WO2020059058A1 - Storage battery device - Google Patents

Storage battery device Download PDF

Info

Publication number
WO2020059058A1
WO2020059058A1 PCT/JP2018/034699 JP2018034699W WO2020059058A1 WO 2020059058 A1 WO2020059058 A1 WO 2020059058A1 JP 2018034699 W JP2018034699 W JP 2018034699W WO 2020059058 A1 WO2020059058 A1 WO 2020059058A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
output voltage
converter
storage battery
voltage
Prior art date
Application number
PCT/JP2018/034699
Other languages
French (fr)
Japanese (ja)
Inventor
黒田 和人
関野 正宏
弘樹 松下
英生 山崎
クラレンス ジョイ ヴィリアモア カトリコ
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to PCT/JP2018/034699 priority Critical patent/WO2020059058A1/en
Publication of WO2020059058A1 publication Critical patent/WO2020059058A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the embodiment of the present invention relates to a storage battery device.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a storage battery device that is easy to handle and can supply high-voltage power while reducing the size of the device.
  • the storage battery device of the embodiment is a storage battery device that is mounted on a vehicle and supplies power to in-vehicle devices, and includes a battery unit having a plurality of series-connected battery cells between a pair of first charge / discharge terminals, A DC / DC converter for boosting the voltage of the battery unit, and a step-up ratio of the DC / DC converter when the output voltage of the battery unit falls below a predetermined threshold voltage lower than the rated output voltage of the storage battery device. And a control unit for controlling.
  • FIG. 1 is a schematic block diagram of a storage battery system for a vehicle according to an embodiment.
  • FIG. 2 is a schematic configuration block diagram of the storage battery device.
  • FIG. 3 is an explanatory diagram when the charge / discharge current of the embodiment is zero.
  • FIG. 4 is a processing flowchart when the storage battery device is charged and discharged.
  • FIG. 1 is a schematic block diagram of a storage battery system for a vehicle according to an embodiment.
  • the vehicle storage battery system 10 functions as a generator (generator) 12G that can be driven by the engine 11 to generate power, or functions as a motor (motor) 12M that is supplied with electric power to assist (assist) driving the engine 11.
  • Power device 12 a storage battery device 13 for supplying power to the vehicle-mounted device, a controller 14 that measures the state of charge (voltage, charging current, and temperature) of the storage battery device 13 and controls the storage battery device 13, and a storage battery device.
  • a load group 15 to which high-voltage power (for example, 48 V power) is supplied from the power supply 13.
  • the power device 12 is included in the load group 15 when functioning as the electric motor 12M.
  • FIG. 2 is a schematic configuration block diagram of the storage battery device.
  • the storage battery device 13 includes a control unit 21 configured as a microprocessor unit (MPU) or the like that controls the entire storage battery device 13, a battery unit 23 in which a plurality of battery cells 22 are connected in series, and a state of the battery unit 23. (SOC, voltage, charging current, and temperature), and a monitoring circuit 24 that notifies the control circuit 21 of the monitoring result.
  • MPU microprocessor unit
  • SOC voltage, charging current, and temperature
  • monitoring circuit 24 that notifies the control circuit 21 of the monitoring result.
  • the control unit 21 has a function of detecting the output voltage Vout.
  • a lithium ion secondary battery or a nickel hydride secondary battery is preferable because of its excellent output characteristics.
  • a lithium ion secondary battery is more preferable.
  • the storage battery device 13 has one end connected to the high potential side terminal of the battery unit 23, one end connected to the low potential side terminal of the battery unit 23, and the other end connected to the other end of the coil 25.
  • a capacitor 28 connected to the terminal and the input / output terminal T2.
  • the storage battery device 13 further includes a third transistor unit 29 having one end connected to the other end of the second transistor unit 27 and the other end connected to the input / output terminal T1, and a connection point between the second transistor unit 27 and the capacitor.
  • a current sensor 30 provided on a current path closer to the third transistor unit 29 than the CP and detecting the output current Iout; a first transistor unit 26, a second transistor unit 27, and a third transistor unit under the control of the control unit 21 And a gate driver 31 for driving the driving circuit 29.
  • the first transistor unit 26 has an N-channel MOS having a source terminal S connected to the low potential side terminal of the battery unit 23, a drain terminal connected to the coil 25, and a gate terminal G connected to the gate driver 31.
  • the transistor 26T includes a diode (parasitic diode) 26D whose anode terminal A is connected to the source terminal S of the N-channel MOS transistor 26T and whose cathode terminal K is connected to the drain terminal D of the N-channel MOS transistor 26T. .
  • the second transistor unit 27 has an N-channel MOS transistor having a source terminal S connected to a drain terminal D of an N-channel MOS transistor 26T, a drain terminal D connected to a capacitor 28, and a gate terminal G connected to a gate driver 31.
  • the transistor 27T includes a diode (parasitic diode) 27D whose anode terminal A is connected to the source terminal S of the N-channel MOS transistor 27T and whose cathode terminal K is connected to the drain terminal D of the N-channel MOS transistor 27T. .
  • the third transistor unit 29 includes an N-channel MOS transistor 27T having a source terminal S connected to the input / output terminal T1, a drain terminal D connected to the capacitor 28, a gate terminal G connected to the gate driver 31, and an anode.
  • a diode (parasitic diode) 29D whose terminal A is connected to the source terminal S of the N-channel MOS transistor 29T and whose cathode terminal K is connected to the drain terminal D of the N-channel MOS transistor 29T is provided.
  • the coil 25, the first transistor unit 26, the second transistor unit 27, and the capacitor 28 constitute a DC / DC converter 35 configured as a step-up / step-down chopper circuit.
  • the first transistor unit 26 effectively functions as a switch
  • the second transistor unit 27 It effectively functions as the diode 27D.
  • the first transistor unit 26 effectively functions as a diode D26, and the second transistor unit 27 functions as a switch. It is functioning.
  • the third transistor unit 29 functions as a circuit breaker provided in the discharge current path when the battery unit 23 discharges.
  • the battery unit 23 when the output voltage Vout0 of the battery unit 23 corresponding to the SOC (State of Charge) of the battery unit 23 is lower than the first threshold voltage VTH1, the battery unit 23 is allowed to do so.
  • the boosting is performed at a constant boosting ratio so as to be within the allowable output voltage.
  • the size of the coil for functioning as the step-up / step-down chopper circuit can be suppressed as compared with the case where the effective output voltage of the battery unit 23 is made closer to the rated output voltage.
  • the size of the storage battery device 13 can be reduced.
  • the control is performed so that the storage battery device 13 exhibits the same behavior as a normal secondary battery that does not include the DC / DC converter 35.
  • a load or a charging device external to the storage battery device 13 can perform control without performing any special control assuming that a normal secondary battery is connected as the storage battery device 13.
  • the storage battery device 13 naturally behaves as a normal secondary battery without the DC / DC converter 35 when viewed from the load external to the storage battery device 13 or the charging device. .
  • Vout0 VOFS + KSOC.SOC-KI.Iout (0)
  • VOFS is a predetermined offset voltage (unit V)
  • KSOC is a coefficient (constant value: unit V /%) corresponding to the SOC of the battery unit 23
  • SOC is SOC (unit%) of the battery unit 23
  • KI is a coefficient (constant value: unit ⁇ ) that artificially represents the internal resistance of the battery unit 23
  • Iout is the output current (unit A) of the storage battery device 13.
  • the output voltage Vout0 of the battery unit 23 When the output voltage Vout0 of the battery unit 23 is lower than the first threshold voltage VTH1, the output voltage Vout of the storage battery device 13, that is, the output voltage of the DC / DC converter 35 satisfies the above-described condition. It is set according to equation (1).
  • Vout KG ⁇ Vin (1)
  • KG is a constant step-up ratio
  • Vin is the voltage of the power actually output from the battery unit 23 to the DC / D converter 35.
  • the output voltage Vout0 of the battery unit 23 corresponding to the SOC of the battery unit 23 is equal to or higher than the first threshold voltage VTH1 and lower than the second threshold voltage VTH2
  • the output voltage Vout of the storage battery device 13 is set according to the equation (2) so that the output voltage of the storage battery device 13 exhibits the same behavior as a normal storage battery in which the DC / DC converter 35 is not provided.
  • Vout VOFS + KSOC.SOC-KI.Iout (2)
  • the output voltage Vout0 of the battery unit 23 corresponding to the SOC is in a region where the first threshold voltage VTH1 is equal to or less than 42V, that is, when the voltage Vin of the battery unit 23 is 18 to 21V.
  • FIG. 4 is a processing flowchart when the storage battery device is charged and discharged.
  • the control unit 21 of the storage battery device 13 changes the state (SOC, voltage Vin, charging current, and temperature) of the battery unit 23 notified by the monitoring circuit 24. Acquire (Step S11).
  • the controller 14 determines whether a failure notification has been received from the monitoring circuit 24 (step S12).
  • control unit 21 first Vout0 ⁇ VTH1 Is determined (step S15).
  • step S15 Vout0 ⁇ VTH1 Is satisfied (step S15; Yes)
  • control unit 21 operates the DC / DC converter 35 as a step-down chopper circuit to charge the battery cell when Vout> Vout0, and activates the DC / DC converter 35 when Vout ⁇ Vout0.
  • the boost chopper circuit is controlled so as to operate in a direction to discharge the battery cells.
  • control unit 21 controls the DC / DC converter 35 so that the difference between Vout and Vout0 disappears, but controls the output current Iout within a range where the output current Iout falls within the allowable charge / discharge current.
  • the N-channel MOS transistor 27T of the transistor unit 27 is kept open (off state) while the N-channel MOS transistor 26T is on, and the N-channel MOS transistor 27T of the transistor unit 27 is kept off during the off period of the N-channel MOS transistor 26T. Set to the closed state (ON state).
  • step S15 Vout0> VTH1 Is satisfied (step S15; No), the control unit 21 VTH1 ⁇ Vout0 ⁇ VTH2 Is determined (step S17).
  • step S17 VTH1 ⁇ Vout0 ⁇ VTH2 Is satisfied (step S17; Yes)
  • control unit 21 operates the DC / DC converter 35 as a step-down chopper circuit to charge the battery cell when Vout> Vout0, and activates the DC / DC converter 35 when Vout ⁇ Vout0.
  • the boost chopper circuit is controlled so as to operate in a direction to discharge the battery cells.
  • control unit 21 performs opening / closing control (on / off control) of the N-channel MOS transistor 26T of the first transistor unit 26 and the N-channel MOS transistor 27T of the transistor unit 27 according to a predetermined clock signal.
  • Output voltage Vout VOFS + KSOC.SOC-KI.Iout Is controlled so that
  • step S17 determination, VTH1 ⁇ Vout0 ⁇ VTH2 If not (step S17; No), ie, VTH2 ⁇ Vout0 (Step S17; No), the control unit 21 effectively stops the operation of the step-up / step-down chopper circuit (through the step-up / step-down chopper circuit) and reduces the power of the battery unit 23 to the voltage of the battery unit 23. Output as Vin.
  • the N-channel MOS transistor 26T of the first transistor unit 26 is kept open (off state) and the N-channel MOS transistor 27T of the second transistor unit 27 is kept closed (on state) via the gate driver 31.
  • control unit 21 requests the vehicle to permit the stop of the storage battery device through communication (step S20). Subsequently, the control unit 21 determines whether a stop permission has been received from the vehicle (step S21).
  • step S21 If it is determined in step S21 that the stop permission has not yet been received from the vehicle, the process returns to step S20, and the above-described process is repeated. If it is determined in step S21 that a stop permission has been received from the vehicle (step S21; Yes), the control unit 21 stops driving the transistor units 26, 27, and 29 and ends the process.
  • VTH1 ⁇ Vout0 ⁇ VTH2 the behavior of the storage battery device 13 is simulated as a simple storage battery device without a step-up / step-down chopper circuit. Therefore, the load group 15 can be viewed as a mere storage battery device having no control function, and there is no need to perform special control on the load group 15 side.
  • the step-up / step-down chopper circuit is effectively stopped and the power of the battery unit 23 constituting the storage battery device 13 is supplied as it is, so that the step-up / step-down chopper circuit is always operated. Power consumption can be reduced as compared with the case where the power is stored, and the capacity of the storage battery device 13 effectively increases.
  • the program executed by the storage battery device of the present embodiment can be read by a computer such as a semiconductor storage device such as a CD-ROM, a DVD (Digital Versatile Disk), and a USB memory in an installable or executable file. It is provided by being recorded on a recording medium.
  • a computer such as a semiconductor storage device such as a CD-ROM, a DVD (Digital Versatile Disk), and a USB memory in an installable or executable file. It is provided by being recorded on a recording medium.
  • the program executed by (the control unit of) the storage battery device of the present embodiment may be stored on a computer connected to a network such as the Internet and provided by being downloaded via the network. . Further, the program executed by (the control unit of) the storage battery device of the present embodiment may be provided or distributed via a network such as the Internet.
  • the program executed by (the control unit of) the storage battery device of the present embodiment may be configured to be provided by being incorporated in a ROM or the like in advance.

Abstract

A storage battery device according to an embodiment is mounted on a vehicle to supply power to an on-vehicle device and is provided with: a battery unit having a plurality of battery cells connected in series between a pair of first charging/discharging terminals; a DC/DC converter for boosting the voltage of the battery unit; and a control unit which, when the output voltage of the battery unit becomes less than or equal to a predetermined threshold voltage lower than a rated output voltage of the storage battery device, controls the boost ratio of the DC/DC converter to be constant. The storage battery device is therefore easy to handle and can supply high-voltage system power, while achieving a decrease in size.

Description

蓄電池装置Storage battery device
 本発明の実施形態は、蓄電池装置に関する。 The embodiment of the present invention relates to a storage battery device.
 近年、自動車においては、電装部品の消費電力の増加や回生エネルギーの活用のため、これまで12Vが一般的であった車載用機器(補機)、電装部品等に供給する車内の電源電圧を高電圧化(36~48V)する検討が進められている。例えば、定格電圧を48Vにすると、既存の12Vシステムに比べて出力を高くでき、使用する電流を下げられるため、一部のシステムでは効率を高められる。 2. Description of the Related Art In recent years, in automobiles, in order to increase power consumption of electrical components and utilize regenerative energy, the power supply voltage in the vehicle, which has been generally used to 12 V until now, is supplied to in-vehicle equipment (auxiliary equipment), electrical components, and the like. Consideration has been given to voltage conversion (36 to 48 V). For example, when the rated voltage is set to 48 V, the output can be increased as compared with the existing 12 V system, and the current used can be reduced, so that the efficiency can be increased in some systems.
 一方で、回生エネルギーの活用のために、小型大容量で繰りかえしの充放電に耐えられる蓄電素子としてリチウムイオン電池の利用が広がっている。 On the other hand, in order to utilize regenerative energy, the use of lithium-ion batteries as power storage elements that are small, large-capacity, and capable of withstanding repeated charging and discharging is expanding.
特開2009-277647号公報JP 2009-277647 A 特開2001-136735号公報JP 2001-136735 A
 ところで、電源電圧の高電圧化に伴い、リチウムイオン電池を構成している電池セルの直列数を増やすこととなるが、単純に電池セルの直列数を増やすことはリチウムイオン電池(電池パック)の大型化を招くこととなる。
 これを避けるためには、DC/DCコンバータを採用して少ない電池セルの直列数で所望の高電圧を得ることが考えられる。
By the way, as the power supply voltage becomes higher, the number of series of battery cells constituting a lithium ion battery is increased. However, simply increasing the number of series of battery cells is not easy for a lithium ion battery (battery pack). This leads to an increase in size.
In order to avoid this, it is conceivable to obtain a desired high voltage with a small number of battery cells connected in series using a DC / DC converter.
 しかしながら、電池セルは充放電の状態によって電圧が大きく変動するため、特に電池セルが低電圧電源としても対応する構成を採っている場合には、出力電圧と要求される高電圧との差が大きくなり、DC/DCコンバータに用いるコイルの大きさが大きくなり、自動車のように実装可能な場所が限られる用途においては、実装上問題が生じる虞があった。 However, since the voltage of a battery cell varies greatly depending on the state of charge and discharge, the difference between the output voltage and the required high voltage is large, particularly when the battery cell has a configuration that can also be used as a low-voltage power supply. Therefore, the size of the coil used for the DC / DC converter becomes large, and there is a possibility that a mounting problem may occur in an application where the mountable place is limited like an automobile.
 本発明は、上記に鑑みてなされたものであって、装置の小型化を図りつつ、取り扱いが容易で、高電圧系電力を供給可能な蓄電池装置を提供することを目的としている。 The present invention has been made in view of the above, and an object of the present invention is to provide a storage battery device that is easy to handle and can supply high-voltage power while reducing the size of the device.
 実施形態の蓄電池装置は、車両に搭載されて車載用機器に電力を供給する蓄電池装置であって、一対の第1充放電端子の間に複数の直列接続された電池セルを有する電池ユニットと、電池ユニットの電圧を昇圧させるDC/DCコンバータと、電池ユニットの出力電圧が、当該蓄電池装置の定格出力電圧よりも低い所定の閾値電圧以下となった場合にDC/DCコンバータの昇圧比を一定に制御する制御部と、を備える。 The storage battery device of the embodiment is a storage battery device that is mounted on a vehicle and supplies power to in-vehicle devices, and includes a battery unit having a plurality of series-connected battery cells between a pair of first charge / discharge terminals, A DC / DC converter for boosting the voltage of the battery unit, and a step-up ratio of the DC / DC converter when the output voltage of the battery unit falls below a predetermined threshold voltage lower than the rated output voltage of the storage battery device. And a control unit for controlling.
図1は、実施形態の車両用蓄電池システムの概要構成ブロック図である。FIG. 1 is a schematic block diagram of a storage battery system for a vehicle according to an embodiment. 図2は、蓄電池装置の概要構成ブロック図である。FIG. 2 is a schematic configuration block diagram of the storage battery device. 図3は、実施形態の充放電電流がゼロのときの説明図である。FIG. 3 is an explanatory diagram when the charge / discharge current of the embodiment is zero. 図4は、蓄電池装置の充放電時の処理フローチャートである。FIG. 4 is a processing flowchart when the storage battery device is charged and discharged.
 次に図面を参照して実施形態について詳細に説明する。
 図1は、実施形態の車両用蓄電池システムの概要構成ブロック図である。
 車両用蓄電池システム10は、エンジン11に駆動されて発電可能な発電機(ジェネレータ)12Gとして機能し、あるいは、電力が供給されてエンジン11の駆動を補助(アシスト)する電動機(モータ)12Mとして機能する電力機器12と、車載用機器に電力を供給する蓄電池装置13と、蓄電池装置13の充電状態(電圧、充電電流及び温度)を測定し、蓄電池装置13の制御を行うコントローラ14と、蓄電池装置13から高電圧系電力(例えば、48V系電力)が供給される負荷群15と、を備えている。
 上記構成において、電力機器12は、電動機12Mとして機能する場合には、負荷群15に含まれる。
Next, embodiments will be described in detail with reference to the drawings.
FIG. 1 is a schematic block diagram of a storage battery system for a vehicle according to an embodiment.
The vehicle storage battery system 10 functions as a generator (generator) 12G that can be driven by the engine 11 to generate power, or functions as a motor (motor) 12M that is supplied with electric power to assist (assist) driving the engine 11. Power device 12, a storage battery device 13 for supplying power to the vehicle-mounted device, a controller 14 that measures the state of charge (voltage, charging current, and temperature) of the storage battery device 13 and controls the storage battery device 13, and a storage battery device. And a load group 15 to which high-voltage power (for example, 48 V power) is supplied from the power supply 13.
In the above configuration, the power device 12 is included in the load group 15 when functioning as the electric motor 12M.
 ここで、蓄電池装置13の構成について説明する。
 図2は、蓄電池装置の概要構成ブロック図である。
 蓄電池装置13は、蓄電池装置13全体を制御するマイクロプロセッサユニット(MPU)等として構成されている制御部21と、複数の電池セル22が直列に接続された電池ユニット23と、電池ユニット23の状態(SOC、電圧、充電電流及び温度)を監視し、監視結果を制御回路21に通知する監視回路24と、を備えている。
Here, the configuration of the storage battery device 13 will be described.
FIG. 2 is a schematic configuration block diagram of the storage battery device.
The storage battery device 13 includes a control unit 21 configured as a microprocessor unit (MPU) or the like that controls the entire storage battery device 13, a battery unit 23 in which a plurality of battery cells 22 are connected in series, and a state of the battery unit 23. (SOC, voltage, charging current, and temperature), and a monitoring circuit 24 that notifies the control circuit 21 of the monitoring result.
 上記構成において、制御部21は、出力電圧Voutを検出する機能を備えている。
 また、電池セル22としては、出力特性に優れることからリチウムイオン二次電池、ニッケル水素二次電池が好適である。また、重量エネルギー密度の高さの観点からは、リチウムイオン二次電池の方がより好ましい。
In the above configuration, the control unit 21 has a function of detecting the output voltage Vout.
As the battery cell 22, a lithium ion secondary battery or a nickel hydride secondary battery is preferable because of its excellent output characteristics. In addition, from the viewpoint of a high weight energy density, a lithium ion secondary battery is more preferable.
 また、蓄電池装置13は、一端が電池ユニット23の高電位側端子に接続されたコイル25と、一端が電池ユニット23の低電位側端子に接続され、他端がコイル25の他端に接続された第1トランジスタユニット26と、一端がコイル25の他端に接続された第2トランジスタユニット27と、一端が第2トランジスタユニット27の他端に接続され、他端が電池ユニット23の低電位側端子及び入出力端子T2に接続されたコンデンサ28と、を備えている。 The storage battery device 13 has one end connected to the high potential side terminal of the battery unit 23, one end connected to the low potential side terminal of the battery unit 23, and the other end connected to the other end of the coil 25. A first transistor unit 26, a second transistor unit 27 having one end connected to the other end of the coil 25, and one end connected to the other end of the second transistor unit 27, and the other end connected to the low potential side of the battery unit 23. And a capacitor 28 connected to the terminal and the input / output terminal T2.
 さらに蓄電池装置13は、一端が第2トランジスタユニット27の他端に接続され、他端が入出力端子T1に接続された第3トランジスタユニット29と、第2トランジスタユニット27とコンデンサ28との接続点CPよりも第3トランジスタユニット29側の電流経路に設けられ、出力電流Ioutを検出する電流センサ30と、制御部21の制御下で第1トランジスタユニット26、第2トランジスタユニット27及び第3トランジスタユニット29を駆動するゲートドライバ31と、を備えている。 The storage battery device 13 further includes a third transistor unit 29 having one end connected to the other end of the second transistor unit 27 and the other end connected to the input / output terminal T1, and a connection point between the second transistor unit 27 and the capacitor. A current sensor 30 provided on a current path closer to the third transistor unit 29 than the CP and detecting the output current Iout; a first transistor unit 26, a second transistor unit 27, and a third transistor unit under the control of the control unit 21 And a gate driver 31 for driving the driving circuit 29.
 上記構成において、第1トランジスタユニット26は、ソース端子Sが電池ユニット23の低電位側端子に接続され、ドレイン端子がコイル25に接続され、ゲート端子Gがゲートドライバ31に接続されたNチャネルMOSトランジスタ26Tと、アノード端子AがNチャネルMOSトランジスタ26Tのソース端子Sに接続され、カソード端子KがNチャネルMOSトランジスタ26Tのドレイン端子Dに接続されたダイオード(寄生ダイオード)26Dと、を備えている。 In the above-described configuration, the first transistor unit 26 has an N-channel MOS having a source terminal S connected to the low potential side terminal of the battery unit 23, a drain terminal connected to the coil 25, and a gate terminal G connected to the gate driver 31. The transistor 26T includes a diode (parasitic diode) 26D whose anode terminal A is connected to the source terminal S of the N-channel MOS transistor 26T and whose cathode terminal K is connected to the drain terminal D of the N-channel MOS transistor 26T. .
 また、第2トランジスタユニット27は、ソース端子SがNチャネルMOSトランジスタ26Tのドレイン端子Dに接続され、ドレイン端子Dがコンデンサ28に接続され、ゲート端子Gがゲートドライバ31に接続されたNチャネルMOSトランジスタ27Tと、アノード端子AがNチャネルMOSトランジスタ27Tのソース端子Sに接続され、カソード端子KがNチャネルMOSトランジスタ27Tのドレイン端子Dに接続されたダイオード(寄生ダイオード)27Dと、を備えている。 The second transistor unit 27 has an N-channel MOS transistor having a source terminal S connected to a drain terminal D of an N-channel MOS transistor 26T, a drain terminal D connected to a capacitor 28, and a gate terminal G connected to a gate driver 31. The transistor 27T includes a diode (parasitic diode) 27D whose anode terminal A is connected to the source terminal S of the N-channel MOS transistor 27T and whose cathode terminal K is connected to the drain terminal D of the N-channel MOS transistor 27T. .
 また、第3トランジスタユニット29は、ソース端子Sが入出力端子T1に接続され、ドレイン端子Dがコンデンサ28に接続され、ゲート端子Gがゲートドライバ31に接続されたNチャネルMOSトランジスタ27Tと、アノード端子AがNチャネルMOSトランジスタ29Tのソース端子Sに接続され、カソード端子KがNチャネルMOSトランジスタ29Tのドレイン端子Dに接続されたダイオード(寄生ダイオード)29Dと、を備えている。 The third transistor unit 29 includes an N-channel MOS transistor 27T having a source terminal S connected to the input / output terminal T1, a drain terminal D connected to the capacitor 28, a gate terminal G connected to the gate driver 31, and an anode. A diode (parasitic diode) 29D whose terminal A is connected to the source terminal S of the N-channel MOS transistor 29T and whose cathode terminal K is connected to the drain terminal D of the N-channel MOS transistor 29T is provided.
 上記構成において、コイル25、第1トランジスタユニット26、第2トランジスタユニット27及びコンデンサ28は、昇降圧チョッパ回路として構成されたDC/DCコンバータ35を構成している。 In the above configuration, the coil 25, the first transistor unit 26, the second transistor unit 27, and the capacitor 28 constitute a DC / DC converter 35 configured as a step-up / step-down chopper circuit.
 ここで、DC/DCコンバータ35が電池ユニットから車両へ電力を供給する昇圧チョッパ回路として機能する場合には、第1トランジスタユニット26は、実効的にスイッチとして機能し、第2トランジスタユニット27は、実効的にダイオード27Dとして機能している。 Here, when the DC / DC converter 35 functions as a boost chopper circuit that supplies power from the battery unit to the vehicle, the first transistor unit 26 effectively functions as a switch, and the second transistor unit 27 It effectively functions as the diode 27D.
 また、DC/DCコンバータ35が電池ユニットへ車両から充電する降圧チョッパ回路として機能する場合には、第1トランジスタユニット26は、実効的にダイオードD26として機能し、第2トランジスタユニット27は、スイッチとして機能している。
 また、第3トランジスタユニット29は、電池ユニット23の放電時の放電側電流経路に設けられた遮断器として機能する。
When the DC / DC converter 35 functions as a step-down chopper circuit that charges the battery unit from the vehicle, the first transistor unit 26 effectively functions as a diode D26, and the second transistor unit 27 functions as a switch. It is functioning.
In addition, the third transistor unit 29 functions as a circuit breaker provided in the discharge current path when the battery unit 23 discharges.
 次に実施形態の動作を説明する。
 まず本実施形態の原理について説明する。
Next, the operation of the embodiment will be described.
First, the principle of the present embodiment will be described.
 本実施形態においては、電池ユニット23のSOC(State Of Charge:充電状態)に対応する電池ユニット23の出力電圧Vout0が第1閾値電圧VTH1よりも低い場合には、当該電池ユニット23に許容されている許容出力電圧以内となるように一定昇圧比で昇圧を行うようにされている。これにより、実効的な電池ユニット23の出力電圧をより定格出力電圧に近づけようとする場合と比較して、昇降圧チョッパ回路として機能するためのコイルの大きさを抑制することができ、ひいては、蓄電池装置13の小型化が図れるのである。 In the present embodiment, when the output voltage Vout0 of the battery unit 23 corresponding to the SOC (State of Charge) of the battery unit 23 is lower than the first threshold voltage VTH1, the battery unit 23 is allowed to do so. The boosting is performed at a constant boosting ratio so as to be within the allowable output voltage. As a result, the size of the coil for functioning as the step-up / step-down chopper circuit can be suppressed as compared with the case where the effective output voltage of the battery unit 23 is made closer to the rated output voltage. The size of the storage battery device 13 can be reduced.
 また、本実施形態においては、電池ユニット23のSOCに対応する電池ユニット23の出力電圧Vout0が第1閾値電圧VTH1以上であって、第2閾値電圧VTH2(>VTH1)よりも低い場合には、蓄電池装置13がDC/DCコンバータ35を備えていない通常の二次電池と同様の挙動を示すように制御を行っている。これにより、蓄電池装置13の外部の負荷あるいは充電装置は、蓄電池装置13として通常の二次電池が接続されているものとして何ら特殊な制御を行うことなく制御を行うことができる。 In the present embodiment, when the output voltage Vout0 of the battery unit 23 corresponding to the SOC of the battery unit 23 is equal to or higher than the first threshold voltage VTH1 and lower than the second threshold voltage VTH2 (> VTH1), The control is performed so that the storage battery device 13 exhibits the same behavior as a normal secondary battery that does not include the DC / DC converter 35. Thus, a load or a charging device external to the storage battery device 13 can perform control without performing any special control assuming that a normal secondary battery is connected as the storage battery device 13.
 さらに本実施形態においては、電池ユニット23のSOCに対応する電池ユニット23の出力電圧Vout0が第2閾値電圧VTH2以上である場合には、DC/DCコンバータの動作を実効的に行わないことで、電池ユニット23の出力電圧Vout0をそのまま出力するようにすることも可能である。このような構成を採ることにより、蓄電池装置13の外部の負荷あるいは充電装置から見れば、蓄電池装置13はDC/DCコンバータ35を備えていない通常の二次電池として自然に挙動を示すこととなる。 Further, in the present embodiment, when the output voltage Vout0 of the battery unit 23 corresponding to the SOC of the battery unit 23 is equal to or higher than the second threshold voltage VTH2, the operation of the DC / DC converter is not performed effectively. It is also possible to output the output voltage Vout0 of the battery unit 23 as it is. By adopting such a configuration, the storage battery device 13 naturally behaves as a normal secondary battery without the DC / DC converter 35 when viewed from the load external to the storage battery device 13 or the charging device. .
 より詳細には、電池ユニット23のSOCに対応する電池ユニット23の出力電圧Vout0は、式(0)により表される。
   Vout0=VOFS+KSOC・SOC-KI・Iout   …(0)
More specifically, the output voltage Vout0 of the battery unit 23 corresponding to the SOC of the battery unit 23 is represented by Expression (0).
Vout0 = VOFS + KSOC.SOC-KI.Iout (0)
 ここで、VOFSは、所定のオフセット電圧(単位V)、KSOCは、電池ユニット23のSOCに対応する係数(一定値:単位V/%)、SOCは、電池ユニット23のSOC(単位%)、KIは電池ユニット23の内部抵抗を擬似的に表す係数(一定値:単位Ω)、Ioutは、蓄電池装置13の出力電流(単位A)である。 Here, VOFS is a predetermined offset voltage (unit V), KSOC is a coefficient (constant value: unit V /%) corresponding to the SOC of the battery unit 23, SOC is SOC (unit%) of the battery unit 23, KI is a coefficient (constant value: unit Ω) that artificially represents the internal resistance of the battery unit 23, and Iout is the output current (unit A) of the storage battery device 13.
 そして、電池ユニット23の出力電圧Vout0が第1閾値電圧VTH1よりも低い場合には、蓄電池装置13の出力電圧Vout、すなわち、DC/DCコンバータ35の出力電圧は、上述した条件を満たすように、式(1)にしたがって設定される。
   Vout=KG・Vin        …(1)
 ここで、KGは、一定値の昇圧比であり、Vinは、DC/Dコンバータ35に電池ユニット23から実際に出力される電力の電圧である。
When the output voltage Vout0 of the battery unit 23 is lower than the first threshold voltage VTH1, the output voltage Vout of the storage battery device 13, that is, the output voltage of the DC / DC converter 35 satisfies the above-described condition. It is set according to equation (1).
Vout = KG · Vin (1)
Here, KG is a constant step-up ratio, and Vin is the voltage of the power actually output from the battery unit 23 to the DC / D converter 35.
 また、電池ユニット23のSOCに対応する電池ユニット23の出力電圧Vout0が第1閾値電圧VTH1以上であって、第2閾値電圧VTH2よりも低い場合には、蓄電池装置13の出力電圧Vout、すなわち、DC/DCコンバータ35の出力電圧は、蓄電池装置13の出力電圧がDC/DCコンバータ35が設けられていない通常の蓄電池と同様の挙動を示すように、式(2)にしたがって設定される。
   Vout=VOFS+KSOC・SOC-KI・Iout  …(2)
When the output voltage Vout0 of the battery unit 23 corresponding to the SOC of the battery unit 23 is equal to or higher than the first threshold voltage VTH1 and lower than the second threshold voltage VTH2, the output voltage Vout of the storage battery device 13, that is, The output voltage of the DC / DC converter 35 is set according to the equation (2) so that the output voltage of the storage battery device 13 exhibits the same behavior as a normal storage battery in which the DC / DC converter 35 is not provided.
Vout = VOFS + KSOC.SOC-KI.Iout (2)
 さらに電池ユニット23のSOCに対応する電池ユニット23の出力電圧Vout0が第2閾値電圧VTH2以上である場合には、蓄電池ユニット23の出力電圧が蓄電池装置13の出力電圧とするので、式(3)に示すものとなる。
   Vout=Vin         …(3)
 なお、電池ユニット23の充電終止電圧が第2閾値電圧VTH2を超えない場合には、この領域は存在しない。
Further, when the output voltage Vout0 of the battery unit 23 corresponding to the SOC of the battery unit 23 is equal to or higher than the second threshold voltage VTH2, the output voltage of the storage battery unit 23 is set to the output voltage of the storage battery device 13, so that the equation (3) It becomes what is shown in.
Vout = Vin (3)
Note that this region does not exist when the charge end voltage of the battery unit 23 does not exceed the second threshold voltage VTH2.
 図3は、実施形態の充放電電流がゼロのときの説明図である。
 より具体的には、蓄電池装置13に要求されている定格出力電圧が48Vであり、最大許容出力電圧が54Vであり、最小許容出力電圧が36Vであるとした場合、例えば、図2に示すように、第1閾値電圧VTH1=42V、第2閾値電圧VTH2=48Vとされる。
FIG. 3 is an explanatory diagram when the charge / discharge current of the embodiment is zero.
More specifically, when the rated output voltage required for the storage battery device 13 is 48 V, the maximum allowable output voltage is 54 V, and the minimum allowable output voltage is 36 V, for example, as shown in FIG. Then, the first threshold voltage VTH1 = 42V and the second threshold voltage VTH2 = 48V.
 また、電池ユニット23の放電終止電圧は、18V、充電終止電圧は50Vであるものとする。
 さらに、昇圧比KG=2、オフセット電圧VOFS=24V、係数KSOC=0.24V/%、係数KI=0.01Ωである。
Further, it is assumed that the discharge end voltage of the battery unit 23 is 18 V and the charge end voltage is 50 V.
Further, the boost ratio KG = 2, the offset voltage VOFS = 24 V, the coefficient KSOC = 0.24 V /%, and the coefficient KI = 0.01Ω.
 本例の場合には、図2に示すように、SOCに対応する電池ユニット23の出力電圧Vout0が第1閾値電圧VTH1=42V以下の領域、すなわち、電池ユニット23の電圧Vin=18~21Vの範囲内においては、出力電圧Voutは、(1)式に従うので、Vout=36~42Vの範囲内で電圧Vinに比例した電圧となる。 In the case of this example, as shown in FIG. 2, the output voltage Vout0 of the battery unit 23 corresponding to the SOC is in a region where the first threshold voltage VTH1 is equal to or less than 42V, that is, when the voltage Vin of the battery unit 23 is 18 to 21V. Within the range, the output voltage Vout follows the equation (1), and thus becomes a voltage proportional to the voltage Vin within the range of Vout = 36 to 42V.
 また、SOCに対応する電池ユニット23の出力電圧Vout0が第1閾値電圧VTH1=42Vを超え、第2閾値電圧VTH2=48V未満の領域、すなわち、電池ユニット23の電圧Vin=21~48Vの範囲内においては、出力電圧Voutは、(2)式に従ってVout=42~48Vの範囲内で変化し、見かけ上、DC/DCコンバータ35が存在しないような電圧挙動を示すこととなる。 Also, the output voltage Vout0 of the battery unit 23 corresponding to the SOC exceeds the first threshold voltage VTH1 = 42V and is less than the second threshold voltage VTH2 = 48V, that is, within the range of the voltage Vin = 21 to 48V of the battery unit 23. , The output voltage Vout changes within the range of Vout = 42 to 48 V according to the equation (2), and apparently exhibits a voltage behavior such that the DC / DC converter 35 does not exist.
 さらにSOCに対応する電池ユニット23の出力電圧Vout0が第2閾値電圧48V以上の場合には、出力電圧Voutは、出力電圧Vout0=Vinと等しくなる。 (4) When the output voltage Vout0 of the battery unit 23 corresponding to the SOC is equal to or higher than the second threshold voltage 48V, the output voltage Vout becomes equal to the output voltage Vout0 = Vin.
 次に実施形態の蓄電池装置13の充放電時の動作について説明する。
 図4は、蓄電池装置の充放電時の処理フローチャートである。
 コントローラ14により負荷群15に対して電力供給が開始されると、蓄電池装置13の制御部21は、監視回路24により通知された電池ユニット23の状態(SOC、電圧Vin、充電電流及び温度)を取得する(ステップS11)。
 次にコントローラ14は、監視回路24から故障通知を受信したか否かを判別する(ステップS12)。
Next, an operation at the time of charging and discharging of the storage battery device 13 of the embodiment will be described.
FIG. 4 is a processing flowchart when the storage battery device is charged and discharged.
When the controller 14 starts supplying power to the load group 15, the control unit 21 of the storage battery device 13 changes the state (SOC, voltage Vin, charging current, and temperature) of the battery unit 23 notified by the monitoring circuit 24. Acquire (Step S11).
Next, the controller 14 determines whether a failure notification has been received from the monitoring circuit 24 (step S12).
 ステップS12の判別において、故障通知を受信していない場合には(ステップS12;No)、制御部21は、電流センサ30の出力に基づいて蓄電池装置13の出力電流Ioutを検出する(ステップS13)。
 続いて、制御部21は、電池ユニット23のSOC及び出力電流Ioutに基づいて、式(0)として示したように、電池ユニット23のSOCに対応する電池ユニット23の出力電圧Vout0を算出する(ステップS14)。
   Vout0=VOFS+KSOC・SOC-KI・Iout   …(0)
If the failure notification has not been received in the determination in step S12 (step S12; No), the control unit 21 detects the output current Iout of the storage battery device 13 based on the output of the current sensor 30 (step S13). .
Subsequently, based on the SOC of the battery unit 23 and the output current Iout, the control unit 21 calculates the output voltage Vout0 of the battery unit 23 corresponding to the SOC of the battery unit 23 as shown in Expression (0) ( Step S14).
Vout0 = VOFS + KSOC.SOC-KI.Iout (0)
 続いて、制御部21は、まず、
   Vout0≦VTH1
であるか否かを判定する(ステップS15)。
Subsequently, the control unit 21 first
Vout0 ≦ VTH1
Is determined (step S15).
 ステップS15の判定において、
   Vout0≦VTH1
である場合には(ステップS15;Yes)、制御部21は、出力電圧Voutを検出しつつ、上述した式(1)に示したように、
   Vout=KG・Vin                   …(1)
となるように、ゲートドライバ31を介して第1トランジスタユニット26、第2トランジスタユニット27及び第3トランジスタユニット29を制御する(ステップS16)。
In the determination of step S15,
Vout0 ≦ VTH1
Is satisfied (step S15; Yes), the control unit 21 detects the output voltage Vout and, as shown in the above equation (1),
Vout = KG · Vin (1)
Then, the first transistor unit 26, the second transistor unit 27, and the third transistor unit 29 are controlled via the gate driver 31 (step S16).
 具体的には、制御部21は、Vout>Vout0である場合はDC/DCコンバータ35を降圧チョッパ回路として電池セルを充電するように動作させ、Vout≦Vout0である場合はDC/DCコンバータ35を昇圧チョッパ回路として電池セルを放電させる方向に動作するように制御する。このように、制御部21は、VoutとVout0の差がなくなるようにDC/DCコンバータ35を制御するが、出力電流Ioutが許容充放電電流内に収まる範囲内で制御する。 Specifically, the control unit 21 operates the DC / DC converter 35 as a step-down chopper circuit to charge the battery cell when Vout> Vout0, and activates the DC / DC converter 35 when Vout ≦ Vout0. The boost chopper circuit is controlled so as to operate in a direction to discharge the battery cells. As described above, the control unit 21 controls the DC / DC converter 35 so that the difference between Vout and Vout0 disappears, but controls the output current Iout within a range where the output current Iout falls within the allowable charge / discharge current.
 すなわち、制御部21は、所定のクロック信号に従って、出力電圧Vout=KG・Vinとなるように、第1トランジスタユニット26のNチャネルMOSトランジスタ26Tのオンデューティ制御およびトランジスタユニット27のNチャネルMOSトランジスタ27Tのオンデューティ制御を行う。 That is, the control unit 21 controls the on-duty of the N-channel MOS transistor 26T of the first transistor unit 26 and the N-channel MOS transistor 27T of the transistor unit 27 so that the output voltage Vout = KG · Vin in accordance with the predetermined clock signal. Of on-duty control.
 また、NチャネルMOSトランジスタ26Tのオン期間中はトランジスタユニット27のNチャネルMOSトランジスタ27Tを開状態(オフ状態)とし、NチャネルMOSトランジスタ26Tのオフ期間中はトランジスタユニット27のNチャネルMOSトランジスタ27Tを閉状態(オン状態)とする。 Further, the N-channel MOS transistor 27T of the transistor unit 27 is kept open (off state) while the N-channel MOS transistor 26T is on, and the N-channel MOS transistor 27T of the transistor unit 27 is kept off during the off period of the N-channel MOS transistor 26T. Set to the closed state (ON state).
 この結果、出力電圧Vout=KG・Vinとなるように制御することとなる。
 また、ステップS15の判定において、
   Vout0>VTH1
である場合には(ステップS15;No)、制御部21は、
   VTH1<Vout0≦VTH2
であるか否かを判定する(ステップS17)。
As a result, control is performed so that the output voltage Vout = KG · Vin.
Also, in the determination of step S15,
Vout0> VTH1
Is satisfied (step S15; No), the control unit 21
VTH1 <Vout0 ≦ VTH2
Is determined (step S17).
 ステップS17の判定において、
   VTH1<Vout0≦VTH2
である場合には(ステップS17;Yes)、制御部21は、出力電圧Voutを検出しつつ、上述した式(2)で示したように、
   Vout=VOFS+KSOC・SOC-KI・Iout     …(2)
となるように、ゲートドライバ31を介して第1トランジスタユニット26、第2トランジスタユニット27及び第3トランジスタユニット29を制御する(ステップS18)。
In the determination of step S17,
VTH1 <Vout0 ≦ VTH2
Is satisfied (step S17; Yes), the control unit 21 detects the output voltage Vout and, as shown in the above equation (2),
Vout = VOFS + KSOC.SOC-KI.Iout (2)
Then, the first transistor unit 26, the second transistor unit 27, and the third transistor unit 29 are controlled via the gate driver 31 (step S18).
 具体的には、制御部21は、Vout>Vout0である場合はDC/DCコンバータ35を降圧チョッパ回路として電池セルを充電するように動作させ、Vout≦Vout0である場合はDC/DCコンバータ35を昇圧チョッパ回路として電池セルを放電させる方向に動作するよう制御する。 Specifically, the control unit 21 operates the DC / DC converter 35 as a step-down chopper circuit to charge the battery cell when Vout> Vout0, and activates the DC / DC converter 35 when Vout ≦ Vout0. The boost chopper circuit is controlled so as to operate in a direction to discharge the battery cells.
 すなわち、制御部21は、所定のクロック信号に従って、第1トランジスタユニット26のNチャネルMOSトランジスタ26Tおよびトランジスタユニット27のNチャネルMOSトランジスタ27Tの開閉制御(オン/オフ制御)行い、
   出力電圧Vout=VOFS+KSOC・SOC-KI・Iout
となるように制御する。
That is, the control unit 21 performs opening / closing control (on / off control) of the N-channel MOS transistor 26T of the first transistor unit 26 and the N-channel MOS transistor 27T of the transistor unit 27 according to a predetermined clock signal.
Output voltage Vout = VOFS + KSOC.SOC-KI.Iout
Is controlled so that
 この結果、車両側の負荷群15からみれば、電池ユニット23のSOC変化に伴う挙動で電力が供給されている状態となる。 結果 As a result, from the viewpoint of the load group 15 on the vehicle side, power is supplied according to the behavior accompanying the SOC change of the battery unit 23.
 ステップS17判定において、
      VTH1<Vout0≦VTH2
ではない場合には(ステップS17;No)、すなわち、
      VTH2<Vout0
である場合には(ステップS17;No)、制御部21は、実効的に昇降圧チョッパ回路の動作を停止させ(昇降圧チョッパ回路をスルーさせ)、電池ユニット23の電力を電池ユニット23の電圧Vinのまま出力する。すなわち、ゲートドライバ31を介して第1トランジスタユニット26のNチャネルMOSトランジスタ26Tを開状態(オフ状態)のまま、第2トランジスタユニット27のNチャネルMOSトランジスタ27Tを閉状態(オン状態)のままとし、出力電圧Voutが上述した式(3)に示したように、
   Vout=Vin                      …(3)
となるようにする(ステップS19)。
In step S17 determination,
VTH1 <Vout0 ≦ VTH2
If not (step S17; No), ie,
VTH2 <Vout0
(Step S17; No), the control unit 21 effectively stops the operation of the step-up / step-down chopper circuit (through the step-up / step-down chopper circuit) and reduces the power of the battery unit 23 to the voltage of the battery unit 23. Output as Vin. In other words, the N-channel MOS transistor 26T of the first transistor unit 26 is kept open (off state) and the N-channel MOS transistor 27T of the second transistor unit 27 is kept closed (on state) via the gate driver 31. , The output voltage Vout, as shown in the above equation (3),
Vout = Vin (3)
(Step S19).
 一方、ステップS12の判別において、故障通知を受信した場合には、制御部21は、通信により車両へ蓄電池装置の停止許可を要求する(ステップS20)。
 続いて、制御部21は、車両から停止許可を受信したか否かを判別する(ステップS21)。
On the other hand, when the failure notification is received in the determination in step S12, the control unit 21 requests the vehicle to permit the stop of the storage battery device through communication (step S20).
Subsequently, the control unit 21 determines whether a stop permission has been received from the vehicle (step S21).
 ステップS21の判別において、未だ車両から停止許可を受信していない場合には、処理を再びステップS20に戻り、上述した処理を繰り返す。
 ステップS21の判別において、車両から停止許可を受信した場合には(ステップS21;Yes)、制御部21は、トランジスタユニット26、27、29の駆動を停止して処理を終了する。
If it is determined in step S21 that the stop permission has not yet been received from the vehicle, the process returns to step S20, and the above-described process is repeated.
If it is determined in step S21 that a stop permission has been received from the vehicle (step S21; Yes), the control unit 21 stops driving the transistor units 26, 27, and 29 and ends the process.
 以上の説明のように、実施形態の蓄電池装置13の電力供給時においては、Vout0≦VTH1である場合には、一定昇圧比で電力を供給しているので、コイル25の小型化、ひいては、蓄電池装置13の小型化を図ることができる。 As described above, when power is supplied to the storage battery device 13 of the embodiment, when Vout0 ≦ VTH1, power is supplied at a constant boosting ratio. The size of the device 13 can be reduced.
 また、VTH1<Vout0≦VTH2である場合には、蓄電池装置13が昇降圧チョッパ回路を備えていない単純な蓄電池装置のように挙動を模擬しているので、負荷群15からは、蓄電池装置13は、制御機能を有しない単なる蓄電池装置として見えることとなり、負荷群15側で特殊な制御を行う必要がない。 When VTH1 <Vout0 ≦ VTH2, the behavior of the storage battery device 13 is simulated as a simple storage battery device without a step-up / step-down chopper circuit. Therefore, the load group 15 can be viewed as a mere storage battery device having no control function, and there is no need to perform special control on the load group 15 side.
 さらに、VTH2<Vout0である場合には、昇降圧チョッパ回路を実効的に停止させ、蓄電池装置13を構成している電池ユニット23の電力をそのまま供給しているので、常時昇降圧チョッパ回路を動作させる場合よりも、消費電力の低減を図ることができ、実効的に蓄電池装置13の容量が増加する。 Further, when VTH2 <Vout0, the step-up / step-down chopper circuit is effectively stopped and the power of the battery unit 23 constituting the storage battery device 13 is supplied as it is, so that the step-up / step-down chopper circuit is always operated. Power consumption can be reduced as compared with the case where the power is stored, and the capacity of the storage battery device 13 effectively increases.
 以上の説明のように、本実施形態によれば、装置の小型化を図りつつ、取り扱いが容易で、高電圧系電力を供給可能な蓄電池装置を提供できる。 As described above, according to the present embodiment, it is possible to provide a storage battery device that is easy to handle and can supply high-voltage power while reducing the size of the device.
 本実施形態の蓄電池装置で実行されるプログラムは、インストール可能な形式又は実行可能な形式のファイルでCD-ROM、DVD(Digital Versatile Disk)、USBメモリ等の半導体記憶装置等のコンピュータで読み取り可能な記録媒体に記録されて提供される。 The program executed by the storage battery device of the present embodiment can be read by a computer such as a semiconductor storage device such as a CD-ROM, a DVD (Digital Versatile Disk), and a USB memory in an installable or executable file. It is provided by being recorded on a recording medium.
 また、本実施形態の蓄電池装置(の制御部)で実行されるプログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、本実施形態の蓄電池装置(の制御部)で実行されるプログラムをインターネット等のネットワーク経由で提供または配布するように構成しても良い。 Further, the program executed by (the control unit of) the storage battery device of the present embodiment may be stored on a computer connected to a network such as the Internet and provided by being downloaded via the network. . Further, the program executed by (the control unit of) the storage battery device of the present embodiment may be provided or distributed via a network such as the Internet.
 また、本実施形態の蓄電池装置(の制御部)で実行されるプログラムを、ROM等に予め組み込んで提供するように構成してもよい。 The program executed by (the control unit of) the storage battery device of the present embodiment may be configured to be provided by being incorporated in a ROM or the like in advance.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. These new embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the invention described in the claims and equivalents thereof.

Claims (5)

  1.  車両に搭載されて車載用機器に電力を供給する蓄電池装置であって、
     一対の第1充放電端子の間に複数の直列接続された電池セルを有する電池ユニットと、
     前記電池ユニットの電圧を昇圧させるDC/DCコンバータと、
     前記電池ユニットの出力電圧が、当該蓄電池装置の定格出力電圧よりも低い所定の閾値電圧以下となった場合に前記DC/DCコンバータの昇圧比を一定に制御する制御部と、
     を備えた蓄電池装置。
    A storage battery device that is mounted on a vehicle and supplies power to in-vehicle devices,
    A battery unit having a plurality of battery cells connected in series between a pair of first charge / discharge terminals;
    A DC / DC converter for increasing the voltage of the battery unit;
    A control unit that controls a step-up ratio of the DC / DC converter to be constant when an output voltage of the battery unit is equal to or lower than a predetermined threshold voltage lower than a rated output voltage of the storage battery device;
    A storage battery device comprising:
  2.  前記電池ユニットの放電側電流経路及び充電側電流経路のうち、前記放電側電流経路にのみ遮断器を設けている、
     請求項1記載の蓄電池装置。
    Of the discharge-side current path and the charge-side current path of the battery unit, a breaker is provided only in the discharge-side current path,
    The storage battery device according to claim 1.
  3.  前記DC/DCコンバータの出力電圧を検出する出力電圧検出部と、
     前記DC/DCコンバータの出力電流を検出する出力電流検出部と、を備え、
     前記制御部は、前記DC/DCコンバータの出力電圧を前記出力電流に比例して変動させるとともに、前記電池ユニットの放電時には、前記DC/DCコンバータの出力電圧を低下させ、前記電池ユニットの充電時には、前記DC/DCコンバータの出力電圧を上昇させる、
     請求項1又は請求項2記載の蓄電池装置。
    An output voltage detection unit that detects an output voltage of the DC / DC converter;
    An output current detection unit that detects an output current of the DC / DC converter,
    The control unit varies the output voltage of the DC / DC converter in proportion to the output current, reduces the output voltage of the DC / DC converter when discharging the battery unit, and reduces the output voltage when charging the battery unit. Increasing the output voltage of the DC / DC converter;
    The storage battery device according to claim 1.
  4.  前記電池ユニットにおける充電率を検出する充電率検出部を備え、
     前記制御部は、前記DC/DCコンバータの出力電圧を前記充電率に比例して変動させるとともに、前記電池ユニットの放電時には、前記DC/DCコンバータの出力電圧を低下させ、前記電池ユニットの充電時には、前記DC/DCコンバータの出力電圧を上昇させる、
     請求項1乃至請求項3のいずれか一項記載の蓄電池装置。
    A charging rate detection unit that detects a charging rate in the battery unit,
    The control unit varies the output voltage of the DC / DC converter in proportion to the charging rate, reduces the output voltage of the DC / DC converter when discharging the battery unit, and reduces the output voltage when charging the battery unit. Increasing the output voltage of the DC / DC converter;
    The storage battery device according to any one of claims 1 to 3.
  5.  前記制御部は、前記閾値電圧より高い所定の第2閾値電圧以上となった場合に、前記DC/DCコンバータの動作を実効的に停止し、前記電池ユニットの出力電圧を前記DC/DCコンバータの出力電圧とする、
     請求項1乃至請求項4のいずれか一項記載の蓄電池装置。
    The control unit, when the voltage becomes equal to or higher than a predetermined second threshold voltage higher than the threshold voltage, effectively stops the operation of the DC / DC converter, and outputs the output voltage of the battery unit to the DC / DC converter. Output voltage,
    The storage battery device according to claim 1.
PCT/JP2018/034699 2018-09-19 2018-09-19 Storage battery device WO2020059058A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/034699 WO2020059058A1 (en) 2018-09-19 2018-09-19 Storage battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/034699 WO2020059058A1 (en) 2018-09-19 2018-09-19 Storage battery device

Publications (1)

Publication Number Publication Date
WO2020059058A1 true WO2020059058A1 (en) 2020-03-26

Family

ID=69886711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034699 WO2020059058A1 (en) 2018-09-19 2018-09-19 Storage battery device

Country Status (1)

Country Link
WO (1) WO2020059058A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003237501A (en) * 2002-02-19 2003-08-27 Denso Corp Power supply device for automobile
JP2009142061A (en) * 2007-12-06 2009-06-25 Denso Corp Dc-dc converter
JP2013140165A (en) * 2013-02-08 2013-07-18 Sumitomo Heavy Ind Ltd Construction machine and method for controlling the same
JP2015047893A (en) * 2013-08-30 2015-03-16 三菱電機株式会社 Ground battery control device and control method thereof, and ground battery control system for railway
JP2015139307A (en) * 2014-01-23 2015-07-30 ファナック株式会社 Dc/dc converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003237501A (en) * 2002-02-19 2003-08-27 Denso Corp Power supply device for automobile
JP2009142061A (en) * 2007-12-06 2009-06-25 Denso Corp Dc-dc converter
JP2013140165A (en) * 2013-02-08 2013-07-18 Sumitomo Heavy Ind Ltd Construction machine and method for controlling the same
JP2015047893A (en) * 2013-08-30 2015-03-16 三菱電機株式会社 Ground battery control device and control method thereof, and ground battery control system for railway
JP2015139307A (en) * 2014-01-23 2015-07-30 ファナック株式会社 Dc/dc converter

Similar Documents

Publication Publication Date Title
US8581557B2 (en) Direct-current power source apparatus
US9793722B2 (en) Power source apparatus for vehicle
US9350177B2 (en) Equalization circuit, power supply system, and vehicle
KR102000237B1 (en) Electrical system and method for operating an electrical system
KR101658867B1 (en) Pre-charging and voltage supply system for a dc-ac inverter
TWI804503B (en) Power storage system and electric equipment
US20140009116A1 (en) Balance correction apparatus and electric storage system
US20150203060A1 (en) Power supply management system and power supply management method
JP6427574B2 (en) Device for charge balancing of power battery
JP2009118727A (en) Hybrid power source
US20150069960A1 (en) Auxiliary Battery Charging Apparatus
US20210091587A1 (en) Electric storage system
EP2830189B1 (en) Balance correction device and power storage system
KR20160114677A (en) Method for operation of an onboard power supply
US11552483B2 (en) Electric storage system
WO2019244606A1 (en) Vehicle power supply device
CN112242728B (en) Power supply system, DCDC converter device and charging method
JP5187407B2 (en) Auxiliary battery charger
US11489329B2 (en) Power supply system
JP2014150593A (en) Power supply system for vehicle
US10576835B2 (en) Energy storage device, transport apparatus, and control method
US11108248B2 (en) Power supply system including high-voltage system and low-voltage system and insulation thereof
JP2009148110A (en) Charger/discharger and power supply device using the same
JP5275889B2 (en) Charging apparatus and charging method
WO2020059058A1 (en) Storage battery device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP