CSI measurement. This is different from the existing CSI resource setting information in FIG. 1B in that the information includes information (“csi-SSB-ResourceSetList-r16”).
  • the second set of NZP @ CSI-RS resource set list information and the SSB resource set list information for CSI measurement are respectively the first set of NZP @ CSI-RS resource set list information and SSB resource for CSI measurement. It may include the same fields and parameters as the set list information.
  • the second set is 3GPP @ Rel. 16 (fields) or parameters defined (used).
  • All RSs configured in ⁇ 1 NZP ⁇ CSI-RS resource set list information or SSB resource set list information for CSI measurement may be associated with the same panel.
  • the RS set in the first set of information may be associated with a different panel from the RS set in the second set of information.
  • the existing channel information, NZP @ CSI-RS resource information for interference measurement, and CSI-IM resource information for interference measurement can be included at most one each. Even if the CSI report setting information (FIG. 1A) is used, a plurality of CSI sets can be set in the UE.
  • the UE can appropriately report a plurality of CSI types based on CSI report settings or resource settings for different panels.
  • the second embodiment relates to the measurement of inter-TRP interference (which may be read as inter-beam interference, codeword interference, inter-panel interference, etc., as described above).
  • the UE may calculate the CSI of one codeword (TRP, panel, etc.) based on some interference assumptions.
  • the assumption is that the inter-TRP interference can be derived from the resource element for the signal (RE: Resource @ Element) (ie, SMR (NZP @ CSI-RS resource, SSB resource, etc.)), and the RE is It may be assumed that it corresponds to a codeword.
  • RE Resource @ Element
  • SMR NZP @ CSI-RS resource, SSB resource, etc.
  • the first method is to set the IMR for a certain TRP (assuming TRP1) to the same RE as the SMR for another TRP (assuming TRP2).
  • the second method is to derive the inter-TRP interference for TRP1 based on channel measurements obtained from at least one of the other SMR and the precoding matrix from TRP2.
  • FIGS. 10A and 10B are diagrams showing an example of settings for inter-TRP interference measurement.
  • FIG. 10A shows a similar multi-TRP scenario as FIG. 4A, assuming that beam 5 of TRP2 causes beam 1 of TRP1 to undergo inter-TRP interference. Also assume that TRP1 transmits CSI-RS1 using beam 1 and TRP2 transmits CSI-RS5 using beam 5.
  • FIG. 10B is a diagram showing an example of resources of CSI-RS1 and 5. It is assumed that the resource of CSI-RS1 and the resource of CSI-RS5 do not overlap.
  • the CSI corresponding to the TRP interference corresponds to CSI (hereinafter, simply referred to as CSI1) in which the resource of CSI-RS1 is SMR.
  • CSI1 the resource of CSI-RS1 is SMR.
  • the problem is how to calculate the interference component of the CSI.
  • the UE may set the IMR for CSI1 as the same RE as the resource of CSI-RS5. That is, the UE transmits NZP @ CSI-RS resource information for interference measurement (“nzp-CSI-RS-ResourcesForInterference”), CSI-IM resource information for interference measurement (“csi-IM-ResourcesForInterference”) for CSI1 reporting, At least one of CSI-IM resource set list information (“csi-IM-ResourceSetList”), CSI-IM resource set information (“csi-IM-ResourceSet”) and CSI-IM resource information (“csi-IM-Resource”)
  • the same RE as the resource of CSI-RS5 may be set.
  • the interference component of CSI1 (inter-TRP interference) is determined by interference measurement based on the IMR using the same beam or spatial filter as the beam or spatial filter for receiving the SMR (resource of CSI-RS1) from TRP1. , May be derived.
  • the UE performs channel measurement based on CSI-RS5 resources.
  • the UE may use the measurement result as an interference component of CSI1 (inter-TRP interference).
  • RRC setting described in the first embodiment may be used for the inter-TRP interference measurement in the second embodiment.
  • the UE can appropriately measure the inter-TRP interference.
  • wireless communication system Wireless communication system
  • communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 11 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using LTE (Long Term Evolution) and 5G NR (5th generation mobile communication system New Radio) specified by 3GPP (Third Generation Partnership Project). .
  • LTE Long Term Evolution
  • 5G NR Fifth Generation mobile communication system New Radio
  • the wireless communication system 1 may support dual connectivity between a plurality of RATs (Radio Access Technology) (multi-RAT dual connectivity (MR-DC: Multi-RAT Dual Connectivity)).
  • MR-DC is based on dual connectivity (EN-DC: E-UTRA-NR @ Dual Connectivity) between LTE (Evolved Universal Terrestrial Radio Access) and NR, and dual connectivity (NE-DC with E-UTRA-NR Dual Connectivity).
  • -DC NR-E-UTRA (Dual Connectivity) may be included.
  • the base station (eNB) of LTE (E-UTRA) is a master node (MN: Master @ Node), and the base station (gNB) of NR is a secondary node (SN: Secondary @ Node).
  • MN Master @ Node
  • gNB secondary node
  • SN Secondary @ Node
  • the NR base station (gNB) is the MN
  • the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity in which both MN and SN are NR base stations (gNB) (NN-DC: NR-NR Dual Connectivity)). ) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity in which both MN and SN are NR base stations (gNB) (NN-DC: NR-NR Dual Connectivity)).
  • the wireless communication system 1 includes a base station 11 forming a macro cell C1 having relatively wide coverage, and a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1. May be provided.
  • User terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as a base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation) using a plurality of component carriers (CC: Component Carrier) and dual connectivity (DC).
  • Carrier Aggregation Carrier Aggregation
  • CC Component Carrier
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (FR1: FrequencyFRange 1) and the second frequency band (FR2: Frequency Range 2).
  • the macro cell C1 may be included in FR1, and the small cell C2 may be included in FR2.
  • FR1 may be a frequency band of 6 GHz or less (sub-6 GHz (sub-6 GHz)), and FR2 may be a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of time division duplex (TDD: Time Division Duplex) and frequency division duplex (FDD: Frequency Division Duplex) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, or the like) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, or the like
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an IAB (Integrated Access Backhaul) donor, and the base station 12 corresponding to the relay station (relay) is the IAB It may be called a node.
  • IAB Integrated Access Backhaul
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of the communication systems such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (OFDM) based wireless access scheme may be used.
  • OFDM Orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Divide Multiple
  • SC-FDMA Single Carrier Frequency Frequency Division Multiple Access
  • the wireless access scheme may be referred to as a waveform.
  • another wireless access method for example, another single carrier transmission method or another multi-carrier transmission method
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), and a downlink control channel (PDCCH: Physical Downlink Control) are shared by the user terminals 20 as downlink channels. Channel) may be used.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH) : Physical Random Access Channel) or the like may be used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH random access channel
  • the user data, upper layer control information, SIB (System Information Block), and the like are transmitted by the PDSCH.
  • User data, higher layer control information, and the like may be transmitted by the PUSCH.
  • MIB Master Information Block
  • PBCH Physical Broadcast Channel
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI: Downlink Control Information) including scheduling information of at least one of the PDSCH and the PUSCH.
  • DCI Downlink Control Information
  • DCI for scheduling the PDSCH may be referred to as DL assignment, DL @ DCI, or the like
  • the DCI for scheduling the PUSCH may be referred to as UL grant, UL @ DCI, or the like.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CORESET: Control REsource SET) and a search space (search space) may be used for detecting the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to a search area and a search method of PDCCH candidates (PDCCH @ candidates).
  • One coreset may be associated with one or more search spaces.
  • the UE may monitor a RESET associated with a search space based on the search space settings.
  • One SS may correspond to a PDCCH candidate corresponding to one or a plurality of aggregation levels (aggregation Level).
  • One or more search spaces may be referred to as a search space set.
  • search space “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, and the like in the present disclosure may be interchanged with each other.
  • PUCCH Physical Uplink Control Channel
  • CSI Channel ⁇ State ⁇ Information
  • HARQ-ACK Hybrid ⁇ Automatic ⁇ Repeat ⁇ reQuest
  • ACK / NACK ACK / NACK
  • scheduling request SR: Scheduling ⁇ Request
  • a random access preamble for establishing a connection with a cell may be transmitted by the PRACH.
  • a downlink, an uplink, and the like may be expressed without a “link”.
  • various channels may be expressed without “Physical” at the beginning.
  • a synchronization signal (SS: Synchronization Signal), a downlink reference signal (DL-RS: Downlink Reference Signal), or the like may be transmitted.
  • a DL-RS a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DMRS: DeModulation) are provided.
  • Reference Signal a position determination reference signal (PRS: Positioning Reference Signal), a phase tracking reference signal (PTRS: Phase Tracking Reference Signal), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS: Primary Synchronization Signal) and a secondary synchronization signal (SSS: Secondary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SSB (SS @ Block), and the like. Note that SS, SSB, and the like may also be referred to as reference signals.
  • a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS), and the like may be transmitted as an uplink reference signal (UL-RS: Uplink Reference Signal).
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signal
  • UL-RS Uplink Reference Signal
  • the DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
  • FIG. 12 is a diagram illustrating an example of a configuration of a base station according to one embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission path interface 140 may each include one or more.
  • base station 10 also has other functional blocks necessary for wireless communication. Some of the processes of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured by a controller, a control circuit, and the like described based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping), and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission path interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the generated data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, an RF (Radio Frequency) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter (phase shifter), a measurement circuit, a transmission / reception circuit, and the like described based on common recognition in the technical field according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission unit may include a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may include a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
  • the transmission / reception antenna 130 can be configured from an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna or the like.
  • the transmission / reception unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of the transmission beam and the reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), or the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes the data, control information, and the like acquired from the control unit 110 in the PDCP (Packet Data Convergence Protocol) layer and the RLC (Radio Link Control) layer processing (for example, RLC retransmission control), MAC (Medium Access Control) layer processing (for example, HARQ retransmission control), and the like may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filter processing, and discrete Fourier transform (DFT: Discrete Fourier Transform) processing on a bit string to be transmitted.
  • channel coding may include error correction coding
  • modulation may include error correction coding
  • mapping may include error correction coding
  • filter processing may include discrete Fourier transform (DFT: Discrete Fourier Transform) processing on a bit string to be transmitted.
  • DFT discrete Fourier transform
  • Transmission processing such as Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-analog conversion (if necessary) may be performed to output a baseband signal.
  • IFFT Inverse Fast Fourier Transform
  • precoding may be performed to output a baseband signal.
  • digital-analog conversion if necessary
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, and the like on the baseband signal into a radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. .
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, and the like on the radio frequency band signal received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT), and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. Applying reception processing such as processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing, Etc. may be obtained.
  • reception processing such as processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing, Etc.
  • the transmission / reception unit 120 may measure the received signal.
  • the measurement unit 123 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal.
  • the measuring unit 123 receives the reception power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio, SNR (Signal to Noise Ratio)). , Signal strength (for example, RSSI (Received Signal Strength Indicator)), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30 or another base station 10, and transmits user data (user plane data) for the user terminal 20; Data and the like may be obtained and transmitted.
  • the transmission unit and the reception unit of the base station 10 may be configured by at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission path interface 140.
  • the transmission / reception unit 120 includes one or a plurality of CSI report configuration information (for example, an RRC information element “CSI-ReportConfig”) and one or a plurality of CSI resource configuration information (for example, an RRC information element “CSI-ResourceConfig”). May be transmitted to the user terminal 20.
  • CSI report configuration information for example, an RRC information element “CSI-ReportConfig”
  • CSI resource configuration information for example, an RRC information element “CSI-ResourceConfig”.
  • the control unit 110 may control the user terminal 20 to make a plurality of CSI types (single-beam CSI, multi-beam CSI, etc.) CSI reports for one piece of the CSI report setting information.
  • CSI types single-beam CSI, multi-beam CSI, etc.
  • FIG. 13 is a diagram illustrating an example of a configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230. Note that one or more of the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may be provided.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured by a controller, a control circuit, and the like described based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception and measurement using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the generated data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmission / reception unit 220 can be configured from a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like described based on common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission unit may include a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may include a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
  • the transmission / reception antenna 230 can be configured from an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna or the like.
  • the transmission / reception unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of the transmission beam and the reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), or the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs processing of the PDCP layer, processing of the RLC layer (for example, RLC retransmission control), processing of the MAC layer (for example, for data, control information, and the like acquired from the control unit 210, for example). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filter processing, DFT processing (if necessary), IFFT processing on the bit sequence to be transmitted. , Precoding, digital-analog conversion, etc., and output a baseband signal.
  • whether to apply the DFT processing may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
  • DFT processing may be performed as the transmission processing, or otherwise, DFT processing may not be performed as the transmission processing.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, and the like on the baseband signal into a radio frequency band, and transmit a signal in the radio frequency band via the transmission / reception antenna 230. .
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, and the like on the radio frequency band signal received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, decoding (error correction) on the obtained baseband signal. Decoding may be included), reception processing such as MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may measure the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), received quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitting unit and the receiving unit of the user terminal 20 may be configured by at least one of the transmitting / receiving unit 220, the transmitting / receiving antenna 230, and the transmission line interface 240.
  • the transmission / reception unit 220 includes one or a plurality of CSI report configuration information (for example, an RRC information element “CSI-ReportConfig”) and one or a plurality of CSI resource configuration information (for example, an RRC information element “CSI-ResourceConfig”). Etc. may be received.
  • CSI report configuration information for example, an RRC information element “CSI-ReportConfig”
  • CSI resource configuration information for example, an RRC information element “CSI-ResourceConfig”. Etc. may be received.
  • the control unit 210 may control CSI reports of a plurality of CSI types (single-beam CSI, multi-beam CSI, etc.) for one piece of the CSI report setting information.
  • the control unit 210 uses a reference signal resource (SMR, IMR, NZP @ CSI-RS resource) for measurement on the CSI type based on higher layer signaling (for example, the signaling configuration of the settings (1) to (4)).
  • a reference signal resource SMR, IMR, NZP @ CSI-RS resource
  • CSI-IM resource ZP @ CSI-RS resource, etc.
  • a transmission / reception point a panel, a beam, a codeword, an antenna port, and the like may be specified.
  • the one CSI report setting information or one CSI resource setting information corresponding to the one CSI report setting information includes a plurality of resource information for channel measurement and at least one of resource information for interference measurement,
  • the plurality of pieces of information may be respectively associated with different transmission / reception points.
  • the resource information for channel measurement includes, for example, channel measurement resource information (“resourcesForChannelMeasurement”), CSI-RS resource set list information (“csi-RS-ResourceSetList”), NZP @ CSI-RS, and SSB information (“ nzp-CSI-RS-SSB "), NZP @ CSI-RS resource set list information (" nzp-CSI-RS-ResourceSetList "), SSB resource set list information for CSI measurement (" csi-SSB-ResourceSetList "), etc. May be at least one of the following.
  • the resource information for the interference measurement includes NZP @ CSI-RS resource information for interference measurement ("nzp-CSI-RS-ResourcesForInterference"), CSI-IM resource information for interference measurement (“csi-IM-ResourcesForInterference"), CSI -It may be at least one of RS resource set list information (“csi-RS-ResourceSetList”) and CSI-IM resource set list information (“csi-IM-ResourceSetList”).
  • the control unit 210 may assume that the interference measurement resource (IMR) for the first transmission / reception point is set as the same resource element as the signal measurement resource (SMR) for the second transmission / reception point.
  • IMR interference measurement resource
  • SMR signal measurement resource
  • the control unit 210 derives interference between transmission / reception points for the first transmission / reception point (inter-TRP interference) based on channel measurement using a signal measurement resource (SMR) for the second transmission / reception point. Is also good.
  • each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated from each other). , Wired, wireless, etc.), and may be implemented using these multiple devices.
  • the functional block may be realized by combining one device or the plurality of devices with software.
  • the functions include judgment, determination, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that causes transmission to function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the realization method is not particularly limited.
  • a base station, a user terminal, or the like may function as a computer that performs processing of the wireless communication method according to the present disclosure.
  • FIG. 14 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
  • the above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the drawing, or may be configured to exclude some of the devices.
  • processor 1001 may be implemented by one or more chips.
  • the functions of the base station 10 and the user terminal 20 are performed, for example, by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an arithmetic operation and communicates via the communication device 1004. And controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 performs an arithmetic operation and communicates via the communication device 1004.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the control unit 110 (210), the transmitting / receiving unit 120 (220), and the like may be realized by the processor 1001.
  • the processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operation described in the above embodiment is used.
  • the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be similarly realized.
  • the memory 1002 is a computer-readable recording medium, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured.
  • the storage 1003 may be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit 120 (220) and the transmission / reception antenna 130 (230) described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input.
  • the output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • RS Reference Signal
  • a component carrier may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be configured by one or more periods (frames) in the time domain.
  • the one or more respective periods (frames) forming the radio frame may be referred to as a subframe.
  • a subframe may be configured by one or more slots in the time domain.
  • the subframe may be of a fixed length of time (eg, 1 ms) that does not depend on numerology.
  • the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception.
  • SCS SubCarrier @ Spacing
  • TTI Transmission @ Time @ Interval
  • TTI Transmission @ Time @ Interval
  • radio frame configuration transmission and reception.
  • At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
  • the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots.
  • Each minislot may be constituted by one or more symbols in the time domain.
  • the mini-slot may be called a sub-slot.
  • a minislot may be made up of a smaller number of symbols than slots.
  • a PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be referred to as a PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals.
  • the radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding to each. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
  • the TTI refers to, for example, a minimum time unit of scheduling in wireless communication.
  • the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units.
  • radio resources frequency bandwidth, transmission power, and the like that can be used in each user terminal
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like.
  • a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms.
  • the TTI having the above-described TTI length may be replaced with the TTI.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12.
  • the number of subcarriers included in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
  • One or a plurality of RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical @ RB
  • SCG Sub-Carrier @ Group
  • REG Resource @ Element @ Group
  • PRB pair an RB pair, and the like. May be called.
  • a resource block may be composed of one or more resource elements (RE: Resource @ Element).
  • RE Resource @ Element
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a bandwidth part (which may be referred to as a partial bandwidth or the like) may also represent a subset of consecutive common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good.
  • the common RB may be specified by an index of the RB based on the common reference point of the carrier.
  • a PRB may be defined by a BWP and numbered within the BWP.
  • $ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP).
  • BWP for a UE, one or more BWPs may be configured in one carrier.
  • At least one of the configured BWPs may be active, and the UE does not have to assume to transmit and receive a given signal / channel outside the active BWP.
  • “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
  • the structures of the above-described radio frame, subframe, slot, minislot, symbol, and the like are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The configuration of the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and the like can be variously changed.
  • the information, parameters, and the like described in the present disclosure may be expressed using an absolute value, may be expressed using a relative value from a predetermined value, or may be expressed using another corresponding information. May be represented.
  • a radio resource may be indicated by a predetermined index.
  • Names used for parameters and the like in the present disclosure are not limited in any respect. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure.
  • the various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
  • information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Information and signals input and output may be stored in a specific place (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
  • information notification in the present disclosure includes physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), and upper layer signaling (for example, RRC (Radio Resource Control). ) Signaling, broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals or a combination thereof. Is also good.
  • DCI Downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
  • the notification of the predetermined information is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
  • the determination may be made by a value represented by 1 bit (0 or 1), or may be made by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
  • software, instructions, information, and the like may be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
  • system and “network” as used in this disclosure may be used interchangeably.
  • precoding In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “quasi-co-location (QCL)”, “TCI state (Transmission Configuration Indication state)”, “spatial relation” (Spatial relation), “spatial domain filter”, “transmission power”, “phase rotation”, “antenna port”, “antenna port group”, “layer”, “number of layers”, “ Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable Can be used for
  • base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “gNodeB (gNB)” "Access point (access @ point)”, “transmission point (TP: Transmission @ Point)”, “reception point (RP: Reception @ Point)”, “transmission / reception point (TRP: Transmission / Reception @ Point)”, “panel”, “cell” , “Sector”, “cell group”, “carrier”, “component carrier” and the like may be used interchangeably.
  • a base station may also be referred to as a macro cell, a small cell, a femto cell, a pico cell, or the like.
  • a base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head)).
  • a base station subsystem eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head).
  • RRH small indoor base station
  • the term “cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , Handset, user agent, mobile client, client or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • at least one of the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, or the like), may be an unmanned moving object (for example, a drone, an autonomous vehicle), or may be a robot (maned or unmanned). ).
  • at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced with a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the configuration may be such that the user terminal 20 has the function of the base station 10 described above.
  • words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”).
  • an uplink channel, a downlink channel, and the like may be replaced with a side channel.
  • a user terminal in the present disclosure may be replaced by a base station.
  • a configuration in which the base station 10 has the function of the user terminal 20 described above may be adopted.
  • the operation performed by the base station may be performed by an upper node (upper node) in some cases.
  • various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway) or the like, but not limited thereto, or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching with execution.
  • the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in the present disclosure may be interchanged in order as long as there is no inconsistency.
  • elements of various steps are presented in an exemplary order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-B Long Term Evolution-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication
  • system 5G (5th generation mobile communication system)
  • FRA Fluture Radio Access
  • New-RAT Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Fluture generation radio access
  • GSM Registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • UWB Ultra-WideBand
  • Bluetooth registered trademark
  • a system using other appropriate wireless communication methods and a next-generation system extended based on these methods.
  • a plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
  • any reference to elements using designations such as "first,” “second,” etc., as used in this disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in any way.
  • determining means judging, calculating, computing, processing, deriving, investigating, searching (upping, searching, inquiry) ( For example, a search in a table, database, or another data structure), ascertaining, etc., may be regarded as "deciding".
  • determining includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
  • judgment (decision) is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, etc. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
  • “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
  • connection refers to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • the radio frequency domain, microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) regions, and the like.
  • the term “A and B are different” may mean that “A and B are different from each other”.
  • the term may mean that “A and B are different from C”.
  • Terms such as “separate”, “coupled” and the like may be interpreted similarly to "different”.

Abstract

A user terminal according to one embodiment of the present disclosure is characterized by having a receiving unit which receives the report setting information for channel state information (CSI), and also having a control unit for controlling CSI reports of a plurality of CSI types on the basis of the CSI report setting information. This embodiment of the present disclosure makes it possible to accurately detect beam failure.

Description

ユーザ端末及び無線通信方法User terminal and wireless communication method
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。 The present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLTE(Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(3GPP(Third Generation Partnership Project) Rel.(Release)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 2. Description of the Related Art In a UMTS (Universal Mobile Telecommunications System) network, LTE (Long Term Evolution) has been specified for the purpose of higher data rate and lower delay (Non-Patent Document 1). Also, LTE-Advanced (3GPP@Rel.10-14) has been specified for the purpose of further increasing the capacity and upgrading of LTE (3GPP (Third Generation Partnership Project) @Rel. (Release) 8, 9).
 LTEの後継システム(例えば、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、3GPP Rel.15以降などともいう)も検討されている。 A successor system to LTE (for example, 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), 3GPP Rel. 15 or later) is also being studied.
 既存のLTEシステム(LTE Rel.8-14)では、ユーザ端末(UE:User Equipment)が所定の参照信号を測定し、基地局に対してチャネル状態情報(CSI:Channel State Information)を送信する。 In the existing LTE system (LTE Rel. 8-14), a user terminal (UE: User \ Equipment) measures a predetermined reference signal and transmits channel state information (CSI: Channel \ State \ Information) to the base station.
 将来の無線通信システム(例えば、NR)では、複数の送受信ポイント(TRP:Transmission/Reception Point)(マルチTRP)又は複数のパネル(マルチパネル)がそれぞれノンコヒーレントな送信をUEに対して行うことが検討されている。 In a future wireless communication system (for example, NR), a plurality of transmission / reception points (TRP: Transmission / Reception @ Point) (multi-TRP) or a plurality of panels (multi-panel) may perform non-coherent transmission to the UE. Are being considered.
 マルチTRP/マルチパネルシナリオにおいては、動的なスケジューリングのために、複数のCSIタイプが報告されることが求められる。CSIタイプによって、報告する情報種別、サイズなどが異なってもよい。 In a multi-TRP / multi-panel scenario, multiple CSI types are required to be reported for dynamic scheduling. The type of information to be reported, the size, and the like may be different depending on the CSI type.
 しかしながら、これまで検討されたNR仕様に従うと、UEが異なるTRP(又はパネル)からのRSに基づく異なるCSIタイプのCSI報告を適切なタイミングで送信できず、通信スループットが低下するおそれがある。 However, according to the NR specifications examined so far, the UE may not be able to transmit CSI reports of different CSI types based on RSs from different TRPs (or panels) at appropriate timing, and communication throughput may be reduced.
 そこで、本開示は、複数のTRP又はパネルが用いられる場合であっても、複数のCSIタイプのCSI報告を適切に実施できるユーザ端末及び無線通信方法を提供することを目的の1つとする。 Therefore, it is an object of the present disclosure to provide a user terminal and a wireless communication method that can appropriately perform a plurality of CSI type CSI reports even when a plurality of TRPs or panels are used.
 本開示の一態様に係るユーザ端末は、チャネル状態情報(CSI:Channel State Information)報告設定情報を受信する受信部と、前記CSI報告設定情報に基づいて、複数のCSIタイプのCSI報告を制御する制御部と、を有することを特徴とする。 A user terminal according to one aspect of the present disclosure, a receiving unit that receives channel state information (CSI: Channel State Information) report setting information, and controls a plurality of CSI type CSI reports based on the CSI report setting information. And a control unit.
 本開示の一態様によれば、複数のTRP又はパネルが用いられる場合であっても、複数のCSIタイプのCSI報告を適切に実施できる。 According to an embodiment of the present disclosure, even when a plurality of TRPs or panels are used, CSI reports of a plurality of CSI types can be appropriately performed.
図1A及び1Bは、CSI報告設定及びCSIリソース設定に関するRRC情報要素の一例を示す図である。1A and 1B are diagrams illustrating an example of an RRC information element related to a CSI report setting and a CSI resource setting. 図2A及び2Bは、NZP CSI-RSリソースセット及びCSI-SSBリソースセットに関するRRC情報要素の一例を示す図である。2A and 2B are diagrams illustrating examples of RRC information elements related to the NZP @ CSI-RS resource set and the CSI-SSB resource set. 図3は、TCI状態に関するRRC情報要素の一例を示す図である。FIG. 3 is a diagram illustrating an example of the RRC information element related to the TCI state. 図4A-4Dは、マルチTRPシナリオにおけるCSIフィードバックの一例を示す図である。4A-4D are diagrams illustrating examples of CSI feedback in a multi-TRP scenario. 図5A及び5Bは、CSI-RSとパネルとの対応関係に関するRRCパラメータの一例を示す図である。FIGS. 5A and 5B are diagrams showing an example of RRC parameters relating to the correspondence between CSI-RS and panels. 図6A及び6Bは、複数のCSIセットを設定できるCSI報告設定に関するRRC情報要素の一例を示す図である。6A and 6B are diagrams illustrating an example of the RRC information element related to the CSI report configuration that can configure a plurality of CSI sets. 図7は、複数のCSIセットを設定できるCSIリソース設定に関するRRC情報要素の第1の例を示す図である。FIG. 7 is a diagram illustrating a first example of an RRC information element related to CSI resource configuration in which a plurality of CSI sets can be configured. 図8は、複数のCSIセットを設定できるCSIリソース設定に関するRRC情報要素の第2の例を示す図である。FIG. 8 is a diagram illustrating a second example of the RRC information element related to the CSI resource setting in which a plurality of CSI sets can be set. 図9は、複数のCSIセットを設定できるCSIリソース設定に関するRRC情報要素の第3の例を示す図である。FIG. 9 is a diagram illustrating a third example of the RRC information element related to the CSI resource setting in which a plurality of CSI sets can be set. 図10A及び10Bは、TRP間干渉測定のための設定の一例を示す図である。FIGS. 10A and 10B are diagrams illustrating an example of settings for inter-TRP interference measurement. 図11は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. 図12は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of a configuration of a base station according to one embodiment. 図13は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 13 is a diagram illustrating an example of a configuration of a user terminal according to an embodiment. 図14は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 14 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
(CSI)
 NRにおいては、UEは、所定の参照信号(又は、当該参照信号用のリソース)を用いてチャネル状態を測定し、チャネル状態情報(CSI:Channel State Information)を基地局にフィードバック(報告)する。
(CSI)
In NR, the UE measures a channel state using a predetermined reference signal (or a resource for the reference signal), and feeds back (reports) channel state information (CSI: Channel State Information) to the base station.
 UEは、チャネル状態情報参照信号(CSI-RS:Channel State Information Reference Signal)、同期信号/ブロードキャストチャネル(SS/PBCH:Synchronization Signal/Physical Broadcast Channel)ブロック、同期信号(SS:Synchronization Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)などを用いて、チャネル状態を測定してもよい。 The UE includes a channel state information reference signal (CSI-RS: Channel State Information Reference Signal), a synchronization signal / broadcast channel (SS / PBCH: Synchronization Signal / Physical Broadcast Channel) block, a synchronization signal (SS: Synchronization Signal), and demodulation. The channel state may be measured using a reference signal (DMRS: DeModulation Reference Signal) or the like.
 CSI-RSリソースは、ノンゼロパワー(NZP:Non Zero Power)CSI-RSリソース、ゼロパワー(ZP:Zero Power)CSI-RSリソース及びCSI-IM(Interference Measurement)リソースの少なくとも1つを含んでもよい。 The CSI-RS resource may include at least one of a non-zero power (NZP) CSI-RS resource, a zero power (ZP: Zero Power) CSI-RS resource, and a CSI-IM (Interference Measurement) resource.
 CSIのための信号成分を測定するためのリソースは、信号測定リソース(SMR:Signal Measurement Resource)と呼ばれてもよい。SMRは、例えば、チャネル測定のためのNZP CSI-RSリソース、SSBなどを含んでもよい。 Resources for measuring signal components for CSI may be referred to as signal measurement resources (SMR: Signal Measurement Resource). The SMR may include, for example, NZP @ CSI-RS resources for channel measurement, SSB, and the like.
 CSIのための干渉成分を測定するためのリソースは、干渉測定リソース(IMR:Signal Measurement Resource)と呼ばれてもよい。IMRは、例えば、干渉測定のためのNZP CSI-RSリソース、SSB、ZP CSI-RSリソース及びCSI-IMリソースの少なくとも1つを含んでもよい。 A resource for measuring an interference component for CSI may be referred to as an interference measurement resource (IMR: Signal Measurement Resource). The IMR may include, for example, at least one of an NZP @ CSI-RS resource, an SSB, a ZP @ CSI-RS resource, and a CSI-IM resource for interference measurement.
 SS/PBCHブロックは、同期信号(例えば、プライマリ同期信号(PSS:Primary Synchronization Signal)、セカンダリ同期信号(SSS:Secondary Synchronization Signal))及びPBCH(及び対応するDMRS)を含むブロックであり、SSブロック(SSB)などと呼ばれてもよい。 The SS / PBCH block is a block including a synchronization signal (for example, a primary synchronization signal (PSS: Primary Synchronization Signal), a secondary synchronization signal (SSS: Secondary Synchronization Signal)) and a PBCH (and a corresponding DMRS). SSB) or the like.
 なお、CSIは、チャネル品質指標(CQI:Channel Quality Indicator)、プリコーディング行列指標(PMI:Precoding Matrix Indicator)、CSI-RSリソース指標(CRI:CSI-RS Resource Indicator)、SS/PBCHブロックリソース指標(SSBRI:SS/PBCH Block Indicator)、レイヤ指標(LI:Layer Indicator)、ランク指標(RI:Rank Indicator)、L1-RSRP(レイヤ1における参照信号受信電力(Layer 1 Reference Signal Received Power))、L1-RSRQ(Reference Signal Received Quality)、L1-SINR(Signal to Interference plus Noise Ratio)、L1-SNR(Signal to Noise Ratio)などの少なくとも1つを含んでもよい。 The CSI includes a channel quality indicator (CQI: Channel Quality Indicator), a precoding matrix indicator (PMI: Precoding Matrix Indicator), a CSI-RS resource indicator (CRI: CSI-RS Resource Indicator), and an SS / PBCH block resource indicator (CRI-RS Resource Indicator). SSBRI: SS / PBCH Block Indicator), layer indicator (LI: Layer Indicator), rank indicator (RI: Rank Indicator), L1-RSRP (reference signal reception power in layer 1 (Layer 1 Reference Signal Received に お け る Power)), L1- It may include at least one of RSRQ (Reference Signal Received Quality), L1-SINR (Signal to Interference Plus Noise Ratio), L1-SNR (Signal to Noise Ratio), and the like.
 CSIは、複数のパートを有してもよい。CSIパート1は、相対的にビット数の少ない情報(例えば、RI)を含んでもよい。CSIパート2は、CSIパート1に基づいて定まる情報などの、相対的にビット数の多い情報(例えば、CQI)を含んでもよい。 $ CSI may have multiple parts. The CSI part 1 may include information having a relatively small number of bits (for example, RI). The CSI part 2 may include information having a relatively large number of bits (for example, CQI), such as information determined based on the CSI part 1.
 また、CSIは、いくつかのCSIタイプに分類されてもよい。CSIタイプによって、報告する情報種別、サイズなどが異なってもよい。例えば、シングルビームを利用した通信を行うために設定されるCSIタイプ(タイプ1(type I) CSI、シングルビーム用CSIなどとも呼ぶ)と、マルチビームを利用した通信を行うために設定されるCSIタイプ(タイプ2(type II) CSI、マルチビーム用CSIなどとも呼ぶ)と、が規定されてもよい。CSIタイプの利用用途はこれに限られない。 C Also, CSI may be classified into several CSI types. The type of information to be reported, the size, and the like may be different depending on the CSI type. For example, a CSI type set for performing communication using a single beam (also referred to as a type 1 (type @ I) @CSI, a CSI for a single beam, etc.) and a CSI set for performing communication using a multi-beam Type (also referred to as type 2 (type II) CSI, multi-beam CSI, etc.) may be defined. The usage application of the CSI type is not limited to this.
 ビーム管理(beam manegement)のために報告される測定結果(例えば、CSI)は、ビーム測定(beam measurement)、ビーム測定結果、ビーム測定レポート(beam measurement report)などと呼ばれてもよい。 Measurement results (eg, CSI) reported for beam management may be referred to as beam measurements, beam measurements, beam measurement reports, and so on.
 CSIのフィードバック方法としては、周期的なCSI(P-CSI:Periodic CSI)報告、非周期的なCSI(A-CSI:Aperiodic CSI)報告、セミパーシステントなCSI(SP-CSI:Semi-Persistent CSI)報告などが検討されている。 As CSI feedback methods, periodic CSI (P-CSI: Periodic @ CSI) reports, aperiodic CSI (A-CSI: Aperiodic @ CSI) reports, semi-persistent CSI (SP-CSI: Semi-Persistent @ CSI) ) Reports are being considered.
 UEは、CSI測定設定情報を、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせを用いて通知されてもよい。 The UE may be notified of the CSI measurement setting information using higher layer signaling, physical layer signaling, or a combination thereof.
 本開示において、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, the upper layer signaling may be, for example, any one of RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, and the like, or a combination thereof.
 MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit)であってもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)、最低限のシステム情報(RMSI:Remaining Minimum System Information)、その他のシステム情報(OSI:Other System Information)などであってもよい。 The MAC signaling may be, for example, a MAC control element (MAC CE (Control Element)) or a MAC PDU (Protocol Data Unit). The broadcast information includes, for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), minimum system information (RMSI: Remaining Minimum System Information), and other system information (OSI: Other). System @ Information).
 物理レイヤシグナリングは、例えば、下り制御情報(DCI:Downlink Control Information)であってもよい。 The physical layer signaling may be, for example, downlink control information (DCI: Downlink Control Information).
 CSI測定設定情報は、例えば、RRC情報要素「CSI-MeasConfig」を用いて設定されてもよい。CSI測定設定情報は、CSIリソース設定情報(RRC情報要素「CSI-ResourceConfig」)、CSI報告設定情報(RRC情報要素「CSI-ReportConfig」)などを含んでもよい。 The CSI measurement setting information may be set using, for example, the RRC information element “CSI-MeasConfig”. The CSI measurement configuration information may include CSI resource configuration information (RRC information element “CSI-ResourceConfig”), CSI report configuration information (RRC information element “CSI-ReportConfig”), and the like.
 図1A及び1Bは、CSI報告設定及びCSIリソース設定に関するRRC情報要素の一例を示す図である。本例では、情報要素に含まれるフィールド(パラメータと呼ばれてもよい)の抜粋が示されている。図1A及び1Bは、ASN.1(Abstract Syntax Notation One)記法を用いて記載されている。なお、本開示の他のRRC情報要素(又はRRCパラメータ)に関する図面も、同様の記法で記載される。 FIGS. 1A and 1B are diagrams showing examples of RRC information elements related to CSI report settings and CSI resource settings. In this example, an excerpt of a field (which may be called a parameter) included in the information element is shown. 1A and 1B show the ASN. 1 (Abstract \ Syntax \ Notation \ One) notation. Note that drawings relating to other RRC information elements (or RRC parameters) of the present disclosure are also described in a similar notation.
 図1Aに示すように、CSI報告設定情報(「CSI-ReportConfig」)は、チャネル測定用リソース情報(「resourcesForChannelMeasurement」)を含む。また、CSI報告設定情報は、干渉測定用NZP CSI-RSリソース情報(「nzp-CSI-RS-ResourcesForInterference」)、干渉測定用CSI-IMリソース情報(「csi-IM-ResourcesForInterference」)なども含んでもよい。これらのリソース情報は、CSIリソース設定情報のID(Identifier)(「CSI-ResourceConfigId」)に対応している。 As shown in FIG. 1A, the CSI report configuration information (“CSI-ReportConfig”) includes channel measurement resource information (“resourcesForChannelMeasurement”). Further, the CSI report setting information may include NZP @ CSI-RS resource information for interference measurement (“nzp-CSI-RS-ResourcesForInterference”), CSI-IM resource information for interference measurement (“csi-IM-ResourcesForInterference”), and the like. Good. These resource information correspond to the ID (Identifier) (“CSI-ResourceConfigId”) of the CSI resource configuration information.
 なお、各リソース情報に対応するCSIリソース設定情報のID(CSIリソース設定IDと呼ばれてもよい)は、それぞれ異なる値であってもよい。 Note that the ID of the CSI resource setting information corresponding to each resource information (which may be referred to as a CSI resource setting ID) may have different values.
 図1Bに示すように、CSIリソース設定情報(「CSI-ResourceConfig」)は、CSIリソース設定情報ID、CSI-RSリソースセットリスト情報(「csi-RS-ResourceSetList」)などを含んでもよい。CSI-RSリソースセットリストは、測定のためのNZP CSI-RS及びSSBの情報(「nzp-CSI-RS-SSB」)と、CSI-IMリソースセットリスト情報(「csi-IM-ResourceSetList」)と、を含む。 As shown in FIG. 1B, the CSI resource setting information (“CSI-ResourceConfig”) may include a CSI resource setting information ID, CSI-RS resource set list information (“csi-RS-ResourceSetList”), and the like. The CSI-RS resource set list includes NZP @ CSI-RS and SSB information for measurement (“nzp-CSI-RS-SSB”), CSI-IM resource set list information (“csi-IM-ResourceSetList”). ,including.
 なお、チャネル測定用リソースは、例えば、CQI、PMI、L1-RSRPなどの算出に用いられてもよい。また、干渉測定用リソースは、L1-SINR、L1-SNR、L1-RSRQ、その他の干渉に関する指標の算出に用いられてもよい。 Note that the channel measurement resource may be used for calculating CQI, PMI, L1-RSRP, and the like, for example. The interference measurement resource may be used for calculating L1-SINR, L1-SNR, L1-RSRQ, and other indexes related to interference.
 干渉測定がCSI-IMで行われる場合、チャネル測定用の各CSI-RSは、対応するリソースセットにおけるCSI-RSリソース及びCSI-IMリソースの順番に基づいて、リソースの観点からCSI-IMリソースと関連付けられてもよい。 When the interference measurement is performed in CSI-IM, each CSI-RS for channel measurement is based on the order of the CSI-RS resource and the CSI-IM resource in the corresponding resource set, and the CSI-IM resource from the resource point of view. May be associated.
 「nzp-CSI-RS-SSB」は、NZP CSI-RSリソースセットリスト情報(「nzp-CSI-RS-ResourceSetList」)及びCSI測定のためのSSBリソースセットリスト情報(「csi-SSB-ResourceSetList」)を含んでもよい。これらのリスト情報は、それぞれ1つ以上のNZP CSI-RSリソースセットID(「CSI-ResourceConfigId」)及びCSI-SSBリソースセットID(「CSI-SSB-ResourceSetId」)に対応しており、測定対象のリソースを特定するために用いられてもよい。 "Nzp-CSI-RS-SSB" includes NZP @ CSI-RS resource set list information ("nzp-CSI-RS-ResourceSetList") and SSB resource set list information for CSI measurement ("csi-SSB-ResourceSetList"). May be included. These list information respectively correspond to one or more NZP @ CSI-RS resource set IDs ("CSI-ResourceConfigId") and CSI-SSB resource set IDs ("CSI-SSB-ResourceSetId"), and It may be used to identify resources.
 図2A及び2Bは、NZP CSI-RSリソースセット及びCSI-SSBリソースセットに関するRRC情報要素の一例を示す図である。 FIGS. 2A and 2B are diagrams illustrating examples of RRC information elements related to the NZP CSI-RS resource set and the CSI-SSB resource set.
 図2Aに示すように、NZP CSI-RSリソースセット情報(「NZP-CSI-RS-ResourceSet」)は、NZP CSI-RSリソースセットIDと、1つ以上のNZP CSI-RSリソースID(「NZP-CSI-RS-ResourceId」)と、を含む。NZP CSI-RSリソース情報(「NZP-CSI-RS-Resource」)は、NZP CSI-RSリソースIDと、送信設定指示状態(TCI状態(Transmission Configuration Indication state))のID(「TCI-stateId」)と、を含んでもよい。TCI状態については後述する。 As shown in FIG. 2A, the NZP @ CSI-RS resource set information ("NZP-CSI-RS-ResourceSet") includes an NZP @ CSI-RS resource set ID and one or more NZP @ CSI-RS resource IDs ("NZP-CSI-RS resource set"). CSI-RS-ResourceId ”). The NZP @ CSI-RS resource information ("NZP-CSI-RS-Resource") includes an NZP @ CSI-RS resource ID and a transmission setting instruction state (TCI state (Transmission Configuration Indication state)) ID ("TCI-stateId"). And may be included. The TCI state will be described later.
 図2Bに示すように、CSI-SSBリソースセット情報(「CSI-SSB-ResourceSet」)は、CSI-SSBリソースセットIDと、1つ以上のSSBインデックス情報(「SSB-Index」)と、を含む。SSBインデックス情報は、例えば0以上63以下の整数であって、SSバースト内のSSBを識別するために用いられてもよい。 As shown in FIG. 2B, the CSI-SSB resource set information (“CSI-SSB-ResourceSet”) includes a CSI-SSB resource set ID and one or more SSB index information (“SSB-Index”). . The SSB index information is, for example, an integer of 0 or more and 63 or less, and may be used to identify the SSB in the SS burst.
(QCL/TCI)
 NRでは、TCI状態に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)の受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)を制御することが検討されている。
(QCL / TCI)
In NR, it is considered to control a reception process (for example, at least one of reception, demapping, demodulation, and decoding) of at least one of a signal and a channel (expressed as a signal / channel) based on a TCI state. I have.
 TCI状態とは、チャネル又は信号の疑似コロケーション(QCL:Quasi-Co-Location)に関する情報であり、空間受信パラメータ、空間関係情報(spatial relation info)などとも呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。UEは、チャネルのTCI状態に基づいて、当該チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。 The TCI state is information on pseudo collocation (QCL: Quasi-Co-Location) of a channel or a signal, and may also be called a spatial reception parameter, spatial relation information (spatial relation information), or the like. The TCI state may be set for the UE on a per channel or per signal basis. The UE may determine at least one of a transmission beam (Tx beam) and a reception beam (Rx beam) of the channel based on the TCI state of the channel.
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(doppler shift)、ドップラースプレッド(doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(Spatial parameter)(例えば、空間受信パラメータ(Spatial Rx Parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。 QCL is an index indicating a statistical property of a signal / channel. For example, if one signal / channel and another signal / channel are in a QCL relationship, doppler shift (doppler shift), doppler spread (doppler spread), average delay (average delay) between these different signals / channels. ), Delay spread (delay @ spread), and spatial parameter (Spatial @ parameter) (e.g., spatial reception parameter (Spatial @ Rx @ Parameter)) means that it can be assumed to be the same (QCL for at least one of these). May be.
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。 Note that the spatial reception parameter may correspond to a reception beam (for example, a reception analog beam) of the UE, and the beam may be specified based on the spatial QCL. QCL (or at least one element of QCL) in the present disclosure may be read as sQCL (spatialpatQCL).
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータについて示す:
 ・QCLタイプA:ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB:ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC:ドップラーシフト及び平均遅延、
 ・QCLタイプD:空間受信パラメータ。
A plurality of types (QCL types) may be defined for the QCL. For example, four QCL types AD with different parameters (or parameter sets) that can be assumed to be the same may be provided, and are described below.
QCL type A: Doppler shift, Doppler spread, average delay and delay spread,
・ QCL type B: Doppler shift and Doppler spread,
QCL type C: Doppler shift and average delay,
QCL type D: spatial reception parameters.
 TCI状態は、例えば、対象となるチャネル(又は当該チャネル用の参照信号(RS:Reference Signal))と、別の信号(例えば、別の下り参照信号(DL-RS:Downlink Reference Signal))とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。 The TCI state is determined, for example, between a target channel (or a reference signal (RS: Reference Signal) for the channel) and another signal (for example, another downlink reference signal (DL-RS: Downlink Reference Signal)). It may be information on QCL. The TCI state may be set (instructed) by higher layer signaling, physical layer signaling, or a combination thereof.
 TCI状態が設定(指定)されるチャネルは、例えば、下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、下り制御チャネル(PDCCH:Physical Downlink Control Channel)、上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)の少なくとも1つであってもよい。 The channels for which the TCI state is set (specified) are, for example, a downlink shared channel (PDSCH: Physical Downlink Control Channel), a downlink control channel (PDCCH: Physical Downlink Control Channel), an uplink shared channel (PUSCH: Physical Uplink Shared Channel), It may be at least one of an uplink control channel (PUCCH: Physical Uplink Control Channel).
 また、当該チャネルとQCL関係となるRSは、例えば、SSB、CSI-RS及び測定用参照信号(SRS:Sounding Reference Signal)の少なくとも1つであってもよい。 The RS that has a QCL relationship with the channel may be, for example, at least one of an SSB, a CSI-RS, and a reference signal for measurement (SRS: Sounding Reference Signal).
 図3は、TCI状態に関するRRC情報要素の一例を示す図である。 FIG. 3 is a diagram showing an example of the RRC information element related to the TCI state.
 図3に示すように、TCI状態情報(「TCI-State」)は、TCI状態IDと、1つ以上のQCL情報(「QCL-Info」)と、を含んでもよい。QCL情報は、QCL関係となるDL-RSに関する情報(RS関連情報(「referenceSignal」))及びQCLタイプを示す情報(QCLタイプ情報(「qcl-Type」))の少なくとも1つを含んでもよい。RS関連情報は、RSのインデックス(例えば、NZP CSI-RSリソースID、SSBインデックス)、サービングセルのインデックス、RSが位置するBWP(Bandwidth Part)のインデックスなどの情報を含んでもよい。 As shown in FIG. 3, the TCI state information (“TCI-State”) may include a TCI state ID and one or more pieces of QCL information (“QCL-Info”). The QCL information may include at least one of information on a DL-RS having a QCL relationship (RS-related information (“referenceSignal”)) and information indicating a QCL type (QCL type information (“qcl-Type”)). The RS-related information may include information such as an RS index (for example, NZP @ CSI-RS resource ID, SSB index), a serving cell index, and a BWP (Bandwidth @ Part) index where the RS is located.
(マルチTRP/マルチパネル)
 NRでは、複数の送受信ポイント(TRP:Transmission/Reception Point)(マルチTRP)又は複数のパネル(マルチパネル)がそれぞれノンコヒーレントなDL(例えば、PDSCH)送信を行うことが検討されている。
(Multi TRP / Multi Panel)
In NR, it is considered that a plurality of transmission / reception points (TRP: Transmission / Reception Point) (multi-TRP) or a plurality of panels (multi-panel) perform non-coherent DL (for example, PDSCH) transmission.
 マルチTRP/マルチパネルシナリオにおいては、動的なスケジューリングのために、複数のCSIタイプが報告されることが求められる。図4A-4Dは、マルチTRPシナリオにおけるCSIフィードバックの一例を示す図である。本例では、TRP1及び2が、それぞれ4つのビームを用いてUEに対する送信を行うことができる。 In a multi-TRP / multi-panel scenario, multiple CSI types are required to be reported for dynamic scheduling. 4A-4D are diagrams illustrating examples of CSI feedback in a multi-TRP scenario. In this example, TRP1 and TRP2 can each transmit to the UE using four beams.
 図4Aの場合、UEは、TRP1からのビーム1が信号成分(S)であり、TRP2からのビーム5が干渉成分(I)に含まれる干渉測定結果(例えば、SINR)を算出し、CSIフィードバックしてもよい。 In the case of FIG. 4A, the UE calculates the interference measurement result (for example, SINR) in which beam 1 from TRP1 is the signal component (S) and beam 5 from TRP2 is included in the interference component (I), and performs CSI feedback. May be.
 図4Bの場合、UEは、TRP1からのビーム1が信号成分(S)であり、TRP2からのビーム6が干渉成分(I)に含まれる干渉測定結果を算出し、CSIフィードバックしてもよい。 4B, the UE may calculate the interference measurement result in which the beam 1 from TRP1 is the signal component (S) and the beam 6 from TRP2 is included in the interference component (I), and may feed back the CSI.
 図4Cの場合、UEは、TRP2からのビーム8が信号成分(S)であり、TRP1からのビーム2が干渉成分(I)に含まれる干渉測定結果を算出し、CSIフィードバックしてもよい。 In the case of FIG. 4C, the UE may calculate the interference measurement result in which the beam 8 from the TRP 2 is the signal component (S) and the beam 2 from the TRP 1 is included in the interference component (I), and feed back the CSI.
 図4Dの場合、UEは、TRP2からのビーム8が信号成分(S)であり、TRP1からのビーム1が干渉成分(I)に含まれる干渉測定結果を算出し、CSIフィードバックしてもよい。 4D, the UE may calculate the interference measurement result in which the beam 8 from TRP2 is the signal component (S) and the beam 1 from TRP1 is included in the interference component (I), and may feed back the CSI.
 このように、UEが、1つのCSI報告で、異なるTRP(又はパネル)からの異なるビームに基づく信号測定(チャネル測定)、隣接するTRP(又はパネル)からの異なるビームに基づく干渉測定などを報告できると好ましい。 In this way, the UE reports signal measurements (channel measurements) based on different beams from different TRPs (or panels), interference measurements based on different beams from adjacent TRPs (or panels), etc. in one CSI report Preferably it is possible.
 しかしながら、これまで検討されたNR仕様においては、UEは、1つのCSI報告のために設定されるチャネル測定用NZP CSI-RSリソースと、干渉測定用NZP CSI-RS又はCSI-IMリソースと、がリソースの観点からQCLである(「QCLタイプD」に該当する)(resource-wise QCLed with respect to ‘QCL-TypeD’)と想定してもよいことになっている。 However, in the NR specifications considered so far, the UE has a NZP @ CSI-RS resource for channel measurement and an NZP @ CSI-RS or CSI-IM resource for interference measurement configured for one CSI report. From the viewpoint of resources, it may be assumed that it is a QCL (corresponding to “QCL type D”) (resource-wise {QCLed} with {respect} to {'QCL-TypeD').
 つまり、これまでのNR仕様では、同じTRP(又はパネル)からのRSに基づくCSIタイプのCSI報告設定しかサポートされていない。したがって、これまでのNR仕様を用いると、UEが異なるTRP(又はパネル)からのRSに基づく異なるCSIタイプのCSI報告を適切なタイミングで送信できず、通信スループットが低下するおそれがある。 That is, the NR specifications so far only support CSI type CSI report settings based on RS from the same TRP (or panel). Therefore, if the conventional NR specifications are used, the UE cannot transmit CSI reports of different CSI types based on RSs from different TRPs (or panels) at an appropriate timing, and the communication throughput may be reduced.
 そこで、本発明者らは、複数のTRP(又はパネル)に関して、複数のCSIタイプのCSI報告を好適に実施するための設定方法を着想した。 Therefore, the present inventors have conceived of a setting method for appropriately executing CSI reports of a plurality of CSI types for a plurality of TRPs (or panels).
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication method according to each embodiment may be applied alone or in combination.
 なお、本開示の説明において、TRP、コードワード、参照信号リソース、参照信号のアンテナポート、アンテナポートグループ、所定のチャネル(例えば、PDSCH)、ビーム、パネル(アンテナパネル)、複数のアンテナ素子などは、互いに読み替えられてもよい。ここで、参照信号は、例えばDMRSであってもよい。ある文章のTRPがパネルで読み替えられ、別の文章のTRPがコードワードで読み替えられるなどしてもよい。 In the description of the present disclosure, TRP, codeword, reference signal resource, reference signal antenna port, antenna port group, predetermined channel (for example, PDSCH), beam, panel (antenna panel), a plurality of antenna elements, etc. May be read as each other. Here, the reference signal may be, for example, a DMRS. The TRP of a certain sentence may be replaced by a panel, and the TRP of another sentence may be replaced by a codeword.
(無線通信方法)
<第1の実施形態>
 第1の実施形態において、UEは、1つのCSI報告設定(RRC情報要素「CSI-reportConfig」)に、複数のTRPに関連する1つ又は複数のCSIセットを含んでもよい。つまり、各セット(各セットのRS)は、それぞれ異なるTRPに対応してもよい。1つのCSIセットは、1つ以上のCSIタイプを含んでもよい。なお、CSIセットは、CSI測定(又はチャネル測定又は干渉測定)のためのRSのセットで読み替えられてもよい。
(Wireless communication method)
<First embodiment>
In the first embodiment, the UE may include one or more CSI sets related to multiple TRPs in one CSI report configuration (RRC information element “CSI-reportConfig”). That is, each set (RS of each set) may correspond to a different TRP. One CSI set may include one or more CSI types. Note that the CSI set may be read as a set of RSs for CSI measurement (or channel measurement or interference measurement).
 測定対象の各RS(CSI-RS、SSBなど)が、TRPに関連付けられてもよい。例えば、図4A-4Dのビーム1を用いて送信されるCSI-RSは、TRP1に関連付けられてUEに設定され、ビーム8を用いて送信されるCSI-RSは、TRP2に関連付けられてUEに設定されてもよい。この構成によれば、異なるTRPの信号成分(S)を好適に測定できる。UEは、複数のCSIセットの設定に基づいて、1つ又は複数のCSIタイプを基地局に報告してもよい。 各 Each RS to be measured (CSI-RS, SSB, etc.) may be associated with a TRP. For example, the CSI-RS transmitted using beam 1 of FIGS. 4A-4D is configured for the UE in association with TRP1, and the CSI-RS transmitted using beam 8 is associated with the UE in association with TRP2. It may be set. According to this configuration, the signal components (S) of different TRPs can be suitably measured. The UE may report one or more CSI types to the base station based on the settings of the multiple CSI sets.
[RSとパネルとの対応関係の設定]
 チャネル測定又は干渉測定のためのRS(例えば、CSI-RS、SSB)とTRPとの対応関係は、上位レイヤシグナリング(例えば、RRCシグナリング、MACシグナリング)を用いてUEに設定されてもよい。
[Setting of correspondence between RS and panel]
A correspondence between an RS (eg, CSI-RS, SSB) and TRP for channel measurement or interference measurement may be set in the UE using higher layer signaling (eg, RRC signaling, MAC signaling).
 例えば、CSI-RSとTRPとの対応関係は、TCI状態ごとに設定されてもよいし、NZP CSI-RSごとに設定されてもよいし、NZP CSI-RSのセットごとに設定されてもよい。つまり、CSI-RSとTRPとの対応関係の情報は、以下の少なくとも1つに含まれてUEに設定されてもよい:
・TCI状態情報(「TCI-State」)又はQCL情報(「QCL-Info」)、
・NZP CSI-RSリソース情報(「NZP-CSI-RS-Resource」)、
・NZP CSI-RSリソースセット情報(「NZP-CSI-RS-ResourceSet」)。
For example, the correspondence between CSI-RS and TRP may be set for each TCI state, may be set for each NZP CSI-RS, or may be set for each set of NZP CSI-RS. . That is, the information on the correspondence between the CSI-RS and the TRP may be included in at least one of the following and set in the UE:
-TCI state information ("TCI-State") or QCL information ("QCL-Info"),
NZP CSI-RS resource information (“NZP-CSI-RS-Resource”),
-NZP CSI-RS resource set information ("NZP-CSI-RS-ResourceSet").
 例えば、SSBとTRPとの対応関係は、SSBごとに設定されてもよいし、SSBのセットごとに設定されてもよい。つまり、SSBとTRPとの対応関係は、以下の少なくとも1つを用いてUEに設定されてもよい:
・SSBインデックス情報(「SSB-Index」)、
・CSI-SSBリソースセット情報(「CSI-SSB-ResourceSet」)。
For example, the correspondence between SSB and TRP may be set for each SSB, or may be set for each set of SSB. That is, the correspondence between SSB and TRP may be set in the UE using at least one of the following:
-SSB index information ("SSB-Index"),
-CSI-SSB resource set information ("CSI-SSB-ResourceSet").
 図5A及び5Bは、CSI-RSとTRPとの対応関係に関するRRCパラメータの一例を示す図である。本例では、TRPはDMRSポートグループに対応付けられていると想定する。 FIGS. 5A and 5B are diagrams showing examples of RRC parameters related to the correspondence between CSI-RS and TRP. In this example, it is assumed that TRP is associated with a DMRS port group.
 図5Aは、CSI-RSとTRPとの対応関係の情報が、NZP CSI-RSリソース情報(「NZP-CSI-RS-Resource」)に含まれる例を示す。図5Aは、このCSI-RSリソースに対応するDMRSポートグループの情報として、DMRSポートグループID(「DMRSPortGroup-ID」)を含んでいる点で、図2Aの既存のNZP CSI-RSリソース情報と異なる。 FIG. 5A shows an example in which information on the correspondence between CSI-RS and TRP is included in NZP CSI-RS resource information (“NZP-CSI-RS-Resource”). FIG. 5A differs from the existing NZP @ CSI-RS resource information in FIG. 2A in that the information of the DMRS port group corresponding to this CSI-RS resource includes a DMRS port group ID (“DMRSPortGroup-ID”). .
 図5Bは、CSI-RSとTRPとの対応関係の情報が、NZP CSI-RSリソースセット情報(「NZP-CSI-RS-ResourceSet」)に含まれる例を示す。図5Bは、このCSI-RSリソースセットに対応するDMRSポートグループの情報として、DMRSポートグループID(「DMRSPortGroup-ID」)を含んでいる点で、図2Aの既存のNZP CSI-RSリソースセット情報と異なる。 FIG. 5B shows an example in which information on the correspondence between CSI-RS and TRP is included in NZPSICSI-RS resource set information (“NZP-CSI-RS-ResourceSet”). FIG. 5B includes the existing NZP @ CSI-RS resource set information of FIG. 2A in that a DMRS port group ID (“DMRSPortGroup-ID”) is included as information of the DMRS port group corresponding to the CSI-RS resource set. And different.
 なお、DMRSポートグループIDの代わりに又は当該IDとともに、TRP、コードワード、アンテナポート、所定のチャネル、ビーム及びパネルの少なくとも1つに関するIDが、上述のいずれかのRRC情報要素に含まれてもよい。また、RS(例えば、CSI-RS、SSB)とTRPとの対応関係は、上述のRRC情報要素以外のRRC情報要素又はパラメータに含まれて設定されてもよい。 Note that, in place of or together with the DMRS port group ID, an ID relating to at least one of a TRP, a codeword, an antenna port, a predetermined channel, a beam, and a panel may be included in any of the above RRC information elements. Good. Further, the correspondence between the RS (for example, CSI-RS, SSB) and the TRP may be set by being included in an RRC information element or a parameter other than the above-described RRC information element.
[複数のCSIセットのための設定]
 それぞれTRPに対応するRSを示す複数のCSIセットは、上位レイヤシグナリング(例えば、RRCシグナリング、MACシグナリング)を用いてUEに設定されてもよい。
[Settings for multiple CSI sets]
A plurality of CSI sets each indicating an RS corresponding to the TRP may be configured in the UE using higher layer signaling (eg, RRC signaling, MAC signaling).
 例えば、複数のCSIセットは、以下の少なくとも1つに従って設定されてもよい:
 (1)チャネル測定用リソース情報(「resourcesForChannelMeasurement」)、干渉測定用NZP CSI-RSリソース情報(「nzp-CSI-RS-ResourcesForInterference」)及び干渉測定用CSI-IMリソース情報(「csi-IM-ResourcesForInterference」)の少なくとも1つ(又はこれらの少なくとも1つを含むセット)が、CSI報告設定情報(「CSI-ReportConfig」)において複数設定される、
 (2)CSI-RSリソースセットリスト情報(「csi-RS-ResourceSetList」)(又は当該情報を含むセット)が、CSIリソース設定情報(「CSI-ResourceConfig」)において複数設定される、
 (3)測定のためのNZP CSI-RS及びSSBの情報(「nzp-CSI-RS-SSB」)及びCSI-IMリソースセットリスト情報(「csi-IM-ResourceSetList」)の少なくとも1つ(又はこれらの少なくとも1つを含むセット)が、CSIリソース設定情報(「CSI-ResourceConfig」)において複数設定される、
 (4)NZP CSI-RSリソースセットリスト情報(「nzp-CSI-RS-ResourceSetList」)、CSI測定のためのSSBリソースセットリスト情報(「csi-SSB-ResourceSetList」)及びCSI-IMリソースセットリスト情報(「csi-IM-ResourceSetList」)の少なくとも1つ(又はこれらの少なくとも1つを含むセット)が、CSIリソース設定情報(「CSI-ResourceConfig」)において複数設定される。
For example, multiple CSI sets may be configured according to at least one of the following:
(1) Resource information for channel measurement (“resourcesForChannelMeasurement”), NZP CSI-RS resource information for interference measurement (“nzp-CSI-RS-ResourcesForInterference”), and CSI-IM resource information for interference measurement (“csi-IM-ResourcesForInterference”) )) (Or a set including at least one of them) is set a plurality of times in the CSI report configuration information (“CSI-ReportConfig”).
(2) A plurality of CSI-RS resource set list information (“csi-RS-ResourceSetList”) (or a set including the information) is set in the CSI resource setting information (“CSI-ResourceConfig”).
(3) At least one of (or the information of) NZP CSI-RS and SSB for measurement (“nzp-CSI-RS-SSB”) and CSI-IM resource set list information (“csi-IM-ResourceSetList”) Are set in the CSI resource configuration information (“CSI-ResourceConfig”),
(4) NZP CSI-RS resource set list information (“nzp-CSI-RS-ResourceSetList”), SSB resource set list information for CSI measurement (“csi-SSB-ResourceSetList”), and CSI-IM resource set list information At least one (or a set including at least one of these) is set in the CSI resource configuration information (“CSI-ResourceConfig”).
 上記(1)-(4)の設定のシグナリング構成について、それぞれ図6-9を参照して説明する。なお、いずれの構成についても、CSI-RS又はSSBとパネルとの対応関係は上述したように設定されてよい。 シ グ ナ リ ン グ The signaling configuration for the above settings (1)-(4) will be described with reference to FIGS. 6-9. In any configuration, the correspondence between the CSI-RS or SSB and the panel may be set as described above.
 図6A及び6Bは、複数のCSIセットを設定できるCSI報告設定に関するRRC情報要素の一例を示す図である。 FIGS. 6A and 6B are diagrams illustrating an example of an RRC information element related to CSI report configuration in which a plurality of CSI sets can be configured.
 図6Aは、CSI報告設定情報(「CSI-ReportConfig」)に2セットのチャネル測定用リソース情報(「resourcesForChannelMeasurement」)が含まれる例を示す。図6Aは、1つ目のチャネル測定用リソース情報(「resourcesForChannelMeasurement」)に加えて、2つ目のチャネル測定用リソース情報(「resourcesForChannelMeasurement-R16」)を含んでいる点で、図1Aの既存のCSI報告設定情報と異なる。 FIG. 6A shows an example in which two sets of channel measurement resource information (“resourcesForChannelMeasurement”) are included in CSI report configuration information (“CSI-ReportConfig”). FIG. 6A includes the second channel measurement resource information (“resourcesForChannelMeasurement-R16”) in addition to the first channel measurement resource information (“resourcesForChannelMeasurement”). Different from CSI report setting information.
 なお、「-R16」又は「-r16」は3GPP Rel.16によって規定される(利用される)フィールド又はパラメータであることを意味しているが、フィールド名、パラメータ名、規定されるリリースなどは、この例に限定されない。 Note that “-R16” or “-r16” is 3GPP @ Rel. 16 means a field or parameter defined (used), but the field name, parameter name, defined release, etc. are not limited to this example.
 2つ目のチャネル測定用リソース情報も、CSIリソース設定IDに対応している。本例に示す「CSI-ResourceConfigId-r16」は、「CSI-ResourceConfigId」と同じ値の範囲を取り得ると規定されてもよいし、異なる値の範囲を取り得ると規定されてもよい。 The second channel measurement resource information also corresponds to the CSI resource setting ID. “CSI-ResourceConfigId-r16” shown in the present example may be defined to have the same value range as “CSI-ResourceConfigId” or may be defined to have a different value range.
 1つのCSIリソース設定情報(「CSI-ResourceConfig」)において設定される全てのRSは、同じパネルに関連してもよい。一方で、1つ目のチャネル測定用リソース情報に対応するCSIリソース設定情報において設定されるRSは、2つ目のチャネル測定用リソース情報に対応するCSIリソース設定情報において設定されるRSと異なるパネルに関連してもよい。 All RSs configured in one CSI resource configuration information (“CSI-ResourceConfig”) may be associated with the same panel. On the other hand, the RS set in the CSI resource setting information corresponding to the first channel measurement resource information is different from the RS set in the CSI resource setting information corresponding to the second channel measurement resource information. May be related to
 図6Bは、CSI報告設定情報(「CSI-ReportConfig」)に2セットのチャネル測定用リソース情報(「resourcesForChannelMeasurement」)及び干渉測定用CSI-IMリソース情報(「csi-IM-ResourcesForInterference」)が含まれる例を示す。図6Bは、1つ目の干渉測定用CSI-IMリソース情報(「csi-IM-ResourcesForInterference」)に加えて、2つ目の干渉測定用CSI-IMリソース情報(「csi-IM-ResourcesForInterference-R16」)を含んでいる点で、図6AのCSI報告設定情報と異なる。 FIG. 6B shows two sets of channel measurement resource information (“resourcesForChannelMeasurement”) and interference measurement CSI-IM resource information (“csi-IM-ResourcesForInterference”) included in the CSI report configuration information (“CSI-ReportConfig”). Here is an example. FIG. 6B shows the second CSI-IM resource information for interference measurement (“csi-IM-ResourcesForInterference-R16”) in addition to the first CSI-IM resource information for interference measurement (“csi-IM-ResourcesForInterference”). 6) is different from the CSI report setting information in FIG. 6A.
 1つのCSIリソース設定情報(「CSI-ResourceConfig」)において設定される全てのRSは、同じパネルに関連してもよい。一方で、1つ目の干渉測定用CSI-IMリソース情報に対応するCSIリソース設定情報において設定されるRS又はIMリソースは、2つ目の干渉測定用CSI-IMリソース情報に対応するCSIリソース設定情報において設定されるRS又はIMリソースと異なるパネルに関連してもよい。 All RSs configured in one CSI resource configuration information (“CSI-ResourceConfig”) may be associated with the same panel. On the other hand, the RS or IM resource set in the CSI resource setting information corresponding to the first interference measurement CSI-IM resource information is the CSI resource setting corresponding to the second interference measurement CSI-IM resource information. It may relate to a different panel than the RS or IM resources set in the information.
 なお、同じ3GPPリリースに対応するパラメータに対応するCSIリソース設定情報において設定されるRS又はIMリソースは、同じパネルに関連してもよい。例えば、「resourcesForChannelMeasurement-R16」及び「csi-IM-ResourcesForInterference-R16」に対応するCSIリソース設定情報において設定されるRS又はIMリソースは、同じパネルに関連してもよい。 {Note that RS or IM resources set in CSI resource setting information corresponding to parameters corresponding to the same 3GPP release may be associated with the same panel. For example, RS or IM resources set in CSI resource setting information corresponding to “resourcesForChannelMeasurement-R16” and “csi-IM-ResourcesForInterference-R16” may be associated with the same panel.
 図7は、複数のCSIセットを設定できるCSIリソース設定に関するRRC情報要素の第1の例を示す図である。図7は、CSIリソース設定情報(「CSI- ResourceConfig」)に2セットのCSI-RSリソースセットリスト情報(「csi-RS-ResourceSetList」)が含まれる例を示す。図7は、1つ目のCSI-RSリソースセットリスト情報(「csi-RS-ResourceSetList」)に加えて、2つ目のCSI-RSリソースセットリスト情報(「csi-RS-ResourceSetList-R16」)を含んでいる点で、図1Bの既存のCSIリソース設定情報と異なる。 FIG. 7 is a diagram illustrating a first example of an RRC information element related to CSI resource configuration in which a plurality of CSI sets can be configured. FIG. 7 illustrates an example in which two sets of CSI-RS resource set list information (“csi-RS-ResourceSetList”) are included in the CSI resource setting information (“CSI- @ ResourceConfig”). FIG. 7 shows the second CSI-RS resource set list information (“csi-RS-ResourceSetList-R16”) in addition to the first CSI-RS resource set list information (“csi-RS-ResourceSetList”). Is different from the existing CSI resource setting information in FIG. 1B.
 2つ目のCSI-RSリソースセットリスト情報は、1つ目のCSI-RSリソースセットリスト情報と同じフィールド、パラメータなどを含んでもよい。本例では、2つ目のCSI-RSリソースセットリスト情報は、3GPP Rel.16によって規定される(利用される)フィールド又はパラメータによって構成されている。 The second CSI-RS resource set list information may include the same fields, parameters, and the like as the first CSI-RS resource set list information. In this example, the second CSI-RS resource set list information is 3GPP @ Rel. 16 (fields) or parameters defined (used).
 1つのCSI-RSリソースセットリスト情報(「csi-RS-ResourceSetList」)において設定される全てのRSは、同じパネルに関連してもよい。一方で、1つ目のCSI-RSリソースセットリスト情報において設定されるRSは、2つ目のCSI-RSリソースセットリスト情報において設定されるRSと異なるパネルに関連してもよい。 All RSs set in one CSI-RS resource set list information (“csi-RS-ResourceSetList”) may be associated with the same panel. On the other hand, the RS set in the first CSI-RS resource set list information may be associated with a different panel from the RS set in the second CSI-RS resource set list information.
 図8は、複数のCSIセットを設定できるCSIリソース設定に関するRRC情報要素の第2の例を示す図である。図8は、CSIリソース設定情報(「CSI- ResourceConfig」)に含まれるCSI-RSリソースセットリスト情報(「csi-RS-ResourceSetList」)に、2セットのNZP CSI-RS及びSSBの情報(「nzp-CSI-RS-SSB」)と、CSI-IMリソースセットリスト情報(「csi-IM-ResourceSetList」)と、が含まれる例を示す。 FIG. 8 is a diagram illustrating a second example of the RRC information element related to the CSI resource setting in which a plurality of CSI sets can be set. FIG. 8 shows that the CSI-RS resource set list information (“csi-RS-ResourceSetList”) included in the CSI resource configuration information (“CSI- @ ResourceConfig”) contains two sets of information of NZP @ CSI-RS and SSB (“nzp -CSI-RS-SSB ") and CSI-IM resource set list information (" csi-IM-ResourceSetList ").
 図8は、CSI-RSリソースセットリスト情報に、1つ目のセットのNZP CSI-RS及びSSBの情報(「nzp-CSI-RS-SSB」)と、CSI-IMリソースセットリスト情報(「csi-IM-ResourceSetList」)と、に加えて、2つ目のセットのNZP CSI-RS及びSSBの情報(「nzp-CSI-RS-SSB-r16」)と、CSI-IMリソースセットリスト情報(「csi-IM-ResourceSetList-16」)と、を含んでいる点で、図1Bの既存のCSIリソース設定情報と異なる。 FIG. 8 shows the information of the NZP @ CSI-RS and SSB of the first set (“nzp-CSI-RS-SSB”) and the CSI-IM resource set list information (“csi-RS -IM-ResourceSetList "), NZP @ CSI-RS and SSB information of the second set (" nzp-CSI-RS-SSB-r16 "), and CSI-IM resource set list information (" csi-IM-ResourceSetList-16 ”), which is different from the existing CSI resource setting information in FIG. 1B.
 2つ目のセットのNZP CSI-RS及びSSBの情報並びにCSI-IMリソースセットリスト情報は、それぞれ1つ目のセットのNZP CSI-RS及びSSBの情報並びにCSI-IMリソースセットリスト情報と同じフィールド、パラメータなどを含んでもよい。本例では、2つ目のセットは、3GPP Rel.16によって規定される(利用される)フィールド又はパラメータによって構成されている。 The NZP @ CSI-RS and SSB information of the second set and the CSI-IM resource set list information are the same fields as the NZP @ CSI-RS and SSB information and the CSI-IM resource set list information of the first set, respectively. , Parameters, and the like. In this example, the second set is 3GPP @ Rel. 16 (fields) or parameters defined (used).
 1つのNZP CSI-RS及びSSBの情報(「nzp-CSI-RS-SSB」)又はCSI-IMリソースセットリスト情報(「csi-IM-ResourceSetList」)において設定される全てのRS(又はIM)は、同じパネルに関連してもよい。一方で、1つ目のセットの情報において設定されるRS(又はIM)は、2つ目のセットの情報において設定されるRS(又はIM)と異なるパネルに関連してもよい。 All RSs (or IMs) set in one NZP @ CSI-RS and SSB information ("nzp-CSI-RS-SSB") or CSI-IM resource set list information ("csi-IM-ResourceSetList") , May be associated with the same panel. On the other hand, the RS (or IM) set in the first set of information may be associated with a different panel from the RS (or IM) set in the second set of information.
 図9は、複数のCSIセットを設定できるCSIリソース設定に関するRRC情報要素の第3の例を示す図である。図9は、CSIリソース設定情報(「CSI- ResourceConfig」)に含まれるNZP CSI-RS及びSSBの情報(「nzp-CSI-RS-SSB」)に、2セットのNZP CSI-RSリソースセットリスト情報(「nzp-CSI-RS-ResourceSetList」)及びCSI測定のためのSSBリソースセットリスト情報(「csi-SSB-ResourceSetList」)が含まれる例を示す。 FIG. 9 is a diagram illustrating a third example of the RRC information element related to the CSI resource setting in which a plurality of CSI sets can be set. FIG. 9 shows two sets of NZP @ CSI-RS resource set list information in NZP @ CSI-RS and SSB information ("nzp-CSI-RS-SSB") included in CSI resource configuration information ("CSI- @ ResourceConfig"). An example is shown that includes (“nzp-CSI-RS-ResourceSetList”) and SSB resource set list information (“csi-SSB-ResourceSetList”) for CSI measurement.
 図9は、NZP CSI-RS及びSSBの情報に、1つ目のセットのNZP CSI-RSリソースセットリスト情報(「nzp-CSI-RS-ResourceSetList」)及びCSI測定のためのSSBリソースセットリスト情報(「csi-SSB-ResourceSetList」)に加えて、2つ目のセットのNZP CSI-RSリソースセットリスト情報(「nzp-CSI-RS-ResourceSetList-r16」)及びCSI測定のためのSSBリソースセットリスト情報(「csi-SSB-ResourceSetList-r16」)を含んでいる点で、図1Bの既存のCSIリソース設定情報と異なる。 FIG. 9 shows NZP @ CSI-RS and SSB information in the first set of NZP @ CSI-RS resource set list information ("nzp-CSI-RS-ResourceSetList") and SSB resource set list information for CSI measurement. In addition to ("csi-SSB-ResourceSetList"), the second set of NZP @ CSI-RS resource set list information ("nzp-CSI-RS-ResourceSetList-r16") and SSB resource set list for CSI measurement This is different from the existing CSI resource setting information in FIG. 1B in that the information includes information (“csi-SSB-ResourceSetList-r16”).
 2つ目のセットのNZP CSI-RSリソースセットリスト情報及びCSI測定のためのSSBリソースセットリスト情報は、それぞれ1つ目のセットのNZP CSI-RSリソースセットリスト情報及びCSI測定のためのSSBリソースセットリスト情報と同じフィールド、パラメータなどを含んでもよい。本例では、2つ目のセットは、3GPP Rel.16によって規定される(利用される)フィールド又はパラメータによって構成されている。 The second set of NZP @ CSI-RS resource set list information and the SSB resource set list information for CSI measurement are respectively the first set of NZP @ CSI-RS resource set list information and SSB resource for CSI measurement. It may include the same fields and parameters as the set list information. In this example, the second set is 3GPP @ Rel. 16 (fields) or parameters defined (used).
 1つのNZP CSI-RSリソースセットリスト情報又はCSI測定のためのSSBリソースセットリスト情報において設定される全てのRSは、同じパネルに関連してもよい。一方で、1つ目のセットの情報において設定されるRSは、2つ目のセットの情報において設定されるRSと異なるパネルに関連してもよい。 All RSs configured in {1 NZP} CSI-RS resource set list information or SSB resource set list information for CSI measurement may be associated with the same panel. On the other hand, the RS set in the first set of information may be associated with a different panel from the RS set in the second set of information.
 図7-9のCSIリソース設定情報を用いることによって、チャネル測定用リソース情報、干渉測定用NZP CSI-RSリソース情報及び干渉測定用CSI-IMリソース情報をそれぞれ高々1つずつしか含むことができない既存のCSI報告設定情報(図1A)を用いる場合であっても、UEに複数のCSIセットを設定できる。 By using the CSI resource setting information of FIG. 7-9, the existing channel information, NZP @ CSI-RS resource information for interference measurement, and CSI-IM resource information for interference measurement can be included at most one each. Even if the CSI report setting information (FIG. 1A) is used, a plurality of CSI sets can be set in the UE.
 以上説明した第1の実施形態によれば、UEは、異なるパネルについてのCSI報告設定又はリソース設定に基づいて、複数のCSIタイプを好適に報告できる。 According to the first embodiment described above, the UE can appropriately report a plurality of CSI types based on CSI report settings or resource settings for different panels.
<第2の実施形態>
 第2の実施形態は、TRP間干渉(inter-TRP interference)(上述のように、ビーム間干渉、コードワード間干渉、パネル間干渉などで読み替えられてもよい)の測定に関する。
<Second embodiment>
The second embodiment relates to the measurement of inter-TRP interference (which may be read as inter-beam interference, codeword interference, inter-panel interference, etc., as described above).
 UEは、1つのコードワード(TRP、パネルなど)のCSIをある干渉の想定に基づいて算出してもよい。当該想定は、TRP間干渉が信号用のリソースエレメント(RE:Resource Element)(つまり、SMR(NZP CSI-RSリソース、SSBリソースなど))から導出でき、当該REが、他のTRPからの他のコードワードに対応するという想定であってもよい。 The UE may calculate the CSI of one codeword (TRP, panel, etc.) based on some interference assumptions. The assumption is that the inter-TRP interference can be derived from the resource element for the signal (RE: Resource @ Element) (ie, SMR (NZP @ CSI-RS resource, SSB resource, etc.)), and the RE is It may be assumed that it corresponds to a codeword.
 上記干渉の想定のために、例えば、以下の2つの方法の少なくとも1つが利用されてもよい。1つ目の方法は、あるTRP(TRP1と仮定する)のためのIMRを、他のTRP(TRP2と仮定する)のためのSMRと同じREに設定する方法である。2つ目の方法は、TRP1のためのTRP間干渉を、TRP2からの他のSMR及びプリコーディング行列の少なくとも一方から得られるチャネル測定に基づいて導出する方法である。図10A及び10Bを用いてこれらの方法について説明する。 想 定 For the above-mentioned interference assumption, for example, at least one of the following two methods may be used. The first method is to set the IMR for a certain TRP (assuming TRP1) to the same RE as the SMR for another TRP (assuming TRP2). The second method is to derive the inter-TRP interference for TRP1 based on channel measurements obtained from at least one of the other SMR and the precoding matrix from TRP2. These methods will be described with reference to FIGS. 10A and 10B.
 図10A及び10Bは、TRP間干渉測定のための設定の一例を示す図である。図10Aは、図4Aと同様のマルチTRPシナリオを示しており、TRP2のビーム5によって、TRP1のビーム1がTRP間干渉を受けると想定する。また、TRP1がビーム1を用いてCSI-RS1を送信し、TRP2がビーム5を用いてCSI-RS5を送信すると想定する。 FIGS. 10A and 10B are diagrams showing an example of settings for inter-TRP interference measurement. FIG. 10A shows a similar multi-TRP scenario as FIG. 4A, assuming that beam 5 of TRP2 causes beam 1 of TRP1 to undergo inter-TRP interference. Also assume that TRP1 transmits CSI-RS1 using beam 1 and TRP2 transmits CSI-RS5 using beam 5.
 図10Bは、CSI-RS1及び5のリソースの一例を示す図である。CSI-RS1のリソースと、CSI-RS5のリソースと、は重複しないと想定する。上記TRP干渉に対応するCSIは、CSI-RS1のリソースをSMRとするCSI(以下、単にCSI1と呼ぶ)に該当する。当該CSIの干渉成分をどのように算出するか、ということが問題となる。 FIG. 10B is a diagram showing an example of resources of CSI-RS1 and 5. It is assumed that the resource of CSI-RS1 and the resource of CSI-RS5 do not overlap. The CSI corresponding to the TRP interference corresponds to CSI (hereinafter, simply referred to as CSI1) in which the resource of CSI-RS1 is SMR. The problem is how to calculate the interference component of the CSI.
 上述の1つ目の方法では、UEは、CSI1のためのIMRを、CSI-RS5のリソースと同じREとして設定されてもよい。つまり、UEは、CSI1報告のための、干渉測定用NZP CSI-RSリソース情報(「nzp-CSI-RS-ResourcesForInterference」)、干渉測定用CSI-IMリソース情報(「csi-IM-ResourcesForInterference」)、CSI-IMリソースセットリスト情報(「csi-IM-ResourceSetList」)、CSI-IMリソースセット情報(「csi-IM-ResourceSet」)及びCSI-IMリソース情報(「csi-IM-Resource」)の少なくとも1つにおいて、CSI-RS5のリソースと同じREを設定されてもよい。 で は In the first method described above, the UE may set the IMR for CSI1 as the same RE as the resource of CSI-RS5. That is, the UE transmits NZP @ CSI-RS resource information for interference measurement (“nzp-CSI-RS-ResourcesForInterference”), CSI-IM resource information for interference measurement (“csi-IM-ResourcesForInterference”) for CSI1 reporting, At least one of CSI-IM resource set list information (“csi-IM-ResourceSetList”), CSI-IM resource set information (“csi-IM-ResourceSet”) and CSI-IM resource information (“csi-IM-Resource”) On the other hand, the same RE as the resource of CSI-RS5 may be set.
 この場合、CSI1の干渉成分(TRP間干渉)は、TRP1からのSMR(CSI-RS1のリソース)を受信するためのビーム又は空間フィルタと同じビーム又は空間フィルタを用いた上記IMRに基づく干渉測定によって、導出されてもよい。 In this case, the interference component of CSI1 (inter-TRP interference) is determined by interference measurement based on the IMR using the same beam or spatial filter as the beam or spatial filter for receiving the SMR (resource of CSI-RS1) from TRP1. , May be derived.
 上述の2つ目の方法では、UEは、CSI―RS5のリソースに基づいて、チャネル測定を行う。UEは、当該測定結果を、CSI1の干渉成分(TRP間干渉)として用いてもよい。 で は In the second method described above, the UE performs channel measurement based on CSI-RS5 resources. The UE may use the measurement result as an interference component of CSI1 (inter-TRP interference).
 第2の実施形態のTRP間干渉測定のために、第1の実施形態で述べたRRC設定が利用されてもよい。 RThe RRC setting described in the first embodiment may be used for the inter-TRP interference measurement in the second embodiment.
 以上説明した第2の実施形態によれば、UEがTRP間干渉を適切に測定できる。 According to the second embodiment described above, the UE can appropriately measure the inter-TRP interference.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to an embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
 図11は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、3GPP(Third Generation Partnership Project)によって仕様化されるLTE(Long Term Evolution)、5G NR(5th generation mobile communication system New Radio)などを用いて通信を実現するシステムであってもよい。 FIG. 11 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 may be a system that realizes communication using LTE (Long Term Evolution) and 5G NR (5th generation mobile communication system New Radio) specified by 3GPP (Third Generation Partnership Project). .
 また、無線通信システム1は、複数のRAT(Radio Access Technology)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(MR-DC:Multi-RAT Dual Connectivity))をサポートしてもよい。MR-DCは、LTE(E-UTRA:Evolved Universal Terrestrial Radio Access)とNRとのデュアルコネクティビィティ(EN-DC:E-UTRA-NR Dual Connectivity)、NRとLTEとのデュアルコネクティビィティ(NE-DC:NR-E-UTRA Dual Connectivity)などを含んでもよい。 Also, the wireless communication system 1 may support dual connectivity between a plurality of RATs (Radio Access Technology) (multi-RAT dual connectivity (MR-DC: Multi-RAT Dual Connectivity)). MR-DC is based on dual connectivity (EN-DC: E-UTRA-NR @ Dual Connectivity) between LTE (Evolved Universal Terrestrial Radio Access) and NR, and dual connectivity (NE-DC with E-UTRA-NR Dual Connectivity). -DC: NR-E-UTRA (Dual Connectivity) may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスターノード(MN:Master Node)であり、NRの基地局(gNB)がセカンダリーノード(SN:Secondary Node)である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In @ EN-DC, the base station (eNB) of LTE (E-UTRA) is a master node (MN: Master @ Node), and the base station (gNB) of NR is a secondary node (SN: Secondary @ Node). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NN-DC:NR-NR Dual Connectivity))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity in which both MN and SN are NR base stations (gNB) (NN-DC: NR-NR Dual Connectivity)). ) May be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 forming a macro cell C1 having relatively wide coverage, and a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1. May be provided. User terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as a base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(CC:Component Carrier)を用いたキャリアアグリゲーション(Carrier Aggregation)及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation) using a plurality of component carriers (CC: Component Carrier) and dual connectivity (DC).
 各CCは、第1の周波数帯(FR1:Frequency Range 1)及び第2の周波数帯(FR2:Frequency Range 2)の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of the first frequency band (FR1: FrequencyFRange 1) and the second frequency band (FR2: Frequency Range 2). The macro cell C1 may be included in FR1, and the small cell C2 may be included in FR2. For example, FR1 may be a frequency band of 6 GHz or less (sub-6 GHz (sub-6 GHz)), and FR2 may be a frequency band higher than 24 GHz (above-24 GHz). The frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(TDD:Time Division Duplex)及び周波数分割複信(FDD:Frequency Division Duplex)の少なくとも1つを用いて通信を行ってもよい。 In addition, the user terminal 20 may perform communication using at least one of time division duplex (TDD: Time Division Duplex) and frequency division duplex (FDD: Frequency Division Duplex) in each CC.
 複数の基地局10は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIAB(Integrated Access Backhaul)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, or the like) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an IAB (Integrated Access Backhaul) donor, and the base station 12 corresponding to the relay station (relay) is the IAB It may be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、EPC(Evolved Packet Core)、5GCN(5G Core Network)、NGC(Next Generation Core)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal that supports at least one of the communication systems such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(DL:Downlink)及び上りリンク(UL:Uplink)の少なくとも一方において、CP-OFDM(Cyclic Prefix OFDM)、DFT-s-OFDM(Discrete Fourier Transform Spread OFDM)、OFDMA(Orthogonal Frequency Division Multiple Access)、SC-FDMA(Single Carrier Frequency Division Multiple Access)などが利用されてもよい。 In the wireless communication system 1, an orthogonal frequency division multiplexing (OFDM) based wireless access scheme may be used. For example, in at least one of the downlink (DL) and the uplink (UL: Uplink), CP-OFDM (Cyclic Prefix OFDM), DFT-s-OFDM (Discrete Fourier Transform Spread OFDM), OFDMA (Orthogonal Frequency Division Divide Multiple). Access), SC-FDMA (Single Carrier Frequency Frequency Division Multiple Access), or the like may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 The wireless access scheme may be referred to as a waveform. In the wireless communication system 1, another wireless access method (for example, another single carrier transmission method or another multi-carrier transmission method) may be used for the UL and DL wireless access methods.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下り制御チャネル(PDCCH:Physical Downlink Control Channel)などが用いられてもよい。 In the wireless communication system 1, a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), and a downlink control channel (PDCCH: Physical Downlink Control) are shared by the user terminals 20 as downlink channels. Channel) may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられてもよい。 In the wireless communication system 1, as an uplink channel, an uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH) : Physical Random Access Channel) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、MIB(Master Information Block)が伝送されてもよい。 The user data, upper layer control information, SIB (System Information Block), and the like are transmitted by the PDSCH. User data, higher layer control information, and the like may be transmitted by the PUSCH. In addition, MIB (Master Information Block) may be transmitted by PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)を含んでもよい。 下 位 Lower layer control information may be transmitted by the PDCCH. The lower layer control information may include, for example, downlink control information (DCI: Downlink Control Information) including scheduling information of at least one of the PDSCH and the PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 Note that the DCI for scheduling the PDSCH may be referred to as DL assignment, DL @ DCI, or the like, and the DCI for scheduling the PUSCH may be referred to as UL grant, UL @ DCI, or the like. Note that PDSCH may be replaced with DL data, and PUSCH may be replaced with UL data.
 PDCCHの検出には、制御リソースセット(CORESET:COntrol REsource SET)及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (CORESET: Control REsource SET) and a search space (search space) may be used for detecting the PDCCH. CORESET corresponds to a resource for searching DCI. The search space corresponds to a search area and a search method of PDCCH candidates (PDCCH @ candidates). One coreset may be associated with one or more search spaces. The UE may monitor a RESET associated with a search space based on the search space settings.
 1つのSSは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One SS may correspond to a PDCCH candidate corresponding to one or a plurality of aggregation levels (aggregation Level). One or more search spaces may be referred to as a search space set. In addition, “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, and the like in the present disclosure may be interchanged with each other.
 PUCCHによって、チャネル状態情報(CSI:Channel State Information)、の送達確認情報(例えば、HARQ-ACK(Hybrid Automatic Repeat reQuest)、ACK/NACKなどと呼ばれてもよい)、スケジューリングリクエスト(SR:Scheduling Request)などが伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 By PUCCH, acknowledgment information of channel state information (CSI: Channel \ State \ Information) (for example, may be called HARQ-ACK (Hybrid \ Automatic \ Repeat \ reQuest), ACK / NACK, etc.), scheduling request (SR: Scheduling \ Request) ) May be transmitted. A random access preamble for establishing a connection with a cell may be transmitted by the PRACH.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In the present disclosure, a downlink, an uplink, and the like may be expressed without a “link”. In addition, various channels may be expressed without “Physical” at the beginning.
 無線通信システム1では、同期信号(SS:Synchronization Signal)、下りリンク参照信号(DL-RS:Downlink Reference Signal)などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)、位相トラッキング参照信号(PTRS:Phase Tracking Reference Signal)などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (SS: Synchronization Signal), a downlink reference signal (DL-RS: Downlink Reference Signal), or the like may be transmitted. In the wireless communication system 1, as a DL-RS, a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DMRS: DeModulation) are provided. Reference Signal, a position determination reference signal (PRS: Positioning Reference Signal), a phase tracking reference signal (PTRS: Phase Tracking Reference Signal), and the like may be transmitted.
 同期信号は、例えば、プライマリ同期信号(PSS:Primary Synchronization Signal)及びセカンダリ同期信号(SSS:Secondary Synchronization Signal)の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SSB(SS Block)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (PSS: Primary Synchronization Signal) and a secondary synchronization signal (SSS: Secondary Synchronization Signal). A signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SSB (SS @ Block), and the like. Note that SS, SSB, and the like may also be referred to as reference signals.
 また、無線通信システム1では、上りリンク参照信号(UL-RS:Uplink Reference Signal)として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 In the wireless communication system 1, a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS), and the like may be transmitted as an uplink reference signal (UL-RS: Uplink Reference Signal). The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
(基地局)
 図12は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 12 is a diagram illustrating an example of a configuration of a base station according to one embodiment. The base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140. The control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission path interface 140 may each include one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that base station 10 also has other functional blocks necessary for wireless communication. Some of the processes of each unit described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be configured by a controller, a control circuit, and the like described based on common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping), and the like. The control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission path interface 140. The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the generated data to the transmission / reception unit 120. The control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、RF(Radio Frequency)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 120 may include a baseband unit 121, an RF (Radio Frequency) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter (phase shifter), a measurement circuit, a transmission / reception circuit, and the like described based on common recognition in the technical field according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit. The transmission unit may include a transmission processing unit 1211 and an RF unit 122. The receiving unit may include a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmission / reception antenna 130 can be configured from an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna or the like.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmission / reception unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 120 may form at least one of the transmission beam and the reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), or the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、PDCP(Packet Data Convergence Protocol)レイヤの処理、RLC(Radio Link Control)レイヤの処理(例えば、RLC再送制御)、MAC(Medium Access Control)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) processes the data, control information, and the like acquired from the control unit 110 in the PDCP (Packet Data Convergence Protocol) layer and the RLC (Radio Link Control) layer processing (for example, RLC retransmission control), MAC (Medium Access Control) layer processing (for example, HARQ retransmission control), and the like may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(DFT:Discrete Fourier Transform)処理(必要に応じて)、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) performs channel coding (may include error correction coding), modulation, mapping, filter processing, and discrete Fourier transform (DFT: Discrete Fourier Transform) processing on a bit string to be transmitted. Transmission processing such as Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-analog conversion (if necessary) may be performed to output a baseband signal.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmission / reception unit 120 (RF unit 122) may perform modulation, filtering, amplification, and the like on the baseband signal into a radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. .
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, and the like on the radio frequency band signal received by the transmission / reception antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT), and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. Applying reception processing such as processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing, Etc. may be obtained.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部123は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmission / reception unit 120 (measurement unit 123) may measure the received signal. For example, the measurement unit 123 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal. The measuring unit 123 receives the reception power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio, SNR (Signal to Noise Ratio)). , Signal strength (for example, RSSI (Received Signal Strength Indicator)), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30 or another base station 10, and transmits user data (user plane data) for the user terminal 20; Data and the like may be obtained and transmitted.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 The transmission unit and the reception unit of the base station 10 according to the present disclosure may be configured by at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission path interface 140.
 なお、送受信部120は、1つ又は複数のCSI報告設定情報(例えば、RRC情報要素「CSI-ReportConfig」)、1つ又は複数のCSIリソース設定情報(例えば、RRC情報要素「CSI-ResourceConfig」)などをユーザ端末20に対して送信してもよい。 In addition, the transmission / reception unit 120 includes one or a plurality of CSI report configuration information (for example, an RRC information element “CSI-ReportConfig”) and one or a plurality of CSI resource configuration information (for example, an RRC information element “CSI-ResourceConfig”). May be transmitted to the user terminal 20.
 制御部110は、1つの上記CSI報告設定情報につき、複数のCSIタイプ(シングルビーム用CSI、マルチビーム用CSIなど)のCSI報告をユーザ端末20に行わせるように制御してもよい。 The control unit 110 may control the user terminal 20 to make a plurality of CSI types (single-beam CSI, multi-beam CSI, etc.) CSI reports for one piece of the CSI report setting information.
(ユーザ端末)
 図13は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
FIG. 13 is a diagram illustrating an example of a configuration of a user terminal according to an embodiment. The user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230. Note that one or more of the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 In this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. Some of the processes of each unit described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be configured by a controller, a control circuit, and the like described based on common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission / reception and measurement using the transmission / reception unit 220 and the transmission / reception antenna 230. The control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the generated data to the transmission / reception unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transmission / reception unit 220 can be configured from a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like described based on common recognition in the technical field according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit. The transmission unit may include a transmission processing unit 2211 and an RF unit 222. The receiving unit may include a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmission / reception antenna 230 can be configured from an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna or the like.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmission / reception unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 220 may form at least one of the transmission beam and the reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), or the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs processing of the PDCP layer, processing of the RLC layer (for example, RLC retransmission control), processing of the MAC layer (for example, for data, control information, and the like acquired from the control unit 210, for example). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filter processing, DFT processing (if necessary), IFFT processing on the bit sequence to be transmitted. , Precoding, digital-analog conversion, etc., and output a baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Note that whether to apply the DFT processing may be based on the transform precoding setting. When transform precoding is enabled for a certain channel (for example, PUSCH), the transmission / reception unit 220 (transmission processing unit 2211) transmits the channel using the DFT-s-OFDM waveform. DFT processing may be performed as the transmission processing, or otherwise, DFT processing may not be performed as the transmission processing.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmission / reception unit 220 (RF unit 222) may perform modulation, filtering, amplification, and the like on the baseband signal into a radio frequency band, and transmit a signal in the radio frequency band via the transmission / reception antenna 230. .
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, and the like on the radio frequency band signal received by the transmission / reception antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, decoding (error correction) on the obtained baseband signal. Decoding may be included), reception processing such as MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmission / reception unit 220 (measurement unit 223) may measure the received signal. For example, the measurement unit 223 may perform RRM measurement, CSI measurement, and the like based on the received signal. The measurement unit 223 may measure received power (for example, RSRP), received quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like. The measurement result may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、送受信アンテナ230及び伝送路インターフェース240の少なくとも1つによって構成されてもよい。 The transmitting unit and the receiving unit of the user terminal 20 according to the present disclosure may be configured by at least one of the transmitting / receiving unit 220, the transmitting / receiving antenna 230, and the transmission line interface 240.
 なお、送受信部220は、1つ又は複数のCSI報告設定情報(例えば、RRC情報要素「CSI-ReportConfig」)、1つ又は複数のCSIリソース設定情報(例えば、RRC情報要素「CSI-ResourceConfig」)などを受信してもよい。 The transmission / reception unit 220 includes one or a plurality of CSI report configuration information (for example, an RRC information element “CSI-ReportConfig”) and one or a plurality of CSI resource configuration information (for example, an RRC information element “CSI-ResourceConfig”). Etc. may be received.
 制御部210は、1つの上記CSI報告設定情報につき、複数のCSIタイプ(シングルビーム用CSI、マルチビーム用CSIなど)のCSI報告を制御してもよい。 The control unit 210 may control CSI reports of a plurality of CSI types (single-beam CSI, multi-beam CSI, etc.) for one piece of the CSI report setting information.
 制御部210は、上位レイヤシグナリング(例えば、上記(1)-(4)の設定のシグナリング構成)に基づいて、前記CSIタイプに関する測定のための参照信号リソース(SMR、IMR、NZP CSI-RSリソース、CSI-IMリソース、ZP CSI-RSリソースなど)に対応する送受信ポイント、パネル、ビーム、コードワード、アンテナポートなどを特定してもよい。 The control unit 210 uses a reference signal resource (SMR, IMR, NZP @ CSI-RS resource) for measurement on the CSI type based on higher layer signaling (for example, the signaling configuration of the settings (1) to (4)). , CSI-IM resource, ZP @ CSI-RS resource, etc.), a transmission / reception point, a panel, a beam, a codeword, an antenna port, and the like may be specified.
 前記1つのCSI報告設定情報、又は前記1つのCSI報告設定情報に対応する1つのCSIリソース設定情報は、チャネル測定のためのリソース情報及び干渉測定のためのリソース情報の少なくとも1つを複数含み、当該複数含まれる情報は、それぞれ異なる送受信ポイントに関連付けられてもよい。 The one CSI report setting information or one CSI resource setting information corresponding to the one CSI report setting information includes a plurality of resource information for channel measurement and at least one of resource information for interference measurement, The plurality of pieces of information may be respectively associated with different transmission / reception points.
 当該チャネル測定のためのリソース情報は、例えば、チャネル測定用リソース情報(「resourcesForChannelMeasurement」)、CSI-RSリソースセットリスト情報(「csi-RS-ResourceSetList」)、NZP CSI-RS及びSSBの情報(「nzp-CSI-RS-SSB」)、NZP CSI-RSリソースセットリスト情報(「nzp-CSI-RS-ResourceSetList」)、CSI測定のためのSSBリソースセットリスト情報(「csi-SSB-ResourceSetList」)などの少なくとも1つであってもよい。 The resource information for channel measurement includes, for example, channel measurement resource information (“resourcesForChannelMeasurement”), CSI-RS resource set list information (“csi-RS-ResourceSetList”), NZP @ CSI-RS, and SSB information (“ nzp-CSI-RS-SSB "), NZP @ CSI-RS resource set list information (" nzp-CSI-RS-ResourceSetList "), SSB resource set list information for CSI measurement (" csi-SSB-ResourceSetList "), etc. May be at least one of the following.
 当該干渉測定のためのリソース情報は、干渉測定用NZP CSI-RSリソース情報(「nzp-CSI-RS-ResourcesForInterference」)、干渉測定用CSI-IMリソース情報(「csi-IM-ResourcesForInterference」)、CSI-RSリソースセットリスト情報(「csi-RS-ResourceSetList」)、CSI-IMリソースセットリスト情報(「csi-IM-ResourceSetList」)などの少なくとも1つであってもよい。 The resource information for the interference measurement includes NZP @ CSI-RS resource information for interference measurement ("nzp-CSI-RS-ResourcesForInterference"), CSI-IM resource information for interference measurement ("csi-IM-ResourcesForInterference"), CSI -It may be at least one of RS resource set list information ("csi-RS-ResourceSetList") and CSI-IM resource set list information ("csi-IM-ResourceSetList").
 制御部210は、第1の送受信ポイントのための干渉測定リソース(IMR)が、第2の送受信ポイントのための信号測定リソース(SMR)と同じリソースエレメントとして設定されると想定してもよい。 The control unit 210 may assume that the interference measurement resource (IMR) for the first transmission / reception point is set as the same resource element as the signal measurement resource (SMR) for the second transmission / reception point.
 制御部210は、第1の送受信ポイントのための送受信ポイント間干渉(inter-TRP interference)を、第2の送受信ポイントのための信号測定リソース(SMR)を用いたチャネル測定に基づいて導出してもよい。 The control unit 210 derives interference between transmission / reception points for the first transmission / reception point (inter-TRP interference) based on channel measurement using a signal measurement resource (SMR) for the second transmission / reception point. Is also good.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
Note that the block diagram used in the description of the above-described embodiment shows blocks in functional units. These functional blocks (components) are realized by an arbitrary combination of at least one of hardware and software. In addition, a method of implementing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated from each other). , Wired, wireless, etc.), and may be implemented using these multiple devices. The functional block may be realized by combining one device or the plurality of devices with software.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include judgment, determination, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (configuration unit) that causes transmission to function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. In any case, as described above, the realization method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, or the like according to an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method according to the present disclosure. FIG. 14 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment. The above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the present disclosure, the terms such as “apparatus”, “circuit”, “device”, “section”, and “unit” can be read interchangeably. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the drawing, or may be configured to exclude some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Further, the processing may be executed by one processor, or the processing may be executed by two or more processors simultaneously, sequentially, or by using another method. Note that the processor 1001 may be implemented by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 The functions of the base station 10 and the user terminal 20 are performed, for example, by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an arithmetic operation and communicates via the communication device 1004. And controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like. For example, at least a part of the control unit 110 (210), the transmitting / receiving unit 120 (220), and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 The processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operation described in the above embodiment is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be similarly realized.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured. The storage 1003 may be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured. For example, the transmission / reception unit 120 (220) and the transmission / reception antenna 130 (230) described above may be realized by the communication device 1004. The transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input. The output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 The devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
Note that terms described in the present disclosure and terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like according to an applied standard. A component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be configured by one or more periods (frames) in the time domain. The one or more respective periods (frames) forming the radio frame may be referred to as a subframe. Further, a subframe may be configured by one or more slots in the time domain. The subframe may be of a fixed length of time (eg, 1 ms) that does not depend on numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception. At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may be constituted by one or more symbols in the time domain. Also, the mini-slot may be called a sub-slot. A minislot may be made up of a smaller number of symbols than slots. A PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be referred to as a PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. The radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding to each. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms. It may be. Note that the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, the TTI refers to, for example, a minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 If one slot or one minislot is called a TTI, one or more TTIs (ie, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like. A TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms. The TTI having the above-described TTI length may be replaced with the TTI.
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB: Resource Block) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12. The number of subcarriers included in the RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 R Also, the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI. One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 One or a plurality of RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 {Also, a resource block may be composed of one or more resource elements (RE: Resource @ Element). For example, one RE may be a radio resource area of one subcarrier and one symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A bandwidth part (BWP: Bandwidth @ Part) (which may be referred to as a partial bandwidth or the like) may also represent a subset of consecutive common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good. Here, the common RB may be specified by an index of the RB based on the common reference point of the carrier. A PRB may be defined by a BWP and numbered within the BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 $ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP). For a UE, one or more BWPs may be configured in one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 少 な く と も At least one of the configured BWPs may be active, and the UE does not have to assume to transmit and receive a given signal / channel outside the active BWP. Note that “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The structures of the above-described radio frame, subframe, slot, minislot, symbol, and the like are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The configuration of the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and the like can be variously changed.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 Further, the information, parameters, and the like described in the present disclosure may be expressed using an absolute value, may be expressed using a relative value from a predetermined value, or may be expressed using another corresponding information. May be represented. For example, a radio resource may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 名称 Names used for parameters and the like in the present disclosure are not limited in any respect. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure. The various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 情報 In addition, information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 (4) Information and signals input and output may be stored in a specific place (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method. For example, information notification in the present disclosure includes physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), and upper layer signaling (for example, RRC (Radio Resource Control). ) Signaling, broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals or a combination thereof. Is also good.
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。 Note that the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. The RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Also, the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 Further, the notification of the predetermined information (for example, the notification of “X”) is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), or may be made by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, regardless of whether it is called software, firmware, middleware, microcode, a hardware description language, or any other name, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 ソ フ ト ウ ェ ア Also, software, instructions, information, and the like may be transmitted and received via a transmission medium. For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。 用語 The terms “system” and “network” as used in this disclosure may be used interchangeably.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(QCL:Quasi-Co-Location)」、「TCI状態(Transmission Configuration Indication state)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “quasi-co-location (QCL)”, “TCI state (Transmission Configuration Indication state)”, “spatial relation” (Spatial relation), "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", " Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are interchangeable Can be used for
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(TP:Transmission Point)」、「受信ポイント(RP:Reception Point)」、「送受信ポイント(TRP:Transmission/Reception Point)」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, “base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “gNodeB (gNB)” "Access point (access @ point)", "transmission point (TP: Transmission @ Point)", "reception point (RP: Reception @ Point)", "transmission / reception point (TRP: Transmission / Reception @ Point)", "panel", "cell" , "Sector", "cell group", "carrier", "component carrier" and the like may be used interchangeably. A base station may also be referred to as a macro cell, a small cell, a femto cell, a pico cell, or the like.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head)). The term "cell" or "sector" refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as “mobile station (MS)”, “user terminal”, “user equipment” (UE), and “terminal” may be used interchangeably. .
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , Handset, user agent, mobile client, client or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 少 な く と も At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. Note that at least one of the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like. The moving object may be a vehicle (for example, a car, an airplane, or the like), may be an unmanned moving object (for example, a drone, an autonomous vehicle), or may be a robot (maned or unmanned). ). Note that at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 基地 Also, the base station in the present disclosure may be replaced with a user terminal. For example, communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the configuration may be such that the user terminal 20 has the function of the base station 10 described above. Further, words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”). For example, an uplink channel, a downlink channel, and the like may be replaced with a side channel.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, a user terminal in the present disclosure may be replaced by a base station. In this case, a configuration in which the base station 10 has the function of the user terminal 20 described above may be adopted.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, the operation performed by the base station may be performed by an upper node (upper node) in some cases. In a network including one or more network nodes having a base station (network @ nodes), various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway) or the like, but not limited thereto, or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 各 Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching with execution. In addition, the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in the present disclosure may be interchanged in order as long as there is no inconsistency. For example, for the methods described in this disclosure, elements of various steps are presented in an exemplary order, and are not limited to the specific order presented.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure is applicable to LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication). system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (Registered trademark) (Global System for Mobile Communications), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802. 20, UWB (Ultra-WideBand), Bluetooth (registered trademark) , A system using other appropriate wireless communication methods, and a next-generation system extended based on these methods. Further, a plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 記載 The term “based on” as used in the present disclosure does not mean “based on” unless otherwise indicated. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 い か な る Any reference to elements using designations such as "first," "second," etc., as used in this disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in any way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 用語 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, “judgment (decision)” means judging, calculating, computing, processing, deriving, investigating, searching (upping, searching, inquiry) ( For example, a search in a table, database, or another data structure), ascertaining, etc., may be regarded as "deciding".
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 Also, “determining” includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 Also, “judgment (decision)” is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, etc. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 判断 Also, “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms "connected," "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements "connected" or "coupled" to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, where two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, the radio frequency domain, microwave It can be considered to be "connected" or "coupled" to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) regions, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 に お い て In the present disclosure, the term “A and B are different” may mean that “A and B are different from each other”. The term may mean that “A and B are different from C”. Terms such as "separate", "coupled" and the like may be interpreted similarly to "different".
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where the terms “include”, “including” and variations thereof are used in the present disclosure, these terms are as inclusive as the term “comprising” Is intended. Further, the term "or" as used in the present disclosure is not intended to be an exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, where articles are added by translation, for example, a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is obvious to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and changes without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is intended for illustrative purposes and does not bring any restrictive meaning to the invention according to the present disclosure.

Claims (6)

  1.  チャネル状態情報(CSI:Channel State Information)報告設定情報を受信する受信部と、
     前記CSI報告設定情報に基づいて、複数のCSIタイプのCSI報告を制御する制御部と、を有することを特徴とするユーザ端末。
    A receiving unit that receives channel state information (CSI) report setting information;
    A control unit for controlling CSI reports of a plurality of CSI types based on the CSI report setting information.
  2.  前記制御部は、上位レイヤシグナリングに基づいて、前記CSIタイプに関する測定のための参照信号リソースに対応する送受信ポイントを特定することを特徴とする請求項1に記載のユーザ端末。 The user terminal according to claim 1, wherein the control unit specifies a transmission / reception point corresponding to a reference signal resource for measurement of the CSI type based on higher layer signaling.
  3.  前記CSI報告設定情報又は前記CSI報告設定情報に対応するCSIリソース設定情報は、チャネル測定のためのリソース情報及び干渉測定のためのリソース情報の少なくとも1つを複数含み、当該複数含まれる情報は、それぞれ異なる送受信ポイントに関連付けられることを特徴とする請求項1又は請求項2に記載のユーザ端末。 The CSI report configuration information or the CSI resource configuration information corresponding to the CSI report configuration information includes at least one of resource information for channel measurement and resource information for interference measurement, and the information included in the plurality includes: The user terminal according to claim 1, wherein the user terminal is associated with different transmission / reception points.
  4.  前記制御部は、第1の送受信ポイントのための干渉測定リソースが、第2の送受信ポイントのための信号測定リソースと同じリソースエレメントとして設定されると想定することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。 The said control part assumes that the interference measurement resource for 1st transmission / reception points is set as the same resource element as the signal measurement resource for 2nd transmission / reception points, The claim from Claim 1 characterized by the above-mentioned. Item 4. The user terminal according to any one of Items 3.
  5.  前記制御部は、第1の送受信ポイントのための送受信ポイント間干渉を、第2の送受信ポイントのための信号測定リソースを用いたチャネル測定に基づいて導出することを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。 The control unit according to claim 1, wherein the control unit derives interference between transmission and reception points for a first transmission and reception point based on channel measurement using a signal measurement resource for a second transmission and reception point. Item 5. The user terminal according to any one of Items 4.
  6.  チャネル状態情報(CSI:Channel State Information)報告設定情報を受信するステップと、
     前記CSI報告設定情報に基づいて、複数のCSIタイプのCSI報告を制御するステップと、を有することを特徴とするユーザ端末の無線通信方法。
    Receiving channel state information (CSI) report configuration information;
    Controlling the CSI reports of a plurality of CSI types based on the CSI report setting information.
PCT/JP2018/035207 2018-09-21 2018-09-21 User terminal and wireless communication method WO2020059146A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/035207 WO2020059146A1 (en) 2018-09-21 2018-09-21 User terminal and wireless communication method
JP2020547603A JP7315573B2 (en) 2018-09-21 2018-09-21 Terminal, wireless communication method, base station and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035207 WO2020059146A1 (en) 2018-09-21 2018-09-21 User terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2020059146A1 true WO2020059146A1 (en) 2020-03-26

Family

ID=69886733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035207 WO2020059146A1 (en) 2018-09-21 2018-09-21 User terminal and wireless communication method

Country Status (2)

Country Link
JP (1) JP7315573B2 (en)
WO (1) WO2020059146A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210288707A1 (en) * 2018-12-03 2021-09-16 Huawei Technologies Co., Ltd. Channel measurement configuration method and communications apparatus
WO2021214711A1 (en) * 2020-04-24 2021-10-28 Lenovo (Singapore) Pte. Ltd. Channel state information reporting
CN113573354A (en) * 2020-04-29 2021-10-29 维沃移动通信有限公司 Beam reporting method and device
US20220029681A1 (en) * 2018-11-01 2022-01-27 Lenovo (Beijing) Limited Channel state information calculation
WO2022077321A1 (en) * 2020-10-15 2022-04-21 富士通株式会社 Radio communication method, apparatus and system
US11757545B2 (en) * 2019-10-14 2023-09-12 Qualcomm Incorporated Inter-cell ll-rsrp reporting
WO2023179664A1 (en) * 2022-03-23 2023-09-28 维沃移动通信有限公司 Channel information transmission method and apparatus, and communication device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007669A (en) * 2012-06-26 2014-01-16 Ntt Docomo Inc User terminal, wireless communication system, wireless communication method and wireless base station

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007669A (en) * 2012-06-26 2014-01-16 Ntt Docomo Inc User terminal, wireless communication system, wireless communication method and wireless base station

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "CSI feedback for multi-TRP", 3GPP TSG RAN WG1 #90B RL-1718737, 3 October 2017 (2017-10-03), XP051353226 *
HUAWEI ET AL.: "Enhancements on multi-TRP/panel transmission in NR [ online", 3GPP TSG RAN WG1 #94 RL-1809117, 11 August 2018 (2018-08-11), XP051516486 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220029681A1 (en) * 2018-11-01 2022-01-27 Lenovo (Beijing) Limited Channel state information calculation
US20210288707A1 (en) * 2018-12-03 2021-09-16 Huawei Technologies Co., Ltd. Channel measurement configuration method and communications apparatus
US11870525B2 (en) * 2018-12-03 2024-01-09 Huawei Technologies Co., Ltd. Channel measurement configuration method and communications apparatus
US11757545B2 (en) * 2019-10-14 2023-09-12 Qualcomm Incorporated Inter-cell ll-rsrp reporting
WO2021214711A1 (en) * 2020-04-24 2021-10-28 Lenovo (Singapore) Pte. Ltd. Channel state information reporting
CN113573354A (en) * 2020-04-29 2021-10-29 维沃移动通信有限公司 Beam reporting method and device
CN113573354B (en) * 2020-04-29 2023-06-02 维沃移动通信有限公司 Beam reporting method and apparatus
WO2022077321A1 (en) * 2020-10-15 2022-04-21 富士通株式会社 Radio communication method, apparatus and system
WO2023179664A1 (en) * 2022-03-23 2023-09-28 维沃移动通信有限公司 Channel information transmission method and apparatus, and communication device

Also Published As

Publication number Publication date
JPWO2020059146A1 (en) 2021-09-24
JP7315573B2 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
JP7193549B2 (en) Terminal, wireless communication method and system
WO2020026454A1 (en) User terminal and wireless communications method
JP7315573B2 (en) Terminal, wireless communication method, base station and system
JP7252251B2 (en) Terminal, wireless communication method and system
WO2020090119A1 (en) User equipment and wireless communication method
WO2020021725A1 (en) User terminal and wireless communication method
WO2020066021A1 (en) User terminal
KR20210128403A (en) User terminal and wireless communication method
WO2020066022A1 (en) Transmission device and reception device
WO2020144774A1 (en) User terminal and wireless communication method
WO2020144773A1 (en) User terminal and wireless communication method
EP4247038A1 (en) Terminal, wireless communication method, and base station
WO2021215379A1 (en) Terminal, wireless communication method, and base station
US20210385849A1 (en) User terminal
WO2020090120A1 (en) User terminal and wireless communication method
US20230189270A1 (en) Terminal, radio communication method, and base station
US20230188287A1 (en) Terminal, radio communication method, and base station
US20220191726A1 (en) User terminal and radio communication method
WO2020144775A1 (en) User terminal and wireless communication method
US20230071430A1 (en) Terminal, radio communication method, and base station
US20230276287A1 (en) Terminal, radio communication method, and base station
EP4210373A1 (en) Terminal, radio communication method, and base station
US20230069636A1 (en) Terminal, radio communication method, and base station
US20230075610A1 (en) Terminal, radio communication method, and base station
US20220209918A1 (en) User terminal and radio communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547603

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934197

Country of ref document: EP

Kind code of ref document: A1